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Abstract

Background: School closure is often considered as an option to mitigate influenza epidemics because of its
potential to reduce transmission in children and then in the community. The policy is still however highly debated
because of controversial evidence. Moreover, the specific mechanisms leading to mitigation are not clearly identified.

Methods: We introduced a stochastic spatial age-specific metapopulation model to assess the role of
holiday-associated behavioral changes and how they affect seasonal influenza dynamics. The model is applied to
Belgium, parameterized with country-specific data on social mixing and travel, and calibrated to the 2008/2009
influenza season. It includes behavioral changes occurring during weekend vs. weekday, and holiday vs. school-term.
Several experimental scenarios are explored to identify the relevant social and behavioral mechanisms.

Results: Stochastic numerical simulations show that holidays considerably delay the peak of the season and mitigate
its impact. Changes in mixing patterns are responsible for the observed effects, whereas changes in travel behavior do
not alter the epidemic. Weekends are important in slowing down the season by periodically dampening transmission.
Christmas holidays have the largest impact on the epidemic, however later school breaks may help in reducing the
epidemic size, stressing the importance of considering the full calendar. An extension of the Christmas holiday of 1
week may further mitigate the epidemic.

Conclusion: Changes in the way individuals establish contacts during holidays are the key ingredient explaining the
mitigating effect of regular school closure. Our findings highlight the need to quantify these changes in different
demographic and epidemic contexts in order to provide accurate and reliable evaluations of closure effectiveness.
They also suggest strategic policies in the distribution of holiday periods to minimize the epidemic impact.
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Background
Children represent an epidemiological group of central
importance for the transmission of influenza [1–3]. They
often have a larger vulnerability to infections because
of limited prior immunity, and they mix at school with
high contact rates [4] thus representing key drivers for
influenza spread. The closure of school has been associ-
ated to the potential of reducing influenza propagation
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in the community by breaking important chains of trans-
mission. It is expected to potentially delay the peak, and
reduce the epidemic impact, at peak time and of the over-
all wave. Though not specifically recommended by the
World Health Organization during the 2009 H1N1 pan-
demic, it is envisioned as a possible non-pharmaceutical
intervention for pandemic mitigation left to the decision
of national and local authorities [5, 6].
A large body of literature exists on the topic, however

contrasting evidence lead to no definitive emerging con-
sensus [7, 8]. Benefits and limitations appear to depend
on the specific epidemic context. For example, influenza
epidemics characterized by a larger attack rate in children
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compared to adults are expected to be more sensitive to
the closure of schools [9]. This experience was reported
in many countries during the 2009 H1N1 influenza pan-
demic, where closed schools coincided with a marked
reduction of influenza activity [10–22]. School closure
interventions are often considered along with other miti-
gation strategies, as it happened with social distancing in
Mexico following the pandemic outbreak [15, 23], mak-
ing their effect more difficult to isolate. Studies generally
report a slowing down effect in the incidence during clo-
sure, however in some cases the effect may be mixed
with the natural decline of the epidemic, because of late
implementation [8]. In addition, no clear trend is observed
in the impact of school closure on the epidemic burden
depending on the time of closure – before, around, or after
the peak [8].
Given its potentially important role in reducing the epi-

demic impact, school closure has more often been inves-
tigated in the realm of pandemics compared to seasonal
influenza [8]. For the latter, regular school closure dur-
ing holidays in temperate regions has been considered as
a natural example to evaluate the impact of school closure
[24–26]. Directly extending the application to pandemic
situations has however important limitations. Closure
associated to winter holidays is regularly scheduled in the
school calendar, whereas school closure as an interven-
tion corresponds to an unplanned interruption of school
attendance that may take different forms (e.g. proactive
vs. reactive, at the national or local level, with a gradual
closure of classes or of the entire school) [7, 27–29]. In
addition to the different nature of closure, also its duration
changes from a fixed scheduled period of holidays to one
of variable extension depending on the ongoing epidemic
and resulting outcome. How individual behavior changes
in all these conditions is the critical aspect to quantify in
order to accurately assess the impact of school closure on
transmission.
Transmission models fitting the 2009 H1N1 pandemic

or parameterized to a similar pandemic scenario have
been used to assess the value of school closure or sum-
mer holidays [17, 20, 28–30]. Few of them are based on
estimates for social mixing changes [20, 30], as data col-
lected during a pandemic are limited [30, 31], leaving
other approaches to rely on assumptions about contacts
thatmay critically affect the studies’ findings. Applications
to seasonal influenza may on the other hand count on a
more accurate description of population mixing. Surveys
conducted over the calendar year to measure variations
of mixing patterns [32–35] offer indeed the opportunity
to perform data-driven modeling studies that mecha-
nistically assess the role of school holidays on seasonal
influenza. Interestingly, they also highlighted consider-
ably large differences across countries in the way contacts
change from term-time to school holidays [32], suggesting

the need for country-specific estimates to accurately and
reliably parameterize models.
Changes in mobility is another important aspect that

is rarely integrated in school closure studies. Travel
is known to be responsible for the spatial dissemina-
tion of influenza [20, 36–44]. In addition to extraor-
dinary travel drops in reaction to epidemics [44–46],
mobility changes regularly occur during school holidays
compared to term-time [47, 48]. Moreover, important
differences were highlighted in the mobility of children
vs. adults and their associated variations, so that their
coupling with social mixing changes occurring during hol-
idays may have a considerable impact on the epidemic
outcome [20, 48].
Our aim is to explicitly integrate social mixing and

travel from data into a modeling framework to assess how
variations induced by regular school closure may impact
seasonal influenza epidemics. Three modeling studies
were developed so far with similar objectives. Towers
and Chowell studied the impact of day-of-week variations
in human social contact patterns on incidence data col-
lected at a large hospital in Santiago, Chile, during 2009
H1N1pdm [49]. Their approach was not spatial, therefore
did not consider mobility changes, and mainly focused
on the sensitivity of influenza incidence variations to the
latency period. Apolloni et al. used a stylized analytical
approach to evaluate the role of age-dependent social mix-
ing and travel behavior on the conditions for epidemic
spatial invasion [20]. The model can compare different
contexts, with or without schools in terms, and also
account for associated changes. The contexts are however
considered independently (no full school calendar can be
considered) and the epidemic impact is evaluated only
in terms of conditions for spatial dissemination. Going
beyond these limitations, more recently Ewing et al. intro-
duced an age-specific spatial metapopulation model to
evaluate how behavioral changes associated to winter hol-
iday impact the flu season [48]. The model is applied to
the United States and it integrates data on travel behavior,
whereas mixing is assumed from estimates available from
Europe and adapted to summer holiday changesmeasured
in the UK during the 2009 pandemic [30]. Their findings
identify changes in mixing patterns as the key element
responsible for the epidemic effects induced by holidays.
Given the central role of mixing patterns largely sup-

ported by evidence [7, 8, 20, 48], the heterogeneous
country-specific contact variations measured in Europe
[4, 32], and the marked difference expected in individ-
ual behavior during a seasonal flu epidemic vs. a pan-
demic, here we extend prior approaches to introduce
a data-driven spatially explicit model fully parame-
terized on Belgium. The aim is to reduce assump-
tions in favor of input data, and to exclusively focus
on seasonal influenza and associated parameterization.
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Contact data associated to four types of calendar days
are considered, belonging to Regular Weekday, Reg-
ular Weekend, Holiday Weekday, Holiday Weekend
(here ‘regular’ refers to non-holiday period), allowing
us to assess the role of weekends in addition to holi-
days. A richer calendar with additional holidays beyond
Christmas break is also considered. Confirming and
extending prior results with a differentmodeling approach
and input data would greatly support our understanding
of the role of changes in mixing and travel on influenza
epidemics.

Methods
In order to study the role of changes in contact patterns
and in travel behavior along the calendar, we consid-
ered a mathematical approach for the spatial transmission
of influenza in Belgium. We built a discrete stochastic
age-specific spatial metapopulation model at the munici-
pality level, based on demographic, mixing, and mobility
data of Belgium. We parameterized it with influenza-
like-illness (ILI) data reported by the Belgian Scien-
tific Institute of Public Health at the district level for
the 2008/2009 season. By using the Belgian school cal-
endar for that season, we assessed the impact of the
individual changes in mixing and travel behavior dur-
ing regular school closure, given by available data. We
then tested experimental scenarios to identify the mech-
anisms responsible for the observed epidemic outcomes.
Here, we describe in detail the mathematical model,
input data, calibration procedure and experimental
scenarios.

Age-specific metapopulation model
Metapopulation epidemic models are used to describe the
spatial spread of an infectious disease through a spatially
structured host population [50–53]. They are composed
of patches or subpopulations of the system, connected
through a coupling process generally describing hosts
mobility. Here we consider the population to be divided
into two age classes, children and adults, based on the
modeling framework introduced by Apolloni et al. [20].
Infection dynamics occur inside each patch, driven by the
contacts between and within these two classes, and spa-
tial spread occurs via the mobility of individuals (Fig. 1).
Both processes are modeled explicitly with a discrete
and stochastic approach. The model is based on Belgian
data and follows the time evolution of the 2008/2009
school calendar. It includes 589 patches corresponding to
the 589 municipalities (nl. gemeenten, fr. communes) of
Belgium.Weekends and school holidays are explicitly con-
sidered, and variations in mixing and travel behavior are
accounted for in the model and based on data. In the fol-
lowing, we describe in detail the various components of
the model.

Demography and social mixing
Individuals are divided into children (c, age less than 19y)
and adults (a, otherwise). Population size and age struc-
ture per municipality as of January 1, 2008 are obtained
from Belgian Statistics [54].
Social mixing between the two age groups is quanti-

fied by contact matrices extracted from the data obtained
through a Belgian social contact survey [4, 32]:

CCC =
(
Ccc Cca
Cac Caa

)
(1)

where the element ij (i = a, c, j = a, c) is given by:

Cij = Mij

Nj
Ntot , (2)

with Mij the average number of contacts made by survey
participants in age class i with individuals in age class j,
Nj the population of age class j, Ntot the total population
of Belgium. CCC is defined at the national level, and here
we assume that it is the same throughout the country,
with the number of contacts being altered exclusively by
the patch demography (see Additional file 1: Section 1 for
more details). From survey data, we have that the contact
matrix for a regular weekday is:

Creg weekdayCreg weekdayCreg weekday =
(
Ccc Cca
Cac Caa

)
=

(
40.71 7.84
7.84 14.25

)
. (3)

The variations for the other day types are discussed in
paragraph “Changes in social mixing and travel behavior
during school closure”.

Infection dynamics
Influenza disease progression is described through a
Susceptible-Exposed-Infectious-Recovered (SEIR) model
(Fig. 1) [55, 56]. A susceptible individual can contract the
disease with a per-contact transmissibility rate β from
infectious individuals, then entering the exposed or latent
class. After an average latency period of ε−1 = 1.1 days
[57, 58], the individual becomes infectious for an aver-
age duration μ−1 = 3 days [57, 58] and can transmit
the infection, before recovering and becoming immune
to the disease. A fraction of children (gc) and adults (ga)
were considered immune to the disease at the beginning
of the influenza epidemic, based on available knowledge
on prior immunity and vaccination coverage in the coun-
try for the 2008/2009 influenza season and prior seasons
(gc = 39.87%, ga = 53.19%) [59–61].
The force of infection for a susceptible individual of age

class i (i = a, c) in a given patch p is given by:

λ(i, p, t) = β
∑
j
Cij(t)

Ipj (t)
Np(t)

, (4)

where j runs on age classes, Ipj (t) and Np(t) count the
total number of infectious individuals of age class j and
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Fig. 1 Schematic illustration of the spatial age-structured metapopulation model. The metapopulation modeling scheme is composed of three
layers. At the country scale, Belgium is modeled as a set of patches (here indicated with q and p) corresponding to municipalities coupled through
mobility of individuals fpq(i) of age class i at time t. Within each municipality, population is divided into two age classes, children (c) and adults (a),
whose mixing pattern is defined by the contact matrix CCC. Individuals resident of patch p and individuals commuting to that patch (e.g. resident of
patch q) mix together following commuting. The figure reports as an example the contact matrix of a regular weekday (Eq. (3)). Mobility and mixing
vary based on the calendar day (regular/holiday, weekday/weekend). Influenza disease progression at the individual level is modeled through a
Susceptible-Exposed-Infectious-Recovered compartmental scheme, with β indicating the per-contact transmission rate, ε the rate from exposed to
infectious state, μ the recovery rate

the total population size of patch p at time t, respec-
tively. The force of infection changes with time for two
reasons. The first is the school calendar, distinguish-
ing between regular weekdays, regular weekends, holi-
day weekdays, holidays weekends, and accounted for by
Cij(t). The second is the mobility of individuals. At a
given day of the simulation, each patch p may include:
non-commuting residents of p, commuters from neigh-
boring patches for school/work, commuting residents
of p after school/work (see paragraph “Mobility” and
Additional file 1: Section 1).

Mobility
Coupling from patch p to patch q is given by the mobility
of age class i, i.e. fpq(i) (Fig. 1). We considered commuting
data across patches from the 2001 Socio Economic Survey
of the Belgian Census [62] to describe the regular mobility
of individuals for school/work during a regular weekday.
Data are not age-specific, so we extracted the commuting
fluxes per age class based on the probability of children
(adults) of commuting on a given distance computed on
the French commuting data [63] (see Additional file 1:
Section 1). Such inference was based on the assumption
of a similar mobility behavior across the two neighboring
countries.
Air travel was not considered due to negligible internal

air traffic within the country.

Changes in social mixing and travel behavior during school
closure
Changes in social mixing are based on the data of the Bel-
gian social contact survey [4, 32], where participants were
asked to report their number of contacts during a regular
weekday, a regular weekend, a holiday weekday or a holi-
day weekend. In addition to the contact matrix of Eq. (3),
we have:

Creg weekendCreg weekendCreg weekend =
(
12.51 6.00
6.00 10.85

)
for a regular weekend,

(5)

Chol weekdayChol weekdayChol weekday =
(
14.02 7.28
7.28 12.29

)
for a holiday weekday,

(6)

Chol weekdendChol weekdendChol weekdend =
(
10.89 7.20
7.20 8.59

)
for a holiday weekend.

(7)

Concerning variations in mobility, schools are closed
during weekends and holidays, so no commuting exists
for children in those days. We considered adults to con-
tinue commuting during holiday weekdays, assuming that
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adults’ time off of work would be homogeneously dis-
tributed throughout the year. Concerning adult mobility
during the weekends, we estimated the travel fluxes reduc-
tions based on statistics available for France [64], based on
the same assumptions explained in paragraph “Mobility”.
The resulting age-specific reductions for mobility are
defined in Table 1.

Numerical simulations
Time is discretized considering a time step of dt = 0.5
days, with one time-step corresponding to the activities
performed during a workday (i.e. commuting, social mix-
ing), followed by a time step corresponding to the activi-
ties performed out of that timeframe (i.e. social mixing),
as typically done in agent-based epidemic models [17].
Influenza transmission within each patch is modeled with
binomial processes (see Additional file 1: Section 1). Start-
ing from the initial conditions set by influenza-like-illness
surveillance data, we performed 2 · 103 stochastic runs for
each model under study. Additional numerical details are
provided in the Additional file 1: Section 1.

Belgian school calendar for 2008/2009
Our model was based on the official Belgian school cal-
endar for school year 2008/2009. Classes in Belgium are
in session from Monday to Friday, and schools are closed
during the weekends. The calendar included the following
holidays for the 2008/2009 academic year during which
schools were closed:

• Fall holiday: from October 25 to November 2,
including the public holiday of the first and second of
November;

• Public holiday of November 11;
• Christmas holiday: from December 20, 2008 to

January 4, 2009;
• Winter holiday: from February 21 to March 1;
• Easter holiday: from April 4 to April 17;
• Long weekend: from May 1 to May 3, around the

public holiday of May 1;
• Long weekend: from May 21 to May 24, around the

public holiday of May 21;
• Long weekend: from May 30 to June 1, around the

public holiday of June 1.

Table 1 Age-specific mobility reductions

Children Adults

Regular weekday 1 1

Holiday weekday 0 1

Saturday 0 0.4053

Sunday 0 0.1473

From July 1 to August 31 schools are closed for the
summer holidays.

Influenza surveillance data for 2008/2009 season
We used influenza surveillance data collected by the Bel-
gian Scientific Institute of Public Health [65]. Data report
new ILI episodes registered each week by the network of
sentinel general practitioners (GP). ILI is defined as sud-
den onset of symptoms, high fever, respiratory symptoms
(cough, sore throat) and systemic symptoms (headache,
muscular pain). For every episode, additional informa-
tion is reported: age group (< 5, 5-14, 15-64, 65-84, 85+),
hospitalization, antiviral treatment, vaccination status,
municipality of residence. The use of ILI surveillance data
to approximate influenza incidence is a usual practice
[66–68] and in the case of Belgium previous work showed
good agreement of ILI data with virological data [69] and
robustness across different surveillance systems [70].
Surveillance data on the new number of cases were

aggregated at the district level (including several munic-
ipalities, see Table S1 of the Additional file 1) to reduce
signal noise.

Calibration
The metapopulation model was calibrated to the
2008/2009 influenza season. Though the simulated
dynamics is spatially explicit, calibration was performed
on Brussels district only, i.e. by comparing the simulated
incidence profile of Brussels to the incidence ILI data for
that district. We did not consider calibrating the model
also in the remaining districts, as these were used for
validation.
The model was seeded with the first non-zero inci-

dence value provided by surveillance data per district and
accounted for possible sampling biases. We used a boot-
stap/particle filter Weighted Least Square (WLS) with 20
particles to calibrate our model fixing the epidemiological
parameters described in paragraph “Infection dynamics”
and obtain the per-contact transmissibility β . Calibra-
tion was performed on normalized incidence curves to
discount effects due to unknown GP consultation rates.
Additional details can be found in the Additional file 1:
Section 2.

Experimental scenario design
To assess the impact of variations in contacts and mobility
due to school closures, we compared the realistic model
based on the Belgian school calendar and integrating the
changes described in paragraph “Changes in social mixing
and travel behavior during school closure” with a set of
experimental scenarios that we describe here.
To estimate the relative importance of variations

in social mixing vs. variations in travel behavior, we
considered:
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• The travel changes model, where only variations in
mobility occurring during weekends and holidays are
considered, whereas social mixing is fixed as on a
regular weekday;

• The mixing changes model, where only variations in
social mixing occurring during weekends and
holidays are considered, whereas travel is fixed as on
a regular weekday;

• The regular weekday model, where no variations are
considered, and social mixing and travel behavior are
fixed as in a regular weekday.

To assess the role of each school holiday period, we con-
sidered scenarios where each period was removed, one at
a time:

• The w/o Fall holiday model, where the holiday period
from October 25 to November 2 was removed;

• The w/o Christmas holiday model, where the holiday
period from December 20, 2008 to January 4, 2009
was removed;

• The w/o Winter holiday model, where the holiday
period from February 21 to March 1 was removed;

• The w/o Easter holiday model, where the holiday
period from April 4 to April 17 was removed.

In all cases, the holiday period is substituted by the reg-
ular course of the week, with regular weekdays and regular
weekends. In addition, we tested the w/o holiday model,
where all holiday periods of the calendar are removed,
and only the week structure is kept. We also considered a
synthetic scenario where we extended the Christmas hol-
iday of one week, before the start of the break, or after
its end, referred to as the Christmas holiday extension
models.
To assess the interplay between the timing of the epi-

demic and that of the holiday periods, we considered
anticipation and delays of the start of the epidemic season,
as follows:

• The 4 weeks anticipation model (− 4w), where the
start of the simulated influenza epidemic is
anticipated 4 weeks prior to the start of the realistic
model calibrated on the empirical data;

• The 2 weeks anticipation model (− 2w), as above
with an anticipation of 2 weeks;

• The 2 weeks delay model (+ 2w), as above with a
delay of 2 weeks;

• The 4 weeks delay model (+ 4w), as above with a
delay of 4 weeks.

In all these cases, the start of the epidemic is the only
aspect that is being altered, whereas the school calen-
dar (and associated variations in social mixing and travel
behavior) remains fixed.

Analyses
We analyzed the spatial distribution of the force of infec-
tion determined by the demographic profile in space. To
do so, we studied the distribution of the patch repro-
ductive number Rp that can be calculated as the largest
eigenvalue of the next-generation matrix KKKp = β

μ
(1 −

gi)
Np
i

Np Cij(t) (see Additional file 1: Subsection 1.5) [71, 72].
This is done for the four types of days considered in
terms of their variations of social mixing, namely regular
weekday, regular weekend, holiday weekday, and holiday
weekend.
Validation of the model is performed by comparing the

simulated incidence profiles to the empirical surveillance
data at the national and at the district level. In partic-
ular, we looked at the peak difference per district d per
stochastic run r:

�Td(r) = Td(r) − Td
ILI (8)

where Td(r) is the peak time of weekly incidence of run r
in district d and Td

ILI is the incidence peak reported from
surveillance data in the same district. Medians per patch
over 2 · 103 stochastic runs are computed.
Scenario analyses are performed in order to assess the

difference of an experimental scenario with the realistic
model. We quantified the various comparisons in terms
of:

• The peak time difference per patch
�Tp = Tp

scenario − Tp
realistic model, with Tp the median

peak time of the incidence curve in patch p
computed on all stochastic runs (for both the
scenario under study and the realistic model);

• The peak incidence relative variation per patch
�Ip = (

Ipscenario − Iprealisticmodel
)
/Iprealisticmodel, with Ip

the median incidence value at peak time in patch p;
• The epidemic size relative variation per patch

�σ p = (
σ
p
scenario − σ

p
realisticmodel

)
/σ

p
realisticmodel, with

σ p the median epidemic size in patch p.

Medians and 50%, 95% confidence intervals at the patch
levels are computed for synthesis. In addition, medians,
50%, 95% confidence intervals of the simulated incidence
are also calculated at the national level across the tested
scenarios.

Results
Reproducing the empirical influenza spreading pattern
Season 2008/2009 shows an ILI incidence that reaches its
peak in week 5 of 2009, both in Brussels district and at the
national level. The incidence is visibly slowed down during
Christmas holiday (Fig. 2), suggesting that holiday periods
may have a measurable effect on transmission.
The simulated peak time is found to be within one

week of the empirically observed time for 76% of the
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a

b

c

e

d

f

Fig. 2 Calibration results. (a)-(b): Simulated and empirical incidence curves for the district of Brussels (panel a) and for the entire Belgium (panel b).
The incidence curve of Brussels is the sole empirical data used for the calibration of the model. Different vertical axes referring to empirical (black
curve, left axis) vs. simulated (red curve, right axis) incidences are used for the sake of comparison of the two curves. Different incidence values are
due to unknown GP consultation rates characterising ILI surveillance data. (c)-(f): Probability distribution of the values of the reproductive number
Rp computed in each patch following the calibration. They refer to the different day types explored, i.e. belonging to a regular weekday (panel c),
regular weekend (d), holiday weekday (e), holiday weekend (f)

districts, and within two weeks for 90% of them (Figure
S2 of the Additional file 1). Only two districts in the
Province of Luxembourg showed greater discrepancies
(four weeks). We observed a mild tendency towards
a radial increase of the peak time difference from
Brussels to the edge of the country, with 4 weeks dif-
ference obtained on the border between Belgium and
Luxembourg.
The average patch reproductive number is estimated

to be R = 2.12, corresponding to β = 0.0850
([0.0674, 0.0858] 95% confidence interval (CI)) of the
per-contact transmissibility obtained from the calibra-
tion procedure (see “Methods”). The variation of Rp at
the patch level is given by the demographic profile of
the population and its immunity profile. In addition,
it also depends on the day type considered, whether
regular or during a holiday, whether during the week
or the weekend (Fig. 2). Larger variations and higher
values are obtained for a regular weekday, having the
largest number of contacts, compared to less hetero-
geneous distributions and smaller Rp values in the
other cases. The patch reproductive number is lowest
for the holiday weekend, corresponding to the lowest
mixing.

Role of changes in individual behaviors during holidays
and weekends: social mixing vs. travel
To assess the impact that changes in the social mixing or
travel behaviors of individuals have on the epidemic out-
come, we tested different experimental scenarios where
we independently singled out these aspects. These sce-
narios are compared to the realistic model calibrated to
the 2008/2009 influenza season, defined before, where all
behavioral changes associated to the school calendar are
considered.
Changes in individual behavior induced by weekends

and holidays are found to strongly alter the epidemic
dynamics leading to a considerable delay of the peak
time (median of 3.7 weeks across patches, regular week-
day model compared to the realistic model, Fig. 3b) and
smaller peak time incidence (33% median relative change,
Fig. 3d) and total epidemic size (11% median relative
change, Fig. 3c).
Once the variations in individual behavior affecting

social mixing or mobility are considered in isolation,
social mixing variation during weekends and holidays
is found to be mainly responsible for the effects just
described. The travel changesmodel is indeed comparable
to the regular weekdaymodel, whereas neglecting changes
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a b c d

Fig. 3 Role of social mixing vs. travel behavior. (a): Simulated weekly incidence profiles for influenza in Belgium. The realisticmodel is compared to
the travel changesmodel, themixing changesmodel, the regular weekday model. Median curves are shown for all cases, along with 50% confidence
intervals (dark shade) and 95% CI (light shade), for the realistic and regular weekday model (they are not shown for the other models for the sake of
visualization). (b)-(c)-(d): Peak time difference

(
�Tp = Tpscenario − Tprealistic model

)
, relative variation of epidemic size

(
�σ p = (

σ
p
scenario − σ

p
realisticmodel

)
/

σ
p
realisticmodel

)
, and relative variation of peak incidence

(
�Ip = (

Ipscenario − Iprealisticmodel

)
/Iprealisticmodel

)
, respectively, across the three experimental

scenarios (see “Methods” for more details). Boxplots refer to the distributions across patches

in mobility (mixing changes model) produces epidemic
patterns very similar to the realistic model (zero median
variations).

Role of distinct school holiday periods and possible
holiday extensions
The school calendar in Belgium during the influenza
season counts four long holiday periods: Fall holiday,
Christmas holiday, Winter holiday, Easter holiday (see
“Methods”).
Cumulatively, all holidays concur to delay the peak time

of 1.7 weeks and to reduce the epidemic size of approxi-
mately 2%, with a reduction of the peak incidence (4%, all
median values across patches, Fig. 4). Among all holiday
periods, the largest effect is produced by the Christmas
holiday, responsible for the overall reduction of the epi-
demic size and a peak delay of about 1 week. The early
break of Fall holiday has negligible impact instead. Win-
ter holiday leads to a very small reduction of the epidemic
size (median of 1%), but no effect on the peak timing or
peak incidence. The impact of Easter holiday is negligible
on all indicators. By comparing the effect of the regular
weekday model (Fig. 3) with the one of the w/o holiday
model (Fig. 4), both on the realistic model, we find that

weekends have a major effect in slowing down the epi-
demic curve: a difference of �Tp = −3.7, [−3.9,−3.6]
weeks when no weekends are considered compared
to �Tp = −1.7, [−1.9,−1.2] weeks when they are
included.
Given the major role of Christmas holiday, we also

tested the effect of 1-week extension, before or after the
break. The extension before Christmas holidays does not
impact the resulting epidemic (Fig. 4, panels d-e-f). If the
additional week of holiday is considered after the break,
no changes to the epidemic timing are observed, however
the incidence at the peak decreases of 4% (median values),
respectively.

Interplay of epidemic timing and school calendar: early vs.
late influenza seasons
Christmas holidays are found to be the school closure
period with the highest impact on the epidemic out-
come, on both its timing and burden, for the 2008/2009
influenza season. Here we assess how this result may vary
depending on the timing of the season, by investigating its
interplay with the school closure calendar.
In order to distinguish between effects induced by the

timing of the influenza season only and those related



De Luca et al. BMC Infectious Diseases  (2018) 18:29 Page 9 of 16

d e f

a b c

Fig. 4 Impact of school holiday periods and holiday extensions. (a)-(b)-(c): Peak time difference, relative variation of epidemic size, and relative
variation of peak incidence, respectively, across the following experimental scenarios: w/o Fall holiday model, w/o Christmas holiday model, w/o
Winter holidaymodel, w/o Easter holidaymodel, w/o holidaymodel. Boxplots refer to the distributions across patches. (d)-(e)-(f): Peak time difference,
relative variation of epidemic size, and relative variation of peak incidence, respectively, for the Christmas holiday extensionmodels, before or after
the break. Boxplots refer to the distributions across patches

to other season-specific features (e.g. severity of the
epidemic, strain circulation, weather, and others), we con-
sidered the same epidemic simulated with the realistic
model. We explored anticipations and delays of this epi-
demic of two or four weeks and compared the results with
the realisticmodel.
The strongest impact is observed for the earliest epi-

demic (− 4w model) reporting a median anticipation of
more than one week with respect to the realistic model
(once discounted for the earlier start) and amedian reduc-
tion of the peak incidence of about 10% (Fig. 5). All other
epidemics are rather similar to the realistic one, except
for the − 2w model reporting a considerable reduction of
the peak incidence (median of approximately 13% across
patches). In addition, it is important to note that, differ-
ently from previous effects, the anticipation or delay of the
season leads to a considerably larger variation of the sim-
ulated epidemic indicators across patches, signaled by the
larger confidence intervals reported in Fig. 5.

Discussion
In this study, we considered the impact of regular school
closure on the spatio-temporal spreading pattern of

seasonal influenza. We focused on the case study of the
2008/2009 influenza season in Belgium. We used a spatial
metapopulation model for the transmission of influenza
in the country, based on data on contacts and mobility of
individuals, and integrating data-driven changes inmixing
and travel behavior during weekends and holiday periods.
The model calibrated on a single district (i.e. a sub-

set of patches, ∼ 3% of the country total) is able to
reproduce with fairly good agreement the empirical pat-
tern observed in the country for that season, suggesting
that data-driven mixing and mobility are crucial ingre-
dients to capture influenza spatial dynamics [17, 20, 30,
37, 43, 48, 73–75]. The result is a spatially heterogeneous
propagation where the two ingredients act at different lev-
els. Mixing is patch-dependent and determined by the
local demography. The large variations observed in the
distribution of children vs. adults lead to heterogeneous
distributions of the values of the reproductive numbers
per patch. In specific mixing conditions – e.g. those of a
holiday weekend – a large fraction of patches has Rp � 1,
indicating that those locations are found to be close to
the critical conditions for epidemic extinction. Influenza
is mainly sustained in patches having larger Rp during
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a

b c d

Fig. 5 Effect of epidemic timing. (a): Simulated weekly incidence profiles for influenza in Belgium. The realisticmodel is compared to the scenarios
considering the anticipation or delay of the epidemic (− 4wmodel, − 2wmodel, + 2wmodel, + 4wmodel). Median curves are shown along with
95% CI (light shade). (b)-(c)-(d): Peak time difference, relative variation of epidemic size and relative variation of peak incidence, respectively, across
the considered experimental scenarios. Boxplots refer to the distributions across patches. The peak time difference �Tp discounts the time shift of
the initial conditions of the considered model

those periods, and epidemic activity is then transferred to
other patches through the mobility of infected individu-
als. Three-fourth of Belgian districts reach their epidemic
peak in the simulations within one week of the empir-
ical peak time. Districts exhibiting greater delays lie on
the border of the country. This may be due to the model
neglecting the mobility coupling between these regions
and the neighboring countries, which is considerably
large in some districts (e.g. the flux of individuals of the
Luxembourg province commuting abroad represents
almost 40% of the total flux of commuters of the dis-
trict). Our study considered the country to be isolated for
the sake of simplicity. We expect this border effect to be
increasingly negligible for larger countries.

The simulated incidence profile clearly shows a slowing
down in the growth of the number of new infections dur-
ing the Christmas break, as reported by sentinel surveil-
lance in the country, suggesting that holiday is associated
to temporary reductions in influenza transmission. This
was also found in previous empirical studies [25, 48]. To
identify the mechanisms behind this effect, we isolated
the changes in mixing and those in travel behavior during
school closure, comparing different experimental scenar-
ios, similar to Ewing et al. [48]. We found that mixing
changes during weekends and holidays lead to a con-
siderable delay of the epidemic, whereas travel changes
would produce no noticeable effect. Moreover, changes
in the social contacts would explain the entire difference
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observed between the realistic model based on the cal-
endar and a model that does not include school closure.
This confirms prior modeling findings on winter holidays
for several influenza seasons in the United States [48]. In
contrast to that work, we found however that an impor-
tant mitigation of the epidemic impact at peak time also
occurs, besides the peak delay.
The strong impact of the variation of mixing behavior is

easily interpretable in terms of the reduction of the trans-
mission potential expressed by the reproductive numbers
per patch. This mainly results from the reduction of the
number of contacts between children, as measured by the
social contact survey conducted once schools are closed
[32]. Travel changes, on the other hand, do not act directly
on the transmission potential but affect the coupling force
between epidemics in different patches and the oppor-
tunity for individuals to be exposed to the disease. For
this reason, changes in travel behavior have a smaller
effect that is found to be negligible for influenza epidemic
spread, as also observed in the work of [48]. This is also
consistent with the large literature on travel restrictions
showing the little or no effect that these interventions have
on pandemic spatial spread [38–40, 44, 46, 73, 76–78].
In addition to holidays, we also found that the closure of
school during weekends has a visible effect on the epi-
demic, periodically dampening transmission, similarly to
what observed in [49]. This is generally not reported by
influenza surveillance systems, as data are collected on a
weekly basis.
For the 2008/2009 influenza season we found that

Christmas holiday, occurring during a growing phase of
influenza activity, is the school break responsible for the
largest impact in terms of timing (about 1 week anticipa-
tion if holiday is not observed), along with a 5% reduction
of the epidemic size. If the school break occurs earlier (as
for the Fall holiday) or much later in the influenza season
(e.g. Easter holiday), no effect is produced on the resulting
epidemic. The case of Winter holidays occurring during
the fadeout of the epidemic shows that a small reduction
of the total number of cases can still be achieved with
school closure after the epidemic peak, whereas other
studies showed minimal impact [48].
The analysis on a single season illustrates well how

the epidemic impact of school closure depends on the
interplay between closure timing and influenza season.
By systematically exploring this interplay through syn-
thetic scenarios, we confirm the importance of Christmas
holiday in mitigating the influenza epidemic. Most impor-
tantly, we found that the break would have the largest
impact for a very early season when school closing would
occur at or around the epidemic peak. Reduction in trans-
mission due to fewer contacts leads to a strong reduction
of the incidence and ultimately of the total epidemic size,
as also observed in pandemic settings [8]. In the other

synthetic influenza seasons explored, a rebound effect was
obtained when schools reopened after the break, most
notably for the early season anticipating of two weeks the
2008/2009 influenza epidemic (-2wmodel). This was pre-
viously observed in other contexts [23, 24, 79–84], also
when no additional interventions beyond school closure
were considered [24, 80]. The various tested scenarios
show that Christmas break would have a larger mitigating
impact if it occurs before (or around) the peak and when
the incidence is about half the peak value or larger.
Our investigation shows that the role of holiday tim-

ing can be hardly inferred from few examples, and that
other breaks beyond Christmas [48] may have an impor-
tant mitigating impact. Also, the effect of a sequence of
holidays occurring in an influenza season cannot be sim-
ply derived as a sum of the effects of each holiday period
considered separately. Each break indeed affects the epi-
demic in a different way, altering its subsequent evolution
in a non-linear way, so that the full calendar needs to be
considered. Our findings help shedding light on previous
empirical findings showing no clear pattern for the effects
of school closure on peak incidence or total epidemic size,
comparing closures before and after the peak [8].
In addition to school breaks already occurring in the

calendar, we also explored a possible extension of Christ-
mas holiday of one week. We chose this break as it led
to the largest epidemic impact in our case study, and
also because it generally occurs before the influenza epi-
demic peak (this is the case for all influenza seasons
from the studied seasons to the current one, pandemic
season excluded). As such, we expect it could have a favor-
able impact on the epidemic outcome in the majority of
influenza seasons. Previous work analyzing the length of
school closure found that two weeks or more appear to
be enough to result in a recognizable effect [14, 24, 25,
80, 84], whereas shorter closures may not be beneficial or
may not have an obvious impact [85–89]. Our synthetic
results show that the extension would be advantageous
only if implemented after the Christmas break, with a mit-
igation of the peak incidence and a minimal peak delay
of a few days. Extensions are generally considered in the
realm of reactive closures against a pandemic influenza.
Here we decided to test this scenario as a regular clo-
sure given that – in a broader context – authorities in
Belgium are currently discussing whether to modify the
school calendar for pedagogical reasons: the aim would be
to reduce summer holidays and redistribute holiday peri-
ods throughout the year [90]. We found that an extension
of the Christmas holiday would be beneficial in the man-
agement of the influenza season potentially mitigating its
epidemic impact.
Our findings are obtained on seasonal influenza, and

results on peak delay were also recovered by model-
ing works on synthetic influenza pandemics considering
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reactive school closure [17]. The straightforward exten-
sion of our conclusions to the pandemic case faces how-
ever several challenges. First, effects induced by school
closure may be specific to the specific epidemic profile,
and therefore they may lead to different results depend-
ing on the pandemic under consideration [7]. For example,
beneficial effects of school closure during 2009 H1N1
pandemic may have resulted from the larger magnitude of
children attack rates vs. adults. Epidemic contexts more
homogeneously impacting age classes may be less affected
by school closure. Second, the nature of the school clo-
sure may alter the behavior of individuals during that
period. In our study we considered holidays that are reg-
ularly planned in the school calendar and associated to
specific social activities (e.g. vacation trips, family vis-
its and others), for which contact data are available [32].
School closure during an influenza pandemicmay be envi-
sioned as a proactive or reactive measure to the ongoing
outbreak. Not being planned, it is expected to have a
stronger disruptive impact on social mixing of individu-
als on the short term compared to regular closure. On
the other hand, it is argued that prolonged closure may
limit the reduction of contacts on the long term, because
of costs and logistics, and reduction in compliance rate
[7, 25]. Having shown here that changes in social mix-
ing represent the single element critically responsible for
the impact of school closure on the epidemic outcome, we
note that modeling results on school closure in the case
of a pandemic would strongly be affected by assumptions
considered for mixing changes, in absence of data.
While a large body of literature has recently focused on

behavioral changes during an epidemic [91–95], still lit-
tle is known to quantify them [30–34, 96–99]. Our work
focused on Belgium, as a rather detailed survey was con-
ducted in the country to estimate contact rates in the
population of different age classes at different periods of
the calendar year [32]. These estimates constituted the
input data to parameterize our spatial modeling frame-
work. Modeling approaches to study epidemics in settings
where no data exist are often based on the assumption
that mixing would reduce following school closure and
import estimates available from other settings or epidemi-
ological contexts [17, 28, 48]. This may lead to several
issues. Contacts and their changes along the calendar may
be country-specific [4], thus affecting epidemic results
when applied to a different context. Estimates of the over-
all reduction of the number of contacts during school
closure vary widely. Transmission models fitted to epi-
demic data estimated reductions ranging from 16-18%
for holidays during seasonal influenza in France [25], to
25% in Hong Kong for proactive school closure during
the 2009 H1N1 pandemic [14], to 30% for the social
distancing interventions (including school closure) imple-
mented in Mexico following the start of 2009 pandemic

[15]. A large-scale population-based prospective survey
in Europe estimated the changes in contact patterns for
holiday versus regular period to correspond to a reduc-
tion in the reproductive number as high as 33% for some
countries, whereas for others no significant decrease was
observed [32]. Finally, such overall reduction does not
allow to fully parametrize a contact matrix. Such evidence
does not support the parameterization of mixing changes
from different countries and/or epidemic situations (e.g.
seasonal vs. pandemic) [48]. The reduction is expected
to be heterogeneous across mixing groups, because of
compensatory behaviors (e.g. children drastically reduce
children-children contacts but increase children-adults
contacts during holidays) [32, 34]. Assumptions on the rel-
ative role of specific age classes in absence of data may
lead to biases in the modeled epidemic outcome, espe-
cially for epidemics reporting large differences in attack
rates in children vs. adults. Our work highlights the need
to expand our knowledge on contacts and associated
changes induced by social activity or by the epidemic
itself, in order to better parameterize models and provide
reliable and accurate results for epidemic management.
Our study has a set of limitations that we discuss in

the following. The host population is divided into two
classes only. While a larger heterogeneity is known for
the distribution of contacts across age classes [4], our
approach still accounts for the major role of children
vs. adults in the spread of the disease. Moreover, the
validation analysis shows that considering children and
adults and the associated mixing and travel behavior is
enough to reproduce the spatio-temporal unfolding of
the epidemic to a good accuracy. Also, we did not dis-
tinguish between symptomatic and asymptomatic infec-
tions. Santermans et al. [100] investigated the impor-
tance of dealing with symptomatic and asymptomatic
infections in an epidemic setting based on differences
in mixing patterns between ill and healthy (as a proxy
for asymptomatic) individuals. Future research should
focus on combining the work of [100] with the study
outlined here.
The study is focused on one season only, the 2008/2009

influenza season. Additional seasons may clearly be
included in the analysis, however our choice aimed at dis-
counting season-specific effects to avoid uncertainties and
discordance found in previous works. Also, we argue that
the main effect behind the observed impact is in the inter-
play between the incidence profile and holidays timing, all
other aspects being equal. To fully assess this aspect, we
systematically explored earlier and later epidemics than
the 2008/2009 season, thus synthetically accounting for
other (similar) influenza seasons. We did not consider
age-specific susceptibility, as it was largely addressed for
example in studies related to the A(H1N1)v2009 pan-
demic [101]. It would be interesting to explore its effects
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in future work in addition to social mixing and mobility,
thus investigating additional seasonal influenza profiles.
Our experimental scenarios in travel changes and mix-

ing changes models consider neglecting travel changes
and mixing changes in an independent way. The two
aspects are expected to be intrinsically dependent, how-
ever no study has yet quantified this dependency that
could inform a better experimental design. Also, we did
not take into account uncertainties associated to the social
contact rates estimated from the survey data, as previ-
ous work showed their limited impact in fitting serological
data [102].
Mobility changes from commuting during regular week-

days to non-regular travel during weekends is obtained
from travel statistics. We lack however specific data on
travel behavior for adults during school holidays. We
therefore assumed that adults would continue commut-
ing during holiday weekdays. While we expect that a
fraction of adults would stop commuting at least for
few days during breaks as they take time off work, we
expect this change in travel fluxes (compensated by addi-
tional trips to visit families [48]) to have a negligible
effect on the simulated epidemic. More drastic changes
on travel, i.e. fully neglecting travel changes as in the
mixing changes model, indeed did not alter the resulting
epidemic.

Conclusions
With a data-driven spatial metapopulation model cali-
brated on the 2008/2009 influenza season in Belgium,
we showed that regular school closure considerably slows
down influenza epidemics and mitigate their impact on
the population, because of changes in social mixing that
are empirically measured. This may help the management
of epidemics and lessen the pressure on the public health
infrastructure. The effect is due to both school holidays
and weekend closures, the latter periodically dampening
transmission. Variations in travel behavior do not lead
instead to visible effects. The observed impact strongly
depends on the timing of the school closure, and to a
lesser extent on its duration. Christmas holiday is the
school break generally playing the most important role
in mitigating the epidemic course, though variations are
observed depending on the influenza season (e.g. early
vs. late epidemic). The addition of one week extension
after Christmas holiday may represent an additional strat-
egy to further delay the epidemic peak and mitigate
its impact.
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