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Abstract

In disease mapping where predictor effects are to be modeled, it is often the case that sets of
predictors are fixed, and the aim is to choose between fixed model sets. Model selection methods,
both Bayesian model selection and Bayesian model averaging, are approaches within the Bayesian
paradigm for achieving this aim. In the spatial context, model selection could have a spatial
component in the sense that some models may be more appropriate for certain areas of a study
region than others. In this work, we examine the use of spatially referenced Bayesian model
averaging and Bayesian model selection via a large-scale simulation study accompanied by a
small-scale case study. Our results suggest that BMS performs well when a strong regression
signature is found.
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1 Introduction

There are many instances in the disease mapping framework where one may wish to select
between two or more linear predictors, or models, of interest. In certain situations, the model
selection process may be more applicable than simply using variable selection; for example,
if there are prior beliefs that these particular linear predictors could be informative.

In this paper, we discuss a way to implement non-spatial and spatial Bayesian model
selection (BMS) in comparison to Bayesian model averaging (BMA)1-3 using the BUGS
software BRugs and R2WinBUGS which call OpenBUGS and WinBUGS, respectively.:°
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Both of these methods are considered to be model selection techniques and can be used in
lieu of variable selection as they alleviate some of the issues related to variable selection
(e.g. co-linearity).5-11 Here, if two or more predictors are known to be collinear, we suggest
that they should be included in different linear predictors that the method is selecting
between. The structure of our proposed BMS procedure is similar to BMA, and thus this
commonly used method can be compared.

There are several useful variable selection procedures available in the Bayesian
paradigm,1213 hut we believe that model selection is the better alternative, especially when
there are particular linear predictors of interest. Similar comparisons between BMA and
variable selection have been performed in the past. Viallefont’s simulation study first shows
that variable selection methods often produce too many variables selected as ‘significant.’
Then, they determined that BMA produces easy to interpret, precise results displaying the
posterior probability that a variable is a risk factor. They also caution users about
interpreting the averaged posterior parameters as each of the alternative linear predictors has
been adjusted for different confounders.14

Spatial model selection, which allows different linear predictors to be selected for each
spatial unit, is the main focus of this paper. The data are partitioned into different spatial
areas to determine how well the model selection procedures recover the truth when spatial
structure is present in the data. We make a comparison of BMS to BMA, and additionally
calculate goodness of fit (GoF) measures for each of the partitioned areas.

This paper is developed as follows. First, we describe the methods associated with the BMS
and BMA processes. Next, we discuss the development of our simulated dataset and the
different models used for exploring this methodology. Finally, we discuss the benefits of
using the model selection method under different scenarios in the disease mapping context.

Our paper focuses on the context of disease mapping in /m predefined small areas. We make
the conventional assumption that an aggregate count of disease ();) is observed in the ith
small area and that these outcome counts are conditionally independent Poisson distributed
outcomes, i.e. yiu~Pois(i)). This is a commonly assumed model for small area counts in
disease mapping.® In what follows, we examine two types of model formulation: complete
and partial models. For the complete models, it is assumed that the linear predictor applies to
the whole study region, in the sense that the underlying model is the same for all areas. In
the partial models, it is assumed that the underlying linear predictor is different for different
partitions of the set of spatial units.

2.1 Bayesian model selection

To evaluate a number of alternative linear predictor models, we can adopt a method which
fits a variety of models, and the selection of weights allows each model to be evaluated for
its appropriateness. In general, for =1, ..., D complete models, the following structure
applies
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Yi| i~ Poi (1)
pi=eqb;

log (0:) =) wapia
d

logit (pq) ~Norm (0, 74)
wg~Bern (pg)

where ¢;4is our ath model’s suggested linear predictor complimented with possible random

effects. In general, we write ¢;yas x?ﬁdﬂruiwdﬁ,ﬂ +vit), ;.. With 7, the vector of J
possible covariates, j=1, ..., J+ 2, ujthe uncorrelated heterogeneous (UH) term, v;the
correlated heterogeneous (CH) term, and y-4;an indicator for if the h predictor or random
effect is to be included in the linear predictor of the ¢’ model. Model priors here as well as
in the following models are such that Bg~Norm(0, 1), u; Norm(0, z,), ©,~Gam(1, 0.5),

V~CAR(t}), 7,~Gam(1, 0.5), and 7, '/*~ Unif (0,5). Hence, for a variable not included in
ath the model, y47would be zero, otherwise it would be one. Further, wyis a model
selection indicator, equal to 1 if the ath model is selected and zero otherwise. The model
selection probability is given by the probabilities p, For the partial models, the following
structure applies

yi~Poi (11;)
pi=e;0;
log (0:) = wiapid
d

. . 1
logit (pia) ~Norm (n% E logit (pidi) » —— >
il N Tid

wig~Bern (piq)

in which the model selection indicator is spatially structured. In the equations, /# / njis the
number of neighbors for county / and 7 ~ /indicates that the two counties 7and /are
neighbors. This is an intrinsic conditional autoregressive (CAR) model, which adds the
desired spatial structure to the model selection process and a new level of complexity in
comparison to the complete models.

2.2 Bayesian model averaging

BMA is similar to the BMS technique described in the previous section.? This method
averages over the D possible models, My, ..., Mpto find the posterior distribution of &as
follows

d=1

where AM 1, ..., V) is the model probability for model @, and ABA, ..., Vi M) is
determined by marginalizing the posterior of the model parameters. The posterior
probability for selection model M is given byl2:14
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P (A’ld’yly cee :ym> =P (ylv cee vym‘]\/fco P (Afd) /C
D
where C=Y "P (y1,. .., ym|M;) P (M)

=1
and P (yl, - ,ym}]\fd) =[P (yh e aym,|6da de) P <9d|Ml) dfq

Alternatively, we can estimate the model probabilities AM,y, ..., ¥m) using the deviance
information criteria (DIC). The model probabilities can be approximated byl6

Ppica (Md|y17 T 7ym) ~ e_eDj%dICk
Zké_DICid
. (M, . N
Pproa ( d‘yh 7ym) Zkzie—DlCik

In these expressions, D/Cyis the D/C associated with the o alternative linear predictor.
Note that in the first expression, the D/Cs are calculated overall (over all areas), whereas in
the second expression, the D/Cs are calculated locally (per region). We calculate this
measure by collecting the deviance for each of the alternative linear predictors using the
Poisson likelihood as follows

D; (0;) = —2(1; (0:)) = — 2 (yilog (ei;) — ei; — log (y:!))

Next, D, is computed from the sampler and supplied to the following function to calculate

the local D/Cfor county £ D1C;=D;+pD,; Where pD;=D;=D; @) and g, is posterior the
mean of 8, Finally, the model D/Cis simply the sum of the local D/Cs.

To apply the BMA framework to the partial models, we apply the same type of spatial
structure seen with BMS on the model probabilities by way of the CAR model. Then, we
simply use the local D/Cto calculate the alternative model probabilities measure for each of
the mareas.

3 Simulated data and fitted models

In this and the following sections, models will be referred to by the contents of both the
simulated data and the fitted model applied. Table 1 is a list of notations for describing
models, and Supplemental Table 1 is a list of all simulated data models explicitly defined.

3.1 Simulated data

To evaluate the performance of these alternative approaches, we simulate data to establish
realistic ground truth for disease risk variation. To match the methods described above, we
define a count outcome as y;in the th small area. We assume a map of /77small areas. In
addition, we assume that the expected count (¢e)) is available in each small area. Thus, our
outcome follows a Poisson distribution with expectation 4;in county /.

Stat Methods Med Res. Author manuscript; available in PMC 2017 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Carroll et al.

Page 5

In the simulations, we fix the expected rate for the areas in order to focus on the estimation
of relative risk 6;. To complete the parameterization, we assume a relative risk which is
parameterized with a range of different risk models.

We chose the county map of the state of Georgia, USA which has 159 areas (counties).
Hence, 7= (1, ..., 159) for this county set. We consider two scenarios for the expected rates.
In the first scenario, the expected rates e;are assumed to be constant over all areas, and are
set at 1. For the second scenario, the expected rates are assumed to be varying over the areas,
and are assumed to be a realization of a Gam(1, 1) distribution. Having these two scenarios
in the simulation study allows us to see how the extra variation affects the model selection
processes. We denote this in our model names as E1 and E2 for fixed and varying expected
rates, respectively.

We examined nine basic models for risk (S1 up to S9) which have different combinations of
covariates and random effects as might be found in common applications. First, we
generated four predictors with different spatial patterns. The four chosen variables were
median age (x1), median education (x>), median income (x3), and a binary predictor
representing presence/absence of a major medical center in a county (x3). These variables
are county-level measures for the 159 counties in the state of Georgia. We chose these
variables because it is important to represent a range of different spatial structures and types
of predictors. Additionally, observed predictors/covariates could have a spatial structure, and
thus we included this in the definition of two of the predictors (median age and major
medical center). Table 2 displays the predictors generated via simulation and their
parameterization where the Gaussian parameters are the mean and variance. Also, note that
the spatial predictors have a covariance structure applied, but this is explained in detail later.

These distributions lead to measures that reflect typical values for these variables. For
example, the median age for a county in the USA is roughly 40, and the values do not vary
much from one county to the next. Similar explanations can be applied to both the median
education and median income variables. For the major medical center variable, this indicated
marginal distribution leads to roughly half of the counties answering ‘yes’ to having a major
medical center. These variables have been selected as placeholders, and should be thought of
as representing any of the typical variables one might utilize in building disease mapping
models.

The spatially structured covariates were generated using the RandomFields package in R.17
The simulation uses the county centroid as a location to create a Gaussian Random Field
(GRF), which is defined via a covariance structure. We assume a Gaussian covariance
structure, and this assumption leads to a stationary and isotropic process.18 We specify this
structure by using the RMgauss() command. We assume a power exponential covariance
model of the form

C(r)y=e "

where ris the Euclidean distance between two centroids and the covariance parameter (a) is
set as a = 1. Following the selection of the covariance structure, we must also set the mean
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of the GRF to create the same marginal distributions as described in Table 2 using the
RMtrend() command. Finally, to simulate the GRF, we use the RFsimulate() command to
create a GRF and assign a value to the spatial covariate. There is only a slight extension that
must be applied when the spatial covariate is binary such as xs. To create this variable, we
use a GRF to simulate z mentioned in Table 2, rather than the covariate itself. From there,
we simulate from a Bernoulli distribution to give the binary indicators for each county, using
expif(r) for the probabilities.

The distribution of all covariates, xi, ..., X3, on the Georgia county map is illustrated in
Figure 1. Notice that the median age and major medical center covariates appropriately
appear to have spatially dependent distributions. Though we have defined the mean and
covariance structure of these GRFs, the distribution can still take on many forms, and these
variables reflect only one realization of the distribution.

For the simulations, we fix the covariates as one realization from the distributions described
in Table 2 and generate the outcomes using a fixed set of parameters unique to each of the
nine models. The B’s seen in Table 3 are quite small, particularly for the first six models, and
this guarantees that the outcome variable maintains a fairly small value to continue
representing a sparse disease. Note that S7, S8, and S9 are alike S2, S4, and S6, respectively,
with the exception of higher magnitudes associated with the fixed parameter estimates.
Further, note that models S4 and S8 do not pick any of the variable that has a spatial
structure. In the next step, log (8)) is calculated based on the fixed parameters and
realizations. Finally, we generate the outcome as a Poisson distributed variable with mean

€;0;. The simulated datasets consist of sets of counts: {yfy} J=(1, ..., 300) where jdenotes
the jth simulated dataset. Note that we simulated two batches of the covariates with 150 data
sets per batch and still allow for Poisson variation between the 300 simulate data sets. This
reduces the amount of variation in the simulation study which allows the main focus to be on
the different model selection techniques.

In addition to the nine model variants described above, we have also considered a variant
that allows us to limit the regions of the state that certain predictors have an effect. This will
allow us to study spatially varying model selection or spatially varying model averaging.
The state is partitioned into three regions, Al, A2, and A3, each containing 53 counties as
illustrated in Figure 2. Next, we will consider partial models, notated as “P,” for each of the
nine models described above. These scenarios are described in Table 4.

Finally, we also explored the case that there is some unmeasured confounding in the data.
This was accomplished by including a UH term and a CH term defined as v;~Norm(0, 100)

1 1
and vi~N (EZMW ) m—n> respectively. The fixed precision values for these components
are the same (1/z,,= 0.01) so that one term does not dominate the other and lead to
identifiability issues.1® Two additional simulated model scenarios result from inclusion of
these random effects; the first assumes that there is simply random error present in the data,
thus only the UH term is involved. This model is denoted as RE. The second model is a
convolution model, denoted CV, and includes both the UH and CH terms; this model
assumes that there is random error as well as error with a spatial structure. For simplicity, we
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only looked at this application for a subset of the simulated model scenarios (S1 for the RE
model and S1, S5, S7, and S9 for the CV model).

3.2 Fitted models

4 Results

In Table 5, we illustrate the three linear predictors fitted using both the model selection and
BMA techniques described above. These options are appropriate for the models listed in
Table 4 such that S1 up to S9 is associated with F1,...,F9. For the complete models, the
suffix “‘Altl’ represents the true model for all counties. For the partial models, the suffixes
‘Altl’ or ‘Alt2’ represent true models for some counties depending on the descriptions in
Table 4 above. ‘Alt3’ is never a true model. The different alternatives offer some models that
include random noise to determine if that has an effect on which model is selected. When
the RE and CV simulated models are being fitted, all linear predictor alternatives include the
appropriate random effects.

The results below are in relation to the implementation of the methods described above. First
we present the BMS results for the complete and the partial models followed by the BMA
results for the complete and partial models. Finally, we present a real data example of
implementing these methods.

Note that we also collected the parameter estimates, produced for each of the alternative
models, during each implementation. None of these estimates are well estimated as seen in
Supplemental Table 2, but obtaining these estimates is not the goal of the model selection
process. We suggest that one should refit with the selected model to obtain appropriate
parameter estimates.

4.1 Complete models

All results in this section are associated with the complete models described in Table 3. The
models do not allow for variation from one county to the next, and the first linear predictor
alternative is the true linear predictor, thus, model weight p; should be the highest.
Supplemental Tables 3 and 5 display the model probabilities for each scenario with BMS
and BMA, respectively.

Figure 3 presents some the results for model scenarios S1-S6 fitted with corresponding
models F1-F6 under the scenario of a constant expected rate (E1) and varying expected rates
(E2). The figure illustrates the distribution of the model weights for the BMS procedure.
These figures suggest that most models correctly select the linear predictor associated with
p1. When the evidentiary support for a particular model increases, as is the case in scenarios
STF7-S9F9, this becomes even more evident. The model selection probabilities decrease
from the first to the second and third model, showing a better distinction between the
models. Only in the scenarios S6F6 and S4F4, an incorrect model is selected. Note, however,
that the evidence in these scenarios for the underlying model is small.

The model probabilities corresponding to scenarios E1 and E2 are similar. In most settings,
it is observed that the model probability of the correct model decreases when comparing
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scenario E1 to E2. This indicates that model selection is more difficult when the variation in
the data increases. But, differences between the model probabilities are only small, and
conclusions about the selected model hardly change. The main difference we observed when
comparing models in this way is that the E2 models produce lower DICs. This fact does not
necessarily indicate that the E2 models fit better than the E1 models as the models have
different likelihoods. These GoF measures are displayed in Supplemental Table 4.

Figure 4 displays the model probabilities associated with the complete models using the
BMA technique. A completely different picture as compared to BMS is observed. These
plots suggest that there is not a consistent pattern in the way that the different models
perform as far as selecting linear predictors. Typically, p; still obtains the highest probability
value, but there are several mismatches (7 of the 18 models, 38.9%). As with the BMS
models, the E1 and E2 estimates continue to be nearly identical for the model probabilities
while they differ when considering GoF measures. These GoF measures are displayed in
Supplemental Table 6.

Figure 5 displays a line plot of the model probabilities for the complete models that
incorporate the convolution term compared to those without the term. Through these plots,
we observe a clearly selected alternative linear predictor with the BMS method for all
scenarios except ELCS9FICV. EICS9FICYV is the scenario in which there is only a single
covariate present the true linear predictor, thus it is possible that the random effects are able
to explain this variation. However, the probabilities associated with p; in the CV models are
not as large as those produced by the non-CV models. Additionally, for BMS, a majority of
the model probability standard deviations are the same or smaller in value in comparison to
their counterparts. Overall, BMA does not perform well in the CV model scenarios.
Interestingly, for scenario ELCS1F1, BMA performs slightly better than BMS for the non-
CV models in that it more clearly selects p; as associated with the true linear predictor, but
for the CV models, BMS performs well while BMA does not. This further illustrates the
detriment of BMA when extra noise is present.

4.2 Partial models

All results in this section are associated with the partial models described in Table 4. These
models allow for variation in the linear predictors applied in different areas on the county
map. Furthermore, for all models, the first or second alternatives are true for certain areas of
the county map as described in Table 4, and thus model weights p; or g should be the
highest in their appropriate areas. Here, we display only a sample of the models fitted. The
resulting county maps for the full range of models fit with the BMS and BMA methodology
can be seen in Supplemental Figures 1 and 2, respectively.

The first set of maps shown in Figure 6 below is associated with the EIPS4F4 and E1PS8F8
scenarios using BMS. These models in particular illustrate the relationship we hope to see in
the partial models. S4F4 does well to estimate py, but is not as accurate with g. In
comparison, S8F8 improves the estimations of both p; and & in that it attains higher values
in the appropriate regions of the county map. In both cases, though, we continue to see a
residual present in ps. This indicates that the model can only select the correct underlying
model if the parameter effect is strong enough.
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The second set of maps involving S6F6 and S9F9 displayed in Figure 7 are not as
convincing, and we believe this is largely due to the fact that the true regions associated with
py are strictly separated to the extreme North and South of the map. There is still evidence of
an improvement when moving from S6F6 to S9F9 since the regions are becoming slightly
more defined as far as the maps are concerned. It may be the case that we need even more
evidentiary support when the areas are separated in this manner.

Table 6 displays the GoF measures associated with the BMS technique applied to the partial
models. We continue to see smaller DIC estimates associated with the E2 models while the
MSE and MSPE values are often larger. Larger MSE and MSPE estimates for E2 models are
appropriate in the sense that there is more variance present in these models, thus estimation
should be more difficult. Furthermore, MSE and MSPE values are nearly identical for the
majority of models. In some cases, though, these estimates are quite extreme, such as for
scenarios E2PS8F8 and E2PS9F9. Scenario E2PS4F4 demonstrates that outlier values in
MSE are not necessarily reflected in the MSPE. Additionally, the estimates associated with
Al are typically smaller than A2 or A3. We believe this is due to the fact that this region has
smaller, closer together counties. Finally, the results for the ELIPS1F1RE and E1PS1F1CV
models indicate that it performs very well; in fact, most of the MSE and MSPE values are
smaller than those produced with E1IPS1F1. This improvement continues to be the case for
some of the MSE and MSPE measures related to models E1PS5F5CV, E1PS7F7CV, and
E1PS9FOCV.

The sets of maps included in Figure 8 below are associated with ELPS4F4 and E1PS8F8
when fitted using the BMA technique. These maps are for comparison to the BMS fitted
maps shown above in Figure 6. In comparison, we see that both fits of these models fail to
be as accurate as those attained using the BMS technique. There are improvements to be
noted when moving from S4 to S8 as it seems that the model probabilities are becoming
slightly closer to the truth, but there is still some misrepresentation present in the estimation
of p3 since we do not expect Alt3 to be selected for any counties. Furthermore, the maps
produced using the model probabilities calculated via local DIC do not produce reasonable
results.

As before, the next set of maps displayed in Figure 9 illustrates the fits associated with
E1S6F6 and ELS9F9 when using the BMA technique. Here, we see no improvement when
comparing S6 to S9, and none of the maps tend to suggest a certain region relating to one
linear predictor versus another. The BMS technique continues to handle this situation better
than BMA. Additionally, the DIC probability maps still fail to supply reasonable results.

Figure 10 illustrates a comparison of both model selection methods’ abilities to accurately
recover the truth. This comparison is accomplished by associating the probability from a
specific county that should be selected to the mean probability of all counties that should not
be selected for that particular model; this is described with the following formulation

n
Zi:AlekieA (pki>pmc>

n

=

A
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where 7y, are the probabilities displayed in Figure 10, /is an indicator function that is 1
when the enclosed logical function is true and zero otherwise, A= 1, 2 for the model
probabilities p; and p,, A is the area for which py should be highest, ACis area A

compliment, P, - is the mean of the model probabilities in area AC, and 74 is the number of
counties in area A, thus /=1, ..., n14. So, for example, with p; from PS1F1, a county in A2
or A3 should have a higher model probability estimate than the mean of model probabilities
calculated for the counties in Al. In these plots, we see BMS performing the same or better
than BMA for 21 out of the possible 36 model combinations.

Table 7 displays the GoF measures for the partial models using the BMA technique. The
MSPE measures can be viewed in Supplemental Table 7. One of these properties is that, in
general, the E2 models produce smaller DIC values but higher MSE and MSPE values for
the majority of models. The difference between the MSE and MSPE values when comparing
E1 and E2 for the BMA case is much larger than what we saw when using BMS. This again
indicated that model selection is more difficult when there is more variation in the data.
Another of these properties involves lower MSE and MSPE values for area Al; additionally,
this is typically reflected in the local DIC measure for Al as well. One new comparison that
we can make with the BMA results is the local DIC measure to the BUGS calculated DIC
measure, and these are different for every model. Additionally, the local DIC measure is
always higher than the other DIC measure for the E1 models while this is not typically the
case for the E2 models. We believe that all of these properties combined suggest that they
perform better when there is no variation in the expected rates. Finally, when comparing
E1PS1F1RE and the convolution models to their appropriate counterparts for the BMA
models, we see that the results are still good but not better as we saw with the BMS
technique, except for the local DIC measurements. The local DIC measures for these RE and
CV models are much closer in value to the overall DIC measures.

4.3 Misspecified models

In our research, we also misspecified models such that we fit the complete simulated data
sets with the partial method and vice versa. In particular, we did this with models E1CS1
and E1PS1 because they performed well initially in both the BMS and BMA methodology.
These appropriately specified results can be seen in Supplemental Tables 3 and 5 above for
the complete models as well as Supplemental Figures 1 and 2 for partial models.

The results from fitting partial simulated data (ELPS1) using the appropriate complete model
(CF1) are in Table 8. They show the BMS method choosing the linear predictor associated
with p; while BMA selected the linear predictor associated with p. The true linear
predictors here could be p; or p, depending on the county. We suspect that the BMA method
incorrectly selects p3 because the first two linear predictors are alternating as the true model
for the different counties. For example, if p3 = 0.4 for all counties while p; and p, alternate
between the values 0.1 and 0.5 depending on the county of interest, we could get similar
results. The GoF measures are quite different for these two methods, but this is similar to the
previous results in Section 4.1.

When fitting the complete simulated data (ELCS1) to the appropriate partial fitted model
(PF1), we expect to see the linear predictor associated with p; selected for all counties, and
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the county maps for this misspecification are displayed in Figure 11. Both methods’ results
still show some variability among the different counties, but the BMA method clearly selects
the linear predictor associated with p, for the northern counties. The GoF measures as well
as mean probabilities and weights are shown in Table 8.

4.4 Colon cancer data example

For our real data example, we use 2003 colon cancer data in the state of Georgia as an
outcome and predictors from the Area Health Resources Files (AHRF) dataset?® (median
household income (in thousands of dollars), percent persons below poverty level (PPBPL),
unemployment rate of those aged 16 or greater, and percent African American population).
Past studies suggest that colon cancer has a spatial structure and is related to these
predictors, though they are not the main risk factors associated with colon cancer.21-24 Qur
three possible linear predictors all contain an uncorrelated random effect, and they differ by
the predictors included. The first linear predictor includes all of the covariates while the
second includes only income and percent African American population. The third linear
predictor includes PPBPL and percent African American population. We alternate income
and PPBPL in the second two linear predictors because they are correlated (o = -0.897).
Also note that we standardized the continuous covariates before fitting the models because
this was necessary for the BMA fitting.

The results from fitting these models with the real data using the BMS method are displayed
in Figure 12 and suggest that it may be beneficial to use the second linear predictor option in
the northern and western areas of the state while the third linear predictor option may be
optimal for the southern and western counties. From these results, we can also see that it is
beneficial to place correlated covariates in separate linear predictors and allow the BMS
process to determine which is appropriate for the different counties.

The BMA method produces two options for p-values, and we note different results between
those two options as well as the results produced for the model selection method. The BMA
model probability results shown in Figure 13 suggest that the first linear predictor option
should be used for the Northern counties while the second linear predictor option seems
appropriate for the Southern counties. The results also suggest that the third linear predictor
may also be useful for the mid-Eastern counties. The DIC calculated probabilities do not
show a favorable pattern for any of the linear predictor options; these probabilities produce
very random plots much alike those seen in Supplemental Figure 2.

The model re-fits using the results above and applying them to the selected areas of the map
suggest that qualitatively using the two model selection methods in combination produce the
best results. We found the most convincing results in the data when the second linear
predictor was applied to the Northern counties of the state (area Al described previously)
while the third linear predictor was most appropriate for the Southern counties of the state
(areas A2 and A3). These re-fits were better than simply using the set of selected counties
from either model selection technique on its own, but we believe this is largely because the
number of counties selected was somewhat small. Supplemental Table 8 displays parameter
estimates associated with fitting the second and third linear predictors to the full county map
as well as the selected regions.
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5 Discussion

Based on the simulation results and from a qualitative assessment, we believe that the BMS
technique outperforms BMA in terms of selecting the appropriate linear predictors. The
results for the BMS method are also more consistent when comparing different scenarios
such as E1 versus E2, and S1F1-S9F9 to their appropriate counterparts. Furthermore, we
discovered that the BMS technique is more robust to misspecified models. For both
techniques, the complete models tend to recover the truth more efficiently and accurately
than the partial models, but this is to be expected as these models are not as complex.

We also see significant improvements in recovering the appropriate estimates when
comparing the models whose data sets have true parameter estimates with larger magnitudes,
meaning there is more evidentiary support in the data. This is evident in complete, partial,
E1, and E2 models as well as both BMS and BMA techniques. As far as GoF measures are
concerned, DICs cannot be compared across models due to different outcome variables, and
thus different likelihoods. The MSE and MSPE estimates suggest that, for the most part, the
E1 models fit better than the E2 models. We also note that the Al region often offers the
lowest MSE and MSPE measures. We believe that this occurs because the counties in the Al
region are smaller and closer together than the others. Additionally, more often than not,
S7F7-S9F9 models produce lower MSE and MSPE values. This suggests that the techniques
perform better when there is more support in the data.

There are several obstacles that can be encountered when performing both model selection
methods. The first of these involves the strength of association present in the data. If there is
not enough evidence in the data, we have seen that both BMS and BMA fail to perform well.

Another issue involves extra noise in the data. As in many statistical applications, extra
variation in the data can lead to difficulties in estimation; BMS and BMA are not immune to
this issue. By the same token, including an uncorrelated random effect in one of the
alternative linear predictors when it is not truly needed can also result in an improper
selection of a linear predictor. In many cases, though, there is random noise present in data,
and including that random effect can be helpful. This is why random effects were included
in all linear predictor alternatives for our real data example. Furthermore, we did include
several scenarios in our simulation study (RE and CV models) that introduce this extra noise
and fit the models such that the noise is also reflected in the true and alternative linear
predictors. In this situation, the results suggest that both methods seem to perform
comparably when uncorrelated extra variation was imposed upon the data. When the
convolution term was present in the model, BMS continued to perform well most of the time
while BMA suffered in its ability to recover the truth. Here, the BMS method produced
slightly smaller MSE and MSPE values than those produced with model scenarios that
exclude these random terms.

One shortcoming of both of these methods is that they must be performed in sequence with
an additional model fit to determine the parameter estimates associated with the selected
linear predictor or predictors in the case that one predictor is more appropriate in a certain

Stat Methods Med Res. Author manuscript; available in PMC 2017 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Carroll et al. Page 13

region of the state. This is a shortcoming that adds to the complexity of the model fitting
process, but it is worth pursuing to obtain the most appropriate results.

6 Conclusion

From this comparison between our proposed BMS and BMA, we conclude that the BMS
application qualitatively produces more accurate as well as more precise results than those
produced by BMA in terms of selecting the appropriate linear predictors across maps. There
still may be some instances, though, where BMA is the preferred method because one is able
to calculate the local DICs in that situation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Display of the spatial distribution of simulated covariates per county.
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Figure 2.
Display of the areas for the partial models.
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Figure 3.

Models weights associated with the complete models using BMS.
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Figure 4.

Model probabilities associated with the complete models using BMA.
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Figureb.

Model probabilities for the complete model scenarios with the CV term compared to those

without the CV term.
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Figure 6.
Model weights associated with E1IPS4F4/S8F8 for BMS.
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Figure 7.
Model weights associated with E1IPS6F6/S9F9 for BMS.
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Figure8.
Model probabilities associated with E1PS4F4/S8F8 for BMA.
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Figure.
Model probabilities associated with E1IPS6F6/S9F9 for BMA.
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Figure 10.
Model weights and probabilities associated with the misspecified models fit with

E1CSI1PF1.
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Figure11.

County weights based on the BMS and BMA procedures for the misspecified models.
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Figure 12.
County weights based on the BMS procedure for the colon cancer example.
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Figure 13.
County weights based on the BMS procedure for the colon cancer example.
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Table 1

Notation for describing model contents.

Notation  Definition

El Model withe;=1

E2 Model with e;~ Gam (1,1)

C Complete model

P Partial model

SX Simulated data model ‘X’

FX Fitted model X’

RE Model with an uncorrelated random effect included
cv Model with a convolution component included
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Table 2

Description of predictor variables and their simulation marginal distribution.

Variable Spatial  Distribution (marginal)
Median age (Years) Yes X3 ~ Norm (40,4)
Median education (Years) No X, ~ Norm (13,4)
Median income (Thousands of Dollars)  No X3 ~ Norm (45,1)

Major medical center (Yes/No) Yes

7t ~ Norm(0,25)
logit(p) = =
X4 ~ Bern(p)
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Model coefficients for the simulated data.

Moded  Ba  Be Bs B
S1 0.1 01 01 0.1
S2 01 -01 01 0.1
S3 0.1 00 0.2 0.1
S4 00 -01 01 0.0
S5 -0.1 02 00 0.0
S6 0.0 00 0.0 0.1
S7 02 -02 02 -03
S8 0.0 -03 03 0.0
S9 0.0 00 0.0 0.3
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Table 4

Scenarios for partial models.

Notation Meaning

PS1 S1 with x1 and x2 missing from Al

PS2 S2 with x3 and x4 missing from A2

PS3 S3 with x1 and x4 missing from A2 and A3
PS4 S4 with x2 missing from Al

PS5 S5 with x2 missing from Al

PS6 S6 with x4 missing from A2

PS7 S7 with x1 and x2 missing from Al

PS8 S8 with x2 missing from Al

PS9 S9 with x4 missing from A2
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