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Abstract

In disease mapping where predictor effects are to be modeled, it is often the case that sets of 

predictors are fixed, and the aim is to choose between fixed model sets. Model selection methods, 

both Bayesian model selection and Bayesian model averaging, are approaches within the Bayesian 

paradigm for achieving this aim. In the spatial context, model selection could have a spatial 

component in the sense that some models may be more appropriate for certain areas of a study 

region than others. In this work, we examine the use of spatially referenced Bayesian model 

averaging and Bayesian model selection via a large-scale simulation study accompanied by a 

small-scale case study. Our results suggest that BMS performs well when a strong regression 

signature is found.
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1 Introduction

There are many instances in the disease mapping framework where one may wish to select 

between two or more linear predictors, or models, of interest. In certain situations, the model 

selection process may be more applicable than simply using variable selection; for example, 

if there are prior beliefs that these particular linear predictors could be informative.

In this paper, we discuss a way to implement non-spatial and spatial Bayesian model 

selection (BMS) in comparison to Bayesian model averaging (BMA)1–3 using the BUGS 

software BRugs and R2WinBUGS which call OpenBUGS and WinBUGS, respectively.4,5 
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Both of these methods are considered to be model selection techniques and can be used in 

lieu of variable selection as they alleviate some of the issues related to variable selection 

(e.g. co-linearity).6–11 Here, if two or more predictors are known to be collinear, we suggest 

that they should be included in different linear predictors that the method is selecting 

between. The structure of our proposed BMS procedure is similar to BMA, and thus this 

commonly used method can be compared.

There are several useful variable selection procedures available in the Bayesian 

paradigm,12,13 but we believe that model selection is the better alternative, especially when 

there are particular linear predictors of interest. Similar comparisons between BMA and 

variable selection have been performed in the past. Viallefont’s simulation study first shows 

that variable selection methods often produce too many variables selected as ‘significant.’ 

Then, they determined that BMA produces easy to interpret, precise results displaying the 

posterior probability that a variable is a risk factor. They also caution users about 

interpreting the averaged posterior parameters as each of the alternative linear predictors has 

been adjusted for different confounders.14

Spatial model selection, which allows different linear predictors to be selected for each 

spatial unit, is the main focus of this paper. The data are partitioned into different spatial 

areas to determine how well the model selection procedures recover the truth when spatial 

structure is present in the data. We make a comparison of BMS to BMA, and additionally 

calculate goodness of fit (GoF) measures for each of the partitioned areas.

This paper is developed as follows. First, we describe the methods associated with the BMS 

and BMA processes. Next, we discuss the development of our simulated dataset and the 

different models used for exploring this methodology. Finally, we discuss the benefits of 

using the model selection method under different scenarios in the disease mapping context.

2 Methods

Our paper focuses on the context of disease mapping in m predefined small areas. We make 

the conventional assumption that an aggregate count of disease (yi) is observed in the ith 

small area and that these outcome counts are conditionally independent Poisson distributed 

outcomes, i.e. yi|μi~Pois(μi). This is a commonly assumed model for small area counts in 

disease mapping.15 In what follows, we examine two types of model formulation: complete 

and partial models. For the complete models, it is assumed that the linear predictor applies to 

the whole study region, in the sense that the underlying model is the same for all areas. In 

the partial models, it is assumed that the underlying linear predictor is different for different 

partitions of the set of spatial units.

2.1 Bayesian model selection

To evaluate a number of alternative linear predictor models, we can adopt a method which 

fits a variety of models, and the selection of weights allows each model to be evaluated for 

its appropriateness. In general, for d = 1, …, D complete models, the following structure 

applies
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where φid is our dth model’s suggested linear predictor complimented with possible random 

effects. In general, we write φid as  with , the vector of J 
possible covariates, j = 1, …, J + 2, ui the uncorrelated heterogeneous (UH) term, vi the 

correlated heterogeneous (CH) term, and ψdj an indicator for if the jth predictor or random 

effect is to be included in the linear predictor of the dth model. Model priors here as well as 

in the following models are such that βdj~Norm(0, 1), ui Norm(0, τu), τu~Gam(1, 0.5), 

vi~CAR(τv), τv~Gam(1, 0.5), and . Hence, for a variable not included in 

dth the model, ψdj would be zero, otherwise it would be one. Further, wd is a model 

selection indicator, equal to 1 if the dth model is selected and zero otherwise. The model 

selection probability is given by the probabilities pd. For the partial models, the following 

structure applies

in which the model selection indicator is spatially structured. In the equations, i ≠ l, ni is the 

number of neighbors for county i, and i ~ l indicates that the two counties i and l are 

neighbors. This is an intrinsic conditional autoregressive (CAR) model, which adds the 

desired spatial structure to the model selection process and a new level of complexity in 

comparison to the complete models.

2.2 Bayesian model averaging

BMA is similar to the BMS technique described in the previous section.2 This method 

averages over the D possible models, M1, …, MD to find the posterior distribution of θ as 

follows

where P(Md|y1, …, ym) is the model probability for model d, and P(θ|y1, …, ym, Md) is 

determined by marginalizing the posterior of the model parameters. The posterior 

probability for selection model Md is given by1,2,14
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Alternatively, we can estimate the model probabilities P(Md|y1, …, ym) using the deviance 

information criteria (DIC). The model probabilities can be approximated by16

In these expressions, DICd is the DIC associated with the dth alternative linear predictor. 

Note that in the first expression, the DICs are calculated overall (over all areas), whereas in 

the second expression, the DICs are calculated locally (per region). We calculate this 

measure by collecting the deviance for each of the alternative linear predictors using the 

Poisson likelihood as follows

Next,  is computed from the sampler and supplied to the following function to calculate 

the local DIC for county i:  where  and  is posterior the 

mean of θi. Finally, the model DIC is simply the sum of the local DICs.

To apply the BMA framework to the partial models, we apply the same type of spatial 

structure seen with BMS on the model probabilities by way of the CAR model. Then, we 

simply use the local DIC to calculate the alternative model probabilities measure for each of 

the m areas.

3 Simulated data and fitted models

In this and the following sections, models will be referred to by the contents of both the 

simulated data and the fitted model applied. Table 1 is a list of notations for describing 

models, and Supplemental Table 1 is a list of all simulated data models explicitly defined.

3.1 Simulated data

To evaluate the performance of these alternative approaches, we simulate data to establish 

realistic ground truth for disease risk variation. To match the methods described above, we 

define a count outcome as yi in the ith small area. We assume a map of m small areas. In 

addition, we assume that the expected count (ei) is available in each small area. Thus, our 

outcome follows a Poisson distribution with expectation μi in county i.
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In the simulations, we fix the expected rate for the areas in order to focus on the estimation 

of relative risk θi. To complete the parameterization, we assume a relative risk which is 

parameterized with a range of different risk models.

We chose the county map of the state of Georgia, USA which has 159 areas (counties). 

Hence, i = (1, …, 159) for this county set. We consider two scenarios for the expected rates. 

In the first scenario, the expected rates ei are assumed to be constant over all areas, and are 

set at 1. For the second scenario, the expected rates are assumed to be varying over the areas, 

and are assumed to be a realization of a Gam(1, 1) distribution. Having these two scenarios 

in the simulation study allows us to see how the extra variation affects the model selection 

processes. We denote this in our model names as E1 and E2 for fixed and varying expected 

rates, respectively.

We examined nine basic models for risk (S1 up to S9) which have different combinations of 

covariates and random effects as might be found in common applications. First, we 

generated four predictors with different spatial patterns. The four chosen variables were 

median age (x1), median education (x2), median income (x3), and a binary predictor 

representing presence/absence of a major medical center in a county (x4). These variables 

are county-level measures for the 159 counties in the state of Georgia. We chose these 

variables because it is important to represent a range of different spatial structures and types 

of predictors. Additionally, observed predictors/covariates could have a spatial structure, and 

thus we included this in the definition of two of the predictors (median age and major 

medical center). Table 2 displays the predictors generated via simulation and their 

parameterization where the Gaussian parameters are the mean and variance. Also, note that 

the spatial predictors have a covariance structure applied, but this is explained in detail later.

These distributions lead to measures that reflect typical values for these variables. For 

example, the median age for a county in the USA is roughly 40, and the values do not vary 

much from one county to the next. Similar explanations can be applied to both the median 

education and median income variables. For the major medical center variable, this indicated 

marginal distribution leads to roughly half of the counties answering ‘yes’ to having a major 

medical center. These variables have been selected as placeholders, and should be thought of 

as representing any of the typical variables one might utilize in building disease mapping 

models.

The spatially structured covariates were generated using the RandomFields package in R.17 

The simulation uses the county centroid as a location to create a Gaussian Random Field 

(GRF), which is defined via a covariance structure. We assume a Gaussian covariance 

structure, and this assumption leads to a stationary and isotropic process.18 We specify this 

structure by using the RMgauss() command. We assume a power exponential covariance 

model of the form

where r is the Euclidean distance between two centroids and the covariance parameter (α) is 

set as α = 1. Following the selection of the covariance structure, we must also set the mean 
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of the GRF to create the same marginal distributions as described in Table 2 using the 

RMtrend() command. Finally, to simulate the GRF, we use the RFsimulate() command to 

create a GRF and assign a value to the spatial covariate. There is only a slight extension that 

must be applied when the spatial covariate is binary such as x4. To create this variable, we 

use a GRF to simulate π mentioned in Table 2, rather than the covariate itself. From there, 

we simulate from a Bernoulli distribution to give the binary indicators for each county, using 

expit(π) for the probabilities.

The distribution of all covariates, x1, …, x4, on the Georgia county map is illustrated in 

Figure 1. Notice that the median age and major medical center covariates appropriately 

appear to have spatially dependent distributions. Though we have defined the mean and 

covariance structure of these GRFs, the distribution can still take on many forms, and these 

variables reflect only one realization of the distribution.

For the simulations, we fix the covariates as one realization from the distributions described 

in Table 2 and generate the outcomes using a fixed set of parameters unique to each of the 

nine models. The β’s seen in Table 3 are quite small, particularly for the first six models, and 

this guarantees that the outcome variable maintains a fairly small value to continue 

representing a sparse disease. Note that S7, S8, and S9 are alike S2, S4, and S6, respectively, 

with the exception of higher magnitudes associated with the fixed parameter estimates. 

Further, note that models S4 and S8 do not pick any of the variable that has a spatial 

structure. In the next step, log (θi) is calculated based on the fixed parameters and 

realizations. Finally, we generate the outcome as a Poisson distributed variable with mean 

eiθi. The simulated datasets consist of sets of counts: , j=(1, …, 300) where j denotes 

the jth simulated dataset. Note that we simulated two batches of the covariates with 150 data 

sets per batch and still allow for Poisson variation between the 300 simulate data sets. This 

reduces the amount of variation in the simulation study which allows the main focus to be on 

the different model selection techniques.

In addition to the nine model variants described above, we have also considered a variant 

that allows us to limit the regions of the state that certain predictors have an effect. This will 

allow us to study spatially varying model selection or spatially varying model averaging. 

The state is partitioned into three regions, A1, A2, and A3, each containing 53 counties as 

illustrated in Figure 2. Next, we will consider partial models, notated as ‘P,’ for each of the 

nine models described above. These scenarios are described in Table 4.

Finally, we also explored the case that there is some unmeasured confounding in the data. 

This was accomplished by including a UH term and a CH term defined as ui~Norm(0, 100) 

and , respectively. The fixed precision values for these components 

are the same (1/τv = 0.01) so that one term does not dominate the other and lead to 

identifiability issues.19 Two additional simulated model scenarios result from inclusion of 

these random effects; the first assumes that there is simply random error present in the data, 

thus only the UH term is involved. This model is denoted as RE. The second model is a 

convolution model, denoted CV, and includes both the UH and CH terms; this model 

assumes that there is random error as well as error with a spatial structure. For simplicity, we 
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only looked at this application for a subset of the simulated model scenarios (S1 for the RE 

model and S1, S5, S7, and S9 for the CV model).

3.2 Fitted models

In Table 5, we illustrate the three linear predictors fitted using both the model selection and 

BMA techniques described above. These options are appropriate for the models listed in 

Table 4 such that S1 up to S9 is associated with F1,…,F9. For the complete models, the 

suffix ‘Alt1’ represents the true model for all counties. For the partial models, the suffixes 

‘Alt1’ or ‘Alt2’ represent true models for some counties depending on the descriptions in 

Table 4 above. ‘Alt3’ is never a true model. The different alternatives offer some models that 

include random noise to determine if that has an effect on which model is selected. When 

the RE and CV simulated models are being fitted, all linear predictor alternatives include the 

appropriate random effects.

4 Results

The results below are in relation to the implementation of the methods described above. First 

we present the BMS results for the complete and the partial models followed by the BMA 

results for the complete and partial models. Finally, we present a real data example of 

implementing these methods.

Note that we also collected the parameter estimates, produced for each of the alternative 

models, during each implementation. None of these estimates are well estimated as seen in 

Supplemental Table 2, but obtaining these estimates is not the goal of the model selection 

process. We suggest that one should refit with the selected model to obtain appropriate 

parameter estimates.

4.1 Complete models

All results in this section are associated with the complete models described in Table 3. The 

models do not allow for variation from one county to the next, and the first linear predictor 

alternative is the true linear predictor, thus, model weight p1 should be the highest. 

Supplemental Tables 3 and 5 display the model probabilities for each scenario with BMS 

and BMA, respectively.

Figure 3 presents some the results for model scenarios S1–S6 fitted with corresponding 

models F1–F6 under the scenario of a constant expected rate (E1) and varying expected rates 

(E2). The figure illustrates the distribution of the model weights for the BMS procedure. 

These figures suggest that most models correctly select the linear predictor associated with 

p1. When the evidentiary support for a particular model increases, as is the case in scenarios 

S7F7-S9F9, this becomes even more evident. The model selection probabilities decrease 

from the first to the second and third model, showing a better distinction between the 

models. Only in the scenarios S6F6 and S4F4, an incorrect model is selected. Note, however, 

that the evidence in these scenarios for the underlying model is small.

The model probabilities corresponding to scenarios E1 and E2 are similar. In most settings, 

it is observed that the model probability of the correct model decreases when comparing 
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scenario E1 to E2. This indicates that model selection is more difficult when the variation in 

the data increases. But, differences between the model probabilities are only small, and 

conclusions about the selected model hardly change. The main difference we observed when 

comparing models in this way is that the E2 models produce lower DICs. This fact does not 

necessarily indicate that the E2 models fit better than the E1 models as the models have 

different likelihoods. These GoF measures are displayed in Supplemental Table 4.

Figure 4 displays the model probabilities associated with the complete models using the 

BMA technique. A completely different picture as compared to BMS is observed. These 

plots suggest that there is not a consistent pattern in the way that the different models 

perform as far as selecting linear predictors. Typically, p1 still obtains the highest probability 

value, but there are several mismatches (7 of the 18 models, 38.9%). As with the BMS 

models, the E1 and E2 estimates continue to be nearly identical for the model probabilities 

while they differ when considering GoF measures. These GoF measures are displayed in 

Supplemental Table 6.

Figure 5 displays a line plot of the model probabilities for the complete models that 

incorporate the convolution term compared to those without the term. Through these plots, 

we observe a clearly selected alternative linear predictor with the BMS method for all 

scenarios except E1CS9F9CV. E1CS9F9CV is the scenario in which there is only a single 

covariate present the true linear predictor, thus it is possible that the random effects are able 

to explain this variation. However, the probabilities associated with p1 in the CV models are 

not as large as those produced by the non-CV models. Additionally, for BMS, a majority of 

the model probability standard deviations are the same or smaller in value in comparison to 

their counterparts. Overall, BMA does not perform well in the CV model scenarios. 

Interestingly, for scenario E1CS1F1, BMA performs slightly better than BMS for the non-

CV models in that it more clearly selects p1 as associated with the true linear predictor, but 

for the CV models, BMS performs well while BMA does not. This further illustrates the 

detriment of BMA when extra noise is present.

4.2 Partial models

All results in this section are associated with the partial models described in Table 4. These 

models allow for variation in the linear predictors applied in different areas on the county 

map. Furthermore, for all models, the first or second alternatives are true for certain areas of 

the county map as described in Table 4, and thus model weights p1 or p2 should be the 

highest in their appropriate areas. Here, we display only a sample of the models fitted. The 

resulting county maps for the full range of models fit with the BMS and BMA methodology 

can be seen in Supplemental Figures 1 and 2, respectively.

The first set of maps shown in Figure 6 below is associated with the E1PS4F4 and E1PS8F8 

scenarios using BMS. These models in particular illustrate the relationship we hope to see in 

the partial models. S4F4 does well to estimate p1, but is not as accurate with p2. In 

comparison, S8F8 improves the estimations of both p1 and p2 in that it attains higher values 

in the appropriate regions of the county map. In both cases, though, we continue to see a 

residual present in p3. This indicates that the model can only select the correct underlying 

model if the parameter effect is strong enough.
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The second set of maps involving S6F6 and S9F9 displayed in Figure 7 are not as 

convincing, and we believe this is largely due to the fact that the true regions associated with 

p1 are strictly separated to the extreme North and South of the map. There is still evidence of 

an improvement when moving from S6F6 to S9F9 since the regions are becoming slightly 

more defined as far as the maps are concerned. It may be the case that we need even more 

evidentiary support when the areas are separated in this manner.

Table 6 displays the GoF measures associated with the BMS technique applied to the partial 

models. We continue to see smaller DIC estimates associated with the E2 models while the 

MSE and MSPE values are often larger. Larger MSE and MSPE estimates for E2 models are 

appropriate in the sense that there is more variance present in these models, thus estimation 

should be more difficult. Furthermore, MSE and MSPE values are nearly identical for the 

majority of models. In some cases, though, these estimates are quite extreme, such as for 

scenarios E2PS8F8 and E2PS9F9. Scenario E2PS4F4 demonstrates that outlier values in 

MSE are not necessarily reflected in the MSPE. Additionally, the estimates associated with 

A1 are typically smaller than A2 or A3. We believe this is due to the fact that this region has 

smaller, closer together counties. Finally, the results for the E1PS1F1RE and E1PS1F1CV 

models indicate that it performs very well; in fact, most of the MSE and MSPE values are 

smaller than those produced with E1PS1F1. This improvement continues to be the case for 

some of the MSE and MSPE measures related to models E1PS5F5CV, E1PS7F7CV, and 

E1PS9F9CV.

The sets of maps included in Figure 8 below are associated with E1PS4F4 and E1PS8F8 

when fitted using the BMA technique. These maps are for comparison to the BMS fitted 

maps shown above in Figure 6. In comparison, we see that both fits of these models fail to 

be as accurate as those attained using the BMS technique. There are improvements to be 

noted when moving from S4 to S8 as it seems that the model probabilities are becoming 

slightly closer to the truth, but there is still some misrepresentation present in the estimation 

of p3 since we do not expect Alt3 to be selected for any counties. Furthermore, the maps 

produced using the model probabilities calculated via local DIC do not produce reasonable 

results.

As before, the next set of maps displayed in Figure 9 illustrates the fits associated with 

E1S6F6 and E1S9F9 when using the BMA technique. Here, we see no improvement when 

comparing S6 to S9, and none of the maps tend to suggest a certain region relating to one 

linear predictor versus another. The BMS technique continues to handle this situation better 

than BMA. Additionally, the DIC probability maps still fail to supply reasonable results.

Figure 10 illustrates a comparison of both model selection methods’ abilities to accurately 

recover the truth. This comparison is accomplished by associating the probability from a 

specific county that should be selected to the mean probability of all counties that should not 

be selected for that particular model; this is described with the following formulation
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where πM are the probabilities displayed in Figure 10, I is an indicator function that is 1 

when the enclosed logical function is true and zero otherwise, k = 1, 2 for the model 

probabilities p1 and p2, A is the area for which pk should be highest, AC is area A 

compliment,  is the mean of the model probabilities in area AC, and nA is the number of 

counties in area A, thus i = 1, …, nA. So, for example, with p1 from PS1F1, a county in A2 

or A3 should have a higher model probability estimate than the mean of model probabilities 

calculated for the counties in A1. In these plots, we see BMS performing the same or better 

than BMA for 21 out of the possible 36 model combinations.

Table 7 displays the GoF measures for the partial models using the BMA technique. The 

MSPE measures can be viewed in Supplemental Table 7. One of these properties is that, in 

general, the E2 models produce smaller DIC values but higher MSE and MSPE values for 

the majority of models. The difference between the MSE and MSPE values when comparing 

E1 and E2 for the BMA case is much larger than what we saw when using BMS. This again 

indicated that model selection is more difficult when there is more variation in the data. 

Another of these properties involves lower MSE and MSPE values for area A1; additionally, 

this is typically reflected in the local DIC measure for A1 as well. One new comparison that 

we can make with the BMA results is the local DIC measure to the BUGS calculated DIC 

measure, and these are different for every model. Additionally, the local DIC measure is 

always higher than the other DIC measure for the E1 models while this is not typically the 

case for the E2 models. We believe that all of these properties combined suggest that they 

perform better when there is no variation in the expected rates. Finally, when comparing 

E1PS1F1RE and the convolution models to their appropriate counterparts for the BMA 

models, we see that the results are still good but not better as we saw with the BMS 

technique, except for the local DIC measurements. The local DIC measures for these RE and 

CV models are much closer in value to the overall DIC measures.

4.3 Misspecified models

In our research, we also misspecified models such that we fit the complete simulated data 

sets with the partial method and vice versa. In particular, we did this with models E1CS1 

and E1PS1 because they performed well initially in both the BMS and BMA methodology. 

These appropriately specified results can be seen in Supplemental Tables 3 and 5 above for 

the complete models as well as Supplemental Figures 1 and 2 for partial models.

The results from fitting partial simulated data (E1PS1) using the appropriate complete model 

(CF1) are in Table 8. They show the BMS method choosing the linear predictor associated 

with p1 while BMA selected the linear predictor associated with p3. The true linear 

predictors here could be p1 or p2 depending on the county. We suspect that the BMA method 

incorrectly selects p3 because the first two linear predictors are alternating as the true model 

for the different counties. For example, if p3 = 0.4 for all counties while p1 and p2 alternate 

between the values 0.1 and 0.5 depending on the county of interest, we could get similar 

results. The GoF measures are quite different for these two methods, but this is similar to the 

previous results in Section 4.1.

When fitting the complete simulated data (E1CS1) to the appropriate partial fitted model 

(PF1), we expect to see the linear predictor associated with p1 selected for all counties, and 
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the county maps for this misspecification are displayed in Figure 11. Both methods’ results 

still show some variability among the different counties, but the BMA method clearly selects 

the linear predictor associated with p2 for the northern counties. The GoF measures as well 

as mean probabilities and weights are shown in Table 8.

4.4 Colon cancer data example

For our real data example, we use 2003 colon cancer data in the state of Georgia as an 

outcome and predictors from the Area Health Resources Files (AHRF) dataset20 (median 

household income (in thousands of dollars), percent persons below poverty level (PPBPL), 

unemployment rate of those aged 16 or greater, and percent African American population). 

Past studies suggest that colon cancer has a spatial structure and is related to these 

predictors, though they are not the main risk factors associated with colon cancer.21–24 Our 

three possible linear predictors all contain an uncorrelated random effect, and they differ by 

the predictors included. The first linear predictor includes all of the covariates while the 

second includes only income and percent African American population. The third linear 

predictor includes PPBPL and percent African American population. We alternate income 

and PPBPL in the second two linear predictors because they are correlated (ρ = −0.897). 

Also note that we standardized the continuous covariates before fitting the models because 

this was necessary for the BMA fitting.

The results from fitting these models with the real data using the BMS method are displayed 

in Figure 12 and suggest that it may be beneficial to use the second linear predictor option in 

the northern and western areas of the state while the third linear predictor option may be 

optimal for the southern and western counties. From these results, we can also see that it is 

beneficial to place correlated covariates in separate linear predictors and allow the BMS 

process to determine which is appropriate for the different counties.

The BMA method produces two options for p-values, and we note different results between 

those two options as well as the results produced for the model selection method. The BMA 

model probability results shown in Figure 13 suggest that the first linear predictor option 

should be used for the Northern counties while the second linear predictor option seems 

appropriate for the Southern counties. The results also suggest that the third linear predictor 

may also be useful for the mid-Eastern counties. The DIC calculated probabilities do not 

show a favorable pattern for any of the linear predictor options; these probabilities produce 

very random plots much alike those seen in Supplemental Figure 2.

The model re-fits using the results above and applying them to the selected areas of the map 

suggest that qualitatively using the two model selection methods in combination produce the 

best results. We found the most convincing results in the data when the second linear 

predictor was applied to the Northern counties of the state (area A1 described previously) 

while the third linear predictor was most appropriate for the Southern counties of the state 

(areas A2 and A3). These re-fits were better than simply using the set of selected counties 

from either model selection technique on its own, but we believe this is largely because the 

number of counties selected was somewhat small. Supplemental Table 8 displays parameter 

estimates associated with fitting the second and third linear predictors to the full county map 

as well as the selected regions.
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5 Discussion

Based on the simulation results and from a qualitative assessment, we believe that the BMS 

technique outperforms BMA in terms of selecting the appropriate linear predictors. The 

results for the BMS method are also more consistent when comparing different scenarios 

such as E1 versus E2, and S1F1-S9F9 to their appropriate counterparts. Furthermore, we 

discovered that the BMS technique is more robust to misspecified models. For both 

techniques, the complete models tend to recover the truth more efficiently and accurately 

than the partial models, but this is to be expected as these models are not as complex.

We also see significant improvements in recovering the appropriate estimates when 

comparing the models whose data sets have true parameter estimates with larger magnitudes, 

meaning there is more evidentiary support in the data. This is evident in complete, partial, 

E1, and E2 models as well as both BMS and BMA techniques. As far as GoF measures are 

concerned, DICs cannot be compared across models due to different outcome variables, and 

thus different likelihoods. The MSE and MSPE estimates suggest that, for the most part, the 

E1 models fit better than the E2 models. We also note that the A1 region often offers the 

lowest MSE and MSPE measures. We believe that this occurs because the counties in the A1 

region are smaller and closer together than the others. Additionally, more often than not, 

S7F7-S9F9 models produce lower MSE and MSPE values. This suggests that the techniques 

perform better when there is more support in the data.

There are several obstacles that can be encountered when performing both model selection 

methods. The first of these involves the strength of association present in the data. If there is 

not enough evidence in the data, we have seen that both BMS and BMA fail to perform well.

Another issue involves extra noise in the data. As in many statistical applications, extra 

variation in the data can lead to difficulties in estimation; BMS and BMA are not immune to 

this issue. By the same token, including an uncorrelated random effect in one of the 

alternative linear predictors when it is not truly needed can also result in an improper 

selection of a linear predictor. In many cases, though, there is random noise present in data, 

and including that random effect can be helpful. This is why random effects were included 

in all linear predictor alternatives for our real data example. Furthermore, we did include 

several scenarios in our simulation study (RE and CV models) that introduce this extra noise 

and fit the models such that the noise is also reflected in the true and alternative linear 

predictors. In this situation, the results suggest that both methods seem to perform 

comparably when uncorrelated extra variation was imposed upon the data. When the 

convolution term was present in the model, BMS continued to perform well most of the time 

while BMA suffered in its ability to recover the truth. Here, the BMS method produced 

slightly smaller MSE and MSPE values than those produced with model scenarios that 

exclude these random terms.

One shortcoming of both of these methods is that they must be performed in sequence with 

an additional model fit to determine the parameter estimates associated with the selected 

linear predictor or predictors in the case that one predictor is more appropriate in a certain 
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region of the state. This is a shortcoming that adds to the complexity of the model fitting 

process, but it is worth pursuing to obtain the most appropriate results.

6 Conclusion

From this comparison between our proposed BMS and BMA, we conclude that the BMS 

application qualitatively produces more accurate as well as more precise results than those 

produced by BMA in terms of selecting the appropriate linear predictors across maps. There 

still may be some instances, though, where BMA is the preferred method because one is able 

to calculate the local DICs in that situation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Display of the spatial distribution of simulated covariates per county.
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Figure 2. 
Display of the areas for the partial models.
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Figure 3. 
Models weights associated with the complete models using BMS.
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Figure 4. 
Model probabilities associated with the complete models using BMA.
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Figure 5. 
Model probabilities for the complete model scenarios with the CV term compared to those 

without the CV term.
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Figure 6. 
Model weights associated with E1PS4F4/S8F8 for BMS.
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Figure 7. 
Model weights associated with E1PS6F6/S9F9 for BMS.
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Figure 8. 
Model probabilities associated with E1PS4F4/S8F8 for BMA.
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Figure 9. 
Model probabilities associated with E1PS6F6/S9F9 for BMA.
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Figure 10. 
Model weights and probabilities associated with the misspecified models fit with 

E1CS1PF1.
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Figure 11. 
County weights based on the BMS and BMA procedures for the misspecified models.
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Figure 12. 
County weights based on the BMS procedure for the colon cancer example.
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Figure 13. 
County weights based on the BMS procedure for the colon cancer example.
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Table 1

Notation for describing model contents.

Notation Definition

E1 Model with ei = 1

E2 Model with ei ~ Gam (1,1)

C Complete model

P Partial model

SX Simulated data model ‘X’

FX Fitted model ‘X’

RE Model with an uncorrelated random effect included

CV Model with a convolution component included
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Table 2

Description of predictor variables and their simulation marginal distribution.

Variable Spatial Distribution (marginal)

Median age (Years) Yes x1 ~ Norm (40,4)

Median education (Years) No x2 ~ Norm (13,4)

Median income (Thousands of Dollars) No x3 ~ Norm (45,1)

Major medical center (Yes/No) Yes

  π ~ Norm(0,25)

  logit(p) = π

    x4 ~ Bern(p)
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Table 3

Model coefficients for the simulated data.

Model βx1 βx2 βx3 βx4

S1 0.1 0.1 0.1 0.1

S2 0.1 −0.1 0.1 0.1

S3 0.1 0.0 0.2 0.1

S4 0.0 −0.1 0.1 0.0

S5 −0.1 0.2 0.0 0.0

S6 0.0 0.0 0.0 0.1

S7 0.2 −0.2 0.2 −0.3

S8 0.0 −0.3 0.3 0.0

S9 0.0 0.0 0.0 0.3
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Table 4

Scenarios for partial models.

Notation Meaning

PS1 S1 with ×1 and ×2 missing from A1

PS2 S2 with ×3 and ×4 missing from A2

PS3 S3 with ×1 and ×4 missing from A2 and A3

PS4 S4 with ×2 missing from A1

PS5 S5 with ×2 missing from A1

PS6 S6 with ×4 missing from A2

PS7 S7 with ×1 and ×2 missing from A1

PS8 S8 with ×2 missing from A1

PS9 S9 with ×4 missing from A2
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