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Kinesin is a molecular motor that transports cargo along microtubules. The results of many in
vitro experiments on kinesin-1 are described by kinetic models [1] in which one transition corresponds
to the forward motion and subsequent binding of the tethered motor head. We argue that in
a viscoelastic medium like the cytosol of a cell this step is not Markov and has to be described
by a non-exponential waiting time distribution. We introduce a semi-Markov kinetic model for
kinesin that takes this effect into account. We calculate, for arbitrary waiting time distributions,
the moment generating function of the number of steps made, and determine from this the average
velocity and the diffusion constant of the motor. We illustrate our results for the case of a waiting
time distribution that is Weibull. We find that for realistic parameter values, viscoelasticity decreases
the velocity and the diffusion constant, but increases the randomness (or Fano-factor).

I. INTRODUCTION

Molecular motors are proteins that play an important
role in various biological processes like cell motion, cell
division and intracellular transport of organelles or other
cargos [2]. These motor proteins convert chemical en-
ergy into work through the hydrolysis of a nucleotide. In
this paper we focus on kinesin-1, which is an ATP-driven
motor that makes steps on the microtubules of the cy-
toskeleton. Kinesin is a two-headed protein whose heads
are connected with a linker that in turn is connected to
a cargo-binding tail. Through numerous in vitro exper-
iments, the mechanochemical details of kinesin stepping
have been well characterised [3–7]. These studies have led
to a standard discrete state Markov model for the motion
of kinesin-1 [1]. In the simplest version of this model, the
dynamics of kinesin-1 can be described in terms of three
kinetic states. Transitions between these states are given
by experimentally determined rates. An important role
in kinesin’s motion is played by the mechanical properties
of the neck linker. It is thought that after the binding
of ATP to the front head, the free head has to perform
a diffusive motion to the next site on the microtubule
where it can then bind. Since the linker has to stretch to
reach this site, this diffusive motion depends on its elastic
properties. In the simplest approximation, the linker is
often modelled as a Hookean spring. More realistically,
it can be described in terms of a wormlike chain [8]. A
good model for the motion of the tethered head and its
subsequent binding is therefore that of a particle moving
in a double well potential (see section 2 for more details).
The associated rate in the kinetic model is then given in
terms of Kramers’ transition rate [9–11].

The motion of motors inside real cells have been in-
vestigated less [12, 13]. In a recent Perspective in The
Biophysical Journal, the author asks how it is possible
that the speed of kinesin-1 motors is hardly influenced
by the crowded environment of the cell [14]. Indeed, it
has by now been well established that cytoplasmic crowd-
edness leads to viscoelasticy [15] which in turn makes the
passive motion of various proteins, organelles, etc. in the

cell subdiffusive [16]. In this paper we want therefore to
investigate if and how viscoelasticity influences the active
motion of kinesin-1 along the microtubule. Some in vitro
studies of this issue have been performed in recent years
[17, 18].

Going back to the standard model of kinesin-1, we no-
tice the following. When the diffusive motion of the free
head takes place in a viscoelastic environment one has to
take into account that motion in such a medium is non-
Markovian and is usually described in terms of a memory-
dependent friction [19]. Memory effects also modify the
survival probability inside a potential well. In general,
it turns out that the survival time and the related es-
cape rate are no longer exponentially distributed. For
example, simulations have established that the survival
probability of a particle moving in a double well poten-
tial in a viscoelastic environment is very well described
by a stretched exponential [20]. Hence, a proper way to
take into account the effects of crowdedness of the cel-
lular environment in the standard model of kinesin-1 is
by replacing the exponential waiting time in the step de-
scribing the diffusion of the tethered motor domain with
a non-exponential waiting time.

Discrete state models with these types of waiting times
are known as semi-Markov models in the mathematical
literature. It turns out that the resulting semi-Markov
version of the three-state model of kinesin is still exactly
solvable. Moments of the position of the motor can be
found using an approach in which the full moment gen-
erating function of the number of steps made by the mo-
tor is determined. This technique is well known in the
large deviation approach to non equilibrium statistical
mechanics [21, 22] and works both in the Markov and
semi-Markov case. Indeed, the standard approach to cal-
culate the diffusion constant [23–25] cannot be easily ex-
tended to the semi-Markov case.

We are not the first to investigate the motion of a mo-
tor in a viscoelastic environment. In recent work the
same problem was studied within the context of ratchet
models of molecular motors [26, 27]. Indeed, the two well
established theoretical approaches to molecular motors
are ratchet potential models and discrete-state stochas-
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tic models [28]. While both approaches have their advan-
tages, models based on ratchet potentials can seldomly
be solved exactly. Moreover it is hard to determine re-
alistic potentials from experimental data. Finally, it is
difficult to include complicated biochemical pathways in
these type of models. For these reasons, it is necessary
to study the effects of viscoelasticity also within discrete
state stochastic models.

This paper is organised as follows. In section 2 we in-
troduce our three-state semi-Markov model of kinesin-1.
In section 3 we calculate the average velocity of the mo-
tor for a general waiting-time distribution. We find that,
as a function of ATP-concentration, the velocity always
has the Michaelis-Menten form. We also give specific
results for a waiting time distribution that is a Weibull
distribution. In section 4 we explain our approach to cal-
culate the moment generating function of the position of
the motor. In section 5 we show that quite generally the
second cumulant of the position of the motor diffuses.
Our model does not have any sub- or superdiffusive mo-
tion. For the case of a Weibull waiting time distribution,
we calculate the diffusion constant and the Fano factor
F = 2D/V d0 (where d0 is the size of the step made, i.e.
4.1 nm) as a function of the properties of the viscoelas-
tic environment and as a function of ATP-concentration.
Finally, in section 6 we present our conclusions.

II. THE MODEL

A. Kinetic states

Our starting point is a standard model for the motion
of kinesin-1 [1] which is represented schematically in Fig.
1. In state 1, one motorhead is bound to the microtubule
while the second head is unbound. The binding of ATP
to the bound head leads to a conformational change in
the motor which allows the free tethered head to move
forward (state 2). The transition between states 1 and 2
is dependent on the ATP-concentration and is reversible.
As long as ATP is bound to the leading motorhead, the
tethered head can move forward and bind to the micro-
tubule (state 3) while releasing an ADP-molecule. This
step is determined by the elastic properties of the head
linker, by the free energy gained upon binding and by
the rheological properties of the environment. In the fi-
nal step (3→ 1), ATP is hydrolyzed and what is now the
trailing head detaches form the microtubule.

If we denote by Mi the conformation of the motor in
state i (∈ {1, 2, 3}) and by T and D ATP respectively
ADP, we have the following reaction scheme

M1 + T 
M2 →M3 +D →M1

Ȁ ȁ

Ȃ

FIG. 1. Standard three state stochastic model of kinesin-
stepping (see text for full explanation).

B. From viscoelastic environments to
non-exponential waiting times

In this subsection we explain in more detail why the
motion of a motor in a viscoelastic environment like the
cytoplasm of a cell leads to a description in terms of non-
exponential waiting time distributions and semi-Markov
processes.

In the transition between the states 2 and 3, the teth-
ered motorhead needs to stretch to reach the binding site.
The elastic energy of the linker will therefore increase.
When the head binds this leads to a lowering of the free
energy. It is therefore reasonable to see the motion of
the tethered head as occuring in a double well potential
(see Fig. 2) where the initial increase of the free energy
landscape F (x) is due to the stretching of the linker and
the second well corresponds to the bound state [11].

��(��)

��(��/����)

-1 1 2 3 4 5

-10

10

20

30

40

50

FIG. 2. Schematic free energy landscape as a function of the
position of the motorhead during the transition 2 → 3 (fig.1).
The left well corresponds to the state M2, the right one to
M3.

In a viscoelastic environment the equation of motion
for the position x(t) of the tethered head is given by a
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generalised Langevin equation

m
d2x

dt2
= −

∫ t

−∞
K(t− t′)dx

dt
(t′)dt′ − dF

dx
+ ξ(t) (1)

The first term on the right-hand side corresponds to the
viscoelastic friction. In the case that K(t) = 2γδ(t) one
recovers the usual viscous friction term γdx/dt. Here
γ is the friction coefficient which for a sphere of radius
a moving through a medium of viscosity η is given by
Stokes’ law

γ = 6πaη (2)

A good model for a complex viscoelastic medium is to
take the kernel K(t) of the form [19]

K(t) = γ(2− α)(1− α)t−α (3)

Here α is a parameter that characterises the viscoelas-
tic environment. For α = 0, one has a purely elastic
medium, while for α = 1 we recover the viscous case.
Intermediate values, 0 < α < 1, correspond to the vis-
coelastic situation. Estimates of α for cells range from
α ≈ 0.7 in E. Coli [33] to α ≈ 0.2 in the cytoplasm of
eukaryotes [34]. Finally, the thermal force ξ(t) in (1)
is a Gaussian random variable with average zero and
a correlation that is coupled to the kernel K(t) by the
fluctuation-dissipation theorem

〈ξ(t)ξ(t′)〉 = kBTK(|t− t′|) (4)

where kB is Boltzmann’s constant and T is temperature.
We now turn to the concept of survival probability

and how it depends on the rheological properties of the
environment. Image that at t = 0 one starts with a
large number of particles (representing motor heads) near
the bottom of the left well in Fig. 2. Due to thermal
agitation some particles will escape out of that well and
move to the right well. Suppose that in the right well the
particles are trapped and therefore cannot move back to
the left. The probability that a particle is still in the
left well at time t is then called the survival probability
S(t). With the survival probability, one can associate
a waiting time density ψS(t) which is such that ψS(t)dt
gives the probability that a particle escapes from the well
in the infinitesimal time interval between t and t + dt.
Obviously, one has

ψS(t) = − d

dt
S(t) (5)

In the viscous case it is well known that asymptotically
in time, S(t) is exponential, i.e. S(t) = exp(−kt) (hence
ψS(t) = k exp(−kt)) where the escape rate k is given by
Kramers’ famous formula [9, 10] in terms of the viscosity
of the environment and properties of the potential such
as the height of the barrier between the two minima.

For viscoelastic environments much less is known
about the behaviour of S(t) (see the discussion in [20]).
However, numerical work [20] has shown that in that case

the survival probability can be well approximated by a
stretched exponential, i.e. one has

S(t) = e−(kSt)
β

(6)

where the parameter kS and β depend on the properties
of the viscoelastic environment (the exponent α and the
friction γ) and on the height of the potential barrier.
Notice that for β = 1 we recover the exponential survival
time. Using (5) we find for the waiting time distribution
in this case

ψS(t) = βkβs t
β−1e−(kSt)

β

(7)

This distribution is known as the Weibull distribution.
The conclusion of this subsection is therefore: if the

motorhead moves through a viscoelastic environment and
if we describe that motion in terms of transitions be-
tween specific kinetic states, these transitions have non-
exponential waiting times.

C. Master equation

Kinetic models with non-exponential waiting times are
known as semi-Markov processes [30–32]. Let us denote
by P (i, t) the (conditional) probability that the motor is
in state i at time t given that it arrived in state 1 at t = 0.
In a semi-Markov process we need to introduce for each
transition a waiting time density ψ(t). In our model, we
will assume that only the transition between the states
M2 and M3 is non-Markovian. As explained in the pre-
vious subsection this should be a proper description of
the motion of the tethered head through a viscoelastic
medium like the cellular cytoplasma. We will denote the
associated waiting time density by ψS(t). The other three
transition, M1 → M2, M2 → M1 and M3 → M1 will be
assumed to be Markovian with associated transition rates
k+, k− and k3 respectively. The associated waiting time
distributions, ψ21, ψ− and ψ13 are therefore exponential
functions.

An extra complication arises because from the state 2
we can go either to state 1 or state 3. In order to make
the transition from 2 to 1 in the interval [t, t + dt] we
should not have made the transition between 2 and 3 at
an earlier time. Therefore the waiting time distribution
ψ12(t) to go from 2 to 1 and not to 3 equals

ψ12(t) = ψ−(t)

∫ ∞
t

ψS(t′) dt′ (8)

Analogously, the waiting time distribution ψ32(t) to go
from 2 to 3 and not to 1 is given by

ψ32(t) = ψS(t)

∫ ∞
t

ψ−(t′) dt′ (9)

Using the theory of semi-Markov processes [30, 31] we
can now write down the master equation for our model
which is a set of linear integro-differential equations
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∂P (1, t)

∂t
=

∫ t

0

[w12(t′)P (2, t− t′) + w13(t′)P (3, t− t′)− w21(t′)P (1, t− t′)] dt′

∂P (2, t)

∂t
=

∫ t

0

[w21(t′)P (1, t− t′)− (w32(t′) + w12(t′))P (2, t− t′)] dt′

∂P (3, t)

∂t
=

∫ t

0

[w32(t′)P (2, t− t′)− w13(t′)P (3, t− t′)] dt′ (10)

The functions wij(t) can be expressed in terms of the
waiting time distributions ψij(t). The precise relation
will be given in the next section. The initial condition is
P (i, 0) = δi1.

The quantity of interest is the position x(t) of the mo-
tor. Each time the motor makes the transition between
the states 2 and 3 its position increases with d0 ≈ 4.1
nm. The position is a stochastic variable and in section
4 we will explain how to obtain all its moments 〈x(t)n〉.
From the first moment we can get the average velocity

V = lim
t→∞

d

dt
〈x(t)〉 (11)

Indeed, we will show that in our model the motor will al-
ways move ballistically. Similarly, the dispersion around
the average position always has a diffusive behaviour.
The associated diffusion constant is given by

D =
1

2
lim
t→∞

d

dt

[
〈x2(t)〉 − 〈x(t)〉2

]
(12)

In principle higher moments can be calculated and one
can also determine, for example, the skewness or a
parameter that quantifies deviations from Gaussianity.
However as we will see below the calculations become
quite involved and we limit ourselves in this paper to the
first two moments.

III. THE AVERAGE VELOCITY OF THE
MOTOR

A. General results

Our first aim is to calculate the average velocity V of
the motor.

Since the integrals on the right hand side of the mas-
ter equation (10) are convolutions, it is convenient to

do a Laplace transform. Let us denote by f̃(s) =∫∞
0
f(t)e−stdt the Laplace transform of a function f(t).

Then (10) can be rewritten as

sP̃ (1, s) = w̃12(s)P̃ (2, s) + w̃13(s)P̃ (3, s)− w̃21(s)P̃ (1, s) + 1

sP̃ (2, s) = w̃21(s)P̃ (1, s)− (w̃32(s) + w̃12(s))P̃ (2, s)

sP̃ (3, s) = w̃32(s)P̃ (2, s)− w̃13(s)P̃ (3, s) (13)

According to the general formalism of semi-Markov
processes (for a clear explanation, see [31]), the Laplace
transform w̃ij(s) can be related to those of the waiting

time distributions ψ̃ij(s). The explicit relations depend
on the reaction scheme and for the present case are given
by

w̃12(s) =
sψ̃12(s)

1− ψ̃12(s)− ψ̃32(s)

w̃21(s) =
sψ̃21(s)

1− ψ̃21(s)

w̃13(s) =
sψ̃13(s)

1− ψ̃13(s)

w̃32(s) =
sψ̃32(s)

1− ψ̃12(s)− ψ̃32(s)
(14)

Assuming as we did that the waiting time distribu-
tions ψ21(t), ψ−(t) and ψ13(t) are exponential with rates

k+, k− and k3 and using the relations (5), (8) and (9) one
obtains immediately

w̃12(s) = k−

w̃21(s) = k+

w̃13(s) = k3

w̃32(s) =
[
S̃(s+ k−)

]−1
− s− k− (15)

where S̃(s) is the Laplace transform of the survival prob-
ability S(t). For the moment we want to obtain results
for arbitrary survival times and therefore do not specify
an explicit form for S(t).

After substitution of the expressions (15), solution of

the set of linear equations (13) gives P̃ (i, s).

In order to obtain the average velocity we observe that
the motor makes a step each time the transition from 2 to
3 is made. Therefore, the average number of steps made
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by the motor per unit of time is given by the current

J(t) =

∫ t

0

w32(t′)P (2, t− t′) dt′ (16)

The average velocity at time t, V (t) clearly is given by
d0J(t).

Again it is convenient to look first at the Laplace trans-
forms of equation (16) which reads

J̃(s) = w̃32(s)P̃ (2, s) (17)

Inserting the solution for P̃ (2, s) one obtains for the
Laplace transform of the current an expression in terms
of the transition rates k+, k−, k3 and the survival proba-

bility S̃(s). We find

J̃(s) =

(
1− (k− + s)S̃(s+ k−)

)
(k+(k3 + s))

s
(
s+ k3 + k+ + (k3 − k−)k+S̃(s+ k−)

)(18)

It follows that, independently of the precise form of
the survival probability S(t), the motor will always move
ballistically in the long time limit. Indeed, in the s → 0
limit of (18) one gets

lim
s→0

sJ̃(s) =


(

1− k−S̃(k−)
)
k+k3

k3 + k+ + (k3 − k−)k+S̃(k−)

 (19)

The final value theorem for Laplace transforms then im-
plies that for t → ∞ the current will be a constant that
is equal to the right hand side of (19). Hence, the asymp-
totic velocity of the motor (11) equals

V = d0


(

1− k−S̃(k−)
)
k+k3

k3 + k+ + (k3 − k−)k+S̃(k−)

 (20)

The distance travelled by the motor increases linearly
in time, and is not changed to, for example, subballistic
motion.

The step between the states 1 and 2 depends on the
concentration, [ATP], of ATP. Hence we write k+ =
k0 [ATP]. Inserting this in (20) shows that the veloc-
ity of the motor is always of the Michaelis-Menten form

V =
Vm [ATP]

KM + [ATP]
(21)

where the maximum velocity of the motor Vm is given by

Vm = d0


(

1− k−S̃(k−)
)
k3

1 + (k3 − k−)S̃(k−)

 (22)

while the Michaelis-Menten constant KM equals

KM =
k3[

1 + (k3 − k−)S̃(k−)
]
k0

(23)

This is our first main result. It is consisted with the
experiments of [18] where it was found that the motion
of kinesin in the presence of crowders is ballistic and that
the velocity has the Michaelis-Menten form. In contrast,
in the ratchet model of [27] both ballistic and subballistic
motion was found. However in that work the motor was
coupled to a cargo that gives rise to an extra force on the
motor. A cargo is absent in our calculations and in the
experiments of [18].

B. Stretched exponential survival time

As argued in section 2, a good choice for the survival
probability is a stretched exponential (6) in which case
the waiting time distribution becomes Weibull. No closed
expressions for the Laplace transform S̃(s) of a stretched
exponential is known. However, the transform can easily
be performed numerically.

For the parameters k0, k− and k3 we have taken the
experimentally determined values in [1] : k0 = 3.7µM−1

s−1, k− = 68 s−1 and k3 = 57 s−1. The stretched ex-
ponential function is characterised by two parameters ks
and β. For β = 1, we recover an exponential waiting
time with rate ks. Our model then corresponds to the
standard Markov model for which kS = 570 s−1 experi-
mentally [1].

In Fig. 3 we plot the velocity of the motor as a function
of ATP-concentration for kS = 570 s−1 and four values
of β.
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FIG. 3. Michaelis-Menten plot of the motor current J = V/d0
for β = 1, .75, .5 and 0.25 (top to bottom) and kS = 570 s−1.

We see that the maximum velocity of the motor de-
creases with β. The precise relation between the expo-
nents β of the stretched exponential and α of the vis-
coelastic environment is not known but the simulations
of [20] show that β is an increasing function of α. The
maximum velocity of the motor therefore decreases as
the medium becomes less viscous and more elastic. This
picture is at least qualitatively in agreement with the ex-
periments of [18] where it was found that in the presence
of the crowder sucrose, the maximum velocity of kinesin-
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1 decreased with a factor two.

For values of ks close to 100 s−1 the velocity has a
very weak dependence on β while for small values of ks
(ks < 100 s−1) the trend is reversed: the less elastic the
medium, the slower the motor moves (see Fig. 4). It is
however unclear whether this regime is ever encountered
in biological situations.

��(�/�)
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FIG. 4. Michaelis-Menten plot of the motor current J (steps
per second) for β = 1, .75, .5 and 0.25 (bottom to top) and
kS = 50 s−1.

IV. MOMENT GENERATING FUNCTION OF
THE POSITION

Next, we want to determine the second moment of the
motor’s position, i.e. 〈x2(t)〉 which allows us to determine
the diffusion constant D using (12). The standard tech-
nique to calculate D for molecular motors [23, 24] can-
not be easily extended to non-exponential waiting times.
Here we therefore follow an alternative route in which
we first determine the full moment generating function
of the position.

It is convenient to measure the position of the motor
in terms of the number of steps nx(t) made, with the
obvious relation x(t) = d0nx(t). We are interested in the
moment generating function of nx(t), i.e. in G(q, t) =
〈eqnx(t)〉. The m-th moment of x(t) can be found in terms
of the m-th order coefficient in a Taylor expansion of
G(q, t)

〈nmx (t)〉 =
dmG(q, t)

dqm
(q = 0) (24)

The moment generating function and the related cu-
mulant generating function play an important role in the
large deviation approach to (non-equilibrium) statistical
mechanics [35]. Within that context, it has been shown
that G(q, t) obeys a modified master equation. This was
first shown for Markov processes in [21], and was then
extended to semi-Markov processes in [31, 32].

For completeness, we briefly outline the derivation of
this modified master equation. Let P (i, nx, t) be the
probability that the motor is in the state i and has made
nx steps at the moment t. In the present model, nx
can only be modified when the transition form state 2
to state 3 is made. Hence, one immediately realises that
P (i, nx, t) obeys

∂P (1, nx, t)

∂t
=

∫ t

0

[w12(t′)P (2, nx, t− t′) + w13(t′)P (3, nx, t− t′)− w21(t′)P (1, nx, t− t′)] dt′

∂P (2, nx, t)

∂t
=

∫ t

0

[w21(t′)P (1, nx, t− t′)− (w32(t′) + w12(t′))P (2, nx, t− t′)] dt′

∂P (3, nx, t)

∂t
=

∫ t

0

[w32(t′)P (2, nx − 1, t− t′)− w13(t′)P (3, nx, t− t′)] dt′

Next, we introduce the discrete Laplace transform of
P (i, nx, t) with respect to nx

PL(i, q, t) ≡
∑
nx

eqnxP (i, nx, t) (25)

A simple calculation shows that PL(i, q, t) obeys almost

the same master equation as P (i, t). The only difference
occurs in the equation for PL(3, q, t) where in the first
term on the right hand side one needs to replace w32(t′)
by w32(t′)eq



7

∂PL(1, q, t)

∂t
=

∫ t

0

[w12(t′)PL(2, q, t− t′) + w13(t′)PL(3, q, t− t′)− w21(t′)PL(1, q, t− t′)] dt′

∂PL(2, q, t)

∂t
=

∫ t

0

[w21(t′)PL(1, q, t− t′)− (w32(t′) + w12(t′))PL(2, q, t− t′)] dt′

∂PL(3, q, t)

∂t
=

∫ t

0

[w32(t′)eqPL(2, q, t− t′)− w13(t′)PL(3, q, t− t′)] dt′ (26)

Finally, we observe that the generating function obeys

G(q, t) =

3∑
i=1

∑
nx

eqnxP (i, nx, t) =

3∑
i=1

PL(i, q, t) (27)

Hence, after solving (26), we can obtain the various mo-

ments of nx using (27) and (24).
In order to solve (26), we go over to the Laplace trans-

forms with respect to time, P̃L(i, q, s), of PL(i, q, t). If
we moreover assume that at t = 0 the motor is in the
state i = 1, nx = 0 we obtain the following linear set of
equations for P̃L(i, q, s)

sP̃L(1, q, s) = w̃12(s)P̃L(2, q, s) + w̃13(s)P̃L(3, q, s)− w̃21(s)P̃L(1, q, s) + 1

sP̃L(2, q, s) = w̃21(s)P̃L(1, q, s)− (w̃32(s) + w̃12(s))P̃L(2, q, s)

sP̃L(3, q, s) = w̃32(s)eqP̃L(2, q, s)− w̃13(s)P̃L(3, q, s) (28)

In Laplace space, the relation (27) becomes

〈
∫ ∞
0

e−steqnx(t)dt〉 =

3∑
i=1

P̃L(i, q, s) (29)

so that after doing a Taylor expansion of this relation in
the variable q we obtain

〈ñmx (s)〉 =
dm(

∑3
i=1 P̃L(i, q, s))

dqm
(q = 0) (30)

Finally, inverse Laplace transforms then allow us to find
the moments of the position of the motor.

The necessary calculations can easily be done using
Mathematica and give the following results

〈ñx(s)〉 =

(
1− (k− + s)S̃(s+ k−)

)
(k+(k3 + s))

s2
(
s+ k3 + k+ + (k3 − k−]k+S̃(s+ k−)

) (31)

〈ñ2x(s)〉 =
k+(k3 + s)

(
−1 + (k− + s)S̃(s+ k−)

)
T (s)

s3
(
k3 + k+ + s+ k+(k3 − k−)S̃(s+ k−)

)2 (32)

where

T (s) = −k3s− s
(
k+ + s− k−k+S̃(s+ k−)

)
+ k3k+

(
−2 + (2k− + s)S̃(s+ k−)

)
Notice that the current J(t) introduced earlier is noth-

ing but the time derivative of 〈nx(t)〉. In Laplace space

this implies 〈ñx(s)〉 = J̃(s)/s, a relation that is indeed
satisfied (compare (18) with (31)).

V. THE DIFFUSION CONSTANT

A. General results

The diffusion constant can be determined from the first
and the second moment of nx(t). Unfortunately it is not
possible to calculate these from their Laplace transforms
(31) and (32) for arbitrary times. However, in order to
determine the diffusion constant we need only the be-
haviour of these functions for t→∞ which can again be
obtained using the final value theorem for Laplace trans-
forms.

We therefore first make Laurent expansions of (31) and
(32) around s = 0. The results are of the form

〈ñx(s)〉 =
A

s2
+
B

s
+ · · ·

〈ñ2x(s)〉 =
2A2

s3
+
C

s2
+ · · ·

where the coefficients A,B,C, ... are complicated func-
tions of the transition rates k,k−, k3. They also depend
on the (Laplace transform of the) waiting time distribu-

tion S̃(s). For example, A is given by the right hand side
of (19). From the above relations we find that

lim
s→0

s(〈ñx(s)〉 −A/s2) = B

lim
s→0

s(s〈ñ2x(s)〉 − 2A/s2) = C

The inverse Laplace transforms of the terms between
brackets on the left hand side of these equations can im-
mediately be found. Using the final value theorem it
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follows that

lim
t→∞

(〈nx(t)〉 −At) = B (33)

lim
t→∞

(d〈n2x(t)〉/dt− 2A2t) = C (34)

since d〈nx(t)〉/dt(0) is finite. Combining these results,
we obtain

lim
t→∞

〈n2x(t)〉 − 〈nx(t)〉2

t
= (C − 2BA)

so that we get the final expression for the diffusion coef-
ficient

D = d20(C − 2BA)/2 (35)

The coefficients A,B and C in the Laurent expansions
of (31) and (32) were calculated using Mathematica. This
leads to the following general expression for the diffusion
coefficient of our model:

D = d20

(
(k3k+(1− k−S̃(k−))(k23 + k2+ − 2k−k

2
+S̃(k−)

+ (−k23 + k2−)k2+S̃(k−)2 − 2k23k+(k− + k+)dS̃/ds(k−))
)
/(

2(k3 + k+ + (k3 − k−)k+S̃(k−))3
)

(36)

In conclusion, we find that asymptotically in time, the
motor always diffuses with the diffusion constant given
by (36). Hence, there is no subdiffusion or superdiffu-
sion of the motor. This is in contrast to passive dif-
fusion, where viscoelasticity changes diffusive behaviour
into subdiffusive motion. Our results do not rule out
that there can be an early time regime in which such be-
haviour is present. However, simulations of our model
with various waiting times showed that the asymptotic
regime is almost reached immediately and also gave no
evidence for super- or subdiffusion. We therefore concen-
trate on the behaviour of the diffusion constant (36) as
a function of the various parameters in the model.

B. Stretched exponential survival time

We have numerically evaluated the expression (36) for
the parameter values quoted in subsection 3.2 both as a
function of ATP-concentration and as a function of the
parameters in the Weibull distribution.

In Fig. 5 we plot the diffusion constant of the motor
as a function of ATP-concentration for kS = 570 s−1

and four values of β. As was the case for the velocity,
the diffusion constant decreases if β decreases, i.e. when
the environment becomes less viscous and more elastic.
Again, for small enough values of kS , this trend reverses.
In Fig. 6 we plot the diffusion constant as a function of kS
for four β-values and an ATP-concentration of 1000 µM.
We see that while for each value of β, D decreases with
decreasing kS this effect is much stronger for higher β.
Assuming that kS is still inversely proportional to the
viscosity, this result implies that as the medium becomes
more elastic, the dependence of the motor’s diffusion con-
stant on viscosity becomes weaker.

�/���(�/�)

[���]�(µ�)

�
�

0 200 400 600 800 1000

5

10

15

20

FIG. 5. Diffusion constant D/d20 of the motor as a function of
ATP-concentration for β = 1, .75, .5 and 0.25 (top to bottom)
and kS = 570 s−1.
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FIG. 6. Diffusion constant D/d20 of the motor as a function
of kS for β = 1, .75, .5 and 0.25 (blue, orange, green and red
curve respectively) and [ATP] = 1000µM.

VI. FANO FACTOR

From the asymptotic results on the diffusion constant
and the velocity we can obtain the Fano factor F , also
sometimes called randomness parameter [36], which is
given by

F ≡ 〈n
2
x〉 − 〈nx〉2

〈nx〉
=

2D

d20J
(37)

For enzymatic reactions it is a quantity that can be
measured in single molecule experiments and that can
give information on the number of kinetic states N oc-
curing in the reaction. Indeed, it has been shown that
F ≥ 1/N [37, 38]. More recently sharper bounds on
this quantity have been obtained by considering thermo-
dynamic constraints on the cost of generating fluctua-
tions in, for example, the number of steps made by a
motor or the number of molecules consumed by an en-
zyme [22, 39, 40]. These results were obtained for Markov
processes. We are not aware of similar bounds for semi-
Markov processes. It would be interesting if measure-
ments of the randomness could give information on the
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importance of non-Markovian effects in reaction kinetics.

We calculated the Fano factor for our semi-Markov
model with a stretched exponential survival time and
for the parameter values quoted in section 3.2. Since
N = 3 in our model, the Markovian bound is F ≥ 1/3.
In Fig. 7 we plot the Fano factor as a function of ATP-
concentration for kS = 570 s−1 and four values of β.
Similar results are shown for kS = 50 s−1 in Fig. 8. The

�

[���]�(µ�)

0 200 400 600 800 1000

0.5

0.6

0.7

0.8

0.9

FIG. 7. Fano factor 2D/d20J of the motor as a function of
ATP-concentration for β = 1, .75, .5 and 0.25 (bottom to top)
and kS = 570 s−1.
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FIG. 8. Fano factor 2D/d20J of the motor as a function of
ATP-concentration for β = 1, .75, .5 and 0.25 (bottom to top)
and kS = 50 s−1.

bound F ≥ 1/3 is alvvays satisified. In these figures we
also see that the Markovian result lies below the semi-
Markov one. Our results show that care needs to be
taken in interpreting Fano factors in the presence of non-
Markovian effects. Indeed, for the parameter values of
Fig. 7 and for β = 0.25 one observes that F ≥ 1/2 which
could lead to the conclusion that N = 2 if one assumes
that the underlying process is Markov. It would therefore
certainly be interesting to see whether recent bounds on
the Fano factor [22] can be extended to the semi-Markov
case.

VII. CONCLUSIONS

In this paper we have investigated how the viscoelastic-
ity of the cytosol influences the motion of the molecular
motor kinesin. We have argued that in such a medium
the tethered motorhead experiences memory-dependent
friction. In the description of the motor motion in terms
of a kinetic model this leads to a semi-Markov model
where the step in which the motor moves forward has a
non-exponential waiting time.

We have determined expressions for both the velocity
(20) and the diffusion constant (36) of the motor for ar-
bitrary waiting time distributions. We introduced a cal-
culational technique that allows us to calculate the full
generating function of the position of the motor. We have
found that the motion of the motor always remains reg-
ular, i.e. that is moves with a constant velocity and that
the dependence on ATP-concentration is of Michaelis-
Menten form. The spreading of the position around its
average value is diffusive.

These results are general and do not depend on the
waiting time distribution. It would be interesting if in
an experiment one could measure the time between the
binding of ATP to the tethered head and the subsequent
binding of that head to the microtubule. Measuring the
distribution of that time would provide the necessary in-
put for our model. Since such measurements are not
available at the moment we argued on the basis of ex-
isting theoretical work that a Weibull distribution can
be a reasonable approximation. The Weibull distribu-
tion depends on two parameters: β which can be related
to the rheological parameter α and ks which, at least in
the viscous case, is inversely proportional to the viscos-
ity of the medium. We have calculated the velocity and
the diffusion constant of our model for a Weibull waiting
time density. For realistic parameter values both quanti-
ties decrease if the medium becomes more elastic and less
viscous (as measured by the parameters α or β). How-
ever, the dependence of V and D on β is rather weak
if β is not too different from 1. This could possibly ex-
plain why motor properties are not too much influenced
by viscoelasticity [14].

We have also calculated the Fano factor or random-
ness, a quantity which received a lot of recent interest in
the context of the thermodynamic uncertainty relations
[22, 39, 40]. We observe that also in the present model,
F is bounded from below by 1/N , where N = 3 is the
number of kinetic states in the model. However, it would
certainly be of interest to investigate the validity of the
thermodynamic uncertainty relations more generally for
semi-Markov processes and to see whether statistical ki-
netics can be used to get insight on the role of memory
effects in the motion of motors or in other enzymatic re-
actions.

In the present work we did not include the effect of
a force acting on the motor. This force can be due to
a cargo or can be exerted artificially with an optical
tweezer. The presence of a force will modify the wait-
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ing time distribution ψS(t) as it does in the viscous case.
At this moment we have no clear idea what will be the
precise effect: will it modify the functional form of ψS(t),
or will it remain Weibull and will only the parameters β
and ks be changed? Indeed for the viscous case, it is
known that only the rate kS is dependent on the applied
force. However, on the basis of our general results we be-

lieve that in the presence of a force, the motor will still
move with a constant velocity that will approach zero at
some stalling force. Within the present scenario it is not
possible to obtain subballistic or subdiffusive motion.
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