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Abstract

Background: We developed a semi-automated algorithm that detects cortical interruptions in finger joints using
high-resolution peripheral quantitative computed tomography (HR-pQCT), and extended it with trabecular void
volume measurement. In this study we tested the reproducibility of the algorithm using scan/re-scan data.

Methods: Second and third metacarpophalangeal joints of 21 subjects (mean age 49 (SD 11) years, 17 early
rheumatoid arthritis and 4 undifferentiated arthritis, all diagnosed < 1 year ago) were imaged twice by HR-pQCT on
the same day with repositioning between scans. The images were analyzed twice by one operator (OP1) and once
by an additional operator (OP2), who independently corrected the bone contours when necessary. The number,
surface and volume of interruptions per joint were obtained. Intra- and inter-operator reliability and intra-operator
reproducibility were determined by intra-class correlation coefficients (ICC). Intra-operator reproducibility errors were
determined as the least significant change (LSCsp).

Results: Per joint, the mean number of interruptions was 3.1 (SD 3.6), mean interruption surface 4.2 (SD 7.2) mm?,
and mean interruption volume 3.5 (SD 10.6) mm? for OP1. Intra- and inter-operator reliability was excellent for the
cortical interruption parameters (ICC 20.91), except good for the inter-operator reliability of the interruption surface
(ICC =0.70). The LSC<p per joint was 4.2 for the number of interruptions, 5.8 mm? for interruption surface, and 3.

2 mm? for interruption volume.

Conclusions: The algorithm was highly reproducible in the detection of cortical interruptions and their volume.

Based on the LSC findings, the potential value of this algorithm for monitoring structural damage in the joints in
early arthritis patients needs to be tested in clinical studies.
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Background

Rheumatoid arthritis (RA) is a chronic disease, in which
inflammation at the joint may lead to erosions (i.e. cortical
interruptions) [1, 2]. Interruptions in the cortical bone
surface are often accompanied with underlying trabecular
bone loss [3-5]. The presence, size and number of cortical
interruptions within a joint, and the number of joints af-
fected, are each associated with poor functional outcome
and predictors of further progression of structural damage
[3, 6, 7]. The quantification of interruptions on conven-
tional radiography (CR) is considered the gold standard in
clinical practice, however, it has a lower sensitivity com-
pared to ultrasound, computed tomography (CT) and
magnetic resonance imaging (MRI) [8-10].

High-resolution peripheral quantitative CT (HR-
pQCT) is a low-dose imaging technique that is able to
assess the three-dimensional (3D) bone structure at the
micro-scale (82 um nominal isotropic voxel size) of the
peripheral skeleton in vivo [11]. Multiple studies have
reported results on the visual inspection of the pres-
ence, number and size of interruptions with underlying
trabecular bone voids in finger joints of patients with
RA using HR-pQCT [12-22]. Excellent intra- and inter-
rater reliability have been reported, but in all these studies
only relatively large cortical interruptions were scored
(mean diameter > 1.5 mm) [5, 13-15, 21, 23, 24]. In an
earlier study, we showed that the inter-operator reli-
ability is fair when visually scoring smaller cortical in-
terruptions [25].

In addition, the quantification of interruption volume
was primarily based on simple distance measures on a
two-dimensional (2D) slice [5, 14, 15, 17, 18, 23]. A more
extensive method is the 3D automated volume determin-
ation developed by Topfer et al. [21]. However, in this
method the location of the interruption still has to be
visually identified by an operator. In addition, this volume
determination was performed in large interruptions (aver-
age volume: 9.3mm?).

We have therefore developed a semi-automated algo-
rithm that reliably detects small cortical interruptions
(with a diameter > 0.246 mm) [26]. In addition, we showed
that interruptions with a diameter of >0.41 mm detected
on HR-pQCT were also detected on uCT, the 3D gold
standard [27]. However, this algorithm only analyzed the
presence of an interruption in the cortex and did not con-
sider the underlying trabecular bone loss as part of the
total interruption volume. This is important because not
only the presence but also the size of cortical interruptions
(which includes the trabecular bone void) are associated
with poor functional outcome and predictors of further
progression of structural damage [3, 6, 7].

Furthermore, the reproducibility of our algorithm on
scan/re-scan with repositioning in-between the scans
has not yet been tested in the standard workflow of the
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HR-pQCT scanner. Only the effect of the operator was
investigated and not the influence of re-positioning of
the hand nor the effect of image quality (noise and mo-
tion artifacts) in addition to the effect of the operator.
Two previous studies tested the reproducibility on scan/
re-scan data in the standard workflow of the HR-pQCT
scanner for structural and density parameters in meta-
carpal heads [13, 28]. The density parameters showed
precision errors of <2%, but for trabecular and cortical
structural parameters, precision errors up to 33% were
found [13, 28]. However, precision errors of the cortical
parameters were only tested in healthy controls and not
in early arthritis patients. Moreover, the phalangeal base
was not included as part of the metacarpophalangeal
(MCP) joint.

Therefore, the aims of this study were: 1) to extend
our algorithm for detection of cortical interruptions with
underlying trabecular bone void volume detection, 2) to
evaluate the precision errors of our algorithm to detect
cortical interruptions and its volume using scan/re-scan
data in the standard workflow of the HR-pQCT scanner,
and 3) to evaluate the precision errors of the trabecular
and cortical density and micro-structure parameters in
the standard workflow of the HR-pQCT scanner.

Methods

Patient population

Twenty-one patients were recruited (mean age 49 (SD 11)
years) with early RA (n = 17) and undifferentiated arthritis
(n = 4), all diagnosed < 1 year from the Early Inflammatory
Arthritis Clinics of the Division of Rheumatology at the
University of Calgary, Canada. All patients with early RA
fulfilled the 2010 American College of Rheumatology
(ACR)/European League Against Rheumatism (EULAR)
classification criteria for RA [29]. Ethical approval was
obtained from the Conjoint Health Research Ethics Board
at the University of Calgary, Canada (REB 15-0582). All
participants signed informed consent.

HR-pQCT scanning procedure

The second and third metacarpophalangeal joints of the
dominant hand were scanned twice with HR-pQCT
(XtremeCT, Scanco Medical AG, Switzerland) using the
image acquisition protocol developed by the Study group
for xtrEme Computed Tomography in RA (SPECTRA),
an international collaboration of HR-pQCT users [30].
Scanning was performed at clinical in vivo settings, i.e.
at 60kVp tube voltage, 900 pA tube current, 100 ms in-
tegration time and images were reconstructed using an
82 um nominal isotropic voxel size. The reference line
was placed at the midpoint of the concave articular sur-
face at the base of the second or third proximal phalanx
(whichever was the most distal of the two). The scan
covered a length of 9.02 mm (1 stack) in the distal
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direction and 18.04 mm (2 stacks) in the proximal direc-
tion (total scan length 27.06 mm, 330 slices, 3 stacks)
(Additional file 1). The total scanning time was approxi-
mately 9 min. After the first scan, the patients removed
their hand from the stabilization platform, rested for five
minutes, and were then repositioned for a second scan.
Subject scans were evaluated on motion artifacts per
stack according to Pialat et al. [31]. Stacks of poor qual-
ity (grade > 3) on the first and/or second scan were ex-
cluded from further analyses [31].

Image analysis

Outer contour

The outer margin of the cortex was identified using a modi-
fied previously described auto-contouring algorithm for
periosteal segmentation of the distal radius and tibia [26].
For the first scans, the contours were visually inspected
and, if necessary, corrected by one operator twice (MP,
OP1) with three years of experience with HR-pQCT to en-
able calculation of intra-operator reliability. Contouring of
the first scans was performed by one additional operator
(JdJ, OP2) with five years of experience with HR-pQCT to
enable calculation of inter-operator reliability. For the sec-
ond scans, the contours were corrected by OP1, to enable
calculation of intra-operator reproducibility. The number
of manual corrections largely depends on the presence and
severity of motion artifacts and the number of large cortical
interruptions (>1mm?) within the joint. Corrections are
always necessary in case of large cortical interruptions and
usually necessary with motion grades >3. Figure 1 shows
two examples of contours that were corrected by the
operators, one due to motion artifacts (Fig. la), and
another due to a large cortical interruption (Fig. 1b).
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Binary image, and bone density and micro-structure
parameters

The outer contours obtained from OP1 and OP2 were
used for standard and cortical evaluation protocols [11,
32]. The cortical evaluation protocol incorporates the
detection of the inner cortical contour as explained by
Burghardt et al. [32]. No corrections were applied to the
inner cortical contour. The standard evaluation protocol
from the manufacturer (Scanco Medical AG, Bruttisellen,
Switzerland) for radius and tibia, which included Laplace-
Hamming filtering and thresholding [33], was used to dis-
tinguish bone from non-bone voxels to create a 3D binary
image, and to determine the bone density and micro-
architectural parameters as described elsewhere [11].
From the standard evaluation protocol, the volumetric
bone mineral density (vBMD) [mg HA/cm?] in the total
(Tot.BMD) and trabecular (Tb.BMD) region was obtained
[11]. Furthermore, trabecular number (Tb.N) [mm ],
thickness (Tb.Th) [pm], separation (Tb.Sp) [pm], and
intra-individual distribution of separation (Tb.SpSD) [pm]
were determined to assess the trabecular compartment
[11]. From the cortical evaluation protocol, the cortical
density (Ct.BMD) and the density of the cortical bone
tissue (Ct. TMD) were obtained. The cortical thickness
(Ct.Th) [pm], cortical porosity (Ct.Po) [%], and cortical
pore diameter (Ct.Po.Dm) [um] were determined to assess
the cortical compartment [32].

Cortical interruption detection algorithm

The algorithm is developed within the scanner software
(Image Processing Language (IPL)). The first part of the
algorithm has been described in detail elsewhere [26, 27].
In short, first, a cortical mask with a constant depth of 4

2D grayscale
image

a

Motion artifact

b

Cortical
interruption

Automatic
contour

Corrected contour

Fig. 1 Typical examples of 2D grayscale images in which the contour is manually corrected by the operators. a Due to a motion artifact, the
automatically obtained contour was not tight around its original structure (a. Il). The operators corrected this (a. lll). In (b) a large cortical
interruption with underlying trabecular bone loss is shown (b. I, arrow). The automatically obtained contour does not follow the outer margin of
the original structure at the cortical interruption (b. Il). The operators therefore corrected the contour (b. Ill)
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voxels (0.328 mm) is generated in 3D based on the outer
contour. Second, the cortical bone within the masked re-
gion is analyzed for discontinuities that can be considered
cortical interruptions (diameter > 0.41 mm), because these
were also detected on puCT scans [27].

The extended part of the algorithm is explained in
Fig. 2. As an example, two cortical interruptions >0.
41 mm are visualized on a 2D grayscale image as output
of the first part of the algorithm (Fig. 2a, green circles). A
region of interest (ROI) is obtained by dilating the de-
tected cortical interruptions 48 times (= 3.936 mm) in all
three dimensions, which results in a sphere with a radius
of 4 mm. This contour was masked with the outer con-
tour to only consider the region within the bone (Fig. 2b).
A radius of 4 mm was chosen because it approximates half
the width of the metacarpal head (Fig. 2b). The ROI
prevents connection of detected voids with the intrame-
dullary canal void. Within this ROI, a 3D distance trans-
formation is performed, and only trabecular voids that are
>0.738 mm in diameter are selected (Fig. 2c), which is
higher than trabecular separation commonly (<5%) ob-
served in MCP joints of healthy controls [13].

The detected voids are then eroded by 2 voxels in all
three dimensions, which leads to loss of connections of
<0.328 mm in diameter, and therefore prevents leaking
of the voids into the trabecular structure (Fig. 2d). Only
those voids that remain connected to a cortical interrup-
tion are included (Fig. 2e). Last, these selected voids are
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dilated in all three dimensions to their original size and
the originally detected cortical interruptions are added
to these voids (Fig. 2f).

Per joint, the number of cortical interruptions detected,
interruption surface, and interruption volume (cortical
interruption + trabecular void volume) were obtained.

Statistical analysis

Descriptive statistics per joint were calculated for the
number of interruptions, interruption surface and volume,
and bone density and micro-structure parameters. Paired
t-test was used to compare the results per joint between
the first and second scan assessments. Intra- and inter-
operator reliability and intra-operator reproducibility on
the joint level was assessed by intra-class correlation coef-
ficient (ICC) with a two-way random model and absolute
agreement. ICCs were rated as: < 0.40 poor, 0.40-0.60 fair,
0.60-0.75 good, and 0.75-1.00 excellent. In addition,
intra-operator reliability and reproducibility errors were
determined as the root mean square (RMS) of coefficients
of variation (CV) and the RMS of the standard deviation
(SD), respectively CVyrys and SDrys, as described by
Glier et al. [34]. The Least Significant Change (LSC) was
calculated in absolute values (LSCsp) and in percentages
(LSCcv) according to egs. 1 and 2. Bland-Altman plots
were made for qualitative assessment of the intra- and
inter-operator reliability, and intra-operator reproducibil-
ity for all parameters. Statistical analyses were performed

Connected

originally detected cortical interruptions are added (f)

Fig. 2 Representation of the steps executed by the extended part of the algorithm. a Two cortical interruptions 2041 mm are visualized on a 2D
grayscale image as output of the first part of the algorithm. A region of interest (ROI) is obtained by dilating the detected cortical interruptions
with 48 voxels (=3.936 mm) and masked with the outer contour (b). Within this ROI, a distance transformation is performed. Only voids that are
20.738 mm in diameter are selected (c). These volumes are eroded by 2 voxels to lose connections of <0.328 mm and therefore prevent leaking
into the trabecular structure (d). The voids that remain connected to a cortical interruption are included (e), dilated to its original size and the
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using IBM SPSS Statistics for Windows, Version 20.0
(IBM Corp., Armonk, NY).

LSCsp  =1.96 % /2 % SDpys (1)
LSCC\/% =1.96 % \/5 * CVRMS (2)
Results

In 42 different patient scans with 126 stacks, 20 (15.9%)
stacks of poor quality were observed at the first scan
and 13 (10.3%) at the second scan. Two stacks were of
poor quality at both the first and second scan. There-
fore, in total 31 out of 126 stacks (24.6%) were excluded
from the analysis due to motion artifacts. Two joints,
which had poor quality on all three stacks, were ex-
cluded (Fig. 3). Hence, 40 joints remained for analysis
(Fig. 3).

Visual assessment

Cortical interruptions detected by the algorithm based
on the corrected contours of OP1 and OP2 on the first
scan and corrected contours of OP1 on the second scan
are visualized in 3D, and visualized on corresponding 2D
grayscale images (Fig. 4). Fig. 4a shows that the algorithm
accurately detects cortical interruptions (green) and its
underlying trabecular void volume (red), and that most in-
terruptions were detected on both the first and second
scan (green arrows). However, discrepancies were also
found (red arrow).
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Similarly, most interruptions detected by the algorithm
on the first scan using the corrected contours of OP1
were also found when using the corrected contours of
OP2 (green arrows), but discrepancies were found as
well (red arrow).

Quantitative assessment

Reliability

Intra- and inter-operator reliability was excellent for all
bone density and micro-structure parameters (ICC > 0.
99). Bland-Altman plots show that no cut-off bias was ob-
served for all bone density and micro-structure parame-
ters, and that the errors were independent of the mean
values detected (Additional files 2 and 3). Intra- and inter-
operator reliability of the cortical interruption algorithm
was excellent for the cortical interruption parameters
(ICCs 20.91), except for the inter-operator reliability of
the interruption surface (ICC = 0.70, Additional file 4). For
the intra-operator reliability, LSCsp values were 2.0 for
the number of interruptions, 4.6 mm? for the interruption
surface, and 1.9 mm® for the interruption volume
(Additional file 4). Bland-Altman plots show no cut-off
bias and the errors were independent of the mean values
detected (Additional file 5a). For the inter-operator reli-
ability, Bland-Altman plots show no cut-off bias for the
number of interruptions and the errors were independent
of the number of interruptions detected (Additional file 5b).
However, for the interruption surface and volume, OP2
had higher outcomes compared to OP1, and this in-
creased with increasing mean value (Additional file 3b).

31 different poor quality stacks

Start:
21 patients
42 MCP joints
126 stacks
First scan:
20 poor quality stacks
Second scan:
13 poor quality stacks
Per joint:
No motion: 22 joints
1 stack motion: 11 joints
2 stacksmotion: 7 joints
3 stacksmotion: 2 joints
Joints with 3 stacks of
motion excluded
Final:
21 patients
40 MCP joints
95 stacks

Fig. 3 Schematic overview of the exclusion of joints due to motion artifacts
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Second scan

First scan

OP1

0oP2

Fig. 4 Visual outputs of the algorithm in 3D and 2D of an MCP joint. The outputs of OP1 (a) and OP2 (b.) at the first and second scan performed
are shown. Shown are the 3D outputs with multiple detected cortical interruptions (green) and underlying trabecular bone voids (red) with
corresponding 2D grayscale images. The algorithm indeed accurately fills the underlying trabecular bone voids, and it can be seen that most

discrepancies were also seen (red arrows)

interruptions are detected at the same location on the first and second scan, and by both OP1 and OP2 (green arrows). However, some

Reproducibility

Table 1 shows the results for the bone density and
micro-structure parameters, and the number of inter-
ruptions, interruption surface and interruption volume
detected by OP1 on the first and second scan. No statis-
tical difference was found for all outcomes between the
first and second scan.

The reproducibility for the bone density and micro-
structure parameters was excellent with ICCs =0.84
(Table 1). The precision errors in percentages (CVgyys)
were generally < 5%, except for Tb.SpSD, Ct.Po and Ct.
PoDm (CVgyms =7.7, 8.7 and 7.6%, respectively). The
LSCcvye was <7.3% for the bone density parameters, but
up to 24.1% for the bone micro-structure parameters.
Bland-Altman plots show that for the intra-operator re-
producibility no cut-off bias was observed for all bone
density and micro-structure parameters, and that the er-
rors were independent of the mean values detected
(Additional file 6).

Reproducibility of the cortical interruption algorithm
was also excellent for all outcomes with ICCs 20.82
(Table 1), especially for the interruption volume (ICC 0.
99, Table 1). The precision errors SDyrys per joint was 1.5
for the number of interruptions, 2.1 mm?® for the
interruption surface, and 1.1 mm?® for the interruption
volume. The LSCgp, was 4.2 for the number of
interruptions, 5.8 mm? for interruption surface, and 3.
2 mm? for the interruption volume. Bland-Altman plots
show that for the intra-operator reproducibility no cut-off
bias was observed for the number, surface and volume of

interruptions, and that the errors were independent of the
mean values detected (Additional file 5c).

Discussion

In this study, we calculated the precision errors of our ex-
tended algorithm for detection of cortical interruptions
and underlying trabecular bone void volume in MCP
joints on scan/re-scan HR-pQCT data with repositioning
in-between the scans in early arthritis patients. In
addition, we calculated the precision errors for the bone
density and micro-structure parameters. Reproducibility
of our algorithm was excellent (ICCs 20.82), especially for
the interruption volume (ICC 0.99). Reproducibility for
the bone density and micro-structure parameters was also
excellent (ICCs >0.84). Bland-Altman plots showed no
systematic error in the reproducibility of our algorithm,
bone density and bone micro-structure parameters. The
reproducibility LSCsp value per joint was 4.2 for number
of interruptions, 5.8 mm? for interruption surface, and 3.
2 mm?® for interruption volume.

The intra-operator reproducibility LSCsp value of the
algorithm for the interruption volume was higher in our
study than the intra- and inter-operator LSCsp, reported
by Topfer et al. for single interruptions (LSC 3.2 mm?
versus 1.4 mm® and 2.1 mm?® respectively) [21]. The
study from Topfer et al. differed in several aspects from
ours. They analyzed a selection of interruptions in one
dataset on its volume by two operators. In contrast, we
used scan/re-scan data and included all interruptions,
irrespective whether they were detected on the first scan
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Table 1 Reproducibility of the cortical interruption parameters, and bone density and micro-structure parameters
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Mean (SD) ICC (95% Cl) SDrums LSCsp CVrus LSCevo
Cortical interruption parameters
Number of interruptions 3.1 (34) 0.82 (0.69 - 0.90) 1.5 42 n.a. n.a.
Interruption surface mm? 42 (7.0) 0.92 (0.85 - 0.96) 2.1 58 n.a. na.
Interruption volume mm? 3.5 (10.7) 0.99 (0.98 - 0.99) 1.1 32 n.a. n.a.
Bone density parameters
Tot.BMD mg HA/cm? 8(722) 1.00 (1.00 - 1.00) 338 106 1.1 32
Tb.BMD mg HA/cm? 1634 (47.2) 0.99 (0.99 - 1.00) 3.6 10.0 26 7.3
CtBMD mg HA/cm? 883.7 (94.5) 1.00 (1.00 - 1.00) 45 124 0.5 14
CtTMD mg HA/cm? 939.8 (70.6) 1.00 (1.00 - 1.00) 33 9.1 04 1.0
Bone micro-structure parameters
To.N mm™ 1.56 (0.49) 0.99 (0.98 - 0.99) 0.06 0.16 4.2 1.7
Tb.Th pm 90.7 (22.7) 0.98 (0.95 - 0.99) 36 10.1 43 118
Tb.Sp pm 6304 (259.5) 0.98 (0.96 - 0.99) 39.6 09.7 44 12.1
Tb.SpSD pm 5583 (316.2) 0.97 (0.95 - 0.99) 54.0 149.7 7.7 213
CtTh um 889.7 (196.2) 1.00 (0.99 - 1.00) 15.1 418 14 39
CtPo % 4.31 (3.07) 1.00 (0.99 - 1.00) 0.35 0.96 8.7 241
CtPo.Dm pm 197.3 (86.3) 0.84 (0.72 - 091) 36.7 101.7 76 211

Values are displayed as mean (SD), and for ICC as value (95% Confidence Interval)
n.a. not applicable; CVgums and LSCcyg, were only determined for continuous variables
ICC intra-class correlation coefficient, SDgys root mean square of the standard deviation, LSCsp absolute least significant change, CVgys root mean square of the
coefficient of variation, LSCcyq, least significant change in percentages, Tot.BMD total volumetric bone mineral density, Tb.BMD trabecular BMD, Ct.BMD cortical
BMD, Ct.TMD cortical bone tissue BMD, Tb.N trabecular number, Tb.Th trabecular thickness, Tb.Sp trabecular separation, Tb.SpSD intra-individual distribution of
trabecular separation, Ct.Th cortical thickness, Ct.Po cortical porosity, Ct.Po.Dm cortical porosity diameter

but not on the second scan and vice versa. These
aspects will lead to higher reproducibility errors. By
excluding the effect of the rescanning (i.e. intra-operator
reliability), the LSCsp value was comparable to the study
of Tépfer et al. (LSC 1.9mm? versus 1.4mm?) [21].

In our study, we also included the phalangeal base,
thus creating a larger scan region for analyzing bone
density and micro-structure parameters. This did not
affect the precision errors, except for Ct.Po, which was
substantially lower compared to a previous study (8.7%
versus 27.7%) [28]. The precision errors of the other
parameters obtained in our study were similar as in pre-
vious studies [13, 28]. In our study, the precision errors
(CVgms) were generally below 2% for the bone density
parameters (except for Tb.BMD), below 5% for the
trabecular bone parameters (except for Tb.SpSD), below
10% for the cortical bone parameters. The precision
errors are also comparable as observed in radius and
tibia scans [11].

The mean number of cortical interruptions and inter-
ruption surface per joint detected in this study (3.1 and 4.
2 mm?, respectively) were substantially lower than in our
previously reported study using the same algorithm (9.5
and 13.5 mm?, respectively) [27]. In our previous study,
anatomic specimens from high-aged subjects (mean 85.
1 years) were used with a low BMD (vBMD of the joints:

245 mgHA/cm?® versus 338 mgHA/cm? in this study). In
the present study, the bone is better mineralized and
therefore these voxels are less likely to represent non-
bone voxels after segmentation and, hence, a lower num-
ber of interruptions was found.

The mean volume of the interruptions detected with
the algorithm was substantially lower compared to pre-
vious studies that investigated volumes of interruptions
in 3D (1.1 mm?® versus >4 mm?®), confirming that our
algorithm enables the detection of much smaller
interruptions [13, 21, 24].

Our study has several limitations. First, with our algo-
rithm, the trabecular void volume underlying the cortical
interruption that can be detected is limited to a depth of
4 mm. This means that the algorithm underestimates
the volume of interruptions with a depth greater than
4 mm. However, 4 mm is approximately half the width
of the metacarpal head. Hence, such interruptions are
not the primary focus of research with HR-pQCT,
because these large interruptions can also be detected by
other imaging techniques with lower resolution. For
example, “small” interruptions, ie.<10 mm?® are
occasionally missed with MRI [12]. Thus, our algorithm
can best be used for studies with HR-pQCT aiming at
early detection of structural damage, i.e. small interrup-
tions, in patients with RA. Second, our algorithm requires



Peters et al. BMC Medical Imaging (2018) 18:13

manual correction of the outer margin of the contours in
case of large cortical interruptions and motion artifacts
which can make the analysis time consuming [26]. How-
ever, this correction is also advised by the manufacturer
for the standard evaluation protocol for assessment of the
bone density and micro-structure parameters. Further
automation of the outer contour would improve the ap-
plicability. The strength of our algorithm is that it is devel-
oped within the scanner software (IPL). Therefore, the
algorithm can be easily implemented to other scanners.

The current investigation of the reproducibility of the
algorithm and the extension of underlying trabecular
bone void detection was a next step in the validation of
our algorithm in the detection of small cortical interrup-
tions in finger joints by HR-pQCT. We found that the
algorithm was highly reproducible, but still had substan-
tial precision errors compared to the mean value de-
tected. Therefore, the next step is to test this algorithm
in clinical studies in order to determine its potential
value in monitoring patients with RA, and discriminat-
ing patients with RA, preferably early in the disease
course, from healthy controls.

Conclusions

The extended algorithm for detection of cortical inter-
ruptions and their volume, and the assessment of the
bone density and micro-structure parameters on HR-
pQCT is highly reproducible in finger joints of early
arthritis patients. The potential value of this algorithm
for monitoring structural damage in the joints in early
arthritis patients needs to be tested in clinical studies.

Additional files

Additional file 1: Scout view of the right hand, showing the region that
was scanned by the HR-pQCT during both scans. The proximal edge of
the phalangeal base of the most distal joint (MCP2 in this case) was
chosen as the landmark for the placement of the reference line. The scan
region was 27.06 mm (3 stacks) long with 9.02 mm (1 stack) distal of the
reference line and 18.04 mm (2 stacks) proximal of the reference line. (TIF
1765 kb)

Additional file 2: Bland-Altman plots of the intra-operator reliability for
the bone density and bone micro-structural parameters. Bland-Altman
plots for all bone density (A), trabecular micro-structure (B) and cortical
micro-structure (C) parameters for the intra-operator reliability. For all pa-
rameters, no cut-off bias was observed and the errors were independent
of the mean values detected. BMD, volumetric bone mineral density;
Tot.BMD, total BMD; Tb.BMD, trabecular BMD; Ct.BMD, cortical BMD;
Ct.TMD, cortical bone tissue BMD; Th.N, trabecular number; Tb.Th,
trabecular thickness; Th.Sp, trabecular separation; Tb.SpSD, intra-individual
distribution of trabecular separation; Ct.Th, cortical thickness; Ct.Po,
cortical porosity; Ct.Po.Dm, cortical porosity diameter (TIF 949 kb)

Additional file 3: Bland-Altman plots of the inter-operator reliability for
the bone density and bone micro-structural parameters. Bland-Altman
plots for all bone density (A), trabecular micro-structure (B) and cortical
micro-structure (C) parameters for the inter-operator reliability. For all pa-
rameters, no cut-off bias was observed and the errors were independent
of the mean values detected. BMD, volumetric bone mineral density;
Tot.BMD, total BMD; Th.BMD, trabecular BMD; CtBMD, cortical BMD;
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Ct.TMD, cortical bone tissue BMD; Tb.N, trabecular number; Tb.Th,
trabecular thickness; Tb.Sp, trabecular separation; Tb.SpSD, intra-individual
distribution of trabecular separation; Ct.Th, cortical thickness; Ct.Po,
cortical porosity; Ct.Po.Dm, cortical porosity diameter (TIF 950 kb)

Additional file 4: Intra- and inter-operator reliability of the cortical inter-
ruption parameters. Table with the intra- and inter-operator reliability of
the cortical interruption parameters. Values are as value (95% Confidence
Interval) ICC, intra-class correlation coefficient; SDgus, root mean square
of the standard deviation; LSCsp, absolute least significant change

(DOCX 20 kb)

Additional file 5: Bland-Altman plots of the intra- and inter-operator
reliability and intra-operator reproducibility for all cortical interruption
parameters. Bland-Altman plots for all cortical interruption parameters

for the intra- operator reliability (A), inter-operator reliability (B) and intra-
operator reproducibility (C). (A) For the intra-operator reliability, no cut-off
bias was observed for the number, surface and volume of interruptions
and the errors were independent of the mean values detected. (B) For
the inter-operator reliability, no cut-off bias was observed for the number
of interruptions and the errors were independent of the number of inter-
ruptions detected. For the interruption surface and volume, OP2 had
higher outcomes compared to operator 1, and this increased with
increasing mean value. (C) For the intra-operator reproducibility, no
cut-off bias was observed for the number, surface and volume of
interruptions and the errors were independent of the mean values
detected (TIF 971 kb)

Additional file 6: Bland-Altman plots of the intra-operator reproducibility
for the bone density and bone micro-structural parameters. Bland-Altman
plots for all bone density (A), trabecular micro-structure (B) and cortical
micro-structure (C) parameters for the intra-operator reproducibility. For all
parameters, no cut-off bias was observed and the errors were independent
of the mean values detected. BMD, volumetric bone mineral density;
TotBMD, total BMID; Tb.BMD, trabecular BMD; CtBMD, cortical BMD; CtTMD,
cortical bone tissue BMD; Tb.N, trabecular number; Tb.Th, trabecular thick-
ness; Th.Sp, trabecular separation; Tb.SpSD, intra-individual distribution of
trabecular separation; Ct.Th, cortical thickness; Ct.Po,

cortical porosity; CtPo.Dm, cortical porosity diameter (TIF 1028 kb)

Additional file 7: Data of the cortical interruption-, bone density- and
micro-structure parameters. Data of the cortical interruption parameters,
and bone density and micro-structure parameters on the first (OP1 twice
and OP2) and second scan (OP1). (XLS 63 kb)
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