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Abstract

Estimation of spatio-temporal travel demand requires accurate activity schedules as an input along with a mechanism to adapt
the schedules to changing travel options. Individuals are assumed to own a duty list of activities to be accomplished within
the simulated period. A partial order based on chronological and functional constraints determines the set of feasible activity
execution sequences (plans). Trip and activity timing is determined by schedule prediction and adaptation. Event times in a
schedule are constrained by conditions involving time-of-day (absolute time) and by duration constraints (relative time). Both
types of constraints are expressed using time deviation functions (TDF). Each start and end event in a schedule induces a set of
non-linear equations expressing the absolute and relative constraints. Time values are determined by solving the set of non-linear
equations using a relaxation method. A discrepancy evaluation function is used both as a criterion to decide convergence of the
relaxation and to compare alternative schedules for a given plan.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.
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1. Introduction

Individuals are assumed to have a private set of activities to be completed (before the respective deadlines) in order
to achieve their goals. Such set may be derived using the need-based model1 and is called the individual’s duty list. It
represents a set of activities to be performed in a given (multi-day) period. For each activity, the individual can choose
between one or more locations. An episode consists of a mono-modal trip followed by an activity. Either the trip or
the activity may be void in an episode. A plan is a particular sequence (ordered set) of episodes derived from the duty
list, yet without timing. In consecutive episodes, activities can take place at the same location (separated by a void
trip) and trips having different modes may be separated by a void activity. Finally, a schedule is the result of assigning
a time to each event (start/end of trip/activity). Plan and schedule generation are covered by this paper. The duty list
is assumed to be given.

The remaining of the paper is organized as follows: Section 2 discusses the research context and related work.
In Section 3 an overview of the proposed technique is presented. Next the concept of cyclic plans and schedules is
introduced in Section 4. Section 5 explains how plans are generated. The time deviation functions and the related
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discrepancy concept are introduced in Section 6 and the experiments are discussed in Section 7. Finally the paper is
concluded in Section 8.

2. Research context - Related work

Travel demand prediction by activity based models requires a detailed schedule for each individual in a synthetic
population. Such schedule depends on personal characteristics and on properties of the supply (travel duration, public
transit time tables). In MATSim2, each agent (individual) keeps a small list of alternative timed activity sequences
(MATSim plans) for the simulated period (typically one day). A MATSim iteration simulates trip and activity execu-
tion for each agent for the complete period. In each iteration, every agent selects one of its plans. MATSim simulates
trip execution and evaluates the utility of the executed plans. The initial plan for each individual is given. New
plans are generated using a genetic algorithm by adapting trip departure time, travel routes, travel modes or activity
locations. A plan resulting in high utility may replace a lower utility plan in the limited agent memory.

Albatross3 is positioned as a rule based computational process model (CPM) as opposed to utility maximization
methods. Activity selection is done in the program generation phase. Activity scheduling transforms the activity
program into an activity pattern. Scheduling is subject to situational, institutional, household, spatial, time, spatio-
temporal constraints. Albatross provides (1) a model of sequential decision making (2) models to compute dynamic
constraints (3) and decision trees (DT) representing choice behavior.

The actiTopp4 model generates activity plans and schedules for mobiTopp. It predicts activity type, duration and
start times but not location and mode. Predictions are based on multinomial logit (MNL) and random weighted
sampling trained on data from the German household travel survey MOP. Hence in some sense it replays observed
reality and does not start from first principles.

C-TAP5,6 (Continuous Target based Activity Planning) is a microscopic travel demand model that generates multi-
week schedules. It is based on discomfort reduction (similar to the need-based model), execution time quota and
effectiveness functions (that determine the utility of activity execution as a function of time-of-day and are used
to model shop opening times etc). Activity execution frequency and percentage of time targets are recorded from
observations (to support the execution time quota target). For each moment in time, C-TAP predicts the next activity
to be executed. It covers the three stages (duty list, plan and schedule generation) at once.

TASHA generates schedules by first predicting timing for individual activities and then resolving conflicts. Auld
et al. 7 propose to replace the common sense based rules for conflict resolution in TASHA. The authors use 52 conflict
resolution types. For each case the appropriate resolution strategy is determined by a decision tree trained on the
CHASE dataset that recorded the decision making process (as opposed to the decision outcome). This technique is
integrated in ADAPTS8 in which activity and attribute planning models and their associated horizons are used to drive
the schedule building process (during schedule execution simulation). This requires conflict resolution.

The idea is further elaborated by Javanmardi et al. 9. They replace the 52 conflict resolution types by conflict reso-
lution strategies to be used when a new activity overlaps an activity already present in the schedule. The strategies are:
(1) modify original, (2) modify new (activity to be inserted), (3) modify both and (4) delete original. A decision tree
based method is used to select the resolution strategy based on personal and schedule characteristics. The strategies
minimize the time changes for the planned activities. This leads to a minimization problem involving absolute values.
It is reduced to a set of linear programs (simplex). Each of these is solved and the one giving the best solution is kept.
One of the disadvantages is that all time shifts are weighted equally which may not be realistic. Another problem is
the need to record conflict resolution and schedule adaptation process data in order to build the decision tree required
to select a conflict resolution strategy.

iSHARP10 (Inventory-based Selective Household Activity Routing Problem) elaborates the HAPP11,12 and need-
based1 models. This line of research transforms activity scheduling problems to ARP (Activity Routing Problems)
that belong to the VRP (Vehicle Routing Problem) family. Chow et al. 10 extend the idea to an IRP (Inventory Routing
Problem) formulation. The inventory is emptied as needs grow and is restocked by executing activities at particular
times and locations. The time spent on an activity determines the remaining need. The iSHARP model reverses roles
w.r.t. the SHARP model so that the household member is the customer and the nodes (activities) are the suppliers
providing restocking. The authors try to make as many variables as possible endogenous in order to derive results
from first principles (as opposed to replaying observed reality). One of the advantages of the model is that the number
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of activities of a given type is an endogenous variable. The resulting comprehensive model leads to a complex MILP
Mixed Integer Linear Program) formulation for which only simple cases (1 person, 1 day) can be solved by the
CPLEX solver in reasonable time. Alternate Lagrange-multipliers based solution methods are considered and the
multi-day problem is decomposed in single day problems that need to be solved repeatedly in a cycle since they are
not independent. The comprehensive model produces interesting results but run times are problematic: for a 5 day
problem, 178 seconds are reported to be required for each individual in the population to produce a schedule.

3. Overview of the proposed technique

The technique proposed in this paper is aimed to be integrated in an agent-based simulator that models both regular
and mobility impaired travelers who make use of several modes of collective and public transportation services on
demand. In the next sections, plan and schedule generation are based on first principles (not on replaying recorded
reality). Trip and activity timing is chosen to minimize time pressure and waste of time. Following input data are
used: (1) travel duration for all modes (private vehicle based (bike, car), collective an public transportation) (2) trip
start times for time table based public and on demand collective transportation (3) the duty list for each individual and
the appropriate locations for each activity (4) a partial order relation (PO) on the set of activities in the duty list for
each individual (in a later stage this PO will be automatically derived from the duty list and given time limits).

The work flow consist of (1) plans generation (2) generation of time relationships within each plan (3) determina-
tion of trip and activity timing for each plan. The entity relationship diagram (ERD) for the input data is shown in
Figure 1.
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Fig. 1: Entity relationship diagram (ERD): travTim: travel times matrix, locations: available locations, activLoc: feasible locations for each
particular activity, dutyList: list of activities to perform, activType: activity types, PO: partial order restricting activity execution order (exogenous
data in current experiment).

4. Cyclic schedules and void periods

The basic simulation period consists of an integer number of consecutive days. History is assumed to be cyclic
i.e. an infinite repetition of periods all having the same properties. The border between successive periods can be
contained within any activity, trip or void period. There is no official start of the day: hence no simulation artifacts
are introduced.

Void periods are modeled explicitly. These can occur immediately before and immediately after activities. As a
consequence, waiting for a time-table based trip to start is a first class concept in the proposed model.

5. Plan generator

For each duty list, a partial order relation is taken as input for the experiments described in this paper. However,
such PO relation can (easily) be derived from logical dependencies (e.g. dropping children at school precedes pick-up)
and from chronological constraints following from facilities opening times. An example is shown in Figure 2a.

The PO is expanded into the list of all compatible total orders as follows. First the set of source vertices in the
acyclic digraph is determined. One after another, each of the source vertices is put on a last in first out (LIFO) stack;
then the vertex and its outgoing edges are disabled (removed from the graph). This is repeated recursively on the
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(a) Directed acyclic graph showing
the partial order relation for a par-
ticular duty list and generating 48
schedules.
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(b) Examples of time deviation functions. The respective reference points
are at t0,i. Large α values generate steeper transitions between the levels.
The respective roots are at t0,i + δi/2. Time on the horizontal axis is in
minutes.

Fig. 2: Main concepts of the technique: (a) Partial order to generate plans (b) Time deviation functions used for scheduling.

reduced graph and after recursion the vertex and its out-edges are enabled again. If during the recursion no more
source vertices are found, all vertices are on the LIFO and a compliant order is found; it constitutes a valid plan.

Total order generation requires an acyclic digraph as input, hence the cycle in the schedule needs to be broken.

6. Time deviation functions

The time deviation function (TDF) is based on the logistic function L(t, α) as follows:

f (t, t0, α, δ) = L(t − t0, α) + L(t − t0 − δ, α) − 1 (1)

L(τ, α) =
1

1 + e−α·τ
(2)

where t0 is the reference value, δ specifies the width of the indifference interval and α determines the steepness of the
transitions. Examples are shown in Figure 2b. The function can be interpreted as follows: if f (t, t0, α, δ) < 0 then the
value of t is too small and if f (t, t0, α, δ) > 0 then t is too large.

TDFs are used to relate time values to a reference value which is either (1) an absolute time (an externally specified
fixed value e.g. train trip start time) or (2) a relative time (variable yet unknown value e.g. end of previous activity).
In f (t, t0, α, δ) the reference is represented by t0 and the unknown variable is t.

The time values associated with events in episode j are t j,tb, t j,te, t j,ab, t j,ae where tb, te apply to trip begin/end and
ab, ae apply to activity begin/end. Each event is constrained by a set of TDFs: if and only if the sum of the TDFs for
a given event equals zero, the event is in an equilibrium with the events and fixed times it is related to.

Assume there are NE episodes; this leads to N = 4 · NE unknowns. Let t denote the vector of unknowns. The
equilibrium condition for variable t j is:

T j(t) =
∑
i∈I j

T j,i(t) = 0 (3)

where T j,i(t) is the i-th TDF that applies to t j. This results in a set of simultaneous non-linear equations. That
system is solved by relaxation. In each step, all t values except one particular t j are kept fixed. Because all TDF
are monotonically increasing

∑
i∈I j

T j,i(t) also is monotonically increasing. Furthermore, there is a required ordering of



	 Luk Knapen  et al. / Procedia Computer Science 130 (2018) 761–766� 765
L. Knapen et al. / Procedia Computer Science 00 (2018) 000–000 5

time values imposed by the episode sequence. In order to express that condition, we define the precedence relation as
follows: let D be the duration of the period for which to schedule, then the meaning of the � operator is given by the
following equation that defines the precedes (�) relation in terms of the less than (�) relation in a cyclic system of
size N:

t j−1 � t j ⇔
{

t j−1 � t j if ( j − 1) mod N < j
t j−1 − D � t j if ( j − 1) mod N > j (4)

The required ordering is specified by: ∀ j ∈ [0,N − 1] : t[( j−1) mod N] � t j � t[( j+1) mod N]. The precedence relation is
used because of the cyclic repetition of the episode sequence for the simulated period which contains N events.

The value for t j is then arg min
t j

|T j|(t)|. Finally, after relaxation, ∀ j : T j(t) = 0 but that is not necessarily true in

each intermediate relaxation step because of the required ordering of time values.
In order to find a unique solution, at least one t j value needs an absolute lower bound and at least one needs an

absolute upper bound. A detailed explanation of the relaxation procedure is out of the scope of the paper.
The (energy-like) discrepancy concept is used to check convergence and to compare schedules. The discrepancy

associated with the change of t j between arbitrary values tA
j and tB

j is Dj(tA
j , t

B
j ) =

tB
j∫

tA
j

T j(t)∂t j. We proved that the

discrepancy decreases in each relaxation step and use it to determine convergence. Note that the dimension of dis-
crepancy is time.

The discrepancy concept is also used to compare schedules produced by the plan generator. Note that for
t = t j

0 +
δ j

2 the TDF evaluates to zero. The discrepancy contribution by T j,i is the effort required to change the time
from the root of T j,i (which is t j,i

0 +
δ j,i

2 ) to the value t j that follows from T j(t) = 0.) The discrepancy in a schedule
is the sum of the contributions of all T j,i. It is given by equation (5). The schedule having the lowest discrepancy is
considered to be the optimal one.

D =
∑

j∈[0,N−1]

∑
i∈I j

τ j∫

t j,i
0 +

δ j,i
2

T j,i(t)∂t j (5)

Note that the integral always is positive since the TDF is monotonically increasing.
Finally, note that avoidance of a particular time period (e.g. a period of congestion charging or crowded shops) can-

not be modeled using a single TDF. The options before and after the unwanted period need to be modeled separately
using TDF that specify upper and lower bounds respectively. In each of these cases, the monotonically increasing
time deviation functions can be applied. Unfortunately, each such requirement doubles the number of alternatives to
be investigated.

7. Implementation and experimental results

A Java implementation was written. Duty lists and partial orders were created from schedules predicted by the
FEATHERS13 activity based model. Minimum, maximum and preferred duration values were specified for some of
the tasks in the duty list. If unspecified, the appropriate values are inherited from the activity types specification
(see ERD in Figure 1). Special attention was paid to the relaxation method. As an example, the graph shown in
Figure 2a generates 48 plans. Each of the plans has 10 activities and hence 40 unknown time values which results in
40 equations. These are composed by 87 TDF.

Only two α values were used: α = 0.8 for the void time between intended periods (activities and trips) and α = 4.0
for explicit constraints (such as work start time, shop opening period etc.). They are derived from common sense
values for the duration of the transition of the TDF from −1 to 1 (estimation based on surveys still to be done).

The discrepancy (which is a quality measure) of the resulting schedules ranged from 4 411[min] (worst) to 3 755[min]
(best). The best schedule is shown in Table 1. The first element in each row identifies the activity (task from the duty
list); the second element identifies the location. For both trip and activity, the period is given. Note the waiting period
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between the trip and activity for the BringGet2 (second bring/get) activity. A set of 98 284 cases was computed.
The number of plans/case to be evaluated was (avg:27.8, med:12, stdev:44.3, min:2, max:120) and the resulting run-
time/case was (avg:9.8, med:3, stdev:17.0, min:0, max:137) [msec] on an Intel(R) Xeon(R) CPU E5440 @ 2.83GHz
on Debian Linux.

Activity Location Trip period Activity period

BringGet1 L BringGet 08:15 - 08:19 08:19 - 08:21

Work1 L Work 08:21 - 08:54 08:54 - 12:52

Shop1 L Shop 1 12:52 - 13:20 13:20 - 14:05

Shop2 L Shop 2 14:05 - 14:11 14:11 - 14:26

BringGet2 L BringGet 14:26 - 14:53 15:24 - 15:26

Work2atHome L Home 15:26 - 15:30 15:30 - 19:28

Home2 L Home 19:28 - 19:28 19:28 - 19:58

Visit L Visit 19:58 - 20:08 20:08 - 21:08

Home3 L Home 21:08 - 21:18 21:18 - 08:15

Table 1: Schedule predicted for the PO shown in Figure 2a.

8. Future research

Generation of the partial order is crucial. Missing pairs cause the number of plans to grow hard. Establishing
the PO from household travel surveys, time use research and information about facilities availability periods requires
more research. Furthermore, an initial experiment to integrate multimodality by allowing individuals to drop the
private vehicle (bike, car) somewhere and picking it up at a later time delivered logically correct results but was
computationally inefficient. It allowed paired private vehicle drop/pick events to be inserted at any position in the
plan. This needs to be restricted by appropriate behaviorally sensible pairs in the PO.
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