
Empirically Evaluating
Process Mining Algorithms

Towards Closing the Methodological Gap

Toon Jouck

UHasselt - Hasselt University, Faculty of Business Economics

August 2018

ACKNOWLEDGEMENTS

This thesis is the product of four years of research at UHasselt. It did

not feel as a long and tiring journey to get to this point, except for the

last months maybe. However, there were many ups and downs along

the way. Some papers were accepted quickly, others took ages to get through all

the review rounds or were rejected. Collaborations were initiated and most of

them have led to results which I am proud of, but more importantly, they meant

meeting new people and produced inspiring discussions. Of course, none of these

things would have happened without the aid of other people who helped me to

complete this thesis and overcome the obstacles along the way. Therefore, I want

to thank those people.

First of all, I would like to thank each of my jury members for his/her

interesting questions and remarks which contributed a lot to this thesis. Prof. dr.

Andrea Burattin, Prof. dr. Josep Carmona, Prof. dr. Jochen De Weerdt, Prof. dr.

Koen Vanhoof, thank you all for your useful suggestions. I really appreciate the

constructive feedback you provided to improve this thesis. Thank you, Prof. dr.

Mieke Jans for your guidance and support during my four years here. I really

appreciated the collaboration for the course of business process analytics, even

though it meant doing a few extra tasks every now and then. Thank you, Prof.

dr. Massimiliano de Leoni for the pleasant research collaboration. You provided

that spark that was necessary for our research project to succeed and thank

you for being such a warm person in general. I absolutely enjoyed going out

for a beer at the BPM conference or in Eindhoven. A special thanks goes to my

supervisor Prof. dr. Benoît Depaire. You gave me the opportunity to start this

PhD. Without your intelligent counseling and infinite optimism, I would have

never been able to complete it. The hours of discussions we had contributed

i

immensely to this thesis, but also have helped me in other parts of my life.

Furthermore, I want to thank all of my colleagues of Quantitative Methods.

Mentioning each one of you and their respective contribution would take a lot

of space and time and would most likely fail in being exhaustive. So please

forgive me for being lazy, but know that I am indebted to all of you. Thanks to

you, I could count the number of days I did not want to go to work on one hand.

Each of you has contributed in his or her own way by listening, supporting, and

philosophizing about anything you can imagine. I greatly appreciate it that you

all sustained my endless series of silly jokes and puns. Moreover, I would like to

thank the people of the Information Systems group at TUe for having me there

on an inspiring research visit. Special thanks goes to Alfredo who worked with

me and helped me enormously with my research code.

I also would like to thank my family and friends because I could lean on

them in difficult times and for the distraction they offered when needed. There

is really no greater thing than being part of a large family with three brothers

and a sister together with their spouses and children. I am eternally grateful

for their advice and joy they bring in my life. A very special thanks goes to my

mother and father who encouraged me to embark on the PhD journey and who

stuck with me through thick and thin. Furthermore, I would like to express my

gratitude for my friends of the “bierpuntcrew” and of my basketball team for all

the joy that kept me motivated. Also thank you Marijke and Johan for letting

me use your (internet) facilities. Last but not least, thank you Lore for being

by my side no matter what. I do not know what I would do without you. You

contributed to this PhD in many ways, not only by doing all the ironing and

cleaning during the past two years. I will not do another PhD, I promise.

Toon Jouck

August 2018

ii

SAMENVATTING

Om competitief te blijven op een globale en snel veranderende markt,

hebben bedrijven hun focus verlegd van de producten en diensten naar

de manier waarop deze gemaakt en geleverd worden aan de klant.

Een gevolg daarvan is dat het beheren van de bedrijsprocessen belangrijker

is geworden. Bedrijven hebben steeds meer en meer data verzameld over de

uitvoering van deze bedrijfsprocessen ondersteund door informatiesystemen.

Dit heeft geleid tot een explosie van beschikbare procesdata.

Process mining technieken bieden de mogelijkheid om onontgonnen kennis

uit zulke procesdata, ook wel event logs genoemd, te halen. Deze technieken

reiken praktische inzichten en ideeën aan met het doel bedrijfsprocessen te

verbeteren en hun performantie te verhogen. Het startpunt van process mining

is het ontdekken van een procesmodel uit de event log, ook wel process discovery

genoemd. Het ontdekte model biedt een objectieve weergave van de realiteit

door de volgorde van de verschillende procesactiviteiten te visualiseren. Met

behulp van het ontdekte model kan je twee andere types van process mining

technieken toepassen, namelijk conformance checking en enhancement. Con-

formance checking technieken sporen afwijkingen op tussen een event log en

het ontdekte model. Enhancement technieken voegen informatie toe aan het

ontdekte model op basis van de gegevens in de event log. Voorbeelden hiervan

zijn kosten, eigenschappen van de procesinstantie en klantgegevens. Een es-

sentieel onderdeel van procesmodellen zijn de beslissingspunten waar bepaald

wordt welk pad de procesinstantie doorheen het proces volgt. Zo kan een bedrijf

bijvoorbeeld korting toekennen aan loyale klanten. Het ontdekte model bevat

zulke informatie niet. Met behulp van decision mining technieken kan je op

basis van de informatie in de event log leren hoe de beslissingen in het ontdekte

iii

model genomen worden.

Het stijgende aantal process discovery en decision mining technieken heeft

er toe geleid dat het onderzoek omtrent het empirisch evalueren van deze

technieken meer aandacht heeft gekregen. Deze evaluaties hebben als doel

om inzichten te leveren over welke technieken goed werken bij welke soorten

procesgedrag. Een empirische evaluatie van process discovery/decision mining

technieken vereist de volgende vier stappen: het bepalen van het doel van

de evaluatie, het selecteren van de procesdata, het kiezen van een geschikte

kwaliteitsmaatstaf en het toepassen van de correcte statistische test. Elk van

deze vier stappen biedt onopgeloste vraagstukken die het onderzoeksdomein

verhinderen inzichten te verkrijgen in de sterktes en zwaktes van process

discovery en decision mining technieken. Deze thesis spitst zich toe op de

uitdagingen rond de selectie van procesdata, kwaliteitsmeting en statistische

tests voor process discovery. Bovendien pakt deze thesis ook de uitdagingen rond

procesdata en kwaliteitsmeting voor decision mining evaluatie aan.

Het selecteren van de procesdata biedt de eerste uitdaging voor process dis-

covery evaluatie. Geen enkele van de bestaande evaluatiemethoden specifieert

een methodologie voor het kiezen van de geschikte procesdata voor het evalueren

van process discovery technieken. Bovendien bevat de bestaande verzameling

van reële event logs, die vaak gebruikt wordt voor evaluatie, geen referentiemod-

ellen waardoor ze niet toelaat om statistisch significante conclusies te veralgeme-

nen naar een procespopulatie. Anderzijds zijn bestaande artificiële datagenera-

toren beperkt in de proceskarakteristieken die ze genereren en garanderen ze

geen correct experimenteel ontwerp zodat de geldigheid van de statistische con-

clusies niet zeker is. De tweede uitdaging omvat het meten van de kwaliteit van

de ontdekte modellen. De huidige evaluatiemethoden vertrouwen op maatstaven

die sterk gelinkt zijn aan de modelnotatie en hierdoor de kwaliteitsresultaten

beïnvloeden. De finale uitdaging betreft de statistische tests die uitgevoerd wor-

den om algemene conclusies te trekken op basis van de resultaten. De huidige

evaluatiemethoden gebruiken niet-willekeurige steekproeven waarvan men de

populatie niet kan achterhalen en dus de resultaten niet veralgemeend kunnen

worden naar de populatie.

De belangrijkste uitdaging bij het evalueren van decision mining technieken

iv

is het ontbreken van een standaardprocedure. Als gevolg daarvan zijn er maar

enkele empirische evaluaties uitgevoerd die problemen ondervonden met de se-

lectie van procesdata en het meten van de kwaliteit. Deze evaluaties gebruikten

kleine niet-willekeurige steekproeven die niet veralgemeend kunnen worden

naar een populatie. Bestaande artificiële datageneratoren zijn niet ontworpen

voor het evalueren van decision mining technieken en bieden geen oplossing voor

de bestaande uitdagingen. Bovendien hebben de huidige evaluatiemethoden

verschillende kwaliteitsmaatstaven gebruikt die niet volledig objectief zijn. Tot

slot heeft de beperking tot kleine steekproeven geleid tot het ontbreken van

statistische analyses in de bestaande evaluaties.

Zolang het onderzoeksdomein de bestaande uitdagingen gerelateerd aan de

evalatie van process discovery en decision mining technieken niet aanpakt, zal

er geen consensus zijn over de kwaliteit van de bestaande technieken. Daarom is

het hoofddoel van deze thesis het ontwerpen van empirische evaluatieprocedures

voor zowel process discovery als decision mining die een objective vergelijking

en veralgemening van de resultaten toelaten. Het hoofddoel is verder opgedeeld

in drie onderzoeksdoelen.

Het eerste onderzoeksdoel omvat de Generating artificial Event Data (GED)

methodologie voor het genereren van willekeurige procesmodellen en event

logs voor empirische evaluatie van process discovery en decision mining tech-

nieken. De GED methodologie start met het definiëren van de procesmodelpop-

ulatie. Deze definitie specifieert de procespatronen die de modellen in de pop-

ulatie karakteriseren. In een volgende stap wordt een willekeurige steekproef

bestaande uit procesmodellen getrokken uit de populatie. Deze steekproef wordt

dan gesimuleerd in willekeurige event logs. De Process Tree and Log Generator

(PTandLogGenerator) voorziet de nodige algoritmes en ondersteuning om de

GED methodologie te implementeren en te automatiseren. De nieuwe algo-

ritmes maken het mogelijk om procespatronen, i.e. langetermijnafhankelijkhe-

den, meerkeuze en gedupliceerde activiteiten, te introduceren in de gegenereerde

modellen die niet mogelijk waren in bestaande datageneratoren. De evaluatie

van de PTandLogGenerator toont aan dat deze effectief de GED methodologie

ondersteunt en leidt tot nieuwe inzichten over process discovery technieken.

Bovendien maakt de uitbreiding, DataExtend genoemd, het mogelijk om pro-

v

cesinstantiekenmerken de beslissingspunten in een model te laten verklaren.

Als gevolg daarvan kan men op die manieer ook decision mining technieken

evalueren.

Het tweede onderzoeksdoel bestaat erin de GED methodologie te incor-

poreren in een nieuwe evaluatieprocedure voor process discovery technieken.

De nieuwe procedure focust op het meten van de kwaliteit van een techniek

om het onderliggende proces te herontdekken, onafhankelijk van de gebruikte

procesnotatie. De procedure vertrekt vanuit een modelpopulatie van waaruit

willekeurige referentiemodellen getrokken worden. Vervolgens, meet de pro-

cedure de kwaliteit van een discovery techniek met behulp van een classifi-

catiemethode die de kennis van het referentiemodel hanteert. Twee experi-

menten met vier process discovery technieken die verschillende procesnotaties

hanteren hebben aangetoond dat de nieuwe procedure de doelen van empirische

process discovery evaluatie ondersteunt: het vergelijken van technieken en het

analyseren van de impact van procespatronen op de kwaliteit van het ontdekte

model. Bovendien kunnen de resultaten van de experimenten veralgemeend

worden naar de modelpopulaties. Tot slot biedt de ontworpen implementatie

van de nieuwe procedure onderzoekers de mogelijkheid om hun experimenten

te delen zodat ze gemakkelijk gereproduceerd kunnen worden.

Het derde onderzoeksdoel omvat het uitbreiden van de evaluatieprocedure

voor process discovery technieken tot de eerste evaluatieprocedure voor deci-

sion mining technieken. Deze nieuwe procedure integreert opnieuw de GED

methodologie met de uitbreiding om referentiemodellen te genereren met pro-

cesinstantiekenmerken die de beslissingpunten beïnvloeden. In een volgende

stap meet de procedure de kwaliteit van de decision mining technieken om de

beslissingslogica te herontdekken op basis van de event log. De kwaliteitsmeting

hanteert opnieuw een classificatiemethode die de kennis van het referentiemodel

met beslissingslogica uitbuit. De experimenten tonen aan dat de nieuwe pro-

cedure toelaat om decision mining technieken te vergelijken en de impact van

procespatronen, zoals het determinisme van beslissingspunten, op de kwaliteit

van het ontdekte model met beslissingslogica te bepalen. Bovendien kan men,

door het starten vanuit de modelpopulatie, de bekomen resultaten veralgemenen

naar die populatie.

vi

In zijn geheel beoogt deze thesis om het uitvoeren van evaluatie-experimenten

te stimuleren en aan te zetten tot nog meer onderzoek naar empirische eval-

uatie van process discovery en decision mining technieken. Eerst en vooral

ondersteunen de nieuwe evaluatieprocedures het vergelijken van technieken

om onderzoekers te helpen de echte waardeverhoudingen tussen de verschil-

lende technieken te bepalen. Dit biedt een antwoord op de vraag “welke process

discovery techniek presteert het beste op event logs met moeilijk te ontdekken

procesgedrag?”, bijvoorbeeld gedupliceerde activiteiten. Die antwoorden helpen

onderzoekers in het beoordelen van de kwaliteitsverbetering van nieuwe tech-

nieken ten opzichte van bestaande technieken. Ten tweede, ondersteunen de

nieuwe evaluatieprocedures de analyse van de impact van bepaalde procespa-

tronen, bijvoorbeeld het determinisme van de beslissingspunten, op de kwaliteit

van de modellen/logica ontdekt door de geëvalueerde technieken. Zulke beo-

ordelingen zijn van vitaal belang om te begrijpen waarom de process discovery

en decision mining technieken werken in bepaalde situaties. Tot slot kan de

verworven kennis evaluatie-experimenten het onderzoeksdomein bijstaan om

aanbevelingen op te stellen over hoe de meest kwaliteitsvolle process discovery

of decision mining techniek in de praktijk gekozen kan worden.

vii

TABLE OF CONTENTS

Page

List of Tables xiii

List of Figures xvii

1 Introduction 1
1.1 Motivation and challenges . 2

1.2 Research objective . 5

1.3 Research methodology . 10

1.4 Outline . 12

2 Overview of process mining, process discovery, decision min-
ing and empirical evaluation 15
2.1 Process mining . 15

2.1.1 Event log . 16

2.1.2 Process models . 18

2.1.3 Types of process mining and process perspectives 20

2.1.4 Control-flow process discovery 22

2.1.5 Decision mining . 24

2.2 Current evaluation approaches . 26

2.2.1 Process discovery evaluation approaches 26

2.2.2 Challenges of process discovery evaluation 29

2.2.3 Decision mining evaluation approaches and their challenges 38

2.3 Requirements of artefacts . 40

2.3.1 Requirements for artificial model and log generation . . . 40

ix

TABLE OF CONTENTS

2.3.2 Requirements for process discovery evaluation procedure 46

2.3.3 Requirements for decision mining evaluation procedure . 49

2.4 Conclusion . 50

3 Generating artificial event data for process discovery and de-
cision mining evaluation 51
3.1 Generating artificial Event Data methodology 52

3.2 PTandLogGenerator: random model generation 55

3.2.1 Process trees . 55

3.2.2 Define a model population 59

3.2.3 Sample models . 62

3.2.4 Adding long-term dependencies 66

3.3 PTandLogGenerator: random event log generation 79

3.3.1 Setting Log Characteristics 79

3.3.2 Simulating a Log from a Process Tree 80

3.4 Data-flow extension . 88

3.4.1 Illustration of generating multiperspective logs 89

3.4.2 Formal steps to generate multiperspective logs 93

3.4.3 Illustration of automatic routing decision logic generation 103

3.5 Demonstration and evaluation . 107

3.5.1 Tool implementation . 107

3.5.2 Data generation setup . 108

3.5.3 Evaluation . 109

3.6 Limitations and threats to validity 121

3.7 Conclusion . 122

4 An integrated evaluation procedure for process discovery al-
gorithms 125
4.1 Integrated discovery evaluation procedure 127

4.1.1 Design and use of the evaluation procedure 128

4.1.2 The building blocks of the procedure 134

4.2 Implementation . 142

4.2.1 RapidProM implementation 142

x

TABLE OF CONTENTS

4.2.2 Extensibility of the RapidProM implementation 143

4.3 Demonstration and evaluation . 144

4.3.1 Setup of the first round of experiments 146

4.3.2 Analysis of the results from the first experiment 149

4.3.3 Second experiment . 157

4.3.4 Discussion of results . 157

4.3.5 Limitations and threats to validity 166

4.3.6 Requirements . 170

4.4 Conclusion . 175

5 An evaluation procedure for decision mining algorithms 177
5.1 A decision mining evaluation procedure 179

5.1.1 Design of the decision mining procedure 179

5.1.2 Adapted building blocks of the decision mining procedure 185

5.2 Demonstration and evaluation . 188

5.2.1 Experiment setup . 189

5.2.2 Analysis of the results . 195

5.2.3 Discussion . 202

5.2.4 Limitations and threats to validity 203

5.2.5 Requirements . 207

5.3 Conclusion . 208

6 Conclusions and future research 211
6.1 Main conclusions . 212

6.2 Future research opportunities . 216

A Appendix A 219

B Appendix B 221

C Appendix C 229

Bibliography 231

xi

LIST OF TABLES

TABLE Page

1.1 Overview of publications in conference proceedings and scientific

journals. 13

2.1 A fragment of an example event log in a make-to-order process 18

2.2 Categorization of process mining tasks using type and process per-

spective as dimensions, adapted from [31]. 22

2.3 Example simple event log Ls that consists of 30 cases representing 6

traces describing a make-to-order process. 23

2.4 Evaluating existing artificial generators on the requirements of GED 44

2.5 Requirements of process discovery evaluation procedure 49

3.1 Illustration of process tree translation to Petri net with possible traces. 58

3.2 Probability settings of control-flow patterns 61

3.3 Decision table for second routing decision 91

3.4 Decision table for third routing decision 91

3.5 Example trace of the make-to-order process with case/data perspective. 92

3.6 Example initial decision table for the second routing decision in the

make-to-order example process. 97

3.7 Decision table for second routing decision 100

3.8 Decision table for third routing decision 100

3.9 Initial decision table for first routing decision 104

3.10 Initial decision table for second routing decision 105

3.11 Final decision table for first routing decision 106

3.12 Final decision table for second routing decision 106

xiii

LIST OF TABLES

3.13 Input Parameters of Data Generation 110

3.14 Descriptive Statistics of a Sample from Population MPNew. 112

3.15 Descriptive Statistics of a Sample from Population MPData. 113

3.16 Evaluating “PTandLogGenerator” + “DataExtend” on the require-

ments of GED . 114

3.17 Correlations between variables in the scalability experiment. 116

3.18 Average rankings for process discovery algorithms for each quality

dimension within a model population. 120

4.1 Example model population parameters. 131

4.2 Illustration of overgeneralizing patterns. 139

4.3 Summary of the possible values of the four variables included in the

experimental setup. 146

4.4 Model population parameters for the first round of experiments. . . . 148

4.5 Average Ranks per Miner. 152

4.6 Average ranks per miner with infrequent behavior 153

4.7 Average Ranks per miner without infrequent behavior 153

4.8 Average ranks of Alpha+ miner per probability of Reoccurring Activities155

4.9 Average ranks of Heuristics Miner per probability of Reoccurring

Activities . 155

4.10 Average ranks of ILP miner per probability of Reoccurring Activities 155

4.11 Average ranks of Inductive miner per probability of Reoccurring

Activities . 155

4.12 Model population parameters for the second round of experiments. . 158

5.1 Decision table for first routing decision 183

5.2 Decision table for second routing decision 183

5.3 Discovered decision table for second routing decision 184

5.4 Decision table for third routing decision 187

5.5 Example cases of the make-to-order process. 187

5.6 Example of overlapping rules discovery. 191

5.7 Summary of the possible values of the three independent variables

included in the experimental setup. 192

xiv

LIST OF TABLES

5.8 Model population parameters for the experiments. 193

5.9 Average Ranks per Miner. 196

5.10 Average ranks per miner with infrequent behavior 198

5.11 Average ranks per miner without infrequent behavior 198

5.12 Average ranks of mutually-exclusive technique per determinism level.201

5.13 Average ranks of overlapping technique per determinism level. 201

5.14 Example cases for missing alignment illustration. 204

5.15 Example missing alignments. 207

A.1 Example event log about make-to-order process with “or” pattern, Lor.219

B.1 Results of the statistical tests to study the effect of discovery algo-

rithm on F1 scores. 221

B.2 Results of the statistical tests to study the effect of infrequent behav-

ior on precision scores. 222

B.3 Results of the statistical tests to study the effect of reoccurring activ-

ities on F1 scores for the Alpha+ miner. 223

B.4 Results of the statistical tests to study the effect of reoccurring activ-

ities on F1 scores for the Heuristics miner. 223

B.5 Results of the statistical tests to study the effect of reoccurring activ-

ities on F1 scores for the ILP Miner. 224

B.6 Results of the statistical tests to study the effect of reoccurring activ-

ities on F1 scores for the Inductive miner. 225

B.7 Results of the statistical tests to study the effect of decision mining

algorithm on recall, precision, and F1 scores. 225

B.8 Results of the statistical tests to study the effect of infrequent be-

haviour on recall, precision, and F1 scores. 226

B.9 Results of the statistical tests to study the effect of absence of infre-

quent behavior on recall, precision, and F1 scores. 226

B.10 Results of the statistical tests to study the effect of determinism level

on F1 scores for the mutually-exclusive technique. 226

B.11 Results of the statistical tests to study the effect of determinism level

on F1 scores for the overlapping technique. 227

xv

LIST OF FIGURES

FIGURE Page

1.1 Outline of the thesis . 14

2.1 Example Petri net describing the make-to-order process. 19

2.2 Overview of the three main types of process mining. Figure adapted

from [99]. 21

2.3 Process model discovered by the Inductive miner on the example

event log Ls. 25

2.4 Routing logic discovered by the Data-aware decision miner on the

example event log L. 25

2.5 General evaluation steps adapted from [51]. The chapters that focus

on specific steps are indicated with dashed lines. 31

2.6 Converted Petri net discovered by the Inductive miner on event log

with OR. 34

2.7 Converted Petri net discovered by the Flexible heuristics miner on

event log with OR. 34

2.8 Petri net discovered by the trace miner on event log with OR. 36

2.9 An example of non-block-structured behavior. 45

3.1 Generating artificial event data methodology. 53

3.2 GED methodology: a hierarchical design. 54

3.3 Example process tree PT1. 57

3.4 Flowchart of tree building algorithm . 63

3.5 Illustration of the tree building algorithm 65

xvii

LIST OF FIGURES

3.6 Figure 5 in [129] illustrating possible non-free-choice constructs in

Petri nets. 68

3.7 Example process tree PT2. 68

3.8 Illustration of the loop unfolding step. Left: the original bounded loop.

Right: the unfolded loop with maximum 2 iterations. 71

3.9 Unfolding of Tree PT2. 73

3.10 Unfolded choice tree PT×
2 . 76

3.11 Unfolded choice tree PT×
2 after removal of the first branch 76

3.12 Unfolded choice tree PT×
2 after removal of the first and third branch 77

3.13 Normalized branching probabilities . 77

3.14 Example tree used to illustrate the simulation algorithm 87

3.15 Petri net representing make-to-order example process. 90

3.16 Make-to-order process in BPMN notation. 94

3.17 Decision dependencies. 94

3.18 Process tree representing make-to-order example process. 96

3.19 Original process tree with two routing decisions ×1 and ×2 103

3.20 PT3 . 117

3.21 Scatterplots of the fitness and precision scores. 119

4.1 Overview of the integrated process discovery evaluation procedure . 129

4.2 Distribution of completeness of logs wrt. their respective process

models. 150

4.3 F1 scores for process discovery techniques for different probabilities

of Reoccurring activities . 154

4.4 F1 scores for process discovery techniques for different probabilities

of Loops . 159

4.5 F1 scores for process discovery techniques for different probabilities

of OR . 159

4.6 F1 scores for process discovery techniques for different probabilities

of Silent Transitions . 160

4.7 F1 scores for process discovery techniques for different probabilities

of Long-term Dependencies . 160

4.8 Model discovered by the Alpha+ Miner. 162

xviii

LIST OF FIGURES

4.9 Model discovered by the Heuristics Miner. 162

4.10 Model Discovered by the Inductive Miner. The red box highlights the

imprecise part of the model. 164

4.11 Model Discovered by the ILP Miner. The red box highlights the

imprecise part of the model. 165

4.12 An example of a long-term dependency. 167

4.13 Heuristics net Discovered by the Heuristics Miner with Replay Result171

4.14 Converted Model without Alignments Discovered by the Heuristics

Miner with Replay Result . 172

4.15 Converted Model with Alignments Discovered by the Heuristics

Miner with Replay Result . 173

5.1 Overview of the decision mining evaluation procedure 180

5.2 An example original process model. 183

5.3 Petri net representing make-to-order example process. 186

5.4 Distribution of completeness of logs wrt. their respective process

models. 195

5.5 Infrequent paths with case attribute dependencies. 198

5.6 Recall scores for decision mining techniques for different levels of

determinism. 200

5.7 Precision scores for decision mining techniques for different levels of

determinism. 200

5.8 F1 scores for decision mining techniques for different levels of deter-

minism. 201

5.9 Example of discovered Data Petri net with missing alignments. . . . 205

xix

C
H

A
P

T
E

R

1
INTRODUCTION

In order to remain competitive in fast changing global markets, companies

shifted their focus from products and services to the way these are created

and delivered to the customer [37]. As a consequence, the management

of business processes gained importance. Companies started to collect more

and more data about these processes supported by information systems, which

resulted in an explosion of process data [99].

Process mining techniques provide a way to extract hidden knowledge from

these data called event logs [37, 99]. These techniques provide empirical insights

and ideas for process improvement which can help businesses to achieve excep-

tional performance levels. The starting point of process mining is to discover

a process model directly from the event data. Such a model gives an objective

view on reality by visually representing the ordering between the different

process activities. This discovery of a model is called control-flow process dis-

covery [99]. Although it abstracts from other process perspectives such as time,

data and resources, it is an important source of information for understanding

and improving a business process.

One can further analyze the underlying business processes by comparing the

discovered model with an event log using conformance checking techniques [99].

1

CHAPTER 1. INTRODUCTION

A discovered process model may not represent all the different process paths

taken by cases in an event log. Manually comparing models with event log

information is tedious and error-prone. Conformance checking techniques auto-

matically highlight cases that deviate from a (discovered) process model. This

can help auditors to identify cases that deviate from the expected behavior

represented in a process model. Furthermore, conformance checking techniques

can also highlight deviations related to other process perspectives. For example,

two activities have been performed by the same person while this should have

been forbidden according to the so-called ‘four-eyes’ principle.

Finally, process mining allows to enhance a discovered process model with

information about time, resource, and data perspectives that are available in an

event log. Timing information enables us to understand the performance of a

business process. Also, other case data, such as costs and customer information

related to that case, may provide insights in the underlying business process.

For example, an essential part of a discovered control-flow model consists of

the routing decisions that influence the path that the process instances follow

throughout the process. A company may offer additional services for premium

customers on top of the delivered product. The control-flow model does not

display this information. However, event logs may contain extra information

on the process instance that can be extracted to enrich a control-flow model.

The task of augmenting control-flow models with rules that explain the routing

decisions in terms of characteristics of the process instance, is called decision

mining [28, 90]. It gives companies insights into how routing decisions in their

processes are taken and allows them to verify whether this conforms with both

internal as external policies.

1.1 Motivation and challenges

Over the past two decades, most attention within process mining has been paid

to the development of control-flow discovery techniques, from hereon referred

to as discovery techniques/algorithms. This resulted in dozens of new discovery

algorithms [33, 99]. Recently, the focus of the research on process discovery

has shifted. In the early days most research focused on developing techniques

2

1.1. MOTIVATION AND CHALLENGES

that could discover particular behavioral patterns that could not be detected

before. Recently, new algorithms are developed to outperform existing ones in

terms of the quality of the discovered control-flow model. This shift has led

to an increasing importance of the research on comparing different discovery

techniques [6, 33, 89] and requires a proper comparative evaluation procedure.

Empirically evaluating process discovery algorithms by comparison requires

the following high-level steps: determine evaluation objective, select data sets

as input for the discovery algorithms, measure the performance of discovery

algorithms, and apply statistical tests to draw general conclusions. Each of these

high-level steps presents challenges that remain unsolved in process mining

literature [100].

The first remaining challenge relates to determining the research objec-
tive(s) of the empirical evaluation. Research on process discovery evaluation

has identified two general objectives: benchmark state-of-the-art algorithms on

process data containing various behavioral patterns [6, 33, 115], and sensitivity

analysis to study the impact of discovery algorithms’ parameters on discovery

results [18, 86]. These objectives include the decision on which process discovery

algorithms to test. However, the choice of the appropriate algorithms is not

trivial as algorithms may discover control-flow models in different languages

that cannot express the same behavioral patterns. This so-called “representa-

tional bias” makes it more difficult to compare algorithms that apply different

languages in a fair way, i.e. to avoid comparing apples with oranges.

A second unresolved challenge is the selection of data sets that are used

as input of the algorithms to be tested. An empirical comparison of discovery

algorithms requires large amounts of appropriate data sets. The research com-

munity has set up a repository1 for benchmark data sets, both real-life and

artificial, however, the number of data sets remains rather small: 19 real-life

data sets and 14 artificial data sets (checked on May 17th 2018). Alternatively,

one could artificially generate unlimited amounts of process models and event

logs. However, the research on artificial generators has only focused on the

algorithms to generate artificial models and logs and does not provide an answer

1https://data.4tu.nl/repository/collection:event_logs

3

https://data.4tu.nl/repository/collection:event_logs

CHAPTER 1. INTRODUCTION

to the question which data is appropriate. As a consequence, some behavioral

process patterns that present a challenge for process discovery techniques, e.g.

duplicate activity labels and long-term dependencies [99], are not supported by

artificial data generators.

The third remaining challenge involves the choice of an appropriate
performance measure to compare the performances of applied algorithms.

Most evaluation approaches apply performance measures that quantify the

quality of the discovered model with respect to the input event log (e.g., see [33]).

However, the research domain lacks an agreement on which quality measures

to use. Evaluation studies have applied different measures which makes it

impossible to compare their results (e.g. [33] versus [6]). Furthermore, most of

the applied measures are not independent of the modelling notation and thus

require a conversion of the discovered model from one notation to another. Some

conversions do not preserve the behavior precisely due to “representational bias”.

However, even if a conversion guarantees behaviorally similar models, it cannot

always guarantee equal performance scores.

The final remaining challenge is related to the statistical tests applied dur-

ing empirical evaluation. A researcher applies statistical tests to generalize the

results from their experiments to make a general statement: e.g., on average

algorithm A outperforms algorithm B when applied to processes with looping

behavior. However, the validity of these generalizations is based on the design

of the experiment, e.g. algorithms A and B should be tested on random samples

of event logs with looping behavior while controlling for other process behavior.

Little research in the process mining domain has focused on designing experi-
ments. A correct experimental design would prevent a generalization based on

a non-random sample of event logs.

Similar to control-flow process discovery, also the subdomain of decision

mining has recently seen a surge in the development of new techniques [30].

The increasing number of decision mining techniques raises the importance

of evaluating the quality of the returned process models with decision rules.

Currently, no standard evaluation procedure has been proposed in literature.

Most techniques have only been evaluated informally. Existing formal evalua-

tions, such as [28, 74], have applied different approaches for data selection and

4

1.2. RESEARCH OBJECTIVE

quality measurement. Furthermore, due to their small scale, no statistical tests

can be applied to determine the significance of the results. As a consequence, it

is impossible to compare the techniques objectively which is necessary for the

research domain to gain insights in the strengths and weaknesses of the existing

approaches. Therefore the challenge remains to provide data selection and
quality measurement approaches embedded in a standard evaluation
procedure that allows for the objective comparison of decision mining
techniques.

As long as the research community cannot overcome the remaining chal-

lenges of process discovery and decision mining evaluation, there will be no

consensus on the quality of the available techniques. The goal of the evaluation

of discovery and decision mining techniques is to understand which algorithms

perform well on which process data, i.e. having different behavioral patterns

that are relevant to the “real world”. This thesis will tackle the data set selec-

tion, performance measurement and experimental design challenges that are

currently unresolved for process discovery evaluation. Additionally, the thesis

will work on the remaining challenge to provide a standard evaluation procedure

for the objective comparison of decision mining techniques.

1.2 Research objective

The above defined subset of remaining challenges for process discovery and

decision mining evaluation lead to the following main research objective:

Design empirical evaluation procedures for both process discovery
and decision mining that enable objective comparison and generaliza-
tion of results with the goal to understand why and when an algorithm
works.

This procedure assumes a predefined general evaluation objective, i.e. bench-

marking algorithms or performing a sensitity analysis of algorithm parameters.

Then the procedure defines standard methods with tool implementations for

data selection, performance measurement, and statistical tests ensuring a sound

5

CHAPTER 1. INTRODUCTION

experimental design. The generated procedures would enable us to determine

which discovery/decision mining algorithms perform well on which process data.

This enables us to understand why an algorithm works well in a particular

situation and help us to objectively determine the quality ratios between differ-

ent discovery/decision mining algorithms. Consequently, such knowledge would

make the choice of a suitable discovery/decision mining algorithm in practice

easier. Moreover, the insights of the empirical evaluations of current algorithms

could be used to guide the development of superior algorithms, i.e. measured in

terms of the quality of the discovered models.

The main research objective is divided in several research goals. The first

goal involves the creation of a general methodology and algorithms with
tool implementation for the generation of artificial process models and
event logs. The methodology focuses on how to generate artificial models and

logs for empirically evaluating process discovery/decision mining techniques.

This methodology starts from a population of process models to ensure a solid

experimental design of the following evaluation experiments. This design guar-

antees valid statistical conclusions based on the experiment results. The al-

gorithms for model and log generation provide implementations of the new

methodology that support empirical evaluations by allowing researchers to spec-

ify model populations and generate (large) random samples of models and logs.

The focus lies on the control-flow perspective which can be augmented with data

attributes to include the routing decision perspective. This research goal tackles

the previously identified challenges for data set selection and experimental

design for both process discovery and decision mining.

The second research goal comprises a notation independent procedure
with tool support for empirical process discovery evaluation. The new

procedure combines the generation of process models and event logs of the first

goal together with a classification approach to empirically evaluate and compare

discovery techniques. The performance measurement uses the discovered model

to classify labeled test observations as allowed or not allowed. This classification

approach makes the evaluation independent of the modelling notation used by

the discovery algorithms. Furthermore, it proposes standard performance mea-

sures to compare algorithm performances. As such this goal tackles the challenge

6

1.2. RESEARCH OBJECTIVE

of performance measurement selection for process discovery evaluation.

The third research goal covers the the development of a standard pro-
cedure for empirical decision mining evaluation. This procedure is an

extension of the process discovery procedure to decision mining. It aims at fill-

ing the currently existing gap of a general evaluation procedure for decision

mining techniques including the model and log generation of the first goal with

a standard performance measure.

To motivate the choices for the above research objective and research goals,

the choices are positioned within the process mining field. The evaluation pro-

cedures (including the artificial data generators) developed in this thesis are

situated within the process mining research domain. Process mining aims to

create artefacts, i.e. in the form of techniques and methods, that aim to solve a

practical problem of general interest which positions process mining within the

methodological framework of Design Science Research (DSR) [55].

An important part of DSR is the evaluation of the created artefacts. Venable

et al. [119] identify six different purposes for the evaluation in DSR:

• How well a designed artefact achieves its expected environmental utility,

i.e. its main purpose.

• Provide evidence that the developed artefact will be useful to solve some

problem or make an improvement.

• Determine whether the created artefact improves over the current state-

of-the-art.

• Beside an artefact’s utility other relevant attributes should also be demon-

strated, e.g. functionality, completeness, consistency, accuracy, perfor-

mance, reliability and usability.

• Evaluate whether the artefact has other (undesirable) impacts, otherwise

known as side effects.

• Discerning why an artefact works or not.

7

CHAPTER 1. INTRODUCTION

According to Venable et al. [119] the evaluation of an artefact always starts

from artificial formative setting that evolves to a naturalistic/realistic summa-

tive setting. Formative evaluations have the purpose to improve the artefact

under evaluation, while the purpose of summative evaluations is to judge to

what extent the outcomes of the artefact match the expectations. The way in

which the evaluation of an artefact evolves depends on the circumstances and

the type of the artefact under consideration. Venable et al. [119] describe four

different ways (evaluation strategies):

• Quick and simple: for simple and low risk artefacts the evaluation pro-

gresses quickly to naturalistic summative evaluations.

• Human risk & effectiveness: for artefacts with social risk and/or long run

impact the evaluation emphasizes artificial formative evaluation early

on, but progresses quickly to more naturalistic formative and summative

evaluations.

• Technical risk & efficacy: for artefacts with technical risk and/or expensive

to evaluate in a real setting. The evaluation iteratively uses artificial

formative evaluation in the beginning before moving to artificial summa-

tive evaluations to rigorously determine if the benefits derived from the

artefact are due to the artefact and not some other factors. It ends with

more naturalistic summative evaluations.

• Purely technical artefact: if the artefact is purely technical or its use

is well in the future. The evaluation is entirely artificial as naturalistic

experiments are irrelevant.

This thesis focuses on the Technical risk & efficacy and Purely Technical

evaluation strategies as the interest mostly lies on the technical aspects of the

process mining algorithms. Furthermore, the thesis focuses on the evaluation

purpose related to understanding why an artefact (process mining algorithm)

works and when it works. As a result, this thesis uses artificial event data to

evaluate process mining algorithms. Artificial event data enables the setup of

8

1.2. RESEARCH OBJECTIVE

controlled experiments which helps to understand why an algorithm performs

as observed in the experiments.

The evaluation strategies in this thesis with a focus on artificial event

data deviate from what is often applied in other process mining evaluation

research papers. In this respect, consider the papers of De Weerdt et al. [33]

and Augusto et al. [6] where the primary purpose is to compare which state-

of-the-art algorithm performs best on real-life event data. Not denying the

importance and relevance of those evaluation studies, their purpose differs from

the purpose in this thesis. The focus on artificial event data combined with the

evaluation purpose to understand why an algorithm works has received less

attention. The goal of this thesis is to provide evaluation procedures for process

discovery and decision mining that allows to understand why an algorithm

works based on artificial data that is generated in a rigorous and structured way.

Additionally, the evaluation procedures also aim to enhance the reproducibility

and comparability (between different studies) of the evaluation results.

The relevance of evaluating process mining techniques based on artificial

data is illustrated by the use of such data in evaluations in closely related re-

search domains such as operations research and machine learning. In operations

research and vehicle routing problems in particular, a standard set of artificial

problem instances has been used to compare and test different algorithms (called

heuristics), shared on websites, e.g. [77, 97]. In machine learning the widely

used UCI repository [2] contains also artificial data sets such as the MONK’s

problems data set to test and compare a wide range of induction algorithms [78].

Moreover, researchers have developed artificial data generators for machine

learning and have illustrated that the artificially generated data can be effec-

tively used to test machine learning algorithms [81]. Finally, researchers find

their way to these artificial data generators as they are incorporated in machine

learning toolkits, e.g. the “make_classification” function part of the sci-kit learn

package [82] for machine learning can be used to create artificial classification

problems in order to test classification algorithms.

In contrast to establishing a repository of artificial data sets as done in

operations research and machine learning, this thesis opts to develop an artificial

data generator. The main motivation for this choice is that benchmark sets that

9

CHAPTER 1. INTRODUCTION

are used for a long time may result in researchers developing algorithms that

overfit the data sets in the repository [51]. Another reason for not creating a

repository is that one cannot precisely estimate which effects researchers want

to test in the future. As such, a generator offers the flexibility to researchers to

control for the effects they intend to study.

Finally, the evaluation procedures presented in this thesis are generic rather

than being fixed and exhaustive. This thesis develops the essential components

of those procedures with an implementation to stimulate the uptake by other

researchers. However, this thesis does not claim that the created components are

exhaustive for every process discovery/decision mining evaluation experiment.

Researchers can extend the procedures to accommodate it for their specific

evaluation objectives, e.g. add hyperparameter optimization for the evaluated

algorithms.

The following subsection describes the research methodology applied in this

thesis to achieve all the research objectives.

1.3 Research methodology

The research goals presented in the previous section position this thesis within

the methodological framework of design science research. “Design science is

the scientific study and creation of artefacts as they are developed and used

by people with the goal of solving practical problems of general interest” [55].

These artefacts can have different types: constructs, models, methods and in-

stantiations [55]. The types of the research objectives in this thesis are methods

with corresponding instantiations (implementations). Design science research

requires six fundamental steps [84]: identify problem and motivate, define

requirements of artefact, design and develop artefact, demonstrate artefact,

evaluate artefact and communicate results. The remainder of this section will

discuss how the design science steps are applied in this thesis.

This thesis starts from the observation that important challenges in the

empirical evaluation of both process discovery and decision mining remain

unresolved. This observation constitutes the problem identification step in

design science. To get and communicate a clear and precise understanding of the

10

1.3. RESEARCH METHODOLOGY

problem at hand, a literature study of both process discovery, decision mining

and their evaluations has been conducted and reported in the second chapter

of this thesis. The challenges of data set selection, performance measurement

and experimental design for process discovery evaluation and lack of a standard

evaluation procedure for decision mining are illustrated and motivated based

on the current state-of-the-art in process mining research.

The second step of design science research involves the description of the

artefacts that could address the identified problems (challenges). This descrip-

tion includes the identification of specific requirements necessary for the artefact

to fulfill. Section 1.2 briefly described the artefacts developed in this thesis. The

second chapter will elaborate further upon these artefacts and their specific

requirements. First, the requirements for the methodology on model and log

generation are specified. As this artefact focuses on a valid experimental design,

it will be built on principles from both statistical literature and existing process

discovery/decision mining evaluation experiments. Secondly, the limitations

of current artificial data generators will lead to specific requirements for the

algorithms that generate process models and logs. Subsequently, literature on

current process discovery evaluations reveal the requirement to decouple quality

measurement from a specific modelling notation. Finally, the scarcity of formal

evaluations of decision mining algorithms illustrate the lack of standard meth-

ods for data set selection and performance measurement that can be combined

in a first procedure for decision mining evaluation.

Based on the description of artefacts with their detailed requirements, arte-

facts are designed and developed in the third step of design science research.

This thesis uses ideas from experimental design in statistics to develop the

methodology on model and log generation for empirical evaluation. Different

from current algorithms for model and log generation, the algorithms proposed

in this thesis start from the new methodology and support all the identified

requirements listed in the previous step. The concepts of empirical evaluation

in data mining, more specifically the classification approach, is used to design a

notation independent procedure for process discovery evaluation. Subsequently,

that procedure is extended to allow for decision mining evaluation.

The developed artefacts tackle the identified problems that sparked the

11

CHAPTER 1. INTRODUCTION

design science research project. Therefore, the demonstration and evaluation

steps of design science aim to prove that the generated artefacts can effectively

solve these problems. This thesis will include a demonstration and evaluation

of all generated artefacts through expert evaluation and illustrative scenarios.

The artefacts are described in papers that were submitted to a peer review

system of scientific conferences and journals. Moreover, the illustrative scenarios

include both small- and large-scale empirical evaluations of process discovery

and decision mining algorithms. Discussions of the results of these evaluations

identify both strengths and weaknesses of the developed artefacts.

Finally, this thesis serves as a way to communicate the results relating

to the developed artefacts. Besides the thesis, Table 1.1 lists the publications

and submissions to international conferences and peer-reviewed journals to

communicate the knowledge on the developed artefacts.

1.4 Outline

This thesis is organized into six chapters and its structure is illustrated in

Figure 1.1. The introductory chapter presents the motivation for conducting this

thesis, its research goals and research methodology. Chapter 2 then provides

an overview of the process mining research domain with a focus on process

discovery and decision mining. It also discusses and illustrates the challenges

and limitations of empirically evaluating process discovery and decision mining.

Finally, it formulates requirements for the evaluation procedures developed

later in the thesis.

Chapter 3 focuses on the research goal on how to generate artificial pro-

cess models and event logs for empirical process discovery and decision mining

evaluation. It starts with a general methodology, followed by algorithms for

control-flow data generation and ends with an extension to include data at-

tributes that explain process routing decisions.

Chapter 4 presents a modeling notation independent procedure for empirical

process discovery evaluation as discussed in the second research goal. The

procedure is implemented in a tool and validated with a large process discovery

evaluation experiment.

12

1.4. OUTLINE

Year Publication

2014 T. Jouck and B. Depaire, Generating Artificial Event Logs with Sufficient
Discriminatory Power to Compare Process Discovery Techniques, in
Proceedings of the 4th International Symposium on Data-driven Process
Discovery and Analysis (SIMPDA 2014), CEUR Workshop Proceedings,
2014, pp. 174–178.

2016 T. Jouck and B. Depaire, PTandLogGenerator: a Generator for Artificial
Event Data, in Proceedings of the BPM Demo Track 2016 (BPMD 2016),
vol. 1789, Rio de Janeiro, 2016, CEUR workshop proceedings, pp. 23–27.

2017 J. Carmona, M. de Leoni, B. Depaire, and T. Jouck, Summary of the
Process Discovery Contest 2016, in Business Process Management
Workshops: BPM 2016 International Workshops Rio de Janeiro, Brazil,
September 19, 2016, vol. 281 of Lecture Notes in Business Information
Processing, Rio de Janeiro, 2017, Springer, pp. 7–10.

2018 T. Jouck and B. Depaire, Generating Artificial Data for Empirical Analy-
sis of Control-flow Discovery Algorithms: A Process Tree and Log Gen-
erator, Business & Information Systems Engineering, Published online
(2018).

2018 T. Jouck, A. Bolt, B. Depaire, M. de Leoni, and W.M.P. Van der Aalst,
An Integrated procedure for Process Discovery Algorithm Evaluation,
Business & Information Systems Engineering, Submitted, 1st review
(2018).

2018 T. Jouck, M. de Leoni, and B. Depaire, Generating Decision-aware Models
& Logs: Towards an Evaluation of Decision Mining, in proceedings of the
6th International Workshop on Declarative/Decision/Hybrid Mining and
Modelling for Business Processes (DeHMiMoP 2018), accepted.

Table 1.1: Overview of publications in conference proceedings and scientific
journals.

13

CHAPTER 1. INTRODUCTION

Empirically evaluating process mining algorithms:

Chapter 1: Introduction

Chapter 2: Overview of process mining and empirical evaluation

Chapter 3: Generating artificial event data for empirical evaluation

Chapter 4: Evaluation procedure
for process discovery algorithms

Chapter 5: Evaluation procedure
for decision mining algorithms

Chapter 6: Conclusions and future research

Figure 1.1: Outline of the thesis

Chapter 5 describes how to adapt the procedure for process discovery to

enable decision mining evaluation as mentioned by research goal three. It

includes an experiment to validate the procedure.

The final chapter concludes the thesis and presents future research opportu-

nities.

14

C
H

A
P

T
E

R

2
OVERVIEW OF PROCESS MINING, PROCESS DISCOVERY,

DECISION MINING AND EMPIRICAL EVALUATION

This chapter will provide introductory background material on process

mining, process discovery and decision mining. In addition it will discuss

existing empirical evaluations of both process discovery and decision

mining, the remaining challenges and limitations of these evaluations and

requirements of empirical evaluation procedures that aim to overcome the

identified challenges.

2.1 Process mining

The focus of companies on managing and improving their business processes has

led to the development of the Business Process Management (BPM) discipline.

BPM is defined as “an integrated system for managing business performance by

managing end-to-end business processes” [121]. BPM is a holistic management

approach that includes design, implementation, monitoring, controlling and

analysis of business processes [37]. As more and more business processes are

supported by information systems, increasing amounts of data about the execu-

15

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

tion of these processes stored in event logs are available for analysis. This has

led to the creation of the process mining discipline. Van der Aalst [99] defines

process mining as “extracting knowledge from event logs in today’s systems to

discover, monitor and improve real processes, i.e. not assumed processes”. It

differs from pure data mining techniques as it focuses on end-to-end processes

which cannot be tackled by traditional data mining techniques. Process mining

supports the monitoring and analysis tasks in BPM by giving insights in the

actual way of working discovered from event logs. As such event logs are the

center point of process mining analyses.

2.1.1 Event log

An event log is a data set that contains information on the execution of a single

business process supported by information systems. A necessary condition to

extract an event log is that the information system is a Process-Aware Infor-

mation Systems (PAIS), i.e. it has a notion of the end-to-end process and is not

limited to support only isolated activities [99]. Examples of PAISs are: Enter-

prise Resource Planning systems (ERP), Customer Relationship Management

systems (CRM) and Business Process Management systems (BPMS). However,

most PAISs store the event data in a relational database structure where data

is scattered over multiple tables on different levels of granularity. Given this,

building an event log in which events are related to a single process instance on

the same granularity level is challenging and requires a step-wise procedure

such as proposed in [48] and [21].

An event log covers what has been done when by whom in relation to which

process instance [37, 99]. Therefore, we could state that an event log contains at

least the following:

• A case identifier, or process instance identifier, which relates multiple

events to a specific case or process instance.

• An event label that relates an event to a well-defined step or activity

instance in the process identified by an activity name.

16

2.1. PROCESS MINING

• Ordering information on the events within a case. Ideally each event

contains a timestamp, yet this is not necessary as long as there exists a

total order between the events related to one case.

Additionally, an event log can contain case and event attributes on top of the

case identifier and activity names. Typical examples of case and event attributes

are resources, timestamps and costs. The concepts of an event, a case and an

event log are formalized in the following definitions adapted from [99]:

Definition 2.1 (Event, attribute). Let E be the event universe, i.e. the set of

all possible events. Events have an activity attribute and possibly also other

attributes. Let AN be a set of attribute names. Then, for any event e ∈ E and an

attribute name n ∈ AN, the function #n(e) returns the value of the attribute with

name n for event e. For example, #activity(e) returns the value of the mandatory

event attribute activity. If event e does not have an attribute with name n then

#n(e)= null.

Definition 2.2 (Case, Trace, Event Log). Let C be the case universe, i.e. the

set of all possible cases. A case has a mandatory attribute of a trace and possibly

also other attributes. Any case c ∈ C and an attribute name n ∈ AN : #n(c)

returns the value of the attribute with name n for case c. If case c does not

have an attribute with name n, then #n(c)= null. The attribute function #trace(c)

returns the trace σ ∈ E ∗ which is a finite sequence of events from the set of

all finite sequences of events. Each event appears only once in a trace, i.e.

1≤ i < j ≤ |σ| :σ(i) 6=σ(j) with |σ| denoting the length of the trace. An event log

is a set of cases L ⊆C such that each event appears only once in the entire log,

i.e. for any c1, c2 ∈ L such that c1 6= c2 : set(#trace(c1))∩set(#trace(c2))=; with set

a function that converts a sequence into a set.

Most process discovery techniques only require the trace information, i.e.

the grouping and ordering of events, and neglect the other attributes in the

event log. A log with only trace data is called a simple event log and is defined

as follows:

17

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

Case ID Event ID Timestamp Activity Resource Cost

1 1 2018/03/30 23:47:34 issue order Lore
1 2 2018/03/31 01:11:46 produce order Jan 829
1 3 2018/03/31 03:22:54 inspect products normally Christoph
1 4 2018/03/31 05:47:29 package products Tim
2 5 2018/03/31 06:05:38 issue order Lien
2 6 2018/03/31 07:11:09 produce order Tim 4224
1 7 2018/03/31 08:16:46 send invoice Robin
2 8 2018/03/31 14:23:54 inspect products thoroughly Christoph
2 9 2018/03/31 18:47:59 package products Jan
2 10 2018/04/01 08:16:46 deliver goods Katrien
1 11 2018/04/01 08:40:42 deliver goods Katrien
2 12 2018/04/02 10:40:42 send invoice Robin

Table 2.1: A fragment of an example event log in a make-to-order process

Definition 2.3 (Simple Event Log). Let A ⊆ A be a finite set of activities. A

simple trace σ ∈ A∗ is a sequence of activities. A log L ∈B(A∗) is a multiset of

traces. The size of the log is |L| = t.

Table 2.1 contains a fragment of an example event log about a make-to-order

process. The fragment contains all events related to two cases. Each event has

a timestamp, an activity and a resource attribute. The events related to the

“produce order” activity also have a cost attribute. The simple traces of the two

cases are denoted as the following sequences:

〈 issue order, produce order, inspect products normally, package products, send

invoice, deliver goods 〉,
〈 issue order, produce order, inspect products thoroughly, package products,

deliver goods, send invoice 〉.

2.1.2 Process models

Next to event logs, process models also play a key role in process mining anal-

ysis. Process models are used as visual representations that help people to

understand, communicate about, specify and analyze operational business

processes [99]. Business Process Model and Notation (BPMN) [46] and Petri

nets [80] are two examples of the many existing process modeling notations.

18

2.1. PROCESS MINING

Figure 2.1: Example Petri net describing the make-to-order process.

Different notations allow users to include different process information into a

process model. However, most of the notations have in common that they de-

scribe processes in terms of activities and the ordering between those activities

using directed graphs.

The Petri net notation is used by many process mining algorithms because

it provides formal semantics, an intuitive graphical representation, and can

represent state information [99]. A Petri net is a directed graph that consists of

places, transitions and flow relations (arcs). The arcs are either from a transition

to a place or from a place to a transition. A place is represented with a circle and

a transition with a box. Each transition represents an activity in the process,

shown by a label in the transition box. A place can contain zero or more tokens.

The Petri net in Figure 2.1 describes the make-to-order process introduced in

the previous section.

The state of a Petri net is marked by the distribution of tokens over the

places in the net. The example model contains a token in the first place in the

net which indicates that no activity has been executed for that particular case.

The tokens can move through the net to represent the progress of a case in a

process. The flow of tokens is governed by the firing rule. If each of the input

places of a transition contains a token, then the transition can fire by consuming

one token from each input place and producing one token in each output place.

In the example the transition “issue order” is enabled. By firing that transition

the only token in the input place is consumed and a token in the only output

place is produced. The firing enables the “produce order” transition. Firing

the “produce order” transition enables three transitions: transition “inspect

products normally”, transition “inspect products thoroughly” and a so-called

silent transition (colored in grey and without label) to indicate the skipping of

an inspection. Only one of those three enabled transitions can fire for a case

19

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

because, if for example “inspect products thoroughly” fires, the token in the

input place of each of those three transitions is consumed. Once a token reaches

the last place of the net, no transition can be fired anymore which indicates that

the process has ended for that particular case.

Researchers have introduced extensions to Petri nets to add extra process

information to the model besides the ordering of activities. One extension that is

often used by decision mining techniques is a Data Petri net. These nets include

infomation on the interplay between case attributes and activities. Transitions

can read and write case attributes. Moreover, a transition can have a case-

attribute dependent guard that blocks the execution of an activity when it

evaluates to false. Such a guard can be expressed as a rule combining different

case attributes using logical operators. As such the firing rule is extended

such that a transition can only fire when a transition is enabled AND the guard

evaluates to true. Figure 2.4 shows a Data Petri net of the make-to-order process.

The “produce order” transition writes a value to the case attribute “costs”.

Transition “inspect products normally”, transition “inspect products thoroughly”,

and the silent transition that is enabled after “produce order” all have associated

guards depicted on the input arcs. For example, transition “inspect products

thoroughly” can only fire when enabled and the “costs” attribute contains a

value higher than 991.

The introductions to process models and event logs enable us to proceed to a

more detailed description of process mining in the next section.

2.1.3 Types of process mining and process perspectives

There are three main types of process mining techniques [99]: process discovery,

conformance checking and enhancement as illustrated by Figure 2.2. Process

discovery techniques induce a (process) model from an event log without any

a-priori knowledge. These techniques provide insights on how a process is

actually executed and how people are working together. Conformance checking

techniques compare an existing process model with an event log associated with

the same process. They can be used to examine whether reality, as presented

in the log, conforms with a process model and vice versa. Finally, enhancement

20

2.1. PROCESS MINING

process reality

process model

information system

event log

models,
analyzes

supports,controls

specifies,configures,
implements,analyzes records events

discovery
conformance

enhancement

Figure 2.2: Overview of the three main types of process mining. Figure adapted
from [99].

uses the event log to extend or improve an existing process model. One type of

enhancement is repair which changes the process model to better reflect reality.

Another type of enhancement involves adding another process perspective to

the given model. An example is the extension of case data to explain the routing

decisions in the process.

Besides the above types, process mining techniques can also be categorized

based on the process perspective they analyze. The control-flow perspective

focuses on the ordering of activities in a process. Activities can be for exam-

ple sequential, concurrent or mutually exclusive. Secondly, the organizational

perspective concentrates on the resources, i.e. people, systems, roles and depart-

ments, executing or consumed by the activities in a process. Furthermore, one

can look into the case or data perspective of processes to study, for example,

the costs of executing a case or an activity. Finally, the time perspective zooms

21

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

Process perspective
Control-flow Organizational Case/data flow Time

Ty
pe

Discovery
control flow social network trace duration

process discovery analysis analysis analysis

Conformance
conformance four-eyes

principle
fraud

detection
timed
replaychecking,

delta analysis

Enhancement model repair
organizational decision time
process models mining overlay

Table 2.2: Categorization of process mining tasks using type and process per-
spective as dimensions, adapted from [31].

in on, for example, the throughput times of cases, the waiting times of certain

activities and discovering bottlenecks.

As a summary, Table 2.2 categorizes process mining techniques using both

the type and process perspective dimensions (similar to [31]). Important to

mention is that this table does not contain all possible process mining task

categories, but rather gives examples for each category. This thesis focuses on

control-flow process discovery and decision mining (highlighted in Table 2.2),

the next subsections will discuss these categories in more detail.

2.1.4 Control-flow process discovery

Control-flow process discovery, referred to as process discovery, aims at the

visualization of the process executions in an event log in a control-flow process

model [31, 99]. The discovered model should be “representative” for the behavior

seen in the log. However, there is no standard quality criterion of the “repre-

sentative” notion. The type and correctness of the process data in the input

event log also influence whether or not a discovery algorithm can produce a

“representative” model. Most discovery techniques only require a simple event log

as input, yet others require a “rich” event log to refine the discovered ordering

relations.

Over the past two decades, most attention within the research domain of

process mining has gone to the development of new discovery techniques. This

22

2.1. PROCESS MINING

Traces

〈 issue order, produce order, inspect products thoroughly, package products, send invoice, deliver goods 〉8
〈 issue order, produce order, inspect products normally, package products, send invoice, deliver goods 〉7
〈 issue order, produce order, package products, deliver goods, send invoice 〉6
〈 issue order, produce order, inspect products normally, package products, deliver goods, send invoice 〉5
〈 issue order, produce order, inspect products thoroughly, package products, deliver goods, send invoice 〉2
〈 issue order, produce order, package products, send invoice, deliver goods 〉2

Table 2.3: Example simple event log Ls that consists of 30 cases representing 6
traces describing a make-to-order process.

resulted in a large amount of process discovery techniques: De Weerdt et al. [33]

and Augusto et al. [6] identified 63 peer-reviewed, implemented and evaluated

techniques from 1998 until January 2018. These techniques can be categorized

according to the approach they apply [99, 116]:

• Algorithmic approaches, e.g. α miner [107], Inductive miner [69] and

BPMN miner [24].

• Heuristic approaches, e.g. Flexible Heuristics miner [127], Fuzzy miner [42]

and Fodina [117].

• Genetic approaches, e.g. Genetic miner [29] and Prodigen [124].

• Machine learning-based approaches, e.g. Process Miner [93] and AG-

NEsMiner [43].

• Region-based approaches, e.g. ILP miner [108] and HybridILPMiner [114].

• Partial and declarative approaches, e.g. Episode miner [66] and MINER-

ful [36]

To illustrate process discovery, consider the simple event log Ls in Table 2.3

that consists of 30 cases representing 6 traces describing a make-to-order pro-

cess.

Applying the Inductive miner [69] on log Ls and converting the model into a

Petri net yields the control-flow model shown in Figure 2.3. The model shows

the highly sequential character of the process. Each case starts with “issue

order” followed by “produce order”. Then, a choice needs to be made between

23

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

“inspect products normally”, “inspect products thoroughly” and a silent transition

that represents skipping an inspection. Finally, “package products” is executed,

followed by “deliver goods” and “send invoice” that happen concurrently.

A control-flow model such as the one in Figure 2.3 does not display infor-

mation on additional process perspectives such as case attributes that might

be contained in a log. Decision mining techniques take a control-flow model as

input and extend it with case attributes as explained in the next section.

2.1.5 Decision mining

Operational decisions influence the execution of business processes. Often these

decisions relate to the choice between multiple alternative activities. Such

decisions are modelled in process models as decision points. A control-flow

model as constructed by a discovery technique does not give insights in which

logic is applied when choosing between alternative activities, i.e. a routing

decision. Such decisions can depend on resources available to execute an activity,

deadlines that trigger exception handling or other data attributes related to

the case such as costs. Decision mining techniques use case characteristics

available in event logs to learn the logic for each routing decision in a given

model [99]. Consequently, the main assumption of decision mining is that event

logs contain the necessary case attributes that allow for an accurate explanation

of the routing decisions.

During the past decade, several decision mining techniques have been devel-

oped, e.g. [10, 28, 30, 74, 90]. Most techniques transform the discovery of routing

decision logic into a classification problem. The classes to be predicted are the

alternative activities that occur after a decision point in the process model. The

associated classifier is based on the observed case data attributes before the

decision point is reached [74]1. Theoretically, any classification technique can be

used, however, most decision mining approaches (e.g. [28, 74, 90]) have used the

decision tree learning technique C4.5 [85]. These decision mining approaches

learn a decision tree for each decision point in a given model and then transform

1Here case data attributes refer to both attributes of the case as a whole and the attributes
of the events associated with the case.

24

2.1. PROCESS MINING

F
ig

ur
e

2.
3:

P
ro

ce
ss

m
od

el
di

sc
ov

er
ed

by
th

e
In

du
ct

iv
e

m
in

er
on

th
e

ex
am

pl
e

ev
en

t
lo

g
L

s.

F
ig

ur
e

2.
4:

R
ou

ti
ng

lo
gi

c
di

sc
ov

er
ed

by
th

e
D

at
a-

aw
ar

e
de

ci
si

on
m

in
er

on
th

e
ex

am
pl

e
ev

en
t

lo
g

L
.

25

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

these trees into decision rules. Subsequently, the models are enriched with these

decision rules. For example, some transitions in a Data Petri net get a discovered

rule as guard that governs the execution of that transition.

To illustrate decision mining, we have extended the simple event log in

Subsection 2.1.4 with data attributes. More specifically, each event related

to the activity “produce order” has an attribute “cost” denoting the cost of

executing that activity. The decision mining techniques introduced in [28] uses

this extra attribute to discover the routing decision logic of the choice between

the activities “inspect products normally”, “inspect products thoroughly” and

the silent transition (skipping the inspection). The resulting Data Petri net is

displayed in Figure 2.4. The discovered rules are displayed on the branches

exiting the decision point. They impose restrictions on the execution of the

alternative activities:

• When the cost of “produce order” is lower than or equal to 460, the inspec-

tion is skipped.

• When the cost of “produce order” is between 460 and 991, “inspect products

normally” is executed.

• When the cost of “produce order” is higher than 991, “inspect products

thoroughly” is executed.

The next sections will focus on the evaluation of process discovery and

decision mining techniques.

2.2 Current evaluation approaches

This section gives an overview and describes the challenges/limitations of cur-

rent process discovery and decision mining approaches.

2.2.1 Process discovery evaluation approaches

Several empirical evaluation frameworks for evaluating process discovery tech-

niques have been proposed. The seminal work of Rozinat et al. [89] introduced

26

2.2. CURRENT EVALUATION APPROACHES

the first evaluation framework. That framework focuses on the comparison of

discovery algorithms using conformance checking. More specifically, they apply

different discovery algorithms on the same input event log and then measure

the quality of the discovered models using conformance checking. The qual-

ity of a process model is characterized by four dimensions: fitness, precision,

generalization, and simplicity [89, 99].

Fitness indicates how much of the behavior in the log is captured by the

model. Fitness alone is not sufficient, also a proper balance between overfitting

and underfitting is required [99]. A process model is overfitting (the event log)

if it does not generalize, disallowing behavior which is part of the underlying

process. This typically occurs when the model only allows for the behavior

recorded in the event log. Conversely, it is underfitting (the event log) if it is

not precise, overgeneralizing the observed behavior in the event log. Finally,

simplicity refers to the preference for simpler models over more complex ones.

Rozinat et al.[89] rely on conformance checking metrics bound to the Petri

net modelling notation to measure the quality of the discovered models. As such,

the framework requires Petri-net based discovery algorithms or algorithms that

apply modelling notations that can be converted to Petri nets. Furthermore,

the Rozinat framework assumes the availability of a repository of benchmark

process models and event logs. It does not discuss which models and event

logs would be appropriate for such a repository or how to select them from the

repository for empirical evaluation. Finally, the framework does not elaborate

on the statistical tests that need to be applied to verify whether the differences

in model quality between discovery algorithms are statistically significant or

not.

Many researchers have taken the Rozinat et al. framework as a starting

point for process discovery evaluation. Some researchers have extended the

framework [87, 125] to include prediction. Others have used (an adapted version

of) it to perform benchmarking studies [6, 33, 115]. Although they have made

important contributions to process discovery evaluation, the gaps of the Rozinat

framework related to the reliance on a benchmark repository, Petri-net-based

quality measurement, and statistical tests are not completely solved.

Wang et al. [125] and Ribeiro et al. [87] have extended the Rozinat framework

27

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

to evaluate and predict the best algorithm. Although the prediction can help

companies in deciding which algorithm is the best to use on their event logs,

the two extensions do not address how to select appropriate data sets or how to

adapt quality measurement to non-Petri-net-based discovery algorithms.

De Weerdt et al. [31] and Augusto et al. [6] have reviewed and benchmarked

a large set of state-of-the-art discovery algorithms on a repository of artificial

and real-life event logs. These benchmarks gave important insights in the ro-

bustness of process discovery algorithms when applied in reality. The former

study incremented the Rozinat framework with suitable statistical tests to com-

pare the quality of discovery techniques based on benchmarks. These statistical

tests included the combination of the fitness and precision quality measures

into the F-measure. The latter study offers a benchmarking toolset that enables

the empirical evaluation of a large set of state-of-the-art process discovery tech-

niques with the latest Petri-net-based conformance checking metrics. As such,

these benchmarking studies start from a repository of artificial and/or real-life

logs without focusing on whether it contains the appropriate data for empirical

evaluation. Furthermore, the evaluation results based on a repository of event

logs cannot be generalized to process populations as the repository typically

lacks reference models representing the underlying processes that produced

these event logs. Additionally, they also adopt the quality measurement using

Petri-net-based conformance metrics.

Finally, Vanden Broucke et al. [115] have manually created process models

and event logs to study the effect of event log characteristics on process discovery

results. This study has raised the importance of selecting the appropriate data

sets for process discovery evaluation, yet it does not provide a formal method to

tackle it.

A different approach from Rozinat et al. [89] is taken by Weber et al. [126]

who adopts a probabilistic perspective. More specifically, they view processes

as distributions over traces of activities and discovery algorithms as learning

those distributions. The distribution of a discovered model is compared with

the distribution of an artificial “ground truth” model. As such Weber et al.

provide an alternative for quality measurement that is not bound to Petri nets.

However, this alternative relies on the specification of probability formulae for

28

2.2. CURRENT EVALUATION APPROACHES

each discovery algorithm. Up till now, these specifications are only demonstrated

for the α miner and assume acyclic processes. Furthermore, Weber et al. do not

specify any method for generating appropriate artificial ground truth models

which are needed in their evaluation framework.

Although the above discussed empirical evaluation frameworks and studies

have made important advances to the evaluation of process discovery techniques,

the reliance on a benchmark repository, modelling notation dependent quality

measurement, and statistical tests on real-life benchmark sets present some

unresolved challenges. These challenges, in our eyes, impede the search of the

process mining community to understand the true quality of any discovery

technique and the quality ratios between different discovery techniques. To

convince the reader of this, the next subsection will describe each of those

challenges in more detail.

2.2.2 Challenges of process discovery evaluation

The discussion of challenges is structured around the general evaluation steps

needed to empirically evaluate and compare learning algorithms as described

by Japkowicz and Shah [51]. Any evaluation should start from some predefined

evaluation objectives, e.g., benchmarking state-of-the-art algorithms on process

data containing various behavioral patterns such as loops [6, 33, 115]. Bench-

marking compares the quality of different discovery algorithms to rediscover the

underlying process, given a fraction of its behavior (event log). Another example

objective involves a sensitivity analysis to study the impact of discovery algo-

rithms’ parameters on discovery results [18, 86]. Additionally, the selection of

process discovery algorithms to compare/evaluate is also part of the evaluation

objectives.

Discovery algorithms use different target modelling languages to represent

the discovered model. This target language involves implicit assumptions that

limit the search space of the discovery technique: processes that cannot be

represented by the target language cannot be discovered. These assumptions

are known as “representational bias”. Examples of discovery algorithms that

apply different representational biases are the α miner [107], the Inductive

29

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

miner [69] and the BPMN miner [24]. The α miner discovers Petri nets without

invisible transitions and therefore cannot represent multi-choice (“or”) process

behavior.2 In contrast, the Inductive miner and BPMN miner can discover

these multi-choice constructs. Furthermore, the BPMN miner can discover

hierarchical BPMN models while the Inductive and α miner cannot discover

such models. These differences in representational bias affect the selection of

discovery algorithms to be compared. Although this thesis will not focus on

studying and improving the “representational bias” for process discovery, it is

an important criterium when selecting the discovery algorithms to compare.

Another important assumption of process discovery algorithms is the as-

sumed completeness of the input event log. Some algorithms require more

complete event logs than others, e.g. the language-based regions technique [13]

assumes a global complete event log, whereas the Inductive miner [69] requires

directly-follows complete event logs, which is a much weaker notion of complete-

ness. Although algorithm selection is not the focus of this thesis, the experiments

in Chapter 4 will take the completeness of the input event logs into account.

Based on the evaluation objective(s), researchers need to select the data

sets on which the algorithms are tested, determine how to measure the quality

of the discovered models, and, finally, apply the appropriate statistical test to

draw generally valid conclusions on the evaluation results. Figure 2.5 gives an

overview of the evaluation steps.

2.2.2.1 Data set selection

The first challenge faced by current evaluation approaches involves the question:

how to select the data sets for evaluation? None of current approaches specifies

a methodology on how to select the appropriate data sets for evaluating process

discovery techniques. Most of the times, the assumption is made that the current

repository of real-life event logs3 should be used as benchmarks. This presents

two important limitations to empirical process discovery evaluation. First of all,

the process population characteristics of a real event log are unknown because a

2For example, if activity a and b are in multi-choice, then either one of the two activities is
performed, either both activities can be performed in any order.

3https://data.4tu.nl/repository/collection:event_logs

30

https://data.4tu.nl/repository/collection:event_logs

2.2. CURRENT EVALUATION APPROACHES

Evaluation objectives

Select data sets

Select quality measures

Perform statistical test

Evaluation conclusions

Chapter 3

Chapter 4 & 5

Figure 2.5: General evaluation steps adapted from [51]. The chapters that focus
on specific steps are indicated with dashed lines.

reference model is lacking. Therefore, the types of process behavior are in the

event log are unknown. Nevertheless, this is typically required when testing

if an algorithm can handle certain process behavior, e.g. loops. Secondly, the

number of real event logs in the repository is limited, i.e. 19 publicly shared

data sets. However, in order to draw statistically significant conclusions, one

needs large amounts of data sets.

As an alternative, researchers have proposed to artificially generate event

data to overcome both of these limitations [100]. Several approaches exist for

generating artificial process models and event logs [17, 54, 63, 112]. Each of

these approaches focus on the algorithms and implementation of generating

artificial models and event logs. However, none of the existing approaches

presents a general methodology of how to generate event data for empirically

evaluating process discovery techniques. Such a methodology, nonetheless, is

31

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

an essential starting point to ensure that the empirical analysis of artificial

data follows a sound experimental design that guarantees valid statistical

claims (discussed in more detail in Section 2.2.2.3). Furthermore, as the current

artificial generators do not start from an evaluation methodology but rather

focus on the algorithms to generate the data, the existing generators do not

provide an answer to the question which data is appropriate for process discovery

evaluation. As a result, several limitations exist on the process behavior included

in the generated models and logs. For example, long-term dependencies and

reoccurring acitivities4 present challenges for process discovery algorithms [99],

but are not supported by current artificial generators. This illustrates the need

for enhanced artificial model generators.

2.2.2.2 Measuring quality of discovery results

The second challenge involves the measurement of the algorithms performance,

here the quality of the discovered models. Most evaluation approaches, i.e. [6,

33, 86, 87, 89, 115, 117, 125, 126], have focused on the use of conformance check-

ing to measure the quality of the discovery results. The applied conformance

checking metrics are bound to the Petri net modelling notation. As a result,

the selection of discovery algorithms is restricted to Petri net-based discovery

algorithms or algorithms that apply modelling notations that can be converted to

Petri nets. However, the conversion may result in unfair comparisons, illustrated

by the following example.

Consider an event log (see log Lor in Appendix A) similar to the make-to-

order process in Section 2.1.4 except that the exclusive choice between “inspect

products normally”, “inspect products thoroughly” and skipping the inspection is

changed to a multi-choice (OR) between “inspect products normally” and “inspect

products thoroughly”. Then we apply the Inductive miner (IM) [69] and the

Flexible heuristics miner (FHM) [127]. The IM uses process trees as modelling

notation. Process trees are block-structured models that can be decomposed

in properly nested subprocesses such that each subprocess has single entry

4The same activity that appears in different parts of the process, indicating that the activity
can reoccur. Reoccurring activities are typically modelled using duplicate activity labels, hence
the term “duplicate activities” is often used in literature.

32

2.2. CURRENT EVALUATION APPROACHES

and exit points [69]. Block-struturedness guarantees soundness. Soundness is

a correctness criterion such that a sound process model is free of deadlocks,

livelocks and other anomalies [99]. The FHM on the other hand, uses causal nets

as modelling language. These types of directed graphs are specifically tailored

towards process discovery as they only represent causal dependencies between

activities in a process. They can also expresss non-block-structured processes,

i.e. they do not guarantee soundness. Both process trees and causal nets can be

converted to Petri nets [99, 101] to calculate their precision using the one-align

precision metric [3].

These conversions result in the models in Figure 2.6 and Figure 2.7. Al-

though both algorithms correctly rediscovered the multi-choice, the conversion

of the causal net into a Petri net introduced an error on the join semantics before

“package products”. This error may cause the activities “package products”, “de-

liver goods” and “send invoice” to happen twice instead of once. This conversion

error is a result from the fact that Petri nets are not as expressive as causal

nets. Therefore, the converted Petri net may over-approximate the behavior in

the discovered causal net, i.e. the net may allow for more behavior than allowed

by the discovered causal net [116]. The conversion error results in a different

precision value for the two converted Petri nets while they should have been

exactly the same based on the behavior of the discovered models.

Moreover, even without conversion errors, two behaviorally equivalent mod-

els may produce different precision scores. Consider the same event log with

multi-choice behavior as used above. If we apply the trace miner that lists each

possible trace in the log as a separate sequential fragment in a Petri net, we

obtain the “enumerating” model in Figure 2.8. The model discovered by the IM

(Figure 2.6) contains exactly the same process behavior as the model discovered

by the trace miner, no more and no less, and therefore should have the same

precision score. However, the one-align precision metric [3] computes a precison

of 0.9068 for the model discovered by the Inductive miner and 1 for the “enumer-

ating” model. The observation that the one-align precision metric computes a

different precision score for two models with exactly the same behavior was also

shown by Tax et al. [96]. It should be noted that more recent global precision

metrics, such as the anti-alignments precision metric [109], have alleviated this

33

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

F
igure

2.6:C
onverted

Petrinet
discovered

by
the

Inductive
m

iner
on

event
log

w
ith

O
R

.

F
igure

2.7:C
onverted

Petrinet
discovered

by
the

F
lexible

heuristics
m

iner
on

event
log

w
ith

O
R

.

34

2.2. CURRENT EVALUATION APPROACHES

problem and compute equal precision scores for the “enumerating” model and

the model discovered by the IM.

The above examples illustrated that differences in precision due to conver-

sion and model representation are only artificial. Although all three algorithms

could discover the same behavior and therefore do not differ in the precision

quality dimension, the precision metric assigned different scores to the (con-

verted) discovered models. The differences in representational bias are tackled

by more recent conformance checking metrics. However, the conversion is the

main problem as it would still lead to different precision scores for behaviorally

equivalent models that are in different modeling notations. As such we state

that conformance checking metrics bound to a particular modeling notation

may favor an algorithm that uses the same notation over another that uses a

different notation. However, we argue that this “better fit” should not result in a

different score for a quality metric as this would result in an unfair comparison

between discovery algorithms.

2.2.2.3 Statistical tests

The final challenge relates to the statistical tests in discovery evaluation. Once

the discovery algorithms are applied and the quality of the discovered models

are measured, a statistical analysis is needed to draw general conclusions on

the evaluation results. For example, when multiple discovery algorithms are

benchmarked on a set of real-life logs, the statistical test can verify whether

the differences in performances are statistically significant or not. In case the

differences are statistically significant, one can state that on average a tech-

nique outperforms some other techniques not only on that particular set of

real-life event logs, but also generalized to the process population from which

that set originates. For example, De Weerdt et al. [33] found that the Heuris-

tics miner [128] significantly outperforms the α miner among others on their

benchmark set of real-life event logs. Moreover, they conclude that Heuristics

miner seems the most appropriate and robust in a real-life context in terms of

scalability and fitness, precision, and simplicity of the discovered model.

Evaluations such as [6, 33] on real-life event logs are useful to verify whether

35

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

F
igure

2.8:Petrinet
discovered

by
the

trace
m

iner
on

event
log

w
ith

O
R

.

36

2.2. CURRENT EVALUATION APPROACHES

we can actually use certain discovery techniques in a practical setting. However,

we lack a reference model and therefore do not know from which process popula-

tion these event logs are samples of. In order to understand why an algorithm

works, researchers need to test those algorithms in a controlled environment

first and generalize to a model population. For example, because existing discov-

ery algorithms have problems to rediscover duplicate activities, a new discovery

algorithm specifically focused on discovering duplicate activities is developed. In

order to test whether the new discovery algorithm can effectively achieve this,

both existing algorithms and the newly developed algorithm need to be applied

on event data with duplicate activities. Hence, it is important that a researcher

can control for those duplicate activities as to precisely study their effect on

an algorithm’s ability to rediscover those duplicate activities. Additionally, a

researcher would then like to generalize his/her findings to actually show that in

general, i.e. in different model populations with duplicate activities, the newly

developed algorithm performs better.

The relevance of the generalization to a model population is further sup-

ported by the no free lunch theorem by Wolpert and Macready [131] that estab-

lishes the following: “for any algorithm, any elevated performance over one class

of problems is offset by performance over another class”. Hence, it is useful to

generalize for which model populations the newly developed technique performs

better than existing algorithms and for which model populations it performs

worse than existing algorithms as there is always a tradeoff.

Furthermore, the lack of a reference model that represents the system,

i.e. the real underlying process, also impacts the performance measurement

during benchmarking. The quality of an algorithm to rediscover the system

can only be measured using conformance checking that compares a given log

with the discovered model. This comparison results in a so-called log measure

that represents the quality of discovered model with respect to the event log it

was learned from. Such measures do not take into account that the event log

is a limited sample of the system and possibly contains measurement errors,

also known as noise. Janssenswillen et al. [50] found that the log measures are

biased estimators of the similarity between the discovered model and the system

in case the log is incomplete or contains noise. Therefore, the lack of a reference

37

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

model impedes unbiased measurement of the discovery algorithms quality to

rediscover the system. Finally, we cannot claim that the samples of real-life logs

are random samples. As a consequence, the results of those evaluations cannot

be generalized to process populations.

Alternatively, evaluations have used artificial process models and event logs

for comparing discovery techniques [33, 86, 87, 89, 115, 125, 126]. Despite the

fact that we know the process populations for those models and event logs, the

samples were small and not randomly generated. Hence, the statistical validity

of general claims is limited. Furthermore, the artificial process models are not

generated by controlling the probability of certain process behavior to be present.

As a result, the event logs generated from these models do not allow one to

evaluate the correlation between the quality of the discovered models and the

presence of certain process behavior. This is because the process behavior is an

endogeneous variable due to the fact that it is observational in nature and not

determined randomly in the experimental design [5].

Based on the above challenges, we argue that more attention should be paid

to the design of the evaluation experiments to allow for valid generalizations.

The experiment design relies heavily on the data set selection and the quality

measurement. If we can collect random and large samples from appropriate

process populations and we use an unbiased estimate of an algorithm’s quality

to rediscover the system, then statistical tests will allow us to make generally

valid claims on the evaluation results.

2.2.3 Decision mining evaluation approaches and their
challenges

Currently, no decision mining evaluation procedure has been proposed in lit-

erature. Therefore, we discuss the evaluation approaches taken in the papers

that introduce new decision mining techniques. The papers of [10, 30, 90] have

mainly focused on the development and demonstration of the proposed tech-

nique. These papers only include an informal evaluation in which the output of

a technique is compared with the manually created example model or, in case of

real event logs, the output is described but the quality is not measured. However,

38

2.2. CURRENT EVALUATION APPROACHES

the papers [25, 28, 74] do include a formal evaluation: the evaluations of [25, 28]

compared the discovered model augmented with decision rules with the artificial

reference model and decision rules, the evaluations of [28, 74] calculated the

accuracy of the discovered model and rules with regard to the real-life logs.

When we discuss the above evaluation approaches with the general evalua-

tion steps for empirical evaluation and comparison as illustrated in Figure 2.5,

we can conclude the following.

Firstly, the most important remaining challenge of decision mining eval-

uation is the data set selection for empirical evaluation. Similar to process

discovery, there exists no guideline on how to select the appropriate data for

decision mining evaluation. Also here the event logs from the publicly available

repository5 have been used as benchmarks. In contrast to process discovery,

only 5 different event logs from the repository were used in a decision mining

evaluation [28, 71] or demonstration [30]. It is unclear whether the other event

logs contain case attributes that are sufficient to explain the process routing

decisions as required for decision mining evaluation. Therefore, analogous to

process discovery, two important limitations for empirical decision mining eval-

uation are the unknown process population of the real-life event logs and the

limited amount of event logs in the publicly available repository.

Comparable to process discovery, researchers have included small samples of

manually created artificial datasets. However, empirical evaluation of decision

mining algorithms needs large amounts of data to make statistically valid con-

clusions. Only one artificial data generating approach supports the generation

of both control-flow and case/data-flow perspectives [17]. PLG2 [17] allows for

extending control-flow models with data attributes, but in a more general sense.

It can add case attributes to activities such that an activity can either generate

a case attribute or require a case attribute. The latter is implemented by au-

tomatically generating the required case attribute before the execution of that

activity. The random model generator cannot guarantee that this case attribute

requirement happens to activities after a routing decision.6 Nevertheless, this

5https://data.4tu.nl/repository/collection:event_logs_real
6PLG2 allows users to add the requirements also manually, however, that would not lead to

random samples and thus obstruct the generalization of evaluation results.

39

https://data.4tu.nl/repository/collection:event_logs_real

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

is necessary for the evaluation of decision mining techniques as they focus on

discovering the routing decision logic. As a result, there is need of an artificial

model and log generator tailored to the evaluation of decision mining techniques.

Secondly, different metrics are applied to measure performances, i.e. the

quality of the discovered decision logic. The evaluations of [28, 74] use data con-

formance checking to compare the log to the discovered model, while [25] checks

the quality with regard to the reference model. However, similar to the discus-

sion on statistical tests for process discovery evaluation (see Section 2.2.2.3),

such log measures could be biased estimators of decision miner’s quality to

rediscover the routing logic of the underlying process. Therefore, the lack of a

reference model impedes the unbiased quality measurement of decision mining

techniques.

Finally, due to the lack of large datasets and extensive evaluations, the

statistical test selection is often neglected and replaced by simply comparing

absolute figures of quality measures.

The challenges of both process discovery and decision mining evaluation

related to data set selection, quality measurement and statistical tests lead us

to the specify the requirements of the artefacts to overcome these challenges in

the next section.

2.3 Requirements of artefacts

The research goals in Section 1.2 describe the artefacts generated in this thesis

to overcome the challenges discussed in the previous section. Because we apply

the principles of Design Science research, we will elaborate on the specific

requirements for each of these artefacts to specify how they will overcome the

stated challenges.

2.3.1 Requirements for artificial model and log generation

Chapter 3 reports on the first artefact called GED (Generating articial Event

Data) which includes a general methodology and algorithms for generating

artificial process models and event logs for process discovery and decision mining

40

2.3. REQUIREMENTS OF ARTEFACTS

evaluation. GED tackles the data set selection and statistical tests challenges

for both process discovery and decision mining (see Sections 2.2.2.1, 2.2.2.3 and

Section 2.2.3). Therefore, it should allow users to specify a model population

and than draw random samples of process models and event logs from it. At the

same time GED should guarantee a correct experimental design such that it

enables statistically valid generalizations of evaluation results. We now describe

three use cases that help us to derive more detailed requirements for GED.

One possible use case for GED is the performance comparison of discovery

algorithms in terms of model quality. In this case a researcher needs to define

populations with an extended set of control-flow patterns. If only a limited set

of basic patterns were available, the simplicity of the event data could bias

the comparison results. A second use case for GED is the goal to understand

the effect of specific control-flow behavior on algorithm performance. This use

case requires full control over all possible control-flow patterns in the gener-

ated models to enable causal analysis. A third use case evaluates whether

decision mining algorithms can rediscover non-deterministic routing decision

logic based on case attributes in the event log. A difference between decision

mining algorithms is whether they assume the routing decisions to be fully

deterministic [28] or not. [74]. In a fully deterministic routing decision there is

only one outgoing branch possible for any combination of case attribute values.

However, in reality, decisions can be non-deterministic due to conflicting or am-

biguous business rules [88]. This use case requires control over the determinism

of routing decisions in the generated models and logs.

2.3.1.1 Deriving detailed requirements

The leftmost column of Table 2.4 lists all requirements for the methodology.

The first group of requirements regards the full control over the control-flow

and data-flow behavior in the generated process models (control-flow patterns

and routing decisions) and event logs (log characteristics). Multiple evaluation

studies [29, 110, 115] have assessed discovery algorithms using an extensive

set of control-flow patterns. This set includes the basic workflow control-flow

patterns (WCP) [92]: sequence (WCP-1), parallelism (WCP-2 and 3), exclusive

41

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

choice (WCP-4 and 5), “or” (WCP-6 and 7) and structured loops (WCP-21). The

studies of Kunze et al. [65] and Zur Muehlen and Recker [132] who analyzed

real-life BPMN models confirmed that those basic patterns are used in practice

by consultants and trained process modelers. Besides the basic patterns, the set

also covers the complex constructs invisible (skipping) activities, reoccurring

activities and long-term dependencies. The mining of reoccurring activities

has received more and more attention within the process mining domain in

the past years, e.g. [70, 83, 123]. Van der Aalst [99] and Buijs [16] describe

long-term dependencies as a key aspect of process behavior in reality. Two

evaluation studies [29, 115] also investigated the effect of log characteristics, i.e.

number of traces, noise and infrequent behavior.7 The evaluations in [71, 74]

assessed decision mining algorithms on non-deterministic routing decisions.

Consequently, GED should support full control over all these patterns and

characteristics.

Additionally, the soundness was added as a requirement for each generated

model. This ensures that the produced model can never cause a livelock or

a deadlock during the simulation. A simulator allowing for unsound models

requires the detection of the violation and the repair of that violation which is

far from trivial [16]. Simply restarting the simulation everytime a livelock or

deadlocks occurs does not guarantee random samples which is another require-

ment.

The second group of requirements relates to randomness. In order to gener-

alize findings from event logs to a process population, the event logs should be

random samples to avoid biased conclusions. To be more specific, GED should al-

low to draw a random sample of models from a process population. Additionally,

GED should support the simulation of a random sample of logs from the sample

of models.

The third and last group of requirements specifies the formats of the gener-

ated event data and integration with process mining tools. A discovery evalu-

ation experiment can exploit the extensive set of algorithms and conformance

checking techniques in the ProM framework [120]. This framework uses the

7Noise is defined in this thesis as incorrect behavior in the log (see Section 3.3).

42

2.3. REQUIREMENTS OF ARTEFACTS

XES standard [1] for event logs and supports different XML-based formats for

process models. Therefore, it is important that GED produces models and logs

in these standard formats. An additional advantage would be the integration

within the ProM framework [120] to enable automated experiments.

Each of the requirements are listed in the leftmost column of Table 2.4,

grouped by category: full control, randomness, and standard formats. The use of

the general methodology for artificial event data needs model and log generation

algorithms plus tool implementation that support all these requirements.

2.3.1.2 Evaluation of related work

We have evaluated the existing implementations for generating event data

against the requirements stated above. The results in Table 2.4 show that none

of the existing tools fulfills all the requirements.

PLG2 [17, 19] is the most mature tool, but is limited to block-structured

process models and therefore cannot contain LT dependencies. To illustrate this,

consider the Petri net in Figure 2.9. The net without the grey places and their

incoming and outgoing arcs is block-structured. The net can be decomposed in

properly nested subprocesses such that each each subprocess has single entry

and exit points. The first block is composed of the source place, transitions

“a” and “b”, their shared output place (the white colored place), and the arcs

connecting these elements. Similar to that is the block including transitions

“d” and “e”, their shared input and output place and arcs. Another block is the

transition “c” with its input and output places and arcs. The final block covers all

the previously mentioned blocks. If we want to model that transition “e” can only

fire after transition “a” and transition “d” can only fire after transition “b”, then

we need to introduce the grey places and their input and output arcs.8 These

dependencies are an example of LT dependencies and they violate the block-

structuredness of the net: e.g., the block including transition “a”, transition “b”

would have more than one exit point. Such LT dependencies present a challenge

for process discovery algorithms [99] and therefore makes the limitation of

an artificial data generator to block-structured models too strict. Additionally,

8This is a valid solution if we do not want to have two transitions with label “c”.

43

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

R1 Full Control PLG2 GraphGrammar BeehiveZ TestBed
[17] [63] [54] [112]

Number of activities X X

Sequence (WCP-1) X X X
Parallel (WCP-2-3) X X X
Choice (WCP-4-5) X X X
Loop (WCP-21) X X
Or (WCP-6-7)

Silent (skipping) activities X
Reoccurring (duplicate) act.
Long-term (LT) dependencies X2

Infrequent paths X

Routing decision determinism

Soundness X X 2

No. traces X X X
Noise X X

R2 Randomness

Random Generation X X X X

R3 Standard Formats

Models X X X
Logs X X
ProM integration X1 X

1 PLG2 [17] is only available as a standalone tool, but the older PLG [20] is imple-
mented in ProM with all the indicated requirements

2 The approach allows to add “arc bridges” to create non-free choice constructs, yet it
does not guarantee sound models

Table 2.4: Evaluating existing artificial generators on the requirements of GED

44

2.3. REQUIREMENTS OF ARTEFACTS

Figure 2.9: An example of non-block-structured behavior.

PLG2 is the only generator that allows for adding the data-flow perspective to

control-flow models by adding case attribute requirements to any activity in

the model. Nevertheless, PLG2 does not allow the user to control that these

requirements happen to activities after a routing decision which is required for

decision mining evaluation (cf. discussion in Section 2.2.3).

The approach using GraphGrammar [63] only allows for generating and

simulating rather simplistic process models. The BeehiveZ tool [54] gives users

limited control over the control-flow constructs in the generated models as users

can only pick a class of process models from which a random sample is drawn

and simulated. Finally, the TestBed tool [112] does not include a simulator, but

allows for LT dependencies. However, to model LT dependencies it uses non-free

choice constructs which do not guarantee soundness of the produced models.

An alternative solution to guarantee soundness that extends the TestBed

approach would be as follows: first, generate a subclass of Petri nets (called

Jackson nets [111–113]) that are always sound, then extend these models with

non-free choice constructs (NFC) to introduce LT dependencies. Each time a

NFC is added, check for soundness, if there is a violation, revert the NFC

and try another. However, deciding soundness may be intractable for complex

nets [98] and therefore this solution is insufficient. Moreover, the randomness

of the generated models, another requirement of GED, is possibly violated as

some random sound models are excluded if they require a series of bridge rules

which first make the model unsound and later on make the model sound again

resulting in a truncated sample.9

9The observations in a truncated sample are limited as the models that require bridge rules

45

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

Other approaches for artificial event data generation such as SecSy [95],

CPN Tools [53] and GENA log generator [79] only focus on simulation of an

event log given a process model as input. These approaches are only relevant for

the log generation as discussed in Section 3.3.

As none of the current tools meets all the requirements, Chapter 3 introduces

a methodology and implementation that conforms to all the requirements. We

will mostly focus on the challenge of solving the trade-off between including

LT dependencies while ensuring soundness of the generated models, and the

extension of models and logs with data-flow for decision mining.

2.3.2 Requirements for process discovery evaluation
procedure

Chapter 4 describes the second artefact which is a procedure with tool support

for empirical evaluation of process discovery algorithms. This artefact will tackle

the challenges of quality measurement and statistical tests (see Sections 2.2.2.2

and 2.2.2.3). The procedure starts from a defined evaluation objective such

as benchmarking or sensitivity analysis, and should fullfill three major re-

quirements: notation indepent quality measurement, solid experimental design,

and support for automating empirical evaluation experiments. The following

subsections will highlight the importance and details of each of these major

requirements which are summarized in Table 2.5.

2.3.2.1 Notation independent quality measurement

The quality of discovered models is measured in order to compare different

discovery algorithms. The quality measurement should be independent of the

modelling notation in which the discovered models are represented to avoid

the problems due to conversion and representational bias discussed in Sec-

tion 2.2.2.2. The term quality measurement is broad as the quality of models

can be measured along four different dimensions: fitness, precision, general-

ization, and simplicity (see Section 2.2.1). This thesis will focus on the fitness

that make the model first unsound before they can be made sound again are omitted from the
sample.

46

2.3. REQUIREMENTS OF ARTEFACTS

and precision/generalization dimensions to study the efficiency of process discov-

ery techniques to rediscover the original system and while balancing between

overfitting and underfitting.

To make the quality measurement independent of the modelling notation, we

focus on the behavior of a model rather than the structure of a model. The model

structure is typically used for measuring simplicity and is strongly connected

to the characteristics of a modelling notation. For example, the size of a BPMN

model will naturally be smaller than a Petri net as BPMN abstracts from

representing the state of a process instance. Therefore, we argue that further

research on comparing simplicity of models in different notations is needed. As

such, simplicity is left out of the quality measurement of this thesis.

Furthermore, the quality measurement should enable unbiased estimates of

an algorithm’s quality to rediscover the underlying system. Therefore, the process

discovery evaluation procedure will use the data generation methodology and

algorithms of the GED artefact. As such, a reference model is available that

represents the behavior of the underlying process to be rediscovered by the

compared discovery algorithms. This reference model should be used instead

of classical log measures to get an unbiased estimate of the quality of the

discovered model.

2.3.2.2 Solid experimental design

An evaluation analysis aims to test statistical hypotheses about a discovery

algorithm. For example, the hypothesis: “the presence of loops causes the Al-

pha+ miner [106] to discover models with lower fitness”. Another example of

a hypothesis: “the Alpha+ miner and Heuristics miner [128] perform equally

in the fitness dimension on event logs with multi-choice (OR) behavior”. This

makes it fit within the experimental design methodology in which the primary

goal is to establish a causal connection between the independent (algorithm, log

characteristics) and dependent (model quality criteria) variables [64]. The three

cornerstones of good experimental design are: randomization, replication and

blocking [40]. The three cornerstones together are fundamental requirements of

our evaluation procedure (artefact) as they make the experiments scientifically

47

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

sound (e.g., avoid bias or wrong conclusions).

Randomization involves the random assignment of subjects to the treat-

ment in order to limit bias in the outcome of the experiment [64, 122]. In the

evaluation context, the subjects are the event logs and the treatments are the

discovery algorithms. Ultimately, the aim is to generalize the evaluation results

to the process population from which the event logs originate. Therefore, the

data generation step adopts three levels (as briefly discussed in Section 2.3.1.1):

a process population containing all processes with the desired control-flow char-

acteristics, a process model which is a random sample of the process population,

and an event log which is a random sample from the model, i.e. a random sample

drawn from the distribution of traces defined by the model. Only by adopting

this hierarchical structure of random samples, one can generalize the results

based on the event logs to the process population.

Replication means that more than one experimental unit is observed under

the same conditions. It enables researchers to estimate error effects and obtain

a more precise estimate of treatment effects [64]. In the context of process

discovery this implies that one needs to test a specific algorithm on more than

one event log to accurately assess the effect of that algorithm on model quality.

The procedure requires that the evaluation is based on a sample of event logs

from a model that is drawn from a given population to obtain better estimates

of the studied effect.

Finally, blocking an experiment is dividing the observations into similar

groups. In this way one can compare the variation between groups more pre-

cisely [122]. For example, if the experiment studies the effect of loops on model

quality, also other characteristics such as infrequent behavior could have an

effect. Therefore, the evaluation procedure should allow to vary the presence of

loops in models (variable of interest) while holding the infrequent behavior con-

stant to obtain precise estimates of the effect of loops on model quality (studied

effect). To illustrate this, consider an example where both the presence of loops

and infrequent behavior are varied at the same time. If the statistical analysis

considers loops, but omits infrequent paths as an explanation of model quality,

the learned effect of loops on model quality could be biased. Such bias happens

if infrequent paths have an effect on model quality which is now incorrectly

48

2.3. REQUIREMENTS OF ARTEFACTS

R1 Notation independence
Notation independent fitness measurement
Notation independent precision/generalization measurement
Unbiased estimates using reference model knowledge

R2 Experimental design
Randomization
Replication
Blocking

R3 Automation
Connect and automate evaluation steps
Allow shareable evaluation setup

Table 2.5: Requirements of process discovery evaluation procedure

in the learned effect of loops on model quality. Here blocking, i.e. holding the

infrequent paths constant, would be needed if one wants to learn the true effect

of loops (and only loops) on model quality.

2.3.2.3 Automating evaluation experiments

Experiments evaluating discovery techniques involve large-scale and computa-

tionally expensive experiments that require intensive human assistance [14].

Therefore, automating these experiments removes the need for the human assis-

tance and reduces the time needed to perform experiments. This results in the

requirement of an evaluation tool that connects the fundamental steps, i.e. data

set selection, quality measurement, and statistical tests, to enable large-scale

evaluation experiments. Furthermore, this tool should allow to share evalua-

tion setups, i.e. all parameters related to data selection, discovery algorithms,

quality measurement, and statistical tests, to ensure that experiments can be

reproduced and extended by other researchers.

2.3.3 Requirements for decision mining evaluation procedure

Chapter 5 will present the third artefact that involves a first evaluation proce-

dure for decision mining techniques. This procedure should combine the data

49

CHAPTER 2. OVERVIEW OF PROCESS MINING & EVALUATION

selection step provided by the GED artefact (see Section 2.3.1) and extend the

quality measurement using reference model knowledge of the second artefact

(see Section 2.3.2) to assess the quality of the discovered routing decision logic.

2.4 Conclusion

This chapter has provided the reader with an introduction to process mining,

process discovery and decision mining. The latter two have been positioned

within the process mining field and explained and illustrated with a small exam-

ple. The second part of the chapter has focused on empirically evaluating process

discovery and decision mining techniques. A critical view on the methodological

aspect of current evaluation approaches has resulted in a list of challenges that

currently prevent objective comparison and generalization of results. Finally,

each of the identified challenges has led to a set of requirements for improved

empirical evaluation approaches for both process discovery and decision mining

techniques which constitute the main research objective of this thesis.

50

C
H

A
P

T
E

R

3
GENERATING ARTIFICIAL EVENT DATA FOR PROCESS

DISCOVERY AND DECISION MINING EVALUATION

This chapter will describe the Generating artificial Event Data (GED)

artefact for empirical evaluation of both process discovery and decision

mining techniques. GED tackles the challenges related to data set selec-

tion and statistical tests as described in Sections 2.2.2.1 and 2.2.2.3. In order

to do this, GED will include the full control, randomness and standard formats

requirements stated in Section 2.3.1. The GED artefact includes a methodology

and implementation called the “Process Tree and Log Generator” (PTandLogGen-

erator) to generate artificial process models and event logs for process discovery

evaluation. Secondly, it introduces an extension to the “PTandLogGenerator”

called “DataExtend” that generates event logs with case attributes for decision

mining evaluation. More specifically, GED makes the following contributions:

• A general methodology for the generation of random artificial control-

flow process models and event logs that uses a hierarchical experimental

design (Section 3.1).

• An algorithm for generating random control-flow process models from a

51

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

predefined population of processes. The algorithm guarantees soundness of

the generated models and allows for a specific type of non-block-structured

behavior, namely long-term dependencies (Section 3.2).

• An algorithm for simulating the generated models into a random sample

of event logs (Section 3.3).

• An extension to the model and log generation algorithms to include case

attributes that represent the routing decision logic (Section 3.4).

The material in this chapter is based on the work published in [58, 60, 61].

The chapter is structured according to the above contributions: it starts with the

general methodology, then it discusses both model and log generation algorithms,

followed by the data extension. The demonstration and evaluation will illustrate

and assess the presented algorithms, followed by a discussion on the limitations

and threats to validity, and, finally, a conclusion summarizes the chapter.

3.1 Generating artificial Event Data methodology

The starting point of the chapter is a new methodology called the GED method-

ology for generating artificial models and logs for process discovery evaluation

(and extentable to decision mining evaluation see Section 3.4). This methodology

(illustrated in Figure 3.1) consolidates concepts of experimental design in statis-

tics with existing process mining research methodology. To our knowledge, this

is the first time that a methodology combines the ideas of those two research

areas. The GED methodology is the blueprint for our model and log generation

algorithms later in this chapter.

This section focuses on the control-flow perspective of the generated mod-

els and logs. However, the methodology can be adapted to include also case

attributes for decision mining evaluation which is discussed in Section 3.4.

The GED methodology uses a hierarchical experimental design [15] for the

generated event data. Figure 3.2 illustrates the design: the first level comprises

the process model population (hereafter called model population), the second

level a random sample of process models and the third level a random sample of

52

3.1. GENERATING ARTIFICIAL EVENT DATA METHODOLOGY

St
ep

1:
de

fin
e

m
od

el
po

pu
la

ti
on

St
ep

2:
sa

m
pl

e
m

od
el

s

L
og

3
L

og
2

L
og

3
L

og
2

L
og

1

M
P

M
P

S

C
as

eI
D

A
ct

iv
it

y

1
a

1
b

L
og

1

St
ep

3:
sa

m
pl

e
lo

gs

F
ig

ur
e

3.
1:

G
en

er
at

in
g

ar
ti

fic
ia

le
ve

nt
da

ta
m

et
ho

do
lo

gy
.

53

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Model sample

Log sample

Model Population

Model1 Model2 . . .

Log1 Log2 Log3 Log1 Log2 Log3 . . .

Figure 3.2: GED methodology: a hierarchical design.

event logs generated from the models in the second level. This structure gives

researchers full control over the control-flow behavior in the generated event

data. Additionally, it enables the researcher to generalize findings from the

event logs to a known model population.

The first step of GED methodology comprises the definition of the model

population. A model population specifies the control-flow patterns and their

probabilities. Examples of the control-flow patterns are the workflow control-flow

patterns (WCP), identified by [92], which represent process behavior common to

all real business processes. A probability distribution is assigned to each pattern

such that the sample, drawn in the second step, contains random models from

the population. The third step will simulate each model in the sample into a set

of event logs while setting parameters to control the number of traces and the

amount of noise. This set of logs forms a sample of all possible logs produced by

the model population.

The last two steps of the GED methodology are adopted from existing process

mining methodology (see [29, 115, 126, 129]). In contrast to existing approaches

in which researchers typically created models by hand in an ad hoc manner,

the second step of GED generates models which are random observations from

a model population. This allows researchers to generalize their results to a

predefined population.

The next two sections of this chapter introduce a model and log generator

54

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

for the GED methodology called the “Process Tree and Log Generator” (PTand-

LogGenerator). The PTandLogGenerator conforms to all the GED requirements

listed in Section 2.3.1.

3.2 PTandLogGenerator: random model generation

This section will describe the random model generation as part of the ‘PTand-

LogGenerator’. The generated models are represented in the Process Tree mod-

elling language [16, 69, 104]. Therefore, this section firstly defines process trees,

then it will describe how to characterize a model population, followed by an

algorithm that draws random samples of process trees from that population,

and finally, how to add random LT dependencies to a process tree.

3.2.1 Process trees

A process tree is a directed connected graph without cylces that consists of leaf

nodes (activities) and operator nodes (workflow patterns) [16, 104]. There are two

reasons why we choose to represent processes as process trees. Firstly, because

each tree is inherently sound, i.e. it is free of anomalies such as deadlocks, dead

activities and livelocks [105]. This fulfills the soundness requirement of GED

(see Table 2.4). Secondly, trees can be easily built in a stepwise manner using

the workflow patterns in Table 2.4. This stepwise construction (explained in

Section 3.2.3) will allow us to control for the process characteristics specified in

the model population.

Definition 3.1 formalizes a process tree PT(N, r,m, c, p,b) used in the re-

mainder of this chapter. It extends the definition by Buijs [16] with a parent (p)

and a probability mappping function (b).

Definition 3.1 (Process Tree). Let A ⊆A be a finite set of activities and PT be

a tree: PT = (N, r,m, c, p,b), where:

• N is a non-empty set of nodes consisting of operator (NO) and leaf nodes

(NL) such that: NO ∩NL =;

• r ∈ NO is the root node of the tree

55

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

• O = {→, ×, ∧, 	k, ∨} are the base patterns: “sequence”,“choice”,“parallel”,“loop”

and “or”.

• m : N → A ∪O ∪ {τ} is a function mapping each node to an operator or

activity, with τ representing a silent activity:

m(n)=
a ∈ A∪ {τ}, if n ∈ NL.

o ∈O, if n ∈ NO.

Using the mapping function m we can denote the set of all operator nodes

in a tree of a specific type as No where o ∈O, e.g. the set of all choice nodes

in a tree is: N× = {n ∈ NO|m(n)=×}.

• Let N∗ be the set of all finite sequences over N then c : N → N∗ is the

child-relation function:

c(n)= 〈〉 if n ∈ NL

c(n) ∈ N∗ if n ∈ NO

c(n)i denotes the child node at index i in the sequence

such that

– each node except the root node has exactly one parent:

∀n ∈ N\{r} : ∃p ∈ NO : n ∈ c(p)∧@q ∈ NO : p 6= q∧n ∈ c(q);

– the root node has no parent:

@n ∈ N : r ∈ c(n);

– each node appears only once in the list of children of its parent:

∀n ∈ N :∀1≤ i < j ≤ |c(n)| : c(n)i 6= c(n) j;

– a node with a loop operator type has exactly three children such that

the first child is always executed first, the second child is executed

maximum k ∈ N times, each time followed by the first child, and

finally the third child is executed once:

∀n ∈ N : (m(n)=	k)⇒|c(n)| = 3.

• p : N → N is the parent relation function:

p(n)= q ⇔ n ∈ c(q)

56

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

Figure 3.3: Example process tree PT1.

• each node has a probability of being chosen:

b : N → [0,1] is a function mapping each node n to a probability such that:

b(n)=

1, if p(n) ∉ N×

x ∈ [0,1], such that
∑

k∈c(p(n))
b(k)= 1 if p(n) ∈ N×.

Figure 3.3 shows an example process tree PT1 that represents a simple

process that starts with a choice between activities “a” and “b”, followed by

activity “c”, and then followed by activity “d” and “e” in parallel.

Definition 3.2 (Subtree). Let σ ·σ′ denote the concatenation of two sequences

σ and σ′, then s : N → N∗ is the subtree function, returning all nodes of n in a

pre-order1:

s(n)=
m(n), if n ∈ NL.

m(n) · 〈s(c(n)1) · . . . · s(c(n)|c(n)|)〉, if n ∈ NO.

Applying the subtree function to the root node r1 of process tree PT1 pro-

duces a sequence of nodes with their labels: s(r1)=→〈×〈a,b〉, c,∧〈d, e〉〉.
The process tree operator semantics are adopted from [16]. For each operator,

except for the bounded loop, there exists a trace equivalent Petri net illustrated

in Table 3.1. Notice that the bounded loop is translated to an unbounded loop in

the Petri net notation, but the traces in the third column are fully equivalent

with the loop bounded to two iterations.
1Pre-order is a specific type of depth-first search as the search tree is deepened as much

as possible on each child before going to the next sibling. It starts from the root node and then
deepens each of its child nodes from left to right.

57

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Process tree Petri net Trace(s)

〈a,b〉

〈a〉, 〈b〉

〈a,b〉, 〈b,a〉

〈a, c〉, 〈a,b,a, c〉,
〈a,b,a,b,a, c〉

〈a〉, 〈b〉, 〈a,b〉, 〈b,a〉

Table 3.1: Illustration of process tree translation to Petri net with possible traces.

58

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

3.2.2 Define a model population

The first step of the GED methodology is the definition of a model population. In

this step the user defines the building blocks, i.e. control-flow patterns, of which

the models in the population consist. The full control requirement category in

Table 2.4 listed an extensive set of control-flow patterns a researcher wants

to control during discovery algorithm evaluation (listed in the first column of

Table 3.2).

In the ‘PTandLogGenerator’, the model population consists of process trees.

Each process tree consists of operator and leaf nodes (see Definition 3.1). An

operator node represents one of the basic workflow control-flow patterns: “se-

quence” (→), “choice” (×), “parallel” (∧), “loop” (k) and “or” (∨). A leaf node

represents an activity which can be a visible activity (a ∈ A) or a silent activity

(τ).

Our method requires users to specify six probability distributions to de-

fine a tree population. First, the user assigns a triangular distribution for the

number of visible activities to control the size of the trees. A triangular dis-

tribution is characterized by a lower limit, a mode and an upper limit: y ∼
triangular(minimum,mode,maximum). As a result, all trees in the population

will have a number of visible activities y= |{n ∈ NL|m(n) ∈ A}| between the lower

and upper limit with the mode as most likely value.

Secondly, the frequency of the operator types “sequence” (→), “choice” (×),

“parallel” (∧), “loop” (k) and “or” (∨) in a tree is defined by a categorical dis-

tribution. As a result, each of these operator types has a fixed probability:

Π→,Π∧,Π×,Π∨,Π	. Together the probabilities of these basic patterns should

always sum to one.

Finally, each of the more complex patterns are assigned to a binomial dis-

tribution. The binomial distribution is used as each of those patterns is added

in a series of “yes/no” questions. The number of silent activities depends on the

probability Πτ to add a silent activity to a “choice” or “loop” node. The number

of reoccurring activities is determined by the probability to duplicate a visible

activity ΠRe. The number of LT dependencies is subject to the likelihood ΠLt of

inserting a dependency between activities in “choice” nodes. Finally, the number

59

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

of “choices” with infrequent outgoing path(s) depends on the probability ΠIn.

Definition 3.3 formalizes a model population MP used in the remainder of

this thesis.

Definition 3.3 (Model Population). A model population is defined as MP =
(minimumVisibleAct, modeVisibleAct, maxVisibleAct, ΠBase,Πτ,ΠRe,ΠLt,ΠIn)

such that:

• The minimumVisibleAct, modeVisibleAct, maxVisibleAct parameters spec-

ify the size of the process trees in population in terms of the number of

visible activities y that follows a triangular distribution between mini-

mumVisibleAct (lower limit) and maxVisibleAct (the upper limit) with

modeVisibleAct the most likely value: y∼ triangular(minimumVisibleAct,

modeVisibleAct, maxVisibleAct).

• ΠBase denotes the set of fixed probabilities of the basic tree operator types,

i.e.

ΠBase = {Π→,Π∧,Π×,Π∨,Π	}

. The type of an operator node n ∈ NO ∼ Categorical(ΠBase).

• Πτ specifies the probability of silent activity in a “choice” and “loop” node

of a process tree. The number of silent activities in a process tree follows

a Binomial distribution, i.e. the distribution of the number of times “yes”

is answered in a sequence of independent questions “add silent activity?”

for each “choice” and “loop” node of a tree: number of silent activities

∼ Binomial(|{N×∪ N	}|,Πτ). Notice that the number of silent activities

depends on Π× and Π	.

• ΠRe specifies the probability of duplicating a visible activity in a process

tree. The number of duplicated visible activities in a process tree follows a

Binomial distribution, i.e. the distribution of the number of times “yes” is

answered in a sequence of independent questions “change visible activitiy

to invisible?” for each visible activity in a tree: number of duplicated visible

activities ∼ Binomial(y,ΠRe) with y the number of visible activities.

60

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

• ΠLt specifies the probability of inserting a long-term dependency in a pro-

cess tree. The number of LT dependencies follows a Binomial distribution,

i.e. the distribution of the number of times “yes” is answered in a sequence

of independent questions “add LT dependency?” for each possible point for

LT dependency insertion (see Section 3.2.4): number of LT dependencies ∼
Binomial(∆,ΠLt) with ∆ the total number of possible dependencies which

depends on Π× as explained in Section 3.2.4.

• ΠIn specifies the probability of a “choice” node in a tree having infrequent

outgoing paths. The number of choice nodes with infrequent paths fol-

lows a Binomial distribution, i.e. the distribution of the number of times

“yes” is answered in a sequence of independent questions “add infrequent

paths?” for each choice node in a process tree: number of choice nodes with

infrequent paths ∼ Binomial(|N×|,ΠIn). Notice that the number of choice

nodes with infrequent paths depends on Π×.

Parameter Setting

Number of Visible Activities (min,mode,max)
Sequence (Π→) (WCP-1) ∈ [0,1]
Parallel (Π∧) (WCP-2/3) ∈ [0,1]
Choice (Π×) (WCP-4/5) ∈ [0,1]
Loop (Π) (WCP-21) ∈ [0,1]
Or (Π∨) (WCP-6/7) ∈ [0,1]
Silent activities (Πτ) ∈ [0,1]
Reoccurring activities (ΠRe) ∈ [0,1]
Long-term dependencies (ΠLt) ∈ [0,1]
Infrequent paths (ΠIn) ∈ [0,1]

Table 3.2: Probability settings of control-flow patterns

A model population actually represents an infinite set of models with charac-

teristics defined by the probabilities in its definition MP. From an even higher

level of abstraction, the model population is a sample of all possible model

populations, i.e. a set of all possible distributions over process characteristics.

61

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Table 3.2 provides an overview of the probabilities and the valid setting that a

user needs to determine for each element in the model population MP.

3.2.3 Sample models

The definition of the model population enables the second step of the GED

methodology: draw a random sample of models from the population. The imple-

mentation of this step uses a process tree generating algorithm illustrated in

Figure 3.4.

The algorithm is a top-down approach based on the random node addition

method for the mutation of process trees presented by [16]. Unlike that method,

which generates completely random trees, the presented algorithm generates

process trees that are random observations of a predefined model population.

This allows researchers to control the behavior in the models and generalize

their results to a known model population.

The tree building algorithm in Figure 3.4 builds a random process tree PT

given a model population MP. It starts by drawing a random value y from

the distribution of activities to decide how large the tree will grow in terms of

visible activities. After that, the algorithm adds nodes to the tree for as long as

there are activities left to incorporate (#act < y). In each iteration the algorithm

selects a random visible leaf node (or the root node in case the tree has no nodes

yet) and replaces this node with an operator node based on the probabilities

in ΠBase.2 Then, the algorithm adds leaf nodes to the assigned operator: a loop

node always has three leaf nodes, all the other operators get two leaf nodes.

If the operator is of type choice or loop, one of the added leaf nodes can be an

invisible activity based on the probability Πτ. The next step updates the number

of visible activities #act in the tree. After all activities are added (#act = y), the

tree is reduced. This step merges parent and child nodes if they have the same

operator type except for loops.3 As a result, the reduced tree is not limited to

operators with only two children. The next step of the algorithm duplicates the

labels of leaf nodes based on the probability ΠRe. Finally, the algorithm assigns

2Invisible activities are endpoints in the tree and hence are never selected to be replaced.
3Reducing parent and child loop nodes could cause the parent loop node to have more than

three children.

62

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

St
ar

t

Po
pu

la
ti

on
M

P

D
ra

w
y
∼

tr
ia

n
gu

la
r

#a
ct

<
y

R
ed

uc
e

tr
ee

S
el

ec
t

ra
nd

om
le

af

A
ss

ig
n

ra
nd

om
op

er
at

or
(Π

B
as

e)
A

dd
ac

ti
vi

ti
es

(Π
τ
)

U
pd

at
e

#a
ct

Π
R

e
>

0

A
dd

re
oc

cu
rr

in
g

ac
ti

vi
ti

es
(Π

R
e)

A
dd

br
an

ch
pr

ob
ab

il
i-

ti
es

(Π
In

)
St

op

ye
s

no

ye
s

no

F
ig

ur
e

3.
4:

F
lo

w
ch

ar
t

of
tr

ee
bu

ild
in

g
al

go
ri

th
m

63

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

either equal or unequal branch probabilities to each choice node based on the

probability ΠIn.

Figure 3.5 illustrates the tree building algorithm. Suppose that the model

population is as follows: MP = (min = 5,mode = 7,max = 10,ΠBase = {0.4,0.2,

0.2,0,0.2},0.3,0.1,0.0,0.5). The algorithm starts by drawing y= 7 as the number

of visible activities in the final tree. Then, as the tree has no nodes yet, i.e.

#act = 0, the algorithm starts adding nodes to the tree. It starts with assigning a

random operator to the root node. Suppose this is a sequence operator. Then, two

activities are added as leaf nodes “a” and “b” to the root node (see Figure 3.5(a)).

The number of activities is updated to #act = 2. As #act < 7, the algorithm

selects a random leaf node, suppose leaf node “b”. Next, it replaces “b” by a

randomly selected operator, e.g. a choice operator. This choice operator gets

two activities “b” and “c” as leaf nodes (see Figure 3.5(b)) which updates the

number of activities to #act = 3. Similarly, leaf node “a” is replaced by a sequence

operator with “a” and “d” as children (see Figure 3.5(c)). Next, the algorithm

replaces leaf node “d” with a loop operator. For a loop operator, the middle child

can contain an invisible activity depending on the user specified probability

Πτ. Suppose, that a randomly drawn number is smaller than Πτ such that the

algorithm adds an invisible activity as middle child (see Figure 3.5(d)). The next

two node additions extend the tree with a parallel and a sequence operator (see

Figure 3.5(e) and 3.5(f)) to reach the target number of activities, i.e. #act = 7.

Then, the algorithm reduces the tree by merging the two sequence operators

(see Figure 3.5(g)). Next, the algorithm iterates over all the visible activities

in the tree and randomly changes the label of a visible activity to the label of

a randomly chosen other visible activity based on the probability ΠRe = 0.3,

in this example the label of leaf node “c” is changed to “a” in Figure 3.5(h).

Finally, the algorithm iterates over all choices in the tree and randomly assigns

unequal branching probabilities to the choice based on the probability ΠIn = 0.5.

In this example the only choice operator in the tree gets unequal branching

probabilities: 0.1 and 0.9 (see Figure 3.5(h)).

64

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

(a)

(b) (c)

(d) (e)

(f) (g)

(h)

Figure 3.5: Illustration of the tree building algorithm

65

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

A process tree generated by the above algorithm is free-choice and there-

fore does not contain LT dependencies. However, the requirements of GED in

Table 2.4 specified that the random model generator should also enable LT

dependencies. Therefore, the next section presents a method to add random LT

dependencies to a given process tree.

3.2.4 Adding long-term dependencies

Process trees, as generated in the previous step, are block-structured models.

As a result, all dependencies in a tree are local, i.e. there are no LT dependen-

cies. Previous approaches that generate models with LT dependencies do not

guarantee soundness, another requirement of the GED methodology. Therefore,

we propose an approach to incorporate random LT dependencies in a given tree

resulting in a so called “unfolded choice tree” which is always sound (see Algo-

rithm 1). We adopt the definition of LT dependencies of [16]: “choices that depend

on decisions made earlier in the process". It focuses on decisions represented

as exclusive choices (WCP-4 and 5), as such the considered LT dependencies

correspond to the non-free-choice constructs in cases a,e,f and g of Figure 5

in [129] and shown here in Figure 3.6 for ease of reference. To our knowledge,

this approach is the first to extend process trees with LT dependencies.

As an example, consider the process tree PT2 illustrated in Figure 3.7. Tree

PT2 has a “sequence” operator as root node with several “choice” nodes (choices)

as descendants.4 PT2 contains no LT dependencies, e.g. if activity “a” was chosen

in ×〈a,b〉, then this decision would not affect the choice between “f” and “g” in

×〈 f , g〉 later in the process. The proposed approach allows to incorporate LT

dependencies between choices. Consider for example a dependency between

activities in choices ×〈a,b〉 and ×〈 f , g〉: if “a” is chosen, then “f” cannot be

chosen later on.

The following paragraphs will describe the two steps of the proposed ap-

proach to insert LT dependencies: a tree preparation step followed by an inser-

tion step.

4A descendant is a node reachable by repeatedly going from parent to child.

66

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

Algorithm 1 :Insert random long-term dependencies
1: Input:
2: PT: process tree
3: ΠLt: probability of inserting a LT dependency
4: UnfoldLoops: whether or not to unfold loops
5: k: maximum repetitions of loops
6: Output:
7: PT×:unfolded choice tree with dependencies
8: Start InsertRandomLTDependencies(PT,ΠLt,
9: UnfoldLoops,k)

10: PT× ← PT
11: while ∃n′ ∈ s(r′)|n′ 6= r′ and n′ ∈ N ′× do
12: if UnfoldLoops = True then
13: apply transformation rule to n′ or unfold loop with maximum k repe-

titions
14: else
15: apply transformation rule to n′

16: end if
17: move the branching probabilities of n′

18: end while
19: for n′ ∈ c(r′) do
20: x ← random, i ← index of n′ in c(r′)
21: if x <ΠLt and φ(PT×, i)= true then
22: remove entire branch s(n′) from PT×

23: end if
24: end for
25: z ← ∑

n∈c(r′)
b(n)

26: for n ∈ c(r′) do
27: b(n′)← b(n′)/z
28: end for
29: return PT×

67

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Figure 3.6: Figure 5 in [129] illustrating possible non-free-choice constructs in
Petri nets.

Figure 3.7: Example process tree PT2.

68

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

3.2.4.1 Preparing the Tree for Long-term Dependencies

The first step of the approach to insert LT dependencies is a preparation step. A

LT dependency limits the choice behavior of one choice based on what happened

in (an)other choice(s). For example, a dependency between activity “a” and “f”

in Figure 3.7 limits the behavior in choice ×〈 f , g〉, i.e. if “a” happens, then “f”

cannot be chosen in ×〈 f , g〉. As such, a LT dependency forbids behavior in a

combination of choices of a tree.

To insert LT dependencies in a process tree, one needs combinations of choice

behavior. These combinations arise if a process tree has multiple choice oper-

ators and a combination represents one outgoing branch from every choice

operator in the tree. For example, process tree PT2 in Figure 3.7 has the

following combinations of choice behavior: “a” and “f”, “a” and “g”, “b” and

“f”, and “b” and “g”. However, a process tree in its normal form does not dis-

play such combinations. Therefore, the proposed approach first transforms the

given tree PT(N, r,m, c, p,b) into a trace equivalent tree called the unfolded

choice tree using duplication of activity labels. The transformed tree, denoted as

PT×(N ′, r′,m, c, p,b), contains only one choice which is the root node r′. Each

branch (subtree) under the root r′ contains a combination of choice behavior in

the original tree. As such, the choice at the root r′ represents all choices in the

original tree. At the same time, PT× is still block-structured and thus sound

(see proof of Theorem 3.1).

Lines 10-18 of Algorithm 1 describe how to unfold the original tree PT

into PT× in a recursive way using the transformation rules in Definition 3.4.

Each time, take the deepest choice in the tree and apply a transformation rule

in Definition 3.4 to move it closer to the root node. Notice that there is no

transformation rule for a loop node with a choice as the first or second child.

Directly unfolding a loop with a choice in the first or second child of a loop would

make PT× not trace equivalent to PT.5 Therefore, the user can decide if such

choices in loops are unfolded. Not unfolding these first and second child choices

will exclude them from the generated LT dependencies. If a user chooses to

5Tree s(PT1) =	k 〈×〈a,b〉, c,d〉 is not trace equivalent to tree s(PT2) = ×〈	k 〈a, c,d〉,	k

〈b, c,d〉〉.

69

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

unfold the choices in the first or second child of the loop, then this requires a

special unfolding step for that particular loop.

Definition 3.1 specifies that a loop node has exactly three children such

that the first child node is always executed first, the second node is executed

maximum k times, each time followed by the first child node, and finally the

third child node is executed to conclude. Because k is a finite number, one can

unfold the bounded loop into a trace equivalent structure of → and × nodes

as illustrated in Figure 3.8 with k = 2. The bounded loop can be justified by

accepting a so-called fairness assumption by [98]: “soundness and strong fairness

means that each process instance will eventually terminate correctly". The user

can specify the number k, i.e. the maximum times a loop can repeat. After the

loop unfolding, the resulting choices can be unfolded again with the rules in

Definition 3.4.

When applying the transformation rules in Definition 3.4 the branching

probabilities of the children of the original choice move to the children of the new

unfolded choice. The loop unfolding results in a choice node with as children the

number of loop repetitions. The probability of these repetitions is defined using

a categorical distribution: ΠRepetitions = {Π0,Π1, . . . ,Πk−1,Πk} :Πi = 0.5i+1 ∀i ∈
[0,k−2] and Πi = 0.5k ∀i ∈ [k−1,k], where Πi is the probability of i repetitions

and k the maximum number of repetitions. As such this distribution is equiv-

alent to the behavior of a bounded loop with a probability of 50% to do a loop

iteration and a probability of 50% to exit the loop.

Definition 3.4 (Unfolded Choice Tree). A given tree PT = (N, r,m, c, p,b) with

at least one choice block, i.e. |{×i|×i ∈ NO}| ≥ 1, can be transformed to the

unfolded choice tree form PT× = (N ′, r′,m, c, p,b) using the following rules:

1. → (×(. . .1 , . . .2), . . .3)=×(→ (. . .1 , . . .3),→ (. . .2 , . . .3))

2. ×(×(. . .1 , . . .2), . . .3)=×(. . .1 , . . .2 , . . .3)

3. ∧(×(. . .1 , . . .2), . . .3)=×(∧(. . .1 , . . .3),∧(. . .2 , . . .3))

4. 	k (. . .1 , . . .2 ,×(. . .3 , . . .4))=×(k (. . .1 , . . .2 , . . .3),	k (. . .1 , . . .2 , . . .4))

5. ∨(×(. . .1 , . . .2), . . .3)=×(∨(. . .1 , . . .3),∨(. . .2 , . . .3))

70

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

(a)

(b)

Figure 3.8: Illustration of the loop unfolding step. Left: the original bounded
loop. Right: the unfolded loop with maximum 2 iterations.

The branching probabilities assigned to each of the children of a choice node ×i

by the mapping function b(c(×i) j) in PT are transferred to the new choice ×′
i in

PT× each time a rule is applied:

• if p(×i) ∈ {N→∪N∧∪N∨∪N	 }, then the probabilities move up with the

×i operator: b(c(×′
i) j)= b(c(×i) j)

• if p(×i) ∈ N×, then the branching probabilities of both choice nodes are

multiplied when merging:

×p(×i(. . .1 , . . .2), . . .3)=×′
pi(. . .1 , . . .2 , . . .3), then the probabilities of ×′

pi are:

– b(c(×′
pi)1)= b(c(×p)1) ·b(c(×i)1)

– b(c(×′
pi)2)= b(c(×p)1) ·b(c(×i)2)

– b(c(×′
pi)3)= b(c(×p)3)

To illustrate the tree transformation, consider the tree PT2 in Figure 3.9(a).

First, select the deepest choice node that is not the first or second child of a loop

node, i.e. ×〈a,b〉. Then apply transformation rule 1 of Definition 3.4 to obtain

the tree in Figure 3.9(b). This tree contains two branches that are equal, except

for the leaf nodes “a” and “b”. The probabilities of the original children of the

choice, i.e. “a” and “b”, move up together with the choice operator: the probability

to execute the left (right) branch of the top choice node is 0.5, which is the

71

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

probability to execute “a” (“b”) of the original choice ×〈a,b〉 before applying the

transformation rule.

The two remaining choices under the root are both the second child of a

loop node. To include these choices in LT dependencies, a loop unfolding step is

needed. Consider for example an unfolding with a maximum of 1 repetition6,

then the trace equivalent unfolded tree is shown in Figure 3.9(c).

Due to the unfolding of the loops, new choice nodes appear under the root

node. Therefore, similarly to the first step, one can again apply transformation

rule 1 to the choice ×〈 f , g〉 (in the left and right branch) to obtain the tree in

Figure 3.9(d). Notice that the probabilities to execute branches “f” (0.9) and “g”

(0.1) move to the left and right branches of the transformed choice. In the next

step, apply transformation rule 2 to merge parent with child choices. This results

in the tree in Figure 3.9(e). The probabilities of parent and child branches are

multiplied when merging the choices: the probability of τ remains at 0.5, but

the probability of the right parent branch is multiplied with the probabilities

of the two child branches, i.e. 0.5 ·0.9 = 0.45 is the probability of the merged

branch →〈 f , e〉 and 0.5 ·0.1= 0.05 is the probability of the other merged branch

→〈g, e〉.

The unfolding of all choices continues until the root node of the tree is the

only choice node in the tree (e.g. in Figure 3.10). If the user opts to not include

the choices in the first or second child of a loop node in the dependencies, the

unfolding stops when the root node is a choice and all other choices are either a

first or second child under a loop node (e.g. in Figure 3.9(b)).

6Notice that activity “e” can be repeated once.

72

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

(a)
(b)

(c) (d)

(e)

Figure 3.9: Unfolding of Tree PT2: (a) original tree PT2, (b) unfolded choice rule
1, (c) unfolded loops, (d) unfolded choice rule 1, (e) merged choices.

73

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

3.2.4.2 Inserting Random Dependencies

After the preparation step, the approach inserts random LT dependencies into

the unfolded choice tree (see lines 19-24 of Algorithm 1). LT dependencies are

created on a trace level while ensuring soundness. Each branch under the root

node of the unfolded choice tree PT× represents one combination of choice

behavior in the original tree PT, i.e. a set of traces in the resulting event log.

Removing a branch from the tree PT× forbids this combination and thus inserts

a LT dependency. To ensure random LT dependencies, the removal of a branch

depends on the probability to insert LT dependencies ΠLt.

To guarantee soundness, one could not simply remove any set of combina-

tions of choice behavior, because some combinations together restrict too much

choice behavior and thus result in dead activities. A dead activity occurs if an

activity in the original tree PT does not occur in the tree PT×. The goal of the

approach is to insert LT dependencies by limiting the choice behavior in a tree

while preventing unsound behavior such as dead activities.

The pruning mechanism in Definition 3.5 prevents dead activities by check-

ing if removing a branch from the root causes a dead activity in tree PT×. First,

the mechanism retrieves all activities in the branch A i. Then, it retrieves all

activities in the other branches: Ao. If the activities in the selected branch are

not contained in the set of activities of the other branches, i.e. A i * Ao, then the

selected branch cannot be removed.

Definition 3.5 (Pruning Mechanism). The pruning mechanism is a function

φ : PT× N→ [true,false] that given the unfolded choice tree PT× and the index

i of a branch of the root returns “false” if a dead activity occurs when eliminating

the branch c(r′)i in PT×:

A i = {m(n′) ∈ N ′
L|n′ ∈ s(c(r′)i)}

Ao = {m(n′) ∈ N ′
L|n′ ∉ s(c(r′)i)}

φ(PT×, i)=
true, if A i ⊆ Ao.

false, if A i * Ao.

74

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

The insertion of LT dependencies is illustrated in Figures 3.10, 3.11, 3.12, 3.13.

It starts from the unfolded choice tree PT×
2 (see Figure 3.10) obtained from

unfolding PT2 in Figure 3.9. Then, Algorithm 1 visits each of the branches

under the root choice node. Based on the probability to insert LT dependencies,

ΠLt = 0.5, the first, third and last branch are randomly selected as candidates

for removal. The first and third branch can be removed as illustrated in Fig-

ure 3.11 and Figure 3.12 respectively. However, the pruning mechanism prevents

removing the last branch as this would make “g” a dead activity.

Finally, after removing the branches in PT×, the sum of the branching

probabilities of the remaining children of the root does not equal to one: i.e.∑
n∈c(r′)

b(n) 6= 1. Therefore, the branching probabilities of each of these child nodes

are normalized (see lines 25-28 of Algorithm 1): for each node ni ∈ c(r′) do

b(n)= b(ni)/
∑

n∈c(r′)
b(n). In the example the branching probabilities of the tree in

Fig. 3.12 are normalized as shown in Fig. 3.13. This results in the final unfolded

choice tree with LT dependencies which is sound:

Theorem 3.1. Algorithm 1 generates unfolded choice trees with long-term de-

pendencies that are sound.

Proof. The proposed algorithm generates LT dependencies on a trace level.

It first transforms the original tree in a trace equivalent unfolded choice tree

to control that the long-term depency insertion does not alter other process

behavior. The algorithm removes a set of branches from the unfolded choice

tree to exclude some combinations of choice behavior in the tree. In this way

choices are no longer free, but depend on other choices made earlier in the

process, which conforms to the definition of LT dependencies (see introduction of

Section 3.2.4).

The unfolded choice tree PT× is created by applying the five transformation

rules in Definition 3.4 and the loop unfolding step.

The transformation rules use the operators O = {→, ×, ∧, 	k, ∨} and add

duplicate activity labels, i.e. m(n′
1) = m(n′

2)|n′
1 6= n′

2 and n′
1,n′

2 ∈ N ′
L, to unfold

choices. Each of those transformation rules preserves the language of the original

process tree. The language of a process tree is defined as the set of all completed

75

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

F
igure

3.10:U
nfolded

choice
tree

P
T

×2

F
igure

3.11:U
nfolded

choice
tree

P
T

×2
after

rem
ovalofthe

first
branch

76

3.2. PTANDLOGGENERATOR: RANDOM MODEL GENERATION

F
ig

ur
e

3.
12

:U
nf

ol
de

d
ch

oi
ce

tr
ee

P
T

× 2
af

te
r

re
m

ov
al

of
th

e
fir

st
an

d
th

ir
d

br
an

ch

F
ig

ur
e

3.
13

:N
or

m
al

iz
ed

br
an

ch
in

g
pr

ob
ab

ili
ti

es

77

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

traces that the tree can produce. Table 3.1 illustrates the language of each

process tree operator. The formal language of each operator is formulated in

Defition C.2 in Appendix C. If a transformed tree has the same language as

the original tree, then this means that it ensures trace equivalent behavior. To

illustrate this, consider a process tree PT3: s(r3)=→〈×〈a,b〉, c〉. After applying

transformation rule 1 of Definition 3.4 to PT3 one gets PT×
3 : s(r×3)=×〈→ 〈a, c〉,→

〈b, c〉〉. It is easy to see that the language of PT3 and PT×
3 is the same: L (PT3)=

L (PT×
3)= {〈a, c〉,〈b, c〉}.

The loop unfolding step replaces a loop operator (k) by a combination of

sequence and choice operators (→, ×) plus a silent activity (τ) and duplicate

activity labels. The unfolded loop and the original bounded loop have the same

language which ensures trace equivalent behavior. As an example, consider PT4:

s(r4)=	2 〈a,b, c〉 and the tree after unfolding the loop PT×
4 : s(r×4)=→〈a,×〈τ,→

〈b,a〉,→〈b,a,b,a〉〉, c〉. It is easy to see that the language of PT4 and PT×
4 is the

same: L (PT4)=L (PT×
4)= {〈a, c〉,〈a,b,a, c〉,〈a,b,a,b,a, c〉}.

As such the transformation rules plus the loop unfolding results in an

unfolded choice tree that conforms with the Definition 3.1 of a block-structured

process tree which is inherently block-structured and thus sound.

The removal of branches (subtrees) of the unfolded choice tree PT× can

never introduce deadlocks as each branch under the root node in PT× is sound

and independent from other branches, i.e. they are mutually exclusive, and

removing one branch does not affect the remaining branches. However, the

removal can produce dead activities by eliminating all branches in which a

certain activity occurs. The pruning mechanism in Definition 3.5 prevents dead

activities by ensuring that each activity occurs in at least one branch of the final

tree. The absence of dead activities together with the block-structuredness of

PT× guarantees soundness. �

The following section will discuss how the generated trees can be simulated

into event logs.

78

3.3. PTANDLOGGENERATOR: RANDOM EVENT LOG GENERATION

3.3 PTandLogGenerator: random event log
generation

This section focuses on the last step of the GED methodology: how to generate a

sample of event logs from a sample of trees as generated in Section 3.2.

3.3.1 Setting Log Characteristics

The hierarchical design of the GED methodology (see Fig. 3.2) shows that one

process tree represents a population of event logs. The population can be further

refined using log characteristics. Here we use two characteristics imposed by

the full-control requirement in Table 2.4: the number of traces and the amount

of noise. Similar to the model population, the user needs to specify each of these

log characteristics: a fixed number for the number of traces and a distribution of

noisy traces as described below.

Definition 2.3 formalized a simple trace as a sequence of activities and a

simple event log as a multiset of traces. The size of the log |L| is equal to the

number of traces t. It expresses how many times the simulator will run from

start to end through the process tree, logging each of these runs as a separate

trace σ j.

This thesis adopts the definition of noise by Günther [41]: “noise is incorrect

behavior in the log that can be caused either by the logging mechanism or the

constitution of the event data". The following types of noise behavior are adopted

from [41]: missing head, missing body (episode), missing tail, order perturbation

and the introduction of additional activities. Often during evaluation, these

noise types are introduced in a log as they typically pose problems to discovery

algorithms as they can lead to, respectively: erroneous start activities, incorrect

activity skips, erroneous end activities, incorrect parallellism, and erroneous

loops on an activity. Assume a trace σ j = 〈a1, . . . ,an−1,an〉. The missing head,

body and tail types, remove subsequences of a trace σ j. The head of a trace

contains activities ai with i ∈ [1,n/3], the body consists of activities ai with

i ∈ [(n/3)+1,2n/3] and the tail contains activities ai with i ∈ [(2n/3)+1,n]. The

order perturbation type interchanges two random activities. The additional

79

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

activities type introduces a random activity from the available alphabet in the

trace.

The amount of noisy traces t∗ in a log is specified using a binomial distri-

bution: t∗ ∼ Binomial(|L|,ΠNoise). ΠNoise expresses the probability to select a

trace for noise insertion. A noisy trace contains a random type of noise behavior

which is decided based on a discrete uniform distribution. A trace with only one

activity cannot be selected for noise insertion.

3.3.2 Simulating a Log from a Process Tree

There are many implementations for simulating business process models into

event logs (e.g. [17, 35, 53, 79]). These implementations work with Coloured

Petri nets, BPMN and Declare as language of the input models. However, none

of the existing implementations accepts a process tree as input. Furthermore,

we need the simulation to take into account the branching probabilities of the

nodes in our generated trees. Using an existing simulator would require an

extension to handle these probabilities. Therefore, we have opted to make a

new simulation algorithm part of the “PTandLogGenerator” that accepts the

generated trees with branching probabilities.

The new simulation algorithm, as described by Algorithm 2, takes a process

tree, the number of traces to generate, and the noise probability as input para-

meters. The algorithm builds a simple event log, which is a multiset of simple

traces. For each trace to be generated, it calls the function “GenerateTrace”

recursively starting with the root node of the tree.

“GenerateTrace” (see Algorithm 3) takes a node and the current trace as

input. At the start of the trace generation, the input node is the root node and

the current trace is empty, i.e. σ = 〈〉. “GenerateTrace” tests the type of the

input node n to decide how the current trace is expanded or which algorithms

needs to be executed next. In case the input node is a leaf node (rules 7 to 10

of Algorithm 3), then the activity is added to trace, except when its label is τ

(representing an invisible activity), and the updated trace is returned. In case

the input node is not a leaf node but an operator node (rules 11 to 20), then,

depending on the operator type, another algorithm is called with the input node

80

3.3. PTANDLOGGENERATOR: RANDOM EVENT LOG GENERATION

Algorithm 2 : Simulate Process Tree into event log
1: Input:
2: PT: Process Tree
3: t: the number of traces
4: ΠNoise: the amount of noise
5: Output:
6: L: event log
7: Start SimulateTree(PT, t,ΠNoise)
8: for i ∈ [1, t] do .create t entities
9: σi ←〈〉 .start with an empty trace

10: σi ← GenerateTrace(r,σi) .start from the root of the tree, see
Algorithm 3

11: if ΠNoise > 0 then
12: x ← random ∈ [0,1)
13: if |σi| > 1 and x <ΠNoise then .exclude traces of length one
14: type ← random(head,body,tail,swap,add)
15: add noise type to σi
16: end if
17: end if
18: L ← L∪σi .add trace to the log
19: end for
20: return L

and current trace. The following paragraphs discuss each of these algorithms.

3.3.2.1 Execute sequence operator

Algorithm 4 describes how to execute a sequence operator node. It iterates over

each child node of the input sequence node and updates the current trace by

a recursive call on “GenerateTrace” using the child node and current trace as

inputs. To illustrate, given a node → 〈a,b〉 and an empty trace σ = 〈〉, then

Algorithm 4 first calls “GenerateTrace” with “a” and σ as inputs. The updated

trace then contains activity “a”: σ= 〈a〉. A similar execution happens for “b” such

that Algorithm 4 in the end returns the updated trace σ= 〈a,b〉.

81

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Algorithm 3 : Generate trace
1: Input:
2: n: tree node
3: σ: trace
4: Output:
5: σ: updated trace
6: Start generateTrace(n,σ)
7: if n ∈ NL and m(n)= τ then
8: return σ

9: else if n ∈ NL then
10: return σ⊕〈m(n)〉
11: else if n ∈ N→ then
12: return ExecuteSequence(n,σ) .Algorithm 4
13: else if n ∈ N× then
14: return ExecuteChoice(n,σ) .Algorithm 5
15: else if n ∈ N∧ then
16: return ExecuteParallel(n,σ) .Algorithm 6
17: else if n ∈ N∨ then
18: return ExecuteOr(n,σ) .Algorithm 8
19: else
20: return ExecuteLoop(n,σ) .Algorithm 7
21: end if

Algorithm 4 : ExecuteSequence
1: Input:
2: n: sequence node
3: σ: trace
4: Output:
5: σ: updated trace
6: Start ExecuteSequence(n,σ)
7: for nchild ∈ c(n) do .iterate over children from left to right
8: σ← GenerateTrace(nchild,σ) .update trace
9: end for

10: return σ

82

3.3. PTANDLOGGENERATOR: RANDOM EVENT LOG GENERATION

3.3.2.2 Execute choice operator

Algorithm 5 describes how to execute a choice operator node. It starts by picking

a random child node of the input choice node. This random selection uses the

execution probabilities of each child node which can be accessed by the function

b(nchild). Then, Algorithm 5 returns the updated trace by a recursive call on

“GenerateTrace” using the selected child node and current trace as inputs. To

illustrate, given a node ×〈a,b, c〉 and an empty trace σ= 〈〉, then Algorithm 5 first

randomly picks one of the three child nodes. Suppose that b(a)= 0.9, b(b)= 0.05,

b(c)= 0.05, this means there is a 90% probability to pick “a”, 5% probability to

pick “b”, and 5% probability to pick “c”. Algorithm 5 returns the updated trace

which in this small example consists of one activity, e.g. σ= 〈a〉.

Algorithm 5 : ExecuteChoice
1: Input:
2: n: choice node
3: σ: trace
4: Output:
5: σ: updated trace
6: Start ExecuteChoice(n,σ)
7: nchild ← random child ∈ c(n) based on branch probabilities
8: return σ← GenerateTrace(nchild,σ) .update trace

3.3.2.3 Execute parallel operator

Algorithm 6 describes how to execute a parallel operator node. It keeps track of

the executed child nodes in a variable “executedChildren” which is an empty set

in the beginning. While there are some child nodes that are not yet executed,

the algorithm picks a random child node that has not been executed (rule 9).

Then, it updates the current trace by a recursive call on “GenerateTrace” using

the selected child node and current trace as inputs. After the execution of the

child node, it is added to the set of executed child nodes (rule 11). Finally, after

executing all of the child nodes, Algorithm 6 returns the updated trace. To

illustrate, given a node ∧〈a,b〉 and an empty trace σ = 〈〉, then Algorithm 6

randomly picks one of the two child nodes. Suppose it executes “b” first, which

83

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

updates the trace to σ= 〈b〉. As child node “b” is already executed, Algorithm 6

executes the only other child node “a”, which updates the trace to σ = 〈b,a〉
which is returned.

Algorithm 6 : ExecuteParallel
1: Input:
2: n: parallel node
3: σ: trace
4: Output:
5: σ: updated trace
6: Start ExecuteParallel(n,σ)
7: executedChildren ← {}
8: while executedChildren 6= {child|child ∈ c(n)} do .execute all children in

random order
9: nchild ← random({child|child ∈ c(n)}\ executedChildren)

10: σ← GenerateTrace(nchild,σ) .update trace
11: executedChildren ← executedChildren ∪nchild
12: end while
13: return σ

3.3.2.4 Execute loop operator

Algorithm 7 describes how to execute a loop operator node. It always starts

with executing the first child of the loop node which updates the trace by a

recursive call on “GenerateTrace” using the first child node and the current

trace as inputs. Then, multiple iterations of executing the second child node

followed by the first child node can occur. Algorithm 7 keeps track of the number

of iterations done using variable i. The maximum number of iterations k is

attached to the loop operator node itself, i.e. 	k. If the number of iterations

performed i is smaller than k, then there is a 50% probability to actually do

the iteration of executing the second child node followed by the first child node.

Notice that i is updated no matter whether the iteration will actually occur. As

a result, not all traces necessarily contain the maximum number of iterations

k. When the number of iterations i equals k, the algorithm exits the while

loop and executes the third child of the loop operator node and returns the

updated trace (rule 16). To illustrate, given the node 	2 〈a,b, c〉 and an empty

84

3.3. PTANDLOGGENERATOR: RANDOM EVENT LOG GENERATION

trace σ= 〈〉, then Algorithm 7 starts with executing the first child node which

results in σ = 〈a〉. Suppose, that the random number is indeed smaller than

0.5 and the algorithm executes the second child followed by the first child to

obtain σ= 〈a,b,a〉. Because i = 1 is smaller than k, another iteration can occur.

Suppose this happens, then it results in σ = 〈a,b,a,b,a〉. Because i = k, the

while loop ends and the algorithm executes the third child which updates the

trace that is returned, i.e. σ= 〈a,b,a,b,a, c〉.

Algorithm 7 : ExecuteLoop
1: Input:
2: n: loop node
3: σ: trace
4: Output:
5: σ: updated trace
6: Start ExecuteLoop(n,σ)
7: σ←σ⊕ GenerateTrace(c(n)1,σ) .first execute first child
8: i = 0
9: while i < k do .k is given for a loop node 	k

10: i ← i+1 .update the number of iterations done
11: if randomNumber < 0.5 then
12: σ← GenerateTrace(c(n)2,σ) .execute second child
13: σ← GenerateTrace(c(n)1,σ) .execute first child
14: end if
15: end while
16: return σ← GenerateTrace(c(n)3,σ) .execute third child

3.3.2.5 Execute or operator

Algorithm 8 describes how to execute an “or” operator node. The algorithms

starts with randomly determining the number of child nodes to be executed. The

minimum number of child nodes to execute is one child node and the maximum is

all the child nodes (rule 7). It keeps track of the executed child nodes in a variable

“executedChildren” which is an empty set in the beginning. While the number

of executed child nodes is smaller than the number of child nodes to execute,

the algorithm picks a random child node that has not been executed (rule 10).

Then, it updates the current trace by a recursive call on “GenerateTrace” using

85

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

the selected child node and the current trace as inputs. After the execution of

the selected child node, it is added to the set of executed child nodes (rule 12).

Finally, after executing the selected number of the child nodes, Algorithm 8

returns the updated trace. To illustrate, given a node ∨〈a,b, c〉 and an empty

trace σ= 〈〉, then Algorithm 8 randomly determines the number of child nodes

to execute, e.g. “numberOfChildren” = 2. As there are no child executed yet, the

algorithm can randomly pick any of the three child nodes. Suppose it executes

“b” first, which updates the trace to σ= 〈b〉. As child node “b” is already executed,

Algorithm 8 executes one of the other two child nodes “a” or “c”. If it picks “c”,

this updates the trace to σ = 〈b, c〉 and the determined number of executed

children is reached and the trace is returned.

Algorithm 8 : ExecuteOr
1: Input:
2: n: or node
3: σ: trace
4: Output:
5: σ: updated trace
6: Start ExecuteOr(n,σ)
7: numberOfChildren ← random(1, |c(n)|) .choose how many children to

execute
8: executedChildren ← {}
9: while |executedChildren| < numberOfChildren do .execute in random

order
10: nchild ← random({child|child ∈ c(n)}\ executedChildren)
11: σ← GenerateTrace(nchild,σ) .update trace
12: executedChildren ← executedChildren ∪nchild
13: end while
14: return σ

3.3.2.6 Adding noise to a generated trace

Finally, the simulation algorithm may add noise to the generated trace (rules 11

to 17 in Algorithm 2). Noise is possibly added if the user specified probability

ΠNoise is larger than zero. In that case, first a random number between zero

and one is drawn. If the random number is smaller than the noise probability

86

3.3. PTANDLOGGENERATOR: RANDOM EVENT LOG GENERATION

Figure 3.14: Example tree used to illustrate the simulation algorithm

ΠNoise and the length of the generated trace is larger than one, a random noise

type is added to the trace. The trace length condition is necessary as removing

an activity would produce an empty trace. Also, swapping two random activities

in a trace of length one would be impossible. After the noise addition the trace

is added to the log (rule 18) and new traces are generated until the specified

number of traces t reached.

3.3.2.7 Example trace execution of a given process tree

To illustrate the complete simulation algorithm (Algorithm 2), consider the tree

in Figure 3.14 with k = 2 the maximum number of loop iterations. We generate

one trace which is empty in the beginning: σ1 = 〈〉. The simulation starts with

executing the root of the trace, i.e. the sequence node. The execution of the first

child, i.e. leaf node “a”, is added to the trace: σ1 = 〈a〉. Then, the next child

of the sequence that corresponds to a loop is executed. First, the algorithm

performs the left child of the loop, i.e. leaf node “d”, resulting in σ1 = 〈a,d〉.
Then, the algorithm randomly decides whether to exit the loop by executing

the right child or repeating by performing the middle child of the loop followed

by the first child again. Suppose that it decides to repeat which changes the

trace to σ1 = 〈a,d,d〉. Once more, the algorithm can do a repetition or exit the

loop by executing the third child of the loop. Suppose, the latter is randomly

chosen to change the trace in σ1 = 〈a,d,d, e〉. The last part of the sequence is

a choice node with unequal branching probabilities. The algorithm randomly

87

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

choses the left child which results in the parallel execution of activity “b” and “f”.

Suppose that “f” is done first to produce the complete trace σ1 = 〈a,d,d, e, f ,b〉.
Finally, the algorithm can inject noise into the trace. Suppose the probability to

inject noise ΠNoise = 0.1 and a randomly drawn number x is smaller than 0.1.

This means that the algorithm will inject a random type of noise, e.g. “remove

head”, into the trace. The removal of 〈d, e〉 ends in the noisy trace σ1 = 〈a,d, f ,b〉.
The simulation algorithm will repeat the trace generation until it contains the

number of traces specified by the user and then returns the log as input of

process discovery evaluations.

The “PTandLogGenerator” presented above generates control-flow process

models and event logs that only contains traces, i.e. the ordering information

between activities. These logs are sufficient as input of process discovery eval-

uation. However, decision mining techniques require event logs that contain

information on both control-flow and case/data-flow perspectives (a.k.a. the

decision perspective). The next section will describe how the presented model

and log generation algorithms can be extended to produce such multiperspective

event logs.

3.4 Data-flow extension

Decision mining algorithms discover the routing decision logic in a process

using the available case information in the event log. Therefore, an empirical

evaluation of such algorithms needs process models and event logs that con-

tain case attributes that determine the routing decision logic. We extend the

GED methodology for generating control-flow models and event logs with case

attributes (a decision dimension).

The first step of the GED methodology involves the definition of a model

population. Definition 3.3 contained only control-flow related process patterns.

The requirements in Table 2.4 specify that we need to add the determinism level

dl to the model population to control the determinism of routing decisions in

a process model: MP = (minimumVisibleAct, modeVisibleAct, maxVisibleAct,

ΠBase,Πτ,ΠRe,ΠLt,ΠIn,dl). The determinism level dl is a number between 0 and

1 that specifies the average determinism of all routing decisions in a model,

88

3.4. DATA-FLOW EXTENSION

where 0 represents non-deterministic routing decisions, and 1 represents fully

deterministic routing decisions.

The second step and third step of the GED methodology generate a sample

of control-flow models and logs from a specified model population. This section

will introduce the “DataExtend” that includes algorithms for adding case at-

tributes that express the routing decision logic to process models and event logs.

“DataExtend” will first draw a random process tree from a model population,

analogous to ‘PTandLogGenerator’. Then, “DataExtend” will enrich the routing

decisions in a process tree with case attribute information such that a routing

decision depends on the value of the case attributes. Finally, “DataExtend” will

simulate the process tree with case attributes into an event log for empirical

decision mining evaluation.

The next part of this section presents the idea behind “DataExtend” using

an example, followed by a formal description.

3.4.1 Illustration of generating multiperspective logs

The make-to-order process as shown in Figure 3.15 will be used as an example to

illustrate the generation of routing decision dependencies. The process handles

the production of a customer order: it starts with issuing the customer order,

then materials are prepared, the products are produced, possibly followed by an

inspection, then products are packaged, and finally, the products are delivered or

the order is canceled when something went wrong. It contains three XOR-splits,

i.e. routing decisions where choices between multiple activities need to be made:

• the first decision is whether to use new materials or mixed (recycled and

new) materials,

• the second decision is about the inspection of the produced products: no

inspection, a normal inspection or a thorough inspection,

• the third decision specifies whether the products will be delivered or

canceled.

The process model in Figure 3.15 presents the control-flow perspective of the

process, i.e. it does not contain information on the case attributes influencing the

89

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Figure 3.15: Petri net representing make-to-order example process. Activity
names are abbreviated: “issue”: issue order, “new”: prepare new materials, “mix”:
prepare mixed materials, “produce”: produce order, “norm.”: inspect normally,
“thor.”: inspect thoroughly, “package”: package products, “deliver”: deliver prod-
ucts, “cancel”: cancel delivery.

routing decisions. For each of the three routing decisions in the make-to-order

process we can now add decision dependencies in the form of decision rules. We

assume that routing decisions can depend on order information (case attributes)

or on earlier made routing decisions.

The first routing decision regarding the use of new or mixed materials cannot

depend on an earlier made routing decision in the process, but it can depend

on other case attributes. However, “DataExtend” does not require each routing

decision to depend on case attributes. Suppose that in this process the routing

decision between new and mixed materials relies upon some contextual infor-

mation not embedded in the underlying information system. Then we represent

the routing decision stochastically by assigning a probability of choosing each al-

ternative branch: there is a probability of 0.5 to execute “prepare new materials”

and an equal probability to execute “prepare mixed materials”.

The second routing decision about the inspection can depend on the previous

routing decision and/or other case attributes. In this example the second routing

decision depends on the first routing decision and a case attribute “premium”

which is related to the customer placing the order. The policy is that products

produced with mixed materials always need to be inspected thoroughly regard-

less of what the customer type is. Products consisting of new materials are

only inspected for premium customers, otherwise the inspection is skipped to

save costs. These routing decision dependencies can be represented as rules

as illustrated in Table 3.3. A hyphen represents an indifference with regard to

the value of a certain case attribute, e.g., when the first routing decision chose

90

3.4. DATA-FLOW EXTENSION

inputs output
Rule Routing Premium? Routing

number Decision 1 Decision 2

1 prepare new True inspect normally
2 prepare new False (skip inspection)
3 prepare mix - inspect thorougly

Table 3.3: Decision table for second routing decision

input output
Rule number Acceptable Quality? Routing decision 3

1 True deliver
2 False cancel

Table 3.4: Decision table for third routing decision

“prepare mix”, the value of “premium” does not matter as it always leads to

“inspect thoroughly”.

The third routing decision regards the delivery of the produced products.

The routing decision could depend on the outcome of the first and second routing

decision and/or some other case attribute(s). Suppose that the inspection in

the second routing decision results in an outcome indicating that the quality

of the products is acceptable or non-acceptable. If an inspection was skipped,

acceptable quality of the products is assumed. A delivery will only be executed

if the quality of the products are acceptable, otherwise the order is cancelled.

These routing decision dependencies can be illustrated as shown in Table 3.4.

The model of the produce order process together with the above routing

decision dependencies can then be simulated into an event log. The simulator

evaluates the rules tied to each routing decision in the process in order to decide

which alternative branch to execute. An example case is shown in Table 3.5. The

process starts with activity “issue order”, followed by the first routing decision

which is stochastic. Suppose that activity “prepare mix” is chosen randomly.

Then, the order is produced (activity “produce”) followed by a routing decision

that takes into account the rules in Table 3.3 to decide on the inspection. Activity

91

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Event Activity Routing Acceptable Premium?ID Decision 1 Quality?

1 issue True
2 prepare mix prepare mix True
3 produce prepare mix True
4 inspect thoroughly prepare mix True True
5 package prepare mix True True
6 deliver prepare mix True True

Table 3.5: Example trace of the make-to-order process with case/data perspective.

“inspect thoroughly” is executed because the first routing decision chose “prepare

mix” and the value of the attribute “premium” is “true”. The inspection produces

the “true” value for the case attribute “Acceptable quality”. Finally, the products

are packaged (activity “package”) and the first rule corresponding to the last

routing decision is valid, resulting in the execution of activity “deliver”.

Link with DMN
For the reader familiar with BPMN [46] and DMN [47], the example is

translated to those formalisms to avoid confusion of the used terminology. BPMN

with DMN offers the option to integrate the control-flow with the decision layer

of a process. As such they offer an alternative representation of the integration

in this thesis.

“DataExtend” adds routing decision dependencies to each routing decision.

Those dependencies consist of case attributes and previous routing decisions.

In BPMN-DMN terminology this means that we assume each routing decision

to be preceded by a decision that influences the outgoing branch chosen in the

routing decision. This is visualized by the business rule tasks, i.e. “Determine

materials” (routing decision 1), “Decide inspection” (routing decision 2), and

“Decide delivery” (routing decision 3) in Figure 3.16 that represents the same

make-to-order process as the model in Figure 3.15. The dependencies of a routing

decision on previous routing decisions and case attributes can be represented

using the Decision Requirements Diagram (DRD) of DMN, i.e. each of the

decisions in the DRD corresponds to one business rule task in the process model

92

3.4. DATA-FLOW EXTENSION

in Figure 3.16. The two DRD’s in Figure 3.17 show the dependencies of “Decide

inspection” (routing decision 2) and “Decide delivery” (routing decision 3). For

each decision in the DRD, “DataExtend” generates the decision logic in a decision

table similar to a DMN decision table with a collect hit policy, i.e. when multiple

rules hold then a random rule is chosen from those.

The next subsection formalizes the steps taken in this example for the

“DataExtend” approach of generating event logs with case attributes.

3.4.2 Formal steps to generate multiperspective logs

“DataExtend” extends the previously proposed algorithms for model and log

generation (see Section 3.2 and 3.3) with case attributes.

3.4.2.1 Extending routing decisions with case attributes

“DataExtend” starts from a pure control-flow process model drawn from a speci-

fied model population. To be consistent with the model generation, process trees

are used to represent these models. The first assumption of “DataExtend” is

that routing decisions correspond only to choice operators in a tree. As such,

we do not consider case attributes on routing decisions part of loop and “or”

operators. Secondly, “DataExtend” assumes that routing decisions can depend

on case attributes including previous routing decisions. Notice that an execution

of a routing decision creates a case attribute that contains the chosen branch.

This means that LT dependencies as described in Section 3.2.4 can be added

using case attributes. Based on these assumptions, “DataExtend” requires pro-

cess trees without LT dependencies as input, i.e. no unfolded choice trees. The

following steps can be added to the end of the tree building algorithm shown in

Figure 3.4.

“DataExtend” starts from the set of all choice operator nodes N× in a given

process tree as routing decisions. Then, it assigns zero or more case attributes

randomly to each routing decision.

Definition 3.6 (Assign). Given a set of routing decisions N× and a set V of

case attributes (including previous routing decisions), Assign: N× 7→P(V) is a

93

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

F
igure

3.16:M
ake-to-order

process
in

B
P

M
N

notation
w

ith
business

rule
tasks

and
data

objects.

F
igure

3.17:D
ecision

requirem
ents

diagram
s

for
the

m
ake-to-order

process.

94

3.4. DATA-FLOW EXTENSION

function that labels each routing decision ×i with a set V ′ ⊆ V of attributes

which ×i is based upon.

The assigned case attributes of a routing decision can include the previous

routing decisions. These previous decisions can be identified using the prece-

dence function:

Definition 3.7 (Precedence). Precedence: N× 7→P(N×) is a function that labels

each routing decision with a set of preceding routing decisions. The precedence

is based on the control-flow semantics of the model7.

Consider again the example about the make-to-order process described in

the previous subsection (see Section 3.4.1). We have translated the Petri net to a

trace equivalent process tree shown in Figure 3.18. Each of the choice operators

representing a routing decision has been given an index so that it can be easily

referred to. In the example, the second routing decision (×2) is preceded by the

first routing decision (×1): starting from ×2 and working towards the root of the

tree, the first common ancestor of ×1 and ×2 is the sequence operator → and ×1

appears before ×2 in the subtree of → such that Precedence(×2) 7→ {×1}. Then, in

the example, the second routing decision is assigned the first routing decision

and “premium” as case attributes: Assign(×2) 7→ {×1, premium}.

In a next step, “DataExtend” uses the assigned case attributes to specify

how they influence each routing decision. More specifically, a routing decision

corresponds to a choice between multiple alternative process paths. The values

of the assigned case attributes can restrict such a choice. These restrictions,

also called routing decision dependencies, can be expressed as decision rules. A

decision rule is defined as a mapping:

Definition 3.8 (Decision Rule). A decision rule is a mapping

V1 ./ q1, . . . ,Vw ./ qw 7→ × jk

7A node n1 precedes another node n2 in a process tree if the lowest common ancestor of the
two nodes is a sequence operator → such that n1 appears before n2 in the sequence of nodes s(→)
returned by the subtree function (see Definition 3.2) and n1 6= n2. The lowest common ancestor of
two nodes is the common ancestor that is located farthest from the root of the tree [12].

95

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Figure 3.18: Process tree representing make-to-order example process. Activity
names are abbreviated: “issue”: issue order, “new”: prepare new materials, “mix”:
prepare mixed materials, “produce”: produce order, “normal”: inspect normally,
“thorough”: inspect thoroughly, “package”: package products, “deliver”: deliver
products, “cancel”: cancel delivery.

where Vi ∈ V is the set of case attributes, ./ is a relational operator ∈ {<
,≤,>,≥,=, 6=}, q1, . . . , qw are constants, × jk branch k of routing decision j, i.e.

× jk ∈ c(× j) and × j ∈ N× and j,k ∈N+.

The set of all decision rules related to a routing decision can be represented

as a decision table such as Table 3.3, where row 2 expresses the decision rule:

×1 = prepare new materials, premium = True 7→ ×22(= inspect normally).

“DataExtend” initially makes all routing decisions free-choice by generating

all possible decision rules, i.e. each possible combination of case attribute values

can lead to any of the outgoing branches.8 For example, consider Table 3.6 that

shows the initial set of decision rules for routing decision 2 in the make-to-

order example process. When a case has the following attribute values: routing

decision 1 = “prepare new” and premium = “True”, then activities “inspect

thoroughly”, “inspect normally”, and skip inspection are all possible according

to rules 1, 2 and 3.

Randomly removing rules from the initial set of decision rules restricts the

possible outgoing branches at each routing decision. In this way, “DataExtend”

creates routing decision dependencies. However, it cannot restrict the behavior

too much as this could create deadlocks and dead parts and thus violate the

8Impossible combinations happen when a routing decision depends on two other
routing decisions that are mutually exclusive. For example in a tree s(PT) =→
〈×1〈×2〈a,b〉,×3〈c,d〉〉, e,×4〈 f , g〉〉, ×4 may depend on both ×2 and ×3. However, ×2 and ×3 are
mutually exclusive, e.g. a rule ×2 = a, ×3 = c 7→ ×4 = f is impossible as “a” and “c” can never
happen together. Such combinations are removed from the decision table.

96

3.4. DATA-FLOW EXTENSION

inputs output
Rule Routing Premium? Routing

number Decision 1 Decision 2

1 prepare new True inspect thorougly
2 prepare new True (skip inspection)
3 prepare new True inspect normally
4 prepare new False inspect thorougly
5 prepare new False (skip inspection)
6 prepare new False inspect normally
7 prepare mix True inspect thorougly
8 prepare mix True (skip inspection)
9 prepare mix True inspect normally

10 prepare mix False inspect thorougly
11 prepare mix False (skip inspection)
12 prepare mix False inspect normally

Table 3.6: Example initial decision table for the second routing decision in the
make-to-order example process.

soundness requirement. The process tree extended with routing decision rules

is in fact a decision-aware process model. Therefore, the definition of soundness

of decision-aware proces models by Batoulis and Weske [9] can be adopted here:

a decision-aware process model is sound iff: the model is (classical) sound, it is

decision-deadlock free and contains no dead decision branches. The first require-

ment of classical soundness is guarantueed by process trees that are inherently

sound. To guarantee the last two requirements, the following soundness con-

straints similar to the constraints introduced in [9] are imposed on the rule

removal step:

• each set of decision rules, i.e. all decision rules related to one routing

decision (illustrated as a decision table), has at least one rule for each

possible routing outcome to prevent dead activities

• each set of decision rules has at least one rule for each value combination

of case attributes values to prevent deadlocks

97

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

More recent literature [8, 26] on decision-aware soundness discovered that

these constraints are necessary but not sufficient to guarantee soundness. The

reason the adopted soundness constraints are insufficient is because they only

check the local interplay of routing decision rules and routing decisions in

the process model. The local interplay does not take into account that routing

decisions may depend on other routing decisions. In that case deadlocks or dead

activities may still occur. This is a threat to the validity of “DataExtend” that

should be researched further. Section 3.4.2.2 describes a workaround in case of

unsoundness.

Additionally, the user can set a stopping criterion for the removal of random

decision rules. Without such a stopping criterion, “DataExtend” will remove the

rules until no removal can happen without violating the soundness constraints.

This results in fully deterministic routing decisions, i.e. for any combination of

case attribute values there is only one outgoing branch possible. However, the

determinism requirement stated that a user should be able to control whether

or not a routing decision is fully deterministic or non-deterministic. Therefore,

the approach allows users to set a determinism level as stopping criterion. The

determinism level is defined as the number of decision rules removed relative to

the maximum amount of decision rules that could possibly be removed (without

violating the soundness constraints). The maximum determinism level of 1

results in a fully deterministic routing decision. The minimum value of 0 denotes

the initial state, i.e. a free-choice routing decision. The user specifies the target

determinism level, which is the average determinism level over all routing

decisions with case attributes after the removal of rules. We explicitly leave

out routing decisions without assigned case attributes9 because these routing

decisions always have a determinism level of 0, i.e. no rules are removed which

corresponds to a free-choice routing decision. Including such free-choice routing

decisions makes it impossible to reach a target determinism level of 1.

Definition 3.9 (Determinism level).

DeterminismLevel(×i)= initial#−current#
initial#−minimum#

9Recall that “DataExtend” assigns zero or more case attributes to a routing decision.

98

3.4. DATA-FLOW EXTENSION

The numerator indicates the number of removed rules and the denominator

indicates the maximum number of rules that could be removed without violating

the soundness constraints. With initial# and current# indicating the initial and

current number of rules related to ×i, minimum# expresses the minimum of

rules that need to remain according to the soundness constraints: at least one

rule for each possible routing outcome and at least one rule for each unique

combination of case attribute values.

Definition 3.10 (Average determinism level). Let Na× be the set of routing

decision nodes that have at least one or more case attributes assigned to, i.e.

Na× = N× \ {× j ∈ N×|Assign(× j) 7→ ;}, then the average determinism level is

defined as:

AverageDeterminismLevel(PT)=

∑
×∈Na×

DeterminismLevel(×)

|Na×|

In the make-to-order example (see Section 3.4.1) the desired determin-

ism level is set to 100%. This means that as much rules as possible have

to be removed from the decision table related to each routing decision with

case attributes, i.e. the second and third routing decision. The initial deci-

sion table for the second routing decision (see Table 3.6) contains 12 rules,

i.e. initial#= current#= 12. The soundness constraints imply that at least one

rule for each of the three possible decision outcomes should remain to avoid

dead activities, i.e. one rule for each of the three activities: “inspect normally”,

“inspect thoroughly”, and skipping the inspection. Additionally, the soundness

constraints require that the decision table should contain at least one rule for

each of the four unique combination of case attribute values: {“prepare new”,

“true”}, {“prepare mix”, “true” }, {“prepare new”, “false”}, and {“prepare mix”,

“false”}. Therefore, the minimum number of rules to remain in the decision

table is the maximum of the number of rules needed to fulfill each constraint:

minimum#=max(3,4)= 4. As such, the determinism level of the second routing

decision DeterminismLevel(×i) would reach a maximum of 1 when 8 rules are

removed from the corresponding decision table. In the make-to-order example

rules 1, 2, 4, 6, 8, 9, 11 and 12 are removed from Table 3.6. This results in

99

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

inputs output
Rule Routing Premium? Routing

number Decision 1 Decision 2

1 prepare new True inspect normally
2 prepare new False (skip inspection)
3 prepare mix True inspect thorougly
4 prepare mix False inspect thorougly

Table 3.7: Decision table for second routing decision

input output
Rule number Acceptable Quality? Routing decision 3

1 True deliver
2 False cancel

Table 3.8: Decision table for third routing decision

the decision Table 3.7 with a determinism level: 12−4
12−max(3,4) = 1. Similarly, de-

cision rules are removed for routing decision three that ends in the decision

Table 3.8 with determinism level 1. This makes the average determinism level
DeterminismLevel(×2)+DeterminismLevel(×3)

|{×2,×3}| = 1+1
2 equal to 1 as all routing decisions

with case attributes are fully deterministic.

Algorithm 9 summarizes the steps presented above to extend routing deci-

sions with data dependencies.

3.4.2.2 Simulating routing decisions with case attributes

After adding routing decision dependencies (decision rules) to the choices in a

process tree, “DataExtend” will simulate those trees with rules into an event

log. Different from the simulation algorithm that generated a simple event

log (see Algorithm 2), “DataExtend” creates a “rich” event log as specified in

Definition 2.2. It takes the number of cases to be generated, the process tree,

and the set of routing decision rules as input. Then, at the start of each case,

100

3.4. DATA-FLOW EXTENSION

Algorithm 9 : Extend process tree with routing decision logic
1: Input:
2: PT: process tree
3: dl: target determinism level
4: Output:
5: PT: process tree
6: R: set of routing decision rules
7: Start ExtendTree(PT,dl)
8: for ×i ∈ N× do
9: Assign(×i) 7→Vrandom .Assign random case attributes

10: R×i ← enumerateCombinations(Assign(×i)) .Make initial set of decision
rules

11: R ←R∪R×i .Add to set of all rules
12: end for
13: while AverageDeterminismLevel(PT)< dl do .while average

determinism level of routing decisions with case attributes is lower than the
target determinism level

14: Remove random rule from R without violating soundness constraints
15: end while
16: return R

all case attributes, except the ones that correspond to a routing decision10, are

assigned a random value in their domain which remains constant during the

execution of the trace. For example, in the make-to-order process the “premium”

case attribute gets value “true”: #premium(c)=true.

The next steps of the log generation correspond to the original simulation

algorithm (see Algorithm 2), i.e. a trace is generated for each case. The only

changes are with regard to the “ExecuteChoice” algorithm (see Algorithm 5

above) which results in the adapted algorithm “ExecuteChoiceData” (see Al-

gorithm 10). The choice of a random child of a routing decision ×i is possibly

restricted by the generated decision rules R×i ∈R. Therefore, “DataExtend” will

collect the values of each of the assigned case attributes {V1, . . . ,Vw} to make a

state: V1 = #V1(c), . . . ,Vw = #Vw (c). Then it will iterate over all the decision rules

to collect the possible routing decision branches. A routing decision branch is

10These case attributes are assigned the chosen branch as value when the corresponding
routing decision is executed.

101

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

possible if a rule condition matches with the state. Finally, one of the possible

branches is executed, the case attribute associated to that routing decision gets

the chosen branch as value, and the trace generation continues.

Algorithm 10 : ExecuteChoiceData
1: Input:
2: n: choice node
3: c: case
4: Rn: set of routing decision rules
5: Output:
6: c: updated case
7: Start ExecuteChoiceData(n, c,Rn)
8: s ← {Vi = #Vi (c)|Vi ∈ Assign(n)} .get current state of case attributes
9: PossibleBranches ← {}

10: for rule ∈ Rn do
11: if condition of rule coincides with s then
12: PossibleBranches ← PossibleBranches ∪ branch mapped to condition
13: end if
14: end for
15: nchild ← random child ∈ PossibleBranches based on branch probabilities
16: #trace(c)← GenerateTrace(nchild,#trace(c)) .update trace
17: return c

As described in Section 3.4.2.1, the soundness constraints can lead to dead-

locks and dead activities in case a routing decision depends on another routing

decision. Dead activities do not cause errors in the simulation as they may only

lead to some routing decision outcomes that are never executed. To the contrary,

deadlocks may interrupt the simulator. To deal with this, the simulator makes a

workaround: if the state of a case at a routing decision does not coincide with

any of the rules related to that routing decision, then the simulator executes a

random branch of the routing decision.

The simulation of a process tree with routing decision logic yields an event

log with both control-flow and case information as needed for decision mining

evaluation.

102

3.4. DATA-FLOW EXTENSION

Figure 3.19: Original process tree with two routing decisions ×1 and ×2

3.4.3 Illustration of automatic routing decision logic
generation

This subsection will provide another example to illustrate how the above method

for extending routing decisions in process trees with case attributes is auto-

mated.

Consider the original process tree shown in Figure 3.19. The tree has two

routing decisions ×1 and ×2. Before the routing decisions can be extended with

case attributes, a few parameters need to be set by the user. The first parameter

is the target determinism level of all routing decisions which is set to 0.5, i.e. the

routing decisions should be non-deterministic. The suggested implementation

of “DataExtend” can handle three types of case attributes: Boolean, string, and

numerical attributes. To ensure that there is finite number of possible routing

decision rules, the numerical attributes are discretized with intervals. As such,

the second parameter a user needs to specify is the uniform distribution of the

number of intervals #i, e.g. #i ∼ uniform (2,3), i.e. each numerical attribute is

discretized to minimum two and maximum three intervals. The third parameter

involves the number of case attributes #c assigned to each routing decision. For

example, #c ∼ uniform (0,2), i.e. each routing decision is assigned minimum zero

and maximum two case attributes.

In the first step of the data extension, Algorithm 9 iterates over all routing

decisions in the given process tree. A random number from #c ∼ uniform (0,2)

is drawn to determine the number of case attributes for routing decision 1.

Suppose that #c = 1 such that routing decision 1 gets one case attribute. As

there are no case attributes assigned before and there is no preceding routing

decision (Precedence(×1)= {}), a new case attribute V1 is created and assigned:

103

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

input output
Rule number V1 Routing decision 1

1 [0,0.757) d
2 [0,0.757) h
3 [0.757,0.931) d
4 [0.757,0.931) h
5 [0.931,1) d
6 [0.931,1) h

Table 3.9: Initial decision table for first routing decision

Assign(×1) 7→ {V1}. V1 gets a random type, for example numerical. Then, the

number of intervals is randomly drawn from #i ∼ uniform (2,3). Suppose that

#i = 3 such that V1 has a domain [0,1) and two randomly chosen cutoff points

determine that the routing decision rules can use three intervals for V1, e.g.

[0,0.757), [0.757,0.931) and [0.931,1). Note that interval [0,0.757) is equivalent

to 0 ≤ V1 < 0.757. Similar to routing decision 1, a random number from #c ∼
uniform (0,2) is drawn to determine the number of case attributes for routing

decision 2. Suppose that #c = 2 such that routing decision 2 will have two

case attributes assigned. If there is a preceding routing decision, in this case

there is as Precedence(×2)= {×1}, then this routing decision is assigned first. If

there are already other case attribute assigned, then there is a 50% probability

that they are assigned again and a 50% probability a new case attribute is

created and assigned. Suppose that the second routing decision is assigned the

first routing decision and a new case attribute V2 which is of type Boolean:

Assign(×2) 7→ {×1,V2}.

Following the assignment of case attributes to the routing decisions, the

initial sets of rules are created. Take all the combinations of possible values

of V1 and outgoing branches of routing decision 1 to create R×1 , i.e. {[0,0.757),

[0.757,0.931), [0.931,1)} {d,h} which results in the rules in Table 3.9. Take all

the combinations of possible values of V2, outgoing branches of routing decision

1 and outgoing branches of routing decision 2 to create R×2 , i.e. { True, False }

{d,h} {c,b, e, f } which results in the rules in Table 3.10.

The average determinism level of the original tree with the created initial

104

3.4. DATA-FLOW EXTENSION

inputs output
Rule number V2 Routing decision 1 Routing decision 2

1 True d c
2 True d b
3 True d e
4 True d f
5 True h c
6 True h b
7 True h e
8 True h f
9 False d c

10 False d b
11 False d e
12 False d f
13 False h c
14 False h b
15 False h e
16 False h f

Table 3.10: Initial decision table for second routing decision

routing decision rules is 0 as both routing decision rules are free-choice. To reach

the target determinism level of 0.5, rules are randomly removed from any of

the decision tables, except when the removal violates the soundness constraints.

Removing rule 7 in Table 3.10 increases the determinism level and average

determinism level:

DeterminismLevel(×2)= 16−15
16−4

= 1
12

AverageDeterminismLevel(PT)=
1
12 +0

2
= 1

24
The removal of rules continues until the target determinism level is reached.

Suppose that rules 2 and 3 are removed from Table 3.9 and rules 7, 10, 12, and

16 are removed from Table 3.10 which result in Tables 3.11 and 3.12 with:

AverageDeterminismLevel(PT)=
6−4
6−3 + 16−12

16−4

2
= 0.5

105

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

input output
Rule number V1 Routing decision 1

1 [0,0.757) d
4 [0.757,0.931) h
5 [0.931,1) d
6 [0.931,1) h

Table 3.11: Final decision table for first routing decision

inputs output
Rule number V2 Routing decision 1 Routing decision 2

1 True d c
2 True d b
3 True d e
4 True d f
5 True h c
6 True h b
8 True h f
9 False d c

11 False d e
13 False h c
14 False h b
15 False h e

Table 3.12: Final decision table for second routing decision

Finally, the final sets of routing decision rules with the original process

tree are simulated into an event log. Each case generation starts with drawing

random values for the case attributes V1 and V2 from their respective domains,

i.e. [0,1) and { True, False }. Suppose that V1 = 0.22 and V2 = True. Then the

simulation starts with executing activity “a” which is followed by the first routing

decision. Because V1 = 0.22, rule 1 in Table 3.11 is the only rule that holds and

activity “d” is executed. This updates the value of case attribute: ×1 = “d”. Next,

the case generator executes activity “g” and reaches the second routing decision.

As V2 = True and ×1 = “d”, rules 1, 2, 3, and 4 of Table 3.12 hold which means

that a random branch from the second routing decision is chosen, e.g. activity

106

3.5. DEMONSTRATION AND EVALUATION

“e” is executed. This results in the following trace of newly generated case c:

#trace(c) = 〈a,d, g, e〉. The case generation continues until the number of cases

equals the amount specified by the user.

3.5 Demonstration and evaluation

The previous sections discussed the design and development of the GED method-

ology, the ‘PTandLogGenerator’ and the “DataExtend” method. As required

in Design Science research, this section will discuss the demonstration and

evaluation of the developed artefacts.

3.5.1 Tool implementation

Empirical analysis of process discovery and decision mining algorithms typically

requires an extensive set of experiments. Therefore, the “PTandLogGenerator”

and “DataExtend” should be automated for its application in empirical anal-

ysis. At the same time, the automation needs to comply to the third group of

requirements of GED, i.e. standard formats and integration within the ProM

Framework [120] (see Table 2.4). For the standard formats, this means that the

output process trees and event logs should be in the PTML and XES standard

formats [1] respectively.

Two tool implementations are available: one Python package and one pack-

age with plugins in the ProM framework. The Python package is available

on Github.11 The package contains programs callable from command line for

generating random process trees, generating event logs from those trees, and

generating multiperspective event logs from process trees using “DataExtend”.

The ProM package PTandLogGenerator [59] includes the plugins “Generate

Process Trees from Population”, “Generate Log Collection (with noise) from

Process Trees”, and “Generate Data Log Collection from Process Trees”. Each of

the tools support the necessary standard formats.

11https://github.com/tjouck/PTandLogGenerator

107

https://github.com/tjouck/PTandLogGenerator

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

3.5.2 Data generation setup

To demonstrate the parameter setup of the “PTandLogGenerator” and “DataEx-

tend”, two use cases are designed. The first use case evaluates the performances

of a set of process discovery algorithms. In such a case, the evaluation requires

multiple process models and event logs with an extensive set of control-flow

patterns to avoid an oversimplified evaluation. The second use case evaluates de-

cision mining algorithms on event logs with non-deterministic routing decisions.

The first use case requires the following three steps.

In the first step, the model populations are defined (see Table 3.13). The defi-

nition of a model population MP (see Definition 3.3) requires the specification

of the top 12 parameters in column 1 of Table 3.13. This demonstration uses

two model populations MPNew and MPExisting each with different parameter

settings, except for the number of visible activities which varies between 10

and 30. The MPNew population contains all the base patterns, silent and reoc-

curring activities and choices with infrequent paths. Additionally it contains

LT dependencies for which loops with choices are unfolded with a maximum of

one repetition. The MPExisting population contains all the patterns available in

current state-of-the-art tool PLG2 [17]. Therefore, MPExisting does not contain

“or”, reoccurring activities and LT dependencies.

In the second step, a sample of models is drawn from each model population

(see Table 3.13). Finally, in the third step, the simulator will generate event logs

from the trees in the sample. The simulation parameters to set are the number

of logs per tree, the number of traces in the log and the probability of noise

insertion (see Table 3.13). For the two model populations, the demonstration

will generate one event log per tree, each log containing 1000 traces and 10%

noise probability.

The second use case requires a user to define a model population and extend

it with a target determinism level value. Recall that the model population cannot

contain LT dependencies, therefore, we will use the control-flow parameters

settings of the MPExisting population and extend it with a determinism level

parameter equal to 0.5 to define the MPData population (see the fourth column of

Table 3.13). This parameter setting refines the routing decisions of the processes

108

3.5. DEMONSTRATION AND EVALUATION

in the population as non-deterministic. Furthermore, the parameter settings

for the log generation remains the same except that the “number of traces (t)”

parameter now represents the number of cases which all have a trace attribute

and possibly other case attributes.

The setup of the parameters as in Table 3.13 can serve as a template for

future users of the GED methodology and “DataExtend” in empirical process

discovery and decision mining analysis. Including this table in the report of such

an analysis will clearly describe the model populations from which the samples

of models and logs are drawn that are used in the experiments. Furthermore,

such a table also enhances transparency and reproducibility of the experiment

results.

The parameter setup of “PTandLogGenerator” and “DataExtend” have been

demonstrated. The following section will focus on the evaluation of these arte-

facts.

3.5.3 Evaluation

The first part of the evaluation investigates whether “PTandLogGenerator”

and “DataExtend” meet all the requirements stated in Table 2.4. The second

part of the evaluation assesses the scalability of the “PTandLogGenerator”.

Finally, an empirical evaluation of four process discovery techniques validates

the effectiveness of the “PTandLogGenerator”.

3.5.3.1 Requirements

The full control requirements of GED imply that a user can control the control-

flow behavior in the generated process trees (control-flow patterns) and event

logs (log characteristics). Therefore, this part of the evaluation checks whether

the characteristics of the sample of trees and logs of the use case are conform

with the input parameters of population MPNew in Table 3.13. Table 3.14 dis-

plays the descriptive statistics of the tree and log sample characteristics drawn

from population MPNew.

Firstly, the distribution of the number of visible activities conforms to the

triangular distribution characterized in Table 3.13. Secondly, the mean relative

109

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

P
aram

eter
P

opulation
P

opulation
P

opulation
P

opulation
M

P
new

M
P

existing
M

P
data

M
P

scalability

N
um

ber
ofvisible

activities
(10,20,30)

(10,20,30)
(10,20,30)

(10,20,30)
Sequence

(Π
→

)
0.5

0.5263158
0.5263158

∈[0,1]
Parallel(Π

∧)
0.15

0.1578947
0.1578947

∈[0,1]
C

hoice
(Π

×)
0.25

0.2631579
0.2631579

∈[0,1]
L

oop
(Π
	

)
0.05

0.0526316
0.0526316

∈[0,1]
O

r
(Π

∨)
0.05

0.0
0.0

∈[0,1]
Silent

activities
(Π

τ)
0.1

0.1
0.1

0.1
R

eoccurring
activities

(Π
R

e)
0.1

0.0
0.0

0.1
L

ong-term
dependencies

(Π
L

t)
0.5

0.0
0.0

∈[0,1]
U

nfold
loops

T
rue

n/a
n/a

∈{False,T
rue}

M
ax

repeat
(k)

1
n/a

n/a
∈{0,1,2}

Infrequent
paths

(Π
In)

0.5
0.5

0.5
0.5

Sam
ple

size
(num

ber
oftrees)

2000
50

2000
1000

L
ogs

per
m

odel
1

1
1

n/a
N

um
ber

oftraces
(t)

1000
1000

1000
n/a

N
oise

(Π
N

oise)
0.1

0.1
0.0

n/a

D
eterm

inism
level

n/a
n/a

0.5
n/a

Table
3.13:Input

Param
eters

ofD
ata

G
eneration

110

3.5. DEMONSTRATION AND EVALUATION

frequencies and the confidence intervals for these means of all the control-flow

constructs are shown in the second and fourth column of Table 3.14.12 The

population values of most parameters are contained in the confidence interval

of the mean and some, i.e. “choice”, “loop”, and “infrequent paths”, only differ

slightly from the interval. A noticeable exception is the confidence interval for LT

dependencies, which is more than 10 percent points lower than the population

value. This was caused by the pruning mechanism which prevents inserting

LT dependencies that cause dead activities. As such the average percentage of

LT dependencies a tree will mostly be below the population value. This means

that the population value of LT dependencies should be interpreted as an upper

bound for the average percentage of LT dependencies in the model sample.

The number of traces in the generated event logs are exactly as specified

in the input parameters. The average percentage of noisy traces is slightly

lower than the probability set in Table 3.13. This percentage was influenced by

not considering traces with only one activity which has led to fewer than 1000

candidate traces in some logs. Similar to the population value of LT dependencies,

the population value of noise should be viewed as an upper bound to the average

percentage of noisy traces in the log sample.

Overall, the “PTandLogGenerator” satisfies the full control requirement as

it effectively allows users to control the characteristics of the generated models

and logs through a population, given the probability of LT dependencies and

noise are considered as upper bounds. Note that the soundness requirement was

already proven by Theorem 3.1 in Section 3.2.4.

Next, to the input parameters, Table 3.14 shows the mean tree and log

generation time in seconds. These performances were accomplished on a laptop

with an Intel Core i5-4200U processor and 8 GB of RAM memory.

The determinism requirement of “DataExtend” is evaluated in a similar

way. We check whether the determinism of the sample of trees conforms with

the determinism specified in the MPData population in Table 3.13. Table 3.15

displays the descriptive statistics of the tree and log sample characteristics

drawn from population MPData. The population value of 0.5 for the determinism

12These mean relative frequencies of the operator types were calculated before the trees were
reduced.

111

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Parameter Sample Population Confidence
mean value Interval

Number of visible activities (11,21,30) (10,20,30) /
Sequence (Π→) 0.4982 0.5 [0.4931, 0.5032]
Parallel (Π∧) 0.1506 0.15 [0.1470, 0.1542]
Choice (Π×) 0.2544 0.25 [0.2502, 0.2586]
Loop (Π) 0.0471 0.05 [0.0449, 0.0493]
Or (Π∨) 0.0498 0.05 [0.0475, 0.0520]
Silent activities (Πτ) 0.0976 0.10 [0.0921, 0.1032]
Reoccurring activities (ΠRe) 0.0987 0.10 [0.0958, 0.1016]
Long-term dependencies (ΠLt) 0.3835 0.5 [0.3753, 0.3917]
Infrequent paths (ΠIn) 0.4833 0.5 [0.4708, 0.4958]
Mean percentage of noisy traces 0.0934 0.10 [0.0924, 0.0943]
Tree generation time (seconds) 17.849 / [2.9137, 32.784]
Log generation time (seconds) 1.37 / [1.3421, 1.3894]

Table 3.14: Descriptive Statistics of a Sample from Population MPNew. Legend
for the colors of the cells that describe the confidence intervals (CI): green if CI
contains the population value, red if CI does not contain population value, and
no color if there is no corresponding population value.

level is not contained in the confidence interval shown in the fourth column.

The determinism level of the trees in the sample is slightly higher than the

population value. This is because the population value serves as a lower bound:

keep removing random decision rules as long as the average determinism level

is lower than the population value. The descriptive statistics for the parameters

illustrate again that a user has full control over the characteristics of the

generated models and logs through a population definition. Notice that in this

sample more population values are contained in the confidence interval of the

mean compared to Table 3.14. This is due to the random sampling. In general,

the larger the sample, the more population values are contained in the confidence

interval of the mean. Adding more trees to the sample of MPNew would result in

more population values included in the confidence intervals of the sample means.

Soundness is another requirement of “DataExtend”. The soundness constraints

introduced by “DataExtend” are not sufficient (see Section 3.4.2.1) and should be

112

3.5. DEMONSTRATION AND EVALUATION

Parameter Sample Population Confidence
mean value Interval

Determinism level 0.5250 0.5 [0.5233, 0.5266]
Number of visible activities (11,20,30) (10,20,30) /
Sequence (Π→) 0.5257 0.5263 [0.5205, 0.5308]
Parallel (Π∧) 0.1576 0.1579 [0.1539, 0.1613]
Choice (Π×) 0.2645 0.2632 [0.2599, 0.2690]
Loop (Π) 0.0523 0.0526 [0.0500, 0.0546]
Silent activities (Πτ) 0.0962 0.1 [0.0905, 0.1019]
Infrequent paths (ΠIn) 0.4983 0.5 [0.4859, 0.5107]
Tree generation time (seconds) 0.89 / [0.88, 0.90]
Data generation time (seconds) 0.006 / [0.0059, 0.0065]
Log generation time (seconds) 5.4098 / [5.3002, 5.5195]

Table 3.15: Descriptive Statistics of a Sample from Population MPData. Legend
for the colors of the cells that describe the confidence intervals (CI): green if CI
contains the population value, red if CI does not contain population value, and
no color if there is no corresponding population value.

sharpened beyond the workaround for the simulator proposed in Section 3.4.2.2.

Furthermore, the tree, data, and log generation times are recorded in Ta-

ble 3.15. These performances show relatively fast generation times. The data

extension influences the log generation time compared to the log generation

time in Table 3.14. This is caused by the checking of case attribute values at

each routing decision in the process tree as described by Algorithm 10.

The randomness requirement implies that the generation of the trees, data,

and logs should be done in a random way. Both the ProM and Python tool

implementations support such a random generation. The subsection describing

the tool implementation already mentioned that both tools meet the formats

requirement. Therefore, we can conclude that the “PTandLogGenerator” artefact

fulfills all the predefined requirements and “DataExtend” artefacts fulfills all

the predefined requirements except for the soundness requirement in a limited

amount of situations which is mentioned as threat to the validity in Section 3.6.

Table 3.16 provides the reader with an overview of the fulfilled requirements.

113

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

R1 Full Control “PTandLogGenerator” + “DataExtend”

Number of activities X

Sequence (WCP-1) X
Parallel (WCP-2-3) X
Choice (WCP-4-5) X
Loop (WCP-21) X
Or (WCP-6-7) X

Silent (skipping) activities X
Reoccurring (duplicate) act. X
Long-term (LT) dependencies X
Infrequent paths X

Routing decision determinism X

Soundness X1

No. traces X
Noise X

R2 Randomness

Random Generation X

R3 Standard Formats

Models X
Logs X
ProM integration X

1 “DataExtend” fulfills the soundness requirement except for a limited amount of
situations which is handled by using a workaround in the simulator described in
Section 3.4.2.2.

Table 3.16: Evaluating “PTandLogGenerator” + “DataExtend” on the require-
ments of GED

114

3.5. DEMONSTRATION AND EVALUATION

3.5.3.2 Scalability of PTandLogGenerator

This subsection describes an analysis done in order to assess the scalability of

the control-flow tree generation. We particularly choose to focus on the model

generation with LT dependencies as this is the major difference with existing

data generators. This part of the evaluation studies the relation between tree

generation time and control-flow model population parameters. The unfolding

of a tree into the unfolded choice tree is the most expensive operation in terms

of computation time. Such unfoldings happen when choice and loop constructs

appear in the tree and the probability to insert LT dependencies is larger than 0

(see Section 3.2.4). Therefore, 1000 model populations are specified with varying

probabilities and settings (MPscalability in column 4 in Table 3.13):

• The probabilities of “sequence”, “choice”, “parallel”, “or” and “loop” vary

between 0 and 1 while ensuring the sum is equal to 1.

• The probability of LT dependencies varies between 0 and 1.

• The unfolding of loops with choices in the first or second child has a

probability equal to 50%

• If loops are unfolded, then the maximum number of repititions of the loop

varies between 0 and 2

From each of the 1000 model populations, one random tree is generated. The

tree generation aborts after 10,000 seconds. In total 23 trees, i.e. 2.3% of all

generated trees, were aborted. The other 977 trees have a median generation

time of 0.63 seconds and a minimum and maximum of respectively 0.03 and

8736 seconds. We want to understand which model parameters influence the

long tree generation time, and which model parameters lead to exceeding 10,000

seconds for tree generation. Therefore, the spearman correlation coefficients

were calculated. Table 3.17 shows that there are only 4 small, yet significant pos-

itive correlation coefficients using a 5% significance level. When the probability

of a loop construct or the maximum number of loop repetitions increases, then

the probability of exceeding 10,000 seconds for tree generation tends to increase.

Similarly, when the probability of a choice construct or the maximum number of

115

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Variable 1 Variable 2 Spearman P-valuecorrelation

Loop (Π) Aborted 0.12 1.19e-04
Max repeat Aborted 0.19 1.43e-09
Choice (Π×) Time 0.32 1.39e-24
Max repeat Time 0.19 7.73e-40

Table 3.17: Positive significant correlations between tree generation time (‘Time’)
or aborting tree generation (‘Aborted’) and model population parameters.

loop repetitions increases, the tree generation time tends to increase. Overall, it

is hard to predict a long tree generation time using only model parameters. One

could assign more computing time or use statistical techniques that can handle

missing values, e.g. truncated data analysis, to handle the exceptionally long

tree generation times.

In comparison, trees without LT dependencies never suffer from exception-

ally long generation times. An additional experiment specified another 1000

model populations without LT dependencies and varying probabilities of “se-

quence”, “choice”, “parallel”, “or”, and “loop” as before. Again one tree is gener-

ated from every model population. Each of those trees could be generated within

2 seconds. All performances were accomplished on a laptop with an Intel Core

i5-4200U processor and 8 GB of RAM memory.

Although “DataExtend” can also introduce LT dependencies to process trees

by assigning case attributes to routing decisions that refer to previous routing

decisions (see Section 3.4.2), we did not include a scalability analysis of “DataEx-

tend” as an alternative for generating process trees with LT dependencies using

the “PTandLogGenerator”. That is because “DataExtend” restricts the inclusion

of LT dependencies to choices (routing decisions) that are in strict sequence

using the Precedence function (see Definition 3.7). In contrast, the LT depen-

dencies introduced by the “PTandLogGenerator” are more flexible. To illustrate

this, consider process tree PT3 in Figure 3.20. “DataExtend” cannot introduce

a dependency between the two choices in the tree as they are in parallel and

not in sequence. “PTandLogGenerator” on the other hand, can transform it to

116

3.5. DEMONSTRATION AND EVALUATION

Figure 3.20: PT3

the unfolded choice tree s(PT×
3)=×〈∧〈a, c,d〉,∧〈a, c, e〉,∧〈b, c,d〉,∧〈b, c, e〉〉 and

remove branches to insert random LT dependencies between the two original

choices.

3.5.3.3 Effectiveness of the PTandLogGenerator

The final part of the evaluation asserts the effectiveness of the “PTandLogGen-

erator”. It tests whether the additional model constructs allowed by the “PTand-

LogGenerator”, i.e. “or”, reoccurring activities and LT dependencies, lead to new

insights that could not be obtained by using all model constructs supported by

the current state-of-the art technique PLG2 [17]. This test can be formulated in

the following hypothesis: discovery algorithms will perform differently in terms

of discovered model quality on event logs containing the additional constructs

compared to event logs containing all constructs supported by current state-of-

the-art. For this purpose, an empirical evaluation with four discovery algorithms,

α++ [129], ILP [108], Inductive [67] and Flexible Heuristics [127], on two model

populations has been done. The first model population (MPexisting) contains

models with all constructs supported by PLG2, the second model population

(MPnew) additionally contains the constructs “or”, reoccurring activities and LT

dependencies as supported by “PTandLogGenerator”. Columns two and three

of Table 3.13 display the specific parameter settings for each of the constructs.

Notice that the proportions between the constructs sequence, choice, parallel

and loop constructs is kept constant, e.g. Π×/Π→ = 0.5. Furthermore, notice that

we do not compare PLG2 directly with “PTandLogGenerator” as they define the

model populations differently, e.g. the size of the models in PLG2 is specified in

117

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

terms of maximum nested process constructs. As such, a direct comparison may

lead to differences that are not due to the additional constructs, but rather the

consequence of other process characteristics such as size that we cannot control

for.

The evaluation first draws a random sample of 50 models from each popu-

lation. Then, one log per model is simulated containing 1000 traces and 10%

of noise using a combination of the noise operators in Section 3.3.2. Then, all

four discovery algorithms mine a model from each log and the quality of each

discovered model with regard to that log is measured in terms of fitness and

precision using the alignment based fitness and precision metrics [102].

The fitness and precision scores for each discovered model are visualized in a

scatterplot: Figure 3.21(a) visualizes the results for the sample from MPexisting,

and Figure 3.21(b) visualizes the results for the sample from MPnew. The points

situated in the top-right corner represent “good” models, i.e. models that score

high on fitness and precision, while points in the bottom-left corner represent

“bad” models, i.e. that score low on both fitness and precision. The scatterplots

reveal some differences between the miners for the two populations: the heuris-

tics miner has more “good” models in MPexisting than MPnew, while the opposite

seems to be true for the α++ miner. To verify these differences statistically, we

conduct statistical tests on the differences in fitness, precision, and the com-

bined F1 score, i.e. the harmonic mean of fitness and precision: 2·precision· f itness
precision+ f itness

similar to [32].

Table 3.18 shows an overview of the obtained results: column two contains

the results for MPexisting, while column three shows the results for MPnew. For

each quality dimension the average rank for each discovery algorithm is shown.

The algorithms are sorted with the best performing algorithm (with the highest

rank) on top. The Friedman test [34] is applied to determine whether there is

a significant difference in performance of the discovery technique. The results

indicate that the techniques do not perform equivalently for each combination

of quality dimension and dataset, i.e. the null hypothesis is rejected using a

95% confidence interval. This is followed by a Wilcoxon signed rank test [11, 34]

to test the significance of each pairwise difference between algorithms using a

Bonferroni corrected significance level to guarantee that the family-wise Type I

118

3.5. DEMONSTRATION AND EVALUATION

(a
)

(b
)

F
ig

ur
e

3.
21

:S
ca

tt
er

pl
ot

s
of

th
e

fit
ne

ss
an

d
pr

ec
is

io
n

sc
or

es
of

th
e

sa
m

pl
es

fr
om

:(
a)

M
P

ex
is

ti
ng

,(
b)

M
P

ne
w

.M
in

im
um

jit
te

r
ha

s
be

en
ad

de
d

to
re

du
ce

ov
er

la
p

of
ob

se
rv

at
io

ns
.

119

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

Quality metric MPexisting MPnew

Fitness

ILP (4.0) ILP (4.0)
Heuristics (2.54) Inductive (2.52)
Inductive (2.46) Heuristics (2.42)

α++ (1.0) α++ (1.06)

Precision

Heuristics (3.6) Heuristics (3.36)
Inductive (3.18) Inductive (2.94)

ILP (1.62) α++ (2.28)
α++ (1.6) ILP (1.42)

F1

Heuristics (3.68) Heuristics (3.5)
Inductive (3.28) Inductive (3.2)

ILP (1.78) ILP (1.9)
α++ (1.26) α++ (1.4)

Table 3.18: Average rankings for process discovery algorithms for each quality
dimension within a model population. Pairs of techniques that do not differ
statistically from each other at the 95% confidence level are underlined.

error is smaller than 5%. Pairs of techniques that do not differ statistically are

underlined.

In the fitness dimension the order between Heuristics and Inductive miner is

different for the two datasets. However, the difference between these two miners

is not statistically significant. In the precision dimension the order between

ILP and α++ miner is different for the two datasets, yet the difference between

the algorithms is not statistically significant for the MPexisting dataset. Also in

the precision dimension, the difference between Heuristics and Inductive miner

is only statistically significant for the MPexisting dataset. Looking beyond the

average rankings, the Heuristics miner outperforms Inductive miner 36 times

for the MPexisting dataset while it decreases to 33 times for the MPnew dataset.

Finally, all differences in terms of F1 between miners are statistically significant

for the MPexisting dataset, while for the MPnew dataset the difference between

Heuristics and Inductive miner is not statistically significant.

Overall, the conclusion of the analysis is that the difference between Heuris-

tics and Inductive miner becomes smaller in terms of precision for models

120

3.6. LIMITATIONS AND THREATS TO VALIDITY

with “or”, reoccurring activities and LT dependencies. Conversely, the difference

between α++ and ILP in terms of precision becomes larger for such models.

These observations show that the extra constructs have negative effects on the

Heuristics, Inductive and ILP miner (only on precision), while it has positive

effects on the α++ miner. Moreover, the negative effects on Heuristics miner are

larger than the negative effects on Inductive miner. As such, these observations

provide evidence for the hypothesis that discovery algorithms perform differ-

ently on event logs with the additional constructs compared to event logs using

all constructs supported by current state-of-the art technique PLG2 [17]. This

demonstrates the effectiveness of the “PTandLogGenerator”.

3.6 Limitations and threats to validity

Although the above evaluation highlighted that the requirements of the “PTand-

LogGenerator” and “DataExtend” generators are met and illustrated the scal-

ability and effectiveness of the “PTandLogGenerator”, several limitations and

possible threats to the validity remain.

The first limitation involves the use of process trees as modeling notation

in the “PTandLogGenerator” and “DataExtend” generators. The use of process

trees offers two important advantages: the soundness property avoids deadlocks

during simulation, and their block-structuredness allows to build trees in a

stepwise manner while controlling for the workflow patterns. On the other hand,

however, one could argue that the BPMN modeling language [46] is “richer”

as it allows to express more complex workflow patterns and integrates other

process perspectives such as resources and decisions (using the connection with

DMN [47]). As such, the use of BPMN would enable a wider range of possible

extensions than process trees, but also presents the challenge to deal with

possible deadlocks during simulation.

A second limitation and possible threat to the validity regards the inter-

play between control-flow and data process perspectives in “DataExtend”. As

indicated earlier, “DataExtend” considers only exclusive choices (XOR), and not

loops and “or” (multi-choice) as routing decisions. Furthermore, the interaction

between data and control-flow at the routing decisions is limited to the constant

121

CHAPTER 3. GENERATING ARTIFICIAL EVENT DATA

values of the case attributes and the chosen branches in previous routing deci-

sions. This excludes for example the last executed activity as a case attribute or

time-related attributes that change during case execution which could influence

a routing decision.

Lastly, the insufficient soundness constraints of “DataExtend” are a possible

threat to the validity. The soundness constraints to prevent deadlocks and dead

activities in Section 3.4.2 are necessary, yet not sufficient. This means that the

simulator has been adapted to circumvent a possible deadlock by assuming

that all outgoing branches are possible when the state of a case does not match

with any of the routing decision rules. Furthermore, dead activities can occur,

although in a limited number of situations: if there are two routing decisions

×1 and ×2 such that ×2 depends on ×1 and assigned case attributes overlap, i.e.

Assign(×1)⊆ Assign(×2).

3.7 Conclusion

The comparison of process discovery and decision mining algorithms has gained

importance in the process mining research domain. Typically, such a comparison

requires an empirical analysis that involves large experiments. Yet, little re-

search has been performed on how to collect the appropriate event data (models

and event logs) as input for the empirical analysis. A clear methodology for

acquiring such data and an implementation thereof are lacking.

This chapter firstly introduces the GED methodology and “PTandLogGener-

ator” to generate artificial event data for empirical process discovery analysis.

It involves three steps: define a model population, draw a sample of models

from that population and simulate the sample of models into a sample of event

logs. The demonstration and evaluation show that the “PTandLogGenerator”

succeeds in generating artificial data for empirical process discovery analysis

such that:

• the generated models are random samples of predefined populations, al-

lowing for a wide range of suitable (confirmatory) statistical experimental

analysis,

122

3.7. CONCLUSION

• the populations allow for more complex process models than possible by

the existing approaches (including LT dependencies, “or” and reoccurring

activities),

• the approach is performant enough for large scale experiments,

• the approach is able to reveal insights which remained hidden when

considering simpler process populations (which were only possible so far

by existing techniques).

The “PTandLogGenerator” in this chapter does not claim to be complete with

regard to full control over all possible control-flow patterns. However, it includes

all patterns that were frequently used in process discovery comparisons. More-

over, the definition of LT dependencies in this paper focuses on dependencies

between exclusive choices, in future work this definition could be extended to

allow for dependencies between non-exclusive choices.

Secondly, this chapter introduces an extension to the “PTandLogGenerator”

called “DataExtend” to include case attributes that explain the routing decision

logic. It first extends the routing decisions that correspond to exclusive choices

in a control-flow model with random decision rules based on case attributes. In

a next step, the extension simulates the model and rules into an event log with

case attributes. The demonstration and evaluation shows that “DataExtend”

allows the generation of random data-extended models and event logs where a

user can control for the determinism of routing decisions. The generated models

and event logs can be used to empirically evaluate decision mining algorithms.

In future work, the set of routing decisions considered by “DataExtend” could be

increased to also include loops and “or” (multi-choice) workflow patterns. Also,

the soundness constraints should be sharpened to guarantee decision-aware

soundness in all cases.

123

C
H

A
P

T
E

R

4
AN INTEGRATED EVALUATION PROCEDURE FOR

PROCESS DISCOVERY ALGORITHMS

The abundance of discovery algorithms has made it increasingly impor-

tant to develop evaluation procedures that can compare the quality of

these discovery techniques in rediscovering the underlying process, es-

pecially in terms of balancing between overfitting and underfitting. As detailed

in Section 2.2.1, several comparison approaches have already been proposed in

literature. Unfortunately, these approaches are characterized by at least one

of the following four major limitations related to the unsolved challenges in

Section 2.2.2:

1. The quality measurement is not independent from the modeling notation

in which the discovered models are represented, e.g. two behaviorally

equivalent models may have very different precision scores, or quality can

only be measured after a conversion that does not preserve the behavior

precisely. This restricts the evaluation to a comparison of the algorithms

that generate models in one specific notation (see [6, 33, 86, 87, 89, 115,

125]).

125

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

2. The evaluation results are based on real event logs and cannot be general-

ized as the population of processes from which they originate is unknown

(see [6, 33, 87]). Processes come from different populations depending on

the type of behavior allowed. Processes may have different behavioral

characteristics, with parts that can repeat, with mutually-exclusive and

parallel branches, with LT dependencies and so on. Also, these charac-

teristics can be more or less predominant in a process model. Different

algorithms may deal better with certain characteristics than others. And

the quality of the discovered model may also depend on the predominance

of certain characteristics. Performing a comparison without acknowledg-

ing the influence of these behavioral characteristics can lead to incorrect

conclusions.

3. Existing comparison approaches use manually created processes to gener-

ate artificial event data (see [33, 86, 87, 89, 115, 125, 126]). As a result the

studied process characteristics are not randomly included in the processes.

Furthermore, relatively few processes and event logs were created. This

prevents the results from being statistically and generally valid.

4. Existing comparison approaches apply log-based quality measurement to

estimate the discovery algorithm’s quality to rediscover the underlying

process (see [6, 33, 86, 87, 89, 115, 117, 125]). However, these log measures

only provide unbiased results if the log is complete and contains no noisy

behavior. This is partly caused by the fact that the same data is used

both to discover the model and measure its quality, a problem that is also

encountered in machine learning [44].

To overcome these limitations, this chapter describes an integrated pro-

cess discovery evaluation procedure (as stated in the second research goal in

Section 1.2) that:

1. Abstracts from the modeling notation employed during quality measure-

ment;

126

4.1. INTEGRATED DISCOVERY EVALUATION PROCEDURE

2. Starts from the definition of a process population where the distribution

of several behavioral characteristics is known. From this population a

random sample of process models and event logs is drawn, thus making it

possible to evaluate and generalize the influence of behavioral character-

istics on the quality of the discovered models by the different algorithms

under analysis;

3. Performs experiments on random samples of a user-specified size, so as to

return statistically valid results;

4. Uses the knowledge of the reference models to get unbiased estimates of a

discovery algorithm’s quality to rediscover the underlying process.

Repeating the evaluation for large amounts of process models and event

logs would be time-consuming and error-prone when done manually. Therefore,

the steps of the evaluation procedure, i.e. data selection, process discovery,

quality measurement, and statistical tests are integrated in a workflow to allow

the automation of evaluation experiments. The automation together with the

above contributions correspond to the requirements for the process discovery

evaluation procedure as discussed in Section 2.3.2.

The material in this chapter is based on the journal paper “An Integrated

Framework for Process Discovery Algorithm Evaluation” [56] and lessons learned

from the Process Discovery Contest [22]. The chapter starts with a discussion on

the design of the new process discovery evaluation procedure. Then, the chapter

will discuss the implementation of the procedure, followed by a demonstration

and evaluation of the procedure. Finally, a conclusion summarizes the chapter.

4.1 Integrated discovery evaluation procedure

The proposed procedure aims to evaluate the quality of discovery algorithms to

rediscover a model when confronted with a fraction of its behavior. The proce-

dure is designed based on the principles of scientific workflows and experimental

design to fulfill the last two groups of requirements in Table 2.5 . The former

127

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

captures the complete evaluation experiment in a workflow that can be auto-

mated, reused, refined and shared with other researchers [7]. The latter allows

for precise answers that a researcher seeks to answer with the evaluation exper-

iment [64]. The fundamental principles of experimental design, randomization,

replication, and blocking, were already discussed in Section 2.3.2.2.

To integrate the steps needed for empirically evaluating process discovery

algorithms, the procedure is built as a scientific workflow. Generally such work-

flows are represented as a directed graph with nodes denoting computational

steps and arcs expressing data flows and data dependencies between steps [75]

(see Fig. 4.1). Bolt et al. [14] have described generic process mining building

blocks to conduct process mining experiments using scientific workflows.

Scientific workflows offer several advantages over traditional ways to con-

duct process discovery evaluation. The first advantage comes from workflow

automation. Experiments evaluating discovery techniques involve large-scale

and computationally expensive experiments that require intensive human as-

sistance [14]. Therefore, automating these experiments removes the need for

human assistance and reduces the time needed to perform experiments. A second

benefit comes from the modularity of the workflows. This allows researchers to

adapt and extend an existing workflow, e.g. by using other parameter settings or

adding new process discovery techniques. A final benefit of scientific workflows

is that they can be shared with other researchers. As a result other researchers

can replicate experiments with little effort. In this way, our procedure facilitates

repeated process discovery evaluation, e.g. it becomes trivial to evaluate another

set of algorithms or to assess the algorithm’s performance with regard to other

data characteristics (e.g. noise, control-flow patterns, etc.).

The remainder of the section will discuss the design of the procedure as a

workflow and its building blocks that implement the principles of experimental

design in more detail.

4.1.1 Design and use of the evaluation procedure

The procedure focuses on evaluating control-flow discovery algorithms. There-

fore, other process related perspectives, such as data and resources, are out

128

4.1. INTEGRATED DISCOVERY EVALUATION PROCEDURE

fo
r

ea
ch

m
in

er

fo
r

ea
ch

m
od

el

fo
r

ea
ch

lo
g

M
od

el
po

pu
la

ti
on

de
fin

it
io

n

N
um

be
r

of
tr

ac
es

A
lg

or
it

hm
pa

ra
m

et
er

s

N
oi

se
pa

ra
m

et
er

s

G
en

er
at

e
m

od
el

s

G
en

er
at

e
lo

g

S
pl

it
lo

g
D

is
co

ve
r

m
od

el

C
re

at
e

no
n-

fit
ti

ng
tr

ac
es

C
on

fo
rm

an
ce

ch
ec

ki
ng

C
on

fo
rm

an
ce

ch
ec

ki
ng

C
on

fu
si

on
m

at
ri

x

C
al

cu
la

te
m

et
ri

cs

A
ve

ra
ge

re
su

lt
s

S
ta

ti
st

ic
al

an
al

ys
is

or
ig

.m
od

el

tr
ai

n.
lo

g

fit
ti

ng
te

st
lo

g

m
od

el

no
nfi

tt
in

g
te

st
lo

g

F
P

T
N

T
P

F
N

F
ig

ur
e

4.
1:

O
ve

rv
ie

w
of

th
e

in
te

gr
at

ed
pr

oc
es

s
di

sc
ov

er
y

ev
al

ua
ti

on
pr

oc
ed

ur
e

129

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

of its scope.1 Moreover, the procedure aims at evaluation instead of predicting

the best performing algorithm given an event log. The procedure enables two

main objectives: benchmarking different discovery algorithms, and performing

sensitivity analysis, i.e. what effect does a control-flow characteristic or event

log characteristic have on algorithm performance.

Fig. 4.1 illustrates the design of the new evaluation procedure as a workflow.

The directed graph shows how the different tasks needed for evaluating process

discovery algorithms are connected. The procedure starts from a predefined

evaluation objective and enforces the consecutive execution of data generation,

process discovery, quality measurement and statistical analysis. The procedure

applies a classification approach to allow for the evaluation of discovery algo-

rithms generating models in different notations. It is assumed that the notations

have clear and formal semantics such that a trace can be replayed on the model

to determine whether the model allows the trace or not.

The first step, i.e. the data generation, is triggered by the objective of the

experiment. As a result, the objective determines the control-flow behavior

a researcher wants to include in the event logs. The specification of control-

flow behavior defines a model population. This population definition is the

start of the data generation phase (cf. Section 3.2). For example, the objective

is benchmarking several discovery algorithms on event logs containing basic

process behavior and behavior that is typically hard to rediscover for current

state-of-the-art algorithms: silent activities, reoccurring activities, infrequent

paths, and long-term dependencies. As such we define a model population with

probabilities larger than zero for each of the basic workflow and “hard” to

rediscover patterns larger than zero, e.g. the model population MPexample in

Table 4.1.

For each discovery algorithm to be tested, multiple instances of the “generate

models” task run in parallel. The generation results in multiple randomly

sampled process models from the same population. Each model (“original model”)

is then simulated by the task “generate event log” to create one event log, i.e. a

random sample of traces from all possible traces allowed by the model (i.e. no

1However, the same ideas can be applied to include these other perspectives as will be shown
in Chapter 5.

130

4.1. INTEGRATED DISCOVERY EVALUATION PROCEDURE

Parameter Population
MPexample

Number of visible activities (10,20,30)
Sequence (Π→) 0.5
Parallel (Π∧) 0.15
Choice (Π×) 0.25
Loop (Π) 0.05
Or (Π∨) 0.05
Silent activities (Πτ) 0.1
Reoccurring activities (ΠRe) 0.1
Long-term dependencies (ΠLt) 0.5

Unfold loops True
Max repeat (k) 1

Infrequent paths (ΠIn) 0.5

Determinism level n/a

Table 4.1: Example model population parameters.

noise is added). The samples of process models and event logs constitute as “the

ground truth”. The “original model” or reference model represents the underlying

process which the discovery algorithms will try to rediscover using the event log.

By testing algorithms on multiple randomly drawn event logs (each log is drawn

from a randomly drawn model), the design implements the randomization and

replication principles of experimental design (see Section 2.3.2.2). This enables

us to accurately assess the effect of an algorithm on model quality and generalize

these findings to the model population.

Next, the procedure applies k-fold cross-validation to measure the quality

of the discovery algorithm to rediscover the underlying process. By using k-

fold cross validation the obtained estimate is less likely to suffer from bias,

i.e. it helps to decrease the difference of the estimate from the real unknown

value of the algorithm’s quality on the model population. As commonly used

in machine learning we propose to set k equal to 10 which is a compromise

between obtaining less-biased estimates and acceptable computation time [51].

The 10-fold cross-validation splits each event log into ten subsets, i.e. folds, of

equal sizes. Nine folds form the training log, while the remaining fold serves as

131

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

the test log. The task “discover model” applies the algorithm to induce a model

from the training log.

To this point, the test log only contains positive examples, i.e. traces that

fit the original model (no noise is added). The classification approach requires

also negative examples, i.e. traces that do not fit the original model. To generate

negative examples, the task “create non-fitting traces” alters half of the test

traces until they cannot be replayed2 anymore by the original model (“the ground

truth”) to create non-fitting traces. Thus, the test log contains a 50/50 balance

between fitting and non-fitting traces to avoid the class imbalance problem

which makes the evaluation more difficult [52].

Subsequently, the procedure measures the quality of the discovery algorithm

by using the discovered model to classify the test traces. This classification

happens within the “conformance checking” block which replays all traces on the

discovered model. A trace representing real process behavior should be classified

as allowed, i.e. completely replayable. A trace representing behavior not related

to the real process should be classified as disallowed by the discovered model,

i.e. not completely replayable. This approach allows for any discovery algorithm

generating models with clear and formal replay semantics.

The classification results are then combined in a confusion matrix (see

Section 4.1.2). Based on that matrix, one can compute the well-known recall

and precision metrics to evaluate the quality of the discovery algorithm. These

quality measures are used because the procedure focuses on the traces that

are completely replayable by the discovered model. More specifically, recall

measures how much fitting behavior in the test log is classified as fitting by the

discovered model, and precision measures how much behavior classified as fitting

by the discovered model is actual fitting behavior in the test log. Good recall is

important as every discovery algorithm tries to discover a model containing the

behavior of the underlying process [33]. On the other hand, precision balances

between underfitting and overfitting [99]. The procedure repeats the process of

splitting, discovery, creating non-fitting traces and conformance checking ten

times, each time with a different fold as “test log”. The task “average results”

2Replay uses the trace and the model as input. The trace is “replayed” on top of the model to
see if there are discrepancies between the trace and the model [99].

132

4.1. INTEGRATED DISCOVERY EVALUATION PROCEDURE

computes the average of the metric values over the ten folds to get an estimate

of the algorithm’s quality to rediscover the underlying process. Finally, the

task “statistical analysis” tests the hypotheses formulated in the context of the

objectives.

This procedure’s design has the property that no two discovery algorithms

are applied on the same event log. Furthermore, for each generated model -

randomly drawn from a predefined model population - we randomly draw only

a single event log. Consequently, all discovered models and any corresponding

quality metric are independent observations which is an important assumption

underlying many standard statistical techniques. We acknowledge that this

design decision is not the only option as one could test discovery algorithms on

the same logs. This alternative design would have more statistical power for the

same sample size as it removes the variance between logs from the error terms3

used to test the effects of discovery algorithms [45]. However it requires more

complex statistical techniques to deal with the dependency between observations.

We can compensate for the loss in power in our design by increasing the sample

size. One can define the required sample size based on the desired power of

the statistical analysis in advance. The power of a binary hypothesis test is the

probability that the test correctly rejects the null hypothesis when in fact the

alternative hypothesis is true.

Finally, the design of the procedure is based on the experimental design

principles which enables users to obtain algorithm’s quality measures that

are independent from specific process models and event logs. More specifically,

this starts from the generation of (preferably large) random samples of process

models and logs from a population, which are then used to estimate the quality

of a algorithm with regard to that population. This contrasts evaluation based

on a small non-random sample of (manually created) process models and event

logs as it could influence the quality estimate to only reflect these particular

models and logs.

The following subsection will elaborate on each of the tasks in the procedure.

3The error term or residual is a variable in the statistical model that is created when
the model does not fully capture the actual relationship between independent and dependent
variables.

133

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

4.1.2 The building blocks of the procedure

The building blocks are discussed in order of appearance in the procedure.

4.1.2.1 Generate models

This building block generates a random sample of process models from a model

population as specified by the GED methodology (see Section 3.1). The input of

this block is a model population which a user defines by assigning probabilities

to each of the model building blocks, i.e. control-flow patterns, and setting the

size of the models in terms of visible activities4. The probabilities of the control-

flow patterns influence the probability for each pattern to be included in the

resulting process model. For example, if the probability of loops is 0.2, then on

average 20% of the model constructs will be of type loop.

In particular, this block allows one to generate process models that can

feature the basic workflow control-flow patterns identified in [92], namely:

• Sequence: certain process activities need to be sequentially executed.

• Exclusive choice: certain process parts/branches of the process are mutu-

ally exclusive. In several notations, this is known as XOR split/join.

• Parallelism: certain parts/branches are “parallel”, indicating that all

branches will be executed but in no particular order. In several notations,

this is known as AND split/join.

• Or: certain parts/branches are in multi-choice (“or”), indicating that a

subset of these branches will be executed. Differently from exclusive

choice, multiple parts can be executed in parallel; different from the

parallelism construct, not every part that follows the reached point needs

to be executed. In several notations, this is known as OR split/join.

• Loop: certain parts of the process can be sequentially repeated multiple

times.

4Notice that a population MP as specified in Definition 3.3 does not include the log character-
istics such as number of traces and noise.

134

4.1. INTEGRATED DISCOVERY EVALUATION PROCEDURE

This set of pattern is complemented by a number of more advanced patterns:

• Silent activities: certain activities are inserted into the model for a process-

routing purpose. For instance, combined with exclusive choices, silent

activities enable certain parts of the process to be skipped.

• Reoccurring activities: the same activity appears in different parts of the

process, indicating that the activity can reoccur.

• Long-term dependency: the choice of one or multiple branches at a certain

moment in the execution of the process can influence which choices become

available at a later point.

• Infrequent Paths: this is always combined with an exclusive choice. When

the execution reaches an exclusive choice, certain potential process branches

have a higher probability to be chosen. In fact, this pattern is rather re-

lated to the generation of event logs.

These constructs are those typically discovered by discovery algorithms

because they are the most relevant. BPMN [46] and other modelling notations

support more complex constructs, such as multiple instances and terminating

events; however, at the best of our knowledge, no discovery algorithms support

their discovery.

As a result, this block allows users to fully control the control-flow behavior

in the generated models and generalize the results to the predefined popula-

tion. The user defines a population MP as specified in Definition 3.3: MP =
(minimumVisibleAct, modeVisibleAct, maxVisibleAct, ΠBase,Πτ,ΠRe,ΠLt,ΠIn).

4.1.2.2 Generate log

For each generated model the “generate log” block creates an event log, i.e.

a random sample of all possible traces allowed by that model. This building

block uses the given process model to generate a user-specified number of traces

per event log. The exclusive choices in each of the process models have output-

branch probabilities. As a result, the resulting event log contains a random set

of fitting and complete traces. The presence of infrequent paths will make some

135

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

traces more probable than others which will result in event logs with infrequent

behavior.

4.1.2.3 Split log

This building block applies the first step needed for the 10-fold cross validation

evaluation method. The step splits a given event log into ten subsets (folds) of

equal size. Nine folds form the “training log” and are the input of the discovery

algorithm. The tenth fold is the “test log” which is split in half: one half consti-

tutes the “fitting test traces”, the other half will serve as input of the “create

non-fitting traces” block to make “non-fitting test traces”. This is repeated ten

times such that each of the ten folds becomes a “test log” exactly once.

4.1.2.4 Create non-fitting traces

In a classification approach the “test log” should contain positive and negative

examples. To this point, there are only positive examples, i.e. traces that fit the

original model. The "Create non-fitting traces" building block alters the given

test traces so that they do not fit the original model anymore. The goal of the

non-fitting traces is to punish overgeneralization of discovery algorithms. The

flower model is an example of extreme overgeneralization that allows every

possible trace involving the set of activities but provides no added value in

a business context [99]. Therefore, the new procedure aims to punish typical

overgeneralizing patterns: unnecessary loops, activity skips and parallelism,

by altering the traces using specific noise operations (see description below)

that can add or remove behavior. The traces are altered but kept as close to the

original trace as possible. In this way, the procedure avoids non-fitting traces

that would be trivially rejected by overgeneralizing models.

Given a process model and a set of fitting traces, noise is added to each trace

as follows. First, one or more of the following noise types based on [41], is added

with a user specified probability:

• Add activity: one of the process activities is added in a random position

within the trace. A special case of this is when an activity is duplicated,

i.e. inserted immediately after the original. This type of noise aims to

136

4.1. INTEGRATED DISCOVERY EVALUATION PROCEDURE

punish unnecessary loops, i.e. a certain activity that can be repeated in

the discovered model, but cannot be repeated in the original model.

• Remove activities: one or more activities are randomly removed from the

trace. This type of noise targets the detection of activity skips in the

discovered model that are not allowed in the original model.

• Swap random activities: swap the two randomly chosen activities in a pair.

A special case of this is when two consecutive activities are swapped. This

type of noise aims to punish unnecessary parallellism between certain ac-

tivities in the discovered model while in the original model those activities

should be executed in a particular order.

Then, the modified trace is checked for fitness with respect to the original model.

If the trace does not fit anymore, it is a noisy trace which will not be edited

anymore. If the trace still fits the model, noise is added again (and checked

afterwards) until it does not fit anymore, or until noise has been added five times.

If the noisy trace still does not fit the model, the trace is discarded and another

trace is randomly selected from the set of fitting traces. This trace follows the

same process as was described above.

Table 4.2 illustrates the different types of overgeneralization that the evalu-

ation procedure will punish for. The columns of the table contain the original

models, the training logs generated from the original models, and the discovered

models with an overgeneralization pattern. The first row contains the original

model with activities “b” and “c” in an “or” such that each trace will contain

one of those activities or both in no particular order. The training log contains

three traces: 〈a,b,d〉, 〈a, c,d〉, and 〈a,b, c,d〉. Given the training log, the ILP

miner [108] discovers a Petri net with loops on both activities “b” and “c”. Those

loops are unnecessary as they allow for multiple executions of “b” and “c”, which

are not allowed by the original model. This overgeneralization can be punished

by using the add activity noise operator: duplicate activity “b” in the fitting

trace 〈a,b,d〉 to get the trace 〈a,b,b,d〉 which is non-fitting with regard to the

original model, but is allowed by the discovered model due to the unnecessary

137

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

loop on activity “b”. This creates a false positive and lowers the precision score

of the discovered model (discussed in the following sections).

The second row of Table 4.2 includes the original model with a choice and a

sequence in parallel. The training log consists of five out of six possible traces

and the Inductive miner [69] discovers the model with skips on activities “a” and

“b”. Those activity skips are unnecessary as they allow to skip both activities

in a trace whereas in the original model always “a” or “b” needs to be executed.

The remove activities noise operator allows to punish the unnecessary activity

skips: remove activity “a” from 〈a, c,d〉 to get the trace 〈c,d〉 which is non-fitting

with regard to the original model, but is allowed by the discovered model due to

the unnecessary activity skips on activities “a” and “b”.

The last row of Table 4.2 contains the original model with a duplicate activity

“a”. The training log includes the two possible traces according to the original

model. Applying the ILP miner [108] on the training log results in the Petri

net with only transitions and no arcs. All three activities can be executed in

parallel whereas the activities are not in parallel in the original model. The swap

random activities noise operator enables the punishment of the unnecessary

parallelism: swap activities “a” and “b” in 〈a,b,a〉 to get the trace 〈b,a,a〉 which

is non-fitting with regard to the original model, but is allowed by the discovered

model due to the unnecessary parallelism on activities “a” and “b”.

To illustrate the noise insertion until the modified trace is non-fitting with

regard to the original model, consider the first row of Table 4.2. Suppose the

fitting trace 〈a,b, c,d〉 is selected for noise insertion and all three possible noise

operators, add activities, remove activities, swap random activities, each have the

same probabiliy 1
3 to be applied. Suppose that first the activities “b” and “c” are

swapped to get trace 〈a, c,b,d〉 which is still fitting the original model. Then, the

modified trace gets another type of noise, e.g. delete activity “c” to get 〈a,b,d〉
which is still fitting. Again, noise is added to the modified trace, e.g. duplicate

activity “b” which results in 〈a,b,b,d〉 which does not fit the original model,

and hence is a finished noisy trace. In this example, all three noise operators

were applied once, but this is not always the case as a certain operator could be

applied multiple times which depends on the probabilities the user assigned to

each operator.

138

4.1. INTEGRATED DISCOVERY EVALUATION PROCEDURE

O
ri

gi
na

lm
od

el
L

og
O

ve
rg

en
er

al
iz

ed
di

sc
ov

er
ed

m
od

el

〈a
,b

,d
〉

〈a
,c

,d
〉

〈a
,b

,c
,d

〉

〈a
,c

,d
〉

〈c
,a

,d
〉

〈c
,b

,d
〉

〈c
,d

,a
〉

〈c
,d

,b
〉

〈a
,b

,a
〉

〈a
,c

,a
〉

Ta
bl

e
4.

2:
Il

lu
st

ra
ti

on
of

ov
er

ge
ne

ra
liz

in
g

pa
tt

er
ns

.

139

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

4.1.2.5 Discover process model

This block applies a discovery algorithm to the “training log” to induce a process

model. This could be any discovery technique with user specified parameter

settings. The discovered model will be used for conformance checking.

4.1.2.6 Conformance checking

The conformance checker will replay the given traces on the discovered model.

The trace-level fitness metric will be used as it allows for an unambiguous

interpretation of the two possible outcomes: i.e. completely replayable or not-

completely replayable. Secondly, the binary outcome naturally allows for the

classification approach: if a trace can be completely replayed by the discovered

model it belongs to the “fitting” class, otherwise the trace is part of the “non-

fitting” class. The number of classes could be extended by adopting an event-

level metric to create a more fine-grained evaluation that distinguishes between

partially fitting traces. However, we argue that determining the classes for

partially fitting traces would require additional research, which is outside the

scope of this thesis.

4.1.2.7 Calculating quality metrics

The building blocks “Confusion matrix” and “Calculate metrics” summarize the

quality of an algorithm using three standard metrics adopted from the data

mining and information retrieval domain [130]: precision, recall and F measure.

Traditionally these metrics are based on:

• True Positives: the number of real traces that fit the discovered model.

• False Positives: the number of false traces that fit the discovered model.

• False Negatives: the number of real traces that do not fit the discovered

model.

• True Negatives: the number of false traces that do not fit the discovered

model.

140

4.1. INTEGRATED DISCOVERY EVALUATION PROCEDURE

The precision metric refers to the percentage of real traces from all the traces

that fit the discovered model.

Precision= True Positives
(True Positives+False Positives)

Inversely, the recall metric refers to the percentage of traces that fit the

discovered model from all the real traces.

Recall= True Positives
(True Positives+False Negatives)

The procedure uses the F1 variation of the F measure to combine the preci-

sion and recall dimensions into a single metric, as suggested by De Weerdt et

al. [32], which makes the comparisons between algorithms in both dimensions

easier. This statistic refers to the harmonic average of the precision and recall

metrics.

F1 = 2 ·Precision ·Recall
(Precision+Recall)

4.1.2.8 Result analysis

The evaluation procedure allows users to compare the performance of algorithms

and to study the effect of control-flow characteristics on algorithm performance.

The statistical analysis based on the evaluation results depends on the objectives

of the experiment and the corresponding hypotheses to be tested. Therefore,

the procedure does not incorporate specific statistical techniques, instead it can

be used with a whole range of exploratory, descriptive and causal statistical

techniques to test any hypothesis that can be expressed in terms of precision,

recall, F1 score, and characteristics of log and model. This will benefit the

adoption of the procedure for all types of evaluation studies, rather than serve a

specific purpose.

The next section will describe an implementation of the new procedure using

a scientific workflow system that allows to automate and share process discovery

evaluation experiments.

141

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

4.2 Implementation

First, the section will discuss an example implementation for the new evaluation

procedure. The second part of the section will discuss how one can add new

discovery algorithms that use different modelling notations than supported by

the current implementation.

4.2.1 RapidProM implementation

The building blocks used in the new evaluation procedure (described in Sec-

tion 4.1.2) were implemented as operators in the RapidProM extension of the

RapidMiner scientific workflow tool [14, 103].5 The RapidProM extension pro-

vides several operators that support process mining tasks which can be con-

nected to exploit the benefits of scientific workflows [14]. The next part of this

section briefly discusses the new and existing operators needed to support each

building block in the proposed procedure.

The “PTandLogGenerator” is used for the implementation of the “Generate

models” and “Generate log” building blocks in the procedure. Section 3.5 has

demonstrated that a user can control all the control-flow patterns specified in

Section 4.1.2.1. Additionally, the simulation algorithm of the “PTandLogGen-

erator” (see Section 3.3.2) allows a user to specify the size of the random set of

traces that are drawn from a given process tree.

In a next step a new operator, named “Split Event Log”, implements the

splitting of the generated log into a training log and a test log. Then, the operator

“Generate noisy log” makes half of the traces in the test log non-fitting using the

following noise operations: remove one activity from a trace, duplicate an activity,

and swap consecutive activities. These operations are specific instantiations

of the noise operations specified in Section 4.1.2.4 and they address the most

challenging tasks of any discovery algorithm: discover activity skips, loops and

parallelism [41].

The discovery task is currently supported by eight operators, each applying

a different discovery technique, inter alia the Alpha+ Miner [106], Heuristics

5The RapidProM extension is open source and can be downloaded at www.rapidprom.org or
in the RapidMiner Marketplace.

142

www.rapidprom.org

4.2. IMPLEMENTATION

Miner [128], ILP Miner [114] and the Inductive Miner [67]. Then, the con-

formance checking uses the alignment-based fitness technique [102] to check

whether a trace perfectly fits a model or not. In contrast to the classic token-

based fitness technique [91], alignments are able to deal with silent and reoc-

curring activities [4, 73]. Since the calculation of an optimal alignment can be

time-consuming, the optimized implementation presented in [73] was adapted

in order to stop aligning a trace to a model as soon as a move on log or a move

on model (except when it corresponds to a silent transition) is mandatory in

order to align the trace to the model. By adapting this technique into a “binary”

conformance checker i.e., a trace can perfectly fit the model (1) or not (0), we

aim to reduce the runtime of experiments by several orders of magnitude. This

binary conformance checker is implemented as a new RapidProM operator.

Finally, the outputs of the two conformance checking nodes are combined

with existing RapidMiner operators to calculate the true positives, false neg-

atives, false positives and true negatives to form the confusion matrix and

calculate the F1, precision, and recall values. The metric values are summarized

in a Comma Separated Values (CSV) format. This format can easily be exported

to other tools such as Excel and R to perform statistical tests.

All the operators disccussed above are combined in workflow that executes

the new procedure and is shared at http://data.4tu.nl/repository/uuid:

039bc213-b09d-4c96-bc1d-15bc13f645e6. By sharing this workflow we aim

to reduce the setup time of other researchers that use or extend the new proce-

dure.

4.2.2 Extensibility of the RapidProM implementation

As claimed in Section 4.1.1, the new evaluation procedure is not bound to Petri

nets or any other modelling notation. As a consequence, it is extensible to

incorporate new discovery algorithms, independently of the notations in which

these algorithms represent the discovered model. Every change that is necessary

to evaluate a new discovery algorithm that produces models in a notation N (e.g.

BPMN) is related to the implementation, whereas the procedure workflow does

not require changes.

143

http://data.4tu.nl/repository/uuid:039bc213-b09d-4c96-bc1d-15bc13f645e6
http://data.4tu.nl/repository/uuid:039bc213-b09d-4c96-bc1d-15bc13f645e6

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

In the RapidProM implementation, it is necessary to: (1) plug-in the new

algorithm as a new operator that implements the “Discover model” building block

(cf. Section 4.1.2.5) and (2) plug-in a new conformance checker for notation N,

with the latter not being necessary if notation N is already among those available

in RapidProM. Notice that it is not necessary to change the “PTandLogGenerator”

implementation of the building block “Generate models”. Any model generator

in any notation that can represent the patterns defined in Section 4.1.2.1, such

as process trees, can be employed. These models are only used to generate the

event logs with fitting and non-fitting traces and are not directly compared with

the models that are discovered.

To illustrate this, consider the case when one wants to evaluate algorithms

that discover BPMN models while limiting the number of changes to the Rapid-

ProM implementation. The implementation of the algorithm needs to be plugged

into RapidProM and a conformance checker for BPMN models needs to be im-

plemented in RapidProM. As a matter of fact, this conformance checker is not

necessary as one can convert the BPMN model into a trace equivalent Petri net

such that each execution of the BPMN model is possible in the Petri net, and vice

versa [39, 62]. In a next step, the Petri-net conformance checker can be employed.

The trace equivalence between the BPMN and the Petri net models guarantees

that every trace that is diagnosed as fitting/unfitting using the equivalent Petri

net will also be as such with respect to the original BPMN model.

The next two sections discuss a demonstration and evaluation of the new

evaluation procedure and its RapidProM implementation. Design Science re-

search requires these steps to show that the created artefact, i.e. the new

evaluation procedure, can overcome the four limitations of process discovery

evaluation listed in the introduction of this chapter.

4.3 Demonstration and evaluation

The demonstration and evaluation of the new evaluation procedure involve two

rounds of experiments:

1. The first round will validate that the proposed evaluation procedure effec-

144

4.3. DEMONSTRATION AND EVALUATION

tively supports two main evaluation objectives: benchmarking different

discovery algorithms, and performing sensitivity analysis to study the

effect of a model or log characteristic on algorithm performance. The va-

lidition consists of an experiment that empirically analyzes four process

discovery algorithms that apply different target modelling notations: Al-

pha+ Miner [106] (Petri nets), Heuristics Miner [128] (Heuristic nets), ILP

Miner [114] (Petri nets) and the Inductive Miner [67] (Process trees). The

discovery algorithms come from three different “families” of approaches

(see Section 2.1.4): two algorithmic approaches (Alpha+ and Inductive),

a heuristics approach (Heuristics miner), and a region-based approach

(ILP miner). The benchmark does not serve as a benchmark of all cur-

rent state-of-the-art algorithms. The chosen algorithms are are not the

most recent approaches, yet, more knowledge has accumulated for these

algorithms than previous algorithms, which benefits the evaluation for

theory building and validation of those theories. The experiment applies

the proposed procedure to analyze and compare the quality of process dis-

covery algorithms to rediscover the underlying process based on observed

executions (event logs). The process to be rediscovered can come from

different populations by varying the probability of occurrences of typical

process characteristics such as paralellism, loops and infrequent paths.

The experiment in this round will test discovery algorithms on event logs

coming from different model populations by varying the probability of

reoccurring activities and enabling or disabling the presence of infrequent

paths. In this way, we can study the impact of infrequent behavior and of

different probabilities of reoccurring activities on the quality of process

discovery techniques.

2. The second round will further validate the proposed procedure by showing

the flexibility and its support for large-scale experiments. It adapts the

first experiment to an experiment four times as large.

First, we will discuss the setup of the first round of experiments, followed by a

description of the results. Secondly, we will present the setup of the second round

of experiments and its results. Finally, we will discuss the results from both

145

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

Discovery Infrequent Probability
Technique Paths Reoccurring Activities

Alpha+ [106] False 0.0, 0.05
Heuristics [128] True 0.10, 0.15

ILP [114] 0.20, 0.25
Inductive [67] 0.30

Table 4.3: Summary of the possible values of the four variables included in
the experimental setup: 56 (4×2×7) value combinations. The probability of
reoccurring activities indicates the average percentage of duplicated visible
activity labels in the process model.

rounds of experiments and how the presented procedure alleviates important

limitations of current evaluation procedures.

4.3.1 Setup of the first round of experiments

The first experiment compares the quality of the four process discovery tech-

niques to rediscover the underlying process, i.e. to perform a benchmark analysis.

Furthermore, it analyzes the impact of infrequent behavior and of different prob-

abilities of reoccurring activities on the quality of process discovery techniques

to rediscover the underlying process, i.e. a sensitivity analysis. Therefore, the

experimental design includes all the combinations of three independent vari-

ables: process discovery technique used, presence or absence of infrequent paths

and the probability of having reoccurring activities. The three variables and

their levels are summarized in Table 4.3. In total, the 56 possible combinations

are included in the experiment: 4 discovery techniques × 2 levels of infrequent

behavior × 7 probabilities of reoccurring activities.

The discovery algorithms are applied with their default parameter settings,

except for the ILP miner which is set to discover Petri nets where the final

marking is the empty marking (no tokens remaining). Any other configuration

results in Petri nets that would require manual inspection by the researcher to

determine the final marking(s) for the replay during the conformance checking.

However, a manual intervention would hinder the automatic execution of the

146

4.3. DEMONSTRATION AND EVALUATION

evaluation procedure.

As mentioned above, we vary the presence/absence of infrequent paths

and the probability of reoccurring tasks as these are part of the independent

variables. The other process characteristics are fixed for each model population.

More specifically, the probabilities of the “loop” and “or” control-flow patterns

are set to zero, and hence, these patterns do not occur in the model population.

The probability of the “sequence”, “exclusive choice” and “parallelism” patterns

is set and kept fixed to values 46%, 35% and 19%, respectively. These values

have been determined after analysing their frequencies in the large collections

of models reported in [65]. In this work, Kunze et al. have observed that 95%

of the models consist of activities connected in sequences, 70% of the models

consist of activities, sequences and XOR (exclusive choice) connectors and 38%

consist of sequences, activities and AND (parallel) connectors (see Figure 4b of

the paper). Assuming independence of occurrence probability of sequences, AND

and XOR, it follows that:

P(sequence)= 0.95

P(sequence∧ XOR)= P(sequence)×P(XOR)= 0.70⇒ P(XOR)= 0.74

P(sequence∧ AND)= P(sequence)×P(AND)= 0.38⇒ P(AND)= 0.4

When these values are normalized to 1, the final probabilities of 46%, 35%

and 19% for the “sequence”, “exclusive choice” and “parallelism” patterns are

obtained. The size of the models within each population varies between 15 and

60 with a mode of 30. This makes the 14 model population definitions MPfirst as

shown in Table 4.4 where X and Y are assigned all 14 combinations of values in

column two and three in Table 4.3.6 As such the 14 model populations contain

mostly sequential process models that have mutually exclusive choices and to a

lesser extent contain some parallel behavior. The size of the models in terms of

visible activities has a relatively large range to include both simple and rather

complex models in terms of nested choices and parallellism. Furthermore, half

of the models produce infrequent traces in the log because all their choices

have imbalanced outgoing branch probabilities: 90% probability to execute one

6ΠIn = 0 for “False” (absence of infrequent paths) and ΠIn = 1 for “True” (presence of infre-
quent paths).

147

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

Parameter Population
MPfirst

Number of visible activities (15,30,60)
Sequence (Π→) 0.46
Parallel (Π∧) 0.19
Choice (Π×) 0.35
Loop (Π) 0
Or (Π∨) 0
Silent activities (Πτ) 0
Reoccurring activities (ΠRe) X
Long-term dependencies (ΠLt) 0

Unfold loops n/a
Max repeat (k) n/a

Infrequent paths (ΠIn) Y

Sample size (number of trees) 62

Logs per model 1
Number of traces (t) [200,1000]
Noise (ΠNoise) 0

Determinism level n/a

Table 4.4: Model population parameters for the first round of experiments, where
X and Y are assigned all 14 combinations of values in {0,0.05,0.1,0.15,0.2,0.25,0.3}
and {0 (False),1 (True)} respectively.

branch, and 10% probability to execute one of the other branches. Finally, the

models are characterized by different amounts of reoccurring activities, ranging

from no reoccurring activities to models with on average 30% of all visible

activities taking on labels of other visible activities.

As mentioned in Section 4.1.1 the evaluation procedure ensures that every

discovery algorithm is tested on a different event log to make all discovered

models and quality metrics for a specific algorithm independent observations.

Therefore, for each discovery technique, a random sample of 62 process models

is drawn. The sample size of 62 models allows us to study the effect of process

discovery techniques, infrequent paths and different probabilities of duplicate-

activity occurrences (and their interactions) using a fixed effects ANOVA anal-

148

4.3. DEMONSTRATION AND EVALUATION

ysis [122] with significance level α= 0.05 and power 1−β= 0.98.7 This power

indicates the probability to detect a significant effect when two mining algo-

rithms actually differ by a relatively small difference. The small difference is

defined by an effect size equal to 0.1, i.e. a standard deviation of the effects we

want to test is one-tenth as large as the common standard deviation of the ob-

servations within the groups [23]. This experiment tests three effects: discovery

algorithm, infrequent paths and reoccurring activities. The number of groups

equals 56, i.e. the number of combinations of the three independent variables:

4 discovery algorithms x 2 levels of infrequent paths x 7 levels of reoccurring

activities. In total 3472 process models were generated: 56 groups x 62 models =

3472 models.

For each of the obtained process models, an event log containing between

200 and 1000 traces is generated. For each generated log, we can calculate the

completeness, i.e. the ratio of unique traces in the log to all possible unique

traces according to the model using the technique described in [49]. Fig. 4.2

shows that the completeness of the logs varies between 0 and the maximum of

1.

Finally, the non-fitting traces in the test logs are generated using the follow-

ing noise operations: remove one activity from a trace, duplicate an activity, and

swap consecutive activities. Each of the noise operations has an equal probability

to be applied. Notice, that the applied noise operations and their probabilities

should be taken into account when generalizing the experiment results.

The setup of the experiment with all the parameter settings in a RapidProM

workflow is shared via the following url: http://data.4tu.nl/repository/

uuid:039bc213-b09d-4c96-bc1d-15bc13f645e6.

4.3.2 Analysis of the results from the first experiment

The effect of process-discovery techniques, infrequent paths and different proba-

bilities of duplicate-activity occurrences can be analyzed using one-way ANOVA

analysis if the assumptions of homogeneity of variances and normality of the de-

pendent variable hold [122]. However, both assumptions were violated for every

7The power was computed with the G*Power tool [38].

149

http://data.4tu.nl/repository/uuid:039bc213-b09d-4c96-bc1d-15bc13f645e6
http://data.4tu.nl/repository/uuid:039bc213-b09d-4c96-bc1d-15bc13f645e6

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

Figure 4.2: Distribution of completeness of logs wrt. their respective process
models. Completeness is measured as the fraction of traces allowed by the model
that are present in the event log.

dependent variable, i.e. F1, recall and precision. Therefore, the non-parametric

Kruskall-Wallis test (KW) [94] was applied instead. We will first introduce the

statistical tests used during analysis, before we discuss the analysis results.

4.3.2.1 Statistical tests

KW is used for testing whether k independent samples are from different

populations. It starts by ranking all the observations from the different samples

together based on their scores: assign the highest score a rank 1 and the lowest

a rank N, where N is the total number of observations in the k samples. Then,

the average ranking for each sample is computed, e.g. the mean ranking of

observations in sample j is denoted as R̄ j. With n the number of observations

in each sample, the test statistic KW, which follows a χ2 distribution with k−1

degrees of freedom, can be calculated as follows [94]:

KW=
[

12
(N(N +1))

k∑
j=1

nR̄2
j

]
−3(N +1)

If the calculated KW is significant, then it indicates that at least one of the

samples is different from at least one of the others. Subsequently, the multiple

comparison post hoc test is applied to determine which samples are different.

150

4.3. DEMONSTRATION AND EVALUATION

More specifically, for all a pairs of samples Ri and R j it is tested whether they

differ significantly from each other using the inequality [94]:

|Ri −R j| ≥ zα/k(k−1)

√
N(N +1)

12

(
2
n

)
The zα/k(k−1) value can be obtained from a normal distribution table given a

significance level α. The formula adjusts this α with a Bonferroni correction to

compensate for multiple comparisons. If the absolute value of the difference in

average ranks is greater than or equal to the critical value, i.e. the right side of

the equation, then the difference is significant.

Finally, the Jonckheere test [94] can be used to test for a significant trend

between the k samples. First, arrange the samples according to the hypothesized

trend, e.g. in case of a positive trend from smallest hypothesized mean to largest

hypothesized mean. Then count the number of times an observation in sample i

precedes an observation in sample j, denoted as Ui j ∀i < j. The Jonckheere test

statistic J is the total number of these counts:

J=
k∑

i< j
Ui j

When J is greater than the critical value (see [94] for the sampling distribu-

tion) for a given significance level α, then the trend between the k samples is

significant.

4.3.2.2 The effect of process discovery technique

The goal is to learn the effect of a process discovery technique on each of the

dependent variables: recall, precision and F1 score. The effects of the other

independent variables, i.e. infrequent paths level and probability of reoccurring

activities, are not studied here.

We apply the KW method, to test whether the average rank differs between

the four process discovery techniques (i.e. samples). In this case we ranked all

the 3472 averages over the 10-fold cross validation for recall, precision and F1

values ignoring sample membership (i.e. discovery technique). The highest value

for recall, precision and F1 gets rank 1 (lowest rank), while the lowest absolute

151

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

Alpha+ Heuristics ILP Inductive

Recall 2361.94 2650.35 505.99 1427.73
Precision 2155.57 2624.42 1007.66 1158.35
F1 score 2318.14 2646.44 697.00 1284.42

Table 4.5: Average Ranks per Miner. Each cell indicates the average ranking
for a specific quality dimension (row header) and for a specific miner (column
header). One can compare miners by comparing the average ranks within one
row.

value gets rank 3472 (highest rank). Then we computed the average ranking

per miner, i.e. the average position of a discovered model by that miner for that

quality metric on a scale from 1 to 3472. A higher average ranking means worse

performance. The ranking summary is shown in Table 4.5.

Based on the average rankings in Table 4.5, the order suggested between

process discovery techniques is: ILP > Inductive > Alpha+ > Heuristics for recall,

precision and F1 scores. It means that the ILP miner creates the best models

in terms of recall, precision and F1 scores (see Section 4.3.4 for an elaborate

discussion). The Inductive miner outperforms the Alpha+ miner, which in turn

outperforms the Heuristics miner. The results of the KW test confirm that

the differences in average rankings between the four miners are statistically

significant (significance level α= 0.05). Moreover, the multiple comparison post-

hoc test (cf. supra) also confirms the statistical significance of the differences

between algorithms. See Table B.1 in Appendix B for a summary of the statistical

test results for the F1 scores.

4.3.2.3 The effect of infrequent paths

This analysis tests whether the presence/absence of infrequent paths has an

impact on the average ranking of the four process discovery techniques for recall,

precision and F1 scores.8 The effect of reoccurring activities is not studied here.

8Infrequent paths are denoted with an imbalance in execution probabilities of the output-
branches of each exclusive choice construct in the model which results in an event log containing
infrequent behavior.

152

4.3. DEMONSTRATION AND EVALUATION

Alpha+ Heuristics ILP Inductive

Recall 1162.64 1313.58 242.94 754.85
Precision 1088.57 1306.34 523.05 556.04
F1 score 1136.22 1310.40 367.71 659.93

Table 4.6: Average ranks per miner with infrequent behavior

Alpha+ Heuristics ILP Inductive

Recall 1196.47 1338.58 262.01 676.93
Precision 1063.51 1317.79 485.44 607.26
F1 score 1180.24 1338.25 325.71 629.80

Table 4.7: Average Ranks per miner without infrequent behavior

Firstly, the sample is split into two subsets: experiments with infrequent

behavior and experiments without infrequent behavior. This division is called

blocking (see Section 2.3.2.2) which is done to isolate the variation in recall,

precision and F1 scores attributable to the absence/presence of infrequent paths.

Secondly, the KW test is applied to each subset.

Tables 4.6 and 4.7 contain the average rankings per process discovery tech-

nique grouped by metric and experiments with and without infrequent behavior

respectively. These rankings suggest the same order between process discovery

techniques in all cases: ILP > Inductive > Alpha+ > Heuristics. This leads to

the assumption that the process discovery techniques are not influenced by

the absence or presence of infrequent behavior. Based on the KW and multiple

comparison post-hoc test, only the difference between the ILP and Inductive

miner in case of infrequent behavior is not statistically significant for precision

(see Table B.2 in Appendix B), i.e. the rankings are ILP ? Inductive > Alpha+ >
Heuristics. Therefore, the rankings between algorithms are not always ILP >
Inductive > Alpha+ > Heuristics for all quality dimensions for both with and

without infrequent behavior. As a result, one cannot accept the assumption that

infrequent paths do not influence process discovery techniques.

153

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

Figure 4.3: F1 scores for process discovery techniques for different probabilities
of Reoccurring activities

4.3.2.4 The effect of reoccurring activities

This analysis investigates how the quality of each process discovery technique

(in terms of precision, recall and F1 score) is influenced by the probability of

reoccurring activities (i.e. the average percentage of duplicated visible activity

labels in the process models). The effect of infrequent behavior is not studied

here.

Fig. 4.3 illustrates the average F1 scores for all the process discovery tech-

niques over different probabilities of reoccurring activities. We have added error

bars to the means displayed in the graphs. The bars are based on a 95% confi-

dence interval. These bars show that only the Alpha+ and Inductive miner have

some variability. The graph indicates a negative trend, i.e. the probability of

reoccurring activities has a negative effect on F1 scores. To determine whether

such a trend is statistically significant, an in-depth analysis is performed.

First, the sample is divided into subsets grouped by process discovery tech-

nique. As such, the variation in accuracy associated with the discovery technique

is isolated. Then, similar to the analysis above, the KW test is applied to compare

the average rankings of the discovered models.

Tables 4.8, 4.9, 4.10, and 4.11 contain the average ranks of the four discovery

algorithms for all three metrics per probability of reoccurring activities.

154

4.3. DEMONSTRATION AND EVALUATION

Prob. Reoccurring
0 0.05 0.10 0.15 0.20 0.25 0.30Activities

Recall 339.47 417.21 428.08 451.02 435.54 479.52 490.66
Precision 346.37 421.59 423.21 449.60 431.10 478.01 491.62
F1 score 339.46 417.56 427.86 450.78 435.69 479.36 490.78

Table 4.8: Average ranks of Alpha+ miner per probability of Reoccurring Activi-
ties

Prob. Reoccurring
0 0.05 0.10 0.15 0.20 0.25 0.30Activities

Recall 432.08 429.27 435.26 428.28 442.85 437.97 435.79
Precision 431.96 429.40 434.90 428.14 442.76 438.51 435.83
F1 score 432.04 429.34 435.19 428.27 442.85 438.06 435.75

Table 4.9: Average ranks of Heuristics Miner per probability of Reoccurring
Activities

Prob. Reoccurring
0 0.05 0.10 0.15 0.20 0.25 0.30Activities

Recall 466.09 438.65 457.05 462.85 416.74 418.97 381.15
Precision 172.53 295.21 369.48 431.76 521.84 604.08 646.60
F1 score 185.64 288.92 370.51 430.34 519.42 602.04 644.64

Table 4.10: Average ranks of ILP miner per probability of Reoccurring Activities

Prob. Reoccurring
0 0.05 0.10 0.15 0.20 0.25 0.30Activities

Recall 239.90 339.92 415.75 462.62 492.83 515.94 574.54
Precision 241.90 331.42 405.01 478.28 496.85 490.82 597.22
F1 score 219.71 339.45 410.69 474.73 500.88 505.77 590.27

Table 4.11: Average ranks of Inductive miner per probability of Reoccurring
Activities

155

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

For the Alpha+ Miner, the data (shown in Table 4.8) seems to suggest that

as the probability of reoccurring activities increases, the models generated by

Alpha+ miner deteriorate in terms of recall, precision and F1 score. To test this

impression statistically, we will rely on the KW and Jonckheere tests. Both

tests show that there is statistically significant negative trend in the relative

quality of the generated models as the probability of reoccurring activities

increases. A pairwise comparison of each probability of reoccurring activities

does not provide a clear picture how this trend looks like for recall, with many

comparisons statistically insignificant. For precision and F1 on the other hand,

the quality of the models decreases significantly whenever the probability of

reoccurring activities increases from 0% to more than or equal to 15% (see

Table B.3 in Appendix B).

The models discovered using the Heuristics Miner seem insensitive to the

probability of reoccurring activities (see Table 4.9). The KW and Jonckheere

tests confirm that there is indeed statistically insufficient evidence of a trend

in recall, precision and F1 score as the probability of reoccurring activities

increases (see Table B.4 in Appendix B). A possible explanation will be discussed

in Section 4.3.4.

The results for the ILP Miner in Table 4.10 suggest a positive trend in the

probability of reoccurring activities in terms of recall! However, in terms of

precision, the ILP miner shows high sensitivity to the probability of reoccurring

activities. The KW and Jonckheere tests confirm both statements. The pairwise

comparisons of reoccurring activities reveals the significant negative trend in

terms of precision and F1 scores of the generated models as the probability of

reoccurring activities increases (see Table B.5 in Appendix B).

The findings for the Inductive Miner in Table 4.11 indicate that as the prob-

ability of reoccurring activities increases, the model quality in terms of recall,

precision and F1 score deteriorates. This effect, though, seems to level off as

we reach higher probabilities of reoccurring activities. The KW and Jonckheere

tests show that there is indeed a significant negative trend in the relative quality

of the generated models as the probability of reoccurring activities increases.

However, at a probability of around 15% of reoccurring activities, this effect

seems to have reached a plateau and stays stable (see Table B.6 in Appendix B).

156

4.3. DEMONSTRATION AND EVALUATION

4.3.3 Second experiment

The first experiment has validated that the proposed evaluation procedure

supports the benchmark and sensitivity analysis evaluation objectives. The

proposed procedure is also flexible as it allows users to easily set up extended

experiments. Here, we have extended the above experiment with four other

control-flow patterns that provide challenges to current discovery algorithms:

“loop”, “or”, “silent activities”, and “long-term dependencies”. The probability

of the basic patterns, “sequence”, “parallel” and “exclusive choice”, is set the

same as in the previous experiments. In this experiment we have varied the

probability of each of the four patterns occurrence in the same way as we varied

the probability of “reoccurring activities” in the first experiment (see the model

population definitions in Table 4.12). Additionally, also the absence/presence

of infrequent paths is varied in the same way as in the first experiment. As a

result, the extended experiment has 4 x 3472 = 13888 observations.

The graphs in Figures 4.4, 4.5, 4.6, and 4.7 show the average F1 score

for all the discovery techniques over different probabilities of inclusion of the

control-flow patterns. We have added error bars to the means displayed in the

graphs. The bars are based on a 95% confidence interval. Overall the Alpha+

miner displays the largest variability while error bars of other miners are very

small (and thus barely visible). One can apply a similar statistical analysis of

the experiment results as for the Reoccurring activities to assess, for example,

whether the negative trend for the ILP miner on “or” is statistically significant.

The next subsection details a thorough discussion of the results of this extended

experiment, along with the first experiment.

4.3.4 Discussion of results

Firstly, the graphs on how the different algorithms score in terms of F1 score (see

Figures 4.3, 4.4, 4.5, 4.6, and 4.7) clearly highlight that ILP and Inductive Miner

perform significantly better than Alpha+ and Heuristic Miner. In fact, this is

not surprising because the latter two miners are not guaranteed to produce

sound models, which allow executions to be carried out till completion. Models

discovered with Alpha+ and Heuristic Miner can contain deadlocks, livelocks,

157

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

P
aram

eter
P

opulation
P

opulation
P

opulation
P

opulation
M

P
	

M
P

∨
M

P
τ

M
P

ltd

N
um

ber
ofvisible

activities
(15,30,60)

(15,30,60)
(15,30,60)

(15,30,60)
Sequence

(Π
→

)
0.46

0.46
0.46

0.46
Parallel(Π

∧)
0.19

0.19
0.19

0.19
C

hoice
(Π

×)
0.35

0.35
0.35

0.35
L

oop
(Π
	

)
X

0
0

0
O

r
(Π

∨)
0

X
0

0
Silent

activities
(Π

τ)
0

0
X

0
R

eoccurring
activities

(Π
R

e)
0

0
0

0
L

ong-term
dependencies

(Π
L

t)
0

0
0

X
U

nfold
loops

n/a
n/a

n/a
T

rue
M

ax
repeat

(k)
n/a

n/a
n/a

1
Infrequent

paths
(Π

In)
Y

Y
Y

Y

Sam
ple

size
(num

ber
oftrees)

62
62

62
62

L
ogs

per
m

odel
1

1
1

1
N

um
ber

oftraces
(t)

[200,1000]
[200,1000]

[200,1000]
[200,1000]

N
oise

(Π
N

oise)
0

0
0

0

D
eterm

inism
level

n/a
n/a

n/a
n/a

Table
4.12:M

odelpopulation
param

eters
for

the
second

round
ofexperim

ents,w
here

X
and

Y
are

assigned
all14

com
binations

ofvalues
in

{0,0.05,0.1,0.15,0.2,0.25,0.3}and
{0

(False),1
(T

rue)}respectively.

158

4.3. DEMONSTRATION AND EVALUATION

Figure 4.4: F1 scores for process discovery techniques for different probabilities
of Loops

Figure 4.5: F1 scores for process discovery techniques for different probabilities
of OR

159

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

Figure 4.6: F1 scores for process discovery techniques for different probabilities
of Silent Transitions

Figure 4.7: F1 scores for process discovery techniques for different probabilities
of Long-term Dependencies

160

4.3. DEMONSTRATION AND EVALUATION

and other anomalies [99]. When a model is not sound, it cannot replay traces

until the end and, hence, the confusion matrix may contain few true positives

(often none), causing precision, recall and, hence, F1 scores to be very low (often

zero).

Figures 4.8 and 4.9 show unsound models discovered by the Alpha+ Miner

and Heuristics Miner respectively. The model discovered by the Alpha+ Miner

immediately deadlocks after executing one of the following activities as first

activity in the process: o, h, or q. Additionally, the process model does not end

properly as the end marking can have multiple tokens. The model discovered by

the Heuristics Miner deadlocks after executing the silent activities indicated by

the red boxes. For both models such unsound behavior results in all zero scores

for recall, precision and F1.

The very low quality scores for the Alpha+ and Heuristics miners are not a

trivial findings because, although the theory already postulated it, it was not

clear how much the lack of soundness guarantee was practically affecting the

results. Ultimately this means that Alpha+ Miner and Heuristic Miner can be

useful to gain an initial insight into the general structure of the process but

cannot be used for more mature answers or for automatically generating models

that can be plugged into a Process-Aware Information System to enforce certain

process behavior.

The charts indicate that the ILP miner tends to perform better than In-

ductive Miner in terms of F1 score. This is observed for all patterns and all

occurrence probabilities. In particular, for such patterns as silent activities

and long-term dependencies, the F1 score is steadily around 1, which indicates

almost perfect precision and recall. This result is far from being trivial: as

discussed in [114], the ILP miner focuses on producing models that can replay

every trace of the event log, without trying to maximize precision. The ILP

miner starts from a Petri net that only contains transitions and add places to

restrict the possible behavior. It stops searching for places from the moment

all causal dependencies between transitions as found in the log are expressed.

In case there is exceptional behavior in the log, then ILP produces a WF-net

that allows for all this exceptional behavior. As a result, the ILP miner tends to

not find any causal dependencies. This typically leads to places with self-loops

161

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

F
igure

4.8:M
odeldiscovered

by
the

A
lpha+

M
iner.

F
igure

4.9:M
odeldiscovered

by
the

H
euristics

M
iner.

162

4.3. DEMONSTRATION AND EVALUATION

and as such underfitting models in general. In the experiments, the presence of

infrequent paths (exceptional behavior) still resulted in high precision scores.

Furthermore, because the ILP miner only aims at replaying the traces in the

event log used for discovery, one would expect that a different event log, such as

a test log, would not let the discovered models score high in recall, either.

The superiority of ILP miner is further supported by visually comparing

the models that ILP generates and those from the Inductive Miner, such as

the models in Figures 4.10 and 4.11 respectively discovered by the Inductive

and ILP Miner. The red boxes in the figure illustrate the imprecise parts of the

model. For the Inductive-Miner model, the transitions in the box can be executed

in any order and, because of the loop, an arbitrary number of times. Of course,

in reality, these transitions should occur in a more precise order; but the miner

is unable to discover it. Conversely, for the model discovered by the ILP miner,

the only “source of imprecision” is related to the “floating transition” a but it is

just one out of 26 transitions. This does not affect the precision. As discussed in

Section 4.1.2.4, to punish for imprecise behavior, our procedure injects noise into

fitting traces. In case of the model by the ILP miner, the probability that the

noise would involve the only “floating transition” a is low. On the other hand, the

probability that noise affects activities present in precise regions of the model is

high. Such deviations in very precise regions are easily detected, resulting in

high F1 scores for the ILP miner. The same reasoning is shared among most of

models illustrating the superiority of the ILP miner.

Another interesting result for both Inductive and ILP miner is that the

values of F1 score do not seem to be really affected by the amount of occurrences

of the “loop”, “silent activities”, and “long-term dependencies”, except for “reoc-

curring activities” and, limitedly, from the “or” pattern. The “or” is known to be

a hard construct and neither of the two miners provides specific support for it

(for Inductive Miner, at least for the version being evaluated9). For reoccurring

activities, this can be explained by the fact that both ILP and Inductive Miner do

not natively support mining models where different transitions share the same

activity label. This means that reoccurring activities are “emulated” through

9We have applied the Inductive Miner - infrequent variant, while alternatively, one could
also apply the Inductive Miner - infrequent - all operators variant to discover “or” patterns [68].

163

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

F
igure

4.10:M
odelD

iscovered
by

the
Inductive

M
iner.T

he
red

box
highlights

the
im

precise
part

ofthe
m

odel.

164

4.3. DEMONSTRATION AND EVALUATION

Figure 4.11: Model Discovered by the ILP Miner. The red box highlights the
imprecise part of the model.

165

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

loops and floating transitions (see above), which would underfit the behavior

observed in the event log, thereby yielding low precision.

4.3.5 Limitations and threats to validity

This subsection will discuss the limitations of the procedure’s implementation

and performed experiments. The first limitation regards the lack of noise in

the training logs and the way noise is inserted to create non-fitting traces.

The second limitation concerns the data preparation and discovery algorithm’s

parameter optimization. The final limitation involves the required conversion to

Petri nets for the conformance checking.

4.3.5.1 Noise

We acknowledge that the experiment results are affected by the fact that training

event logs do not contain noise, namely traces that are not generated by the

original, artificial models. As an example, ILP miner tends to be very sensitive

to noise: since it discovers models that are able to replay every trace, if the logs

contain noise, the discovered models would incorporate behavior that should

not be allowed, thus negatively affecting precision. Conversely, Inductive Miner

would likely be less affected because it features some noise detection, able to

detect whether a trace is really part of the process or a noise/outlier. This is

based on the frequencies of occurrences of certain patterns in the traces of the

event log [67]. As future work, we aim to add new ingredients to our analysis and

consider a variable percentage of training-log noise and to study how discovery

algorithms are affected by the amount of noise, in terms of F1 score.

Furthermore, we acknowledge that the subset of noise operators, i.e. remove

one activity from a trace, duplicate an activity, and swap consecutive activities,

has affected the experiment results. This subset was tailored towards testing

whether discovery algorithms introduce activity skips, loops and parallelism that

make the discovered model imprecise. However, there could be other sources of

imprecisions in the discovered models as well that cannot be detected using our

subset of noise operations. Consider for example the model in Figure 4.12 where

the grey places express a long-term dependency between activities a and e and

166

4.3. DEMONSTRATION AND EVALUATION

Figure 4.12: An example of a long-term dependency.

b and d such that only the traces 〈a, c, e〉 and 〈b, c,d〉 are allowed by the original

model. Both the Inductive Miner and the ILP Miner will discover an underfitting

model without the grey places and therefore also allow for the traces 〈a, c,d〉
and 〈b, c, e〉. The noise operators duplicate, swap and remove can never generate

these additional traces, and therefore, cannot punish discovered models in terms

of precision. An alternative way to generate traces that can punish imprecision

with regards to long-term dependencies collects all the removed branches from

the unfolded choice tree during dependency insertion (see Section 3.2.4). These

removed branches can be used to generate traces that do not fit the “orginal

model” with long-term dependencies, e.g. trace 〈a, c,d〉 which would lower the

precision score for imprecise models such as the model without the grey places

in Figure 4.12. Future research on process discovery evaluation should look into

such additional ways to generate unfitting test traces to detect all imprecisions

that current state-of-the-art discovery techniques tend to produce. Additionally,

future research should investigate how the random way of introducing noise

could be replaced by an approach guided by the original model. The original

model can be used to steer the non-fitting behavior in such a way that activities

are removed, duplicated, or swapped in “realistic” places. The resulting non-

fitting traces are likely to be more difficult for discovery algorithms to classify

correctly as non-fitting.

4.3.5.2 Parameter optimization and data preparation

A future extension to our procedure is parameter sensitivity [18, 86]. Every

miner that we employed in our experiments can be customized by setting the

167

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

values of certain parameters. In this thesis, we ruled out the parameter sensi-

tivity by using the default parameter values. For instance, Inductive Miner can

be customized by varying the threshold of noise detection, also known in the

algorithm as α-value, which can vary from zero to one. The model in Fig. 4.10

was mined with the default α-value, which is 0.2, leading to a F1 score of 0.25.

For this specific case, we manually reduced α to 0, thus not supporting noise

detection. This led to an increase of F1 till a clearly better 0.67. The increase

was caused by the fact that the training logs do not contain noise which benefits

a lower α setting.

Next to the parameters, also the assumptions of a discovery algorithm could

impact the quality of the discovered models. The Heuristics miner assumes that

each process has a unique start and end activity. However, this assumption

is not guaranteed in the experiments, as the original model could have more

than one start or end activity (due to choices or concurrency). Consequently, this

partly explains the bad results of the Heuristics miner in the experiments. To

illustrate this, consider the model in Figure 4.14. The initial marking is in the

place before transition “a” such that the process can only start with transition

“a”, while according to the original model the process can start with transitions

“a”, “l”, “z” or “r”. If a test trace starts with activity “z” for example, then that

trace will be classified by the discovered model as not-completely replayable.

One could alleviate this last assumption by introducing a dummy start and end

activity for each trace in the model. However, the current experiments in the

thesis are explorative which justifies the adoption of default parameters without

preprocessing such as introducing those artificial start and end activities.

4.3.5.3 Impact of conversion on model soundness

The use of alignment-based trace fitness can lead to bad quality results in

case the discovery algorithm does not guarantee to return sound models. The

previous section (see Section 4.3.4) explained that the lack of soundness for the

Alpha+ and Heuristics miners leads to relatively bad quality results. Given the

theoretical underpinnings of the Heuristics miner, these results were unexpected.

Therefore, this paragraph further analyzes the results of the Heuristics miner.

168

4.3. DEMONSTRATION AND EVALUATION

The first problem arises because of the required conversion. The heuristics

miner produces heuristics nets (causal matrices) which are slightly more expres-

sive than classical Petri nets [76]. The translation of a Heuristics net to a Petri

net requires some silent transitions which are the cause of local unsoundness

due to improper completion and/or deadlocks.

A second problem arises because the converted unsound Petri net influences

the computation of alignments. The assumption of alignments with regard to

the input process model is as follows [71]:

The Petri net should be relaxed sound: there needs to be at least one sequence of

transition firings that leads from the initial state to a final state. This restriction

is motivated by the fact that the process projection of an alignment is required

to be a process trace of the model. Clearly, to be able to provide an alignment,

the Petri net should allow for at least one trace. This does not require Petri nets

without deadlocks, i.e. states different from the final state in which no transitions

are enabled, or livelocks, i.e. firing sequences that do not progress towards the

final state.

The converted models are not necessarily relaxed sound, i.e. there is no

guarantee that at least one sequence of transition firings exists that leads from

the initial state to a final state. To illustrate this, several models and fitting

test traces where analyzed. The models and test traces are illustrated on the

following pages. Below each figure there is a table with a test trace and the

activities that are replayable and non-replayable doing a manual token-based

replay.

Firstly, a model that could not be aligned to the test log is analyzed. The

original Heuristics net in (Figure 4.13) with split/join annotations cannot fully

replay the fitting test trace (see below the figure). The converted Petri net (Fig-

ure 4.14) is not a WF-net as it has multiple source places which is a consequent

of the original tree starting with a choice. No alignments can be computed as

there is no single sound execution sequence from the initial state to the end state

(always remaining tokens). This results in a zero score for each trace, i.e. the

fitting test traces are not completely replayable. Doing the token-based replay

manually shows that it is possible to replay every activity in the trace, however,

several tokens remain after reaching the end state and thus the trace is not

169

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

completely replayable. This observation holds under the assumption that the log

only contains complete traces. Notice the manual replay adopted a smart replay

heuristic in the sense that silent transitions can only be fired if they enable a

visible transition that corresponds to an activity of the test trace in the next

step.

Secondly, a model was analyzed that can be aligned to the test log. The

converted Petri net (Figure 4.15) is not a WF-net (because there is a loop that

is not between source and sink place), but contains sound execution sequences

from the initial to the final state (reason why it can be aligned). Both alignments

and token-based replay classify the fitting test trace as not completely replayable

because of the problem with activity “p”. Therefore, if the model can be aligned,

both token-based fitness and alignments result in the same trace fitness scores,

i.e. completely replayable or not-completely replayable.

To conclude, the conversion from Heuristic nets to Petri nets generates (local)

unsoundness which introduces problems for both alignments and token-based

replay. For alignments, the problem is that in most cases there exists no single

sound execution (mostly due to remaining tokens and possible deadlocks) from

the initial state to the final state which makes alignments impossible. For token-

based replay, the conversion with lots of invisible transitions makes the replay,

with local heuristics, choose the wrong path or results in remaining tokens. A

solution is to avoid the conversion to Petri nets by defining and implementing a

replay technique on Heuristics nets directly (or causal nets [101] which are a

new and improved representation language for Heuristics mining).

We believe that not addressing the noise, parameter and conversion aspects

do not invalidate the contributions of the new procedure. While it is possible

to accommodate them in the procedure, the current experiments illustrate

that our procedure already properly addresses the requirements stated in the

introduction of this chapter, which is further explained in the next subsection.

4.3.6 Requirements

The principles of Design Science research state that the evaluation should assess

whether the developed artefact meets its requirements. The new procedure ful-

170

4.3. DEMONSTRATION AND EVALUATION

Te
st

tr
ac

e
a

m
c

aa
u

x
k

j
v

p
h

y
b

i
n

s

R
ep

la
ya

bl
e

a
m

aa
u

x
k

j
v

p
h

y
b

n

N
on

-R
ep

la
ya

bl
e

c
i

s

F
ig

ur
e

4.
13

:H
eu

ri
st

ic
s

ne
t

D
is

co
ve

re
d

by
th

e
H

eu
ri

st
ic

s
M

in
er

w
it

h
R

ep
la

y
R

es
ul

t

171

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

Test
trace

a
m

c
aa

u
x

k
j

v
p

h
y

b
i

n
s

R
eplayable

a
m

c
aa

u
x

k
j

v
p

h
y

b
i

n

N
on-R

eplayable
s*

*T
race

is
not

com
pletely

replayable
due

to
rem

aining
tokens

in
places:

p
i4 ,p

i7 ,p
i10 ,p

i14 ,p
i25

F
igure

4.14:C
onverted

M
odelw

ithout
A

lignm
ents

D
iscovered

by
the

H
euristics

M
iner

w
ith

R
eplay

R
esult

172

4.3. DEMONSTRATION AND EVALUATION

Te
st

tr
ac

e
a

i
h

d
l

j
c

k
f

o
p

R
ep

la
ya

bl
e

a
i

h
d

l
j

c
k

f
o

N
on

-R
ep

la
ya

bl
e

p*

*A
lig

nm
en

ts
:P

is
a

lo
g

m
ov

e.
To

ke
n-

ba
se

d
fit

ne
ss

:a
m

is
si

ng
to

ke
n

an
d

re
m

ai
ni

ng
to

ke
n

ne
ed

ed
to

re
pl

ay
P.

T
he

re
fo

re
,t

he
tr

ac
e

is
al

w
ay

s
cl

as
si

fie
d

as
no

t
co

m
pl

et
el

y
re

pl
ay

ab
le

.

F
ig

ur
e

4.
15

:C
on

ve
rt

ed
M

od
el

w
it

h
A

lig
nm

en
ts

D
is

co
ve

re
d

by
th

e
H

eu
ri

st
ic

s
M

in
er

w
it

h
R

ep
la

y
R

es
ul

t

173

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

fills the requirements stated in the introduction of this chapter: measure quality

independent of modelling notation, generalize results to a model population,

estimate the quality of discovery algorithm to rediscover the underlying process,

and enable automated and shareable experiments.

Firstly, the new evaluation procedure is modelling notation independent

by design. This is due to the fact that the classification approach for quality

measurement only requires formal replay semantics of any used modelling

notation to decide whether a given trace is completely replayable or not. As a

result, the implementation requires a conformance checker for any modelling

notation used by the discovery algorithms. The RapidProm implementation

used for the experiments always translates the discovered models to Petri nets

because the available conformance checker requires it. To illustrate, in the

experiments we translated the dependency graphs discovered by the Heuristics

Miner [128] and the Process trees discovered by the Inductive Miner [67] to

trace equivalent Petri nets. As such the current implementation is not notation

independent, however, the procedure is modelling notation independent.

Secondly, the experiments have illustrated that the new procedure allows to

specify model populations from which random samples of models and logs can

be drawn. The size of these random samples can be set to guarantee a certain

statistical power. As a result, we can generalize the experiment findings to the

defined model populations taking into account the size of the event logs, the used

noise operators (see Section 4.2), and the parameter settings of the discovery

algorithms.

Thirdly, there is a clear correlation between the precision and recall that we

employ and the typical process-mining log measures of model quality. However,

the process-mining measures are designed considering that the reference model

(real model) is not known and that one only observes the positive cases, namely

the traces that are part of the underlying process. The negative cases, i.e. the

executions/traces that do not fit the underlying process, are not known because

they would require to know the reference model. Therefore, the process-mining

measures of model quality try to artificially generate the negative cases based on

estimation (see, in this respect, also [118]) and, hence, the measure results may

be inaccurate estimates of the discovery algorithm’s quality to rediscover the

174

4.4. CONCLUSION

underlying process. Since we know the reference process model, we can generate

both positive and negative traces and label them correctly. This leads to metric

results that are certain and, hence, accurate estimations of the algorithm’s

quality to rediscover the underlying process.

Finally, the scientific workflow implementation of the new evaluation proce-

dure using RapidProM supports the automation of process discovery evaluation

experiments. Additionally, the scientific workflows can be easily shared with

other researchers such that they can reproduce the experiment results or extend

the workflow.

4.4 Conclusion

This chapter presented a new evaluation procedure to overcome existing limita-

tions in process discovery evaluation. The new procedure’s quality measurement

is independent from the discovered model’s modeling notation by adopting a

classification approach based on a reference model. It starts by defining a pop-

ulation of process models using different behavioral characteristics: workflow

patterns and log characteristics. From this population a set of models and event

logs is randomly sampled. Using a 10-fold cross-validation approach, the event

logs are split into training and test logs. Then the procedure adds noise to half

of the test traces to generate non-fitting traces. The discovery algorithm learns

a model based on the training log and classifies the test traces as fitting or

non-fitting. The procedure then combines the classification results in a confusion

matrix together with the metrics recall, precision and F1 score. These metrics

are the input for the final statistical tests that are used to determine whether

significant differences between algorithms exist or whether certain model or log

characteristics have a significant effect on algorithm’s quality to rediscover the

underlying process.

The procedure is designed as a scientific workflow. The workflow is then

implemented in the RapidMiner tool using the RapidProM extension such that

the evaluation experiments can be automated, shared between researchers

and extended to include new discovery techniques. The proposed procedure

allows researchers to benchmark discovery algorithms as well as to perform

175

CHAPTER 4. EVALUATION PROCEDURE FOR DISCOVERY ALGORITHMS

a sensitivity analysis to evaluate whether certain model or log characteristics

have a significant effect on the quality of the discovered models.

The demonstration and evaluation assessed the new evaluation procedure

by conducting an extensive experiment involving four process discovery algo-

rithms, five control-flow patterns and two levels of infrequent behavior. The

experiment has shown that the new procedure supports both the benchmarking

and sensitivity objectives. Furthermore, the evaluation has shown that the

new procedure meets all the requirements to overcome important limitations of

current evaluation approaches.

Finally, future research opportunities were identified. The first opportunity

relates to adding noise to the training logs to assess its impact on algorithm’s

quality to rediscover the underlying process. Secondly, we could explore more

noise operations to punish other imprecisions in the discovered models such

as those involving non-detection of long-term dependencies. Additionally, noise

insertion guided by the original model could lead to non-fitting traces that are

more difficult for discovery algorithms to classify correctly. Another opportunity

is to extend the binary trace-level conformance checker to a more fine-grained

multi-class event-level conformance checker. Also future research could look into

directly comparing the similarity between the original model and the discovered

model to understand which constructs are effectively rediscovered. Furthermore,

the evaluation procedure could be extended to include discovery algorithm pa-

rameter optimization as this could impact the quality of the discovered models.

Finally, the RapidProM implementation should be extended with more discov-

ery algorithms using other modelling notations such as BPMN to allow for

evaluations that cover all state-of-the-art discovery techniques.

176

C
H

A
P

T
E

R

5
AN EVALUATION PROCEDURE FOR DECISION MINING

ALGORITHMS

During the last decade the amount of decision mining algorithms has

grown. The increased number of techniques raises the need of an evalu-

ation procedure. However, no standard empirical evaluation procedure

has been developed. The lack of such a standard procedure is a result of the

following remaining challenges related to the evaluation of decision mining

techniques (identified in Section 2.2.3):

1. There is a lack of a data set selection method. Only a few real-life and

manually created artificial event logs have been used to evaluate decision

mining techniques which has limited the generalizability of the evaluation

results. Firstly, the population from which these real-life event logs come

is unknown, and therefore, we do not know the type of process behavior

these logs contain. Routing decisions that depend on case attributes may

be fully-deterministic or non-deterministic. The influence of such char-

acteristics must be acknowledged as they may affect the quality of the

decision miner’s output. Secondly, the manual creation of artificial models

and logs resulted in non-random inclusion of process characteristics in

177

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

the generated processes. The non-randomness, together with the limited

number of logs, impedes the statistical generalizability of the evaluation

results.

2. The quality measurement of the decision miner’s ability to rediscover the

routing decision rules of the underlying process is typically quantified by

comparing the event log with the discovered routing decision rules. Such

log measures make assumptions on the completeness and the noise of/in

the log and therefore may bias the calculated quality score.

This chapter introduces an empirical evaluation procedure for decision

mining to overcome the above described challenges by:

1. Incorporating the GED methodology and “DataExtend” implementation

(introduced in Chapter 3) as a method for data set selection tailored

towards the empirical evaluation of decision mining techniques. The GED

methodology starts from a population of processes with varying behavioral

characteristics from which a random sample of process models and event

logs with routing decision rules based on case attributes can be drawn.

Such a random sample enables the generalization of the decision mining

evaluation results to the known process population;

2. Using the knowledge of the reference model to get an unbiased estimate

of the decision miner’s quality to rediscover the routing decision logic of

the underlying process.

The proposed procedure is an extension of the process discovery evalua-

tion procedure presented in Chapter 4 and it meets the requirements defined

in Section 2.3.3. The material in this chapter is based on the work published

in [57]. This chapter starts by describing the extension to the discovery eval-

uation procedure to allow for decision mining evaluation. This is followed by

an experiment of two decision mining techniques to demonstrate and evaluate

the new procedure. Finally, the conclusion sums up the contributions and future

research opportunities.

178

5.1. A DECISION MINING EVALUATION PROCEDURE

5.1 A decision mining evaluation procedure

The proposed procedure focuses on evaluating the quality of decision mining

algorithms to rediscover the routing decision logic of the underlying process

when given a part of all its possible behavior. The procedure is an extension

of the evaluation procedure for process discovery algorithms as presented in

Chapter 4. In the discovery procedure the focus was on the control-flow per-

spective of the process, while the extension combines the data and control-flow

perspectives. More specifically, the routing decisions of the process can depend

on case attribute values. To incorporate these changes, several changes to the

design and building blocks of the original workflow for discovery evaluation are

needed and discussed in more detail below.

5.1.1 Design of the decision mining procedure

Similar to the discovery procedure, the decision mining procedure enables

the following evaluation objectives: benchmarking different decision mining

algorithms, and performing a sensitivity analysis to study the effect of model

and log characteristics on algorithm performance. Figure 5.1 shows the decision

mining evaluation procedure as a workflow. The decision mining workflow

starts from a predefined evaluation objective and then carries out the data

generation, decision mining, quality measurement and statistical analysis steps.

The decision mining procedure uses a classification approach as this benefits

the use of reference model knowledge in the quality measurement step which is

one of the two requirements stated in the introduction of this chapter.

In a first step, based on the evaluation objective, the researcher determines

the model population that is used during the data generation step. The model

population specifies the control-flow and data-flow relating to the routing deci-

sions of the generated processes.

Then, for each decision mining technique we draw a random sample of

control-flow models from the population. Then, for each “original model” in the

random sample, the decision mining procedure adds random case attribute de-

pendencies (“rules”) to the routing decisions. Subsequently, the model enhanced

with these “rules” is simulated in an event log, i.e. a random sample of cases

179

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

for
each

m
iner

for
each

m
odel

for
each

log

M
odel

population
definition

N
um

ber
of

traces

A
lgorithm

param
eters

D
ata

noise
param

.

G
enerate
m

odels

G
enerate

rules
+

log

S
plit

log
D

iscover
rules

C
reate

non-fitting
cases

D
ata

conform
.

check

D
ata

conform
.

check

C
onfusion
m

atrix

C
alculate
m

etrics

A
verage

results

S
tatistical
analysis

originalm
odel

log

train.
log

fitting
test

log

discovered
rules

nonfitting
test

log

F
P

T
N

T
P

F
N

rules

F
igure

5.1:O
verview

ofthe
decision

m
ining

evaluation
procedure

180

5.1. A DECISION MINING EVALUATION PROCEDURE

from all possible cases allowed by the model and “rules”. The “rules” on top

of the routing decisions of the “original model” establish the “ground truth”.

The procedure assesses decision mining techniques that aim to rediscover the

“rules” given a control-flow model and an event log with case attributes. To test

the rediscovery of “rules”, the procedure provides the “original model” and an

event log containing all the attributes contained in the “rules”. Therefore, the

evaluation procedure does not test the decision mining techniques’ robustness

to deal with noise or incompleteness, i.e. incorrect control-flow models or with

event logs with incorrect/incomplete case information. Such robustness tests are

a possible future extension to the proposed evaluation procedure.

The following steps apply the 10-fold cross validation approach for obtaining

precise estimates of the decision miner’s quality to rediscover the “rules”. Each

generated log is split (“split log”) into 10 folds of equal sizes, where 9 folds

together form the training log and the other fold constitutes the test log. The

training log together with the “original model”, that contains only the control-

flow behavior, are the inputs of the decision mining algorithm (“discover rules”).

The algorithm aims to discover the routing decisions’ dependencies based on case

attributes in the training log. In a next step, the procedure uses a classification

approach to evaluate the discovered rules. This requires a test log with both

positive and negative examples.

Up till now, the test log only contains positive examples. Therefore, half

of the cases in the test log are modified by task “create non-fitting cases” to

make them non-replayable by the “original model” with “rules”. The cases are

non-fitting with regard to the data-flow only and not the control-flow as the

procedure evaluates the rediscovery of “rules” as indicated above. Then, the

“data conformance checking” tasks replay both the fitting and non-fitting test

cases on top of the “original model” with the “discovered rules” to classify the

test cases. The classification results are combined in a confusion matrix which is

used to calculate the recall, precision and F1 scores. These metrics quantify the

quality of the decision mining technique. More specifically, recall measures how

much fitting behavior in the test log is classified as fitting by the “original model”

with “discovered rules”, and precision measures how much behavior classified as

fitting by the “original model” with “discovered rules” is actual fitting behavior

181

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

in the test log. Decision mining techniques aim to discover rules that ensure

good recall such that they allow for the behavior in the underlying process, and

at the same time guarantee good precision, i.e. balance between overfitting and

underfitting the behavior in the training log. The F1 score combines the recall

and precision metrics into one value that simplifies the comparison of evaluation

results.

After repeating the decision mining and quality measurement steps for the

10 folds, the “average results” task takes the mean of the recall, precision and

F1 scores over the 10 folds. As such the decision mining procedure aims to

get an unbiased estimate of the true quality of a decision mining technique

to rediscover the “rules”. Finally, the statistical analysis uses the evaluation

results to test the hypotheses stated in the evaluation objective(s).

The design of this decision mining procedure, similar to the discovery proce-

dure (see Section 4.1.1), features that no two algorithms are applied on the same

event log. Moreover, each log is drawn from a different combination of “rules”

and process model which are randomly drawn from a model population. There-

fore, the “discovered rules” and quality metrics are independent observations

which enables a less complex statistical analysis than when observations are

dependent. Furthermore, the independence setup fits the procedure’s focus on

evaluation rather than prediction of the best algorithm given some model or log

characteristics. The latter typically requires dependent observations.

The above setup of evaluating the decision mining algorithms using a classifi-

cation approach seems quite complex given the alternative of directly comparing

the original “rules” with the “discovered rules”. The following example illustrates

that the alternative approach also presents a challenge. Consider the original

model in Figure 5.2 where the choice between activities “d” and “h” is denoted

as routing decision 1 and the choice between activities “c”, “b”, “e” and “f” is

denoted as routing decision 2. The target determinism level of the model with

case attribute dependencies (“rules”) is set to 0.5.

The original “rules” for routing decision 1 are as shown in Table 5.1, and the

original “rules” for routing decision 2 are as shown in Table 5.2.

The original model with “rules” is then simulated into an event log with

1000 cases. The resulting event log and original model are used as input of the

182

5.1. A DECISION MINING EVALUATION PROCEDURE

Figure 5.2: An example original process model.

inputs output
Rule number Z1 Z2 Z3 Routing decision 1

1 true true true h
2 true true false d
3 true true false h
4 true false true h
5 true false false d
6 true false false h
7 false true true d
8 false true true h
9 false true false h

10 false false true d
11 false false true h
12 false false false d
13 false false false h

Table 5.1: Decision table for first routing decision

input output
Rule number Routing decision 1 Routing decision 2

1 d c
2 d b
3 h c
4 h e
5 h f

Table 5.2: Decision table for second routing decision

183

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

inputs output
Rule number Z1 Z2 Z3 Routing dec 1 Routing dec 2

1 - - - d b
2 - - - d c
3 false - false h c
4 true false false h c
5 - - false h e
6 - true true h e
7 true true false h f
8 - false true h f

Table 5.3: Discovered decision table for second routing decision

overlapping rules decision mining technique [74]. The overlapping technique

cannot discover rules for routing decision 1, instead it uses all available case

attributes as inputs of routing decision 2, shown in Table 5.3.

The discovered rules of routing decision 2 in Table 5.3 cannot be compared

directly to the original rules related to routing decision 2 in Table 5.2 as it has

a different set of input case attributes: routing decision 1, Z1, Z2, Z3 versus

only routing decision 1. To overcome this issue, one has to combine the rules in

Table 5.1 and Table 5.2 to compare them with the discovered rules in Table 5.3.

The results are combined per routing decision output:

• Discovered rule 1 in Table 5.3 is the same as the original rule 2 in Table 5.2:

if routing decision 1 executed activity “d”, then activity “b” should be

chosen in routing decision 2.

• Discovered rule 2 in Table 5.3 corresponds to the original rule 1 in Ta-

ble 5.2, i.e. if routing decision 1 executed activity “d”, then activity “c”

should be chosen in routing decision 2. Discovered rules 3 and 4 of Ta-

ble 5.3 are not similar to original rule 3 in Table 5.2. This conclusion

relies on checking if discovered rules 3 and 4 cover all the original rules in

Table 5.1 that have activity “h” as output, i.e. rules 1, 3, 4, 6, 8, 9, 11 and

13. Original rules 1, 3, 4, 8 and 9 are not covered, thus the decision miner

cannot completely rediscover the original rule 3 in Table 5.2.

184

5.1. A DECISION MINING EVALUATION PROCEDURE

• Similar to the above observation, the discovered rules 5 and 6 in Table 5.3

do not cover the original rule 4 in Table 5.2 by checking all the original

rules in Table 5.1 that have activity “h” as output.

• Similar to the above observation, the discovered rules 7 and 8 in Table 5.3

do not cover the original rule 5 in Table 5.2 by checking all the original

rules in Table 5.1 that have activity “h” as output.

To conclude, directly comparing the discovered rules with the original rules

often requires a complex combination of rules in different tables. Therefore,

the current setup of replay that is an extension of the discovery evaluation

procedure of Chapter 4 is chosen instead.

The following subsection describes the procedure tasks that differ from the

discovery evaluation procedure.

5.1.2 Adapted building blocks of the decision mining
procedure

This section focuses on building blocks that differ from the blocks described in

Section 4.1.2 related to the discovery procedure.

5.1.2.1 Generate rules and log

For each random control-flow model drawn in the “generate models” block, this

block will first enhance the routing decisions in the model randomly with case

attribute information to make routing decision dependencies (“rules”). In the

second step the “rules” with the model together are simulated in an event log

that contains a random set of all possible cases allowed by the model with

“rules”. The user influences the enhancement step by specifying the target

determinism (part of the model population, see Section 3.4.2.1) of the routing

decisions that depend on case attribute values. As such one can control whether

routing decisions are fully-deterministic, i.e. when target determinism is equal

to 1, or not when 0 < target determinism < 1. A fully deterministic routing

decision allows for exactly one output branch given the case attribute values.

A non-deterministic decision, on the other hand, allows for one or more output

185

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

Figure 5.3: Petri net representing make-to-order example process. Activity
names are abbreviated: “issue”: issue order, “new”: prepare new materials, “mix”:
prepare mixed materials, “produce”: produce order, “norm.”: inspect normally,
“thor.”: inspect thoroughly, “package”: package products, “deliver”: deliver prod-
ucts, “cancel”: cancel delivery.

branches given the case attribute values. Additionally, the user specifies the

number of cases to generate from the model enhanced with “rules”.

5.1.2.2 Create non-fitting cases

The classification approach used for evaluating the quality of decision mining

algorithms requires test logs with positive and negative examples. The test log

that was created by the “split log” task only contains cases that fit the “original

model” with “rules” (positive examples). The “create non-fitting cases” modifies

half of the cases in the test log to create non-fitting cases (negative examples).

With these non-fitting cases the procedure aims to punish “discovered rules”

that are overly general, i.e. they allow to execute too many outgoing branches of

a routing decision. An extreme example of this is when the “discovered rules”

allow to execute any outgoing branch of a routing decision which in reality is

restricted by case attribute values. To illustrate this, consider the make-to-order

process in Figure 5.3 together with the “rules” for the last routing decision

involving the choice between activities “deliver” and “cancel” in Table 5.4. If

a decision miner is given the two cases in Table 5.5 and cannot discover the

original “rules” of the last routing decision, i.e. for any case attribute value the

either activity “deliver” or “cancel” can be executed, then the decision miner

overgeneralizes the behavior in the log.

Given the “original model”, “rules”, and a test case, the case attributes of

that case are changed until the case is not replayable by the “original model”

and “rules”. Once the case is non-fitting, it is not modified anymore. For example,

186

5.1. A DECISION MINING EVALUATION PROCEDURE

input output
Rule number Acceptable Quality? Routing decision 3

1 true deliver
2 false cancel

Table 5.4: Decision table for third routing decision

Case Event Activity Routing Acceptable Premium?ID ID Decision 1 Quality?

1 1 issue true
1 2 prepare mix prepare mix true
1 3 produce prepare mix true
1 4 inspect thoroughly prepare mix true true
1 5 package prepare mix true true
1 6 deliver prepare mix true true
2 7 issue false
2 8 prepare new prepare new false
2 9 produce prepare new false
2 10 package prepare new false false
2 11 cancel prepare new false false

Table 5.5: Example cases of the make-to-order process.

if the value of case attribute “acceptable quality” is changed to “true” for the

second case, then it no longer fits the rules in Table 5.4, and therefore, it becomes

a non-fitting case. In that way, the noise generation punishes the overgeneral

decision mining output that allows for activity “cancel” no matter what the case

attribute values are.

Notice that this task does not modify the trace of a case as done by the

“create non-fitting traces” of the discovery procedure (see Section 4.1.2.4). Surely

the aim of the decision mining procedure lies on evaluating the “discovered

rules” given the routing decisions in the “original model”. Modifying the trace of

a case by swapping, duplicating or deleting activities would always be classified

correctly as non-fitting by the given “original model” and would not provide any

information on the quality of the “discovered rules”.

187

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

5.1.2.3 Discover rules

This block applies a decision mining algorithm on the original control-flow model

together with the “training log”. The output of the decision miner is a model

enhanced with “discovered rules” that explain the routing decision logic. A user

can specify the parameter settings of each algorithm employed.

5.1.2.4 Data conformance checking

The data conformance checker will replay the cases of the fitting and non-

fitting test logs on the “original model” with the “discovered rules”. It will

consider both the control-flow and data perspectives of the case in contrast to the

conformance checker used in the discovery procedure in Section 4.1.2.6. Notice

that, although the non-fitting cases are only with regard to the data perspective,

the conformance checker requires both perspectives to actually replay the case

on the model enhanced with rules. The data-aware replay will classify a case

as fitting if it can be completely replayed by the “original model” with the

“discovered rules”, otherwise a case is classified as non-fitting. Subsequently,

identical to the discovery procedure, the decision mining procedure combines

the classification results in a confusion matrix to compute the recall, precision,

and F1 metrics.

The next section will discuss a demonstration and evaluation of the proposed

procedure to evaluate decision mining algorithms.

5.2 Demonstration and evaluation

The demonstration validates the proposed evaluation procedure through an

experiment that empirically analyzes two decision mining algorithms: the ap-

proach introduced by de Leoni et al. [28] that discovers mutually-exclusive

(fully-deterministic) routing decision rules based on case attributes in the input

event log, and an extension to that approach introduced by Mannhardt et al. [74]

that allows to discover overlapping routing decision rules (i.e. non-deterministic

routing decisions). The goal of the new decision mining evaluation procedure is

to analyze and compare the quality of decision mining algorithms to rediscover

188

5.2. DEMONSTRATION AND EVALUATION

the routing decision rules of the underlying process based on observed execu-

tions (event logs). The routing decision rules to be rediscovered can be part of

processes that come from different populations by varying the probability of oc-

currences of control-flow process characteristics such as exclusive choices, loops

and infrequent paths, and, additionally, by varying data-flow process character-

istics, e.g. the determinism of routing decisions influenced by case attributes.

The experiment tests decision mining algorithms on event logs coming from

different model populations by varying the determinism of routing decisions

and enabling or disabling the presence of infrequent paths. In this way, we can

study the impact of infrequent behavior and of different determinism levels on

the quality of decision mining techniques.

The evaluation argues why the decision mining procedure alleviates the

remaining challenges for decision mining evaluation. It does this by discussing

how the proposed evaluation procedure fulfills the requirements in the intro-

duction of this chapter: enable generalization of results to the model population

and estimate the miner’s ability to rediscover the routing decision logic of the

underlying process. As such, the goal of the evaluation experiment is to vali-

date the proposed procedure and does not serve as a benchmark of all current

state-of-the-art decision miners.

The remainder of this section first describes the setup of the experiment

followed by a statistical analysis of the experiment results. Then, a discussion

explains the experiment results, its implications, and possible future improve-

ments to the decision mining procedure. Subsequently, limitations of the exe-

cuted experiment and the threats to validity of the results are discussed. Finally,

the section ends with an evaluation of the requirements that the proposed

procedure aims to fulfill.

5.2.1 Experiment setup

To automate the experiment, the decision mining evaluation procedure was

operationalized in the ProM framework [120]. The “DataExtend” method (see

Section 3.4) is used for generating random process trees from a model population

and extending the exclusive choice operators with case attributes which are

189

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

then simulated into event logs. The tested decision mining algorithms, from now

on referred to as mutually-exclusive rules [28] and overlapping rules [74], are

available in ProM and return Data Petri nets (see Section 2.1.2).

5.2.1.1 Applied decision mining algorithms and conformance
checking

The mutually-exclusive rules technique [28] requires a control-flow model (Petri

net) and an event log as inputs to learn the decision logic of the routing decisions

in the model. A crucial assumption is that the event log contains case attributes

which influence the routing decisions. The decision mining technique first aligns

the event log with the control-flow model such that the trace of every case

in the log has a corresponding path in the model. As such the alignments

mitigate the effects of non-conforming process models and also invisible activities

in the model, i.e. activities that have no corresponding event in the log, but

are often routing decision outcomes (skipping activities). Then, the technique

aims to rediscover the decision rules that explain the routing decisions in the

model using the case attributes in the log. The rule discovery is turned into

a classification problem: the routing decision outcomes are the target classes

and the case attribute values before the routing decision was reached (based

on alignments) are used as features. The decision mining technique learns a

decision tree using the C4.5 algorithm [85]. In those decision trees the leaves

are the routing decision outcomes such that there can be multiple leaves for one

outcome. Finally, the decision mining technique builds a decision rule for each

leaf by taking the conjunction (and) of the conditions from the corresponding

leaf nodes to the root node in the learned decision tree. If more than one leaf

corresponds to one routing decision outcome, the found rules are combined

in disjunction (or). This results in mutually-exclusive decision rules for each

routing decision outcome.

The overlapping rules technique [74] extends the mutually-exclusive rules

technique to discover overlapping decision rules, i.e. non-deterministic routing

decisions. The extension deliberately trades the precision of the discovered

rules for fitness such that less cases in the given event log are misclassified, i.e.

190

5.2. DEMONSTRATION AND EVALUATION

inputs output
Rule Costs Check Routing decision

1 < 500 - a
2 ≥ 500 - b
3 ≥ 500 true a

Table 5.6: Example of overlapping rules discovery. The hyphen indicates that
the rule is indifferent with regards to the value of that case attribute.

violate the discovered rules. The overlapping rules technique starts by building

a decision tree for each routing decision similar to the mutually-exclusive rules

technique. Then, it extracts the cases in which a routing decision is wrongly

classified by the learned decision tree. For the wrongly classified instances, it

learns a new decision tree that yields new rules that are used in disjunction (or)

of the initial rules to get overlapping rules. Consider a routing decision with two

outcomes “a” and “b” with attributes “costs” and “check” that influence it (see

Table 5.6): if costs are lower than 500, “a” happens, if costs are higher than 500,

a possible overlap between “a” and “b” exists depending on whether the check

equals “true”. The mutually-exclusive rules technique can only rediscover the

first two rules, while the overlapping rules technique allows to rediscover the

last rule.

In the experiment, both decision mining algorithms are applied with their

standard configurations. To do conformance checking on Data Petri nets, we use

the multi-perspective alignment approach of de Leoni et al. [27].1

5.2.1.2 Artificial data generation setup

As mentioned above, the experiment analyzes the impact of infrequent behavior

and of different determinism levels on the quality of decision mining techniques

1We used the non-balanced alignment approach [27] over the balanced alignment ap-
proach [73] to compute the alignments as it is much faster in computation time. The non-balanced
approach computes the alignment in two stages: first the control-flow and then the data-flow. This
does not guarantee a balance between the two perspectives when deviations can be explained in
both the control-flow and data-flow perspectives. However, in our experiments, the only deviations
are with regard to the data-flow and therefore it is safe to use the non-balanced approach.

191

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

Decision mining Infrequent Determinism
Technique Paths Level

Mutually-exclusive rules [28] False 0.5, 0.75
Overlapping rules [74] True 1

Table 5.7: Summary of the possible values of the three independent variables
included in the experimental setup: 12 (2×2×3) value combinations. The deter-
minism level indicates whether choices in the process tree that depend on case
attributes are fully-deterministic (value of 1) or non-deterministic (value below
1).

to rediscover the routing decision logic of the underlying process. Therefore,

the experimental design includes all the combinations of three independent

variables: decision mining technique used, presence or absence of infrequent

paths and the level of determinism. The three variables and their levels are

summarized in Table 5.7. In total, the 12 possible combinations are included in

the experiment: 2 decision mining techniques × 2 levels of infrequent behavior

× 3 levels of determinism.

The presence/absence of infrequent paths and the determinism level are

varied as these are part of the independent variables. The other process charac-

teristics are fixed for each model population. The probability of the sequence,

exclusive choice and parallelism patterns is fixed at values 46%, 35% and 19%,

respectively. These probabilities are based on the analysis of a large collection of

models as reported by Kunze et al. [65]. “DataExtend” only introduces routing

decision rules based on case attributes to exclusive choice operators in the tree.

Therefore, we leave out operators that lead to routing decisions for which no

rules are introduced, i.e. the probabilities of “loop” and “or” patterns are set to

zero. The size of the models within each model population varies between 6 and

10 activities, with a mode of 8 activities. This makes the six model population

definitions as follows: MPdata as shown in Table 5.8 where X and Y are assigned

all 6 combinations of values in column two and three in Table 5.7.2

Furthermore, we have specified the case attributes introduced by “DataEx-

2ΠIn = 0 for “False” (absence of infrequent paths) and ΠIn = 1 for “True” (presence of infre-
quent paths).

192

5.2. DEMONSTRATION AND EVALUATION

Parameter Population
MPdata

Number of visible activities (6,8,10)
Sequence (Π→) 0.46
Parallel (Π∧) 0.19
Choice (Π×) 0.35
Loop (Π) 0
Or (Π∨) 0
Silent activities (Πτ) 0
Reoccurring activities (ΠRe) 0
Long-term dependencies (ΠLt) 0

Unfold loops n/a
Max repeat (k) n/a

Infrequent paths (ΠIn) Y

Sample size (number of trees) 129

Logs per model 1
Number of traces (t) [200,1000]
Noise (ΠNoise) 0

Determinism level X
attribute type ∈ {boolean, string, numerical}
intervals ∼ uniform(1,4)
assigned attributes ∼ uniform(0,3)

Table 5.8: Model population parameters for the experiments, where X and Y
are assigned all 6 combinations of values in {0,5.75,1} and {0 (False),1 (True)}
respectively.

193

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

tend” in the following way. Firstly, the introduced case attributes are of three

different types: boolean, string and numerical. Each numerical attribute is dis-

cretized to intervals to make a finite number of decision rules at each routing

decision. The number of intervals i is randomly drawn from a discrete uniform

distribution: #i ∼ uniform(1,4). For example, consider a numerical variable V1

with values between 0 and 1 that has two intervals, i.e. one random cutoff point

x = 0.6829 is chosen which results in the intervals [0,0.6829) and [0.6829,1).

Secondly, we limit the number of case attributes that influence a routing decision

to three. This means that the number of assigned case attributes #c of a routing

decision follows a discrete uniform distribution: #c ∼ uniform(0,3). This means

that each routing decision is assigned zero or more case attributes (see also

Definition 3.6 in Section 3.4.2.1). These settings for the case attributes further

refine the model population that is used during the experiments and as such

to which population we can generalize the results. Notice that the implementa-

tion of “DataExtend” also allows for other values for the uniform distributions

specified for #i and #c.

As specified by the evaluation procedure’s design (see Section 5.1.1), we draw

a random sample of 129 control-flow models for each miner from each of the

six model populations. Then, “DataExtend” randomly extends each model with

routing decision rules. Each model with rules is simulated into an event log

containing between 200 and 1000 cases. As a result, each quality measurement is

an independent observation that allows for a fixed effects ANOVA analysis [122]

to study the effect of decision mining technique, infrequent paths, and different

levels of determinism. The sample size of 129 models results in a statistical

power of 1−β= 0.95 when using a significance level α equal to 0.05.3 The power

indicates that there is a 95% probability to detect a difference between decision

mining techniques when actually a relatively small difference exists. In total,

1548 models, sets of routing decision rules, and logs are generated: 6 populations

× 2 decision miners × 129 models = 1548 models (with one set of routing decision

rules and one log per model).

Finally, we have calculated the completeness of the generated logs with

3The power was computed with the G*Power tool [38].

194

5.2. DEMONSTRATION AND EVALUATION

Figure 5.4: Distribution of completeness of logs wrt. their respective process
models. Completeness is measured as the fraction of traces allowed by the model
that are present in the event log.

regard to all possible paths in the model. The completeness is the proportion

of unique traces in the log to all possible unique traces according to the model

using the technique described in [49]. Fig. 5.4 shows that the majority of the

logs is complete with regard to the behavior in the model. This was caused by

the relatively high number of cases, i.e. between 200 and 1000, compared to the

size of the models in terms of activities: minimum 6 activities, maximum 10

activities and a mode of 8 activities.

5.2.2 Analysis of the results

To study the effects of decision mining techniques, infrequent paths and different

levels of determinism we use a one-way ANOVA analysis if the assumptions of

homogeneity of variances and normality of the dependent variable hold [122].

However, at least one of the assumptions is violated for every dependent variable,

i.e. F1, recall and precision. Therefore, the non-parametric Kruskall-Wallis test

(KW), multiple comparison post hoc test, and Jonckheere test [94] are applied

instead (see Section 4.3.2.1 for a description of these tests).

195

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

Mutually-exclusive rules Overlapping rules

Recall 796.34 752.66
Precision 776.63 772.37
F1 score 789.52 759.48

Table 5.9: Average Ranks per Miner. Each cell indicates the average ranking
for a specific quality dimension (row header) and for a specific miner (column
header). One can compare miners by comparing the average ranks within one
row.

5.2.2.1 The effect of decision mining technique

We aim to learn the effect of a decision mining technique on each of the de-

pendent variables: recall, precision and F1 score. The effects of the other inde-

pendent variables, i.e. infrequent paths level and determinism, are not studied

here.

We apply the KW method, to test whether the average rank differs between

the two decision mining techniques (i.e. samples). This required us to rank all

the 1548 averages taken over the 10-fold cross validation for recall, precision

and F1 values ignoring sample membership (i.e. decision mining technique).

The highest value for recall, precision and F1 gets rank 1 (lowest rank), while

the lowest absolute value gets rank 1548 (highest rank). Then we computed the

average ranking per miner, i.e. the average position of a discovered model with

rules by that miner for that quality metric on a scale from 1 to 1548. A higher

average ranking means worse performance. The ranking summary is shown in

Table 5.9.

The rankings show relatively small differences in average rankings between

the two miners in all quality dimensions. The order suggested in all dimensions

is: overlapping > mutually-exclusive, which means that the overlapping tech-

nique discovers the best routing decision rules in terms of recall, precision, and

F1 scores. Based on the KW test, only the difference between miners in terms

of recall is statistically significant at a 5% significance level. See Table B.7 in

Appendix B for a summary of the statistical test results for the recall, precision,

and F1 scores.

196

5.2. DEMONSTRATION AND EVALUATION

5.2.2.2 The effect of infrequent paths

The analysis tests whether the presence/absence of infrequent paths has an

impact on the average ranking of the two decision mining techniques for recall,

precision and F1 scores. The effect of determinism level is not studied here.

Before the actual analysis, we want to make an important caveat on the

effect of the infrequent paths parameter relating to the interplay between

the control-flow and data-flow perspective during the model, rules, and log

generation by “DataExtend”. Infrequent paths are denoted with an imbalance in

execution probabilities of the output-branches of each exclusive choice construct

in the model. The effect of these execution probabilities depends on whether the

exclusive choices have routing decision rules based on case attributes attached.

In case there are no rules attached, the imbalance of the execution probabilities

always results in infrequent traces in the log. In the other case, when exclusive

choices have routing decision rules, the execution probabilities only matter

when the routing decisions are non-deterministic. Non-deterministic routing

decisions allow for more than one outgoing branch based on the case attribute

values. In that case, the execution probabilities are taken into account when

deciding which branch is activated. Nevertheless, the case attribute values are

drawn from a (discrete) uniform distribution. As a result, the imbalance between

traces might be mitigated. As an example consider the process tree and routing

decision rules in Figure 5.5. There exists an imbalance in execution probabilities

with a 90% probability to execute activity “a”. However, on average only 45%

of the process executions will contain “a” as there is a 50% probability that

case attribute “X” equals “true”. We acknowledge that stepping away from the

uniform distributions could introduce proper infrequent paths. Yet, this presents

a new challenge when case attributes are influencing more than one routing

decision. The current experiment uses uniform distributions for case attribute

values, but future experiments should consider other distributions as well to

test infrequent paths.

In the analysis, we first split the sample into two subsets: experiments with

infrequent behavior and experiments without infrequent behavior. This division

is called blocking (see Section 2.3.2.2) which is done to isolate the variation in

197

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

(a) (b)

input output
Rule X Routing decision

1 true a
2 true b
3 false c

Figure 5.5: Infrequent paths with case attribute dependencies: (a) shows the
process tree with infrequent paths, (b) shows the decision table with routing
decision rules.

Mutually-exclusive rules Overlapping rules

Recall 395.80 379.20
Precision 395.42 379.58
F1 score 400.14 374.86

Table 5.10: Average ranks per miner with infrequent behavior

Mutually-exclusive rules Overlapping rules

Recall 400.99 374.01
Precision 381.63 393.37
F1 score 389.58 385.43

Table 5.11: Average ranks per miner without infrequent behavior

recall, precision and F1 scores attributable to the absence/presence of infrequent

paths. Secondly, the KW test is applied to each subset.

Tables 5.10 and 5.11 contain the average rankings per decision mining

technique grouped by metric and experiments with and without infrequent

behavior respectively. The average rankings denote the average position of a

discovered model with rules by that miner for that quality metric on a scale from

1 to 774. A higher average ranking means worse performance. These rankings

indicate that in all cases the overlapping technique outperforms the mutually-

exclusive technique except for precision when there is no infrequent behavior.

198

5.2. DEMONSTRATION AND EVALUATION

Based on the KW test we can conclude that none of the differences in rankings

between the two miners is statistically significant (see Tables B.8 and B.9 in

Appendix B). As such, there is no statistical evidence that the presence/absence

of infrequent paths influences the two decision mining techniques. Notice that

this observation holds given that infrequent paths are not guaranteed in all

situations as described above.

5.2.2.3 The effect of determinism level

The analysis investigates how the quality of each decision mining technique (in

terms of precision, recall and F1 score) is influenced by the determinism level

of routing decisions: a value of 1 results in fully-determistic routing decisions,

while values below 1 result in non-deterministic routing decisions. The effect of

infrequent behavior is not studied here.

Figures 5.6, 5.7, and 5.8 illustrate the average recall, precision, and F1 scores

for all the decision mining techniques over different determinism levels. The

bars indicate the 95% confidence interval for the averages. The graphs indicate a

(small) positive trend, i.e. increasing the determinism level has a positive effect

on recall, precision, and F1 scores, except for the recall scores of the overlapping

technique that remain relatively steady over the different levels. To determine

whether the positive trend is statistically significant, an in-depth analysis is

performed.

First, the sample is divided into subsets grouped by decision mining tech-

nique. As such, the variation in accuracy associated with the decision mining

technique is isolated. Then, similar to the analysis above, the KW test is applied

to compare the average rankings of the discovered routing decision rules.

Table 5.12 contains the average ranks for the mutually-exclusive technique

for all three metrics per determinism level. The average rankings seem to

suggest that as the determinism level increases, the recall, precision, and F1

scores also increase. To test this impression statistically, we have relied on the

KW and Jonckheere tests. Both tests confirm there is a statistically significant

positive trend in the recall and F1 quality dimensions. A pairwise comparison

shows that the differences between fully-deterministic (determinism of 1) and

199

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

Figure 5.6: Recall scores for decision mining techniques for different levels of
determinism.

Figure 5.7: Precision scores for decision mining techniques for different levels of
determinism.

200

5.2. DEMONSTRATION AND EVALUATION

Figure 5.8: F1 scores for decision mining techniques for different levels of deter-
minism.

Determinism level 0.5 0.75 1

Recall 407.11 406.83 348.56
Precision 407.41 391.95 363.13
F1 score 421.37 400.67 340.46

Table 5.12: Average ranks of mutually-exclusive technique per determinism
level.

Determinism level 0.5 0.75 1

Recall 406.72 393.19 362.59
Precision 409.93 378.85 373.73
F1 score 422.43 381.08 358.99

Table 5.13: Average ranks of overlapping technique per determinism level.

201

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

non-deterministic routing decisions (determinism of 0.5 or 0.75) are statistically

significant (see Table B.10 in Appendix B). For the precision dimension, the

differences are not statistically significant.

Table 5.13 contains the average ranks for the overlapping technique for all

three metrics per determinism level. The data suggests relatively small positive

trends in both recall and precision dimensions, and a somewhat larger positive

trend in terms of F1 score. The KW and Jonckheere test reveal no statistically

significant positive trend for recall and precision. The positive trend for F1 score

is statistically significant. However, the pairwise comparisons of determinism

levels only confirms this trend between the largest difference in determinism

levels, i.e. between 0.5 and 1 (see Table B.11 in Appendix B).

5.2.3 Discussion

The graphs and the analysis of the effect of decision mining technique highlight

that the overlapping technique outperforms the mutually-exclusive technique.

However, the differences between these miners reduce when logs contain only

fully-deterministic routing decisions. This result is not surprising given the

fact that the overlapping technique specifically focuses on discovering non-

deterministic routing decision logic as included in the experiments. The largest

differences in quality are with regard to recall scores in case of non-deterministic

routing decisions, i.e. determinism levels equal to 0.5 and 0.75. The increase

in terms of recall did not necessarily involve a tradeoff with lower precision

compared to the mutually-exclusive technique as suggested in [71, 73].

The theoretical explanation in [71, 73] states that the overlapping technique

only discovers different routing decision rules than the mutually-exclusive tech-

nique when a log contains non-deterministic routing decisions. Yet, looking at

the graphs it seems that when logs contain only fully-deterministic routing

decisions, the mutually-exclusive technique offers a small quality advantage

over the overlapping technique. These differences, however, are not statistically

significant and are caused by random differences in the samples used for the

two miners.4 We also checked these differences manually by picking logs for

4Recall that for each miner a separate sample from the same population is drawn.

202

5.2. DEMONSTRATION AND EVALUATION

which the overlapping technique had imperfect quality scores and also applied

the mutually-exclusive technique. Both algorithms yield the same quality scores

when using the same logs with fully-deterministic routing decisions. These

findings indeed confirm the theory in [71, 73].

Finally, there are some extensions to the current experiments which can be

explored in future empirical evaluations. One extension involves the generation

of models that have other types of routing decisions than exclusive choice, such

as “or” and loop. Also, one could add noise to the training log to test whether

decision miners can effectively distinguish between noisy and real behavior when

discovering routing decision rules. Furthermore, one could leave out certain case

attributes that explain the routing decisions in the underlying process to test

whether the decision mining techniques can deal with such incomplete behavior.

A final possible extension relates to investigating the parameter sensitivity of

decision mining algorithms. The tested algorithms can be customized by setting

the values of certain parameters such as “minimum instances” that influences

the level of detail and also the quality of the discovered routing decision rules.

5.2.4 Limitations and threats to validity

A possible limitation or threat to the validity of the results of this experiment

are the missing alignments during quality measurement that occurred in 23%

of all the folds of the cross-validation. A mismatch between the case attributes

generated by the“DataExtend” method and the interior handling of those at-

tributes by the decision mining techniques causes the missing alignments. The

case attributes introduced by “DataExtend” do not change during the execution,

i.e. no event changes the values of a case attribute. The tested decision mining

techniques, however, operate at the event level rather than the case level. First,

these techniques extend a given Petri net with write operations based on the

attributes linked to events in the log. A transition t in a Petri net writes an

attribute v if, according to the log, at least 66%5 of the events related to t contain

a value assignment to attribute v. In a next step, the decision miners discover

the “guards” (routing decision rules) of a Data Petri net that read the previously

5This is the percentage defined in the default decision mining parameter settings.

203

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

Case Event Activity Z1ID ID

1 1 b True
1 2 e True
1 3 f True
1 4 c True
2 5 c False
2 6 d False

Table 5.14: Example cases for missing alignment illustration.

written attributes during replay, i.e. during alignment computation. If a rout-

ing decision appears at the very beginning of the process, then the discovered

“guards” are evaluated containing attributes that have not been written before

by other transitions in the Data Petri net. As a consequence, the computation of

the alignment fails.

To illustrate this, consider the Data Petri net discovered by the overlapping

technique in Figure 5.9 and two example cases in Table 5.14. The Data Petri

net contains the attribute Z1 (yellow hexagon) that is written by every visible

transition in the net. The silent transition (with the double border) and transi-

tion d have guards that contain attribute Z1. For case 1 in Table 5.14 there is a

missing alignment as the “guard” Z1 ==False tries to read attribute Z1 which

is not written before. The second case has an alignment because attribute Z1

is written first by activity c before it is read by the guard of activity d. In our

experiments, we know that the case attributes never change during execution.

Therefore, one could introduce an artificial start transition that writes all the

attributes of a case to prevent missing alignments. However, in reality, the case

attributes can change during execution. This could make the workaround of

adding an artificial transition incorrect as it is not known a priori whether the

attributes are given at the beginning of the case or changed by the first activity.

This illustrates that the tested decision mining algorithms could be improved to

handle case attributes that do not change at the event level.

The effect of the missing alignments on the quality metrics recall, precision,

and F1 is hard to quantify. The is because we only know if an alignment of

204

5.2. DEMONSTRATION AND EVALUATION

F
ig

ur
e

5.
9:

E
xa

m
pl

e
of

di
sc

ov
er

ed
D

at
a

Pe
tr

in
et

w
it

h
m

is
si

ng
al

ig
nm

en
ts

.

205

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

an actual fitting case is missing, an alignment of an actual non-fitting case is

missing, or alignments of both actual fitting and non-fitting cases are missing.

This information does not allow us to derive how many True positives, False

Positives, False Negatives, or True Negatives are actually missing, and hence

how much this affects recall, precision, and F1 scores. To give an example,

consider a test log with 20 cases: 10 fitting and 10 non-fitting cases. Table 5.15

illustrates the effect on recall and precision of missing alignments of non-fitting

cases, missing alignments of fitting cases, and missing alignments of both fitting

and non-fitting cases. In the first situation, 10 alignments were computed for

the fitting cases leading to 10 True Positives and 0 False Negatives which makes

recall= 1. Only 5 alignments were computed for the non-fitting cases, i.e. 5 False

positives and 0 True negatives which makes precision= 2
3 . When there are False

Positives missing, the actual precision score is lower. In the second situation,

only 5 alignments were computed for the fitting cases leading to 5 True Positives

and 0 False Negatives which makes recall= 1. However, if False Negatives are

missing, the actual recall score is lower. Also, the current precision score is

actually higher if True Positives are missing. In the last situation, only 5 and

9 alignments were computed for the fitting and non-fitting cases respectively.

Many possible effects are possible on both recall and precision depending if True

positives, False Negatives, or False Positives are missing.

Another limitation in the current experiment is the introduction of infre-

quent paths that does not guarantee an imbalance in the branches activated

at each routing decision. Business processes are often characterized by excep-

tional paths. Additionally, it is known that imbalanced distributions of classes

(here branches) provide challenges for classification approaches such as deci-

sion trees [52]. Therefore, evaluating decision miners on logs with guaranteed

infrequent paths for routing decisions influenced by case attributes provides an

interesting future research opportunity.

Finally, a possible threat to the validity of the experiment is that it is based

on only two decision mining algorithms. As such, similar to the experiments for

process discovery in the previous chapter, the experiment does not serve as a

benchmark of all state-of-the-art techniques. Also, the proposed procedure is

the first procedure for decision miners, the evaluation done in the experiment is

206

5.2. DEMONSTRATION AND EVALUATION

Missing non-fitting cases

Fitting True Pos.: 10 False Neg.: 0 Total: 10

Non-fitting False Pos.: 5 True Neg.: 0 Total: 5

Recall = 10
10+0 = 1

Precision = 10
10+5 = 2

3 lower if FP are missing

Missing fitting cases

Fitting True Pos.: 5 False Neg.: 0 Total: 5

Non-fitting False Pos.: 5 True Neg.: 5 Total: 10

Recall = 5
5+0 = 1 lower if FN are missing

Precision = 5
5+5 = 0.5 higher if TP are missing

Missing fitting and non-fitting cases

Fitting True Pos.: 3 False Neg.: 2 Total: 5

Non-fitting False Pos.: 3 True Neg.: 6 Total: 9

Recall = 3
3+2 = 0.6

higher if TP are missing
lower if FN are missing

Precision = 3
3+3 = 0.5

higher if TP are missing
lower if FP are missing

Table 5.15: Example missing alignments: missing non-fittin cases, missing fitting
cases, and missing both fitting and non-fitting cases.

also still in the exploration phase. Future research should further empirically

assess the evaluation procedure on more than two decision mining techniques.

Nevertheless, the experiment is sufficient to validate the use of the evaluation

procedure to benchmark decision miners and study the effect of determinism of

routing decisions and infrequent paths on the quality of decision miners.

5.2.5 Requirements

Following the Design Science research principles, the evaluation assesses whether

the developed artefact, i.e. the evaluation procedure for decision mining algo-

207

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

rithms, meets its requirements. The introduction of this chapter stated that

the new evaluation procedure should incorporate the GED methodology and

“DataExtend” implementation as a data set selection method such that it enables

extensive experiments that allow for generalization of results to a population of

processes. Furthermore, the new procedure should use reference model knowl-

edge during quality measurement to reduce the possible bias of the quality

results. The new procedure meets both of these requirements by design and this

was further illustrated during the experiment.

Firstly, the GED methodology and “DataExtend” implementation allow for

the specification of a model population from which a (large) random sample of

process models enhanced with routing decision rules and logs can be drawn.

The experiment results are generalizable to that model population, taking

into account the size of the event logs and the parameter settings used for

the tested decision mining algorithms. We acknowledge that the “DataExtend”

implementation is not complete with regard to extending all possible types

of routing decisions with case attributes. Nevertheless, it provides a first and

necessary step in the empirical evaluation of decision mining techniques.

Secondly, the reference model with routing decision rules is used during

quality measurement. As such we can generate both fitting and non-fitting cases

and label them correctly. Therefore, we can estimate the quality of the decision

miner to rediscover the routing decision rules of the underlying process. In

contrast, the log measures, such as the place fitness and precision metrics [71,

72], assume that the reference model with decision rules are unknown. Therefore,

the metrics assume that the given log contains only fitting cases and guess the

non-fitting cases. However, a given event log may be incomplete or contain noise,

which could make the assumptions invalid and as a result make the quality

score a biased estimate of the true quality of the decision miner to rediscover

the routing decision rules of the underlying process.

5.3 Conclusion

This chapter filled an existing research gap by introducing a decision mining

evaluation procedure. The procedure is an extension of the discovery evaluation

208

5.3. CONCLUSION

procedure in Chapter 4. It starts from the GED methodology with data-flow

extension called “DataExtend” (introduced in Chapter 3) to create random

process models with routing decision rules and logs tailored towards empirical

decision mining evaluation. In a next step, the new procedure measures the

quality of the decision mining techniques to rediscover the original routing

decision rules using the knowledge of the original (reference) model with routing

decision rules.

An experiment including two decision mining techniques demonstrated and

evaluated the proposed evaluation procedure. It was shown that the procedure

allows to benchmark decision miners and analyze the impact of process charac-

teristics, such as routing decision determinism, on miner quality. Furthermore,

the evaluation has shown that the evaluation procedure overcomes the remain-

ing challenges of data set selection and quality measurement in decision mining

evaluation.

Future research opportunities include:

• introducing routing decisions rules to “or” and loop patterns,

• guarantee infrequent paths when routing decisions are influenced by case

attributes,

• experiments that include noise in the training logs to make it more chal-

lenging for decision mining techniques to effectively distinguish between

real behavior and behavior unrelated to the underlying process,

• experiments that input logs with incomplete case attribute information

to test the robustness of the employed decision mining algorithms to

rediscover the routing decision logic,

• experiments that study parameter sensitivity of decision mining tech-

niques with regard to measured quality,

• extend the evaluation procedure to go beyond routing decisions to decisions

in general, e.g. the decision on the amount of a reduction on sales price in

an activity in the process, and dependencies between case attributes that

209

CHAPTER 5. EVALUATION PROCEDURE FOR DECISION MINING

are needed to make a decision, e.g. in the form of Decision Requirement

Diagrams that are induced from an event log [10, 30].

210

C
H

A
P

T
E

R

6
CONCLUSIONS AND FUTURE RESEARCH

The central topic of this thesis is the empirical evaluation of both process

discovery and decision mining algorithms. Although researchers have

introduced many process discovery and decision mining algorithms,

only recently more focus has been given to the empirical evaluation of those

algorithms. Yet, such evaluations are necessary in order to reach a consensus on

the quality of the available algorithms. The first chapter of this thesis introduces

the unresolved challenges with regard to the evaluation of process discovery

and decision mining algorithms that motivated this thesis. The second chapter

provides a general overview to the field of process mining, but more importantly,

elaborates on the unresolved challenges of process discovery and decision mining

evaluation and the artefacts that are needed to tackle those challenges. Chapter

three presents the first artefact, i.e. an artificial event data generator tailored

towards both process discovery and decision mining evaluation. Chapter four

incorporates the artificial data generator in a new artefact consisting of a

modelling notation independent evaluation procedure for process discovery.

Finally, the last artefact is a first evaluation procedure for decision mining

algorithms which is introduced in chapter five.

The remainder of this section will discuss the main conclusions of this thesis

211

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

followed by future research opportunities.

6.1 Main conclusions

The increasing amount of process discovery and decision mining algorithms

has fueled the research on empirical evaluation of these techniques. Such an

evaluation aims to provide insights on which techniques perform well on which

process data, i.e. having different behavioral patterns that are relevant to

the “real world”. An empirical evaluation of process discovery/decision mining

techniques requires four high-level steps: determining the research objective(s),

selecting the appropriate data sets, choosing a suitable performance measure,

and applying the correct statistical test(s). Each of these high-level steps provide

unresolved challenges that impede the research community to get insights

into the strengths and weaknesses of state-of-the-art discovery/decision mining

techniques. This thesis tackles the challenges of data set selection, performance

measurement, and statistical tests related to process discovery. Furthemore,

the thesis deals with the data set selection and performance measurement

challenges related to decision mining evaluation.

The first unresolved challenge for process discovery evaluation involves the

data set selection. None of the existing evaluation approaches specifies a method-

ology of how to select the appropriate data sets for discovery evaluation. The

proposed benchmark set of real-life logs contains only 19 data sets without refer-

ence models such that they do not allow for statistically significant conclusions

that can be generalized to a process population. Alternatively, existing artificial

data generators are limited in the process characteristics they allow and do not

guarantee a correct experimental design to ensure statistically valid conclusions.

The second unresolved challenge involves the quality measurement of discovered

process models. The reliance on modelling notation dependent metrics can lead

to biased quality results due to erroneous conversions from one model notation

to another or because certain metrics treat behaviorally equivalent modelling

constructs differently. The final challenge involves the statistical tests that are

needed to draw general conclusions based on the evaluation results. Current

evaluation approaches have insufficiently focused on the correct experimental

212

6.1. MAIN CONCLUSIONS

design of evaluation experiments: input event logs are non-random samples or

from an unknown population and/or quality measurements are sensitive to bias.

As a result, the evaluation results cannot be generalized to a process population.

The main unresolved challenge for decision mining evaluation concerns the

lack of a standard evaluation procedure. This has resulted in few empirical

evaluations of decision mining algorithms that face unresolved challenges with

regard to data set selection and quality measurement during evaluation. Most

evaluations have used small non-random samples of real-life or articial data sets

that do not allow for statistically significant conclusions that are generalizable

to a larger process population. Existing artificial data generators are not specifi-

cally tailored towards decision mining evaluation and thus provide no sufficient

solution to alleviate such challenges. Furthermore, existing evaluations have

applied different methods to quantify the quality of decision mining results.

Similar to process discovery evaluation, most employed quality metrics are

sensitive to bias. Finally, due to the restriction to small samples, no statistical

analyses are incorporated in existing evaluations.

As long as the research community cannot overcome the remaining chal-

lenges of process discovery and decision mining evaluation, there will be no

consensus on the quality of the available techniques. Therefore, the main re-

search objective of the thesis is to design empirical evaluation procedures for

both process discovery and decision mining that enable objective comparison and

generalization of results. This main objective is divided in three research goals.

Firstly, this thesis presented the Generating artificial Event Data (GED)

methodology as a general methodology for the generation of random process

models and event logs for empirical evaluation of process discovery and decision

mining techniques. The GED methodology starts from a definition of a process

model population. Such a definition specifies which control-flow and data-flow

patterns characterize the models in it and assign probabilities to them to control

their occurrences in these models. Then, a random sample of process models

is drawn from the population which can be simulated into a random sample of

event logs. The full control over the process characteristics and the randomness

of the samples enables the generalization of evaluation results to the model

population. The Process Tree and Log Generator (“PTandLogGenerator”) provides

213

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

the necessary algorithms with tool support to implement the GED methodology

for process discovery evaluation. These algorithms allow for process behavior

such as long-term dependencies, “or” patterns, and reoccurring (duplicated)

activities which are not supported by existing artificial event data generators.

The evaluation of the “PTandLogGenerator” shows that it effectively supports

the GED methodology and that the additional process behavior can lead to new

insights into discovery algorithms. Furthermore, the algorithms of “DataExtend”

enable the inclusion of case attributes in the routing decisions of the generated

models and logs. As such it allows to generate artificial models and logs that

are tailored for decision mining evaluation. The evaluation of “DataExtend”

has illustrated that it allows to control for the routing decision logic which is

necessary while testing decision mining techniques.

Secondly, the thesis incorporates the GED methodology into a new evalu-

ation procedure for process discovery algorithms. This new procedure focuses

on measuring the quality of a discovery algorithm’s ability to rediscover the

underlying process independently from the algorithm’s modelling notation. It

starts from a user defined model population from which random reference mod-

els and logs are drawn. Then, it measures the quality of a discovery algorithm

by taking a classification approach while using the knowledge of the generated

reference models. Two rounds of experiments on four discovery algorithms that

use different modelling notations have shown that the new procedure effectively

supports the objectives of empirical process discovery evaluation: benchmarking

and assessing the impact of process characteristics on discovery algorithm qual-

ity. Furthermore, the findings of the statistical analyses can be generalized to

the user defined model populations. Finally, the tool implementation of the new

procedure enables researchers to automate their evaluation experiments and

share or extend their experiment setups to improve their reproducibility.

Finally, the thesis extends the newly proposed discovery evaluation proce-

dure to introduce the first evaluation procedure for decision mining techniques.

This new procedure also integrates the GED methodology to define a model

population and then generate random reference models and event logs with

routing decisions that depend on case attributes. In a next step, the new proce-

dure measures the decision miner’s quality to rediscover the routing decision

214

6.1. MAIN CONCLUSIONS

logic of the underlying process. The quality measurement applies a classification

approach that exploits the knowledge of the known reference model. Experi-

ments have shown that the new procedure enables researchers to benchmark

decision mining algorithms and study the impact of process characteristics such

as the determinism of routing decisions on decision miner’s quality. Moreover,

due to the experimental design that starts from a model population definition,

the experiment results can be generalized to that specific population.

Overall, with these new empirical evaluation procedures, this thesis aims

to stimulate more evaluation experiments and fuel the research on empirically

comparing process discovery and decision mining algorithms. First of all, the

new evaluation procedures support benchmarking to help researches measure

the true quality ratios between different state-of-the-art algorithms. This pro-

vides answers to questions as to which process discovery algorithm performs

best on event logs containing process behavior that is challenging to redis-

cover, e.g. reoccurring (duplicated) activities. Answers to such questions help

researchers in assessing the quality improvements of a new algorithm over

currently available algorithms. Secondly, the new evaluation procedures support

sensitivity analysis such that researchers can accurately assess the impact of

certain process behavior on the quality of the evaluated algorithm, e.g. the

determinism of routing decisions on decision miner’s quality. Such assessments

are vital to get a detailed understanding of the empirical workings of process

discovery or decision mining algorithms. Based on those insights strengths and

weaknesses of algorithms are identified such that they can assist researchers in

finetuning both existing and newly developed algorithms. Finally, the gained

knowledge of both benchmarking and sensitivity analysis assist the process

mining research domain to formulate recommendations on how to choose the

most suitable discovery/decision mining technique in practice.

This thesis focuses on empirical evaluation rather than theoretical eval-

uations of algorithms (e.g. see [110]). However, both types of evaluations are

needed as they can complement each other, e.g. an empirical analysis can reveal

that the quality of a certain algorithm decreases in the presence of particular

process behavior which can be further explained by a theoretical analysis of

that algorithm. Another important caveat regards the fact that the evaluation

215

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

procedures concentrate on artificial event logs. This does not mean that empiri-

cal evaluation should only consider artificial event logs. On the contrary, when

testing the applicability of process discovery and decision mining algorithms in

practice, real-life event logs are needed. Testing the scalability of the algorithms

and the usefulness of the discovered models and decision rules are some of the

issues that need to be investigated with real-life logs. A final remark concerns

the quality measurement of the proposed evaluation procedures. In this thesis,

we have measured the quality of the discovered models and routing decision

rules by focusing on their behavior rather then their structure. However, the

structure is typically used to measure the complexity of the discovered models

and rules, i.e. another important quality dimension to consider when comparing

algorithms. An algorithm may deliberately decrease the recall and precision

quality of the discovered model or rules to increase their simplicity. The struc-

ture of the model (possibly extended with routing decision rules) is heavily

connected to the modelling notation applied by the process discovery/decision

mining algorithm. As a consequence, we have dropped the complexity quality di-

mension when targetting modelling notation independent quality measurement.

This highlights an important limitation of the proposed evaluation procedures

that requires more research on comparing the complexity of models (with rules)

in different notations to solve it.

6.2 Future research opportunities

A significant number of future research opportunities have been identified

in the previous chapters. Those research opportunities mainly focus on the

developed algorithms and evaluation procedures. This section summarizes the

key challenges and describes several more general research directions.

With respect to the “PTandLogGenerator” and “DataExtend” implementa-

tions of the GED methodology, future work can extend the process behavior

that the generated models (with routing decision rules) and logs can contain.

Firstly, the long-term dependencies introduced by the “PTandLogGenerator” are

limited to exclusive choices. Future work could extend these dependencies to

non-exclusive choices (“or” pattern). Similarly, “DataExtend” restricts the intro-

216

6.2. FUTURE RESEARCH OPPORTUNITIES

duction of case attributes to routing decisions involving exclusive choices. Here,

future work could also consider to extend loops and “or” with case attributes.

Both the long-term dependencies and routing decision extensions would provide

interesting challenges for state-of-the-art process discovery and decision mining

algorithms respectively. Thirdly, the current log characteristics include only the

number of cases and the amount of noise. These log characteristics should be

extended, e.g. using the log metrics indrocuded by Günther [41]. Finally, future

extensions of “PTandLogGenerator” and “DataExtend” should not be restricted

to process trees, but could adopt richer modeling notations such as BPMN [46].

A first possible extension to the new process discovery evaluation procedure

is the introduction of noise in the training logs. This would make it more difficult

for an algorithm to rediscover the underlying process. Another possible exten-

sion relates to the noise operations that are used to punish imprecise behavior

in the discovered models. Such an extension could solve the current inability to

punish the non-detection of long-term dependencies. A third extension regards

the optimization of the parameter values of the evaluated process discovery algo-

rithms in order to maximize their real capabilities. Finally, the RapidProM tool

implementation should be extended to include more discovery algorithms using

other modelling notations such as BPMN to enable for empirical evaluations

that cover all state-of-the-art techniques.

Also several extensions for the new decision mining evaluation procedure are

worthwhile to explore. The first extension is to control for imbalanced execution

of routing decisions influenced by case attributes. In this way, one can test how

such imbalances impact the quality of the decision miners that apply classifi-

cation approaches to rediscover the routing decision rules. Another extension

involves deliberately removing or adapting some of the case attribute informa-

tion to test the robustness of decision miners to deal with noise in the training

log. A final extension is to expand the decision mining evaluation procedure to

go beyond routing decisions to more general decisions that are taken during pro-

cess execution. Also, evaluating the quality of discovered Decision Requirement

Diagrams would present an interesting future research opportunity.

Except from the above research opportunities, also more general research

directions are identified. Firstly, more research is needed to determine the pro-

217

CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

cess population from which real event logs come. If one can learn the population

parameters, then one can generate larger samples (of artificial event logs) from

those populations. That would allow researchers to evaluate on these larger

samples and generalize the results to the real-life process population. Secondly,

the new evaluation procedures in this thesis focus on two process mining tasks,

i.e. process discovery and decision mining, but these procedures could be ex-

tended to other tasks as well. Example extensions involve algorithms that mine

organizational process models and provide time overlay. Thirdly, empirical anal-

ysis should become part of the development of new process discovery algorithms.

Currently, there exists a strong tendency to build new algorithms based on novel

approaches rather than building on previously generated algorithms. However,

insights on the empirical workings of current algorithms provide best practices

which can be used to improve the state of the art. To fill this gap, research is

needed which uncovers and explains successes and flaws in current process

discovery techniques and how to use these to achieve better algorithms. Finally,

offering empirical evaluation procedures as web services could further improve

the usability and scalability of empirical analysis. For example, researchers are

given a random sample of event logs to which they apply their algorithm. Next,

the researchers upload their discovered models and the web service evaluates

them and returns the evaluation results. Such services ensure that algorithms

are evaluated in a standard way and offload the computational capacity that a

researcher needs for the evaluation.

218

A
P

P
E

N
D

I
X

A
APPENDIX A

Traces

〈 issue order, produce order, inspect thoroughly, package, deliver, send invoice 〉18

〈 issue order, produce order, inspect normally, inspect thoroughly, package, deliver, send invoice 〉15

〈 issue order, produce order, inspect thoroughly, inspect normally, package, deliver, send invoice 〉15

〈 issue order, produce order, inspect thoroughly, package, send invoice, deliver 〉14

〈 issue order, produce order, inspect normally, package, send invoice, deliver 〉14

〈 issue order, produce order, inspect thoroughly, inspect normally, package, send invoice, deliver 〉10

〈 issue order, produce order, inspect normally, inspect thoroughly, package, send invoicedeliver 〉8
〈 issue order, produce order, inspect normally, package, deliver, send invoice 〉6

Table A.1: Example event log about make-to-order process with “or” pattern,
Lor.

219

A
P

P
E

N
D

I
X

B
APPENDIX B

Please refer to the tables from Table B.1 to B.11

Kruskall-Wallis rank sum test
KW χ2 = 2303.8 degrees of freedom = 3 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α= 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
Alpha+ - Heuristics 328.3 126.9 True
Alpha+ - ILP 1621.1 126.9 True
Alpha+ - Inductive 1033.7 126.9 True
Heuristics - ILP 1949.4 126.9 True
Heuristics - Inductive 1362 126.9 True
ILP - Inductive 587.4 126.9 True

Table B.1: Results of the statistical tests to study the effect of discovery algorithm
on F1 scores.

221

Kruskall-Wallis rank sum test
KW χ2 = 876.57 degrees of freedom = 3 p-value < 2.2e−16

Multiple comparison test after Kruskall-Wallis (α= 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
Alpha+ - Heuristics 217.78 89.78 True
Alpha+ - ILP 565.52 89.78 True
Alpha+ - Inductive 532.52 89.78 True
Heuristics - ILP 783.29 89.78 True
Heuristics - Inductive 750.30 89.78 True
ILP - Inductive 32.99 89.78 False

Table B.2: Results of the statistical tests to study the effect of infrequent behavior
on precision scores.

Kruskall-Wallis rank sum test
KW χ2 = 44.29 degrees of freedom = 6 p-value < 6.485e−8

Jonckheere-Terpstra test
JT = 140560 p-value = 0.002

Multiple comparison test after Kruskall-Wallis (α= 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.05 78.10 96.73 False
0.0-0.1 88.40 96.73 False
0.0-0.15 111.32 96.73 True
0.0-0.2 96.23 96.73 False
0.0-0.25 139.90 96.73 True
0.0-0.3 151.32 96.73 True
0.05-0.1 10.30 96.73 False
0.05-0.15 33.22 96.73 False
0.05-0.2 18.13 96.73 False
0.05-0.25 61.80 96.73 False
0.05-0.3 73.21 96.73 False
0.1-0.15 22.92 96.73 False
0.1-0.2 7.83 96.73 False
0.1-0.25 51.50 96.73 False
0.1-0.3 62.92 96.73 False
0.15-0.2 15.09 96.73 False
0.15-0.25 28.58 96.73 False
0.15-0.3 40.0 96.73 False
0.2-0.25 43.67 96.73 False
0.2-0.3 55.09 96.73 False
0.25-0.3 11.42 96.73 False

Table B.3: Results of the statistical tests to study the effect of reoccurring
activities on F1 scores for the Alpha+ miner.

Kruskall-Wallis rank sum test
KW χ2 = 1.4786 degrees of freedom = 6 p-value = 0.9609

Jonckheere-Terpstra test
JT = 160160 p-value = 0.496

Table B.4: Results of the statistical tests to study the effect of reoccurring
activities on F1 scores for the Heuristics miner.

223

APPENDIX B. APPENDIX B

Kruskall-Wallis rank sum test
KW χ2 = 331.81 degrees of freedom = 6 p-value < 2.2e−16

Jonckheere-Terpstra test
JT = 81029 p-value = 0.002

Multiple comparison test after Kruskall-Wallis (α= 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.05 103.28 96.73 True
0.0-0.1 184.87 96.73 True
0.0-0.15 244.71 96.73 True
0.0-0.2 333.78 96.73 True
0.0-0.25 416.40 96.73 True
0.0-0.3 459.0 96.73 True
0.05-0.1 81.59 96.73 False
0.05-0.15 141.42 96.73 True
0.05-0.2 230.50 96.73 True
0.05-0.25 313.12 96.73 True
0.05-0.3 355.72 96.73 True
0.1-0.15 59.83 96.73 False
0.1-0.2 148.91 96.73 True
0.1-0.25 231.53 96.73 True
0.1-0.3 274.13 96.73 True
0.15-0.2 89.07 96.73 False
0.15-0.25 171.70 96.73 True
0.15-0.3 214.29 96.73 True
0.2-0.25 82.63 96.73 False
0.2-0.3 125.22 96.73 True
0.25-0.3 42.60 96.73 False

Table B.5: Results of the statistical tests to study the effect of reoccurring
activities on F1 scores for the ILP Miner.

224

Kruskall-Wallis rank sum test
KW χ2 = 180 degrees of freedom = 6 p-value < 2.2e−16

Jonckheere-Terpstra test
JT = 105510 p-value = 0.002

Multiple comparison test after Kruskall-Wallis (α= 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.0-0.05 119.75 96.73 True
0.0-0.1 190.98 96.73 True
0.0-0.15 255.02 96.73 True
0.0-0.2 281.17 96.73 True
0.0-0.25 286.07 96.73 True
0.0-0.3 370.57 96.73 True
0.05-0.1 71.24 96.73 False
0.05-0.15 135.27 96.73 True
0.05-0.2 161.43 96.73 True
0.05-0.25 166.32 96.73 True
0.05-0.3 250.82 96.73 True
0.1-0.15 64.04 96.73 False
0.1-0.2 90.19 96.73 False
0.1-0.25 95.08 96.73 False
0.1-0.3 179.58 96.73 True
0.15-0.2 26.15 96.73 False
0.15-0.25 31.05 96.73 False
0.15-0.3 115.55 96.73 True
0.2-0.25 4.90 96.73 False
0.2-0.3 89.40 96.73 False
0.25-0.3 84.50 96.73 False

Table B.6: Results of the statistical tests to study the effect of reoccurring
activities on F1 scores for the Inductive miner.

Kruskall-Wallis rank sum test

Recall KW χ2 = 4.09 degrees of freedom = 1 p-value = 0.0432
Precision KW χ2 = 0.04 degrees of freedom = 1 p-value = 0.8483
F1 KW χ2 = 1.80 degrees of freedom = 1 p-value = 0.1795

Table B.7: Results of the statistical tests to study the effect of decision mining
algorithm on recall, precision, and F1 scores.

225

APPENDIX B. APPENDIX B

Kruskall-Wallis rank sum test

Recall KW χ2 = 1.21 degrees of freedom = 1 p-value = 0.27
Precision KW χ2 = 1.02 degrees of freedom = 1 p-value = 0.31
F1 KW χ2 = 2.57 degrees of freedom = 1 p-value = 0.11

Table B.8: Results of the statistical tests to study the effect of infrequent be-
haviour on recall, precision, and F1 scores.

Kruskall-Wallis rank sum test

Recall KW χ2 = 3.06 degrees of freedom = 1 p-value = 0.08
Precision KW χ2 = 0.55 degrees of freedom = 1 p-value = 0.46
F1 KW χ2 = 0.07 degrees of freedom = 1 p-value = 0.79

Table B.9: Results of the statistical tests to study the effect of absence of infre-
quent behavior on recall, precision, and F1 scores.

Kruskall-Wallis rank sum test
KW χ2 = 18.749 degrees of freedom = 2 p-value = 8.486e−05

Jonckheere-Terpstra test
JT = 113780 p-value = 0.002

Multiple comparison test after Kruskall-Wallis (α= 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.5-0.75 20.69961 47.12554 False
0.5-1 80.91085 47.12554 True
0.75-1 60.21124 47.12554 True

Table B.10: Results of the statistical tests to study the effect of determinism
level on F1 scores for the mutually-exclusive technique.

226

Kruskall-Wallis rank sum test
KW χ2 = 11.067 degrees of freedom = 2 p-value = 0.003952

Jonckheere-Terpstra test
JT = 110860 p-value = 0.002

Multiple comparison test after Kruskall-Wallis (α= 0.05)
Comparisons Observed diff. Critical diff. Significant diff.
0.5-0.75 41.35659 47.12554 False
0.5-1 63.43992 47.12554 True
0.75-1 22.08333 47.12554 False

Table B.11: Results of the statistical tests to study the effect of determinism
level on F1 scores for the overlapping technique.

227

A
P

P
E

N
D

I
X

C
APPENDIX C

This appendix includes additional definitions adopted from [16].

Definition C.1 (Projection). Let A be a set of elements, then for all A′ ⊆ A, σ↓A′

denotes the projection of a sequence σ ∈ A∗ on A′, e.g. 〈a,a,b, c〉↓{a,c} = 〈a,a, c〉.

Definition C.2 (Process tree language). Let A ⊆ A be a set of activities, let

PT = (N, r,m, c, p,b) be a process tree, and let σ ·σ′ denote the concatenation

of two sequences. The language of a process tree L : N → A∗ is defined as the

language of the root note L (r). The language of a node n in a process tree is

defined as follows:

• if m(n)= τ, then L (n)= {〈〉}

• if m(n)= a ∈ A, then L (n)= {〈a〉}

• if m(n) ∈O and c(n)= 〈n1, . . . ,nk〉, then

– if m(n)=→, then L (n)= {σ|∃σ1 ∈L (n1) . . .σk ∈L (nk) :σ=σ1 ·. . .·σk}

– if m(n)=×, then L (n)= {σ|∃1≤ i ≤ k :σi ∈L (ni)}=⋃
1≤i≤k L (ni)

– if m(n)=∨, then L (n)= {σ ∈ A∗|σ= 〈〉⇒ (∃n′ ∈ c(n) : 〈〉 ∈L (n′))∧σ 6=
〈〉⇒ (∃ f : {1. . . |σ|}→ c(n) :∀n′ ∈ Rng(f) :σ↓n′ ∈L (n′))}

229

APPENDIX C. APPENDIX C

– if m(n) = ∧, then L (n) = {σ ∈ A∗|σ = 〈〉 ⇒ ∀n′ ∈ c(n) : 〈〉 ∈ L (n′)∧
σ 6= 〈〉 ⇒ (∃ f : {1. . . |σ|} → c(n) : ∀n′ ∈ Rng(f) : σ↓n′ ∈ L (n′)∧∀n′ ∈
c(n)\Rng(f) : 〈〉 ∈L (n′))}

– if m(n)=	k, then L (n)= {σ1·σ2·σ3 ∈ A∗|σ1 ∈L (c(n)1)∧σ3 ∈L (c(n)3)∧
σ2 ∈ f (c(n)2, c(n)1)} with f : N ×N → A∗ : f (n1,n2) = {σ|σ = 〈〉∨ (σ=
σ1 ·σ2 ·σ3 ∈ A∗∧σ1 ∈L (c(n)1)∧σ2 ∈L (c(n)2)∧σ3 ∈ f (n1,n2))}. Notice

that the maximum number of iterations k forces σ= 〈〉 in function

f (n1,n2) after k iterations of σ=σ1 ·σ2 ·σ3.

To illustrate the language of the different operators, consider the following

examples:

• L (→ (a,b))= {〈a,b〉}

• L (×(a,b))= {〈a〉,〈b〉}

• L (∧(a,b))= {〈a,b〉,〈b,a〉}

• L (∨(a,b))= {〈a〉,〈b〉,〈a,b〉,〈b,a〉}

• L (2 (a,b, c))= {〈a, c〉,〈a,b,a, c〉,〈a,b,a,b,a, c〉}

230

BIBLIOGRAPHY

[1] IEEE Standard for eXtensible Event Stream (XES) for Achieving Inter-

operability in Event Logs and Event Streams, IEEE Std 1849-2016,

(2016), pp. 1–50.

[2] D. N. A. ASUNCION, UCI machine learning repository, 2007.

[3] A. ADRIANSYAH, J. MUNOZ-GAMA, J. CARMONA, B. F. VAN DONGEN,

AND W. M. P. VAN DER AALST, Measuring precision of modeled be-

havior, Information Systems and e-Business Management, (2015),

pp. 1–31.

[4] A. ADRIANSYAH, B. F. VAN DONGEN, AND W. M. P. VAN DER AALST, To-

wards robust conformance checking, in Business Process Management

Workshops, vol. 66, Springer, 2011, pp. 122–133.

[5] J. ANTONAKIS, S. BENDAHAN, P. JACQUART, AND R. LALIVE, On mak-

ing causal claims: A review and recommendations, The Leadership

Quarterly, 21 (2010), pp. 1086–1120.

[6] A. AUGUSTO, R. CONFORTI, M. DUMAS, M. LA ROSA, F. M. MAGGI,

A. MARRELLA, M. MECELLA, AND A. SOO, Automated Discovery

of Process Models from Event Logs: Review and Benchmark, IEEE

Transactions on Knowledge and Data Engineering, (2018).

[7] A. BARKER AND J. VAN HEMERT, Scientific Workflow: a Survey and

Research Directions, in Parallel Processing and Applied Mathematics,

Springer, 2007, pp. 746–753.

231

BIBLIOGRAPHY

[8] K. BATOULIS, S. HAARMANN, AND M. WESKE, Various notions of sound-

ness for decision-aware business processes, in International Conference

on Conceptual Modeling, Springer, 2017, pp. 403–418.

[9] K. BATOULIS AND M. WESKE, Soundness of decision-aware business pro-

cesses, in International Conference on Business Process Management,

Springer, 2017, pp. 106–124.

[10] E. BAZHENOVA, S. BUELOW, AND M. WESKE, Discovering Decision Mod-

els from Event Logs, in International Conference on Business Informa-

tion Systems, Springer, 2016, pp. 237–251.

[11] A. BENAVOLI, G. CORANI, AND F. MANGILI, Should we really use post-

hoc tests based on mean-ranks, Journal of Machine Learning Research,

17 (2016), pp. 1–10.

[12] M. A. BENDER, M. FARACH-COLTON, G. PEMMASANI, S. SKIENA, AND

P. SUMAZIN, Lowest common ancestors in trees and directed acyclic

graphs, Journal of Algorithms, 57 (2005), pp. 75–94.

[13] R. BERGENTHUM, J. DESEL, R. LORENZ, AND S. MAUSER, Process min-

ing based on regions of languages, in Business Process Management,

G. Alonso, P. Dadam, and M. Rosemann, eds., Springer, 2007, pp. 375–

383.

[14] A. BOLT, M. DE LEONI, AND W. M. P. VAN DER AALST, Scientific Work-

flows for Process Mining: Building Blocks, Scenarios, and Implementa-

tion, Software Tools for Technology Transfer, 18 (2016), p. 22.

[15] G. E. BOX, J. S. HUNTER, AND W. G. HUNTER, Statistics for experi-

menters: design, innovation, and discovery, vol. 2, Wiley-Interscience

New York, 2005.

[16] J. C. A. M. BUIJS, Flexible Evolutionary Algorithms for Mining Struc-

tured Process Models, PhD thesis, Technische Universiteit Eindhoven,

Eindhoven, 2014.

232

BIBLIOGRAPHY

[17] A. BURATTIN, PLG2: Multiperspective Processes Randomization and Sim-

ulation for Online and Offline Settings, tech. rep., University of Inns-

bruck, June 2015.

[18] , Process mining techniques in business environments, vol. 207 of

Lecture Notes in Business Information Processing, Springer, Cham,

2015.

[19] , PLG2: Multiperspective Process Randomization with Online and

Offline Simulations., in BPM (Demos), 2016, pp. 1–6.

[20] A. BURATTIN AND A. SPERDUTI, PLG: A framework for the generation of

business process models and their execution logs, in Business Process

Management Workshops, Springer, 2011, pp. 214–219.

[21] D. CALVANESE, M. MONTALI, A. SYAMSIYAH, AND W. M. P. V. D. AALST,

Ontology-Driven Extraction of Event Logs from Relational Databases,

in Business Process Management Workshops, Lecture Notes in Busi-

ness Information Processing, Springer, Cham, Aug. 2015, pp. 140–153.

[22] J. CARMONA, M. DE LEONI, B. DEPAIRE, AND T. JOUCK, Summary of

the Process Discovery Contest 2016, in Business Process Management

Workshops: BPM 2016 International Workshops Rio de Janeiro, Brazil,

September 19, 2016, vol. 281 of Lecture Notes in Business Information

Processing, Rio de Janeiro, 2017, Springer, pp. 7–10.

[23] J. COHEN, Statistical power analysis for the behavioral sciences, Lawrence

Erlbaum Associates, Hillsdale, second ed., 1988.

[24] R. CONFORTI, M. DUMAS, L. GARCIA-BANUELOS, AND M. LA ROSA,

BPMN Miner: Automated discovery of BPMN process models with

hierarchical structure, Information Systems, 56 (2016), pp. 284–303.

WOS:000367634200017.

[25] M. DE LEONI, M. DUMAS, AND L. GARCÍA-BAÑUELOS, Discovering

branching conditions from business process execution logs, in Interna-

233

BIBLIOGRAPHY

tional Conference on Fundamental Approaches to Software Engineer-

ing, Springer, 2013, pp. 114–129.

[26] M. DE LEONI, P. FELLI, AND M. MONTALI, A Holistic Approach for

Soundness Verification of Decision-Aware Process Models, tech. rep.,

Eindhoven University of Technology, Apr. 2018.

[27] M. DE LEONI AND W. M. VAN DER AALST, Aligning event logs and process

models for multi-perspective conformance checking: An approach based

on integer linear programming, in Business Process Management,

Springer, 2013, pp. 113–129.

[28] M. DE LEONI AND W. M. P. VAN DER AALST, Data-aware process mining:

discovering decisions in processes using alignments, in Proceedings of

the 28th Annual ACM Symposium on Applied Computing, ACM, 2013,

pp. 1454–1461.

[29] A. K. A. DE MEDEIROS, A. J. WEIJTERS, AND W. M. P. VAN DER AALST,

Genetic process mining: an experimental evaluation, Data Mining and

Knowledge Discovery, 14 (2007), pp. 245–304.

[30] J. DE SMEDT, F. HASIĆ, S. K. VANDEN BROUCKE, AND J. VANTHIENEN,

Towards a holistic discovery of decisions in process-aware information

systems, in International Conference on Business Process Manage-

ment, Springer, 2017, pp. 183–199.

[31] J. DE WEERDT, Business Process Discovery: New Techniques and Applica-

tions, PhD thesis, KU Leuven, Leuven, 2012.

[32] J. DE WEERDT, M. DE BACKER, J. VANTHIENEN, AND B. BAESENS, A

robust F-measure for evaluating discovered process models, in Compu-

tational Intelligence and Data Mining (CIDM), 2011 IEEE Symposium

on, IEEE, 2011, pp. 148–155.

[33] , A multi-dimensional quality assessment of state-of-the-art process

discovery algorithms using real-life event logs, Information Systems,

37 (2012), pp. 654–676.

234

BIBLIOGRAPHY

[34] J. DEMŠAR, Statistical comparisons of classifiers over multiple data sets,

The Journal of Machine Learning Research, 7 (2006), pp. 1–30.

[35] C. DI CICCIO, M. L. BERNARDI, M. CIMITILE, AND F. M. MAGGI, Gener-

ating event logs through the simulation of Declare models, in Workshop

on Enterprise and Organizational Modeling and Simulation, Springer,

2015, pp. 20–36.

[36] C. DI CICCIO AND M. MECELLA, A two-step fast algorithm for the au-

tomated discovery of declarative workflows, in Computational Intel-

ligence and Data Mining (CIDM), 2013 IEEE Symposium on, IEEE,

2013, pp. 135–142.

[37] M. DUMAS, M. LA ROSA, J. MENDLING, AND H. A. REIJERS, Funda-

mentals of business process management, Springer, 2013.

[38] F. FAUL, E. ERDFELDER, A. BUCHNER, AND A.-G. LANG, Statistical

Power Analyses Using G* Power 3.1: Tests for Correlation and Regres-

sion Analyses, Behavior research methods, 41 (2009), pp. 1149–1160.

[39] C. FAVRE, D. FAHLAND, AND H. VÖLZER, The relationship between work-

flow graphs and free-choice workflow nets, Information Systems, 47

(2015), pp. 197–219.

[40] S. R. A. FISHER, The Design of Experiments, vol. 12, Oliver and Boyd

Edinburgh, 1960.

[41] C. W. GÜNTHER, Process mining in flexible environments, PhD thesis,

Technische Universiteit Eindhoven, 2009.

[42] C. W. GÜNTHER AND W. M. P. VAN DER AALST, Fuzzy mining–adaptive

process simplification based on multi-perspective metrics, in Business

Process Management, Springer, 2007, pp. 328–343.

PM101 - 4.

[43] S. GOEDERTIER, D. MARTENS, J. VANTHIENEN, AND B. BAESENS, Ro-

bust process discovery with artificial negative events, The Journal of

Machine Learning Research, 10 (2009), pp. 1305–1340.

235

BIBLIOGRAPHY

[44] I. GOODFELLOW, Y. BENGIO, AND A. COURVILLE, Deep Learning, MIT

Press, 2016.

http://www.deeplearningbook.org.

[45] A. G. GREENWALD, Within-subjects designs: To use or not to use?, Psycho-

logical Bulletin, 83 (1976), p. 314.

[46] O. M. GROUP, Business Process Model and Notation specification, Jan.

2011.

[47] , Decision Model and Notation specification, 2016.

[48] M. JANS AND P. SOFFER, From relational database to event log: decisions

with quality impact, in International Conference on Business Process

Management, Springer, 2017, pp. 588–599.

[49] G. JANSSENSWILLEN, B. DEPAIRE, AND T. JOUCK, Calculating the num-

ber of unique paths in a block-structured process model, in Proceedings

of the International Workshop on Algorithms & Theories for the Anal-

ysis of Event Data 2016, 2016.

[50] G. JANSSENSWILLEN, T. JOUCK, M. CREEMERS, AND B. DEPAIRE, Mea-

suring the Quality of Models with Respect to the Underlying System:

An Empirical Study, in Business Process Management, M. L. Rosa,

P. Loos, and O. Pastor, eds., no. 9850 in Lecture Notes in Computer

Science, Springer International Publishing, Sept. 2016, pp. 73–89.

[51] N. JAPKOWICZ AND M. SHAH, Evaluating learning algorithms: a classifi-

cation perspective, Cambridge University Press, 2011.

[52] N. JAPKOWICZ AND S. STEPHEN, The class imbalance problem: A system-

atic study, Intelligent data analysis, 6 (2002), pp. 429–449.

[53] K. JENSEN, L. M. KRISTENSEN, AND L. WELLS, Coloured Petri Nets

and CPN Tools for modelling and validation of concurrent systems,

International Journal on Software Tools for Technology Transfer, 9

(2007), pp. 213–254.

236

http://www.deeplearningbook.org

BIBLIOGRAPHY

[54] T. JIN, J. WANG, AND L. WEN, Efficiently Querying Business Process

Models with BeehiveZ., in BPM (Demos), 2011.

[55] P. JOHANNESSON AND E. PERJONS, An Introduction to Design Science,

Springer, 2014.

[56] T. JOUCK, A. BOLT, B. DEPAIRE, M. DE LEONI, AND W. M. P. VAN DER

AALST, An Integrated Framework for Process Discovery Algorithm

Evaluation, Business & Information Systems Engineering, Submitted,

1st review (2018).

[57] T. JOUCK, M. DE LEONI, AND B. DEPAIRE, Generating Decision-aware

Models & Logs: Towards an Evaluation of Decision Mining, in Proceed-

ings of the 6th International Workshop on Declarative/Decision/Hybrid

Mining and Modelling for Business Processes (DeHMiMoP 2018), Syd-

ney, June 2018, Springer, p. 12.

[58] T. JOUCK AND B. DEPAIRE, Generating Artificial Event Logs with Suffi-

cient Discriminatory Power to Compare Process Discovery Techniques,

in Proceedings of the 4th International Symposium on Data-driven

Process Discovery and Analysis (SIMPDA 2014), CEUR Workshop

Proceedings, 2014, pp. 174–178.

[59] , PTandLogGenerator: a Generator for Artificial Event Data, in Pro-

ceedings of the BPM Demo Track 2016 (BPMD 2016), vol. 1789, Rio

de Janeiro, 2016, CEUR workshop proceedings, pp. 23–27.

[60] , Simulating Process Trees Using Discrete-Event Simulation, techni-

cal Report, Hasselt University, Feb. 2017.

[61] , Generating Artificial Data for Empirical Analysis of Control-flow

Discovery Algorithms: A Process Tree and Log Generator, Business &

Information Systems Engineering, Accepted (2018).

[62] A. KALENKOVA, M. DE LEONI, AND W. M. P. VAN DER AALST, Discov-

ering, analyzing and enhancing BPMN models using prom, in Pro-

ceedings of the BPM Demo Sessions 2014 Co-located with the 12th

237

BIBLIOGRAPHY

International Conference on Business Process Management (BPM

2014), Eindhoven, The Netherlands, September 10, 2014., vol. 1295 of

CEUR Workshop Proceedings, CEUR-WS.org, 2014, p. 36.

[63] V. KATAEVA, R. F. MOSCOW, AND A. A. KALENKOVA, Applying graph

grammars for the generation of process models and their logs, in Pro-

ceedings of the Spring/Summer Young Researchers’ Colloquium on

Software Engineering., 2014.

[64] R. E. KIRK, Experimental Design, Wiley Online Library, 1982.

[65] M. KUNZE, A. LUEBBE, M. WEIDLICH, AND M. WESKE, Towards Under-

standing Process Modeling — the Case of the BPM Academic Initiative,

in International Workshop on Business Process Modeling Notation,

Springer, 2011, pp. 44–58.

[66] M. LEEMANS AND W. M. P. VAN DER AALST, Discovery of frequent

episodes in event logs, in International Symposium on Data-Driven

Process Discovery and Analysis, Springer, 2014, pp. 1–31.

[67] S. J. LEEMANS, D. FAHLAND, AND W. M. P. VAN DER AALST, Discovering

block-structured process models from event logs containing infrequent

behaviour, in Business Process Management Workshops, Springer,

2014, pp. 66–78.

[68] S. J. J. LEEMANS, Robust process mining with guarantees, PhD thesis,

Ph. D. thesis, Eindhoven University of Technology, 2017.

[69] S. J. J. LEEMANS, D. FAHLAND, AND W. M. P. VAN DER AALST, Discov-

ering block-structured process models from event logs-a constructive

approach, in Application and Theory of Petri Nets and Concurrency,

Springer, 2013, pp. 311–329.

[70] X. LU, D. FAHLAND, F. J. H. M. V. D. BIGGELAAR, AND W. M. P. VAN DER

AALST, Handling Duplicated Tasks in Process Discovery by Refining

Event Labels, in Business Process Management, M. L. Rosa, P. Loos,

238

BIBLIOGRAPHY

and O. Pastor, eds., no. 9850 in Lecture Notes in Computer Science,

Springer International Publishing, Sept. 2016, pp. 90–107.

[71] F. MANNHARDT, Multi-perspective process mining, PhD thesis, Technische

Universiteit Eindhoven, Eindhoven, 2018.

[72] F. MANNHARDT, M. DE LEONI, H. A. REIJERS, AND W. M. VAN DER

AALST, Measuring the precision of multi-perspective process models, in

International Conference on Business Process Management, Springer,

2015, pp. 113–125.

[73] F. MANNHARDT, M. DE LEONI, H. A. REIJERS, AND W. M. P. VAN DER

AALST, Balanced multi-perspective checking of process conformance,

Computing, 98 (2016), pp. 407–437.

[74] , Decision Mining Revisited-Discovering Overlapping Rules., in

CAiSE, vol. 9694, 2016, pp. 377–392.

[75] T. MCPHILLIPS, S. BOWERS, D. ZINN, AND B. LUDÄSCHER, Scientific

Workflow Design for Mere Mortals, Future Generation Computer Sys-

tems, 25 (2009), pp. 541–551.

[76] A. A. MEDEIROS, A. WEIJTERS, AND W. M. P. VAN DER AALST, Using

genetic algorithms to mine process models: Representation, operators

and results, Beta, Research School for Operations Management and

Logistics, 2005.

[77] J. E. MENDOZA, C. GUÉRET, M. HOSKINS, H. LOBIT, V. PILLAC, T. VI-

DAL, AND D. VIGO, Vrp-rep: the vehicle routing community repository,

in Third Meeting of the EURO Working Group on Vehicle Routing and

Logistics Optimization (VeRoLog). Oslo, Norway, 2014.

[78] R. S. MICHALSKI AND J. WNEK, Comparing symbolic and subsymbolic

learning: Three studies, Machine Learning: a Multistrategy Approach,

4 (1993).

239

BIBLIOGRAPHY

[79] A. A. MITSYUK, I. S. SHUGUROV, A. A. KALENKOVA, AND W. M. P.

VAN DER AALST, Generating event logs for high-level process models,

Simulation Modelling Practice and Theory, 74 (2017), pp. 1–16.

[80] T. MURATA, Petri nets: Properties, analysis and applications, Proceedings

of the IEEE, 77 (1989), pp. 541–580.

PM101 - 1.

[81] N. PATKI, R. WEDGE, AND K. VEERAMACHANENI, The synthetic data

vault, in Data Science and Advanced Analytics (DSAA), 2016 IEEE

International Conference on, IEEE, 2016, pp. 399–410.

[82] F. PEDREGOSA, G. VAROQUAUX, A. GRAMFORT, V. MICHEL, B. THIRION,

O. GRISEL, M. BLONDEL, P. PRETTENHOFER, R. WEISS,

V. DUBOURG, J. VANDERPLAS, A. PASSOS, D. COURNAPEAU,

M. BRUCHER, M. PERROT, AND E. DUCHESNAY, Scikit-learn: Ma-

chine learning in Python, Journal of Machine Learning Research, 12

(2011), pp. 2825–2830.

[83] J. D. S. PEDRO AND J. CORTADELLA, Discovering Duplicate Tasks in

Transition Systems for the Simplification of Process Models, in Busi-

ness Process Management, M. L. Rosa, P. Loos, and O. Pastor, eds.,

no. 9850 in Lecture Notes in Computer Science, Springer International

Publishing, Sept. 2016, pp. 108–124.

[84] K. E. N. PEFFERS, T. TUUNANEN, M. A. ROTHENBERGER, AND S. CHAT-

TERJEE, A Design Science Research Methodology for Information

Systems Research, Journal of Management Information Systems, 24

(2008), pp. 45–77.

[85] J. R. QUINLAN, C4. 5: programs for machine learning, Elsevier, 2014.

[86] J. RIBEIRO AND J. CARMONA, A Method for Assessing Parameter Impact

on Control-Flow Discovery Algorithms, in Transactions on Petri Nets

and Other Models of Concurrency XI. Lecture Notes in Computer

Science, vol 9930., M. Koutny, D. J., and J. Kleijn, eds., Springer, 2016.

240

BIBLIOGRAPHY

[87] J. RIBEIRO, J. CARMONA, M. MISIR, AND M. SEBAG, A Recommender

System for Process Discovery, in Business Process Management, 8659,

Springer, 2014, pp. 67–83.

[88] D. ROSCA AND C. WILD, Towards a flexible deployment of business rules,

Expert Systems with Applications, 23 (2002), pp. 385–394.

[89] A. ROZINAT, A. A. DE MEDEIROS, C. W. GÜNTHER, A. WEIJTERS, AND

W. M. P. VAN DER AALST, Towards an evaluation framework for

process mining algorithms, BPM Center Report, 0706 (2007).

[90] A. ROZINAT AND W. M. P. VAN DER AALST, Decision mining in ProM, in

Business Process Management, S. Dustdar, J. L. Fiadeiro, and A. P.

Sheth, eds., Vienna, Austria, 2006, Springer.

[91] , Conformance checking of processes based on monitoring real behav-

ior, Information Systems, 33 (2008), pp. 64–95.

[92] N. RUSSELL, A. H. M. TER HOFSTEDE, W. M. P. VAN DER AALST, AND

N. MULYAR, Workflow controlflow patterns: A revised view, Tech. Rep.

06-22, 2006.

[93] G. SCHIMM, Mining exact models of concurrent workflows, Computers in

Industry, 53 (2004), pp. 265–281.

[94] S. SIEGEL AND N. J. CASTELLAN JR, Nonparametric statistics for the

behavioral sciences, Mcgraw-Hill Book Company, New York, 2 ed.,

1988.

[95] T. STOCKER AND R. ACCORSI, Secsy: Security-aware synthesis of process

event logs, in Workshop on Enterprise Modelling and Information

Systems Architectures, 2013, pp. 71–84.

[96] N. TAX, X. LU, N. SIDOROVA, D. FAHLAND, AND W. M. VAN DER AALST,

The Imprecisions of Precision Measures in Process Mining, Information

Processing Letters, 135 (2018), pp. 1–8.

241

BIBLIOGRAPHY

[97] E. UCHOA, D. PECIN, A. PESSOA, M. POGGI, T. VIDAL, AND A. SUBRA-

MANIAN, New benchmark instances for the capacitated vehicle rout-

ing problem, European Journal of Operational Research, 257 (2017),

pp. 845–858.

[98] W. M. P. VAN DER AALST, The application of Petri nets to workflow

management, Journal of circuits, systems, and computers, 8 (1998),

pp. 21–66.

PM101 - 1.

[99] , Process Mining: Data Science in Action, Springer, 2016.

[100] W. M. P. VAN DER AALST, A. ADRIANSYAH, A. K. A. D. MEDEIROS,

F. ARCIERI, T. BAIER, T. BLICKLE, J. C. BOSE, P. V. D. BRAND,

R. BRANDTJEN, J. BUIJS, A. BURATTIN, J. CARMONA, M. CASTEL-

LANOS, J. CLAES, J. COOK, N. COSTANTINI, F. CURBERA, E. DAMI-

ANI, M. D. LEONI, P. DELIAS, B. F. V. DONGEN, M. DUMAS, S. DUST-

DAR, D. FAHLAND, D. R. FERREIRA, W. GAALOUL, F. VAN GEFFEN,

S. GOEL, C. GUNTHER, A. GUZZO, P. HARMON, A. T. HOFSTEDE,

J. HOOGLAND, J. E. INGVALDSEN, K. KATO, R. KUHN, A. KUMAR,

M. L. ROSA, F. MAGGI, D. MALERBA, R. S. MANS, A. MANUEL,

M. MCCREESH, P. MELLO, J. MENDLING, M. MONTALI, H. R.

MOTAHARI-NEZHAD, M. ZUR MUEHLEN, J. MUNOZ-GAMA, L. PON-

TIERI, J. RIBEIRO, A. ROZINAT, H. S. PÉREZ, R. S. PÉREZ, M. SEPUL-

VEDA, J. SINUR, P. SOFFER, M. SONG, A. SPERDUTI, G. STILO,

C. STOEL, K. SWENSON, M. TALAMO, W. TAN, C. TURNER, J. VAN-

THIENEN, G. VARVARESSOS, H. M. W. VERBEEK, M. VERDONK,

R. VIGO, J. WANG, B. WEBER, M. WEIDLICH, T. WEIJTERS, L. WEN,

M. WESTERGAARD, AND M. WYNN, Process mining manifesto, Lecture

Notes in Business Information Processing, 99 (2012), pp. 169–194.

[101] W. M. P. VAN DER AALST, A. ADRIANSYAH, AND B. F. VAN DONGEN,

Causal nets: a modeling language tailored towards process discovery,

in International conference on concurrency theory, Springer, 2011,

pp. 28–42.

242

BIBLIOGRAPHY

[102] , Replaying history on process models for conformance checking and

performance analysis, Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 2 (2012), pp. 182–192.

[103] W. M. P. VAN DER AALST, A. BOLT, AND S. J. VAN ZELST, RapidProM:

Mine Your Processes and Not Just Your Data, in RapidMiner: Data

Mining Use Cases and Business Analytics Applications, Chapman &

Hall/CRC Data Mining and Knowledge Discovery Series, Chapman &

Hall/CRC, 2 ed., 2018.

[104] W. M. P. VAN DER AALST, J. BUIJS, AND B. F. VAN DONGEN, Towards

improving the representational bias of process mining, in Data-Driven

Process Discovery and Analysis, Springer, 2012, pp. 39–54.

PM101 - 1.

[105] W. M. P. VAN DER AALST AND A. H. TER HOFSTEDE, Verification of work-

flow task structures: A petri-net-baset approach, Information systems,

25 (2000), pp. 43–69.

[106] W. M. P. VAN DER AALST, A. J. M. M. WEIJTERS, AND L. MARUSTER,

Workflow Mining: Discovering Process Models from Event Logs, IEEE

Transactions on Knowledge and Data Engineering, 16 (2004), pp. 1128–

1142.

[107] W. M. P. VAN DER AALST, T. WEIJTERS, AND L. MARUSTER, Workflow

mining: Discovering process models from event logs, Knowledge and

Data Engineering, IEEE Transactions on, 16 (2004), pp. 1128–1142.

[108] J. M. E. VAN DERWERF, B. F. VAN DONGEN, C. A. HURKENS, AND

A. SEREBRENIK, Process discovery using integer linear programming,

Fundamenta Informaticae, 94 (2009), pp. 387–412.

[109] B. F. VAN DONGEN, J. CARMONA, AND T. CHATAIN, A Unified Approach

for Measuring Precision and Generalization Based on Anti-Alignments,

2016.

243

BIBLIOGRAPHY

[110] B. F. VAN DONGEN, A. A. DE MEDEIROS, AND L. WEN, Process mining:

Overview and outlook of petri net discovery algorithms, in Transactions

on Petri Nets and Other Models of Concurrency II, Springer, 2009,

pp. 225–242.

[111] K. M. VAN HEE, J. HIDDERS, G.-J. HOUBEN, J. PAREDAENS, AND P. THI-

RAN, On the relationship between workflow models and document types,

Information Systems, 34 (2009), pp. 178–208.

[112] K. M. VAN HEE AND Z. LIU, Generating Benchmarks by Random Step-

wise Refinement of Petri Nets., in ACSD/Petri Nets Workshops, 2010,

pp. 403–417.

[113] K. M. VAN HEE, N. SIDOROVA, AND J. M. VAN DER WERF, Business

process modeling using petri nets, in Transactions on Petri Nets and

Other Models of Concurrency VII, Springer, 2013, pp. 116–161.

[114] S. J. VAN ZELST, B. F. VAN DONGEN, W. M. P. VAN DER AALST, AND

H. M. W. VERBEEK, Discovering workflow nets using integer linear

programming, Computing, (2017), pp. 1–28.

[115] S. K. VANDEN BROUCKE, C. DELVAUX, J. FREITAS, T. ROGOVA, J. VAN-

THIENEN, AND B. BAESENS, Uncovering the relationship between

event log characteristics and process discovery techniques, in Business

Process Management Workshops, Springer, 2014, pp. 41–53.

[116] S. K. L. M. VANDEN BROUCKE, Advances in Process Mining, PhD thesis,

Katholieke Universiteit Leuven, Leuven, 2014.

[117] S. K. L. M. VANDEN BROUCKE AND J. DE WEERDT, Fodina: A robust

and flexible heuristic process discovery technique, Decision Support

Systems, 100 (2017), pp. 109–118.

[118] S. K. L. M. VANDEN BROUCKE, J. DE WEERDT, B. VANTHIENEN, JAN,

AND B. BAESENS, Determining process model precision and general-

ization with weighted artificial negative events, Knowledge and Data

Engineering, IEEE Transactions on, 26 (2014), pp. 1877–1889.

244

BIBLIOGRAPHY

[119] J. VENABLE, J. PRIES-HEJE, AND R. BASKERVILLE, FEDS: a frame-

work for evaluation in design science research, European Journal of

Information Systems, 25 (2016), pp. 77–89.

[120] H. M. W. VERBEEK, J. C. A. M. BUIJS, B. F. VAN DONGEN, AND W. M. P.

VAN DER AALST, Xes, xesame, and prom 6, in Information Systems

Evolution, P. Soffer and E. Proper, eds., Springer, 2011, pp. 60–75.

[121] J. VOM BROCKE AND M. ROSEMANN, Handbook on business process

management 1, Springer, 2010.

[122] D. VOSS AND OTHERS, Design and Analysis of Experiments, New York:

Springer, 1999.

[123] B. VÁZQUEZ-BARREIROS, M. MUCIENTES, AND M. LAMA, Mining Dupli-

cate Tasks from Discovered Processes, in Algorithms and Theories for

the Analysis of Event Data (ATAED 2015), 2015.

[124] , ProDiGen: Mining complete, precise and minimal structure process

models with a genetic algorithm, Information Sciences, 294 (2015),

pp. 315–333.

[125] J. WANG, R. K. WONG, J. DING, Q. GUO, AND L. WEN, Efficient Selection

of Process Mining Algorithms, Services Computing, IEEE Transactions

on, 6 (2013), pp. 484–496.

[126] P. WEBER, B. BORDBAR, AND P. TINO, A Framework for the Analysis of

Process Mining Algorithms, IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 43 (2013), pp. 303–317.

[127] A. WEIJTERS AND J. RIBEIRO, Flexible Heuristics Miner (FHM), in 2011

IEEE Symposium on Computational Intelligence and Data Mining

(CIDM), Apr. 2011, pp. 310–317.

[128] A. WEIJTERS, W. M. P. VAN DER AALST, AND A. A. DE MEDEIROS,

Process mining with the heuristics miner-algorithm, Technische Uni-

versiteit Eindhoven, Tech. Rep. WP, 166 (2006).

245

BIBLIOGRAPHY

[129] L. WEN, W. M. P. VAN DER AALST, J. WANG, AND J. SUN, Mining process

models with non-free-choice constructs, Data Mining and Knowledge

Discovery, 15 (2007), pp. 145–180.

[130] I. H. WITTEN, E. FRANK, M. A. HALL, AND C. J. PAL, Data Mining:

Practical machine learning tools and techniques, Morgan Kaufmann,

2016.

[131] D. H. WOLPERT AND W. G. MACREADY, No free lunch theorems for opti-

mization, IEEE transactions on evolutionary computation, 1 (1997),

pp. 67–82.

[132] M. ZUR MUEHLEN AND J. RECKER, How much language is enough? The-

oretical and practical use of the business process modeling notation, in

Seminal Contributions to Information Systems Engineering, Springer,

2013, pp. 429–443.

246

	List of Tables
	List of Figures
	Introduction
	Motivation and challenges
	Research objective
	Research methodology
	Outline

	Overview of process mining, process discovery, decision mining and empirical evaluation
	Process mining
	Event log
	Process models
	Types of process mining and process perspectives
	Control-flow process discovery
	Decision mining

	Current evaluation approaches
	Process discovery evaluation approaches
	Challenges of process discovery evaluation
	Decision mining evaluation approaches and their challenges

	Requirements of artefacts
	Requirements for artificial model and log generation
	Requirements for process discovery evaluation procedure
	Requirements for decision mining evaluation procedure

	Conclusion

	Generating artificial event data for process discovery and decision mining evaluation
	Generating artificial Event Data methodology
	PTandLogGenerator: random model generation
	Process trees
	Define a model population
	Sample models
	Adding long-term dependencies

	PTandLogGenerator: random event log generation
	Setting Log Characteristics
	Simulating a Log from a Process Tree

	Data-flow extension
	Illustration of generating multiperspective logs
	Formal steps to generate multiperspective logs
	Illustration of automatic routing decision logic generation

	Demonstration and evaluation
	Tool implementation
	Data generation setup
	Evaluation

	Limitations and threats to validity
	Conclusion

	An integrated evaluation procedure for process discovery algorithms
	Integrated discovery evaluation procedure
	Design and use of the evaluation procedure
	The building blocks of the procedure

	Implementation
	RapidProM implementation
	Extensibility of the RapidProM implementation

	Demonstration and evaluation
	Setup of the first round of experiments
	Analysis of the results from the first experiment
	Second experiment
	Discussion of results
	Limitations and threats to validity
	Requirements

	Conclusion

	An evaluation procedure for decision mining algorithms
	A decision mining evaluation procedure
	Design of the decision mining procedure
	Adapted building blocks of the decision mining procedure

	Demonstration and evaluation
	Experiment setup
	Analysis of the results
	Discussion
	Limitations and threats to validity
	Requirements

	Conclusion

	Conclusions and future research
	Main conclusions
	Future research opportunities

	Appendix A
	Appendix B
	Appendix C
	Bibliography

