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Abstract

In this paper, we propose a new semiparametric heteroscedastic regression model allowing for

positive and negative skewness and bimodal shapes using the B-spline basis for nonlinear effects.

The proposed distribution is based on the generalized additive models for location, scale and shape

framework in order to model any or all parameters of the distribution using parametric linear

and/or nonparametric smooth functions of explanatory variables. We motivate the new model by

means of Monte Carlo simulations, thus ignoring the skewness and bimodality of the random er-

rors in semiparametric regression models, which may introduce biases on the parameter estimates

and/or on the estimation of the associated variability measures. An iterative estimation process

and some diagnostic methods are investigated. Applications to two real data sets are presented

and the method is compared to the usual regression methods.
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1 Introduction

Nonlinear regression models are commonly applied in areas such as biology, chemistry, medicine, eco-

nomics and engineering. The analysis based on models under normal errors and constant variance is

most popular when the variable of interest is continuous due to desirable statistical properties and

a comprehensive theory. However, if the random error distribution happens to be non-normal, in

particular, if it has heavier-than-normal tails or bimodal characteristics, then the accuracy of the ordi-

nary least squares solutions is lost, introducing biases on the parameter estimates. For more accurate

models, a large number of parametric and semiparametric models to extend well-known distributions

and to provide flexibility in modeling data has been investigated in the last years. Recently, Vane-

gas and Paula (2015) proposed a semiparametric regression model in which the distribution of the

response is asymmetric (see also Vanegas and Paula, 2016), Cancho et al. (2010) studied nonlinear

skew-normal regression models using classical and Bayesian approaches; Xu et al. (2015) proposed

the skew-normal semiparametric model, which provides a useful extension and the normal regression

model. In other words, a standard assumption in linear or nonlinear regression analysis is homogeneity

of the error variances. Violation of this assumption can have adverse consequences for the efficiency

of the estimators. So, it is important to check for heteroscedasticity whenever it is considered a possi-

bility (Cysneiros et al., 2010). In this sense, Lachos et al. (2011) introduced heteroscedastic nonlinear

regression models based on scale mixtures of skew-normal distributions and Voudouris et al. (2012)

showed an application of the Box-Cox power exponential distribution for modeling the location, scale

and skewness parameters using P-splines bases.

Although the models studied in these papers are attractive, they have several limitations. Most

of the proposed models are not able to capture the presence of bimodality and negative skewness of

the random errors. As an alternative, for modeling a lifetime T > 0, Ramires et al. (2015) introduced

the exponentiated log-sinh Cauchy (ELSC) distribution to accommodate various shapes of skewness,

kurtosis and bi-modality. Based on the log-transformation Y = log(T ), where T has the ELSC

distribution, we define the exponentiated sinh Cauchy (ESC) linear regression model in the generalized

additive model for location, scale and shape framework (Rigby and Stasinopouls, 2005), where all

parameters are modeled by explanatory variables. The ESC regression model proved to be very

flexible to fit data with modal and bimodal shapes as well as positive and negative skewness. The

probability density function (pdf) and cumulative distribution function (cdf) of the ESC distribution

are given by

f(y;µ, σ, ν, τ) =
τν

σ π

cosh
(y−µ

σ

)
ν2 sinh2(y−µσ ) + 1

{
1

2
+

1

π
arctan

[
ν sinh

(
y − µ
σ

)]}τ−1
(1)

and

F (y;µ, σ, ν, τ) =

{
1

2
+

1

π
arctan

[
ν sinh

(
y − µ
σ

)]}τ
, (2)

respectively, where µ ∈ R and σ > 0 are the location and scale parameters, respectively, ν > 0 is

the symmetry parameter, characterizing the bimodality of the distribution, and τ > 0 is the skewness

parameter. The ESC density (1) was originally introduced and studied by Cooray (2013), disregarding

the regression structure, to modeling symmetric, right and left skewed and bimodal data sets.
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We propose a general class of semiparametric ESC regression models using P-splines in the additive

terms. The sections are organized as follows. In Section 2, we define the ESC semiparametric regression

model. We also discuss inferential issues, smooth function, methods for generating random values,

residual analysis, model selection strategies and global influence measure. In Section 3, we perform

some Monte Carlo simulations on the finite sample behavior of the maximum likelihood estimates

(MLEs). Applications to two real data sets are presented in Section 4, which illustrate the flexibility

of the proposed class of regression models. Finally, we offer some conclusions in Section 5.

2 The ESC regression model

In many practical applications, the response variables are affected by explanatory variables. In the

presence of explanatory variables with nonlinear effects, semiparametric models are widely used and

when their models provide a good fit, they tend to give more precise estimates of the quantities

of interest. Recently, several regression models have been proposed in the literature by considering

the class of location models. For example, Ramires et al. (2013) introduced the log-beta generalized

half-normal geometric regression model for censored data, Cordeiro et al. (2015) presented the log-

generalized Weibull-log-logistic regression model for predicting longevity of the mediterranean fruit

fly and Ortega et al. (2015) studied a power series beta Weibull regression model for predicting breast

carcinoma. A disadvantage of class of the location models is that the variance, skewness, bimodality,

kurtosis and other parameters are not modelled explicitly in terms of the explanatory variables but

implicitly through their dependence on the location parameter. As an alternative, the generalized

additive model for location, scale and shape (GAMLSS) (Rigby and Stasinopouls, 2005), wherein the

systematic part of the model is expanded, allows not only the location but all parameters of the

conditional distribution of Y to be modelled as parametric functions of explanatory variables.

2.1 Definition

Let θT = (µ, σ, ν, τ) denote the vector of parameters of the pdf (1). We consider independent obser-

vations y′is conditional on θi (for i = 1, 2, . . . , n), having pdf f(yi;θi), where θi
T = (µi, σi, νi, τi) is a

vector of parameters related to the response variable. The ESC linear regression model, linking the

response variable yi and the explanatory variables, is defined by

yi = µi + σi zi, i = 1, . . . , n, (3)

where the random error Zi = (Yi − µi)/σi has pdf given by

f(z; ν, τ) =
τν

π

cosh (z)

ν2 sinh2(z) + 1

{
1

2
+

1

π
arctan

[
ν sinh(z)

]}τ−1
, for z ∈ R. (4)

Random errors are statistical fluctuations in the measured data due to the precision limitations of

the measurement device. In practice, it is generally considered that Zi ∼ N(0, 1), but this causes some

limitations, since we are assuming that the random errors have a unimodal symmetrical distribution.

Plots of the density function (4) for selected parameter values are displayed in Figure 1. We can note
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Figure 1: Plots of the density function (4) for several values of τ : (a) ν = 0.3; (b) ν = 0.8.

that the proposed model is able to fit data with modal and bimodal shapes as well as positive and

negative skewness.

We can define the vector of parameters θ using appropriate link functions as

θ =


µ

σ

ν

τ

 =


g1(X1β1)

g2(X2β2)

g3(X3β3)

g4(X4β4)

 or θi =


µi

σi

νi

τi

 =


g1(β01 + X1[i, 2]β11 + . . .+ X1[i, p1 + 1]βp11)

g2(β02 + X2[i, 2]β12 + . . .+ X2[i, p2 + 1]βp22)

g3(β03 + X3[i, 2]β13 + . . .+ X3[i, p3 + 1]βp33)

g4(β04 + X4[i, 2]β14 + . . .+ X4[i, p4 + 1]βp44)

 , (5)

where pk represents the number of explanatory variables related to the kth parameter, g1(·) is an injec-

tive and twice continuously differentiable functions, gk(·), for k = 2, 3, 4, are known positive continu-

ously differentiable function containing values of the explanatory variables, βk = (β0k, β1k, . . . , βpkk)
T

is a parameter vector of length (pk + 1) and Xk is a known model matrix of order n × (pk + 1),

whose elements are given by Xk[i, pk]. The total number of parameters to be estimated is defined by

p = p1 + p2 + p3 + p4+4. In the following sections, we will consider the identity link function for g1(·)
and the logarithmic link function for gk(·) for k = 2, 3, 4. The GAMLSS framework family extends two

major classes of regression models. The class of location models follows by taking p2 = p3 = p4 = 0.

For p3 = p4 = 0, p1 6= 0 and p2 6= 0, we obtain the regression model with heteroscedastic errors, which

can be used as an alternative to transform the response variable. However, the choice of parameters

to be modeled by explanatory variables will depend on the data set.

2.2 Nonparametric additive functions

The ESC GAMLSS model allows to model the distribution parameters µ, σ, ν and τ as linear,

nonlinear parametric, nonparametric (smooth) function of the explanatory variables and/or random-

effects terms. The parametric regression structure (5) can be extended to semiparametric structure

as

θ =


µ

σ

ν

τ

 =


g1

(
X1β1 +

∑J1
j=1 hj1(xj1)

)
g2

(
X2β2 +

∑J2
j=1 hj2(xj2)

)
g3

(
X3β3 +

∑J3
j=1 hj3(xj3)

)
g4

(
X4β4 +

∑J4
j=1 hj4(xj4)

)

 , (6)
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where hjk(xjk) are smooth functions of the explanatory variables xjk, for k = 1, 2, 3, 4 and j =

1, . . . , Jk, and Jk is the number of selected explanatory variables to be modeled with the smooth

functions. The explanatory variables can be similar or different for each of the distribution parameters,

which can be considered as linear functions, may be represented by smooth functions or both.

In this paper, we only use the P-splines as smooth functions hjk(·). The P-splines are piecewise

polynomials, defined in this paper by B-spline basis functions in the explanatory variables, where

the coefficients of the basis functions are penalized to guarantee sufficient smoothness. Rigby and

Stasinopouls (2005) proved that each smoothing function hjk(·) can be expressed as a random effects

model, i.e., hjk(Zjk) = Zjkγjk, where Zjk is an n× qjk matrix representing the B-spline basis design

matrix and γjk is a qjk-dimensional vector of the B-spline parameters (random-effects). Details of the

number of knots as well as the degrees of freedom can be found in Eilers and Marx (1996).

2.3 Estimation

In this subsection, we present and discuss estimation methods for three types of models. First, for

the ESC parametric regression model, only parametric additive terms are taken as functions of the

explanatory variables. In the second, we consider the ESC parametric regression model for censored

observations. For the third model, parametric and nonparametric functions are considered for the

explanatory variables. The numerical maximization of the log-likelihoods presented below can be

performed in the GAMLSS script of the R software using the computational codes implemented by

the first author and available at https://goo.gl/hAIcBF. The maximization algorithms used are the

RS and CG procedures, described by Rigby and Stasinopouls (2005) and Stasinopoulos and Rigby

(2007), and available in the documentation of the GAMLSS script.

• Parametric model

Consider a sample of n-independent observations y1, . . . , yn. For the parametric ESC regression model

(5), the log-likelihood for the model parameters θ = (µT ,σT ,νT , τT )T reduces to

l(θ) =
n∑
i=1

log

(
τiνi
π σi

)
+

n∑
i=1

log

[
cos

(
yi − µi
σi

)]
−

n∑
i=1

log

[
1 + ν2i sinh2

(
yi − µi
σi

)]
+

(τi − 1)
n∑
i=1

log

{
1

2
+

1

π
arctan

[
νi sinh

(
yi − µi
σi

)]}
. (7)

• Survival model

Consider a sample y1, . . . , yn of n independent observations, where each random response is defined

by yi = min{log(ti), log(ci)}. Let F and C be the sets of individuals for which yi is the log-lifetime

or log-censoring, respectively. We consider non-informative censoring such that the observed lifetimes

and censoring times are independent. The log-likelihood function for the vector of parameters θ =

(µT ,σT ,νT , τT )T from model (3) has the form l(θ) =
∑
i∈F

li(θ) +
∑
i∈C

l
(c)
i (θ), where li(θ) = log[f(yi)],
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l
(c)
i (θ) = log[S(yi)], f(yi) is the pdf (1) and S(yi) = 1 − F (yi) is the survival function (2), for

i = 1, . . . , n. Therefore, the log-likelihood function for θ reduces to

l(θ) =
∑
i∈F

log

(
τiνi
π σi

)
+

n∑
i=1

log

[
cos

(
yi − µi
σi

)]
−
∑
i∈F

log

[
1 + ν2i sinh2

(
yi − µi
σi

)]
+

(τi − 1)
n∑
i∈F

log

{
1

2
+

1

π
arctan

[
νi sinh

(
yi − µi
σi

)]}
+

∑
i∈C

log

[
1−

{
1

2
+

1

π
arctan

[
νi sinh

(
yi − µi
σi

)]}τi]
, (8)

where µi, σi, νi and τi are defined in equation (5).

The log-likelihood (8) can also be maximized in the GAMLSS script using the additional pack-

age gamlss.cens to determine numerically the observed information corresponding to the censored

observations.

• Semiparametric model

Considering the semiparametric model (6), for fixed smoothing parameters λjk, the fixed and random

effects β and γ, respectively, are estimated by maximizing the penalized log-likelihood function

lp =
∑
i∈F

log

(
τiνi
π σi

)
+

n∑
i=1

log

[
cos

(
yi − µi
σi

)]
−
∑
i∈F

log

[
1 + ν2i sinh2

(
yi − µi
σi

)]
+

(τi − 1)

n∑
i∈F

log

{
1

2
+

1

π
arctan

[
νi sinh

(
yi − µi
σi

)]}
+

∑
i∈C

log

[
1−

{
1

2
+

1

π
arctan

[
νi sinh

(
yi − µi
σi

)]}τi]
− 1

2

4∑
k=1

Jk∑
j=1

λjkγ
T
jkPjk γjk, (9)

where Pjk is a symmetric matrix that may depend on a vector of smoothing parameters (see Rigby

and Stasinopouls, 2005). The score functions relative to the likelihood (9) are given by

UT (θ) =
∂lp
∂θ

=
[
Uβ1

,Uγj1
,Uβ2

,Uγj2
,Uβ3

,Uγj3
,Uβ4

,Uγj4

]
,

where elements are given in the Appendix. For each smoothing term selected, and any of the parame-

ters of the ESC distribution, there is one smoothing parameter λ associated with it. The smoothing

parameters can be fixed or estimated from the data. We adopt the penalized quasi-likelihood (PQL)

method, described by Lee et al. (2006), to estimate the smoothing parameters as well as the de-

grees of freedom of the P-spline smooth functions. This method is implemented in the R software

in the function pb(.). Details about the PQL method can be founded in Rigby and Stasinopouls

(2014) and other methods like Generalized Akaike information criterion (GAIC) and local Generalized

Cross validation (GCV) are also available to use with the implemented codes (see Stasinopoulos and

Rigby, 2007). One important thing to recognize when fitting a smooth nonparametric term is that

the resulting coefficients of the smoothing terms and their standard errors should not be interpreted.
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2.4 Model strategy

In this subsection, we discuss different methods to select the appropriate distribution for the response

variable as well as the explanatory variables to compose the regression models.

• Select the distribution

The selection of the appropriate distribution is performed in two stages, the fitting stage and the

diagnostic stage (Section 2.6). In the first stage, the generalized Akaike information criterion (GAIC)

is used to assess different fitted models. The GAIC is defined by GAIC(k) = GD+ k× df , where GD

represents the global deviance given by GD = −2 l(θ̂), l(θ̂) is the total log-likelihood function, df is

the total effective degrees of freedom of the fitted model and k is a constant. Note that the Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are special cases of the

GAIC(k) statistic, corresponding to k = 2 and k = log(n), respectively. The model with the smallest

value of these statistics is then selected.

Let dfµ, dfσ, dfν and dfτ be the effective degrees of freedom used for modelling µ, σ, ν and τ ,

respectively. The df combines the effective degrees of freedom used in the smooth functions hjk(·)
and parametric functions, defined by df = dfµ + dfσ + dfν + dfτ . For example, let the location

parameter be modelled by the explanatory variable X1 using a nonparametric smoothing function

with five additional degrees of freedom. Then, the effective degrees of freedom related to the location

parameter is given by dfµ = 5 + 2, where the additional two degrees of freedom account for the linear

term. The effective degrees of freedom related to the smoothing function are defined by the trace

of the corresponding smoothing matrix in the fitting algorithm, which is in turn directly related to

the corresponding smoothing parameter (Eilers and Marx, 1996). The df can be calculated using the

edfAll() function in the R software.

• Selecting explanatory variables

For the ESC GAMLSS model, the selection of the terms for all the parameters is done using

the stepwise GAIC procedure. There are many different strategies that could be applied for the

selection of the terms used to model the four parameters µ, σ, ν and τ. Here, we consider the strategy

described by Voudouris et al. (2012), which is defined in the GAMLSS manual as strategy A (see the

stepGAICAll.A function in the GAMLSS script). Let χ be the selection of all terms available for

consideration, where χ could contain both linear and smoothing terms. Then, for all terms in χ and

for fixed distribution, the strategy is given as follows:

1. use a forward selection procedure to select an appropriate model for µ with σ, ν and τ fitted as

constants;

2. use a forward selection procedure to select an appropriate model for σ given the model for µ

obtained in (1) and for ν and τ fitted as constants;

3. use a forward selection procedure to select an appropriate model for ν given the model for µ and

σ obtained in (2) with ν fitted as a constant;

4. use a forward selection procedure to select an appropriate model for τ given the model for µ, σ

and τ obtained in (3);
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5. use a backward selection procedure to select an appropriate model for ν given the model for µ,

σ and τ obtained in (4);

6. use a backward selection procedure to select an appropriate model for σ, given the model for µ,

ν and τ obtained in (5);

7. use a backward selection procedure to select an appropriate model for µ given the model for σ,

ν and τ obtained in (6).

At the end of the steps described above, the final model may contain different subsets from χ for

µ, σ, ν and τ .

2.5 Simulation

Let a random variable Y have pdf (1). Inverting F (y) = u in (2), we obtain the quantile function (qf)

of Y given by

QY (u) = µ+ σ arcsinh

{
1

ν
tan

[
π
(
u1/τ − 0.5

)]}
. (10)

Equation (10) can be used for simulating random variables yi ∼ ESC(µ, σ, ν, τ) by fixing µ, σ,

ν and τ and considering that u follows a uniform(0, 1) distribution. We can simulate the regression

models setting the parameters and using the parametric (5) or semiparametric (6) structure.

2.6 Diagnostics

In order to study departures from the error assumption and the presence of outlying observations, we

can use the diagnostic tools in the GAMLSS script. The first technique consists in the normalized

randomized quantile residuals (Dunn and Smyth, 1996), which are given by r̂i = Φ−1(ui), where Φ−1(·)
is the qf of the standard normal variate and ui = F (yi|θ̂i).

The second technique involves the use of Worm Plots (WP). These plots were pioneered by Buuren

and Fredriks (2001) which are used to identify regions of an explanatory variable which the model

does not have good fit quality. Buuren and Fredriks (2001) proposed fitting cubic models to each

of the detrended QQ plots with the resulting constant, linear, quadratic and cubic coefficients, thus

indicating differences between the empirical and model residual mean, variance, skewness and kurtosis,

respectively, within the range in the QQ plot. The interpretations of the shapes of the WP are: a

vertical shift, a slope, a parabola or a S shape, thus indicating a misfit in the mean, variance, skewness

and excess kurtosis of the residuals, respectively.

Finally, the fitted centile curves and the fitted conditional distribution for different values of the

explanatory variable can be used to verify the goodness of fit of the model. The fitted centile curves,

defined by F (Y ≤ yu) = u, can be easily evaluated using (10), where yu is the exact 100 × u centile

of Y . To construct the fitted conditional distribution for different values of the explanatory variables,

we use the smoothed scatterplot diagram available in the gamlss.util script of the R software.

2.7 Global influence

Since regression models are sensitive to the underlying model assumptions, performing a sensitivity

analysis is strongly advisable. Cook (1986) used this idea to motivate the assessment of influence

8



analysis. He suggested that more confidence can be put in a model, which is relatively stable under

small modifications. The best known perturbation schemes are based on case-deletion (Cook and

Weisberg, 1982), in which the effects or perturbations of completely removing cases from the analysis

are studied. The case-deletion model for model (6) is given by

yl = µl + σl zl, l = 1, . . . , n, l 6= i, (11)

where the random error Zl has a density function f(zl; νl, τl) given in (4).

In the following, a quantity with subscript “(−i)” refers to the original quantity with the ith

case deleted. For model (11), the log-likelihood function for θ is denoted by l(−i)(θ). Let θ̂
T

(−i) =

(µ̂T(−i), σ̂
T
(−i), ν̂

T
(−i), τ̂

T
(−i)) be the MLEs of µ, σ, ν and τ from l(−i)(θ). To assess the influence of

the ith case on the MLE θ̂
T

= (µ̂T , σ̂T , ν̂T , τ̂T ), the basic idea is to compare the difference between

θ̂(−i) and θ̂. If deletion of a case seriously influences the estimates, by changing the inference, more

attention should be given to that case. Hence, if θ̂(−i) is far from θ̂, then the ith case is regarded

as an influential observation. We work with a popular measure of the difference between θ̂(−i) and θ̂

given by the log-likelihood distance

LDi(θ) = 2
[
l(θ̂)− l(θ̂(i))

]
,

where l(θ̂) is given by (7) for parametric models and (9) for semiparametric models. Note that

sometimes, depending on the model and data set, the penalized likelihood can have multiple local

maxima, so we suggest to use the θ̂ as initial values to obtain θ̂(−i).

3 Simulation Study

We conduct a Monte Carlo simulation study under three scenarios to assess the finite sample behavior

of the MLEs of the parameters for different sample sizes n. For all scenarios, we consider model (6),

where the location and scale parameters are given by µ = 26 sin(π x1) + 6x2 + 3x3 and σ = 4, and the

variables X1, X2 and X3 are generated from the uniform [0,2], binomial(n,0.5) and standard normal

distributions, respectively. Plots of the densities of the random errors for each scenario are displayed

in Figure 2, where the configurations are given by:

Scenario 1 bimodal symmetric density Z ∼ ESC(z, ν = 0.05, τ = 1);

Scenario 2 unimodal density with positive skewness Z ∼ ESC(z, ν = 1.5, τ = 5);

Scenario 3 unimodal density with negative skewness Z ∼ ESC(z, ν = 1, τ = 0.5).

For each scenario, the sample sizes are generated by taking n = 50, 150 and 300. The values of the

response variable Y , denoted by y1, . . . , yn, are generated from the ESC distribution using the qf (10)

and, for each value of n, all results are obtained from 2,000 Monte Carlo replications. We also consider

a simulation study for censored data, considering the percentages of noninformative censoring δ=30%.

For each scenario, the log-censoring is also generated randomly using the qf by taking n = 50 and

150. Here, we present and compare the results fitting the semiparametric ESC and normal models,
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Figure 2: Density of the random errors Z generated for scenarios (a) 1, (b) 2 and (c) 3.

for each scenario, where the model parameters are defined by

ESC

{
µi = pb11(x1i, df) + β21 x2i + β31 x3i, σi = β02,

νi = exp(β03) and τi = exp(β04);

Normal
{
µi = pb11(x1i, df) + β21 x2i + β31 x3i and σi = exp(β02),

where pb(x1i, df) represents a smooth P-spline function with respective degrees of freedom df to

model X1. The purpose of this study is to verify the accuracy of the parameters associated with

the explanatory variables X1, X2 and X3 considering different behaviors of the random errors. As the

coefficients of the smoothing terms are meaningless, we only compare the estimates of the parameters

β21 and β31 for the ESC and normal distributions. The biases and mean squared errors (MSEs) are

evaluated and the results are reported in Table 1.

The figures in Table 1 indicate that the MSEs of the MLEs of the parameters decay toward

zero when the sample size n increases for both models and scenarios, as expected under first-order

asymptotic theory. However, the MSEs of the semiparametric ESC model are smaller than those of

the semiparametric normal model, thus indicating higher accuracy of the estimates of the parameters

in the presence of bimodal and asymmetric random errors. Figure 3 displays the fitted and generated

terms for the smooth functions under scenarios 1, 2 and 3 for censoring percentage of δ = 0%. We

can note the inaccuracy of the estimates in the normal model due to the fact that this model is not

suitable to fit bimodality and positive and negative skewed errors, respectively. The same conclusion

follows, for different censoring percentages, based on the results presented in Table 1. Finally, we can

conclude that the estimates of smoothing functions are affected when random errors are not properly

estimated by the proposed models.

4 Applications

In this section, we provide two applications to real data to illustrate the flexibility of the semiparametric

ESC regression models. The analysis are performed using the GAMLSS subroutine in the R software.

The scripts are available by the first author at https://goo.gl/hAIcBF. For both applications, the

results are compared with those from the normal regression models.
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Table 1: The biases and MSEs of the ESC and normal parametric and semiparametric regression

models based on 2,000 simulations for each scenario, censoring percentages and different sample sizes.

Semiparametric ESC Semiparametric normal

Scenario δ n Parameter Bias MSE Parameter Bias MSE

1 0% 50 β21 0.169 18.174 β21 0.122 24.859

β31 0.019 4.304 β31 0.046 5.946

150 β21 0.039 1.171 β21 0.047 6.815

β31 0.015 0.301 β31 0.014 1.736

300 β21 0.014 0.507 β21 0.029 3.399

β31 0.002 0.120 β31 0.013 0.940

2 0% 50 β21 0.038 1.671 β21 0.039 2.023

β31 0.017 0.450 β31 0.018 0.516

150 β21 0.025 0.340 β21 0.009 0.639

β31 0.002 0.089 β31 0.006 0.162

300 β21 0.007 0.145 β21 0.010 0.288

β31 0.004 0.038 β31 0.007 0.076

3 0% 50 β21 0.014 8.133 β21 0.055 8.325

β31 0.065 2.020 β31 0.055 2.103

150 β21 0.013 1.871 β21 0.017 2.470

β31 0.012 0.482 β31 0.014 0.605

300 β21 0.010 0.770 β21 0.014 1.154

β31 0.004 0.208 β31 0.000 0.284

1 30% 50 β21 0.093 8.498 β21 0.191 37.51

β31 0.022 2.803 β31 0.017 9.41

150 β21 0.041 1.566 β21 0.011 10.709

β31 0.020 0.442 β31 0.001 2.643

2 30% 50 β21 0.125 2.380 β21 0.091 3.203

β31 0.012 0.672 β31 0.007 0.866

150 β21 0.025 0.487 β21 0.019 0.938

β31 0.002 0.129 β31 0.008 0.230

3 30% 50 β21 0.078 18.035 β21 0.054 18.279

β31 0.013 4.822 β31 0.022 4.932

150 β21 0.120 3.030 β21 0.108 3.506

β31 0.004 0.711 β31 0.025 0.821

4.1 Application: Body mass data

Consider the data of the Dutch growth study, a cross-sectional study that measures growth and

development of the Dutch population between the ages 0 and 21 years for the regions North, East,

West, South and City. The main objective of this study is to verify the relationship of the body mass

index (T ) and the explanatory variable age (X1). The full sample contains the measures of 7,482 males

and has in total 212 missing values for the explanatory variables, which are then removed. To reduce

the computational time of this analysis (approximately 75 hours for the full sample), we consider only

the observations of the North corresponding a sample of n = 917. For more details, see Fredriks et al.

(2000a) and Fredriks et al. (2000b).

We start the analysis considering only the response variable Y = log(T ) by fitting the ESC and
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Figure 3: For scenarios (1) bimodal symmetric, (2) unimodal with positive skewness and (3) unimodal

with negative skewness, the fitted and generated terms for the smooth functions based on 2,000

simulations of n = 300 observations for the (a) ESC and (b) normal models.

normal models. Table 2 lists the MLEs and the corresponding standard errors (SEs) of the model

parameters and the values of the statistics AIC, BIC and GD, for the fitted models. Figure 4(a)

provides the plots of the histogram of the current data and the fitted densities of the ESC and normal

models. Clearly, the ESC model provides a good fit to these data.

Before fitting the regression models, as the preliminary analysis, we note in Figure 4(b) that the

explanatory variable age has a nonlinear relationship with the response variable body mass index,

indicating the use of nonlinear models. Further, we can also note that the variability of body mass

index depends on age, thus indicating that the heteroscedastic models should be used to fit these data.

Next, we present results of the semiparametric ESC and normal models using the steps proposed
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Table 2: MLEs of the model parameters for the body mass data, the corresponding SEs (given in

parentheses) and the GD, AIC and BIC statistics.

Model Estimates GD AIC BIC

ESC(µ, σ, ν, τ) 2.738 0.126 0.981 2.862 -865.5 -857.5 -838.2

(0.022) (0.055) (0.215) (2.761)

Normal(µ, σ) 2.894 0.153 -829.7 -825.7 -816.0

(0.005) (0.027)
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Figure 4: For the body mass data: (a) Empirical and estimated density for the ESC and normal

models; (b) Observed y against age with fitted smooth curves.

in Section 2.4 to select the additive terms. The model parameters are defined by

ESC

{
µi = β01 + pb11(X1i, df), σi = exp(β02 + β12x1i),

νi = exp(β03) and τi = exp(β04 + β14x1i);

Normal
{
µi = β01 + pb11(X1i, df) and σi = exp(β02 + β12x1i).

Table 3 gives the MLEs, their approximate SEs and p-values obtained from the fitted ESC and normal

semiparametric regression models to the body mass data. The coefficients of the smoothing terms

have been omitted because they are meaningless.

The results presented in Table 3 reveal that the semiparametric ESC model has lower GD, AIC

and BIC statistics compared to the semiparametric normal model. To check the adequacy of the fitted

distributions given in Table 3, we present in Figure 5 the worm plots considering four ranges of X1 and,

to compare the assumptions of the models, we also provide the index plots for the quantile residuals.

Figure 5(b) indicates failure for modelling the kurtosis and skewness for the normal model. We may

note in Figures 5(c)-(d) that the quantile residuals follow approximately a normal distribution but the

semiparametric normal model has most points out of the range [−3, 3], thus indicating the flexibility

of the ESC model.

The partial effects of X1 in the parameters of the fitted semiparametric ESC regression model

are presented in Figure 6, which appear to be consistent with the effects presented in Figure 4(b).

Figure 6(a) indicates that the log of the body mass index increases quickly until one year age, and
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Table 3: MLEs of the parameters and the approximate SEs from the fitted semiparametric ESC and

normal models to the body mass data.

Semiparametric ESC Semiparametric normal

Parameter Estimate SE p-value Parameter Estimate SE p-value

β01 2.745 0.017 <0.001 β01 2.738 0.005 <0.001

pb11(x1i, 10.35) pb11(X1i, 9.55)

β02 -3.002 0.089 <0.001 β02 -2.433 0.043 <0.001

β12 0.030 0.006 <0.001 β12 0.015 0.003 <0.001

β03 -0.234 0.088 0.008 - - - -

β04 -0.049 0.210 0.813 - - - -

β14 0.053 0.021 0.013 - - - -

GD = −1606.0 AIC = −1575.3 BIC = −1501.3 GD = −1559.9 AIC = −1536.8 BIC = −1481.0

then decreases at a slower rate until 6 years age, and after that increases until 21 years age. The plots

in Figure 6(b)-(c) reveal that the variability and skewness of Y increase when x1 increases.

Next, we compute the case deletion LDi(θ) measure for the body mass data. Figures 7(a)-(b)

reveals the influence measure index plots and the values of Y against X1 with some possible influential

points highlighted, respectively. Based on these plots, we can note that the cases 263, 447 and 442

appear as possible influential observations. Note that the cases 263 and 447 are also detected in the

quantile residual plots (see Figure 5(c)). In fact, the case 263 has the lowest value of Y and the case

447 has the highest value of Y for the range 10 < X1 < 15.

Finally, Figure 8(a) displays the fitted semiparametric ESC regression model to the body mass

data with some fitted conditional densities for different values of X1. We can note in this plot that

the fitted semiparametric ESC regression model has unimodal shapes with null and positive skewness,

e.g. for x1i = 7 and x1i = 19, respectively. Figure 8(b) provides five fitted percentile curves u ×
(10, 25, 50, 75, 90, 95) for Y against the eruption waiting time. We conclude the semiparametric ESC

regression can be chosen as the best model.

4.2 Eruption data

In this subsection, we present an analysis of the data on the Old Faithful Geyser in Yellowstone

National Park, Wyoming, USA. The data consist of n = 272 observations on waiting times between

eruptions and the duration of the eruption. Let the response variable ti be the ith recorded duration

of eruption and the explanatory variable xi1 the waiting time for the eruption. This data set can be

obtained using data(faithful) in the R software. We note that there are many versions of these

data: Azzalini and Bowman (1990) used a more complete version.

We consider the random variable Y = log(T ) having the ESC and normal distributions. Table 4

gives the MLEs (and the corresponding SEs in parentheses) of the model parameters and the values of

the statistics GD, AIC and BIC for the fitted models. Figure 9(a) provides the plots of the histogram

of the current data and the fitted densities of the ESC and normal models. Table 4 and Figure 9(a)

indicate that the ESC model provides a good fit to these data.
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Figure 5: To the body data: The worm plot for the semiparametric (a) ESC and (b) normal models

and the index plot of the quantile residuals for the semiparametric (c) ESC and (d) normal models.
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Figure 6: The fitted terms (a) µ, (b) σ and (c) τ for the semiparametric ESC regression model given

in Table 3.
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Figure 7: For body mass data: (a) Index plots for |LDi(θ)| and (b) Observed Y against X1.
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Figure 8: For the semiparametric ESC regression model fitted to the eruption data: (a) smoothed

scatterplot diagram showing how the fitted conditional distribution of the response variable Y changes

for different values of X1; (b) fitted percentile curves for u× 100 = (5, 25, 50, 75, 95) against X1.

Table 4: MLEs of the model parameters for the eruption data, the corresponding SEs (given in

parentheses) and the GD, AIC and BIC statistics.

Model Estimates GD AIC BIC

ESC(µ, σ, ν, τ) 1.044 0.076 0.010 1.545 -88.1 -80.1 -65.7

(0.008) (0.059) (0.306) (0.361)

Normal(µ, σ) 1.185 0.374 237.0 241.0 248.3

(0.022) (0.062)

To propose the regression models, as a preliminary analysis, we present in Figure 9(b) the values

of Y against X1, for which we note that the response variable Y has a nonlinear relationship with the

explanatory variable X1, so that the nonlinear models are required.

Using the steps proposed in Section 2.4 to select additive terms, we present and compare the results
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Figure 9: For the eruption data: (a) The empirical and the estimated densities for the ESC and normal

models; (b) Observed Y against X1 with smooth fitted curves.

of the semiparametric ESC and normal models, where the model parameters are defined by

ESC

{
µi = β01 + pb11(X1i, df), σi = exp[β02 + pb12(X1i, df)],

νi = exp(β03 + β13x1i) and τi = exp(β04 + β14x1i);

Normal
{
µi = β01 + pb11(X1i, df) and σi = exp[β02 + pb12(X1i, df)].

Table 5 provides the MLEs, their approximate SEs and p-values obtained from the fitted semipara-

metric ESC and normal regression models. The coefficients of the smoothing terms have been omitted

to avoid erroneous interpretations.

Table 5: MLEs of the model parameters and the corresponding SEs from the fitted semiparametric

ESC and normal regression models to the eruption data.

Semiparametric ESC Semiparametric normal

Parameter Estimate SE p-value Parameter Estimate SE p-value

β01 1.798 0.017 <0.001 β01 -0.580 0.031 <0.001

pb11(x1i, 11.21) pb11(X1i, 9.15)

β02 0.967 0.334 0.004 β02 -1.584 0.227 <0.001

pb12(x1i, 5.47) pb12(X1i, 5.67)

β03 3.293 0.517 <0.001 - - - -

β13 -0.049 0.007 <0.001 - - - -

β04 5.136 0.340 <0.001 - - - -

β14 -0.080 0.004 <0.001 - - - -

GD = −507 AIC = −465 BIC = −391 GD = −462 AIC = −432 BIC = −379

To verify the adequacy and the assumptions of the proposed models in Table 5, we present in

Figure 10 the worm plots for four ranges of X1 and the index plots for the quantile residuals. Figu-

re 10(a)-(b) indicates a good fit of the ESC model for all ranges of X1 and failure for modelling the
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skewness for the normal model. We can note in Figures 10(c)-(d) that the quantile residuals follow

approximately a normal distribution and the semiparametric ESC model does not have points out of

the range [−3, 3], thus indicating the flexibility of the new semiparametric model.
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Figure 10: To the eruption data: The worm plots for (a) semiparametric ESC and (b) semiparametric

normal models and the index plots of the quantile residuals for (c) semiparametric ESC and (d)

semiparametric normal models.

The partial effects of X1 in the parameters of the semiparametric ESC regression model are pre-

sented in Figure 11. Figure 11(a) indicates that yi decreases at a slower rate until x1i = 48, then

increases slowly until x1i = 59, and after that increases quickly until x1i = 72 and after this point

increases again slowly. In additional, Figure 11(b) revels that the variability of the log of eruption

times decays rapidly for x1 > 60. Figures11(c)-(d) indicate that the distribution of Y has bimodality

and negative skewness for high values of x1.

Next, we compute the case deletion measures LDi(θ) for the eruption data. The results of such

influence measure index plots are displayed in Figure 12(a). In Figure 12(b), we present the values

of Y against X1 and the points detected in the influential analysis. From these plots, we note that

the cases 19, 149, 211 and 265 are possible influential observations. Although these points have been

detected in the influence analysis, the same does not appear as outlying observations in Figure 10,

indicating again the flexibility of the new model.

Finally, Figure 13(a) reveals the semiparametric ESC regression model fitted to the eruption data
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Figure 11: The fitted terms for (a) µ, (b) σ, (c) ν and (d) τ for the semiparametric ESC regression

model.
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Figure 12: For eruption data: (a) Index plots for |LDi(θ)| and (b) Observed Y against X1.

on a smoothed scatterplot diagram. We can note in this plot that the fitted semiparametric ESC

regression model takes different shapes for different values of X1 as bimodal and unimodal with

positive skewness. Figure 13(b) displays five fitted percentile curves u× (10, 25, 50, 75, 90, 95) for the

logarithms of recorded duration of eruptions against waiting times for the eruption. We can conclude

that the semiparametric ESC regression could be chosen as the best model to the current data.

5 Conclusions

The semiparametric ESC regression model provides a flexible regression model for a dependent real

outcome. The parameters of the model can be interpreted as relating to location, scale, bimodality and

skewness and they can be modelled as parametric or smooth nonparametric functions of explanatory

variables. Procedures for fitting the semiparametric ESC regression model and for model diagnostics

are included in the GAMLSS script and available from the authors. Two real data sets are used to
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Figure 13: For the semiparametric ESC regression model fitted to the eruption data: (a) smoothed

scatterplot diagram showing how the fitted conditional distribution of the response variable Y changes

for different values of X1; (b) fitted percentile curves for u× 100 = (5, 25, 50, 75, 95) against X1.

illustrate the importance of the semiparametric ESC regression model, showing that it provides better

performance than the usual methods in the presence of bimodal and asymmetric random errors.
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Appendix: Score functions

Let UT (θ) = ∂lp/∂θ =
[
Uβ1

,Uγj1
,Uβ2

,Uγj2
,Uβ3

,Uγj3
,Uβ4

,Uγj4

]
be the score functions of

the likelihood (9), γrjk the rth element of the qjk-dimensional vector γjk, βlkj , for lk = 0, 1, . . . , pk,

the lth element of the vector βj and pjk[r, s] the elements of the matrix Pjk. The elements of U(θ)

are given by

∂ l(θ)

∂βl11
= uµ(βl11) =

∑
i∈F

[
ġ−11 (µi)

]
βl11

[
ν2i sinh(2wi)

σiKi
− tanh(wi)

σi
− (τi − 1)

νi cosh(wi)

πσ BiKi

]

+
∑
i∈C

[
ġ−11 (µi)

]
βl11

τiνi cosh(wi)B
τi−1
i

πiσiKi (1− Bτii )
,

∂ l(θ)

∂γrj1
= uµ(γrj1)−

J1∑
j=1

qj1∑
s=1

λj1 pj2[r, s] γrj1,
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∂ l(θ)

∂βl22
= uσ(βl22) =

∑
i∈F

[
ġ−12 (σi)

]
βl22

[
−1− wi tanh(wi)

σi
+
ν2i wi
σiKi

sinh(2wi)− (τi − 1)
νi wi cosh(wi)

π σiBiKi

]

−
∑
i∈C

[
ġ−12 (σi)

]
βl22

τi νi wiB
τ−1
i cosh(wi)

π σiKi (1−Bτii )
,

∂ l(θ)

∂γrj2
= uσ(γrj2)−

J2∑
j=1

qj2∑
s=1

λj2 pj2[r, s] γrj2,

∂ l(θ)

∂βl33
= uν(βl33) =

∑
i∈F

[
ġ−13 (νi)

]
βl33

[
1

νi
− 2νi sinh2(wi)

Ki
+ (τi − 1)

sinh(wi)

π BiKi

]

+
∑
i∈C

[
ġ−13 (νi)

]
βl33

−τiBτi−1i sinh(wi)

πKi(1−Bτi )
,

∂ l(θ)

∂γrj3
= uν(γrj3)−

J3∑
j=1

qj3∑
s=1

λj3 pj3[r, s] γrj3,

∂ l(θ)

∂βl44
= uτ (βl44) =

∑
i∈F

[
ġ−14 (τi)

]
βl44

[
1

τi
+ log(Bi)

]
+
∑
i∈C

[
ġ−14 (τi)

]
βl44

−Bτii
1−Bτii

log(Bi) and

∂ l(θ)

∂γrj4
= uτ (γrj4)−

J4∑
j=1

qj4∑
s=1

λj4 pj4[r, s] γrj4,

where
[
ġ−1k (.)

]
ψk

=
∂[g−1

k (.)]

∂ψk
, for k = 1, . . . , 4, Bi = 1

2 + 1
π arctan[νi sinh(wi)], Ki = ν2i sinh2(wi) + 1

and wi = [yi − µi]/σi.
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