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Abstract

People’s behavior depends on extremely complex, multidimensional processes.

This poses challenges when trying to model their behavior. In the transportation

modeling community, great effort is spent to model the activity schedules of

people. Remarkably however, the frequency of occurrence of day-long activity

schedules obeys a ubiquitous power law distribution, commonly referred to as

Zipf’s law. Previous research established the universal nature of this distribution

and proposed potential application areas. However, these application areas

require additional information about the distribution’s properties. To stress-test

this universal power law, this paper discusses the role of aggregation within the

phenomenon of Zipf’s law in activity schedules. Aggregation is analyzed in three

dimensions: activity type encoding, aggregation over time and the aggregation

of individual data. Five data sets are used: the household travel survey from

the USA (2009) and from GBR (2009-2014), two six-week travel surveys (DEU

MobiDrive 1999 and CHE Thurgau 2003) and a donated 450-day data set from

one individual. To analyze the effect of aggregation in the first dimension, five

different activity encoding aggregation levels were created, each aggregating the

activity types somewhat differently. In the second dimension, the distribution of

schedules is compared over multiple years and over the days of the week. Finally,

in the third dimension, the analysis moves from study area-wide aggregated data
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to subsets of the data, and finally to individual (longitudinal) data.

Keywords: Zipf, power law, activity schedule, data aggregation, activity type

classes

1. Introduction

The transportation research community invests heavily in understanding

travel behavior. Modeling people’s behavior in travel demand models is an

extremely complex, multidimensional process. However, as demonstrated by

Ectors et al. [1], the frequency of occurrence of day-long activity schedules5

obeys a remarkably simple, scale-free distribution.

As discussed by Ectors et al. [1], the activity type exhibits a universal Zipf

power law in study area-wide aggregated data. They suggested two practical

uses of this universal distribution: (i) as an additional, necessary condition in

a model’s validation and (ii) as a possible way of extending mobility models10

which are based on universal mobility laws. Such models (e.g. TimeGeo [2] or

DITRAS [3]) are predominantly based on universal mobility laws and less on

disaggregated data, however they typically lack an integration of the activity

type in their predicted mobility patterns. They have few tunable parameters.

For these applications, it is necessary to understand the extent of the uni-15

versal distribution. Therefore, this paper attempts to stress-test the observed

distribution by investigating the effects of aggregation in several dimensions. In

this context, aggregation refers to the process of combining individual records

into one dataset. In other words, the phenomenon of a universal law is investi-

gated on different scales (e.g. from large to small spatial or temporal scales).20

Aggregation is analyzed in three dimensions: (i) the activity type encoding,

(ii) aggregation over time and (iii) the aggregation of individual records. For

example, in the third dimension the analysis moves from highly aggregated data

(e.g. data belonging to multiple individuals of a given study area) to subsets of

the data (e.g. based on demographic properties) and finally to longitudinal data25

for single individuals. By systematically testing the limits of the observed law,
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modelers, researchers and practitioners receive confidence in its extensibility.

Chen et al. [4] list unresolved issues with respect to transportation planning

applications. They mention how the ecological fallacy, i.e. the situation where

a conclusion about individual behavior is drawn from data about aggregate be-30

havior [5], is a contemporary issue. This paper partially addresses this issue in

the context of the phenomenon of Zipf’s law in activity schedules by investigat-

ing the properties of the distribution down to the lowest level of aggregation,

that is the individual level. Due to the power law’s nature, a longitudinal data

set containing observed activity schedules is required.35

In the remainder of this paper, first a literature review offers background in-

formation on Zipf’s law and other universal distributions within transportation

sciences. Subsequently, the data and basic methodology for estimating a power

law fit are detailed, after which the effect of aggregation is analyzed in three

dimensions: activity type encoding, aggregation over time and aggregation of40

individual data. A discussion section discusses some limitations of the research,

and it interprets the analysis results with respect to the two suggested practical

use cases of this distribution. The conclusion section finalizes this paper.

2. Literature review

The scale-free distribution which was observed in day-long activity schedules45

obeys a power law distribution [1]. The same distribution has been observed in

diverse natural and social processes. It is often referred to as Zipf’s law. The

observation and analysis of power laws has a rich history. In 1913, Auerbach

discovered that city sizes follow a power law. Estroup described in 1916 that

a power law distribution governs the frequency of words, but it was not until50

after Zipf, an American linguist, published his work in 1949 that such power

law distributions were called after him. Zipf investigated and popularized the

distribution. It was revealed that the same power law distribution holds for a

large number of events in various domains, extending from sizes of earthquakes,

people’s annual income, solar flares, to even the number of citations received on55
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papers [6, 7, 8].

The power law distribution belongs to the family of heavy-tailed distribu-

tions, meaning that the distribution goes to zero more slowly than an exponen-

tial function (that is, they have a heavier tail than exponential distributions).

Most commonly the discrete rank-size interpretation as Zipf’s law is mentioned

(Equation 1). For example, within the context of city sizes, the size of a city

at rank ri scales with a factor 1/ri relative to the size of the largest city. The

second largest city is half the first city’s size, the third largest one-third its size

etc.:

φ(ri) =
φ(r1)

ri
(1)

where φ represents frequency and r the rank. In other words, the size of a city

is inversely proportional to its rank.

Zipf’s law and other power laws can also be linked to Pareto distributions,

which take the more formal form of

P (X > x) =


(
xm

x

)α
if x ≥ xm

1 if x < xm
(2)

where xm > 0 the minimum possible value of X, and α > 0. Interpreting this

equation for city size S yields

P (S > s) =

(
s

smin

)−α
= as−α for s ≥ smin (3)

which states that the probability for a city to have a size greater than s decreases

as 1/s if α = 1 under Zipf’s law. In this equation, a is a scaling factor [9]. The60

exponent α in this cumulative density function yields an exponent value of α+1

in the corresponding probability density function (PDF). The above equations

also illustrate the scale-free nature of these distributions. Zipf’s law (or some-

times called the zeta distribution) can be considered as a discrete version of a

Pareto or power law distribution.65

No conclusive proof exist against the existence of a natural power law mech-

anism, nor does a general agreement exist on the origin of the widespread man-

ifestation of Zipf’s law. The fact that many observations appear to share the
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same exponent value desires a universal mechanism which explains this distri-

bution. However, most researchers agree that several mechanisms may lead to70

the observed power law distributions [8]. Examples of such mechanisms can be

found in literature [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] as this is not the focus of

the current paper.

Still, some research argues against Zipf’s apparent universality. In a large-

scale study, 73 cities from across the world were analyzed for conformity with75

Zipf’s law. The analysis showed that a Zipf’s power law had to be rejected in

more cities than expected [17]. A meta study based on 515 estimates from 29

studies on city size distributions found that the power law exponent is actually

closer to 1.1, being statistically different from Zipf’s value of 1.0 [18].

Zipf’s law has not been mentioned often within the domain of transportation80

sciences. Still, power law-like distributions have been proven in displacement

distance, gyration radius and location visiting frequency [19], as well as in lo-

cation visiting duration [20] and travel time in taxi travel [21]. Power law

distributions were also observed in bus transport networks [22] and in airport

networks [23]. Some researchers also used these universal distributions in their85

experiments [24, 25]. More recently, evidence for a universal Zipf power law in

activity schedules was given [1].

Activity schedules are often discussed in transportation-related literature,

especially within the context of activity-based modeling. Activity-based models

are a class of state-of-the-art models that attempt to predict the demand for90

transportation (in an agent-based fashion) as a derived demand from the desire

to participate in activities. Many such models typically build activity sched-

ules for a synthetic population in a sequential fashion: mandatory activities

are predicted first, after which non-mandatory (household maintenance) and

discretionary (flexible) activities are predicted in succession [26]. In a similar95

sequential approach, Rinzivillo et al. [27] proposed an Activity-Based Cascad-

ing (ABC) classification strategy to enrich mobility data that misses activity

purpose information. Interestingly, compared to many traditional activity type

inference approaches which annotate each movement independently, the ABC
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approach takes the context of full activity schedules into account, yielding su-100

perior classification accuracy. This approach is especially efficacious given the

highly imbalanced activity type distribution which needs to be predicted. The

activity schedule distribution in this paper obeys a power law distribution, which

may also be considered severely imbalanced. Such a cascaded classification ap-

proach might therefore be very useful when utilizing the universal activity type105

distribution within mobility models which are based on universal mobility laws

(see section 1).

3. Data description

This research employs five data sets: (i) a Household Travel Survey (HTS)

from the US, the USA National Household Travel Survey (NHTS) 2009 data110

set [28], (ii) the National Travel Survey (NTS) 2009-2014 from GBR [29], (iii)

a six-week travel survey from Germany, DEU MobiDrive 1999 [30], (iv) a Swiss

six-week travel survey CHE Thurgau 2003 [31] and (v) a 450-day set of trip

data which was donated by one individual from Flanders, Belgium. The 450-

day data was collected using the Moves smartphone application [32] combined115

with manual verification and trip purpose enrichment between June 26, 2016 and

September 18, 2017. There were 435 days with out-of-home activities. The OVG

HTS [33] activity encoding was used (10 classes). Table 1 tabulates the different

datasets with their characteristics. It indicates which distinct aspects made each

dataset suitable for an analysis in the indicated aggregation dimension in the120

following sections.

Out-of-home activity schedules are constructed out of trip purpose informa-

tion from these data sets. Trip purposes are concatenated into a sequence which

represents a schedule with the main out-of-home activities. From the NHTS

2009 data set 257,586 schedules could be extracted (±83,000 distinct sched-125

ules). From GBR NTS 2009-2014, 551,234 schedules were extracted. The DEU

Mobidrive 1999 and CHE Thurgau 2003 data sets yield, respectively, 13,244 and

8,522 schedules.

6



Table 1: Characteristics of the datasets

Name Origin

Total number of

extracted out-of-home

activity schedules

Number of

activity type

classes

Survey period

per individual

[days]

Survey period

USA NHTS 2009 United States 257,586 (iii) 37 (i) 1 03/2008 - 05/2009

GBR NTS 2009-2014 United Kingdom 551,234 23 7 2009-2014 (ii)

DEU MobiDrive 1999 Germany 13,244 22 42 (iii) 05/1999 - 12/1999

CHE Thurgau 2003 Switzerland 8,522 25 42 (iii) 08/2003 - 12/2003

450-day trip data Belgium; donated 435 11 450 (iii) 06/2016 - 09/2017

Note: Distinct feature motivating the analysis in aggregation dimension:

(i) Activity type encoding, (ii) Time, (iii) Individual data

4. Description of the estimation procedure

In order to evaluate the role of aggregation, first the methodology of fitting130

a power law distribution to the data needs to be defined. Often, a linear regres-

sion (using least-squares) is fitted to log transformed variables, yet this method

is flawed [8, 34, 35]. The slope estimate may exhibit systematic, large errors.

Additionally, the traditional R2 cannot be used as evidence for a power law dis-

tribution. Clauset et al. [34] proposed a method based on maximum likelihood135

estimation (MLE) combined with the Kolmogorov-Smirnov (KS) goodness-of-

fit (GoF) as a cutoff criterion. Some cutoff xmin is needed since the power law

probability distribution p(x) = Cx−α with α ≥ 1 diverges for x → 0, resulting

in an infinite area under the distribution. The cutoff parameter depicts the fact

that few data sets follow a power law distribution across their entire range; in140

most cases a certain fraction (e.g. the low frequency area) deviates from the

power law distribution. The R package called “PoweRlaw” [36] was developed

to automate the MLE + KS estimation process. The xmin parameter is opti-

mized by means of the KS statistic. The package also supports bootstrapping

procedures to evaluate parameter estimation uncertainty and to perform a hy-145

pothesis test with null hypothesis that a power law distribution is appropriate.

A 10% significance level is recommended in this test [34].

The PDF of a power law distribution takes the form of

p(x) = Cx−α (4)
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where C a constant and α the exponent of the power law. When fitting a Zipf’s

power law on non-numeric data such as words in a text (see Equation 1) or in

this research activity schedules, one fits a power law on rank-ordered (frequency)

distributions of the data. Doing so, one will estimate the parameters in f(n) =

C ′n−τ where n the (relative) frequency in the rank-ordered distribution and τ

the so-called Zipf exponent. For a given data set, the two exponents α and τ

are related by Equation 5 [37, 38].

α = 1 +
1

τ
(5)

The estimates in this paper from the PoweRlaw package are those based on

Equation 4, that is the estimates tabulated are α̂. Zipf’s exponent τ = 1 yields

an expected α = 2.0 according to Equation 5, in order to confirm Zipf’s law in150

activity schedules.

5. Aggregation in activity type encoding

This analysis is aimed at investigating the effects of a transformed activity

type variable on the activity type schedule distribution. The activity type vari-

able may be transformed in to a new aggregation level by grouping some of the155

activity types in to a new class.

Other research [39] found that there is a large effect from the choice of

activity type classes on the activity type classification accuracy in the context

of activity type inference in e.g. GPS data. In that research, the activity type

variable was optimized, as it was demonstrated how an inappropriate choice of160

the classes could be used to artificially increase classification accuracy. Although

the context is different, the effects of different encoding aggregation levels on

the distribution’s shape needs to be evaluated.

5.1. Encoding aggregation levels

To analyze the effect of aggregation in the first dimension, the activity type165

encoding, different activity type encoding aggregation levels were created for the
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USA NHTS 2009 data set as this data set contains one of the richest activity type

(travel motive) variables. Starting from the original 37 activity types, denoted

here as Level 0, four more sets of encodings were proposed, each aggregating

(or grouping) the activity type classes somewhat differently. The approach cor-170

responds to constructing an encoding tree and pruning the branches to increase

the aggregation level.

The first digit of the original Level 0 encoding corresponds to a higher-level

group, while the second digit specifies the activity type in more detail. This is

exploited to construct other encoding schemes.175

The level 1 encoding was constructed by retaining the first digit and subse-

quently grouping some of the second digits. This grouping of the second digits

was conducted according to common-practice and targeted at reducing the num-

ber of distinct activity types, yet not as strongly as for Level 2. This moderate

aggregation halved the number of activity types from 37 to only 18 distinct180

categories.

The Level 2a encoding was formed by allocating the most appropriate cate-

gory from the OVG HTS [33] to each NHTS category. This re-coding strategy

was used as it results in the same number of activity type classes as in Level 2b

(see further), yet it is made up out of different classes. This way, one can eval-185

uate whether the choice of activity type classes has an influence, independent

of the number of classes. Only ten distinct activity type categories remain.

The Level 2b encoding provides the same level of aggregation (ten distinct

categories), but is simply based on the first digit of the original USA NHTS

2009 encoding.190

The final activity encoding scheme, Level 3, offers the highest level of aggre-

gation into only three distinct classes. For this scheme the original activity types

were identified as either being of ‘Mandatory’, ‘Maintenance’ or ‘Discretionary’

nature [40].

These five activity encoding schemes were used to construct day-long activ-195

ity schedules for the individuals in the NHTS data set. Table 6 in Appendix

tabulates the different encoding levels side-by-side.
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Figure 1: Activity schedule distribution in the USA NHTS 2009 data set based on five different

activity encoding aggregation schemes.

5.2. Encoding effects on the distribution

The distributions of the resulting sets of schedules are illustrated in Figure 1.

One observes that the power law regime (the linear trend on a log-log plot)200

breaks down relatively quickly only in case of the most severe aggregation of

Level 3; for the other cases it seems valid for the majority of observations. In

general, the more aggregation is applied to the activity types, the less Zipf’s

law seems to hold across the whole data set. The effect seems in practice only

significant at extreme levels of aggregation. Figure 1 also shows how the sets205

of schedules based on Level 2a and Level 2b (both ten distinct activity types)

are nearly indistinguishable, although their activity coding is different in some

instances. Table 2 lists the power law estimates from the MLE + KS estimation

procedure. With increasing activity type aggregation also the deviation from

the theoretical Zipf’s exponent increases. Still, a power law distribution remains210

appropriate. The bootstrapping estimates are consistent with those based on

the singular MLE + KS procedure.
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Table 2: Estimation results from the R package poweRlaw for activity schedule distributions.

poweRlaw estimations

(MLE + KS)

Bootstrapping uncertainty

evaluation

Data set Aggregation or subset α̂ x̂min
Cum. pct

rejected
AM(α̂) SD(α̂) P-value

USA NHTS 2009 Level 0 (37 original act. types) 2.003 36809977 55% 2.006 0.070 0.255

USA NHTS 2009 Level 1 (18 activity types) 1.967 36837451 50% 1.972 0.065 0.166

USA NHTS 2009 Level 2a (10 activity types) 1.934 46135634 43% 1.939 0.065 0.998

USA NHTS 2009 Level 2b (10 activity types) 1.892 60781076 45% 1.899 0.071 0.741

USA NHTS 2009 Level 3 (3 activity types) 1.890 109512566 28% 1.891 0.084 0.835

USA NHTS 2009 Monday 2.290 46616705 67% 2.270 0.359 0.831

USA NHTS 2009 Tuesday 2.161 35581917 67% 2.182 0.236 0.820

USA NHTS 2009 Wednesday 2.152 45646004 68% 2.172 0.267 0.679

USA NHTS 2009 Thursday 2.088 48120314 71% 2.140 0.282 0.221

USA NHTS 2009 Friday 2.279 34509610 72% 2.284 0.250 0.901

USA NHTS 2009 Saturday 2.182 61045896 76% 2.176 0.288 0.134

USA NHTS 2009 Sunday 2.091 52160661 66% 2.060 0.200 0.982

USA NHTS 2009 Women 2.104 37421218 61% 2.115 0.114 0.551

USA NHTS 2009 Men 2.157 36416801 58% 2.165 0.116 0.783

USA NHTS 2009 Employed 2.344 83702196 64% 2.357 0.213 0.368

USA NHTS 2009 Unemployed 2.089 35493956 63% 2.102 0.134 0.907

USA NHTS 2009 Using public transport 2.497 5614144 43% 2.308 0.270 0.947

USA NHTS 2009 Not using public transport 1.997 36809978 55% 2.000 0.070 0.258

GBR NTS 2009 All data aggregated 1.802 4.213 14% 1.837 0.066 0.002

GBR NTS 2010 All data aggregated 1.802 4.649 15% 1.837 0.061 0.004

GBR NTS 2011 All data aggregated 1.832 3.642 13% 1.852 0.054 0

GBR NTS 2012 All data aggregated 1.908 24.271 21% 1.88 0.085 0.197

GBR NTS 2013 All data aggregated 1.803 4.06 13% 1.829 0.052 0.008

GBR NTS 2014 All data aggregated 1.852 12.918 18% 1.842 0.066 0.126

GBR NTS 2009-2014 All data aggregated 1.862 4.071 9% 1.869 0.117 0

USA NHTS 2009 All data aggregated 2.003 36809977 55% 2.006 0.070 0.255

DEU Mobidrive 1999 All data aggregated 2.053 23 52% 2.002 0.133 0.714

CHE Thurgau 2003 All data aggregated 1.929 16 49% 2.009 0.113 0.317

Donated Schedules from an individual 2.625 1 0% 2.299 0.296 0.169

Note: the different scales of xmin are caused by different weight variables.
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6. Aggregation over time

This section discusses the distribution of activity schedules over time. Ag-

gregation over time is interpreted here as the analysis over different temporal215

resolutions. Possible seasonality effects or other long-term variations are inves-

tigated. To this end, the GBR NTS 2009-2014 and USA NHTS 2009 data were

employed. Figure 2 illustrates the data.

6.1. Long-term variations

As can be seen in Figure 2a, the distribution of activity schedules appears to220

be extremely stable over a time period of several years. The estimates in Table 2

confirm this observation. The estimated power law exponent varies between

1.802 and 1.908 (ᾱ = 1.833) when using MLE and the KS cutoff criterion. The

mean exponent value in the bootstrapping procedure ranges only between 1.829

and 1.880 (ᾱ = 1.846).225

When aggregating the NTS data of these six years into a single data set,

a power law exponent of 1.862 is estimated through MLE + KS and 1.869 by

means of the bootstrapping procedure. These values are conform the previous

analysis, providing evidence that data may be aggregated over time without

significantly influencing the distribution, thanks to the apparent stability over230

time. This is an important finding as it enables the analysis of activity schedule

distributions through aggregation of the data over time in study areas of which

the HTS sample sizes are rather small.

One has to remark that the bootstrapping GoF test reveals that the distri-

bution in the GBR NTS data is not a clean power law. Only in 2 cases the null235

hypothesis (of a power law distribution being appropriate) is not rejected at a

significance level of 10%. However, no other typical alternate distribution such

as the exponential, log-normal or truncated power law distribution seems more

appropriate than a power law. The rejection of the null hypothesis in this partic-

ular data is most likely caused by the distinctive behavior in the high-frequency240

region. This might be caused by the survey design or by other factors. Still, a

power law seems (visually) appropriate.
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6.2. Day-of-the-week variations

The time dimension was also analyzed on a smaller temporal resolution, i.e.

for the days of the week. For this, the USA NHTS 2009 was used. Figure 2b245

shows the distribution of activity schedules for different days of the week. Vi-

sually, their distributions are nearly identical. Table 2 lists the power law fit

estimates. Again, estimates close to Zipf’s law’s value of 2.0 were found. They

appear consistently slightly higher than the estimate for the full data set. This

suggests that some schedules may be more typical for a particular day of the250

week, yielding higher frequencies for the top-ranked schedules on that partic-

ular day. Each subset does not (necessarily) have the same schedule at each

rank. The effect is however small since e.g. there are only small differences in

the distributions of weekdays and weekends (where a different travel behavior

is expected). There are however fewer distinct schedules on Sundays. Still, this255

seems not to have an effect on the power law exponent estimate because of the

xmin cutoff value. Additionally, none rejects the null hypothesis of a power law

distribution being an appropriate distribution.

6.3. Multiple observation windows in individual longitudinal data

Lastly, the aggregation of longitudinal individual data over time will be260

discussed in more detail in subsection 7.3 in order to investigate the buildup

and evolution of the power law distribution.

7. Aggregation of individual data

The fact that Zipf’s law seems valid on aggregated schedules for a whole

study area was established [1]. It is however interesting to explore the limits of265

Zipf’s law when using less aggregated data. This section will analyze this effect,

moving from study area-wide aggregated data to individual longitudinal data.

First a power law distribution is fitted to fully aggregated data. Subsequently,

subsets based on gender, employment status and public transport (PT) usage

were taken from the USA NHTS 2009 data set and a power law distribution was270
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Figure 3: Activity schedule distribution in the USA NHTS 2009 data set. The red full line

represents the fitted power law (according to the MLE + KS), the dotted blue line is the

extrapolation of this fit.

fitted to these subsets. Next, the six-week travel surveys DEU Mobidrive 1999

and CHE Thurgau 2003 allow to consider individual schedules, representing the

least amount of aggregation possible. Finally, a 450-day trip history belonging

to one person tests the validity of Zipf’s law (for this particular individual) in

longitudinal data.275

7.1. Aggregation to study area level

Figure 3 illustrates the remarkable power law in activity schedules for a com-

plete study area based on a single-day HTS. A nearly identical distribution is

found for the GBR NTS 2009-2014, DEU Mobidrive 1999 and CHE Thurgau

2003 data sets when each recorded day is treated independently and subse-280

quently aggregated. Table 2 lists the estimates for these experiments. All three

data sets have exponent values very close to Zipf’s value of 2.0. It appears that

aggregated schedules from multiple individuals will consistently exhibit a power

law distribution, also analyzed in more detail in Ectors et al [1].
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7.2. Subsets of a study area285

The USA NHTS 2009 was used to analyze subsets. It is a significantly large

data set, which avoids incorrectly rejecting a power law distribution due to

insufficient data. Furthermore, each time only 2 subsets were created in this

experiment. As illustrated in Figure 4, subsets were generated based on gender,

employment status and the use of PT. These subsets were chosen because they290

might yield different transportation behavior (and we could observe different

distributions for the subsets). Additionally, the subsets go from approximately

equal sizes in case of gender, to a highly unbalanced ratio for the use of PT.

Visually, their distributions are nearly identical. Table 2 lists the power law fit

estimates. Again, estimates close to Zipf’s law’s value of 2.0 were found. The295

estimated values of subsets differ slightly. This suggests that some schedules may

be more typical for a particular subset of the data, yielding higher frequencies

for the top-ranked schedules in that subset. Each subset does not (necessarily)

have the same schedule at each rank. Additionally, all subsets have a p-value

> 0.10, so the null hypothesis of a power law being an appropriate distribution300

cannot be rejected. It appears that subsets of the data will also exhibit a power

law distribution, possibly with slightly deviating exponent values and different

schedules at similar ranks, provided that the subsets are not made too small.

Figure 4a illustrates that the activity schedule distribution of men and

women are nearly equal. Table 3 lists the top 10 schedules for both groups. One305

observes how the highest-ranked schedules are the same for men and women,

though occurring at slightly different frequencies. In general (and without sur-

prise), the simplest schedules involving only one out-of-home activity occur with

the highest frequency. Onward from rank five, differences between men and

women begin to manifest. Most of the differences seem to confirm stereotypical310

presuppositions, e.g. men work out or do sports more often, women most often

do the grocery shopping.

As illustrated in Figure 4b, there are some differences in the higher-frequency

range between employed and unemployed persons. However, in general the dis-

tribution seems to obey a power law. Table 4 lists the top 10 schedules according315
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to employment status. For workers, the schedule with one work activity clearly

dominates whilst for unemployed persons the schedule with a single shopping

activity has the highest frequency. For workers, this schedule appears at a much

lower frequency than for unemployed persons, yet workers appear to frequently

schedule their shopping activities after their work, partially compensating for320

the lower ‘H - buy goods - H’ schedule frequency. The disproportionately high

frequency of ‘H - work - H’ for workers is most likely causing the power law

exponent estimate to inflate; it has a value of α̂ = 2.344 whilst for the group of

unemployed persons the MLE + KS procedure yielded an estimate of α̂ = 2.089.

In general, all schedules with only one out-of-home activity occur at least 50%325

less frequent for workers than for unemployed persons. This shows the impact

of work activities and the resulting need for chaining activities. It confirms the

well-known practice of considering ‘work’ as a mandatory activity in activity-

based models, being predicted with priority over other (non-mandatory) activity

types [41]. Although the ranks of corresponding schedules differ, still the distri-330

bution is a power law.

Finally, Figure 4c shows the schedule distribution for subsets based on PT

usage. The subset of PT users represents only 4.4% of the weighted USA NHTS

2009 sample. A person is a member of this subset if he or she used a PT mode

on the surveyed travel day. Despite the small subset, it still displays a power335

law distribution. However, the power law regime breaks down sooner compared

to the non-PT users since the number of distinct schedules is also much smaller.

With decreasing subset size, the power law regime will become smaller to the

point where insufficient observations are present to reliably observe a power law.

Table 5 lists the top 10 of schedules according to PT usage. Somewhat surpris-340

ingly, no large differences can be observed. Out of the two mode categories, the

non-PT mode is often considered most flexible as almost every destination can

be reached from door to door. Remarkably, this does not yield more complex ac-

tivity schedules: in fact the subgroup using PT has slightly more schedules with

greater than one out-of-home activity in its top 10, compared to the subgroup345

not using PT. This suggests that the PT group tends to chain more activities

17



Table 3: Top 10 schedules for men and women in NHTS 2009. ‘H’ is short for ‘home’

Men Women

Rank Schedule Frequency [%] Schedule Frequency [%]

1 H - work - H 10.382 H - work - H 7.288

2 H - education - H 4.401 H - education - H 4.385

3 H - buying goods - H 2.847 H - buying goods - H 3.488

4 H - visit friends/relatives - H 1.480 H - visit friends/relatives - H 1.854

5 H - gym/exercise/play sports - H 1.404 H - religious activity - H 1.333

6 H - religious activity - H 0.980 H - medical/dental services - H 1.031

7 H - get/eat meal - H 0.834 H - buy goods - buy goods - H 1.026

8 H - work - get/eat meal - return to work - H 0.728 H - gym/exercise/play sports - H 1.021

9 H - work - H - gym/exercise/play sports - H 0.693 H - get/eat meal - H 0.827

10 H - go out/hang out - H 0.683 H - work - buy goods - H 0.649

Table 4: Top 10 schedules for employed and unemployed people in NHTS 2009. ‘H’ is short

for ‘home’

Employed Unemployed

Rank Schedule Frequency [%] Schedule Frequency [%]

1 H - work - H 15.317 H - buy goods - H 6.002

2 H - buy goods - H 2.086 H - education - H 2.902

3 H - work - buy goods - H 0.992 H - visit friends/relatives - H 2.801

4 H - work - H - buy goods - H 0.942 H - medical/dental services - H 2.412

5 H - work - get/eat meal - return to work - H 0.938 H - gym/exercise/play sports - H 2.007

6 H - work - H - gym/exercise/play sports - H 0.911 H - religious activity - H 1.720

7 H - visit friends/relatives - H 0.872 H - buy goods - buy goods - H 1.595

8 H - religious activity - H 0.716 H - work - get/eat meal - H 1.408

9 H - gym/exercise/play sports - H 0.651 H - go out/hang out - H 0.833

10 H - work - get/eat meal - H 0.600 H - shopping/errands (other) - H 0.768

than users of other modes. Another difference is for example the schedule ‘H

- religious activity - H’ which occurs at a much lower frequency (0.326%) for

PT users than for others, yet the combination of a religious activity with eating

out and/or shopping afterwards does occur at a higher frequency for PT users350

compared to others.

7.3. The individual level

It is a challenge to recognize whether Zipf’s law is valid for activity sched-

ules from each individual separately, similarly to other universally distributed

quantities like displacement distance, location visiting frequency etc. [19]. The355
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Figure 4: Activity schedule distribution in subsets of the USA NHTS 2009 data set (using the

original activity encoding).
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Table 5: Top 10 schedules according to PT usage on the the travel day in NHTS 2009. ‘H’ is

short for ‘home’

Using PT Not Using PT

Rank Schedule Frequency [%] Schedule Frequency [%]

1 H - work - H 13.765 H - work - H 8.591

2 H - education - H 3.287 H - education - H 4.445

3 H - buy goods - H 2.642 H - buy goods - H 3.196

4 H - medical/dental services - H 1.578 H - visit friends/relatives - H 1.683

5 H - work - get/eat meal - return to work - H 1.478 H - gym/exercise/play sports - H 1.230

6 H - visit friends/relatives - H 1.384 H - religious activity - H 1.197

7 H - work - H - buy goods - H 1.069 H - work - get/eat meal - H 0.862

8 H - buy goods - buy goods - H 1.055 H - medical/dental services - H 0.819

9 H - go out/hang out - H 0.913 H - buy goods - buy goods - H 0.772

10 H - gym/exercise/play sports - H 0.805 H - go out/hang out - H 0.615

schedules are not fully independent in this case, but belong to one individual.

To analyze this question, three data sets were used: two six-week travel surveys

(DEU Mobidrive 1999 and CHE Thurgau 2003) and the donated 450-day trip

data set from one individual.

To analyze the six-week travel surveys, a variable (present in the original360

data set) with 10 trip purpose classes is used instead of the 23 classes orig-

inally in the survey. As the data is limited (six weeks) this will ensure the

highest possible frequencies for each schedule, so a power law might be discov-

ered in ‘only’ six weeks of data. As discussed in section 5, this choice should

not negatively influence the estimation results. Some individuals in the data365

have very few days within which trips were made, resulting in bad fits and

outlier-like exponent estimates. These ‘outliers’ were removed according to a

threshold of minimum number of schedules (days). This threshold was put

at 21 schedules, which is half the theoretically maximal number of schedules

(6 weeks × 7 schedules per week = 42 schedules). The DEU MobiDrive 1999370

data set contains 361 individuals. After filtering out some outlier-like individu-

als (with less than half of the schedules reported), 352 individuals remained.

After generating frequency tables for each individual, very low frequencies

are observed. At schedule ranks greater than 2 they are certainly lower than

5. A simple Chi-square GoF test is therefore not possible, as the assumption375
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of expected frequencies greater than 5 is violated. The KS GoF test was used

instead. Each observed distribution was tested against a predefined distribution

in SAS based on this statistic. The null hypothesis H0 is that a power law

distribution with specified α is a good fit.

If one α is imposed for all individuals, 12% (43 out of 352) have a distribution380

which is not significantly different from a power law distribution, based on a

significance level of 5%. Similar results are obtained using the CHE Thurgau

2003 data set: 4% of the individuals (9 out of 230) have a distribution that is

not significantly different from a power law distribution. Curiously, when α is

allowed to vary across the individuals, more cases reject H0. These results do385

not support the theory that Zipf’s law is also valid for individuals. However,

as can be seen in Figure 5a, the cases where the H0 of a good fit is rejected

seem to be not fully developed, having a large horizontal tail at the end of the

distribution.

A simulation was build to reveal how a power law distribution may be390

formed. The activity schedule frequency distribution of the DEU Mobidrive

1999 data was plotted in increasing fractions of the data (after randomization).

Some examples are given in Figure 5b. One observes a rather flat distribution at

first which then, over time, starts to grow into a power law distribution starting

from the left-hand side. The flat tail of the distribution reduces and gradu-395

ally moves to the right bottom side of the chart. This illustrates the fact that

sufficient data is needed to obtain sufficiently large schedule frequencies which

exhibit a power law distribution.

It appears that the individuals with a good power law fit have a quite ad-

vanced evolution of their power law distribution, whilst the individuals without400

a good fit seem still at the transition phase in the evolutionary process (still

having long flat tails) as visible in Figure 5a. At small sample sizes, the power

law distribution simply cannot be accurately determined. In literature, a mini-

mum sample size of n & 50 is proposed as a rule of thumb to reliably fit a power

law [34]. The mean sample size for the Mobidrive individuals is 37.625 < 50405

(this is even after excluding outliers). Therefore, more than six weeks of data
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are needed to consistently obtain power law distributions, allowing infrequent

schedules the chance to occur at sufficient numbers. The exact sample size most

likely differs for each individual. Additionally, a person’s schedules might not

be independent which could increase the need for sufficient data (e.g. there is410

a higher probability to have another home-work-home schedule after a home-

work-home schedule than a home-shopping-home schedule usually taking place

during the weekend). Future research will try to correlate the stage of evolution

to person characteristics.

Significantly more data than six weeks of trip data (incl. trip purpose) may415

be needed in order to verify the above theory. To the author’s best knowledge,

such data does not exist for a large group of individuals. However, a 450-day

data set of trip data was donated by a punctual user of the Moves smartphone

application [32]. This data exhibits a clear power law, as illustrated in Figure 6.

Two power law fits were included, the first based on the mean exponent value ᾱ420

from the bootstraps, the second based on a separate MLE step without excluding

any of the data. The difference between both fits illustrates how the distribution

might still be evolving. Infrequent schedules did not have the chance to occur

at a sufficient frequency to guarantee a power law regime over a large range.

Like in the other distributions (e.g. Figure 4), the power law regime breaks425

down at low frequencies. In previous figures, individual weights were used to

calculate frequencies which resulted in a smooth curve, whilst in Figure 6 data of

a single user is plotted without the use of weights. Therefore, discrete plateaus

of schedules occurring at the same frequency are visible.

The results from running the poweRlaw algorithms on this data are tabulated430

in Table 2. The estimated exponent is greater than estimated for other data

sets, although the bootstrapping results yield ᾱ = 2.299 which is not an extreme

value. Remarkably is also that the KS criterion does not exclude any data

(xmin = 1, the minimum frequency in this data). A higher than expected α̂

could also be a consequence of a still-evolving distribution, or perhaps the exact435

exponent value depends on person characteristics such as the intensity of activity

participation, age or employment. The null hypothesis of a good fit cannot be
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Figure 6: Activity schedule distribution of all donated 450 days of annotated Moves trip data

of one individual

rejected.

The buildup and evolution of the power law distribution may be investigated

by analyzing the staged aggregation of individual data over time. Figure 7 shows440

the observed schedule distribution of one individual after certain periods of time

since the recording started. For this also the 450-day data was used. One ob-

serves how after a few weeks an unmistakable power law becomes visible. Over

time, more distinct schedules occur and the relative frequencies of all schedules

decrease (the power law distribution seems to move down). This process seems445

to saturate at some point, up to the point where no new schedules are made.

This saturation point has most likely not yet been reached after 450 days of

observations. Still, the evolution of the distribution seems to slow down con-

siderably when comparing the change between 1 month & 6 months (∆t = 5

months) and 6 months & 1.23 years (∆t ≈ 8.75 months)(law of diminishing450

returns). Throughout its evolution, the distribution appears to maintain a rela-

tively constant slope on this log-log plot, which is analyzed quantitatively next.

Figure 8 illustrates the evolution of the power law exponent α̂ on a continuous
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scale. The evolution is plotted for several values of xmin so that the underlying

and uncontrolled effect of the KS criterion for a cutoff value xmin is excluded. In455

this data, an xmin > 5 is not expected. The frequency count of 1 is represented

by the bottom plateaus in Figure 7, that of 2 the second to last plateau etc.

One observes in Figure 8 how the evolution of α̂ with xmin = 1 (bottom plateau

is included in the estimation of α̂) is clearly different from the other ones (where

xmin > 1 and the bottom plateau (or more) is excluded). For values of xmin > 1,460

α̂ seems to evolve to a value close to the expected value of 2.0. For time periods

smaller than ten to fifteen weeks, the power law estimates are highly unstable.

This explains why in the two six-week travel surveys (DEU Mobidrive 1999 and

CHE Thurgau 2003) no consistent power law distributions could be found. For

these time periods a power law distribution cannot be fitted reliably to day-long465

schedule data due to insufficient observations.

8. Discussion

This research worked with five data sets as discussed in section 3 and Ta-

ble 1. The 450-day data was collected using the Moves smartphone application

combined with manual verification and trip purpose enrichment. Unfortunately,470

only longitudinal data from one person could be obtained. Investigating the dis-

tribution of activity schedules in longitudinal individual data is challenging as

such data is very scarce (and perhaps nonexistent for a large numbers of people).

There are many challenges in collecting such data; most likely the main diffi-

culty is to ensure participant commitment throughout a very long time period475

since the user has to consistently keep track of his or her activities. We have

attempted to work with this issue by including two six-week household travel

survey data sets in addition to the donated schedules from a single user. To the

authors’ knowledge, the two six-week data sets are the largest available travel

survey data sets for a considerate number of people.480

Another approach to deal with the scarceness of longitudinal data is to start

from a large amount of mobility data (e.g. GPS traces with stop detection) and
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then infer the activity type by means of a classification approach [27, 39]. An-

other approach would be to use the predicted schedules from an activity-based

model. There seem to be some issues or challenges with both approaches. A485

conceptual issue is that manipulated (having uncertainty) or completely syn-

thetic data would be employed in the process of evidencing limitations in the

observed law. Additionally, using the output from an activity-based model is

characterized by challenges since model validation remains a challenge in this

domain, and validating such model output is actually the intended application490

(circular reasoning). Therefore, this invalidates such an approach. The analysis

of individual activity schedules remains however an interesting and challenging

topic which will be addressed in detail in future research.

Previous research [39] found that there is a large effect from the choice of

activity type classes on the activity type classification accuracy in the context495

of activity type inference in e.g. GPS data. This effect allowed to artificially

increase the classification accuracy. Satisfyingly, no such effect is present here

since moderate changes to the activity type encoding do not significantly affect

the distribution’s shape. In most modeling situations, the activity type classes

may be chosen practically without limitations. The optimization of the activity500

type variable will not affect the universal law property of the data.

As mentioned in section 1, previous research [1] suggested two practical uses

of the universal activity schedule distribution: (i) as an additional, necessary

condition in a model’s validation and (ii) as a possible way of extending mobility

models which are based on universal mobility laws, but which typically lack an505

integration of the activity type. This paper attempts to stress-test the observed

distribution by investigating the effects of aggregation in several dimensions in

order to understand the extent of the universal distribution. By systematically

testing the limits of the observed law, modelers, researchers and practitioners

receive confidence in its extensibility. Relevant findings with respect to these510

applications include:

• From a practical point of view it is necessary to always consider a suffi-
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ciently large number of schedules in order to (visually) reproduce a power

law distribution.

• In most modeling situations, the activity type classes may be chosen al-515

most without limitations. The optimization of the activity type variable

(as in [39]) will not affect the universal law property of the data.

• A temporally consistent distribution across different modeling years should

be observable.

• Models producing individual, multi-day (long-term) schedules can be cal-520

ibrated or validated using this distribution (multi-day training data are

scarce and preferably entirely used for training the model, making them

inadmissible for subsequent validation).

• Different subsets of the population should also exhibit the universal dis-

tribution.525

• Though subsets of the data may exhibit the same universal rank-distribution,

they could have different activity schedules at each rank, affecting the

way they could be assigned to a synthetic population. If the model dis-

tinguishes subsets of the population (or if it distinguishes between week-

or weekend days), the model accuracy can be improved by using subset-530

specific distributions.

9. Conclusion

The transportation research community invests heavily in understanding

travel behavior. Modeling people’s behavior in travel demand models is an

extremely complex, multidimensional process. However, the frequency of oc-535

currence of day-long activity schedules obeys a remarkably simple, ubiquitous

and scale-free distribution commonly referred to as Zipf’s law. This paper dis-

cussed the role of aggregation within the phenomenon of Zipf’s law in activity
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schedules. Aggregation was analyzed in three dimensions: activity type encod-

ing, aggregation over time and the aggregation of individual data, in which the540

analysis moved from study area-wide aggregated data to subsets of the data,

and finally individual (longitudinal) data.

The analysis in three dimensions concludes that, except for extreme levels of

activity type aggregation, the effect on the power law distribution is negligible

and one could state that Zipf’s law in activity schedules is not significantly545

influenced by activity type encoding aggregation. The distribution appears

stable throughout time, looking at different temporal scales. No considerable

effect of subsetting the data were observed, provided that the the subset is

sufficiently large. The two six-week travel surveys allowed to analyze individual

schedules, yet this analysis did not support Zipf’s law. However, subsequent550

simulation and literature suggested that this is a consequence of insufficient data,

i.e. the distributions seem underdeveloped even though they are based on six

weeks of data. Finally, the 450-day trip history belonging to one person tested

the validity of Zipf’s law (for this particular individual) in longitudinal data. A

good fit was found. After roughly ten to fifteen weeks of collecting individual555

data, a power law exponent could be determined with relative confidence.

Previous research [1] suggested two practical applications for the observed

universal law: (i) as an additional component in a model’s validation, and (ii)

as an extra dimension in universal law-based transportation models. This work

provides information about the limitations or surprising consistencies modelers560

might expect in their implementations. The analysis results were discussed with

respect to these applications.

Future research will try to correlate the stage of evolution of a power law

activity schedule distribution to person characteristics, as well as modeling the

mechanism that leads to Zipf’s power law in activity schedules. Additionally,565

more tests will be done on simulated longitudinal data (originating from activity-

based models) or on activity schedules inferred from GPS trajectories combined

with an accurate activity type annotation. Furthermore, concrete test with

respect to the suggested applications will be conducted.
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Table 6: Five activity type aggregation levels for the USA NHTS 2009 dataset

USA NHTS 2009 activity description Weighted freq. Level 0 Level 1 Level 2a Level 2b Level 3

Appropriate skip 2016940865 -1

Refused 56316311 -7

Don’t know 175030832 -8

Not ascertained 27723241 -9

Home 1,34819E+11 1 1 1 Home Mandatory

Work 215609 10 10 3 Work Mandatory

Go to work 31062036426 11 11 3 Work Mandatory

Return to work 5732878676 12 11 3 Work Mandatory

Attend business meeting/trip 1066903014 13 12 3 Work Mandatory

Other work related 7901898136 14 10 3 Work Mandatory

School/religious activity 1132537921 20 20 11 School/Religious Mandatory

Go to school as student 11830627020 21 21 6 School/Religious Mandatory

Go to religious activity 6980876310 22 22 11 School/Religious Discretionary

Go to library: school related 453575041 23 21 6 School/Religious Discretionary

OS - Day care 828988699 24 21 8 School/Religious Maintenance

Medical/dental services 6302927234 30 30 10 Medical/dental services Maintenance

Shopping/errands 7097239018 40 40 4 Shopping/Errands Maintenance

Buy goods: groceries/clothing/hardware store 44001480325 41 41 4 Shopping/Errands Maintenance

Buy services: video rentals/dry cleaner/post office/car service/bank 11224064829 42 42 10 Shopping/Errands Maintenance

Buy gas 6603091100 43 41 4 Shopping/Errands Maintenance

Social/recreational 3779680002 50 50 9 Social/Recreational Discretionary

Go to gym/exercise/play sports 13430438123 51 51 9 Social/Recreational Discretionary

Rest or relaxation/vacation 3276538854 52 52 9 Social/Recreational Discretionary

Visit friends/relatives 17562038581 53 53 5 Social/Recreational Discretionary

Go out/hang out: entertainment/theater/sports event/go to bar 6838625710 54 52 9 Social/Recreational Discretionary

Visit public place: historical site/museum/park/library 1852249711 55 52 9 Social/Recreational Discretionary

Family personal business/obligations 4484117764 60 50 11 Family personal business/obligations Discretionary

Use professional services: attorney/accountant 1109208170 61 42 10 Family personal business/obligations Maintenance

Attend funeral/wedding 667934182 62 53 11 Family personal business/obligations Discretionary

Use personal services: grooming/haircut/nails 1467981696 63 42 10 Family personal business/obligations Discretionary

Pet care: walk the dog/vet visits 2939462521 64 52 7 Family personal business/obligations Maintenance

Attend meeting: PTA/home owners association/local government 1609806545 65 53 9 Family personal business/obligations Maintenance

Transport someone 309113327 70 70 8 Transport Someone Mandatory

Pick up someone 11035542385 71 70 8 Transport Someone Mandatory

Take and wait 1186149745 72 70 8 Transport Someone Mandatory

Drop someone off 11961497342 73 70 8 Transport Someone Mandatory

Meals 791727089 80 80 9 Meals Discretionary

Social event 2485502724 81 52 9 Meals Discretionary

Get/eat meal 20351291660 82 80 9 Meals Maintenance

Coffee/ice cream/snacks 2976589359 83 80 9 Meals Discretionary

Other reason 2592958077 97 90 11 Other Discretionary

# of distinct valid activity type classes: 37 18 10 10 3
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