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Chapter 1

Introduction and Problem

Statement

1.1 Introduction

Combinatorial optimisation problems, a class of optimisation problems characterised

for having a finite set of solutions, comprise among others routing and timetabling

problems and have great economical relevance. This has inspired the development of

a large number of algorithms able to solve these kinds of problems. The distinction

is made between exact and approximate algorithms. Many of these combinatorial

optimisation problems are considered to be difficult to solve, a characteristic that

in the computational complexity theory is referred to as being NP-hard. Exact

algorithms that guarantee finding the optimal solution for any problem instance

could require an enormous amount of computation time to find such a solution.

Consequently, these algorithms are only applicable on small problem instances and

are computationally intractable for larger ones. Therefore, the majority of the

developed algorithms are approximate or heuristic algorithms which often provide

good solutions in a reasonable computation time without guaranteeing it is the

optimal solution (Birattari, 2009).

How effective or efficient a proposed heuristic method is, has to be assessed in

a study. Two approaches exist towards such a study: theoretical or empirical. The

former relies on deductive mathematics, while the latter is based on computational

experiments (Hooker, 1994). Although the emphasis used to be on the theory-based
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2 Chapter 1

worst-case and average-case analysis, nowadays empirical analysis has become the

dominant approach because it is very hard to analyse heuristic algorithm behaviour

analytically (Moret and Shapiro, 2001) and it provides a more clear link between

theory and practice (Johnson, 2002).

In empirical analysis, heuristic algorithm performance on some optimisation

problem is most commonly evaluated by solving the instances of one or several

popular benchmark problem sets followed by a comparison of the obtained results

with those of existing (state-of-the-art) heuristic algorithms. This type of evaluation

has a competitive focus. The objective is to present a heuristic method that is

‘better’ than current state-of-the-art methods, meaning it is able to obtain an

improved solution quality, requires less computation time to realise the same solution

quality, or it achieves a better trade-off of both measures. This competitive approach,

however, has several drawbacks. It does not allow to explain why the new method is

better (Hooker, 1995). Is it due to a new ingenious operator employed within the

algorithm? Or due to a certain combination of operators that works well? Or perhaps

due to a more efficient implementation of an existing method? Do all components

significantly contribute to the performance of the algorithm, or can certain elements

be left out, thereby possibly increasing the efficiency of the method? These are all

questions that often remain unanswered when a new method is presented. Even

though some competition between researchers might spur innovation, it has been

noted that true innovation builds on the understanding of how a heuristic algorithm

behaves, and not on proof of competitiveness (Sörensen, 2015).

This does not mean no knowledge is obtained from years of competitive experi-

mentation, but it is the efficiency of this knowledge acquisition that is questioned.

Historically, innovations in the field of metaheuristics are primarily founded on

a researcher’s experience and intuition, not on in-depth studies of how heuristic

algorithms behave. Methods like Simulated Annealing (Kirkpatrick et al., 1983), Ant

Colony Optimisation (Colorni et al., 1991) or genetic algorithms are optimisation

procedures inspired on some natural (optimisation) phenomenon — annealing in

metallurgy, navigation of ants from nest to food source, and Darwinian evolution

respectively. Similarly, the concepts of intensification and diversification, first

introduced in Tabu Search (Glover, 1989), simulate the approach an intelligent

human being would take to solve a problem and have become key components

underlying many metaheuristic algorithms (Sörensen et al., 2018). Likewise, ideas

to extend existing concepts in order to reduce, for example, the computation time
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required to obtain an acceptable quality have been successfully proposed. Granular

neighbourhoods (Toth and Vigo, 2003) and reactive schemes (Battiti and Tecchiolli,

1994) are examples of extensions to Tabu Search. All these innovations depended

on a researcher coming up with an idea that shows to be a worthwhile contribution,

with its effectiveness evaluated primarily on benchmark instances. Furthermore, the

many ideas that were tried and failed, but which may contain valuable insights, are

never reported. A detailed analysis of a heuristic algorithm in order to completely

understand how it behaves for an entire population of problem instances and how

the different elements off which it consists contribute to achieving a performance

value can lead more swiftly to ideas for new components, search strategies or perhaps

complete metaheuristic frameworks. It is a more structured and active approach

to look for innovative breakthroughs rather than having to wait for an idea to pop up.

The ultimate goal of science is to understand, not to win a “horse race” (Sörensen,

2015). This observation was already made more than twenty years ago by Hooker

(1995) who stated, “We have confused research and development; competitive testing

is suited only for the latter”. Hooker (1995) regrets the time spent on adjusting

the heuristic parameters to values that perform well on the used benchmark sets

and on developing the fastest possible code, time that he argues could otherwise be

spent on productive investigation, on learning about the problem and the algorithm

under study. A competitive evaluation methodology is useful when the objective is

to develop the fastest possible procedure for a specific environment. When the goal

is to understand how performance is obtained, to discover which elements in the

heuristic algorithm contribute to its performance and to draw conclusions that are

valid beyond the specific problem instances chosen, one has to rely on a statistical

evaluation method (Rardin and Uzsoy, 2001).

The aim of this doctoral thesis is to promote an approach to heuristic exper-

imentation that is focused on gaining insight and understanding of how heuristic

performance is established. To fulfil this aim, an evaluation methodology is proposed

based on the concepts of design of experiments and its use demonstrated through sev-

eral experimental studies. Although the proposed methodology can be applied on a

wide range of optimisation problems, in this thesis the focus is on analysing heuristic

performance for the vehicle routing problem with time windows. Therefore, a brief

introduction to vehicle routing is given in the next section.
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1.2 Vehicle Routing

Transport is a crucial sector in today’s economy and society. In the European Union

(EU) it accounts for about 5% of the total gross value and employs around 11.2

million people, 5.2% of the total workforce based on 2015 data. Freight transporta-

tion, in particular, accounts for an important share in the economic activities. The

majority of goods transported is still done by road vehicles — 49% of total EU

freight transport (The European Commission, 2017). This stresses the importance

of routing and scheduling problems.

In 1959, Dantzig and Ramser (1959) formulated the truck dispatching problem

and started a routing research field that has since spurred an enormous amount of

research work. In its basic form the vehicle routing problem (VRP) is the problem of

finding a set of routes to distribute goods from a depot to a number of customers with

the objective of minimising a total cost measure. This basic version of the vehicle

routing problem has been extended through the years by incorporating, for exam-

ple, the use of heterogeneous vehicles, multiple depots, split delivery, et cetera. One

popular extension is the vehicle routing problem with time windows (VRPTW) in

which a number of customers have to be served at minimum cost without violating

the customers’ time-window constraints and the vehicle-capacity constraints. Exam-

ple applications are newspaper delivery, food and beverage delivery and industrial

waste collection (Cordeau et al., 2007). Exact algorithms, searching for the optimal

solution, usually minimise the total distance travelled, while most heuristic methods

consider a hierarchical objective that first minimises the number of vehicles used and

then the total distance travelled. Given the high complexity of the problem, exact

algorithms are only suitable for small1 problem instances and the emphasis typically

is on heuristic solution procedures. In this thesis the focus is on the experimental

analysis of heuristic algorithms applied to the VRPTW since the importance of the

problem in many distribution systems has spurred intensive research efforts for both

heuristic and exact optimisation approaches (Bräysy and Gendreau, 2005). Yet, rela-

tively few research articles apply statistical techniques to evaluate heuristics for these

problems or seek to understand how they influence heuristic algorithm behaviour.

1According to Gendreau and Tarantilis (2010), it can be intractably hard to solve a VRP instance

optimally if it has more than 100 customers.
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1.3 Research Objectives

Experimental research on heuristic methods for optimisation problems has thus

far typically focused on improving performance results. The goal generally is

to do better than competing algorithms. A next step, in my view, is to asses

heuristic methods performance, not on their competitiveness with other methods,

but on the elements of which they consist. We want to learn, for example, if

a proposed search strategy works as hypothesised, how it can be improved, or

whether it should be abandoned for other ideas (Chapter 4). We want to know

which elements contribute most to performance and which elements worsen the

performance results and should be left out (Chapter 5). Additionally, we want to

know what influence the specific problem instance has on the performance impact

of the various heuristic elements (Chapter 3). Does a certain heuristic operator

perform equally well for all problem sizes, or does it perform differently for smaller

and larger instance sizes? In short, we want to gain insight and understanding of

how heuristic algorithm performance on a specific problem instance is established

to generate knowledge. This knowledge can be used during the design and opti-

misation process as well as the comparative analysis. It should lead to the most

efficient and effective heuristic design that is competitive for a given problem instance.

The primary objective of this thesis is to propose a statistical evaluation

framework that facilitates an experimental study that can bring insight in the

behaviour of a heuristic method on a specific problem instance. The focus is not on

comparing the performance of different algorithms, but on analysing an individual

algorithm and study the relationship between the elements of which it consists and

the performance it obtains as well as how the performance impact of these elements

depends on the specific instance of a problem that is to be solved. The aim is to

enable researchers to gain a thorough understanding of the relationship between

algorithm performance, algorithm parameters and components, and problem instance

characteristics. A parallel can be drawn with petri dish studies that are commonly

performed in microbiology. Such experimental studies are aimed at learning in a

controlled laboratory environment how tissue or individual cells react to, for example,

newly developed drugs before these are administered to human subjects in clinical

trials and approved for commercial use (Gibco, 2016). The research performed

in this dissertation, similarly, considers both a problem and solution method in a

very controlled environment to learn about their interplay before applying it in a

real-world context using the knowledge obtained from the ‘laboratory’ study.
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The proposed framework focuses on setting up and conducting a rigorous ex-

periment and subsequently analysing and interpreting the results in such way as to

obtain valid and objective conclusions. The methodology consists of an iterative

process starting with one or multiple observations that lead to questions for which

answers are formulated and verified in consecutive experimental studies, which in turn

often lead to new observations and questions. As pointed out by Box et al. (2005):

learning is advanced by iteration. How to apply the proposed evaluation framework

in different contexts, such as confirmatory analyses to explain specific performance

observations or automatic algorithm configuration in which suitable parameter values

are determined, is a secondary objective covered in this thesis.

1.4 Outline Thesis

The outline of this thesis is presented in Figure 1.1. Chapter 2 discusses the practice

of experimenting with heuristic algorithms, the common competitive approach

towards the assessment of heuristic performance results, and how it compares to the

description of an experiment as found in the literature on design and analysis of

experiments. It is elaborated what an approach focused on insight and understanding

entails and, regardless of the approach, an overview is given of the different steps to

follow when setting up an experimental study.

Chapter 3 presents a methodology to rigorously evaluate heuristic algorithms.

The methodology is based on a multilevel experimental design to efficiently study how

the different algorithm elements (i.e., parameters and components) are correlated to

performance and how the problem instance correlates with these algorithm elements.

The application of the methodology is illustrated in a case study that analyses the

performance results of a large neighbourhood search framework obtained for solving

a number of instances of the vehicle routing problem with time windows.

Chapters 4, 5 and 6 cover three different contexts in which the proposed multilevel

methodology is applied. Chapter 4 is focused on explaining results. A detailed analy-

sis is performed on one of the observed patterns in Chapter 3. Certain combinations

of operators are found to perform differently. In particular, it is observed that the

more simple operator is predicted to perform better than the operator employing a

more sophisticated logic. This counterintuitive observation sparked the question why
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the simpler operator performs better and answers are sought in the experimental

studies performed in this chapter.

Chapter 5 extends the methodology of Chapter 3 and proposes a combined

methodology that no longer considers all algorithm elements and problem instance

characteristics, but rather concentrates the analysis on those elements that have

the most important impact on the performance measure. It involves combining the

proposed multilevel methodology with a functional Analysis of Variance (fANOVA)

that provides an importance ranking of the various effects considered. Based on this

ranking a multilevel regression model is fitted including only the most important

effects, thereby reducing the complexity of the model and enabling explanatory

studies to be performed on these important effects.

In Chapter 6, the potential of the multilevel methodology for obtaining well-

performing algorithm configurations is explored. The regression analysis is used

to derive decision rules for the various algorithm parameters and components.

These decision rules take the problem instance characteristics as inputs and return

a value that optimises heuristic performance. It is studied how the performance

of these problem-specific algorithm configurations relates to the performance of a

configuration obtained with irace. The latter is an automatic algorithm configurator

tool that suggests a configuration that performs best on average across all problem

instances.

In Chapter 7, finally, the conclusions of this thesis are presented along with op-

portunities for future research.
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Introduction and Problem Statement (Chapter 1)

The Evaluation of Heuristic Algorithms (Chapter 2)

A Multilevel Methodology for Understand-

ing Heuristic Algorithm Behaviour (Chapter 3)

Explaining Performance

Differences (Chapter 4)

A Combined Method-

ology (Chapter 5)

Optimising Heuristic

Performance (Chapter 6)

Conclusions (Chapter 7)

Figure 1.1: Outline of Thesis.



Chapter 2

The Evaluation of Heuristic

Algorithms

2.1 Introduction

Heuristic algorithm performance is most commonly studied in an empirical analysis

(Bräysy and Gendreau, 2005; Gendreau and Tarantilis, 2010), acquiring information

based on evidence gathered from computational experiments. This evidence is never

absolute, but expressed as likely evidence based on probability. Since heuristics —

in particular metaheuristics — are formulated at a conceptual level, their evalua-

tion occurs through computational experimentation on a specific implementation

(Barr et al., 1995). According to the literature on experimentation, such an exper-

iment is defined as a (series of) test(s) performed while controlling for conditions

that might have an effect on the output. The aim is to observe the output and

identify the reasons for possible differences in this output when input factors change.

These reasons can be discovered by formulating hypotheses and verified through

statistical analysis of the data. The result of this analysis will give a more profound

knowledge about a certain process (Montgomery, 2012). Barr et al. (1995) similarly

state that “investigators in all fields of study perform experiments to demonstrate

theory, to uncover knowledge about a particular process, and to measure the effect

of one or more factors on some phenomena”. But, as will be discussed, such a “true”

experiment is rare in the literature on combinatorial optimisation.

This chapter reviews the practice of experimentation with heuristic algorithms and

9
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the assessment of heuristic performance (Figure 2.1). First, the common competitive

approach towards evaluating experimental results is discussed in Section 2.2. It is

followed by an introduction of the approach issued in this thesis, one that is focused

on understanding how the performance results are obtained (Section 2.3). Both ap-

proaches require a rigorous experimental set-up, but this is often lacking (Section 2.4).

Therefore, an overview of the different steps in the experimental process is provided

in Section 2.5 — as stipulated in the literature on experimentation —, and they are

discussed in the context of heuristic experimentation to enable a valid and objective

evaluation of experimental results. These steps will be relied on when setting up

experimental studies in the following chapters.

Introduction and Problem Statement (Chapter 1)

The Evaluation of Heuristic Algorithms (Chapter 2)

A Multilevel Methodology for Understand-

ing Heuristic Algorithm Behaviour (Chapter 3)

Explaining Performance

Differences (Chapter 4)

A Combined Method-

ology (Chapter 5)

Optimising Heuristic

Performance (Chapter 6)

Conclusions (Chapter 7)

Figure 2.1: Outline of Thesis — Chapter 2.



The Evaluation of Heuristic Algorithms 11

2.2 Experimentation in a Competitive Context

The purpose of a computational experiment with a heuristic algorithm can be to

show that the method is able to obtain a feasible solution for some newly defined

(variant of an) optimisation problem that is identified by a researcher. In time,

new problems become known problems and simply finding a feasible solution no

longer suffices. The goal of an experimental study shifts to showing that a presented

heuristic method is ‘better’ in some way than competing methods. So initially it

might be satisfactory to find any feasible solution, but eventually it becomes the

search for better — or at least equally good — solutions than previously found best

solutions. The goal of an experimental study with heuristic methods, therefore,

usually focuses on beating the competition for some performance measure.

The set up of an experiment involves making a number of choices for which

the researcher often has a lot of leeway. For example, the experimenter can freely

decide what computer environment is used, how to implement the algorithm, which

problem instances and algorithm parameter values to select, and how to perform

this selection, what performance measures to use, how to report the results, etc.

(Barr et al., 1995).

Regarding the assessment of performance, there are various criteria to base the

evaluation on (Cordeau et al., 2002; Bräysy and Gendreau, 2005): ease of implemen-

tation, robustness to varying problem characteristics or flexibility to cope with changes

in the constraints or objective function. Ease of implementation refers to the com-

plexity of the algorithm. The more complex it is to understand and code, the less

likely researchers are to adopt it (Gendreau and Tarantilis, 2010). Robustness im-

plies the ability of a heuristic algorithm to perform well on a wide range of problem

instances and not just a single instance (Barr et al., 1995). Flexibility relates to the

heuristic method being able to cope with various side constraints present in many real-

life applications (Gendreau and Tarantilis, 2010), for example, limitations on goods

that can be transported together or certain customers having to be visited before

others (Kilby et al., 2000). The two most frequently applied criteria for comparing

performance results are the solution quality — measured by the objective function

— and run time, along with their trade-off since the performance value a heuristic

method obtains is a compromise between a better solution quality and a shorter com-

putation time. These measures are most commonly evaluated in an experiment that

involves the computational testing of a heuristic algorithm by having it solve a set
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Table 2.1: Example comparison table

Benchmark instance (class) Heuristic 1 Heuristic 2 Heuristic 3

1

2

3

4

5 performance values

6

7

8

9

10

Computer CPU information

Run time run time values

of problem instances from one or several popular benchmark libraries. The results

of such an experiment are typically presented in a table similar to table 2.1 with the

best performance value per benchmark instance highlighted. Three relevant factors to

performance in an empirical analysis are the test environment, the problems studied

and the parameter values chosen for the algorithm.

2.2.1 Test Environment

The test environment factors that can influence the experimental results obtained

are the hardware and software used as well as the programmer (Barr et al., 1995).

Hardware concerns, among others, the number of processors used, CPU speed

and the memory that is required. This information has to be reported to enable

other researchers to set up a comparison based on similar resources. Software

details include the operating system used (e.g., Windows, Linux), the programming

language (e.g., C++, Java, Python) the heuristic algorithm is coded in, the compiler,

etc. Finally, the programmer has an impact. Not all programmers are equally

skilled at programming an algorithm and, therefore, different methods are most

likely not equally efficiently implemented. Likewise, when manually tuning the

algorithm parameters, the more experienced experimenter will probably find better

values faster than someone who is less competent in parameter tuning. It will often

be a question of how much time an experimenter wishes to invest in coding and tuning.
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It is not necessary to report all details since this will only divert a reader’s attention

from the actual experimental results. A practitioner should include the information

that is directly relevant for the conclusions drawn. All other information can be

provided through different channels or in a working paper (McGeoch and Moret, 1999;

Rardin and Uzsoy, 2001).

2.2.2 Benchmark Instances

Heuristic experiments typically solve one or several benchmark instance sets. Bench-

mark instances are computationally difficult problem instances — either randomly

generated or based on some real-world applications — which are used by researchers

to test the efficiency or effectiveness of some optimisation method (Sifaleras, 2014).

The use of these existing benchmark sets enables the comparison of results on a

by-instance basis and the calculation of the relative gap between two heuristics

(Silberholz and Golden, 2010). In the VRPTW context, the most popular bench-

mark set for comparing performance results is that of Solomon (1987). His bench-

mark of 56 problem instances each have 100 customers, a central depot, capacity

constraints, time windows on the time of delivery, and a total route time constraint.

Furthermore, a distinction is made with regard to the positioning of customers and

scheduling horizon. Other popular benchmark sets for the VRPTW are the prob-

lem instance set provided by Gehring and Homberger (1999), which is an extension

of the Solomon instances with 200, 400, 600, 800 and 1000 customers; and the real-

world based benchmark set provided by Russell (1995). The results obtained on these

instances are then compared with best-known solutions provided by other heuristic

methods. The aim is to do better in the sense of obtaining new best solutions or

reduced computation time for the same average solution value.

2.2.3 Algorithm Design Choices

An important contributing factor in this aim are the values chosen for the various

algorithm parameters. This is especially relevant for metaheuristic methods as they

often contain a large number of parameters. The set of parameter values a heuristic

method uses to solve a problem instance is referred to as a parameter setting or

algorithm configuration.

In the past parameter values were predominately determined in a time-consuming

ad-hoc way (Adenso-Dı́az and Laguna, 2006; Johnson, 2002), based on a trial-and-



14 Chapter 2

error approach, tests on a limited sample of benchmark instances or values were

quoted from the literature without any rigorous examination of their suitability in the

used context (Ridge and Kudenko, 2007). The importance of a parameter setting for

performance has spurred research efforts to find more rigorous ways of determining

these values. This has led to the formulation of the algorithm configuration problem.

The algorithm configuration problem is formalised by Birattari (2002). Given an

algorithm with a parameter space Θ, a set of problem instances I and a performance

metric C(θ) measuring the performance of the algorithm on problem instance set I

given configuration θ, the solution to the configuration problem is the configuration

θ∗ such that:

θ∗ = argmin
θ

C(θ) (2.1)

Several automated methods have been developed to solve this problem and re-

placed the manual effort with machine effort. These automatic configurators have led

to significant time savings in the development of complex algorithms, and to a more

fair comparison of multiple algorithms (Hutter et al., 2009). They are commonly di-

vided into two groups: model-free and model-based procedures. Both approaches try

to find parameter settings that perform well over a large set of problem instances.

The model-free procedures search the configuration space without relying on some

predictive model to guide the search, but on heuristic rules, randomness and simple

experimental designs (Dobslaw, 2010). Model-based procedures use information from

previously evaluated parameter settings to build a prediction model of the algorithm

configuration space and then select new candidate configurations to be evaluated in

subsequent iterations (Hutter et al., 2011).

Model-free Examples of model-free approaches are numerical black-box opti-

misation procedures such as Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) (Hansen and Ostermeier, 2001) and mesh adaptive direct search (MADS)

(Audet and Orban, 2006) that can be applied in scenarios where all parameters are

numerical. Besides these direct search methods there is relevance estimation and

value calibration (REVAC), an evolutionary algorithm based on information theory

to estimate the relevance of parameters (Nannen and Eiben, 2007). Gender-based Ge-

netic algorithm (GGA) divides the population in a competitive (directly evaluated)

and non-competitive (serving as a source of diversity) part and recombines genomes

from both parts in a crossover operator to generate new candidate configurations

(Ansótegui et al., 2009). Parametric iterated local search (ParamILS), finally, is an
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iterated local search algorithm with random perturbations and restart strategies that

can solely handle categorical and ordinal parameters (Hutter et al., 2009).

Model-based An example of a model-based approach is iterated F-Race (I/F-

Race)(Balaprakash et al., 2007). It is a racing procedure, a class of algorithms

applied in machine learning to tackle the model selection problem. Each iteration

candidate algorithm configurations are sampled from a probabilistic model and

evaluated on a set of problem instances. Candidates are discarded once they are

significantly inferior to other configurations and the surviving configurations are

used to update the probabilistic model in order to increasingly focus sampling

towards the most promising configurations. The method is implemented in the R

package irace (López-Ibáñez et al., 2016). It is a model-based approach since it

uses information from previous evaluations to select new candidate configurations

in subsequent iterations, but it does not map the dependency of a parameter

setting to algorithm performance. Model-based approaches that do fulfil this feature

belong to the more generic approach known as sequential model-based optimisation

(SMBO) and operate within the black-box optimisation problem setting (Hoos,

2011). Their development stems from the fact that the evaluation of configura-

tions is computationally demanding since the algorithm has to actually run each

configuration to know its performance. The idea behind SMBO is to reduce the

computational effort by using surrogate models that can predict how a certain

configuration will perform on one or multiple problem instances and then use these

predictions to determine which configurations are worthwhile to evaluate. The

actual evaluations are then used to update the prediction model (López-Ibáñez et al.,

2016). Sequential Parameter Optimisation (SPO) (Bartz-Beielstein et al., 2005) and

Sequential Model-based Algorithm Configuration (SMAC) (Hutter et al., 2011) are

two examples of SMBO methods relying on surrogate models. SPO is a general

framework that iteratively evaluates configurations, uses this information to build a

surrogate model — e.g., a classical regression or tree-based model — that predicts

the performance of not previously evaluated configurations. Each iteration the

surrogate model is updated based on the information obtained from the previous

iteration (Bartz-Beielstein et al., 2005). The method is implemented in the R package

Sequential Parameter Optimization Toolbox (SPOT) (Bartz-Beielstein et al., 2010).

SMAC relies on random forest models to predict the performance of configurations

and on an expected improvement criterion to select promising configurations to

be evaluated. Contrary to SPO, SMAC can handle categorical variables and opti-

misation for sets of instances (Hutter et al., 2011). It is available as a python package.



16 Chapter 2

The success these configurators achieved has also inspired a software design

paradigm called Programming by Optimisation in which programmers are encour-

aged to parameterise design choices as much as possible instead of committing to

one design alternative. This leads to a rich design space from which an automated

configurator can then determine the best design alternative for a specific problem.

The idea is to allow researchers to focus their efforts on the creative process of

thinking about, for example, new search strategies and mechanisms for problems and

use machine effort for the process of determining what works best in a given problem

context (Hoos, 2012).

All these methods have helped in achieving improved performance results and

the dominant focus, therefore, remains on boosting the performance measure. It is

not common to investigate the reasons for possible differences — better or worse —

in the observed performance. The experimental goal of understanding performance

and characterising how design choices influence heuristic algorithm behaviour is an

objective often disregarded by practitioners. It shows that a traditional combinatorial

optimisation experiment is different from an experiment as described by Montgomery

(2012). The focus is much more on winning a “horse race” for some performance

measure. As a next step, this doctoral thesis focuses on performing experimental

research that aims to provide insight and understanding in the heuristic method used

as well as the problem to be solved. The approach to such an experimental study is

discussed in the next section.

2.3 A Focus on Insight and Understanding

The description of an experimental study as given in the introduction of this chapter

(Section 2.1) summarises what is known as the scientific method or hypothetico-

deductive method, the most common description of a set of steps scientists use to

search for answers to research questions (cf. Figure 2.2) (Dodig-Crnkovic, 2002).

There are roughly four steps.

Observe An experimental investigation most frequently starts by observing some

phenomenon that sparks one or several research questions. In the context of heuristic

experimentation, observations will most likely be made after first performing one or

multiple screening experiments.
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Theory Next, the search for explanations is initiated by asking questions which

result in proposed theories that clarify what is going on. These ideas for clarifying

the observed phenomenon can be based on, for example, a review of the literature or

personal observations.

Hypothesis From these theories a set of conjectures or hypotheses are deduced that

can, if not rejected, provide an answer to the observed phenomenon. In order to test

whether or not some factor contributes to the observed phenomenon, a null hypothesis

is usually formulated stating it has no significant influence on the phenomenon while

the alternative hypothesis states it does have a significant influence.

Experiment The hypotheses are validated in controlled experiments that provide

statistical evidence whether or not the null hypotheses can be rejected. Based on

these results, the decision is made whether to reject a suggested theory or whether

different conjectures are to be formulated. If rejected, a modified or completely new

theory is formulated and the process repeated. If not rejected, the new insights ac-

quired might expose other patterns that again lead to new research questions, new

theories, hypotheses and so on. It shows that experimentation is not a one-time ef-

fort, but should be considered as an iterative process in which each iteration gains

a deeper knowledge of the algorithm, while raising questions that need to be an-

swered (Barr et al., 1995; McGeoch, 1996; Dodig-Crnkovic, 2002; Montgomery, 2012;

Bartz-Beielstein and Preuß, 2014).

2.4 Towards a More Rigorous Experimentation

Whether the experimental goal has a competitive focus or seeks to obtain a

better understanding of how heuristic performance is established, in either case, a

rigorous approach towards experimentation is important since the reproducibility

and strength of conclusions are key elements in any scientific or engineering discipline.

In order to interpret any value properly, rigorous experiment designs should be

used, along with clear reporting and explicit hypotheses which are supported by the

appropriate statistical tools. As Barr et al. (1995) point out “When an experiment’s

results can vary with the test conditions (problems solved, computer, parameter

settings), statistical methodology is the only objective approach to analysis”.
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2. Theory

3. Hy-

pothesis

4. Ex-

periment

1.

Observe

Figure 2.2: The hypothetico-deductive method.

Nonetheless, such proper practice is currently more an exception than a custom

(Ridge and Curry, 2007), even though the use of design of experiments (DOE) meth-

ods is common practice within — among others — the physical sciences. Scanning

the literature on vehicle routing, a small number of publications are found that use

either DOE techniques or statistical tools for exploring data and testing hypotheses.

These papers are listed in Table 2.2. This scarcity of papers is even more astonishing

given that the need for more scientific rigour in the operations research and heuristics

community was already appealed for many years ago. In the 1970s, Lin and Rardin

(1979) already noted that the techniques of statistical experimental design are a

basis to structure computational experiments on. In the 1980s, Golden et al. (1986)

discussed the use of statistical methods to correct the arbitrary and subjective

practice applied in empirical analysis. In the 1990s, Amini and Racer (1994) stated

that conclusions on the performance of heuristic algorithms are questionable if

the experimental data is not obtained using a statistically valid approach. Similar

appeals are made by Barr et al. (1995), Hooker (1994, 1995), McGeoch (1996),

Ahuja and Orlin (1996), Rardin and Uzsoy (2001) and Ridge and Kudenko (2006).

The topic of proper experimentation with heuristic algorithms has received

increased attention over the years, within and beyond the field of vehicle routing.

The majority of the VRP publications listed in Table 2.2 have been published after

2012. These research works rely on experimental designs — mostly a full factorial
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Table 2.2: Vehicle Routing Papers that apply DOE

Author Year Experimental design and statistical test Purpose

Abdoli et al. 2017 Fractional factorial, ANOVA Parameter setting

Assis et al. 2013 Randomized block design, Gore test Performance comparison

Coy et al. 2000 Fractional factorial, linear regression Parameter setting

McNabb et al. 2015 Cluster analysis, least squares regression Effect analysis operators

Karakatič and Podgorelec 2015 Friedman test, Nemenyi post hoc test Performance comparison

Palhazi Cuervo et al. 2014 Full factorial, mixed-effects ANOVA Identifying key elements,

Parameter setting

Rahimi-Vahed et al. 2013 Fractional factorial, Friedman test Parameter setting,

Performance comparison

Rodŕıguez and Ruiz 2012 Full factorial, ANOVA Effect problem factors

Saremi et al. 2007 Full factorial, ANOVA Parameter setting

Silva et al. 2013 Factorial design, ANOVA Performance comparison

Sörensen and Schittekat 2013 Full factorial, multi-way ANOVA, Parameter setting

paired t-test Performance comparison

Talarico et al. 2015 Full factorial, ANOVA Parameter setting

Tyasnurita et al. 2017 Fractional factorial, ANOVA Parameter setting

design — in which various combinations of parameter values are considered, followed

by a statistical test such as an Analysis of Variance (ANOVA) to verify whether

the parameter setting has an influence on the performance measure or not. Addi-

tional post-hoc tests are necessary to identify which specific values are responsible

for better performance. Beyond the field of vehicle routing, relevant papers are

Chiarandini and Goegebeur (2010), Hutter et al. (2013, 2014), Fawcett and Hoos

(2015) and Smith-Miles et al. (2014) that focus on identifying which algorithm

elements or element values contribute most to a good performing heuristic method.

Chiarandini and Goegebeur (2010) rely on mixed effects models — as in this

thesis — to distinguish the effects of algorithm parameters and problem instance

characteristics for a 2-edge connectivity augmentation problem. Hutter et al.

(2013, 2014) and Fawcett and Hoos (2015) introduce approaches for investigating

the importance of algorithm parameters. Hutter et al. (2013) identify important

parameters of algorithms for the propositional satisfiability problem (SAT), mixed

integer programming (MIP), and the travelling salesman problem (TSP) by repeated

model learning using forward selection. Hutter et al. (2014) rely on a functional

analysis of variance framework (fANOVA) to assess the relative importance of

algorithm parameters and showed that performance variability can often largely be

attributed to a small number of algorithm parameters. Fawcett and Hoos (2015)
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present an automated technique that iteratively modifies parameter settings from a

source to a target configuration in order to identify which parameter level changes

induce the largest performance differences between the two configurations for SAT,

MIP, and AI planning problems. Smith-Miles et al. (2014) extend the algorithm

selection model of Rice (1976) and focus on the problem instance characteristics that

are discriminating of algorithm performance. Their proposed methodology seeks to

identify within a defined problem instance space where an algorithm has a unique

advantage or disadvantage over other algorithms such that a recommendation can

be formulated of which algorithm is expected to perform well for which part of the

problem instance space.

Furthermore, the surgence of the previously discussed automated algorithm

configurators over the last decade, often inspired on concepts from machine learning,

has notably acknowledged the importance of a proper experimental methodology

(Birattari, 2002). Introducing a more formal procedure to determine parameter

settings compared to the tedious and error-prone trial-and-error approach (Birattari,

2009), these configurators have led to subtantial time savings in the development

of complex algorithms, and to a more fair comparison of multiple algorithms

(Hutter et al., 2009). Nonetheless, they often do not provide much insight on

why identified elite parameter configurations perform better than other ones.

SMAC, for example, relies on the machine learning algorithm random forest to

predict the performance of a certain parameter setting. While it does provide

accurate predictions, interpretation is limited to an exploratory analysis. It is

possible to deduct information on variable importance and visually analyse the

kind of relationship parameters have with a performance measure using partial

dependence plots (Jones and Linder, 2015). If a confirmatory analysis with hy-

potheses testing is to be performed on the prediction data, parametric statistical

models such as classical linear regression models are better suited. In addition,

SMAC applies a guided, and thus non-random, sequential sampling approach

for the parameter settings. This makes it uncertain whether any claims made

hold on average across the entire parameter setting space (Hutter et al., 2013).

The methodology that will be presented in Chapter 3 uses an unbiased data set

by randomly sampling parameter settings and problem instances. This is noted

as a characteristic of a good experimental design and allows valid statements to

be made for the entire configuration and problem space considered (Barr et al., 1995).

Experimenters might be reluctant towards using statistics as it requires an addi-



The Evaluation of Heuristic Algorithms 21

tional time investment and since the techniques often rely on a number of assumptions

concerning the data that might not reflect reality (Chiarandini and Goegebeur, 2010).

The lack of a proper statistical approach may result, however, in drawing conclusions

that are only valid for the observed data and cannot be generalised.

The necessary means to conduct such a rigorous experiment are provided by the

field of Design of Experiments. It offers established experimental designs and sta-

tistical analysis tools in order to collect the appropriate data and to draw valid and

objective conclusions with mathematical preciseness (Adenso-Dı́az and Laguna, 2006;

Montgomery, 2012). In the next section a review of the different steps required to set

up such an experiment are given and discussed in the context of heuristic optimisation.

2.5 The Experimental Process

The steps in the experimentation process can be roughly identified as (i) stating

the goal of the experiment, (ii) choosing the performance measures and input fac-

tors, (iii) designing and executing the experiment, (iv) analysing the results and

drawing conclusions, and finally (v) reporting the experimental findings (Barr et al.,

1995; Montgomery, 2012). Furthermore, as pointed out in the hypothetico-deductive

method in Section 2.3, experimentation is not a one-time effort, but should be con-

sidered as an iterative process in which each iteration gains a deeper knowledge of

the algorithm, while raising questions that need to be answered (Barr et al., 1995;

McGeoch, 1996; Bartz-Beielstein and Preuß, 2014).

2.5.1 Setting the Experimental Goal

The experimental goal provides guidance and focus in setting up an experiment

and should therefore be explicitly stated beforehand. The questions to be answered

should be made clear. The two distinct experimental goals have already been

highlighted previously. Rardin and Uzsoy (2001) pose it as research vs. development.

The former puts the experimental focus on gaining insight into what does or does not

work and why this is the case. These insights should not be limited to the specific

problem studied, but are transferable to other problems. The latter purpose focuses

on producing the best performing heuristic algorithm for a specific environment. This

puts details on the algorithm implementation and problem application in the center

of attention since the aim is to fine-tune these details such that the best performance

is obtained. Experimenters still spend a lot of time and effort on development issues
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rather than on characterising heuristic algorithm behaviour.

Once it is known which questions are to be answered, the appropriate performance

measures as well as problem and algorithm parameters are chosen since the analysis

will be performed on the observations of these factors and measures.

2.5.2 Performance Measures

The data collected from an experiment are the values measured for some response

variable, which should provide useful information for the objectives set in the first

step (Dean et al., 1999). The most commonly chosen performance measures for

comparing heuristic methods are the solution quality and computation time. Ideally,

the solution quality of a heuristic method is assessed by its deviation from optimality

— expressed as a percentage gap. Given multiple problem instances, an average

percentage error over all problems can then be calculated. Such a metric requires

that the optimal solution for every problem instance tested is known, which seldom

is the case. Measurement of the deviation from optimality is only possible for small

problem instances that can still be solved by exact algorithms. As an alternative,

experimenters most commonly evaluate solution quality by the deviation from

best-known solutions obtained on the problem instances of available benchmark

libraries (Silberholz and Golden, 2010).

The computational effort a heuristic algorithm requires to find superior solutions

is measured as the CPU time from initialisation until some stopping criterion is

reached. Making sure that a comparative analysis for run times is fair — a crucial re-

quirement in any comparison (Bräysy and Gendreau, 2005; Gendreau and Tarantilis,

2010) – can be an issue. First and foremost, in some cases the number of runs

or CPU time required to get the result is not reported. This makes it impossible

to conclude anything about the efficiency of methods or even start a comparison

(Bräysy and Gendreau, 2005). Furthermore, as the use of heuristic algorithms is

motivated by the trading of solution quality for reduced computation time, reporting

on run times is therefore relevant to understand how the trade-off works out for

the investigated algorithms (Johnson, 2002). Nonetheless, simply reporting total

run time is insufficient as additional implementation details are required to make

the best possible evaluation. This entails providing access to algorithm source code

enabling the experimenter to compile and run the algorithms on the same computer

system. The issue of different programming languages can be overcome through
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the use of computer run time comparison tables (e.g., Dongarra (1993)), allowing a

meaningful comparison to be made. The downside is that these run time multipliers

only provide a rough idea of run time performance (Silberholz and Golden, 2010)

and it is preferable to make comparisons within the same computer environment

(Barr et al., 1995).

Yet, an evaluation based on run time still remains troublesome for the reproducibil-

ity of results as Johnson (2002) points out. He argues that reporting the best found

solution after running the algorithm for, say, an hour does not ensure reproducibility

of results. If a different computer with a different processor or operating system, or a

more/less efficient implementation of the algorithm on the same computer is used, it is

possible to obtain solutions with different levels of quality (Xu and Kelly, 1996). This

impedes the reproducibility of any heuristic algorithm comparison since the use of a

faster machine will not only lead to presumably improved results for all algorithms,

but may also substantially change their ranking. Johnson (2002) therefore proposes

to employ a measurable combinatorial count as the stopping criterion, to make a fair

comparison that is also reproducible. This count measure can, for example, be the

number of neighbourhoods searched, the number of branching steps, etc. In this way,

run time and solution quality can be measured as a function of the combinatorial

count and this will result in a well-defined algorithm. Ridge and Kudenko (2007),

however, express concerns about this measure, because the use of a hard iteration

stopping criterion risks biasing results. Fixing the number of iterations does not im-

ply that a more difficult problem can be solved as well as an easier problem, especially

when problem instance characteristics — that are hypothesised to affect performance

— vary. The authors propose using stagnation as a stopping criterion, referring to

a number of iterations in which no solution improvement is observed. This measure

offers the reproducibility of a combinatorial count, but avoids the likelihood of bias.

It incorporates problem difficulty in the stopping criterion of the algorithm.

2.5.3 Input Factors

The input factors that are hypothesised to have an effect on the performance measure

are divided in two categories: factors characterising the problem instance to be solved

and factors belonging to the heuristic algorithm that determine how search proceeds.
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2.5.3.1 Test Instances

The problem factors or characteristics (e.g., problem size) are often a fixed list

of values as the chosen test instances usually belong to a well-known library set.

The use of existing benchmark sets allows comparisons on a by-instance basis

and calculating the relative gap between two heuristics (Silberholz and Golden,

2010), but the risk in using the same benchmark problem set over and over again,

is that the algorithm gets “fine-tuned” to obtain good results on these problem

instances. Such practice would risk producing algorithms overspecialised on a given

instance set and possibly performing much worse on other instances that differ

only slightly. Moreover, these instances are only a sample of the population and

could therefore contain patterns which might disappear in the entire population and

might lack patterns present in the population. As a consequence, developing and

optimising algorithms which outperform other algorithms for a particular sample

of instances, might overfit the sample. In that case, the results are not necessarily

generalisable to instances not observed in the sample (Birattari, 2009). Hence, a

heuristic algorithm that performs well on a set of standard benchmark problems

instances might not perform well on other instances (Bertsimas and Simchi-Levi,

1996). This issue of a lacking robustness can be resolved by using an independent

second problem instance set, the test set, which produces an unbiased performance

estimate. In addition, a problem instance generator could be used to randomly

produce a new set of instances for each evaluation performed. Birattari (2009)

prefers the latter approach whenever real-world instances are not available. Such

a generator should be able to produce large problems instances such that optimal

solutions cannot be calculated in reasonable run times. It also gives the experimenter

control over the problem characteristics, enabling the creation of a diverse set of

instances covering all parts of the problem space (Rardin and Uzsoy, 2001). It is

important to provide others access to the developed problem instances or even to the

instance generator in order to make comparisons easier (Silberholz and Golden, 2010).

The use of the same benchmark problem sets over and over again has also long

ignored the importance of the problem instance characteristics for optimising heuris-

tic performance. In machine learning Rice (1976) formulates the algorithm selec-

tion problem and acknowledges the no-free-lunch theorem by Wolpert and Macready

(1997) that there is not a single best algorithm for all problem instances. This re-

search area focused on identifying the strengths and weaknesses of algorithms by

examining regions of the problem instance space where algorithms perform respec-
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tively strong or weak and on identifying the characteristics relevant to problem in-

stance difficulty (Smith-Miles and Bowly, 2015). Smith-Miles and Lopes (2012) and

Shukla et al. (2013) apply it for combinatorial optimisation problems. Shukla et al.

(2013), for example, formulated an efficient frontier for a portfolio of algorithms tar-

geted at minimising computational cost and maximising solution quality for a class

of instances of the vehicle routing problem with stochastic demand.

2.5.3.2 Parameterised Design Choices

The algorithm factors or parameters (e.g., stopping criterion, move-generating

operator) are typically more freely controlled by the experimenter. The search

for a performance-optimising set of parameter values, referred to as the algorithm

configuration problem, has already been discussed in Section 2.2.3. It is still not

uncommon to tackle this issue based on trial-and-error, testing on a limited sample

of benchmark instances or quoting from the literature without any rigorous exam-

ination of their suitability in the used context instead of some rigorous statistical

procedure (Ridge and Kudenko, 2007). Such work method gives rise to several issues.

Information is seldom given on what human and machine resources are used for

tuning the algorithm. This is nonetheless important information when comparisons

are made with alternative algorithms. A simpler heuristic could, for example, already

have been run multiple times while the more complex heuristic was still in the

phase of ad-hoc parameter tuning. A second issue involves the misrepresentation

of algorithm potential when parameter tuning is not performed in a clearly defined

and methodical way. Even small adjustments in the parameter tuning can lead to

large shifts in performance (Ridge and Curry, 2007). The ad-hoc approach in setting

parameter values makes it difficult to estimate the robustness of proposed algorithms

to changes in problem characteristics. A heuristic algorithm that works well on a set

of standard test problems does not necessarily perform well on any particular data

set and the resulting algorithm is usually extremely sensitive to changes in the data.

Automated algorithm configurators can provide clarity on these issues. However,

careful tuning of an algorithm to a specific problem set, can lead to unfair compar-

isons on these instances. It is recommended to pick a representative subset to train

parameters on, the training set, and use the complementary subset, the testing set,

for testing and comparing metaheuristics. This will avoid overfitting the algorithm

to a particular data set (Silberholz and Golden, 2010). The configurator irace, for

example, applies this strategy.
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2.5.4 Choice of Experimental Design and Execution of Exper-

iment

The field of Design of Experiments (DOE) provides established experimental designs

and statistical analysis tools in order to collect the appropriate data and to draw valid

and objective conclusions with mathematical preciseness (Adenso-Dı́az and Laguna,

2006; Montgomery, 2012). The choice of experimental design relates to determining

the randomisation to apply to decrease possible bias, the number of replications to

run, and whether blocking should be applied to prevent any undesired variability

from nuisance factors. It is also important to keep the experimental goal in mind

(Montgomery, 2012). Desirable characteristics of a good experimental design to test

heuristic methods are – according to Barr et al. (1995) — unbiasedness, realisation

of the experimental goals, clear demonstration of process performance, exposure of

causes for performance, a justifiable rationale, generation of supportable conclusions,

and reproducibility. Factorial or latin-squares are examples of experimental designs

that are able to produce results in line with the aforementioned characteristics.

2.5.5 Analysis of Results

After execution of the experiment, the collected numerical data is to be converted

into information through analysis and interpretation. Data analysis should rely on

statistical methods to ensure objective results and conclusions. The experimental

goals formulated at the start of the experimental process should be addressed and

the questions posed are to be verified through hypothesis testing and estimation

of confidence intervals. These questions can range from “Does method A obtain a

better average solution quality than method B?” to “Which value(s) for algorithm

parameter A works best on average on instance i and why?”. In the latter case it

can be useful to formulate empirical models to investigate the relationship between

performance and the relevant input factors. Further, it is always helpful to visualise

experimental results in plots. The availability of software programs facilitates this

data analysis process (Montgomery, 2012).

It is important to keep in mind that statistical methods do not prove the causal

relationships between input factors and performance, but they do provide indications

of reliability and validity of results. It can be calculated how much confidence can be

conferred to conclusions or what the likely error is. Again, statistical methods bring

objectivity to reported findings and lead to sound conclusions (Montgomery, 2012).



The Evaluation of Heuristic Algorithms 27

The analysis and interpretation of experimental results might expose previously

unobserved phenomena that spark new research questions for which answers are

sought in new experiments. As mentioned, experimentation is not a one-time ef-

fort, but should be considered an iterative process in which each iteration gains a

deeper knowledge of the algorithm, while raising questions that need to be answered

(Barr et al., 1995; McGeoch, 1996; Bartz-Beielstein and Preuß, 2014).

2.5.6 Reporting Results

In this final step of the experimental process the scientific merit of the experiment

should be argued by providing sufficient information that convinces the reader of the

validity of the conclusions. A proper reporting is also essential for the reproducibility

of results. This includes presenting information on how the experiment is conducted

(e.g., computing environment), sources and characteristics of problem instances,

significance and variability of result values, and sharing algorithm code or at least

a sufficiently detailed description of the implementation (Rardin and Uzsoy, 2001).

The latter does not need to be included in a research paper, but can be made available

in, for example, an online repository. Furthermore, it is equally important to report

possible negative results that are obtained next to positive results as these may

point out, for example, specific types of problems on which the algorithm performs

a lot worse than on others (Barr et al., 1995). In practice, however, negative results

are rarely reported (Hooker, 1994; Smith-Miles and Bowly, 2015). Whenever new

best solutions are found, they will be reported as a victory of the algorithm. Yet,

when results are worse the argumentation often focuses on how small the deviations

are from the best-known solution or results are possibly not even published. The

primary reason for this lack of negative results in reporting is probably because they

are unattractive to publish and hard selling points for a research paper that seeks

journal publication (Hooker, 1994).

Another issue in reporting is that often only the best results obtained during

multiple executions are given. When algorithms contain random elements, however,

each execution for the same problem instance will provide different results. A best

found solution is in such a situation less probable to be reproducible than an average

since a best solution is a sample from the tail of a distribution. Moreover, such ‘best

solutions’ are usually reported with the run time of a single algorithm run, instead

of the cumulative number of runs needed to obtain this ‘best solution’ (Johnson,
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2002). Therefore, only average results based on multiple executions would be a good

basis for the comparison of non-deterministic methods, supported with additional

measures on the distribution of results, such as minima, maxima and standard

deviations. It occurs nonetheless too often that only the best result is reported

rather than an indication of the central tendency of the observations (Johnson, 2002;

Birattari and Dorigo, 2007).

The reporting of results forms the concluding step in the experimental process.

The presented set of steps offer a researcher guidance in setting up and conducting a

rigorous experimental analysis. This chapter discusses them in the context of heuristic

optimisation. A more general and detailed discussion can be found in various books

on design and analysis of experiments, such as Box et al. (2005) and Montgomery

(2012). The practice of rigorous experimentation contributes in improving the design,

optimisation and comparative analysis phase of heuristic algorithms.

2.6 Conclusion

Heuristic experimentation typically has a competitive focus, methods rivalling with

each other for the top spot in the horse race. Little research has been conducted

in which an experiment is set up to find out which elements operating within the

heuristic algorithm actually contribute to performance or what the reasons for ob-

served performance differences are. It is a research gap this doctoral thesis aims to fill.

The obtained insights and knowledge from the analysis can be useful in the

design, optimisation and comparison of heuristic methods. In the design phase

insights should lead to the inclusion of only those elements that are crucial to its

performance and exclude non-essential elements that could lead to inefficiencies.

Further, the insights are also useful when optimising existing heuristic algorithms,

as the deployment of these methods often involves selecting appropriate values for a

multitude of algorithm parameters. It is shown that applying a rigorous procedure

to determine parameter values results in a better performing heuristic algorithm

compared to parameter values that are determined using a trial-and-error approach

or limited testing (Birattari, 2009). Finally, an algorithm with an optimal setting of

its parameters can be compared against other heuristic methods. The comparative

analysis usually relies on widely used benchmark problem sets. As mentioned in

Section 2.2.2, the popularity of these instances makes it easier to compare different
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algorithms, but the risk is that the algorithm gets overfitted to the specific problem

set. The comparison of different methods on particular benchmark sets is also

usually done without the use of the proper techniques necessary to make these

comparisons statistically valid. Such techniques are nevertheless necessary to be able

to evaluate whether any observed differences in performance are due to differences in

the algorithms, or to chance.

In the next chapter a statistical evaluation framework is proposed for analysing

the relationships between algorithm parameters, problem instance characteristics and

heuristic performance. The framework is model-based, works on an unbiased data

set, takes into account the problem instance influence and enables the formulation

and validation of hypotheses. It shares the advantages of SMAC, a model-based

automatic algorithm configurator. The use of models enables identification of

possible correlations between parameter settings and algorithm performance. They

allow interpolation of performance between parameter settings, extrapolation to

unseen regions of the parameter space and quantification of the importance of each

parameter, as well as of parameter interactions (Hutter et al., 2011). In addition, an

unbiased data set is used by random sampling parameter settings and problem in-

stances, in line with the guidelines for setting up a good experimental design, enabling

valid statements to be made for the entire configuration and problem space considered.

In this doctoral thesis the framework’s use for the design and optimisation of

heuristic algorithms is shown. It is applied to identify and explain algorithm elements’

correlation with performance such that suitable design choices can be made given the

problem instance to be solved (Chapters 3 to 5). A second application is to optimise

heuristic performance by selecting appropriate parameter values (Chapter 6).
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Chapter 3

A Multilevel Methodology for

Understanding Heuristic

Algorithm Behaviour

3.1 Introduction

This chapter1 introduces the statistical framework that is used throughout this

thesis for generating and analysing experimental data (Figure 3.1). It is summarised

in Figure 3.2. First, a data set of scenarios is generated, with a scenario defined

as a combination of a certain problem instance with a certain parameter setting.

A parameter setting is interpreted as a set of values and included operators. It is

common for the algorithm parameters to be under control of the designer while the

characteristics of a problem instance to be solved usually are not. In the proposed

framework, however, both groups of factors are under the experimenter’s control.

The data set is created according to a two-phase sampling procedure in which

first a number of problem instances are randomly generated and then a number of

parameter settings are randomly defined for each problem instance. This results in

the formulation of a multilevel experimental design (Section 3.2). The algorithm

runs each scenario returning a desired performance measure. The scenarios with per-

formance results are analysed by fitting a multilevel regression model (Section 3.3).

1This chapter is based on the paper: Corstjens, J., Depaire, B., Caris, A., Sörensen, K., in

review. A multilevel evaluation method for heuristics with an application to the vrptw. Manuscript

submitted for publication.
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From the regression output, the relationships between performance, the algorithm pa-

rameters and the problem instance characteristics can be investigated and interpreted.

Introduction and Problem Statement (Chapter 1)

The Evaluation of Heuristic Algorithms (Chapter 2)

A Multilevel Methodology for Understand-

ing Heuristic Algorithm Behaviour (Chapter 3)

Explaining Performance

Differences (Chapter 4)

A Combined Method-

ology (Chapter 5)

Optimising Heuristic

Performance (Chapter 6)

Conclusions (Chapter 7)

Figure 3.1: Outline of Thesis — Chapter 3.

The methodology is applied in a case study (Section 3.4) that examines the per-

formance results obtained when solving instances of the vehicle routing problem with

time windows (VRPTW) using a large neighbourhood search (LNS) algorithm. The

aim is to identify how the various LNS parameters impact the obtained VRPTW

solutions, positively or negatively, and how these effects vary across different parts of

the problem space. In this chapter the first steps of the hypothetico-deductive pro-

cess (Section 2.3) will be performed, i.e. looking for patterns in the performance data

and start formulating hypotheses that might explain them. The remaining steps are

treated in Chapter 4 where the focus is on explaining one of the observed patterns.
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Create Data Set

of Scenarios

Run Algorithm

Fit Multilevel

Regression Model

Analyse & In-

terpret Results

1. Define population of problem instances
2. Randomly generate problem instances
3. Define domain of algorithm parameters
4. Randomly define parameter settings (per problem instance)

Run each scenario & measure performance

Which algorithm parameters to include?
For which parameters to investigate problem instance influence?

Figure 3.2: Diagram of Multilevel Methodology.

3.2 Experimental Design

The aim of the proposed framework is to expose how the various algorithm parame-

ters relate to performance and how the problem instance influences the performance

impact of the algorithm parameters. In order to be able to study these relationships

effectively many different combinations of parameter settings and problem instances

have to be analysed. A way of reducing the number of combinations and thereby

the computational effort required without losing statistical power is by introducing

a hierarchical structure in the data, i.e., testing several different parameter settings

on a single problem instance such that it is clear that any performance differences

observed are due to the algorithm parameters and not due to the problem instance.

Doing this for multiple problem instances enables the exposure of the problem in-

stance influence. Therefore, the methodology relies on multilevel models to efficiently

study how effects vary by the group (or in this case problem instance) they belong

to. These types of models are regularly applied in social research to investigate how

individuals interact with the social contexts they belong to. For example, some

research may focus on investigating the nationwide test scores of pupils. Individual

skill levels will have an important effect on the obtained score, but since pupils attend

specific schools, this might also have an influence (e.g., one school might have a

better math teacher) (Hox et al., 2010). In the context of heuristic experimentation,
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Table 3.1: Multilevel Experimental Design

Instance Characteristics Algorithm Parameters

Scenario i X1 X2 ... Xp Z1 Z2 ... Zk

1 0.5 10 ... 0 0.2 12 ... 0

2 0.5 10 ... 0 0.4 5 ... 1

3 0.5 10 ... 0 0.9 15 ... 1

4 0.5 10 ... 0 0.9 6 ... 0

5 1.2 8 ... 1 0.6 10 ... 1

6 1.2 8 ... 1 0.1 1 ... 1

7 1.2 8 ... 1 0.5 5 ... 1

8 1.2 8 ... 1 0.2 3 ... 0

... ... ... ... ... ... ... ... ...

it is similarly reasoned that the performance impact of, for example, a heuristic

operator might depend on the specific problem instance to be solved and only has

a beneficial effect on performance when the problem size is large (e.g., more than

300 customers) or it is better at coping with tight time windows than other operators.

The chosen multilevel experimental design considers two levels. First, the popula-

tion of problem instances is defined by specifying the probability distributions (e.g.,

uniform, normal, ...) for different problem instance characteristics (e.g., problem

size, time window width, vehicle capacity, customer demand, service time, ...). Next,

from this population, a random sample of artificial instances is drawn. On a second

level the algorithm parameters are considered. Likewise, probability distributions

are specified for the different algorithm parameters. Multiple parameter settings will

then be created by randomly selecting values and components. The problem instance

characteristics and algorithm parameters are further discussed in Sections 3.4.2 and

3.4.3.

An illustration of a multilevel experimental design is given in Table 3.1. Each

randomly generated problem instance is solved by a heuristic with a fixed number

of randomly chosen parameter settings. Variables X1 to Xp represent the different

problem instance characteristics and variables Z1 to Zk represent the different algo-

rithm parameters. For scenario i going from one to four the values for the problem

instance characteristics remain the same while the values for the algorithm parame-
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ters change. In other words, four different parameter settings are tested on the same

problem instance. For scenario i going from five to eight a second problem instance

is defined with again four different parameter settings for this second instance. Each

row in the table represents a unique combination of problem instance characteristics

and algorithm parameter values, and is referred to as a scenario.

3.3 Regression Model

The analysis of the multilevel design is performed by relying on regression models,

to obtain complete insights over the full range of algorithm parameter values and

problem instance characteristics. These models have the added benefit over classical

ANOVA — the common analysis approach — that statements can be made for

the complete range of values. Classical ANOVA, on the other hand, is limited to

categorical variables and therefore limits insights into performance to the algorithm

parameter levels that are measured. Further, the multilevel data structure in

Section 3.2 demands a multilevel regression analysis since it violates the assumption

of independent error terms made by traditional regression analysis. Performance

observations for parameter settings on the same problem instance are expected to be

more similar than observations for parameter settings on different problem instances.

This means that individual observations are not completely independent and might

cause problems when using standard statistical tests, which rely on the assumption

of independent error terms. The violation of this assumption could lead to inaccurate

statistical estimations due to biased (i.e., underestimated) standard errors that

result in spuriously significant results (Hox et al., 2010). Classical regression models

including interaction terms also do not allow the inclusion of both problem-level

indicators (specifying the problem instance) as well as problem-level predictors (i.e.,

the characteristics defining a problem instance, e.g., number of customers) because

this would cause collinearity of the predictors. Therefore a multilevel regression

analysis is applied that takes the hierarchical structure of the data into account and

that provides a clear model that accounts for both individual- and group-level effects.

In theory, a multilevel model could be fit using only a single parameter setting

per problem instance, but as this could lead to imprecise estimations, multiple

parameter settings are included (Gelman and Hill, 2006). In social research, there

are some rules of thumb to be found regarding the sample size, depending on the

interest of the experimenter. If the interest is mostly in the estimates that do not
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vary per group, a ‘30/30’ rule is a good guideline, i.e., 30 groups with 30 individuals

per group (Hox et al., 2010). However, if one is interested in cross-level interactions,

for example, interactions between algorithm parameters and problem instance

characteristics, a ‘50/20’ rule is suggested. Even more groups are preferred if the

accuracy of variance and covariance estimates is important, leading to a ‘100/10’ rule

(Busing, 1993; Van der Leeden and Busing, 1994; Hox et al., 2010). All these rules

account for the computational cost when collecting data and therefore decrease the

number of individuals per group when the number of groups is increased (Hox et al.,

2010). The general conclusion is that the number of groups seems to be more

important than the number of individuals per group (Maas and Hox, 2005). The

analysis in Section 3.4 considers 200 problem instances, so this is well above the

suggested minimum numbers in order to have accurate estimates.

Similar to classical regression, multilevel regression typically relies on a number

of assumptions. The residual terms are assumed to be independent — which is

guaranteed through the multilevel design — and to follow a normal distribution.

The latter is considered to be the least important assumption and Gelman and Hill

(2006) even advise against testing this assumption. The third and final assumption

of equal error variance states that the residual terms should be unrelated to any

variable and is verified by plotting the residuals.

The multilevel design in Table 3.1 is translated into the following multilevel re-

gression model. The general formulation below considers all variables as numerical,

but algorithm element variables can also be boolean to reflect the decision on whether

to activate an algorithm component or not, or can be categorical. Since the aim is to

show how to formulate a multilevel regression model, no non-linear effects or variable

interactions (within the same level) are included in order to focus on the multilevel

aspect. The regression model used for the analysis in Section 3.4.4 does consider

non-linear effects and variable interactions.

Yi = αj[i] +
∑

k∈K

βkj[i]Zki + ǫi (3.1)

αj = µα
0 +

∑

p∈P

µα
pXpj + ηαj (3.2)

βkj = µ
βk

0 +
∑

p∈P

µβk
p Xpj + η

βk

j ∀k ∈ K (3.3)

with
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i ∈ I scenario, a combination of a certain problem instance with a certain

parameter setting

j ∈ J problem instance

k ∈ K algorithm parameter; associated variables are Zki

Zki variable for algorithm parameter k in scenario i

p ∈ P problem instance characteristic; associated variables are Xp

Xpj variable for problem instance characteristic p in problem instance j

j[i] index variable to code problem instance membership (j[i] = j), e.g.,

j[90] = 5 means the 90th scenario involves problem instance 5

Yi objective function value of scenario i

αj[i] varying regression intercept, representing the objective function value

given scenario i and problem instance j when Zki = 0 ∀ Zki

µα
0 global intercept value

βkj[i] varying effect of algorithm parameter k on Y given scenario i and

problem instance j

µ
βk

0 mean effect of algorithm parameter k on Y

µβk
p effect of problem instance characteristic p on the coefficient β of algo-

rithm parameter k

ηj error at the problem instance level and is assumed to be ∼ N(0,σ2)

ǫi error at the parameter setting level and is assumed to be ∼ N(0,σ2
e )

Equation (3.1) represents the regression model at the parameter setting level and

estimates the impact of the algorithm parameters (Zk) on the objective function

value Y (e.g., total distance covered for a routing problem) as expressed by the

regression coefficients (the β’s). The α coefficient in this equation represents the

regression intercept and is defined as the expected objective function value when

all included predictor variables (i.e., the Z variables) are set equal to zero. If the

parameters that are represented by the Z variables cannot be zero, the intercept

has no meaningful value. This does not have to be an issue since the researcher is

interested in the relationship between the Z variables and the Y variable, and the
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regression intercept does not provide information on this relationship. Nevertheless,

a meaningful value for the regression intercept in such a scenario can be obtained

by centring the Z variables on their mean value such that, for example, Z1 = 0

corresponds to the mean value for parameter 1 and the regression intercept can be

interpreted as the expected objective function value when the algorithm parameters

are at their mean value. The analysis in Section 3.4 will mean centre all numerical

variables. The β coefficients quantify the change in the objective function value Y

when the associated Z variables change by one unit.

Equations (3.2) and (3.3) represent the regression models at the problem instance

level and measure the influence of the problem instance characteristics (Xp) on

the intercept α and the performance impact the algorithm elements have (i.e., the

β’s). The multilevel model thus contains the algorithm parameters at the lowest

level — the parameter setting or observation level — and are structured within a

certain group or, in this case, problem instance level, where the problem instance

characteristics are included. The coefficient µα
0 in equation (3.2) represents the global

intercept value when the problem instance characteristics are fixed at zero (i.e.,

Xp = 0). Similar to the algorithm elements, a zero value for these characteristics

(e.g., number of customers) is not meaningful and by mean centring these variables

µα
0 can be interpreted as the expected objective function value for an average problem

instance and with the algorithm parameters at their mean value. Likewise, µβk

0 in

equation (3.3) is the expected effect of parameter k on the objective function value

given an average problem instance. The µp coefficients quantify how αj and βkj

change when the associated Xp variables change by one unit (e.g., when an additional

customer has to be served).

Note that not all algorithm element coefficients (the β’s) need to be modelled as

a varying or random effect, but can also be modelled as having a constant impact

across all problem instances, also known as a fixed effect. In this case the β coefficient

will not be determined by a regression model at the problem instance level.

The set of equations (3.1) to (3.3) can also be re-expressed in a single regression

equation by substituting (3.2) and (3.3) in equation (3.1). Equation (3.5) shows

how the moderating effect of the Xp variables (at the problem instance level) on the

relationship between the algorithm parameters (Zk) and the dependent variable Y

(at the parameter setting level) is expressed as a cross-level interaction in a single
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equation version of the model.

Yi = [µα
0 +

∑

p∈P

µα
pXpj[i] + ηαj[i]] +

∑

k∈K

[µβk

0 +
∑

p∈P

µβk
p Xpj[i] + η

βk

j[i]]× Zki + ǫi (3.4)

Or

Yi =[µα
0 +

∑

p∈P

µα
pXpj[i]] + [

∑

k∈K

µ
βk

0 × Zki +
∑

k∈K

∑

p∈P

µβk
p Xpj[i] × Zki]+

[ǫi + ηαj[i] +
∑

k∈K

η
βk

j[i] × Zki]
(3.5)

This regression model allows us to analyse how a single algorithm parameter has

an impact on performance, under the influence of the problem instance characteris-

tics. The focus is not on specific problem instances or particular algorithm parameter

values. Instead the interest lies in the whole population of instances and value ranges.

The aim is to gain a better understanding of how an algorithm parameter or compo-

nent works and for which problem instance characteristics it performs well or not.

3.4 Experimental Analysis

In this section the statistical evaluation framework is illustrated on a case study that

is introduced in Section 3.4.1, followed by a description of how the problem instances

used in the experiments are generated (Section 3.4.2) and a discussion of the heuristic

algorithm of which it is aimed to gain a better understanding (Section 3.4.3).

3.4.1 Case

An analysis is performed on the experimental results of a large neighborhood search

(LNS) algorithm run on a number of instances for the vehicle routing problem

with time windows (VRPTW). All experiments are performed on Intel Xeon E5-

2680v2 CPUs (2.8 GHz, 25 MB level 3 cache) with 20 GB of RAM per core under

Red Hat Enterprise Linux ComputeNode release 6.4 (Santiago), 64 bit. These re-

sources are available from the infrastructure of the Flemish Supercomputer Center

(www.vscentrum.be).

3.4.2 Problem Instance Generation

A problem instance generator is developed to create a desired number of artificial

VRPTW instances. The instances provided by known benchmark problem sets, such

www.vscentrum.be
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as the Solomon (1987) instances, are not used due to the previously (Chapter 2)

mentioned concerns of overfitting and often unknown probability distributions of the

characteristics of these instances.

The random generation of test instances enables proper statistical statements to

be made about the experimental results. By applying a valid experimental design

and statistical analysis, inference from a sample to all possible problem instances

producable by the instance generator can be made (Lin and Rardin, 1979). Random

sampling is preferred over some form of guided sampling as the interest of this

research lies in investigating the entire problem instance space instead of focusing on

mapping a small part of this area for which good performance measures are obtained.

In this case, validity is more important than efficiency (Brus and De Gruijter, 1997).

Rardin and Uzsoy (2001) point out the conveniences of using randomly generated

problem instances. A properly designed instance scheme is able to produce a diverse

population of instances since the researcher has complete control over the problem

instance characteristics. The benefit of this diversity is that parts of the problem

space are included that may not be expressed in available real data or benchmark

problem sets. A well-documented generator also creates clarity on all problem

instance characteristics, which may not be the case in existing benchmarks.

Some risk exists when using randomly generated instances. The design of the

problem instance generator should ensure that the instances are sufficiently difficult

and representative for the kind of problems the researcher aims to solve. Moreover,

the question of which values to test needs to be answered. These risks are accounted

for in the selection of the value ranges which are discussed in the next paragraphs.

Whether a problem instance generator can produce problem instances that are also

realistic is a research question on its own and is beyond the scope of this thesis.

A possible approach in future research might be analysing some realistic data set

provided by one or multiple companies to find indications of whether or not the

assumed probability distributions for each of the instance characteristics correspond

with reality.

The characteristics for which the combined values constitute a single problem

instance are listed in Table 3.2. These values are partly based on the characteristics

of the instances in the problem set of Solomon (1987). His representative benchmark

set consists of problems containing one hundred customers, a central depot, capacity

constraints, time windows on the time of delivery, and a total route time constraint.
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All these features are included in the scheme. Not all values are determined randomly,

some are kept constant for simplicity. The number of vehicles available is chosen

to equal the number of customers in order to guarantee feasibility of the problem

instance. The capacity of each vehicle is arbitrarily fixed at 150 units. The depot is

also determined to be open during a fixed time window.

Table 3.2: Problem Instance Characteristics

Characteristic Type Value Ranges

Number of Customers Integer U[25, 400]

Capacity Vehicle Integer 150

x/y-coordinates Customer Integer U[0,500]

Demand Customer Integer U[10,50]

Service Time Customer Integer TRIA(min,max)

min∼U[10,30]

max∼U[30,50]

Time Window Depot Integer Start = 0; End = 900

Time Window Customer

- Time Window Centre Integer U[0 + Travel Time, 900 - Travel Time - Service Time]

- Time Window Width Integer TRIA[min,max]

min∼U[20,50]

max∼U[50,80]

- Start Centre - 0.5*Width

- End Centre + 0.5*Width

Run Time Integer TRIA(60,1800)

The problem instance characteristic values that are determined stochastically

are either drawn from a uniform distribution or from a (symmetric) triangular

distribution. The value ranges are given in Table 3.2. Unlike Solomon’s instances,

clustered or semi-clustered customers are not considered in order to limit the number

of characteristics under investigation in this example. This can however, be easily

incorporated in the generator. The service time for each customer is drawn randomly

from a symmetric triangular distribution with a minimum and maximum value

drawn from a uniform distribution. A triangular distribution is chosen, because the

assumption is made that the time necessary to unload goods is the same at every

customer. The time window constraints are constructed in a similar way as for the

Solomon benchmark set. The maximum CPU time the algorithm is allowed to run
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on the problem instance is defined as a problem instance characteristic and not

as an algorithm parameter since a context in which a problem instance has to be

solved within a certain time frame is assumed. This makes it typical for the problem

instance and not a parameter that can be set to obtain the best performance results.

Further assumptions made are that the triangle inequality holds, the travel cost

between two nodes is the same in both directions (i.e., symmetry), and the common

assumption of constant speed (Cordeau et al., 2007) is made so that distances, travel

times and travel costs have the same proportions.

In Appendix A more details are given on the generated problem instance sample

as well as the Python script.

3.4.3 Large Neighborhood Search

The heuristic algorithm under investigation is a simplified version of the Adaptive

Large Neighbourhood Search (ALNS) algorithm developed by Pisinger and Ropke

(2007). This popular heuristic method is applied in literature to multiple variants

of the vehicle routing problem. What makes the ALNS a very interesting algorithm

to investigate is the fact that it is a generic solution method with many algorithm

parameter choices that can be analysed for their impact on performance.

The ALNS is based on a local search framework, e.g. simulated annealing as in

the implementation used here. After constructing an initial solution, the algorithm

iteratively generates a new solution by removing and reinserting customers based

on a destroy and repair neighbourhood, randomly selected from a set of destroy

and repair neighbourhoods. A candidate solution that improves upon the last

accepted solution is always accepted, but if the candidate solution is worse, an

acceptance probability is calculated based on the size of the deterioration and the

likeliness to accept worse solutions. This process is outlined in lines 5 to 14 of

Algorithm 1 and is repeated until some stopping criterion is met. The adaptive

mechanism operating within the ALNS adjusts the weights of the destroy and

repair neighbourhoods based on their past performance. The more an operator has

contributed to finding a better solution, the greater the probability it will be chosen

in future iterations. Finally, the algorithm has a two-stage approach that first seeks

to minimise the number of vehicles by iteratively removing one route and scheduling

the customers from this route into the remaining ones. If the algorithm is no longer
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able to find a solution that can serve all customers, it continues with the last found

feasible solution. A second phase is targeted at minimising the total distance travelled.

When planning experiments it is recommended to start small

(Lawson and Erjavec, 2016). Therefore, the analysis is performed on a simpli-

fied version of the algorithm. The adaptive mechanism that updates the weights

of the operators is removed and all operators are assigned an equal probability of

being selected each iteration. In other words, in this experimental study a Large

Neighbourhood Search (LNS) algorithm is considered. The number of operators

is also scaled down. The set of destroy heuristics is limited to random, worst and

related removal. Random removal is the simplest destroy operator and removes q

randomly selected customers. Worst removal removes customers with the highest

cost, while related removal looks for customers that are in some way related to each

other (e.g., in terms of distance as in Pisinger and Ropke (2007)) and therefore easy

to interchange. The q number of customers to remove is determined randomly each

iteration and varies between 10% and 50% of the total number of customers. The

set of considered repair heuristics are basic greedy search and regret-2. The greedy

operator inserts customers in the cheapest route, while regret-2 looks ahead by also

accounting for the second cheapest route. All operators as well as the remaining

algorithm parameters are listed in Table 3.3. Pisinger and Ropke (2007) use a max-

imum number of iterations as a stopping criterion. As mentioned in the discussion

of the problem instances (Section 3.4.2), a limited computation time is considered to

solve a problem instance and, therefore, this value is applied as a stopping criterion

for the algorithm. It is arbitrarily determined that 20% of this maximum run time is

assigned to the vehicle minimisation phase. The pseudocode is given in Algorithm 1

and the implementation is available on https://github.com/corstjens/lns.git.

The determinism parameter serves as an input for the destroy operators worst

and related removal. It is a measure of the amount of randomness involved in the

selection of customers to remove from a solution. The higher this value, the more the

selection is based on the ranking established in these operators. For worst removal, a

high determinism value means removing customers with a high cost, while for related

removal it means removing customers that are close to each other. Shaw (1998), the

author who introduced the related removal operator, found that values less than 3 and

greater than 30 performed poorly, therefore the interval used here takes 30 as an upper

bound. This initial range of values can later be altered if analysis results indicate a

wider range should be considered. The noise parameter controls the fraction of noise

https://github.com/corstjens/lns.git
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Algorithm 1 Large Neighbourhood Search

Input: Problem instance j, Parameter setting θ

Output: Best found solution xbest

Initialization: initial solution x constructed by regret-2 heuristic

Stage 1: Vehicle Minimisation

1: repeat

2: Remove one route from x

3: Schedule removed requests into remaining routes (as in Stage 2)

4: until 20% of maximum run time met

Stage 2: Minimisation of total distance covered

5: repeat

6: select destroy and repair methods d ∈ Ω− and r ∈ Ω+ using probabilities ρ−

and ρ+

7: xcandidate = r(d(x))

8: if xcandidate is accepted then

9: x = xcandidate

10: end if

11: if c(xcandidate) < c(xbest)) then

12: xbest = xcandidate

13: end if

14: until maximum run time met

that is used in the repair heuristics. The noise amount is calculated as the maximum

distance between two nodes in a problem instance multiplied by the noise parameter.

It brings randomness to the moves these repair heuristics make. The cooling rate and

start temperature control parameter are part of the local search framework simulated

annealing operating within the LNS algorithm. The cooling rate determines how

quickly the algorithm progresses towards accepting solely solution improvements. A

standard exponential cooling rate is considered. The start temperature is set such that

a solution that is s%worse than the start solution still has an acceptance probability of

50%, with s being the start temperature control parameter. According to Aarts et al.

(2005) the values for the cooling rate are typically between 0.80 and 0.99. Finally, it

is determined which destroy and repair operators to include. Each parameter setting

should use at least one repair and one destroy operator, otherwise the algorithm

cannot function. There are three possible scenarios for the repair heuristics, each

with an equal probability of occurence: either greedy insertion or regret-2 is used
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Table 3.3: Algorithm Parameters and Components

Parameter Type Value ranges

Determinism Parameter Integer U [1, 30]

Noise Parameter Discrete U [0, 1]

Cooling Rate Continuous U [0.80,0.99]

Start Temperature Control Parameter Discrete U [0.01,0.10]

Destroy Operators U [1,7]

1. Random Removal Dummy [0,1]

2. Worst Removal Dummy [0,1]

3. Related Removal Dummy [0,1]

4. Random and Worst Removal Dummy [0,1]

5. Random and Related Removal Dummy [0,1]

6. Worst and Related Removal Dummy [0,1]

7. Random, Worst and Related Removal Dummy [0,1]

Repair Operators U [1,3]

1. Greedy Dummy [0,1]

2. Regret-2 Dummy [0,1]

3. Greedy and Regret-2 Dummy [0,1]

alone, or both operators are included. A similar logic is used to determine which out

of seven possible destroy operator combinations to include. More information on all

algorithm parameters of an (A)LNS can be found in Pisinger and Ropke (2007).

3.4.4 Data Set and Model Formulation

The data set serving as an input for the algorithm has 4000 scenarios2, consisting

of 200 randomly generated problem instances and 20 randomly created parameter

settings per problem instance (Table 3.4)3. The performance measure recorded is the

total distance travelled by the vehicles. The analysis performed investigates how the

2A random seed is generated for each scenario as an input for all random numbers generated

during the run of the algorithm.
3Parameter settings are randomly sampled for each problem instance since continuous parameters

are considered (e.g., noise parameter), resulting in a huge number of possible value combinations.

In this case, it is important to sample broadly and not selectively. This provides a better coverage

of the values within the numerical interval and enables more different combinations of values being

considered in the analysis. By only sampling a limited set of values you implicitly assume that the

values in-between do not matter.
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Table 3.4: Multilevel Experimental Design Case Study

Instance Characteristics Algorithm Parameters

Max Determinism Noise

Scenario Customers ... Run Time Parameter Parameter ... Regret-2

1 122 ... 130.55 15 0.13 ... True

2 122 ... 130.55 19 0.69 ... False

3 122 ... 130.55 27 0.28 ... True

... ... ... ... ... ... ... ...

20 122 ... 130.55 10 0.17 ... True

... ... ... ... ... ... ... ...

3981 269 ... 749.45 6 0.07 ... False

3982 269 ... 749.45 23 0.02 ... True

3983 269 ... 749.45 17 0.34 ... True

... ... ... ... ... ... ... ...

4000 269 ... 749.45 18 0.38 ... True

different algorithm parameters and problem instance characteristics influence this

total distance measure. Since some of these problem instance characteristics (time

window width, customer demand and service time) have different values for each

customer, averages are taken over all customers in order to obtain a variable at the

problem instance level. The geographical coordinates are excluded from the analysis.

The regression model in this section is fitted with varying (i.e., random) effects

for all algorithm parameters and components, while interaction-coefficients are

chosen to remain fixed and do not vary per problem instance. Hence, the coefficients

of all individual algorithm element terms in the model have their own regression

model at the problem instance level — as illustrated in equation (3.3) — and the

estimate can thus vary for different values of the problem instance characteristics.

The coefficients for the interaction terms do not have such a higher-level regression

model and have the same impact on performance for all problem instances. The

model is run using the brms package version 1.7.0 (Bürkner, 2017) in R version

3.2.5 (R Core Team, 2016). This package allows to fit a generalized (non-)linear

mixed model, which incorporates both fixed-effects parameters and random (i.e.,

varying) effects in a (non-)linear predictor via full Bayesian inference using Stan, a

probabilistic programming language for statistical inference written in C++.
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A first linear4 regression model showed not to satisfy all assumptions. The

residuals (Figure 3.3) reveal the presence of heteroscedasticity5. While this is-

sue is minor in most cases of moderate sample size (Gelman and Hill, 2006;

Jacqmin-Gadda et al., 2007), a common approach is to apply a variance-stabilising

transformation (Montgomery, 2012) which results in a non-linear model (equations

(3.6) to (3.8)). It is empirically found that the reciprocal6 transformation of the

response varable together with the cube root of the problem instance characteristic

Customers succeeds in resolving the heteroscedasticity (Figure 3.4). Further details

on variable transformations can be found in, for example, Montgomery (2012).

1

Yi

= αj[i] + β1j[i]Greedyi + β2j[i]Regret2i + · · ·+ β33j[i]Noisei + ǫi (3.6)

αj = µα
0 + µα

1Customers
1
3
j + · · ·+ µα

5Runtimej + ηαj (3.7)

βkj = µ
βk

0 + µ
βk

1 Customers
1
3

j + · · ·+ µ
βk

5 Runtimej + η
βk

j ∀k ∈ K (3.8)

In Section 3.3 it was mentioned that the assumption of normally distributed error

terms is the least important assumption for estimating the regression line according

to Gelman and Hill (2006). For the sake of completeness, this assumption is checked

through a Q-Q plot showing the standardised residuals against their normal scores.

If the residuals have a normal distribution, the plotted points should lie on a straight

diagonal line. Figure 3.5 shows a Q-Q plot. The panel on the left side shows data

generated from a normal distribution and serves as a reference plot. The panel on the

right side shows the Q-Q plot for the residuals of the model formulated in equations

(3.6) to (3.8). It shows the residuals to lie on the diagonal line in the middle, but

curving off at the extremities, a phenomenon typically referred to as having “heavy

tails”. It means extreme observations are more extreme than is expected with a

normal distribution (Montgomery and Runger, 2010).

4Linear is interpreted here as linear in the parameters and not as linear in the variables
5A key regression assumption is that the residuals are structureless, meaning unrelated to any

other variable. The residuals in Figure 3.3 show an increasing error variance as the fitted value

increases, indicating a violation of this assumption. This does not lead to biased effect estimates,

but the standard errors can be biased. According to Gelman and Hill (2006), this issue is minor in

most cases. It does not impair the inference on the fixed effects in case of moderate sample sizes,

but variance parameter estimates and random effects may be biased when the covariance structure

is misspecified (Jacqmin-Gadda et al., 2007; Montgomery, 2012).
6When the observations are all positive continuous values, the logarithmic transformation is

typically applied (Gelman and Hill, 2006). However, the residual plot of the log-transformed values

still shows increasing error variance, but not for the inverse values.
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Figure 3.3: Fitted versus residual values for untransformed model
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Figure 3.4: Fitted versus residual values for transformed model
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Figure 3.5: Q-Q plot

3.4.5 Analysis of Results

The hypotheses tested are whether the coefficients of the algorithm parameters,

problem instance characteristics and their interaction are significantly different from

zero. In other words, do they have a significant impact on the performance measure?

A coefficient is considered to be significant if the 95% confidence interval (CI) for

the coefficient estimate does not include zero. The output of the regression analysis

indicates significant effects for all repair and most destroy operator combinations,

the interaction of the determinism parameter with two individual destroy operators,

the noise parameter, the interaction of the noise parameter with one individual

repair operator and the start temperature control parameter. The operator effects

and the effect of the noise parameter are also significantly moderated by certain

problem instance characteristics. For all other algorithm parameters included in

the model, no significant effects are found. Table 3.5 lists for all significant effects

the estimated performance impact on 1
Y
, its standard error and 95% confidence

interval. A complete summary table of the regression analysis is given in Table B.1

in Appendix B. Note that the effect estimates in this table cannot be interpreted as

unconditional or average marginal effects like in a linear-additive model. Since the
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model in equations (3.6) to (3.8) includes interaction terms, a specific effect estimate

is conditional on the interacting variables (Brambor et al., 2006). Therefore, this

analysis studies the marginal effect of parameters, which is calculated by taking the

first derivative of the regression equation that includes all conditioning variables.

Before fitting the regression model, all problem variables are centred around their

mean value such that the intercept estimate in Table 3.5 can be interpreted as the

performance value obtained for an average problem instance rather than for a mean-

ingless problem instance with zero customers or zero demand. The intercept estimate

also accounts for the parameter setting that allows all repair and destroy operators

to be used (i.e., GreedyRegret2 and RandomWorstRelated, the reference levels for the

operators)7. In this case, the expected cost is predicted to be 25 382.198 and will

increase for larger problem sizes and narrower average time windows as indicated

by the significant estimates for Customers and Avg time window width in Table 3.5.

The principal interest of this research lies in investigating how this measure is fur-

ther impacted by the different algorithm parameters and how the problem instance

characteristics interact with these parameters. These results are discussed next.

3.4.5.1 Effect Repair and Destroy Operators

When considering an average problem instance and with all other numerical variables

(e.g., cooling rate) at their mean level, the results in Table 3.5 suggest to use random

removal as sole destroy operator, since it has the largest positive performance impact

(18.02) over the configuration with all destroy operators. Likewise, using regret-2

as sole repair operator is indicated as the best option since it significantly improves

upon the performance of a configuration with both repair operators (16.64) while

using greedy repair alone would lead to a deterioration of performance (−165.77).

The significant interaction terms between Greedy and the different destroy operator

combinations do not alter this conclusion. Furthermore, the results indicate that the

configuration with either regret-2 as the sole repair operator or both repair operators

is better able at repairing a solution that is destroyed by the random removal operator

7Multicollinearity may lead to inflated variance estimates and a high sensitivity of the coefficient

estimates for changes in the model. This makes it difficult to interpret results as the estimates are

unstable. In this case, including all destroy variables or all repair variables would lead to perfect

multicollinearity. One variable of each needs to be left out and serve as a reference value which is

represented in the regression intercept.
8The Intercept value in Table 3.5 is backtransformed to the original scale through division by 100

000 000 and taking the inverse of the resulting value.
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Table 3.5: Significant Effects

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 3, 939.77** 121.21 3, 706.59 4, 180.24

Customers
1
3 −411.93** 28.11 −466.81 −357.71

Avg time window width 42.24* 18.14 7.02 77.87

Greedy −165.77** 6.29 −178.13 −153.45

Customers
1
3 −20.00** 1.06 −22.11 −17.93

Avg service time 4.48** 1.05 2.43 6.56

Avg time window width −4.18** 0.69 −5.52 −2.84

Runtime 3.04∗∗ 0.74 1.61 4.49

Regret2 16.64** 4.45 7.89 25.45

Customers
1
3 2.10** 0.40 1.30 2.88

Random 18.02** 4.34 9.46 26.54

Worst −15.23** 5.09 −25.13 −5.19

Related −39.05** 4.76 −48.32 −29.72

Customers
1
3 −4.84** 0.70 −6.21 −3.46

RandomWorst 4.41 4.66 −4.66 13.57

Avg service time 1.34* 0.65 0.06 2.62

Runtime −1.08* 0.45 −1.96 −0.19

WorstRelated −13.97** 4.43 −22.74 −5.30

Start temperature control parameter −66.34* 28.23 −121.81 −10.49

Noise parameter −9.37* 4.25 −17.66 −0.94

Customers
1
3 −1.58* 0.63 −2.82 −0.36

Avg time window width −0.85* 0.41 −1.64 −0.06

Worst×Determinism parameter −0.97** 0.32 −1.60 −0.35

Related×Determinism parameter −1.88** 0.32 −2.50 −1.25

Greedy×Noise parameter −37.96** 6.07 −49.90 −26.11

Greedy×Random −70.62** 6.40 −83.22 −58.10

Greedy×Worst −85.48** 6.78 −98.70 −72.17

Greedy×Related 59.20** 6.80 45.87 72.44

Greedy×RandomWorst −82.93** 6.75 −96.14 −69.56

Greedy×RandomRelated 13.85* 6.62 0.90 26.77

Note 1 : ** denotes significance at 1%, * denotes significance at 5%

Note 2 : Due to the reciprocal transformation, negative effect estimates imply an increase in

total cost, while positive values indicate a decrease in total cost.

Note 3 : Since the reciprocal transformation of the response variable returned very small values

causing difficulties in the sampling procedure of the brms package, all transformed (response)

values were multiplied by a constant 100 000 000.

Note 4 : The effects of Greedy & Regret-2 and Random, Worst & Related, the reference levels

for the repair and destroy operator dummies, are accounted for in the Intercept.
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(18.02) compared to a solution that is destroyed by the related removal operator

(−39.05). The configuration with greedy as the sole repair operator, on the other

hand, shows the opposite result. The latter can be derived from the estimates in

Table 3.5: the performance impact of switching to random removal becomes negative

when accounting for the interaction with greedy repair (18.02 − 70.62 = −52.6),

while the impact of related removal turns positive (−39.05 + 59.20 = 20.15).

Figure 3.6 plots the expected total cost values for GreedyRegret2 and Greedy

with all destroy operator configurations. For example, the combination Greedy and

Random has a predicted total cost of 26 871.61. The plot also shows the effect

of switching from using both greedy and regret-2 to using only greedy as repair

operator. The switch to greedy is expected to deteriorate the solution quality with

all possible combinations of destroy operators (−165.77+ significant interaction

term). The configuration with both repair operators expects its best performance

when combined with random removal, while the highest average cost measure is

predicted with related removal. The configuration with only greedy repair performs

best with related removal or the combination of random and related removal, and

obtains the highest total cost value with worst removal. A shift in the “ranking”

of the destroy operator combinations can thus be observed going from all repair

operators to greedy alone. When investigating the switch from both repair operators

to using only regret-2 (Figure 3.7), an improvement in the performance measure is

observed for all destroy operator combinations (16.64). Unlike the switch to greedy,

there is no shift in the ranking of the destroy operators going from regret-2 and

greedy to regret-2 alone. In both scenarios the lowest total cost value is expected

when combined with random removal and the highest value with related removal.

These findings relate to an average problem instance, i.e., an instance with 216

customers, 29 minutes of average service time, an average customer demand of 38.5

units, an average time window width of 57 minutes, and on which the algorithm can

run maximum 15 minutes – due to centring of these variables. Next, the influence

these problem instance characteristics have on the performance impact of the repair

operators is analysed. It is observed that it becomes more beneficial to use only regret-

2 as repair operator and more detrimental to use only greedy as repair operator as

the problem size increases. Furthermore, on the problem instances with up to 170

customers the performance difference between using regret-2 alone or together with

greedy cannot be distinguished. Therefore, the results suggest that in order for the

regret-2 operator to be effective (i.e., showing a positive effect on the performance
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Figure 3.6: Total cost plot switching from Greedy & Regret-2 to Greedy.

measure), the number of customers in a problem instance matters. These conclusions

are derived from studying the marginal effect using the estimates of Table 3.5. The

marginal effect of Greedy, for example, given varying problem sizes is calculated as

follows (with all other variables equal to zero).

Yi = (αj[i] + β1j[i]Greedyi + β2j[i]Regret2i + · · ·+ β33j[i]Noisei)
−1(3.9)

∂Y
∂Greedy

= −
β1j[i]

(αj[i]+β1j[i]Greedyi)2
(3.10)

∂Y
∂Greedy

= −
µ
β1
0 +µ

β1
1 Customers

1
3
j

(µα
0 +µα

1 Customers

1
3
j
+(µ

β1
0 +µ

β1
1 Customers

1
3
j
)Greedyi)2

(3.11)

The impact of switching to greedy repair alone (when combined with random,

worst and related removal) is assessed by entering the estimates for Greedy (−165.77)

and the interaction term Greedy ×Customers
1
3 (−20.00) in equation (3.11).

∂Y
∂Greedy

= −
−165.77−20∗Customers

1
3
j

(3939.77−411.93∗Customers

1
3
j
−165.77−20∗Customers

1
3
j
)2

(3.12)
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Figure 3.7: Total cost plot switching from Greedy & Regret-2 to Regret-2.

The impact estimate increases as more and more customers have to be served.

For the combination with any other (set of) destroy operators, the estimate of the

interaction term is also added, e.g., −70.62 is added for the combination with random

removal.

∂Y
∂Greedy

= −
µ
β1
0 +µ

β1
1 Customers

1
3
j
+β2Greedyi×Randomi

(µα
0 +µα

1 Customers

1
3
j
+(µ

β1
0 +µ

β1
1 Customers

1
3
j
)Greedyi+β2Greedyi×Randomi)2

(3.13)

∂Y
∂Greedy

= −
−165.77−20∗Customers

1
3
j −70.62

(3939.77−411.93∗Customers

1
3
j
−165.77−20∗Customers

1
3
j
−70.62)2

(3.14)

For the impact of regret-2, calculations are similar and show estimates progressing

towards zero as less and less customers have to be served. A threshold problem size

— considering a 95% confidence interval — at which the impact becomes significantly

positive is identified at 171 customers. This threshold value applies for all destroy

operator combinations since there are no significant interactions between regret-2

and the destroy operators, making the marginal impact of regret-2 independent of

the (set of) destroy operator(s) used. The marginal effects of Greedy and Regret2
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for the smallest and largest problem instance are plotted in Figure 3.8 in which the

horizontal zero line represents the scenario with all repair operators enabled. Note

the difference in scale on the vertical axis between panels (a) and (b).

Further, the effect of Greedy is also influenced by the average service time per

customer (4.48), and the average time window width (−4.18). The more constraining

these problem instance characteristics become, the smaller the performance differ-

ences between using greedy alone and using both repair operators together (Figures

3.9 and 3.10). However, the marginal effect shows the influence of the average time

window width to be positive for the interaction of Greedy with Random, Worst

and RandomWorst implying the marginal effect of Greedy benefits if this problem

instance characteristic becomes less constraining. Finally, the effect of Greedy is

positively influenced by the maximum run time given (3.04), meaning the longer the

algorithm is allowed to search for better solutions, the smaller the differences between

the use of greedy alone and the other repair operator configurations become (Figure

3.11). This is a logical deduction as you would expect performance to converge as

run time increases.

In a similar way, it is investigated whether it is worth including all three destroy

operators or whether there are conditions when a configuration with less destroy

operators will give better results. The influence of the problem instance on these

effects is limited. The analysis suggests that related removal performs relatively

better for problem instances serving less than the average number of customers

(i.e., 216), with the best performance expected for instances with 25 customers.

This follows from the negative influence (−4.84) of problem size on the effect of

Related. Recall that the effect estimates in Table 3.5 represent the switch from

a configuration with random, worst and related removal to some other (set of)

destroy operator(s) (given an average problem instance). The impact of switching to

related removal is the same with both repair operators and with regret-2 alone (i.e.,

−39.05), meaning additional customers will further strengthen the negative impact.

Due to the significant interaction with Greedy, the impact of switching to related

removal for an average instance is positive (i.e., −39.05 + 59.20 = 20.15), meaning

additional customers will diminish this positive impact and at about 224 customers

the estimated impact can no longer be distinguished from the configuration with all

destroy operators. The marginal effect of related removal for the smallest and largest

problem size is plotted in Figure 3.12. On the other destroy operator combinations,

the problem size has no real influence.
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Figure 3.8: Marginal effects of Greedy and Regret-2 for the smallest and largest

problem size.
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Figure 3.9: Marginal effect of Greedy for varying average service time values.
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Figure 3.10: Marginal effect of Greedy for varying average time window width values.
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Figure 3.11: Marginal effect of Greedy for varying run time values.

The only other significant problem influence observed is on the impact of

RandomWorst, which is positively moderated by the average service time (1.34) and

negatively by the average run time (−1.08)(Figures 3.13 and 3.14). The impact

for the combination with Greedy becomes less negative for additional service time

and more negative for additional run time. For the combination with either Regret2

or GreedyRegret2 (overlapping in Figure 3.14 as there is no significant interaction

between RandomWorst and Regret2 ), the impact remains mostly indistinguishable

from the configuration with all destroy operators, but it is observed that Random-

Worst performs significantly better for run times up to nine minutes. The latter can

be seen in Figure 3.14, where the marginal effect line with 95% confidence interval

does not include zero for run times between 1 and 9 minutes.

A final significant influence on the operator effects is the randomness element

employed within the operators. The analysis results show that if all destroy operators

are used in a single configuration, then complete randomisation in the selection

of customers to remove should be left to the random removal operator, while the

other operators should strictly focus on removing customers with a high cost (using
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Figure 3.12: Marginal effect of Related for the smallest and largest problem size.
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Figure 3.13: Marginal effect of RandomWorst for varying average service time values.
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Figure 3.14: Marginal effect of RandomWorst for varying run time values.

worst removal) or customers that are easy to interchange (using related removal).

On the other hand, if worst or related removal are used alone, it is preferable to

add some randomisation in the selection of customers to remove. For the repair

operators, the analysis results suggest it is never worthwhile to apply randomisation

when reconstructing solutions. These conclusions are derived from the marginal

effects for the determinism and noise parameter using the relevant effect esimtates

in Table 3.5. The determinism parameter has a negative effect on the performance

impact of Worst (−0.97) and Related (−1.88) (Figures 3.15 and 3.16), while the

noise parameter negatively influences the impact of Greedy (−37.96) (Figure 3.17).

The noise parameter has no significant influence on the performance impact of

Regret2 and, therefore, the parameter’s effect estimate (−9.37) for GreedyRegret2 is

studied to conclude that adding noise in the repair phase is detrimental in all cases.

The significant influence of the problem size (−1.58) and the average time window

width (−0.85) does not alter this conclusion. The negative impact becomes larger

for increasing problem sizes, while it becomes insignificant for smaller instances.

The negative impact is also larger for wider average time windows, while for tight

windows the impact becomes insignificant. The importance of randomisation to

ALNS performance is further investigated by Hemmati and Hvattum (2017) who
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Figure 3.15: Marginal effect of worst removal for varying levels of randomness in the

selection of customers to remove.

propose deterministic alternatives and found they perform mostly similar to the

randomised variants.

Summarising the discussion on the effect of the operators, it can concluded that

including all repair and destroy operators in a parameter setting does not necessarily

lead to the best results. The analysis identified using regret-2 as the sole repair to

be the best choice on average as it is expected to perform better than the other

two repair operator configurations for larger problem sizes (> 170 customers). The

destroy operator combination that will obtain the best results with this repair operator

is random removal. The results also showed that randomisation in the search for

solutions works during the destroy process, but should be avoided when repairing

solutions. The observation that regret-2 is the more effective repair operator (on

larger instances) is not surprising as it is the more ‘intelligent’ one of the two, but it

is a valuable insight to know this is not necessarily the case for the destroy operators

where it is shown that a simple operator as random removal can outperform other,

more ‘intelligent’ destroy operators.
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Figure 3.16: Marginal effect of related removal for varying levels of randomness in the

selection of customers to remove.
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Figure 3.17: Marginal effect of greedy repair for varying levels of randomness in the

selection of customers to insert.
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3.4.5.2 Start Temperature Control Parameter

The start temperature control parameter, which operates within the simulated anneal-

ing framework that is part of the LNS, is the only other algorithm parameter included

in the analysis with a significant impact on the performance measure. This parameter

is used to set the start temperature at the beginning of both the vehicle and distance

minimisation phase. The start temperature is set at a value such that a solution

that is s% worse than the start solution 9 still has a 50 percent probability of being

accepted, with s being the start temperature control parameter (Pisinger and Ropke,

2007). The percentage parameter is part of the analysis and has a significant effect

(−66.34) on the objective function value. The higher the percentage the worse the

performance measure becomes - for an average problem. A higher percentage means

allowing more solutions that are worse than the start solution to have an acceptance

probability of 50 percent. The parameter is not significantly influenced by any of the

problem instance characteristics. This parameter should therefore be set to its lowest

value regardless of the problem instance to be solved.

3.4.5.3 New Questions

The analysis exposed which combinations of operators work well for what parts of the

problem space. This spurs new research questions. For example, what is so unique

about the way related removal destroys a solution that makes it most difficult for

regret-2 to repair it? The analysis results have led to several similar new questions.

A logical next step would be to further investigate these observations by formulating

new hypotheses and conducting further experiments. A single experiment will often

not answer all questions posed and may raise new questions - as is the case in this

experiment. It shows that experimenting is an iterative learning process: observing

what works well in a first experiment, then finding out why it works well in consecutive

experiments. Box et al. (2005) describe it as the iterative inductive-deductive process.

A first brainstorm on random and related removal resulted in the reasoning

that removing a random selection of customers from a solution results in more

“interesting” alternatives for the removed customers, meaning that the difference

between their cheapest and second cheapest route (i.e., the regret value) is on average

smaller compared to removing a group of geographically clustered customers. For

9For the vehicle minimisation phase, the start solution is the initial solution provided by regret-2.

The last feasible solution of this phase is used as start solution for the phase minimising the total

distance travelled.
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the randomly removed customers, there might still be many routes nearby, while

the removal of a cluster of customers might remove all nearby routes. So overall,

a solution destroyed with the random removal operator has better alternatives for

the cheapest route compared to a solution destroyed by the related removal oper-

ator. This gives algorithm configurations using random removal more flexibility in

repairing a solution. From the previous, two hypotheses can be formulated to validate.

Hypothesis 1 (H1): When a cluster of geographically nearby customers is removed,

each removed customer has on average less feasible routes to be inserted in compared

to a customer that was removed at random.

Hypothesis 2 (H2): The average (maximum) regret value of the selected customer

for insertion per iteration is lower when customers are removed at random compared

to when a cluster of geographically nearby customers is removed.

Similarly, reasons why related removal has more trouble with larger instances

than smaller instances can be investigated. Further, it is also observed that there is

no significant performance difference between using regret-2 alone or together with

greedy repair on the smaller instances. Using both repair operators implies regret-2 is

used in half the iterations performed, while greedy is used in the other half. So even

though no performance difference is observed, the configuration with only regret-2 will

probably reach the best solution in fewer iterations and time than the configuration

with both repair operators. It would be interesting to look into the gain achieved.

Does it require half the time or even less?

3.5 Conclusion

In this chapter a statistical methodology is proposed for understanding heuristic

algorithm performance. It enables investigation of correlations between algorithm

performance and algorithm parameters and correlations between the latter and

problem instance characteristics. This doctoral thesis considers it a next step in the

experimental research on combinatorial optimisation problems to obtain a deeper

understanding and insight in the effects of parameters and heuristic components

on algorithm performance. The methodology is able to identify which algorithm

parameters significantly impact the solution quality of a heuristic method and how

the problem instance characteristics influence these effects. It enables researchers to
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make statements about an entire population of problem instances, not just a small

set of benchmark instances. Different recommendations for different parts of the

problem space can be obtained.

In an analysis of a large neighbourhood search algorithm on instances of the

vehicle routing problem with time windows it is observed that including all repair

and destroy operators in a parameter setting does not necessarily lead to the

best results. The analysis identified using regret-2 as the sole repair to be the

best choice on average as it is expected to perform better than the other two

repair operator configurations for larger problem sizes. The destroy operator

combination that will obtain the best results with this repair operator is random

removal. This analysis of the performance impact of the operators considered

the moderating effect of each significant problem instance characteristic ceteris

paribus, but these parameters can off course divert simultaneously from their average

level. Which operator combinations work well and which do not depends on the

unique combination of characteristics that constitute a problem instance. The

multilevel methodology offers guidance and insights for both an ‘average’ problem

instance as for a specific problem instance with certain characteristics (cf. Chapter 6).

In the next chapters the proposed methodology is applied in three different con-

texts. First, the analysis results have led to new questions that are to be answered

in future research by formulating new hypotheses and setting up new controlled ex-

periments. A single experiment will often not answer all questions posed and may

raise new questions. It is a good illustration of the principle that learning is advanced

by iteration. Chapter 4 performs a next iteration in the experimental analysis and

focuses on answering one of those new questions. Secondly, regression model com-

plexity grows with the number of variables added. Chapter 5 looks into possibilities

of limiting the set of included variables through some kind of preliminary importance

analysis. Finally, in Chapter 6 the multilevel methodology is applied to obtain a set

of parameter values and component choices that optimise metaheuristic performance

depending on the specific problem instance to be solved.
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Chapter 4

Explaining Heuristic

Performance Differences

4.1 Introduction

Chapter 3 proposes a methodological framework for evaluating (meta)heuristic

algorithms. The framework is applied in a first experimental study to expose

which and how algorithm parameters are correlated to performance. The objective

was to discover patterns in the performance data, to see which (combinations of)

parameters and components have a beneficial or detrimental effect on the objective

function value. This chapter builds on these findings by going a step further than

the exploratory analysis (Figure 4.1). Explanations are sought for patterns that are

observed so that we can understand why there is a difference in performance. What

can be learned about the differences in components, strategies or implementations

that resulted in the observed pattern. This chapter aims to address this question.

Such a detailed study of how metaheuristic performance is established is rarely the

focus of a research paper in operations research literature.

This chapter1 fulfils the hypothetico-deductive process of which the first steps are

performed in Chapter 3. The study proceeds by formulating possible explanations

1This chapter is based on the proceedings paper: Corstjens, J., Caris, A., Depaire, B., in press.

Explaining heuristic performance differences for vehicle routing problems with time windows. In:

Kotsireas, I., Pardalos, P. (Eds.) Learning and Intelligent Optimization, Lecture Notes in Computer

Science. Springer Berlin Heidelberg.
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and translating them in hypotheses, which are validated in experimental studies.

The results will indicate whether suggested explanations are correct, need alteration

or are to be abandoned completely and replaced by other ones.

The structure of this chapter is as follows: Section 4.2 details the pattern observed

in Chapter 3 to be explained and understood. Experimental data is generated (Section

4.3) and used to validate hypotheses in Section 4.4. A summary of what is learned is

given in Section 4.5.

Introduction and Problem Statement (Chapter 1)

The Evaluation of Heuristic Algorithms (Chapter 2)

A Multilevel Methodology for Understand-

ing Heuristic Algorithm Behaviour (Chapter 3)

Explaining Per-

formance Differ-

ences (Chapter 4)

A Combined Method-

ology (Chapter 5)

Optimising Heuristic

Performance (Chapter 6)

Conclusions (Chapter 7)

Figure 4.1: Outline of Thesis — Chapter 4.

4.2 Ask a Question

The experimental study in Chapter 3 on a large neighbourhood search algorithm

applied on instances of the vehicle routing problem with time windows exposed how
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parameter settings are correlated with performance. Further explanation about why

a certain parameter setting is correlated in one direction or the other is not given.

Nonetheless, such knowledge can be useful, especially when the impact (combinations

of) parameters have on performance is different from what is expected. In such a

case the question ‘why?’ is raised, as done in this chapter. The study presented

here seeks to explain the performance difference observed in Chapter 3 between two

LNS configurations applied on instances of the vehicle routing problem with time

windows. It concerns the relative performance of some combinations of operators

employed within the heuristic algorithm. The results predict certain combinations of

these operators to perform better than others. However, these results did not provide

any further indications as to why it is that these combinations perform differently.

More specifically, it is observed that iteratively removing customers at random from

a solution (i.e., random removal) and reinserting them using a difficulty measure (i.e.,

regret-2) results in a better predicted performance than when iteratively removing

geographical clusters of customers (i.e., related removal). This is an unexpected

observation and seems counterintuitive since removing clusters of customers involves

applying a logic for selecting these customers that is aimed to work better than pure

random selection. Yet, the contrary is observed. Hence, the experiment spurred new

research questions that are to be answered in consecutive experiments. Recall from

Section 3.4.5.3 that this iterative process is described by Box et al. (2005) as the

iterative inductive-deductive process: experimenting is an iterative learning process,

each time gaining knowledge and at the same time raising new questions. In this

chapter the focus is on answering one of those new questions raised and investigate

the correlations between certain operators. In particular, the aim is to explain why

removing customers at random works better than removing clusters of customers

given the use of a certain repair logic.

Therefore, the destroy and repair operators are of interest in this follow-up re-

search. Two destroy operators — random and related removal — are considered

and three repair operators — regret-2, regret-3 and regret-4. The repair operators

are three variations on the same repair logic that is more generally formulated as

the regret-k operator. Definitions of the relevant destroy and repair operators are

discussed in the following sections.
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4.2.1 Random Removal

The random removal destroy operator randomly selects q customers to remove. The

idea is to diversify the search towards a better solution.

4.2.2 Related Removal

The related removal destroy operator removes q customers that are ‘related’. How

the relatedness between customers is defined, is determined by the experimenter.

Shaw (1998) introduced the strategy of choosing related customers and noted ‘related’

should be suitably defined. The aim is to obtain solution improvements and the

relatedness measure should therefore provide good insert opportunities to reach this

objective. One definition of the relatedness measure is to base it on distance, looking

at the geographical closeness of two customers, as used by Pisinger and Ropke (2007)

in their experiments on the Rich Pick-up and Delivery Problem with Time Windows.

The idea is that customers close to each other can more easily switch routes and/or

positions, while more distant customers have a higher chance of being inserted back

in their original position. Other definitions of relatedness are whether two customers

are in the same route or have similar time windows during which they can be visited

(Shaw, 1998). Ropke and Pisinger (2006) base the measure on four terms that account

for distance, time, capacity and which vehicles can serve both customers. In this

chapter, relatedness is defined in terms of distance, as in Pisinger and Ropke (2007).

4.2.3 Regret-k

The removed customers are reinserted in the solution using a repair heuristic. In

this chapter a regret-k operator is considered, which prioritises customers that are

considered ‘difficult’. This parallel route building algorithm for the VRPTW is pro-

posed by Potvin and Rousseau (1993). The difficulty of an insertion is determined by

calculating the difference between a customer’s best insertion route (i.e., insertion in

this route adds the smallest distance to the overall travelled distance) and its second

and third, ... up until its k-th best insertion route. This difference is referred to as the

regret value and can be formulated as in equation (4.1). The term f1
c represents the

change in the objective function value when inserting customer c at its best position

in its cheapest route, while the term fk
c indicates the change when inserting customer

c at its best position in its k-cheapest route. Customers having high regret values

are considered difficult to insert, in the sense that the additional cost incurred of not

choosing the cheapest route for insertion is high. These customers should therefore
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be prioritised and inserted in their cheapest route at their minimum cost position.

If there are any ties in the calculated regret value, these are broken by choosing the

customer with the lowest insertion cost.

k
∑

n=2

(fk
c − f1

c ) (4.1)

Regret-2 is the only regret variant used in the case study of Chapter 3. In the

experiments performed in this chapter the variants regret-3 and regret-4 are included

to find out whether the observed pattern also prevails when looking further ahead in

the repair process.

4.3 Experimental Set-Up

Since the focus shifts from analysing a complete metaheuristic to analysing individual

operators, they are extracted from the metaheuristic framework. The objective

function value of a single destroy and repair iteration is measured to allow a detailed

analysis of the destroy and repair process. A general outline of a destroy and repair

iteration is given in Algorithm 2.

A data set of 10 000 observations is generated following the same multilevel ex-

perimental design as employed in Chapter 3. It consists of 200 artificial VRPTW

instances and 50 random parameter settings tested per problem instance. A parame-

ter setting in this experiment is defined as a combination of a single destroy operator

— either random or related removal — with a single repair operator — either regret-2,

regret-3 or regret-4. The experimental design is depicted in Table 4.1. Information

on the values for the problem instance characteristics and algorithm parameters can

be found in Tables 3.2 and 4.2. Each scenario is run on Xeon E5-2680v3 CPUs (2.5

GHz, 30 MB level 3 cache) with 128 GB RAM per compute node under Red Hat

Enterprise Linux ComputeNode release 6.5 (Santiago), 64 bit. In order to analyse

results, multilevel regression models are fitted using the statistical R packages lme4

(Bates et al., 2015) and brms (Bürkner, 2017).

4.4 Analysis of Results

For 6124 of the 10 000 scenarios (61.24%) the destroy and repair iteration leads to an

improvement over the initial solution. Since each scenario only performs one iteration
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Table 4.1: Multilevel Experimental Design for Single Destroy and Repair Iteration

Instance Characteristics Algorithm Parameters

Average Random Related

Scenario Customers ... Demand Removal Removal Regret-2 Regret-3 Regret-4

1 169 ... 29.79 True False False True False

2 169 ... 29.79 False True False False True

3 169 ... 29.79 True False False True False

... ... ... ... ... ... ... ... ...

50 169 ... 29.79 True False True False False

... ... ... ... ... ... ... ... ...

9951 224 ... 31.04 True False False True False

9952 224 ... 31.04 False True False True False

9953 224 ... 31.04 False True False True False

... ... ... ... ... ... ... ... ...

10000 224 ... 31.04 False True True False False

Table 4.2: Operators

Operator Type Value Ranges

Destroy operators U[0,1]

- Random removal Dummy True(0)/False(1)

- Related removal Dummy True(1)/False(0)

Repair operators U[0,2]

- Regret-2 Dummy True(0)/False(1,2)

- Regret-3 Dummy True(1)/False(0,2)

- Regret-4 Dummy True(2)/False(0,1)
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Algorithm 2 Destroy and Repair Iteration

Input: Problem instance j, Parameter setting θ

Output: Solution x

Initialisation: initial solution xstart constructed by greedy heuristic

1: Function Destroy(θ, xstart);

2: Choose a random number q from interval [0.1n, 0.5n] (n = problem size)

3: xd = xstart

4: repeat

5: Select customer c to remove (given the destroy neighbourhood in θ)

6: xd = xd − c

7: Add customer c to request bank array

8: until q customers are removed

9: return xd

10: Function Repair(θ, xd);

11: x = xd

12: repeat

13: Select customer r from request bank (given the regret-k variant in θ)

14: x = x+ r

15: Remove customer r from request bank array

16: until Request bank is empty or no more customers can be feasibly inserted

17: return x

and customers are to be served by a limited number of vehicles — i.e., at most the

number of vehicles used in the initial solution —, it can occur that during the repair

of the solution the final customer(s) to reinsert has(have) no feasible insertion and

are placed in a request bank with a penalty cost of 100 000 assigned to the objective

function value for each customer not reinserted. This is the case for 3239 scenarios in

the data set. Such occurrences can be accounted for when fitting regression models

through a request bank variable, but it still proved to be problematic to obtain a

model that complies with the underlying assumptions of independence, normality,

and homoscedasticity of the errors. The choice is therefore made to only consider

the scenarios that were able to reinsert all removed customers. This is also the only

relevant type of solution since it corresponds with a regular LNS solution. So, a

truncated data set of 6761 observations is considered.

The analyses performed in the following sections have three stages. First, an ex-



74 Chapter 4

ploratory stage verifies whether the operator pattern observed in Chapter 3 is also

present in the new experimental data, and starts the search for explanations by look-

ing into the customer difficulty measure that is used to select customers to reinsert

(Section 4.4.2). A second stage concerns the ‘theory construction’ regarding customer

prioritisation by formulating and verifying several statements coming out of the ex-

ploratory stage (Section 4.4.3). Finally, the ‘theory validation’ is performed by means

of a regular LNS experiment (Section 4.4.4). Residual plots of all regression models

are provided in Appendix C.

4.4.1 Verifying Observed Operator Pattern

A first analysis verifies whether the observed operator pattern in Chapter 3 is con-

firmed in this new experiment. A multilevel regression model is formulated in equa-

tions (4.2) to (4.4) predicting the total cost of a solution in terms of the total distance

travelled (Yi). The factors affecting this performance measure are the choice of de-

stroy and repair operator (variables Related, Regret-3 and Regret-4 ), the percentage

of customers removed (Percentage removed) and the total number of customers to

be served (Customers)2. Variables for random removal and regret-2 are not included

because of multicollinearity issues3. Therefore, they are the baseline operator choices

for which the effect is accounted in the regression intercept and the effects of all other

operators are relative to this baseline operator scenario. All continuous variables

are centred around their mean value to facilitate interpretation of effect estimates.

Random effects are considered up to two-way interaction effects.

√

Yi = αj[i] + β1j[i]Relatedi + β2j[i]Regret3i + β3j[i]Regret4i +

β4j[i]Percentage removedi + ...+

β11Relatedi ×Regret4i × Percentage removedi + ǫi (4.2)

αj = µα
0 + µα

1Customersj + ηαj (4.3)

βkj = µ
βk

0 + µ
βk

1 Customersj + η
βk

j (4.4)

2The regression analyses in this chapter only consider a single problem instance characteristic

(i.e., Customers). The analysis of Chapter 3 showed this characteristic to be the most influential

and this will also be confirmed by the importance analysis of Chapter 5.
3Multicollinearity may lead to inflated variance estimates and a high sensitivity of the coefficient

estimates for changes in the model. This makes it difficult to interpret results as the estimates are

unstable. In this case, including all destroy variables or all repair variables would lead to perfect

multicollinearity. One variable of each needs to be left out and serves as a reference value which is

represented in the regression intercept.
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with

i ∈ I scenario, a combination of a problem instance with a parameter setting

j ∈ J problem instance

k ∈ K algorithm parameter

j[i] index variable to code problem instance membership (j[i] = j), e.g.,

j[10] = 5 means the 10th scenario solves problem instance 5

Yi objective function value of scenario i

αj[i] varying regression intercept, representing the objective function value

given scenario i and problem instance j when the value for all k pa-

rameters is 0

βkj[i] varying effect of algorithm parameter k on Y given scenario i and

problem instance j

βk fixed effect of algorithm parameter k on Y given scenario i

µ
βk

0 mean effect of algorithm parameter k on Y

ηj error at the problem instance level and is assumed to be ∼ N(0,σ2)

ǫi error at the parameter setting level and is assumed to be ∼ N(0,σ2
e )

The regression results in Table 4.3 confirm the previous findings of Chapter

3: random removal performs on average better than related removal when cus-

tomers are reinserted with the regret-k operator. Figure 4.2 plots the predicted

performance for the various operator combinations given a problem instance with

an average number of customers (i.e., about 184 customers). The predicted to-

tal cost when using random removal and regret-2 is given by the intercept value

174.602 = 30 485.16 and will increase to (174.60 + 1.56)2 = 31 032.35 when using

related removal instead of random removal. For the combination with regret-3 and

regret-4 the predicted value is (174.60 + 0.08)2 = 30 513.10 with random removal,

while the predictions are respectively (174.60 + 1.56 + 0.08− 0.25)2 = 30 972.48 and

(174.60 + 1.56 + 0.08 − 0.24)2 = 30 976 with related removal. Regret-3 and regret-4

perform a little worse than regret-2 with random removal, while they perform a little

better with related removal. This is also clear from the coefficient estimates. The

estimates for Regret-3 (0.08) and Regret-4 (0.08) are positive with random removal,
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Table 4.3: Significant effects model pattern verification

Dependent variable:
√
total cost Estimate Std. Error l-95% CI u-95% CI

Intercept 174.60∗∗∗ 1.14 172.32 176.80

Customers 0.40∗∗∗ 0.01 0.38 0.43

Related 1.56∗∗∗ 0.07 1.42 1.71

Customers 0.01∗∗∗ 0.001 0.005 0.01

Regret-3 0.08∗∗ 0.05 −0.01 0.17

Customers −0.001∗ 0.0004 −0.001 0.0002

Regret-4 0.08∗∗ 0.05 −0.01 0.17

Customers 0.0003∗ 0.0004 −0.0005 0.001

Percentage removed −0.09∗∗∗ 0.003 −0.10 −0.09

Customers −0.0001∗∗∗ 0.000 −0.0002 −0.0001

Related × Regret-3 −0.25∗∗∗ 0.08 −0.40 −0.09

Customers −0.001 0.001 −0.002 0.001

Related × Regret-4 −0.24∗∗∗ 0.08 −0.40 −0.08

Customers −0.001 0.001 −0.003 0.0003

Related × Percentage removed 0.09∗∗∗ 0.01 0.08 0.10

Customers 0.0002∗∗∗ 0.0000 0.0002 0.0003

Regret-3 × Percentage removed 0.005 0.004 −0.003 0.01

Customers −0.0000 0.0000 −0.0001 0.0000

Regret-4 × Percentage removed 0.01 0.004 −0.002 0.01

Customers −0.0000 0.0000 −0.0001 0.0000

Related × Regret-3 × Percentage removed −0.02∗∗ 0.01 −0.03 −0.003

Related × Regret-4 × Percentage removed −0.02∗∗ 0.01 −0.03 −0.003

Observations 6761

Num. groups: problem instances 200

Note 1: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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but become negative when accounting for the negative estimates for the interaction

effects Related × Regret-3 (−0.25) and Related × Regret-4 (−0.24). These significant

estimates can be found in Table 4.3. Further, the total cost measure significantly

increases for larger problem sizes (0.40) and decreases for increasing percentages of

customers removed (−0.09). Significant interaction effects are found between be-

tween related removal and the percentage of customers removed and between related

removal, the repair operators and the percentage of customers removed. Finally, the

problem size significantly influences all individual operator effects, the percentage re-

moved effect and the latter’s interaction with related removal. Having verified the

presence of the destroy operator performance difference in the new experimental data,

the explanatory study can begin.
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Figure 4.2: Predictions for a problem instance with an average number of customers.

4.4.2 Investigating Customer Difficulty

In the search for explanations for this counterintuitive result, the process of destroying

and repairing a solution is decomposed and visualised for a problem instance with

100 customers in Figures 4.3 and 4.4. When customers are removed at random, a

random sample of customer nodes are identified for removal (marked white in Figure

4.3a), no additional criteria are used. Related removal, on the other hand, defines a
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relatedness criterion to base removals on. In these experiments, relatedness is defined

in terms of distance, so this operator will remove a number of geographically nearby

customers from the solution (marked white in Figure 4.4a). In both cases, customers

are reinserted using a regret-k operator with k equal to 2, 3 or 4. The criterion used

to decide which customer to iteratively insert is the additional cost incurred when

not inserting a customer in its best route. The higher this additional cost, the higher

the priority given to the customer. This measure is also referred to as the regret

value. Hence, when customers have large regret values, this implies that the cost

gap between the best insertion route for these customers and their second, third,

fourth best route is large. Therefore, these customers should be considered first for

insertion, since they only have a small number of interesting insertion alternatives.

Customers having small regret values do not have to be immediately inserted since

they can more easily be inserted in alternative routes for which the cost of insertion

is not a lot higher compared to the best insertion route. Since the regret value is the

key measure used in the repair process and applied in both removal scenarios, a first

investigation focuses on this measure and how it differs between inserting randomly

dispersed customers or a clustered group of customers.

It is observed in Figure 4.3b that removing customers at random affects many

routes: 22 of the 32 routes have on average one or two customers removed. The

repair phase reinserts about 70% of them in their original route at the same position

— there are no intra-route position switches. So, any improvements in solution

quality are due to the minority of removed customers that switch routes in Figure

4.3c. In the case of removing a geographical cluster of customers in Figure 4.4b less

routes are affected (only 9) and, contrary to reinserting randomly removed customers,

about 67% of the removed customers switch routes during the repair phase (Figure

4.4c). Furthermore, a (large) part of the solution is completely destroyed due to the

removal of entire routes and has to be rebuilt from scratch. This is shown in the

upper left corner of Figure 4.4b where there is not a single route left. For many of the

removed customers, there are not a lot of existing routes nearby that are potential

candidates to insert a customer. Consequently, for these customers the number of

good alternative routes for their cheapest insertion route is expected to be small.

This means that the cost difference between inserting a customer in its cheapest

route and — depending on the k value — its second, third and fourth cheapest route

is large. A randomly removed customer, on the other hand, has more existing routes

nearby and thus better alternatives for the cheapest insertion route, resulting in a

lower regret value.
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(a) Start Solution

(b) Destroyed solution (34% removed)

Figure 4.3: Destroy and repair iteration when customers are removed at random.
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(c) Solution at the end of iteration 1

Figure 4.3: Destroy and repair iteration when customers are removed at random.

(a) Start Solution

Figure 4.4: Destroy and repair iteration when related customers are removed.
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(b) Destroyed solution (34% removed)

(c) Solution at the end of iteration 1

Figure 4.4: Destroy and repair iteration when related customers are removed.
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Hence, the observations from the exploratory stage of this study lead to the

expectation that a customer who is part of a cluster of removed customers that

are geographically nearby has fewer feasible alternatives compared to a randomly

removed customer. Further, due to the difference in number of feasible alternatives,

it is expected that the average regret value of the customer selected for insertion is

higher for scenarios in which a cluster of customers has been removed. Statistical

evidence for these expectations is sought such that the following two null hypothe-

ses posing no difference can be rejected. It is the start of the theory construction stage.

Hypothesis 1 (H1): The average number of feasible route options each removed

customer can be inserted in is not different when the removed customer is selected

at random or when it is part of a cluster of geographically nearby customers that is

removed from the solution.

Hypothesis 2 (H2): The average (maximum) regret value of the customer selected

for insertion is not different when the removed customer is selected at random or

when it is part of a cluster of geographically nearby customers that is removed from

the solution.

The first hypothesis (H1) is validated by fitting a multilevel regression model

predicting the average number of feasible insertions each removed customer has based

on the choice of repair and destroy operators, the percentage of customers removed

and the total number of customers to be served. All effect estimates are provided

in Table 4.4. Given a scenario with an average number of customers, removing

an average percentage of customers (i.e., about 28%) and using random removal

and regret-2, each removed customer is expected to have 3.10 feasible insertion

routes on average — this is the Intercept value in Table 4.4 back-transformed

to the original scale, i.e. 1.762. If related removal is used instead of random

removal, the number decreases to 2.53 (= (1.76 − 0.17)2). The findings are similar

for the combination with regret-3 and regret-4, but with slightly lower averages

for scenarios relying on related removal. The decrease is statistically significant

as indicated in Table 4.4 and the regression results therefore provide statistical

evidence to reject Hypothesis 1. This rejection goes for all problem sizes. The

more customers have to be served, the more negative the effect of related re-

moval becomes (−0.001). Further, the effect is significantly negative for all removal

percentages and also becomes more negative for increasing percentage values (−0.01).
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Intuitively, a rejection of this hypothesis is logical since removing a cluster of

geographically nearby customers most likely results in the removal of one or multiple

entire routes and thus it is not surprising that in such a scenario the removed

customers have less feasible options for insertion than in other scenarios. This re-

gression analysis provides a statistical confirmation of what can be known by intuition.

Table 4.4: Regression Table Hypothesis 1

Dependent variable:
√
avg # of feasible insertions Estimate Std. Error l-95% CI u-95% CI

Intercept 1.76∗∗∗ 0.01 1.74 1.78

Customers 0.0013∗∗∗ 0.0001 0.0011 0.0015

Related −0.17∗∗∗ 0.01 −0.19 −0.14

Customers −0.001∗∗∗ 0.0001 −0.0009 −0.0007

Regret-3 −0.01 0.01 −0.03 0.003

Customers −0.0002∗∗∗ 0.0001 −0.0003 −0.0001

Regret-4 −0.01∗ 0.01 −0.03 0.002

Customers −0.0004∗∗∗ 0.0001 −0.0005 −0.0002

Percentage removed 0.004∗∗∗ 0.001 0.003 0.005

Related × Regret-3 −0.06∗∗∗ 0.01 −0.089 −0.034

Related × Regret-4 −0.06∗∗∗ 0.01 −0.088 −0.034

Related × Percentage removed −0.01∗∗∗ 0.001 −0.007 −0.004

Regret-3 × Percentage removed 0.0003 0.001 −0.002 0.001

Regret-4 × Percentage removed −0.001 0.001 −0.002 0.0008

Related × Regret-3 × Percentage removed −0.001 0.001 −0.003 0.001

Related × Regret-4 × Percentage removed −0.0004 0.001 −0.003 0.002

Observations 6761

Num. groups: problem instances 200

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The second hypothesis (H2) is validated in a similar fashion by fitting a multilevel

regression model predicting the average regret value. Table 4.5 lists all effect

estimates. A log transformation of the regret value variables is required in order to

comply with the assumptions typically underlying regression models. The values

can be back-transformed to their original scale by taking the exponential function.

For example, the average4 regret value when using random removal and regret-2

is exp(6.61) = 742.48 while it is exp(6.61 − 0.22) = 595.86 when using related

4The antilog of the arithmetic mean of log-transformed values is the geometric mean. For pos-

itively skewed data, which is the case for the experimental data in this study, the geometric mean

will be less than the arithmetic mean. The geometric mean is often a good estimate of the original

median.
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removal and regret-25. For the combination with regret-3 the predicted values are

respectively 5884.05 and 8866.19, while for the combination with regret-4 they are

13 359.73 and 17 676.65. The regression output in Table 4.5 indicates that this

average regret measure is significantly higher for scenarios using related removal, but

for the combination with regret-2 the regression model indicates the measure to be

significantly lower when using related removal. This suggests that the second best

alternative each removed customer has is on average of a better quality (meaning

the difference in insertion cost is smaller) when removing a geographical cluster

of customer than when removing randomly dispersed customers. For a removed

customer, part of a geographical cluster of removed customers, both the best and

second best insertion route can be distant and, therefore, differ little in cost of

inserting the customer in these routes. Note that this does not mean the insertion

itself is cheap. Both insertion alternatives can be costly. For a randomly removed

customer, on the other hand, there is probably more variation in the distance of the

customer to the feasible insertion routes because of the randomness applied, but the

insertion cost might be lower. This is confirmed in a regression analysis predicting the

average insertion cost6. It indicates that insertions in scenarios relying on related re-

moval to be significantly more expensive than in scenarios relying on random removal.

Investigation of the problem size influence (cf. coefficients 0.0007, 0.001, 0.0001

in Table 4.5) shows the average regret value being significantly lower with related

removal up to 308 customers (with regret-2), and to be significantly higher for

problem sizes of 110(regret-3)/165(regret-4) customers or more. So for problem

instances with less than (roughly) 100 customers, the average regret value difference

between random and related removal is not as expected. The average difference

between best and second best insertion option is smaller when customers are removed

according to a related logic compared to random removal. When also accounting for

third and fourth best alternatives, there is no clear quality distinction between both

destroy scenarios. This changes when more and more customers have to be served.

The average difference between best and second best insertion option becomes

increasingly smaller and eventually insignificant, while it alters to the expected

larger difference — with related removal — when incorporating third and fourth best

options.

5The predicted average regret value for the combination with Related can also be derived directly

from its effect estimate −0.22, i.e. the predicted value is exp(−0.22) = 80.25% of 742.48
6Table B.2 in Appendix B provides the regression output
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The other interacting influence is that of the percentage of customers removed

during the destroy process (cf. coefficients 0.02 and −0.01). The average regret

measure is significantly lower with related removal for percentages up to 34% (with

regret-2), 15% (with regret-3) and 22% (with regret-4). It becomes significantly

higher for percentages of 45% (with regret-2), 21% (with regret-3) and 27% (with

regret-4) or higher. So higher removal percentages negatively impact the quality

of second, third and fourth best alternatives for a geographical cluster of removed

customers.

Table 4.5: Regression Table Hypothesis 2

Dependent variable: Log(avg regret value) Estimate Std. Error l-95% CI u-95% CI

Intercept 6.61∗∗∗ 0.04 6.54 6.69

Customers −0.004∗∗∗ 0.0003 −0.005 −0.003

Related −0.22∗∗∗ 0.05 −0.31 −0.13

Customers 0.0007∗ 0.0004 −0.00016 0.0015

Regret-3 2.07∗∗∗ 0.03 2.00 2.13

Customers 0.0025∗∗∗ 0.0003 0.0019 0.0031

Regret-4 2.89∗∗∗ 0.03 2.82 2.96

Customers 0.0033∗∗∗ 0.0003 0.0028 0.0039

Percentage removed −0.056∗∗∗ 0.001 −0.06 −0.05

Related × Regret-3 0.41∗∗∗ 0.05 0.31 0.50

Customers 0.001∗ 0.0004 −0.00002 0.0017

Related × Regret-4 0.28∗∗∗ 0.05 0.18 0.36

Customers 0.0001 0.0004 −0.00079 0.00095

Related × Percentage removed 0.02∗∗∗ 0.002 0.016 0.025

Regret-3 × Percentage removed 0.036∗∗∗ 0.002 0.033 0.039

Regret-4 × Percentage removed 0.045∗∗∗ 0.002 0.041 0.047

Related × Regret-3 × Percentage removed −0.003 0.003 −0.0083 0.0023

Related × Regret-4 × Percentage removed −0.01∗∗∗ 0.003 −0.016 −0.0044

Observations 6761

Num. groups: problem instances 200

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The fact that each customer has less feasible alternatives with related removal

also explains the higher average regret value measured since a large cost (i.e., 9999)
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is assigned to every infeasible insertion point within a route. This is most notable in

the scenarios relying on regret-3 and regret-4. The large cost is assigned to prevent

customers with more feasible alternatives having a larger regret value and thus higher

priority than customers with less feasible alternatives.

4.4.3 Customer Prioritisation

Having found confirmation about the expectations on the difference in number of

feasible alternatives in both removal scenarios, the sequence in which customers are

reinserted back in the solution is investigated to see which customers are considered

difficult and thus prioritised. For the problem instance plotted in Figure 4.4b

customer 90 is inserted first, followed by customers 11, 25, 67, 80, 13, ... and finally

customers 48 and 30. In this sequence it is noticed that the majority of the customers

that are inserted first are almost all in near proximity of an existing route, while the

more “isolated” customers (nodes 48 and 30 in Figure 4.4b) are all postponed to the

final insertions. Characterising for these “isolated” customers is that they all have

not one feasible insertion possibility in one of the existing routes. This means that

the calculated regret value for these customers is zero7 and they are thus assigned

the lowest priority of all removed customers. The single alternative they have is to

create a route straight from the depot to the customer and back. In the regret-k

implementation used in these experiments, such an alternative is assigned a regret

value of zero and thus the lowest priority since there is no immediate cost loss of

postponing the insertion for that customer. The customer has no other alternatives

to take into account, so its insertion is not urgent. Secondly, as the solution of routing

problems typically not only strive to minimise the total distance travelled, but doing

so with the fewest number of vehicles necessary, the current implementation does not

favour the creation of additional routes. On the other hand, this observation raises

the question what the impact on performance would be if these isolated customers

are taken into account at the start of the repair process instead of initially being

ignored. Perhaps their prioritisation might benefit other removed customers as

this adds alternative routes in an area with few or no routes at all, maybe better

alternatives than when the isolated customers are postponed to the final insertions.

Therefore, it is expected that scenarios removing clusters of customers lead to more

isolated customers than scenarios that remove customers at random. Secondly, the

7Recall that routes which are infeasible insertion options get assigned a large cost of 9999, so

when a removed customer has not a single feasible insertion option, the regret-2 value, for example,

is calculated as 9999 − 9999 = 0.
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solution quality is analysed to see how it differs between both removal strategies if

isolated customers are prioritised instead of postponing their insertion. Hypotheses

3 and 4 are formulated to validate these expectations.

Hypothesis 3 (H3): The number of removed customers which, at the start of the

repair phase, have no other feasible insertion possibility than an individual route from

the depot to the customer and back is not different when these customers are selected at

random or when they belong to a geographically clustered group of removed customers.

Hypothesis 4 (H4): After performing a single destroy and repair iteration, there

is no difference in the average solution quality for scenarios removing geographical

clusters of customers if priority is given to customers which have no other feasible

insertion possibility than an individual route from the depot to the customer and back

or if these customers are ignored until the final insertions.

Hypothesis 3 is validated by a model predicting the number of isolated customers

available at the start of the repair process. Since this model involves predicting a

(discrete) count variable, a Poisson regression model is typically fitted rather than

the standard Gaussian model (Gelman and Hill, 2006; Cameron and Trivedi, 2013).

The Poisson distribution assumes E(Y ) = φvar(Y ) = φµ with φ = 1, thus that the

mean equals the variance. Therefore, the usual assumption of homoscedasticity is not

appropriate for Poisson models. However, the mean equals variance relationship is

often violated, i.e., the variance is often larger than the mean (φ > 1). This is called

overdispersion and is present when fitting a Poisson model on the experimental data.

The overdispersion is estimated at φ = 3.54. To accommodate for overdispersion

in count data, a good alternative is a negative binomial regression model. It is a

generalisation of the Poisson regression that relaxes the assumption of the variance

being equal to the mean (Cameron and Trivedi, 2013). The output of the negative

binomial regression is given in Table 4.6. There are no repair operator effects

included in this model since the number of isolated customers is measured at the

start of the repair phase before any insertion has occurred.

For a problem instance with an average number of customers (i.e., 184), these

results show that scenarios using random removal on average have exp(0.42) = 1.52

isolated customers while scenarios using related removal have a significantly higher

average of exp(0.42 + 1.76) = 8.85 isolated customers. The larger the percentage

of customers removed, the higher this number, but also the larger the difference
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between random and related removal as indicated by the estimate for Percentage

removed (0.05) and the estimate for Related × Percentage removed (0.01). Likewise,

for a fixed percentage of customers removed, the number of isolated customers will

increase for larger problem instances (0.002) as well as the gap between random and

related removal (0.003).

Table 4.6: Regression Table Hypothesis 3

Dependent variable: isolated customers Estimate Std. Error l-95% CI u-95% CI

Intercept 0.42∗∗∗ 0.05 0.33 0.50

Customers 0.002∗∗∗ 0.0004 0.001 0.003

Related 1.76∗∗∗ 0.04 1.68 1.84

Customers 0.003∗∗∗ 0.0004 0.002 0.004

Percentage removed 0.05∗∗∗ 0.002 0.04 0.05

Customers −0.00002 0.00001 −0.00004 0.00001

Related × Percentage removed 0.01∗∗∗ 0.002 0.01 0.02

Observations 6761

Num. groups: problem instances 200

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The final hypothesis (H4) is validated by changing the prioritisation mechanism

in regret-k such that the most isolated customers are now no longer ignored at

the start, but are assigned a higher priority. The regret value for these customers

is calculated as the difference between a large cost value of 9999 and twice the

distance from the customer to the depot8. The 10 000 scenarios are run again using

the modified prioritisation. An improvement over the initial solution is found for

8212 scenarios (82.12%), an increase of almost 20% compared to the previous data

set. In 1687 scenarios one or multiple customers failed to be reinserted and remain

in the request bank, which is almost half the number observed in the previous

experiment. Hence, the truncated data set that will be analysed has 8313 observa-

tions, consisting of the previously mentioned 8212 scenarios and 101 scenarios that

were able to reinsert all removed customers, but could not improve the initial solution.

Concerning customer prioritisation, for the problem instance in Figure 4.4

8For regret-3 and regret-4 this difference is respectively doubled and tripled.
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customers 48 and 30 are now inserted a lot sooner resulting in a predicted total

cost of 19 282.93 compared to 19 821.75 in the original prioritisation. The predicted

total cost for the scenario using random removal (plotted in Figure 4.3) remains

at 19 335.85. A statistical analysis is performed by fitting the regression model

formulated in equations (4.2) to (4.4) on the new performance results. The effect

estimates are listed in Table 4.7. The average performance for the different destroy

and repair combinations is plotted in Figure 4.5. Note that, compared to Figure

4.2, the average performance values are higher for all operator scenarios, but this

is not a completely fair comparison since the new experimental data includes 1552

observations more, which might explain the higher averages.

The important observation in Figure 4.5 is that the majority of the performance

difference between random and related removal is reduced. A significant improvement

is even observed for the combination with regret-3 for problem instance sizes up

to 222 customers — (0.11 + 0.002Customers) + (−0.23 − 0.001Customers) =

−0.12 + 0.001Customers. The combination of related removal with regret-2 or

regret-4 performs significantly better on the smaller problem sizes (i.e., 25 to 65

customers), but still performs significantly worse than random removal for the larger

instances (i.e., 208 customers or more) — 0.11 + 0.002Customers. Nonetheless,

the performance deterioration in this problem size range is largely reduced. The

interaction with the removal percentage (estimates 0.03 and −0.01) makes the effect

of switching from random to related removal negative — so an improvement in

performance — for lower percentage values and positive for higher values. A solution

improvement is observed up until 22% (with regret-2), 30% (with regret-3) and

24% (with regret-4), while related removal performs significantly worse when 30%

(with regret-2), 44% (with regret-3) and 33% (with regret-4) or more of the solution

is destroyed. Hence, related removal performs better when a limited number of

customers are removed.

The two different prioritisations are compared in a simple multilevel regression

model with a varying intercept per problem instance and a group predictor. Since

this analysis compares the total cost value obtained for the same scenario in both

experiments, only the 6432 scenarios are considered that both experiments have in

common. The variable Experiment is a binary variable to indicate the experiment.

The effect estimate for this variable in Table 4.8 is significantly negative (−0.011)

implying the adjusted prioritisation leads to an expected improvement in perfor-

mance. Hypothesis H4 is therefore rejected.
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Table 4.7: Significant effects regression model Hypothesis 4

Dependent variable:
√
total cost Estimate Std. Error l-95% CI u-95% CI

Intercept 178.77∗∗∗ 1.36 176.17 181.52

Customers 0.40∗∗∗ 0.01 0.38 0.43

Related 0.11∗∗ 0.05 0.003 0.21

Customers 0.002∗∗∗ 0.0001 0.001 0.003

Regret-3 0.06 0.05 −0.03 0.15

Customers −0.001 0.0004 −0.001 0.0002

Regret-4 0.06 0.05 −0.03 0.15

Customers −0.0001 0.0004 −0.001 0.001

Percentage removed −0.12∗∗∗ 0.003 −0.13 −0.11

Customers −0.0002∗∗∗ 0.00 −0.0002 −0.0001

Related × Regret-3 −0.23∗∗∗ 0.07 −0.36 −0.09

Customers −0.001∗ 0.001 −0.002 0.0001

Related × Regret-4 −0.06 0.07 −0.20 0.07

Customers −0.0005 0.001 −0.002 0.001

Related × Percentage removed 0.03∗∗∗ 0.004 0.02 0.04

Customers 0.0001∗∗∗ 0.00 0.0001 0.0002

Regret-3 × Percentage removed 0.01 0.004 −0.00 0.01

Customers −0.00∗ 0.00 −0.0001 0.00

Regret-4 × Percentage removed 0.003 0.004 −0.005 0.01

Customers −0.00 0.00 −0.0001 0.00

Related × Regret-3 × Percentage removed −0.01∗ 0.01 −0.02 0.0002

Related × Regret-4 × Percentage removed −0.01 0.01 −0.02 0.01

Observations 8313

Num. groups: problem instances 200

Note 1: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The expectations on why there is a performance difference are for the most part

confirmed, but the experimental data used to validate the hypotheses is based on a

single destroy and repair iteration performed on an initial greedy solution. This was

done to enable a detailed study of the repair and destroy process. A large neighbour

search typically runs a large number of iterations and returns the best found solution

across these iterations. Whether a better performance is also observed when running
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Figure 4.5: Predicted performance given a problem instance with an average number

of customers (i.e., about 208)

Table 4.8: Regression Table for comparing experiments with different prioritisation

Dependent variable: Log(total cost) Estimate Std. Error l-95% CI u-95% CI

Intercept 10.36∗∗∗ 0.04 10.28 10.44

Experiment −0.011∗∗∗ 0.0004 −0.012 −0.0107

Observations 12 864

Num. groups: problem instances 200

Note 1: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note 2: Experiment: original(0)/adjusted(1) prioritisation

Note 3: For 6432 scenarios both experiments were able to reinsert all removed customers.

multiple iterations is verified in a final experiment similar to the experiment performed

in Chapter 3 using new sample data. This is the final stage of the explanatory study

where the theory is validated.
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4.4.4 Validation with Large Neighbourhood Search

A new data set of 4000 scenarios is generated by sampling 200 problem instances and

20 parameter settings per problem instance. A detailed description of all parameters

can be found in Section 3.3 of Chapter 3. The restriction that a parameter setting

has only one destroy and one repair operator is maintained. Two separate LNS

experiments are run using the same input data: the first one gives low priority to

isolated customers while the second one assigns a high priority to these customers.

The regression results for both LNS experiments are given in Tables B.3 and B.4

in Appendix B. An improvement in solution quality (26.33) is observed compared

to the LNS experiment that ignores isolated customers (Table 4.9). Furthermore,

prioritising isolated customers makes the LNS also more efficient (−0.64) on those

instances where both experiments obtain the same best solution in that less iterations

are required to reach this best found solution (Table 4.10). Nonetheless, the results

still suggest that random removal performs significantly better than related removal

when combined with a regret-k operator. But this does not hold for all problem

sizes. As can be seen in Table 4.11, related removal now performs significantly

better than random removal for the smaller problem sizes, when the destroy operator

is combined with regret-3 or regret-4 (Figure 4.6). For the larger problem sizes

random removal still performs significantly better (Figure 4.7). Looking at the repair

operators, the effect estimates for regret-3 (−2.69) and regret-4 (−5.05) suggest they

perform significantly worse than regret-2 for the combination with random removal.

Studying their marginal effect for varying problem sizes regret-3 (0.74) is observed to

perform significantly worse for problem instances up to 228 customers and regret-4

(0.07) for all problem sizes. For the combination with related removal (estimates

9.58 and 7.84) both repair operators significantly outperform regret-2 for problem

sizes of respectively 72 customers (regret-3) and 177 customers (regret-4) or more

(Table 4.12). The observation on the marginal effects of regret-3 and regret-4 with

random removal on the smaller problem sizes again raises the question about why

they perform worse than regret-2, given that the former operators ‘look further

ahead’ when reinserting customers.

The takeaway of the explanatory study in this chapter concerning a destroy and

repair process is that when customers have no feasible insertion possibility in one of

the existing routes, but can only be inserted in a new route, their insertion should

be given a high priority. Postponing their insertion is shown to be detrimental
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Table 4.9: Regression Table for comparing the solution quality of two LNS experi-

ments with different prioritisation

Dependent variable: total cost−1 Estimate Std. Error l-95% CI u-95% CI

Intercept 3858.16∗∗∗ 175.51 3513.38 4202.94

Experiment 26.33∗∗∗ 0.84 24.69 27.98

Observations 8 000

Num. groups: problem instances 200

Note 1: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note 2: Experiment: original(0)/adjusted(1) prioritisation

Table 4.10: Regression table for comparing the number of iterations required to reach

the best found solution in two LNS experiments with different prioritisation

Dependent variable: Log(iterations) Estimate Std. Error l-95% CI u-95% CI

Intercept 6.86∗∗∗ 0.21 6.44 7.27

Experiment −0.64∗∗∗ 0.807 −0.78 −0.51

Observations 1216

Num. groups: problem instances 57

Note 1: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note 2: Experiment: original(0)/adjusted(1) prioritisation

Table 4.11: Problem size ranges for which either random or related removal performs

significantly better

Operator Regret-2 Regret-3 Regret-4

Random significantly better than Related ≥ 135 ≥ 221 ≥ 215

Related significantly better than Random never ≤ 178 ≤ 153

Table 4.12: Problem size ranges for which either regret-2, regret-3 or regret-4 performs

significantly better

Operator Random Related

Regret-2 significantly better than Regret-3/-4 ≤ 228/always never

Regret-3 significantly better than Regret-2 never ≥ 72

Regret-4 significantly better than Regret-2 never ≥ 177
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Figure 4.6: Marginal effect of related removal for a problem instance with 25 customers
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Figure 4.7: Marginal effect of related removal for a problem instance with 400 cus-

tomers

to algorithm performance — when the repair phase applies a difficulty measure

that accounts for cost increases of postponing customer insertions. These kinds of

‘isolated’ customers occur more often when removed customers form a geographical

cluster. So the idea that such removals make it more easy for customers to shuffle

within and between routes and that this would lead to a better performance than

removing more distanced customers, has to be nuanced. The removal of clusters
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will most likely result in the removal of entire routes, thereby removing feasible

alternatives for the removed customers when they are to be reinserted.

The analysis managed to explain the majority of the performance gap observed

between random and related removal given the combination with a regret-k repair

operator. There is still a small significant performance difference for certain problem

size ranges. It might be worthwhile to pursue a further optimisation of the prioriti-

sation mechanism or perhaps a preparatory step, that creates individual routes for

some difficult — to be defined — customers, might prove beneficial. Such ideas have

to be verified in future experiments. As mentioned in Section 4.2, experimentation

is an iterative process with each iteration providing a better understanding of the

studied process.

4.5 Conclusion

This chapter continued the experimental study started in Chapter 3 and focused on

one of the observations of that analysis. An experimental study sought to explain

why two destroy operators perform different when combined with the same type

of repair operator. It is found that removing geographical clusters of customers

reduces the number of insertion alternatives to choose from during the repair phase.

Several customers do not even have a single feasible insertion option in one of the

existing routes and can therefore be considered isolated cases (at the start of the

repair phase). Postponing the insertion of these isolated customers is found to have a

detrimental impact on the solution quality. It is tested what the effect is of assigning

these customers a higher priority by allowing their insertion in an individual route

from the depot to the customer and back, an option that was previously considered

as a last alternative. Permitting these individual routes to be created sooner in the

repair process adds good insertion alternatives for many other removed customers

and thus enables the regret operator to make better choices. Hence, a regret operator

will make a better estimation of customer difficulty and consequently a better

prioritisation if each individual customer has existing routes nearby in which it can

be feasibly inserted. So, when a removed customer cannot be reinserted in one of

the existing routes, its insertion (in a new route) should not be considered as less

important, but rather as one that is urgent.

An idea coming out of these findings is to introduce and test a new destroy oper-
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ator that removes maximally diverse customers. It would remove a first customer at

random and then subsequently choose to remove the customer that is located furthest

from the customers that are already taken out. This would probably reduce the

occurrence of isolated customers and, therefore, result in a better performing operator

than the related removal operator. Whether this maximum diversity can also improve

upon the random diversity produced by the random removal operator has to be tested.

The study explained the majority of the performance difference between both

destroy scenarios. A small significant difference still remains for which an explanation

might be found by further improving how customers are prioritised or by using

a preparatory step in the regret operator. In addition, it might be interesting

to incorporate a number of customers per route variable, since routes with many

customers are probably never completely destroyed. A customer removed from such

a route is less likely to become ‘isolated’ compared to a customer removed from

a route serving only a few customers. This can further nuance the conclusions

obtained in this chapter, since the problem instances generated for the explana-

tory study show little variation in the average number of customers per route —

on average five per route — and so the findings pertain to solutions with ‘short’ routes.

Another extension of the analysis would be to keep track of operator performance

at each iteration of a large neighbourhood search run and investigate whether the

conclusions drawn at the end of the run also hold at each moment during the

search for solution improvements. It might be possible that some operator per-

forms better at the start of a run and at some point should be replaced by another one.

The next chapter returns to the exploratory analysis that initiated the explanatory

study of this chapter, but looks to perform this analysis in a more efficient way by

combining methodologies.



Chapter 5

A Combined Approach for

Analysing Heuristic

Algorithms

5.1 Introduction

Chapter 3 introduced an evaluation methodology for algorithms based on multilevel

models. It allows the analysis of the algorithm elements’ (i.e., parameters and

components) impact on performance as well as the influence of the problem instance

characteristics on these algorithm elements. The case study involved an exploratory

analysis that exposed patterns in the data. This was followed by a confirmatory

analysis in Chapter 4 explaining one of the exposed patterns.

In this chapter1 (Figure 5.1), the focus shifts again to the exploratory analysis.

The regression model formulated in Chapter 3 considers all algorithm parameters

and components as well as all problem instance characteristics. Several interaction

terms between algorithm elements are included. For example, the interaction of the

destroy operators with the amount of determinism employed within these operators.

The result is an extensive model with 100 variable (interaction) terms since there

is no preliminary knowledge of which algorithm elements are most relevant to

performance. The more extensive the regression model, the more complicated inter-

1This chapter is based on the paper: Corstjens, J., Dang, N., Depaire, B., Caris, A., De Caus-

maecker, P. in press. A combined approach for analysing heuristic algorithms. Journal of Heuristics.

97
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pretation becomes, especially when correlated effects impact the obtained estimates.

Furthermore, the more effects have to be estimated, the more time is required to

fit the model. The aim for this chapter is to perform a more efficient exploratory

analysis that focuses on the variable (interaction) terms that are responsible for the

major variations in performance.

Previous research methodologies have already focused on evaluating the relevance

of algorithm elements (Bartz-Beielstein et al., 2004; Chiarandini and Goegebeur,

2010; Fawcett and Hoos, 2015; Hutter et al., 2013, 2014; Nannen and Eiben, 2007).

One of these methodologies is considered and we explore the opportunity for a

complementary use with the multilevel methodology proposed in Chapter 3. First, it

is investigated whether it is worthwhile to combine both approaches by verifying for

the VRPTW-LNS case study performed in Chapter 3 whether observed correlations

are consistent with those from the multilevel evaluation methodology. If conclusions

were very different, there is little to gain from a joint methodology. Secondly, the

combined analysis is compared with an individual multilevel regression analysis.

The focus of this chapter therefore lies on answering the following questions. How

can both methodologies be formulated in a combined methodology and what is the

added value of jointly applying both approaches? Are the insights obtained from the

analysis results of both approaches consistent or are there any differences observed?

How do the conclusions of the joint methodology compare to the conclusions obtained

when applying a multilevel regression analysis individually?

The investigated methodology is functional analysis of variance (fANOVA) by

Hutter et al. (2014) since it is a lot more computationally efficient than forward

selection (Hutter et al., 2013), is able to detect interaction effects, and, contrary to

ablation analysis (Fawcett and Hoos, 2015), is not bound by a specific default con-

figuration (van Rijn and Hutter, 2018). fANOVA quantifies the relative importance

of the algorithm elements and their interactions according to the amount of variance

in the performance data they explain, giving an indication of which effects are most

important to performance. In comparison, the multilevel regression methodology

explicitly separates the performance impact of algorithm elements and problem

instances. It is focused on quantifying the relationship between algorithm elements

and performance and how this relationship is moderated by the characteristics of a

specific problem instance.

Each methodology has its own advantages. fANOVA does not rely on statistical



A Combined Approach for Analysing Heuristic Algorithms 99

Introduction and Problem Statement (Chapter 1)

The Evaluation of Heuristic Algorithms (Chapter 2)

A Multilevel Methodology for Understand-

ing Heuristic Algorithm Behaviour (Chapter 3)

Explaining Performance

Differences (Chapter 4)

A Combined Method-

ology (Chapter 5)

Optimising Heuristic

Performance (Chapter 6)

Conclusions (Chapter 7)

Figure 5.1: Outline of Thesis — Chapter 5.

assumptions, such as independence, normality and homoscedasticity, that are

required by multilevel regression models. It is also computationally cheaper. The

multilevel regression model, on the other hand, offers a more detailed analysis

of the algorithm, since it can investigate algorithm element effects for a specific

setting of the other elements and a specific problem instance. Moreover, the

interpretation of effects in fANOVA is carried out through variance percentages

and visual inspection of plots. The latter might be difficult for interaction effects.

The interpretation of the regression analysis is based on quantified effects, and

plots are merely used to support and visualise interpretation. The regression

analysis also provides a statistical significance test to indicate whether there re-

ally is a link between the values chosen for a specific algorithm parameter and the

obtained performance, or whether any observed relationships are likely due to chance.
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In this chapter, both methodologies are combined by relying on the importance

analysis provided by fANOVA to formulate a proper regression model for the

multilevel methodology. This prevents an overly complex regression model with

many variable (interactions) that contribute little to performance. This regression

model can then be used for a more detailed analysis of the important effects and

for confirmatory analyses with hypotheses testing. Both approaches and their

combination are demonstrated on a case study in which a number of algorithm

configurations for a Large Neighbourhood Search (LNS) algorithm are tested on a

number of problem instances for the Vehicle Routing Problem with Time Windows

(VRPTW).

The fANOVA methodology is introduced in Section 5.2. The proposed combina-

tion with the multilevel level methodology is motivated in Section 5.3. Section 5.4

details the experimental set-up for the case study, followed by the applications of

fANOVA and multilevel regression analysis in Section 5.4.2. Finally, conclusions are

given in Section 5.5.

5.2 fANOVA

The fANOVA method proposed in Hutter et al. (2014) is an approach for analysing

the importance of algorithm elements on performance using a random forest predic-

tion model and the functional analysis of variance (Hooker, 2012). The approach

studies the contribution of every single element and every element interaction on the

performance of the algorithm. Given a data set of performance values of different

algorithm configurations on a number of problem instances, fANOVA first builds a

random forest-based prediction model to predict the average performance of every

algorithm configuration over the entire problem instance space. A random forest

model is a collection of regression trees — i.e., decision trees with continuous values

at the leaves instead of class labels — that provides more accurate predictions than

individual trees and a measure of uncertainty for each predicted value. Each tree is

built using a random sample of performance observations (Breiman, 2001). Random

forest models have shown to perform very well for model-based optimisation in

complex configuration spaces (Hutter et al., 2014).

Once the random forest prediction model is built, functional analysis of variance

(Hooker, 2012) is applied on the prediction model to decompose the overall algorithm
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performance variance into additive parts, each one corresponding to a subset of the

algorithm elements. The ratio between the variance associated with each component

and the overall performance variance is used as an indicator of the importance of the

corresponding algorithm element subset. For example, the following illustrates the

output fANOVA could provide when applied on Large Neighbourhood Search:

Sum of fractions for main effects 75.10%

Sum of fractions for pairwise interaction effects 6.26%

72.62% due to main effect: repair

1.72% due to main effect: destroy

1.60% due to interaction: repair x destroy

The interpretation of the first two lines is that 75.10% of the algorithm perfor-

mance variance can be explained by single elements, and 6.26% by the interactions of

every pair of algorithm elements. The remaining 18.64% is explained by higher-order

(≥3) interactions and error inherent in the model. The third line indicates that

the repair component is the most important element, as the component itself can

explain a huge part (72.62%) of the overall algorithm performance variance. The

other component destroy and their pairwise interaction repair and destroy are less

important.

In addition to the value indicating the importance of each algorithm element

subset, fANOVA also provides some insights on which regions are good and bad (with

a degree of uncertainty) for each element inside the subset through a marginal plot.

Given a specific value for each algorithm element in the subset, the corresponding

marginal prediction value is the average performance value of the algorithm over the

entire configuration space associated with all elements not belonging to the subset.

A marginal plot shows the mean and the variance of the marginal prediction values

given by the random forest’s individual trees. Figure 5.2 shows the marginal plot

of repair. This categorical element has a domain of three values: Greedy, Regret2

and GreedyRegret2, each of which is associated with a boxplot in Figure 5.2. The

boxplot for Greedy, for example, shows the mean and the variance of the average

algorithm performance values over the entire problem instance space of all algorithm

configurations having repair = Greedy. The plot implies that Regret2 is the best

choice for the element repair.

Although fANOVA generally focuses on analysing the importance of algorithm

elements, it can also be used to study the interaction between elements and problem
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Figure 5.2: fANOVA’s marginal plot for the main effect of parameter repair.

instance features — as we do in our case study — by simply adding those features

into the prediction model of fANOVA. The features are treated exactly in the same

way as the algorithm elements. It must be noted that such an integration can only

be valid if the features are independent. In other words, instance features might

be correlated, but their values in the problem instance set under study must be

arbitrarily chosen (Hutter et al., 2013). In our case study, instances are generated by

randomly sampling values from all features’ domains, which satisfies this requirement

of independency.

An implementation of fANOVA is provided by the authors as a Python package

at https://github.com/frank-hutter/fanova. As a choice of implementation, the

package only gives analysis results on the single and pairwise interaction effects. The

higher-order (≥ 3) interactions are left out, probably due to potentially expensive

computation time required and the fact that in many practical cases, single and

pairwise interaction effects are usually sufficient to explain the majority of algorithm

performance variance.

5.3 A Combined Methodology

A methodology is proposed that combines the use of fANOVA and multilevel

regression analysis. The idea is to use the ranking of effects fANOVA provides

https://github.com/frank-hutter/fanova
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to formulate a multilevel regression model that includes only the most important

effects. The search for a suitable regression model that includes all relevant variables

can often be a cumbersome task (Gelman and Hill, 2006). The more variables

and variable interactions are included, the more complex the model becomes and

the more arduous it is to interpret the estimated effects. The challenge thus lies

in deciding which explanatory variables and interactions to include in the model.

fANOVA can provide assistance with this issue. Since the analysis gives a ranking

on the importance of effects, a regression model could then be formulated using

this ranking as a guideline in order to prevent an overly complex model with many

variables. The regression analysis can then more easily focus on these important

effects. A regression model that is less complex in terms of fewer variables and vari-

able interactions included also implies time savings when fitting the model to the data.

The regression analysis facilitates a more detailed analysis since it provides

effect estimates for a particular algorithm configuration and problem instance,

while the fANOVA estimates marginal performance for a particular parameter value

or component choice by averaging over all other elements and problem instance

characteristics. Furthermore, the multilevel regression adds contribution on the

importance analysis by calculating confidence intervals for each of the effects. This

indicates which effects are actually statistically significant and which are likely due

to chance. Finally, since regression models assume specific functional forms — linear

or nonlinear (exponential, logarithmic, . . . ) —, it has the ability to extrapolate

results, unlike the random forest prediction model fANOVA uses, which has an

upper and lower bound for predicted values. Nonetheless, caution is advised when

extrapolating results to regions in the configuration or problem instance space where

there is no data to support them as the assumed trend does not necessarily hold for

out-of-sample ranges (Gelman and Hill, 2006).

One might wonder whether using the two methodologies jointly affects the results

obtained. If both fANOVA and multilevel regression are performed on independent

data sets — like we do —, the only influence fANOVA exerts is on the choice

of regression variables. This involves two risk. fANOVA can suggest variables

to be important, but which do not have an effect. The inclusion of one or two

variables that are unrelated to the dependent variable — also known as extraneous

variables — (Osborne, 2014) is not really problematic. They might increase the

imprecision of estimates, but have little effect on regression conclusions. When

more extraneous variables are added, however, the presence of collinearity will be
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induced (Frees, 2009). The second, more important, risk occurs when fANOVA

incorrectly suggests variables to be unimportant while they do have a relevant

effect on the dependent variable. The omitted variable becomes part of the error

term and will be correlated with performance (i.e., the Y variable). If the omitted

variable is also correlated with other variables that are included in the regression

model, then the error term is no longer independent. The latter is referred to as the

endogeneity problem and results in effect estimates being biased. This is not an issue

in the analyses in this thesis since the random sampling used to generate the ex-

perimental design makes all included variables exogeneous (Stock and Watson, 2011).

In the next section the proposed combination of fANOVA and multilevel regres-

sion is applied on the VRPTW-LNS case study. The findings of both analyses are

compared with the aim of showing their consistency.

5.4 Case Study

The experimental analysis performed here considers the case study of Chapter 3

on a large neighbourhood search algorithm solving instances for the vehicle routing

problem with time windows.

5.4.1 Experimental Set-Up

A multilevel experimental design of 9000 observations is set up, consisting of 300

problem instances with 30 algorithm configurations per instance2. The value range

of several parameters (determinism, cooling rate and start temperature control

parameter) is widened such that any important effects that might have been

missed with the reduced ranges, would show up in this analysis. An overview of

all parameters and components with the adjusted value ranges is provided in Table 5.1.

2Two data sets were analysed, one with 4000 observations and one with 9000 observations. In-

creasing sample size will make estimates more precise, meaning their confidence intervals become

narrower. Effects that are already significant will only become more significant. Whether or not

an increased sample size will contribute much to the analysis is difficult to judge. As sample size

increases, even the smallest effects become significant, but that does not make them important

(Sullivan and Feinn, 2012). In this particular case, a larger sample size did not alter analysis conclu-

sions other than adding more precision. It did require substantially more time to fit the regression

models. So, it is a trade-off between increased precision and practicality. For the analysis presented

here, the increased precision of estimates is preferred.
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Table 5.1: LNS Parameters and Components

Parameter Type Value ranges

random seed Integer U[1, 1000000]

determinism parameter Integer U[1, 100]

noise parameter Continuous U[0, 1]

cooling rate Continuous U[0.01,0.99]

start temperature
Continuous U[0.01,1]

control parameter

destroy operators Categorical

Random, Worst, Related,

RandomWorst, RandomRelated,

WorstRelated, RandomWorstRelated

repair operators Categorical
Greedy, Regret2,

GreedyRegret2

Two independent data sets of 9000 observations are created. One for the fANOVA

and one for the multilevel regression analysis. The motivation is to prevent overfitting

analysis findings to a single data set. Searching for a model that is the best fit for a

single data set might risk fitting noise in the data — patterns present in the sample

but not in the population — and might result in a model which performs poorly on

other data points from the same population. A fitted model should be able to make

accurate predictions for new data points instead of only the data points used to learn

the model (Dietterich, 1995). Furthermore, a second data set also allows to gain more

confidence on the effects that appear relevant in the first data set and to detect possible

false positives. The latter implies that a variable (interaction) might show to have a

contribution to performance in the sample data, while it does not in the population.

Using a second sample reduces the risk of having false positives (Simmons et al.,

2011). For these reasons, the multilevel regression analysis is performed using new

sample data.

5.4.2 Analysis of Results

First, fANOVA is applied on the given algorithm performance data set. Then, a

multilevel regression model is formulated based on the importance analysis provided

by fANOVA, in particular all algorithm elements and problem instance characteristics

having a contribution percentage value higher than 1% are included. As will be

discussed, the conclusions of both approaches are consistent. However, not all effects

taken from fANOVA are statistically significant according to the multilevel regression

model.
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5.4.2.1 Application of fANOVA

First, the cost is normalised on an instance-basis since the range of the cost values

returned by the algorithm can vary among different instances.

pcj =
(f c

j −minc′∈Cj, f
c′

j )

(maxc′∈Cj, f
c′

j −minc′∈Cj, f
c′

j )
(5.1)

where f c
j and pcj are the original and normalised cost values of configuration c on

problem instance j, and Cj is the set of all algorithm configurations that have been

run on instance j.

The output generated by fANOVA, for the entire problem instance set, is as fol-

lows. In total, 67.91% of the performance variance is covered by main and pairwise

interaction effects. The remaining 32.09% is due to higher-order interactions and er-

ror inherent in the model. The focus will be on the effects having a contribution of

1% or more. At this threshold 58.18% of the variance in performance is explained —

of the 67.91% covered by fANOVA. A lower cut-off value would add little and only

increase regression model complexity. On the other hand, a cut-off at, say 5%, would

only explain about 45% of the performance variance and result in an uninteresting re-

gression model that only included the repair operators and a main problem size effect,

but not a single problem instance characteristic’s influence on the repair operators.

Sum of fractions for main effects 49.44%

Sum of fractions for pairwise interaction effects 18.47%

37.54% due to main effect: repair

7.08% due to main effect: customers

4.80% due to interaction: repair x destroy

4.65% due to interaction: repair x customers

2.75% due to main effect: destroy

1.36% due to interaction: destroy x customers

0.98% due to interaction: destroy x average demand

0.81% due to main effect: average time window width

0.70% due to interaction: destroy x average time window width

0.68% due to interaction: repair x average demand

0.56% due to interaction: average time window width x average demand

0.55% due to main effect: average demand

0.47% due to interaction: repair x average time window width

0.39% due to interaction: max runtime x customers
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0.37% due to interaction: customers x average demand

0.32% due to interaction: customers x average time window width

...

The marginal plot for each effect is given in Figure 5.3. Since the interest is in the

algorithm elements and their interactions with the problem instance characteristics,

the main effect customers is omitted.

The single element repair explains a large part (37.54%) of the total algorithm

performance variance, indicating that this element plays the most important role in

the performance of the algorithm. Figure 5.3a shows that Greedy is clearly the worst

choice. The difference between Regret2 and GreedyRegret2 is less clear, although

Regret2 has a slightly better normalised average performance value. How the impact

of the chosen repair operator(s) changes given different problem instance sizes is

explained in Figure 5.3b. The disadvantage of using the repair operator Greedy

becomes more pronounced as the number of customers increases, especially when

the number of customers is larger or equal to 100. There is no clear performance

difference between the two repair operators Regret2 and GreedyRegret2, but the

difference does tend to increasingly grow in the advantage of Regret2 for problem

instance sizes of 200 customers or more.

The second categorical algorithm element, destroy, has much less importance

than repair (2.75%). For this element, the choice of values, sorted in increasing

order of marginal normalised cost values — i.e., from good to bad performance

—, is as follows: RandomRelated, RandomWorstRelated, Random, WorstRelated,

RandomWorst, Related, Worst (Figure 5.3c). The influence of different problem

instance sizes on the impact of the chosen destroy operator(s) is depicted in Figure

5.3d, but this marginal plot is difficult to interpret visually.

The final marginal plot (Figure 5.3e) shows the interaction between the two cat-

egorical parameters (4.80%) and indicates consistency with the main effect observa-

tions: Greedy is always the worst choice, despite its combination with any destroy

operator; and the choice between Regret2 and GreedyRegret2 is not very clear, but

Regret2 does have a slight advantage. Moreover, among all combinations of repair

and destroy operators, using Regret2 as a repair operator combined with the destroy

operator Random is predicted to perform best.
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Figure 5.3: Marginal plots of main and pairwise interaction effects of the fANOVA.
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Figure 5.3: Marginal plots of main and pairwise interaction effects of the fANOVA.
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Figure 5.3: Marginal plots of main and pairwise interaction effects of the fANOVA.

5.4.2.2 Application of Multilevel Regression

Based on the fANOVA output, a multilevel regression model is fitted. The resulting

model in equations (5.2)-(5.4) describes a non-linear relationship between the perfor-

mance measure and the algorithm elements explaining it3.

3In contrast to the fANOVA, the regression model includes a binary or dummy variable for each

possible combination of repair operators and each combination of destroy operators for which the

impact on performance can be studied. So instead of one repair and one destroy variable, the

regression model has respectively three and seven variables. Perfect multicollinearity prevents the

inclusion of all repair and destroy dummies. Therefore, the configuration including all repair or

destroy operators serves as a baseline configuration which is represented in the regression intercept.

The effect estimates of all other operator dummies represent the change in total cost relative to the

baseline.
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1

Yi

=αj[i] + β1j[i]Greedyi + β2j[i]Regret2i + β3j[i]Randomi + · · ·+

β8j[i]RandomRelatedi + β9j[i]Greedyi ×Randomi + · · ·+

β20j[i]Regret2i ×RandomRelatedi + ǫi

(5.2)

αj = µα
0 + µα

1Customers
1
3

j + ηαj (5.3)

βzj = µ
βz

0 + µ
βz

1 Customers
1
3

j + η
βz

j (5.4)

All operator effects are modelled as varying effects depending on the problem

instance characteristic Customers, as indicated by the output of fANOVA. The

regression model fitted in Chapter 3 considered all algorithm element interaction

terms as fixed effects. In this analysis, the interactions of destroy and repair operators

are also considered as random effects. The reduced complexity offered by fANOVA

allows us to more easily add such effects without making the model overly complex

compared to a model that includes all algorithm elements. In the latter case, making

interaction effects random would seriously complicate the regression model. Table

5.2 lists all significant effects. The complete regression table is given in Table B.5 in

Appendix B. In the following paragraphs the regression findings are summarised.

Figure 5.4 shows the predicted objective function values for all repair and destroy

operator configurations, all other variables fixed at their average value. Panel (a) dis-

plays the effect of switching to Greedy while panel (b) shows the impact of switching

to Regret2. In agreement with the analysis in Chapter 3, the predictions show that

using Regret2 as the sole repair operator is expected to give the best performance

results for all destroy operators it is combined with, while relying only on greedy

repair is expected to give the worst results for all destroy operator combinations. It

is also observed that the relative performance of the destroy operators per individual

repair operator differs. The way a solution is destroyed has an impact on how good

Greedy or Regret2 is at repairing this solution. Greedy seems to have more difficulty

in repairing a solution from which customers were removed randomly while Regret2

is better able to cope with such a situation. Regret2, however, appears to find it more

difficult to repair a solution from which related customers were removed — with

relatedness interpreted in terms of distance as in Pisinger and Ropke (2007). These

insights, again confirming the analysis of Chapter 3, spark a new research challenge

to discover why certain operator combinations perform (relatively) different (cf.

Chapter 4).
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Table 5.2: Regression Table of significant effectsa

Variable Estimate Est.Error l-95% CI u-95% CI

Interceptb,c 4, 082.85 122.62 3, 879.03 4, 302.29

Customers
1
3 −428.11 26.96 −476.64 −373.45

Greedy −141.97 4.39 −149.85 −134.36

Customers
1
3 −16.63 0.97 −18.46 −14.74

Regret2 12.67 2.46 7.81 17.51

Customers
1
3 1.71 0.57 0.60 2.80

Random 16.81 2.41 12.12 21.59

Customers
1
3 2.73 0.56 1.64 3.83

Worst −13.90 2.45 −18.78 −9.20

Related −69.67 3.16 −75.53 −63.84

Customers
1
3 −11.17 0.73 −12.59 −9.76

RandomWorst 7.96 2.36 3.34 12.61

Customers
1
3 1.80 0.57 0.70 2.90

WorstRelated −16.26 2.43 −21.05 −11.48

Customers
1
3 −2.30 0.57 −3.40 −1.19

Greedy × Random −67.38 5.26 −77.47 −57.11

Customers
1
3 −11.01 1.20 −13.34 −8.63

Greedy × Worst −98.09 6.36 −110.17 −85.91

Greedy × Related 88.16 4.37 79.91 96.40

Customers
1
3 13.50 1.00 11.55 15.43

Greedy × RandomWorst −87.72 5.54 −98.11 −77.07

Customers
1
3 −8.14 1.27 −10.59 −5.63

Greedy × WorstRelated 10.27 3.94 2.54 17.94

Customers
1
3 3.04 0.92 1.25 4.84

Greedy × RandomRelated 20.17 3.91 12.53 27.83

Customers
1
3 1.87 0.89 0.10 3.61

Regret2 × Related −9.13 3.88 −16.58 −1.39

Customers
1
3 −2.13 0.91 −3.91 −0.32

a Since the reciprocal transformation of the response variable returned very small values,

causing difficulties in the sampling procedure of the brms package, all transformed (response)

values were multiplied by 100 000 000.
b The effects of Greedy & Regret-2 and Random, Worst & Related, the reference levels for

the repair and destroy operator dummies, are accounted for in the Intercept.
c The Intercept value is backtransformed to the original scale through division by 100 000 000

and taking the inverse of the resulting value.
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Figure 5.4: Predicted total cost for an average problem instance (216 customers).

The influence of the number of customers is investigated by calculating the

marginal effects. The calculation of these marginal effects is previously discussed in

Section 3.4.5.1 in Chapter 3. In this analysis, the single new element in the marginal

effect is the influence of Customers on the interaction between destroy and repair op-
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erators. For example, the marginal impact on performance for Greedy with Random

is derived as follows.

Yi = (αj[i] + β1j[i]Greedyi + · · ·+ β20j[i]Regret2i ×RandomRelatedi)
−1 (5.5)

∂Y
∂Greedy

= −
µ
β1
0 +µ

β1
1 Customers

1
3
j
+(µ

β2
0 +µ

β2
1 Customers

1
3
j
)

(µα
0 +µα

1 Customers

1
3
j
+(µ

β1
0 +µ

β1
1 Customers

1
3
j
)+(µ

β2
0 +µ

β2
1 Customers

1
3
j
))2

(5.6)

∂Y
∂Greedy

= −
−141.97−16.63Customers

1
3
j
−67.38−11.01Customers

1
3
j

(4082.85−(141.97+67.38)−(428.11+16.63+11.01)Customers

1
3
j
)2

(5.7)

The problem instance size influence on the interaction effect is interpreted

as follows: The combination greedy and random tends to perform increasingly

worse than the combination of greedy with all destroy operators as more and more

customers have to be served. Figures 5.5 and 5.6 show the marginal effect of

Greedy and Regret2 for the smallest (a) and largest (b) instance size for all destroy

operator combinations. Note the different scale on the vertical axis between panels

(a) and (b). Similarly, the influence of Customers on the effect of switching from

RandomWorstRelated to any other (set of) destroy operator(s) can be investigated.

Figures 5.7 and 5.8 show the marginal effects of the destroy operators for a problem

instance with (a) 25 and (b) 400 customers. These plots have the same layout as

Figures 5.5 and 5.6, but show effects from the perspective of the destroy operators

rather than the repair operators.

Summarising the observations, regression results suggest to avoid relying only on

greedy repair, as this is expected to give the worst results in all considered conditions.

Concerning the sole use of regret-2, different conclusions are drawn for smaller and

larger instances, due to the significant influence of the number of customers an

instance has to serve. On the smallest instances, no significant improvement is

observed over using both repair operators (Figure 5.6a). Furthermore, most of the

performance differences between the various destroy operator configurations cannot

be distinguished from each other as well, meaning the choice of destroy operators is

irrelevant for these problem instance sizes. Only the combination with worst removal

is indicated to perform significantly worse than the scenario with all destroy operators

(Figure 5.7a). On the larger instances, performance differences are more pronounced.

The threshold problem instance size at which it becomes beneficial to use regret-2

alone — i.e., where the effect of Regret2 turns significantly positive because the 95%
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Figure 5.5: Marginal effect of Greedy for (a) 25 and (b) 400 customers.
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Figure 5.6: Marginal effect of Regret-2 for (a) 25 and (b) 400 customers.

confidence interval no longer includes zero — is around 169 customers. Regret-2

performs significantly better for all destroy operator combinations, except for the

combination with related removal (Figure 5.6b). The performance of regret-2

with related removal cannot be distinguished from the performance of both repair

operators with related removal. Random removal is the preferred combination to use

with regret-2 (Figure 5.7b).

Comparing the regression analysis to the findings of fANOVA, conclusions are

consistent. On the larger problem instances, both approaches find that using
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Figure 5.7: Marginal effect of destroy operators (with GreedyRegret2 or Regret2) for

(a) 25 and (b) 400 customers.
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Figure 5.8: Marginal effect of destroy operators (with Greedy) for (a) 25 and (b) 400

customers.

regret-2 alone combined with random removal is expected to perform best. The

regression analysis is more clear about this observation than the fANOVA. For the

smaller problem instances, there is consistency in that there is no clear performance

difference between using either regret-2 alone or together with greedy. Concerning

the destroy operators, the regression analysis cannot identify any (combination of)

destroy operator(s) as the preferred one to use since their performances cannot be

distinguished from each other. This is also observed in the marginal plot Destroy



A Combined Approach for Analysing Heuristic Algorithms 117

x Customers provided by fANOVA, as there is no clear difference in performance

between destroy operators on different problem sizes. Therefore, results are again

consistent in both analyses.

Furthermore, the observations on the problem instance size influence in both

analyses are deduced from different effects. In the fANOVA results, the 2-way

interaction between operator(s) and Customers is considered an important effect.

The multilevel regression analysis, however, also analyses the 3-way interactions

between repair and destroy operators and Customers, an effect that the fANOVA

tool does not take into account. Note that the fANOVA method itself can analyse

any high-order interactions. This is just the implementation choice of the used

fANOVA tool not to provide higher-order interactions. The observed consistencies

make the regression analysis more robust, since these findings are confirmed by

a methodology (fANOVA) which does not rely on the statistical assumptions of

independence, normality and homoscedasticity of the error terms.

In addition, the regression model facilitates a more detailed analysis, since it pro-

vides effect estimates for a particular algorithm configuration and problem instance,

while fANOVA estimates marginal performance for a particular parameter value by

averaging over all other parameters and problem instance characteristics. The regres-

sion results are able to identify for each combination of repair and destroy operators

an instance size interval for which a significant difference in performance is expected.

For example, combined with both repair operators Random is expected to outperform

Worst for 53 customers or more, Related for 91 customers or more, RandomWorst

for 217 customers or more, WorstRelated for 154 customers or more, RandomRe-

lated for 212 customers or more, and RandomWorstRelated for 161 customers or more.

Finally, the formulated regression model would have been different if fANOVA

had not been performed in advance. A multilevel regression model would have been

fitted that included all algorithm parameters and components and all problem-level

predictors, since there would have been no prior knowledge on which elements

have an important or significant impact on performance. Furthermore, parameter

interactions would have been included as well. In short, this more extensive model

would have had to estimate substantially more effects than the simpler model based

on fANOVA. A possible extensive model was fitted (see Table B.6 in Appendix B) to

illustrate our case.
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First of all, the time required to fit the model is considerably longer for the

extended model (about 100 hours) compared to the simple model (about 50 hours

plus 12 hours for the fANOVA analysis)4. Then, comparing the significant effects of

both models, it is observed that the effects significant in the simple model are also

significant in the extended model. Furthermore, no large value changes are observed

for these estimates of both models. This shows that the simple model does not miss

any important variable which might bias the effect estimates, an issue known in

statistics as ‘omitted variable bias’ (Stock and Watson, 2011).

Studying the predictive influence of every problem instance characteristic in the

extended model, it can be concluded that the problem instance size is the most influ-

ential problem instance characteristic, as changing this factor leads to large changes

in the total cost values. The other problem instance characteristics show influence

as well for particular operator combinations, but the performance change they bring

about is of much smaller magnitude than is the case for varying problem instance

size values. Therefore, fANOVA understandably denoted the problem instance size

as the most important problem instance characteristic. Furthermore, the predictions

for varying problem instance sizes are almost the same in both models, so the larger

model does not provide additional information that alters these predictions. How-

ever, it does provide additional information on operator behaviour for other problem

instance characteristics. For example, for greedy repair, wider time windows increas-

ingly worsen the solution quality with all destroy operators, except related removal,

for which the deterioration becomes smaller. In conclusion, we believe the regression

model based on fANOVA is a sufficiently detailed model that provides insight into

the effects related to the largest shifts in algorithm performance.

5.5 Conclusions

This chapter showed how the multilevel methodology can focus on the algorithm

elements and problem instance characteristics that are most relevant to performance.

This focus is achieved by performing a functional analysis of variance (fANOVA)

before fitting the multilevel regression model. The ranking of effects fANOVA

provides will lead to a more concise regression model with less predictor variables.

The multilevel methodology, on the other hand, provides a more detailed analysis of

4For the data set with 4000 scenarios the extended model required 44 hours compared to 22 plus

3.5 hours for the regression model based on fANOVA
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the effects of algorithm elements and enables confirmatory analyses to be performed.

The two methodologies are applied on independent data sets drawn from the same

algorithm element and problem instance characteristic distributions, thereby avoiding

“overfitting” analysis findings. Experimental results on a case study for a large neigh-

bourhood search algorithm applied on instances of the vehicle routing problem with

time windows have shown to be consistent for both the fANOVA and the multilevel re-

gression analysis, thereby making the regression analysis more robust. Furthermore,

the regression analysis can help to give additional insights on the analysis results

provided by fANOVA.
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Chapter 6

Instance-Specific

Optimisation of Algorithm

Performance

6.1 Introduction

In Chapter 3 a multilevel regression analysis is performed to expose how algorithm

parameters and components are correlated to performance and how the problem

instance characteristics are correlated with these algorithm elements. This analysis

was a starting point for the confirmatory analysis performed in Chapter 4 to

explain one of the exposed correlations. This is one application of the multilevel

methodology: observing patterns in the data and searching to explain them in order

to gain insight and understanding of how a heuristic algorithm behaves on a specific

problem instance. This emphasis on understanding has been the main focus of this

thesis thus far. The regression analysis is not only useful for confirmatory testing,

the exposed correlations can also be used to decide which components to include

and which values to use for the various parameters such that performance is optimised.

In this chapter (Figure 6.1), the potential of applying the multilevel method-

ology in the context of automatic algorithm configuration is explored. For many

years, values for the, often numerous, parameters employed within metaheuristic

frameworks were determined in an ad-hoc way relying on personal experience and

121



122 Chapter 6

intuition. This manual tuning of parameters is time-intensive and biased. Therefore,

automatic algorithm configurators have been developed, providing a formal procedure

to determine parameter values. The aim is to find an algorithm configuration that

optimises some performance measure over a set of instances (Birattari, 2009). The

obtained configuration(s) will perform well on average across all instances, but might

not be the best one for each individual instance. The methodology introduced in

Chapter 3 takes into account the influence of the problem instance characteristics on

the performance impact of the algorithm parameters and components. Therefore,

this methodology can provide an algorithm configuration that is predicted to perform

best on average, but is additionally able to exploit the per-instance performance

variation and specify an algorithm configuration for each individual problem instance.

Introduction and Problem Statement (Chapter 1)

The Evaluation of Heuristic Algorithms (Chapter 2)

A Multilevel Methodology for Understand-

ing Heuristic Algorithm Behaviour (Chapter 3)

Explaining Performance

Differences (Chapter 4)

A Combined Method-

ology (Chapter 5)

Optimising Heuris-

tic Performance

(Chapter 6)

Conclusions (Chapter 7)

Figure 6.1: Outline of Thesis — Chapter 6.

This chapter starts with a refresher on automatic algorithm configuration and pre-
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vious research work that has already incorporated problem instance characteristics

when choosing appropriate parameter values (Section 6.2). The approach towards au-

tomatic algorithm configuration presented here derives decision rules from the multi-

level regression model for each of the parameters and components (Section 6.3) which

are used to determine optimal values. In order to verify whether it is worthwhile

to choose an instance-specific configuration over an instance-oblivious configuration,

an experiment is set up to compare both approaches to automatic algorithm con-

figuration (Section 6.4). Experimental results are discussed in Section 6.5. Finally,

conclusions are given in Section 6.6.

6.2 Automatic Algorithm Configuration

Section 2.2.3 discussed the algorithm configuration problem and the automated meth-

ods that have been developed to solve it. Birattari (2002) formalised the problem:

Given an algorithm with a parameter space Θ, a set of problem instances I and a

performance metric C(θ) measuring the performance of the algorithm on problem

instance set I given configuration θ, the solution to the configuration problem is the

configuration θ∗ such that:

θ∗ = argmin
θ

C(θ) (6.1)

Rasku et al. (2014) compare seven state-of-the-art algorithm configuration

methods on a number of vehicle routing metaheuristics and found the model-based

configurator irace to be the most robust method. The considered approaches are

CMA-ES, GGA, iterated F-Race, ParamILS, REVAC, SMAC, and Uniform Random

Sampling (URS).

Irace relies on racing, which has its foundation in machine learning where it is

used for solving model selection problems. Birattari (2002) was the first to apply the

concept to the problem of selecting an algorithm configuration from a set of candidate

configurations. The idea behind racing procedures is to sequentially evaluate candi-

date configurations on a set of problem instances and eliminate them from further

consideration as soon as they become too inferior to the best performing candidate at

a certain stage. More specifically, all candidate configurations solve one or multiple

problem instance(s), after which statistically worse performing configurations are

discarded and the procedure continues with the remaining configurations until a min-

imum number of remaining configurations, a maximum number of problem instances,

or the specified maximum number of algorithm runs has been reached. Birattari
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(2002) named their approach F-Race since they apply the Friedman two-way analysis

of variance by ranks test to determine whether a candidate configuration should

be discarded or not. Elimination of inferior configurations enables speeding up the

procedure and increasing the reliability of the promising configurations as they can

be evaluated on more problem instances. An iterative application of the procedure

(I/F-Race) is proposed by Balaprakash et al. (2007) and consists of three steps. First,

configurations are sampled by drawing values for each configurable parameter from

independent probability distributions, a truncated normal distribution for numerical

parameters and a discrete one for categorical parameters. At initialisation, configu-

rations are uniformly sampled from the parameter space. In a second step racing is

applied to identify the best performing candidate from the sampled configurations.

Finally, these best candidates are used to update the probability distributions and, in

this way, bias the sampling towards the best performing configurations. The iterated

racing procedure is implemented in the R package irace by López-Ibáñez et al. (2016).

Automatic algorithm configurator methods deliver a single configuration that is

expected to perform best on average across all problem instances. In 1976, Rice

recognized that there is not a single best algorithm to solve a particular type of

problem. Algorithms for NP-Hard problems have a lot of variation in run times and

solution quality (Shukla et al., 2013). Therefore, different algorithms perform best on

different problem instances. The problem of choosing the best-performing algorithm

for a particular problem instance is formulated in the algorithm selection problem.

The most common approach to tackle this problem had a “winner-take-all” strategy

that implied running different algorithms on a given problem distribution and use

only the best-performing one. This approach, however, has the drawback that it

ignores algorithms that might do better than the average performance for a specific

problem instance and are uncompetitive on all others (Leyton-Brown et al., 2003;

Shukla et al., 2013). The focus has shifted from doing per-distribution algorithm

selection to per-instance algorithm selection. This is achieved using prediction

models that, based on the characteristics of a specific problem instance, predict the

performance of each algorithm in a portfolio of algorithms and select the one that is

expected to perform best (Leyton-Brown et al., 2003).

These portfolios typically consider a small set of fundamentally different al-

gorithms to choose from and, therefore, ignore algorithm element choices. They

only cover a single configuration of a heuristic algorithm with possibly numerous

parameter and component choices. The multilevel methodology also relies on
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predictions to make configuration decisions, but incorporates both the algorithm

elements and problem instance characteristics. Hence, it can consider all possible

combinations of parameter values and components.

The algorithm selection problem has inspired other per-instance approaches.

Hutter et al. (2006) employ empirical hardness models to automatically tune algo-

rithms for each problem instance to be solved. A function g(x, c) is learned using

ridge regression that takes as input the problem instance characteristics x of a

problem instance, and the configuration c of an algorithm. The function estimates

statistics (e.g., mean or median) of the algorithm’s run time distribution given the

problem instance and configuration combination. The configuration for which the

function predicts the lowest median runtime on a specific problem instance is chosen.

Average speed ups over the fixed best parameter settings of two stochastic local

search algorithms (Novelty+ and SAPS) are observed for a mixed SAT problem

benchmark set containing both unstructured and structured problem instances.

Xu et al. (2010) introduced a method called Hydra that combines portfolio-based

algorithm selection with automatic algorithm configuration. In a first step, an

automatic algorithm configurator is applied to identify a single configuration that

performs best on average across all (training) problem instances. In each of the

consecutive iterations, it adds one configuration and, in such a way, assembles a

portfolio of algorithm configurations. Configurations can also be dropped from

the portfolio if they no longer contribute to the performance of the portfolio. The

problem instance characteristics are only used to select the configuration from the

portfolio that is predicted to perform best. The method is applied, using ParamILS

as configurator and SATzilla as portfolio builder, on SAT benchmarks and is shown

to outperform 17 state-of-the-art SAT solvers.

Kadioglu et al. (2010) present an automatic algorithm configurator called

Instance-Specific Algorithm Configuration (ISAC), an integration of the Gender-

Based Genetic Algorithm (GGA)(Ansótegui et al., 2009) and stochastic offline

programming (Malitsky and Sellmann, 2010). They assume that problem instances

with similar characteristics can be solved equally well using the same algorithm con-

figuration. Therefore, they cluster problem instances in distinct instance sets based

on similarity in the normalised problem instance characteristics. A performance-

optimising algorithm configuration is then determined for each cluster using GGA.

ISAC is evaluated on five high-performance solvers (a greedy set covering heuristic,
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the dialectic search algorithm Hegel, Tabu Search, Cplex and SAPS) and three

different problems (set covering, mixed integer programming and satistfiability).

Performance improvements over the default configurations are found as well as over

the GGA configurator.

The next section shows how the results of a multilevel regression analysis can be

used to tune a heuristic algorithm given the specific problem instance to be solved.

6.3 Algorithm Optimisation with Multilevel Re-

gression

Optimal parameter values and component choices are determined for the correspond-

ing regression variables that show to have a significant (at 5%) impact on performance.

The insignificant algorithm elements get assigned a random value. A configuration

can be derived that is predicted to perform best for an average problem instance,

i.e. fixing the value for all centred problem instance characteristics at zero. This

corresponds to an instance-oblivious configuration, similar to the one provided by au-

tomatic algorithm configurators such as irace. If the problem instance characteristics

are allowed to vary, instance-specific configurations can be obtained. Only significant

problem instance characteristic influences are taken into account when making tuning

decisions regarding parameters and components. For example, consider the following

linear effect estimate for continuous parameter Z, significantly moderated by problem

instance characteristics X1 and X2.

Y = α+ βZ (6.2)

β = µ
β
0 + µ

β
1X1 + µ

β
2X2 (6.3)

The decision rule for this effect is very straightforward. Given a minimisation

problem, if β < 0, select the largest value for Z in the considered range of values as

this will reduce the performance measure by the largest amount. If β > 0, choose

the smallest value. Parameters, however, often do not have a linear performance

impact, but might show to have a quadratic effect as well as significantly interact with

other parameters or components. If a quadratic term is added, the model changes

to equations (6.4) and (6.5), assuming the effect estimate for the quadratic term is a

fixed effect and, hence, is not influenced by the problem instance characteristics.
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Y = α+ β1Z + β2Z
2 (6.4)

β1 = µ
β1

0 + µ
β1

1 X1 + µ
β1

2 X2 (6.5)

In this case, the decision regarding which parameter value to select can no longer be

based solely on the β1 estimate, but the complete term (µβ1

0 +µ
β1

1 X1+µ
β1

2 X2)Z+β2Z
2

has to be optimised. The optimal Z value is obtained by looking at the marginal effect

of Z. This marginal effect is calculated by taking the partial derivative of equation

(6.4). The Z value at which this equation equals zero will be the optimal value for Z.

∂Y

∂Z
= µ

β1

0 + µ
β1

1 X1 + µ
β1

2 X2 + 2β2Z = 0 (6.6)

Z = −
µ
β1

0 + µ
β1

1 X1 + µ
β1

2 X2

2β2
(6.7)

Whether this optimum is a maximum or a minimum can be verified by calculating

the second derivative ∂2Y
∂Z2 = 2β2. If the second derivative > 0, the optimum is a

minimum and is used as the best parameter value. However, if this value is not

part of the range of parameter values, the value that is closest to the optimum is

chosen. If the second derivative < 0, the optimum is a maximum — a value you

want to avoid given a minimisation objective — and the upper and lower bound of

the parameter’s value range are considered. The bound that has the most favourable

impact on performance is chosen.

If the parameter additionally significantly interacts with a different parameter W ,

calculations are similar, but which value for Z optimises performance now depends

on the value of W .

Y = α+ β1Z + β2Z
2 + β3Z ×W (6.8)

β1 = µ
β1

0 + µ
β1

1 X1 + µ
β1

2 X2 (6.9)

β3 = µ
β3

0 + µ
β3

1 X1 + µ
β3

2 X2 (6.10)

The marginal effect is derived in equation (6.11) and the optimal value in equation

(6.12).

∂Y

∂Z
= µ

β1

0 + µ
β1

1 X1 + µ
β1

2 X2 + 2β2Z + (µβ3

0 + µ
β3

1 X1 + µ
β3

2 X2) · ×W (6.11)

Z = −
µ
β1

0 + µ
β1

1 X1 + µ
β1

2 X2 + (µβ3

0 + µ
β3

1 X1 + µ
β3

2 X2) · ×W

2β2
(6.12)



128 Chapter 6

6.4 Experimental Set-Up

Similar to the previous chapters, the case study in this chapter considers a large

neighbourhood search algorithm applied on the vehicle routing problem with time

windows. The parameters to be tuned include real-valued parameters such as the

cooling rate, start temperature control parameter, noise parameter, ... as well as

binary variables that determine which destroy and repair operators to activate. In all

previous experiments, the number of customers to remove each iteration is determined

at random in the range 10% to 50% of all customers to be served. In this experiment,

the upper bound for this range is no longer fixed, but incorporated as a parameter to

be tuned. A plenary talk by Stefan Röpke — one of the authors of ALNS — at the

2016 VeRoLog conference noted that the amount of destruction might be the most

crucial parameter (Röpke, 2016). Consequently, the upper bound on the amount of

destruction is added as a parameter for the tuning study. Table 6.1 lists the updated

set of parameters and components with their value ranges. The problem instance

characteristics that might be included in the decision rules derived from the multilevel

regression analysis are the number of customers to be served, how long service at each

customer takes on average, the average width of customer time windows, the average

demand per customer and the maximum run time given to solve the problem instance.

Three different sets of problem instances are generated to be used for training

the regression model. One set contains 100 randomly generated VRPTW instances,

a second set 200 instances and a final set has 400 instances. An experimental design

is set up for every problem instance set. Each problem instance is to be solved by

50 randomly generated parameter settings. The resulting experimental designs have

respectively 5000, 10 000 and 20 000 scenarios for which the LNS returns a total

distance travelled value.

The obtained configurations are tested on a set of 2000 randomly generated

VRPTW instances. Each test instance will be solved by the suggested configuration

for an average problem instance as well as a customised configuration the regression

model proposes given the values for the problem instance characteristics. In addition,

the best configuration obtained by the configurator tool irace for each set of training

instances will be applied on the set of test instances.

All experiments are performed using Intel Xeon E5-2680v2 CPUs (2.8 GHz, 25

MB level 3 cache) under Red Hat Enterprise Linux ComputeNode release 6.4 (San-
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Table 6.1: Algorithm Parameters and Components to be Tuned

Algorithm Element Type Value ranges

Determinism Parameter Integer U [1, 30]

Noise Parameter Discrete U [0, 1]

Cooling Rate Continuous U [0.80,0.99]

Start Temperature Control Parameter Discrete U [0.01,0.10]

Maximum percentage removed Continuous U [0.10, 0.50]

Destroy Operators U [1,7]

1. Random Removal Dummy [0,1]

2. Worst Removal Dummy [0,1]

3. Related Removal Dummy [0,1]

4. Random and Worst Removal Dummy [0,1]

5. Random and Related Removal Dummy [0,1]

6. Worst and Related Removal Dummy [0,1]

7. Random, Worst and Related Removal Dummy [0,1]

Repair Operators U [1,3]

1. Greedy Dummy [0,1]

2. Regret-2 Dummy [0,1]

3. Greedy and Regret-2 Dummy [0,1]

tiago), 64 bit. These resources are available from the infrastructure of the Flemish

Supercomputer Center (www.vscentrum.be).

6.5 Discussion

In this section the decision rules derived from the multilevel regression analysis (Sec-

tion 6.5.1) are presented, as well as the output of the irace runs (Section 6.5.2). The

evaluation of the configurations on the test instances is discussed in Section 6.5.3.

6.5.1 Multilevel Decision Rules

After collecting performance values for the 5000, 10 000 and 20 000 combinations of

problem instances and algorithm configurations, a multilevel regressionmodel is fitted.

The model in equations (6.13) to (6.15) is similar to the model in equations (3.6) to

(3.8) (cf. Chapter 3). The variable Max%Removed is added as a random effect, as

well as its interaction with individual operator dummies and its 3-way interaction

www.vscentrum.be
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with both destroy and repair dummies. Additionally, a quadratic term is added for

all real-valued parameters in order to expose any curvature that might be present in

the parameter’s effect on the objective function value.

1

Yi

= αj[i] + β1j[i]Greedyi + β2j[i]Regret2i + β3j[i]Randomi +

β4j[i]Worsti + β5j[i]Relatedi + β6j[i]RandomWorsti + · · ·+

β9iGreedyi ×Randomi + · · ·+ β20iRegret2i ×RandomRelatedi +

β21j[i]Max%Removedi + β22Max%Removed2i + · · ·+ β29[i]Noisei +

β30Noise2i + β31iRandomi ×Determinismi + · · ·+ β37iGreedyi ×Noisei +

β38iRegret2i ×Noisei + β39iRandomi ×Max%Removedi + · · ·+

β47iGreedyi ×Randomi ×Max%Removedi + · · ·+

β58iRegret2i ×RandomRelatedi ×Max%Removedi + ǫi (6.13)

αj = µα
0 + µα

1Customers
1
3

j + · · ·+ µα
5Runtimej + ηαj (6.14)

βkj = µ
βk

0 + µ
βk

1 Customers
1
3
j + · · ·+ µ

βk

5 Runtimej + η
βk

j ∀k ∈ K (6.15)

The effects of this model that show to have a significant impact on performance

are used to determine what parameter value or set of operators to use, given an av-

erage problem instance or given a specific problem instance. In the next paragraphs,

the decision process is illustrated for the model that is fitted on the training set with

200 problem instances. Table 6.2 lists the significant effect estimates for this training

set. All complete regression tables are provided in Appendix B. Tuning decisions are

made using the transformed effect estimates to prevent overcomplicated derivative

calculations and since decisions do not depend on the scale used.

Table 6.2: Significant effects (at 5%) for training data with 200 instances

Variable Estimate Est.Error l-95% CI u-95% CI

Intercepta,b 4, 481.95 139.19 4, 212.48 4, 760.17

Customers
1
3 −479.46 31.53 −543.12 −418.23

Avg service time −71.36 33.82 −138.64 −5.37

Greedy −122.60 3.87 −130.25 −115.04

Customers
1
3 −18.70 0.67 −20.02 −17.39

Avg time window width −2.08 0.46 −2.98 −1.19

Runtime 1.53 0.48 0.57 2.46
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Regret2 12.39 2.62 7.29 17.52

Customers
1
3 1.68 0.23 1.24 2.13

Runtime −0.44 0.17 −0.76 −0.11

Random 8.86 2.67 3.67 14.13

Customers
1
3 0.81 0.36 0.11 1.53

Avg demand −3.74 1.73 −7.11 −0.31

Worst −22.86 3.05 −28.85 −16.80

Customers
1
3 −2.07 0.50 −3.05 −1.09

Related −21.35 2.78 −26.82 −15.95

Customers
1
3 −4.14 0.39 −4.90 −3.38

Runtime 0.78 0.28 0.22 1.34

RandomWorstc −4.19 2.82 −9.72 1.27

Avg demand −4.08 2.01 −8.00 −0.14

WorstRelated −7.10 2.63 −12.24 −1.98

Customers
1
3 −1.57 0.35 −2.26 −0.89

Avg demand −3.67 1.66 −6.92 −0.41

RandomRelated 7.20 2.66 1.98 12.47

Max%Removed −0.03 0.16 −0.35 0.29

Customers
1
3 −0.19 0.01 −0.22 −0.17

Avg time window width −0.02 0.01 −0.03 −0.002

Runtime 0.03 0.01 0.01 0.04

Cooling rate 21.70 7.79 6.21 36.84

Customers
1
3 3.83 1.77 0.38 7.30

Noise parameter −11.19 2.59 −16.28 −6.09

Customers
1
3 −2.04 0.36 −2.76 −1.34

Determinism parameter 0.27 0.13 0.02 0.51

Customers
1
3 −0.05 0.01 −0.07 −0.03

Runtime 0.02 0.01 0.0004 0.03

Max%Removed2 −0.01 0.003 −0.02 −0.01

Noise parameter2 26.27 5.50 15.51 37.08

Greedy×Random −26.45 3.77 −33.85 −19.17

Greedy×Worst −58.73 3.79 −66.20 −51.38

Greedy×Related 37.26 3.76 29.87 44.59

Greedy×RandomWorst −40.84 3.75 −48.19 −33.52

Greedy×RandomRelated 16.63 3.73 9.35 23.93

Regret2×Random −7.65 3.68 −14.87 −0.44

Random×Determinism parameter −0.38 0.17 −0.71 −0.04

Worst×Determinism parameter −1.01 0.18 −1.35 −0.65
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Related×Determinism parameter −1.37 0.17 −1.71 −1.02

Greedy×Noise parameter −25.75 3.52 −32.63 −18.91

Random×Max%Removed 0.46 0.22 0.02 0.89

Worst×Max%Removed 0.93 0.23 0.49 1.38

Related×Max%Removed −1.37 0.23 −1.81 −0.93

RandomWorst×Max%Removed 0.76 0.23 0.32 1.21

Greedy×Max%Removed −1.96 0.23 −2.41 −1.51

Greedy×Random×Max%Removed −1.78 0.33 −2.42 −1.14

Greedy×Worst×Max%Removed −0.85 0.33 −1.50 −0.21

Greedy×Related×Max%Removed 1.05 0.33 0.41 1.69

Greedy×RandomWorst×Max%Removed −1.60 0.32 −2.23 −0.96

Note a: The effects of Greedy & Regret-2 and Random, Worst & Related, the

reference levels for the operator dummies, are accounted for in the Intercept.

Note b: The Intercept value is backtransformed to the original scale through

division by 100 000 000 and taking the inverse of the resulting value.

Note c: The estimate is insignificant and will be interpreted as having an effect

of 0, which the average demand can influence.

First, the decision on which destroy and repair operators to use is made. The

marginal effects are calculated to quantify the impact on performance when switching

from a configuration that uses all destroy and all repair operators to one that uses, for

example, only random removal and one that uses only regret-2, ceteris paribus. The

equations below show the marginal effect on Y −1 for switching to random removal

(equation (6.16)) or switching to regret-2 as sole repair operator (equation (6.17)).

∂Y −1

∂Random
= µ

β3

0 + µ
β3

1 Customers
1
3 + µ

β3

4 Demand

= 8.86 + 0.81Customers
1
3 − 3.74Demand (6.16)

∂Y −1

∂Regret2
= µ

β2

0 + µ
β2

1 Customers
1
3 + µ

β2

5 Runtime

= 12.39 + 1.68Customers
1
3 − 0.44Runtime (6.17)

The performance impact when changing both the destroy and repair operator

at the same time is calculated by summing these marginal effects and adding the

interaction effect — if significant — for Regret2×Random (-7.65). This is done for

every combination of destroy and repair operators and the combination that delivers

the largest positive performance impact is chosen. If no positive impact is found,

this implies the configuration with all destroy and repair operators is predicted to
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perform best and should be chosen.

Next, optimal values for the real-valued parameters are determined. The effect the

parameter cooling rate has on Y −1 is formulated in equation (6.18). If its marginal

effect is positive, cooling rate is fixed at 99%, otherwise at 80%. There is not enough

evidence in the data to indicate a significant influence of the start temperature control

parameter and, therefore, it gets assigned a random value in the range [0.01, 0.1].

∂Y −1

∂CoolingRate
= µ

β23

0 + µ
β23

1 Customers
1
3

= 21.70 + 3.83Customers
1
3 (6.18)

The determinism parameter significantly interacts with the destroy dummies Ran-

dom, Worst and Related. The marginal effect with Related is formulated in equation

(6.19). The dot in the interaction term refers to the Determinism variable this equa-

tion is differentiated to.

∂Y −1

∂Determinism
= β27j[i] + β33Related× ·

= µ
β27
0 + µ

β27
1 Customers

1
3 + µ

β27
5 Runtime+

β33Related× ·

= 0.27 − 0.05Customers
1
3 + 0.02Runtime −

1.37Related× · (6.19)

If the marginal effect is positive, set determinism at 30 and rely on the ranking

related removal established to select customers to remove. In the other case, when

the marginal effect is negative, choose a determinism value of 1 and randomise cus-

tomer selection. The noise parameter and maximum percentage removed both have a

significant quadratic term. Equation (6.20) shows the marginal effect for Noise and

its optimal value in (6.21). As explained in Section 6.3, it needs to be verified whether

this optimum is a minimum or maximum. Note that due to the inverse transforma-

tion of the Y variable, the objective has switched from minimisation on the original

scale to maximisation on the transformed scale. If the optimum is a maximum and

lies within the value range, the noise parameter is fixed at this value. Otherwise,

the boundary value (i.e., 0 or 1) closest to the optimum is chosen. If the optimum

is a minimum, the boundary value with the most favourable impact is chosen. The
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second derivative is 52.54, a positive number and, therefore, the found optimum is a

minimum. This implies that one of the boundary values will be chosen.

∂Y −1

∂Noise
= β29j[i] + 2β30Noise

= µ
β29
0 + µ

β29
1 Customers

1
3 + 2β30Noise

= −11.19− 2.04Customers
1
3 + 52.54Noise (6.20)

Noise = −

−11.19− 2.04Customers
1
3

52.54
(6.21)

The optimal maximum percentage of customers to remove is determined in a

similar way. Equation (6.21) shows the marginal effect if both related removal and

greedy repair are used. The second derivative −0.02 indicates a maximum and the

optimal value for this parameter is therefore determined by equation (6.22) if within

the value ranges.

∂Y −1

∂Max%Removed
= β21j[i] + 2β22Max%Removed + β45Related × ·+

β45Greedy × ·+ β49Greedy ×Related × ·

= µ
β21
0 + µ

β21
1 Customers

1
3 + µ

β21
3 TW Width+ µ

β21
5 Runtime+

2β22Max%Removed + β45Related × ·+ β45Greedy × ·+

β49Greedy × Related × ·

= −0.03− 0.19Customers
1
3 − 0.02TW Width+ 0.03Runtime −

0.02Max%Removed − 1.37Related × · − 1.96Greedy × ·+

1.05Greedy × Related× · (6.22)

Max%Removed = −
−0.03− 0.19Customers

1
3 + · · ·+ 1.05Greedy ×Related × ·

−0.02
(6.23)

These decision rules are used to determine algorithm configurations for the 2000

test problem instances generated. If the influence of the significant problem instance

characteristics is ignored, a single configuration is suggested for all instances. So,

in the decision rules above the variables for the problem instance characteristics

are all fixed at zero. Recall that these variables are centred around their mean

value so that a value of zero implies the average value for the associated problem

instance characteristics. The suggested configuration from the regression model will

therefore be the predicted optimal one for an average problem instance. Table 6.3

indicates for each training data set the suggested best configuration for an average

problem instance. Note that the larger sample size, the less destroy operators are used.
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Table 6.3: Suggested best configuration for an average problem instance

Sample Determinism Noise Max Cooling Start Destroy Repair

size perc rate temp

removed control

5000 U[1,30] 0 0.29 U[0.80,0.99] U[0.01,0.1] Random, Worst & Related Regret-2

10 000 30 0 0.28 0.99 U[0.01,0.1] Random & Related Regret-2

20 000 1 0 0.41 0.99 U[0.01,0.1] Random Regret-2

Table 6.4: Operator Choices based on Multilevel Regression Analysis for Training

Data with 100 Instances

Greedy Regret-2 Greedy & Regret-2

Random 0 418 0

Worst 0 0 0

Related 186 0 0

Random & Worst 0 0 0

Random & Related 0 942 0

Worst & Related 0 10 0

Random, Worst & Related 0 454 0

If instance characteristics are incorporated in the decision rules, like in the

previous paragraphs, each of the 2000 test problem instances will have its own

customised configuration. Table 6.5 indicates how frequent each combination of

operators is chosen. The dominant operator choice is the combination of random

and related removal with regret-2. For 246 problem instances, related removal is

combined with greedy repair. These are most often the smaller problem instances,

having less than 100 customers. Regarding the parameters, the noise parameter is

assigned a value of 1 in 36 cases, all having 30 customers or less. All 246 choices

for related removal have a determinism parameter value of 1. The majority of the

configurations including multiple destroy operators set this parameter value at 30.

The cooling rate is fixed at 99% for all test problem instances. The parameter

maximum percentage removed is set at many different values, so it is difficult to make

statements about the instance-specific tuning of this parameter just by looking at

the values.

Tables 6.4 and 6.6 provide operator frequencies for tuning on the training sets

with respectively 100 and 400 problem instances.
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Table 6.5: Operator Choices based on Multilevel Regression Analysis for Training

Data with 200 Instances

Greedy Regret-2 Greedy & Regret-2

Random 0 212 18

Worst 0 0 0

Related 246 0 0

Random & Worst 0 18 0

Random & Related 0 1495 1

Worst & Related 0 10 0

Random, Worst & Related 0 0 0

Table 6.6: Operator Choices based on Multilevel Regression Analysis for Training

Data with 400 Instances

Greedy Regret-2 Greedy & Regret-2

Random 0 1639 51

Worst 0 0 0

Related 310 0 0

Random & Worst 0 0 0

Random & Related 0 0 0

Worst & Related 0 0 0

Random, Worst & Related 0 0 0

6.5.2 Output irace

The irace configurator tool identifies four elite configurations1. They are listed in

Tables 6.7, 6.8 and 6.9 from best to worst according to the sum of ranks. Inspection

of these elite configurations show somewhat different recommendations regarding the

way customers are to be removed. Given 100 training instances, the configurator tool

suggests removing customers at random works best. Additionally, this removal strat-

egy can be combined with a strategy that selects customers based on a relatedness

criterion. The experiment with 400 instances similarly indicates the combination of

random and related removal to be the best choice of destroy operators in three out

of the four elite configurations. On the set of 200 instances, however, irace selected

the combination worst and related removal to perform best on average. The latter

contradicts the findings in Chapter 3 that indicated this combination of destroy

operators to be one of the worst performing ones. But that analysis investigated

1A tuning budget of 1000 algorithm runs is assigned.
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Table 6.7: Elite irace configurations given 100 training instances

Ranking Determinism Noise Max Cooling Start Destroy Repair Mean

perc rate temp solution

removed control quality

1 26 0.33 0.37 0.98 0.02 Random Regret-2 29 225.06

2 28 0.07 0.38 0.87 0.07 Random & Related Regret-2 29 284.01

3 23 0.46 0.31 1.00 0.01 Random Regret-2 29 273.76

4 11 0.45 0.21 0.85 0.01 Random & Related Regret-2 29 250.89

operator effects in isolation, varying only a single problem instance characteristic.

The output tables show that the determinism parameter gets assigned a lower

and lower value for increasing training problem sets, implying that the established

ranking worst and related removal make, should be relaxed. This makes sense

when random removal is not part of the suggested set of destroy operators to

introduce some randomness in the customer selection procedure, but it seems odd

when random removal is included, like on the 400-instance training set. It raises

the question, by introducing a lot of randomness in the customer selection related

removal makes in addition to the randomness produced by random removal, why it

would be even worthwhile to use related removal. If randomness is so beneficial to

performance, why not rely solely on random removal to destroy a solution? This ob-

servation contradicts the findings of Chapter 3: when multiple destroy operators are

used, complete randomisation of customer selection should be left to random removal.

Tables 6.7 and 6.9 both recommend to set the maximum on the number of

customers to remove each iteration at around one third. Table 6.8, on the other

hand, indicates a value around 15%.

All elite configurations suggest to repair a solution using regret-2 as the sole repair

operator. This is in line with the conclusions of Chapter 3. What amount of noise

to include in the repair phase is less clear as the values for the noise parameter differ

substantially between the configurations, but they do suggest not to include too much

noise since most values are well below 50%. Finally, the elite values for the parameters

operating within the local search framework simulated annealing suggest a cooling rate

around 98% for the 200-instance training set and around 90% for the 400-instance

training set. On the smallest training set, elite cooling rate values vary substantially.
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Table 6.8: Elite irace configurations given 200 training instances

Ranking Determinism Noise Max Cooling Start Destroy Repair Mean

perc rate temp solution

removed control quality

1 5 0.06 0.14 0.98 0.03 Worst & Related Regret-2 24 718.38

2 14 0.02 0.18 0.94 0.03 Worst & Related Regret-2 24 804.46

3 6 0.16 0.14 0.98 0.02 Worst & Related Regret-2 24 830.11

4 5 0.04 0.15 0.99 0.02 Random & Related Regret-2 24 772.76

Table 6.9: Elite irace configurations given 400 training instances

Ranking Determinism Noise Max Cooling Start Destroy Repair Mean

perc rate temp solution

removed control quality

1 4 0.33 0.39 0.89 0.06 Random & Related Regret-2 29 672.81

2 6 0.17 0.28 0.93 0.06 Random & Related Regret-2 29 662.48

3 1 0.11 0.38 0.93 0.03 Related Regret-2 29 682.38

4 4 0.04 0.28 0.92 0.04 Random & Related Regret-2 29 684.76

In most cases, a low start temperature control parameter value around 2 or 3% is

suggested to perform best.

6.5.3 Evaluation of Configuration Performance

In this section the tuning capabilities of the multilevel methodology on the test

problem set are evaluated. First, the performance of the configuration for an

average problem instance is assessed by comparing it to the performance of the

best irace configuration, both ignoring the problem instance specificities. Table

6.10 lists for each training data set the number of times the multilevel regression

configuration performs better than the best irace configuration and vice versa, or if

both configurations performed equally well.

The frequencies lead to different conclusions for the three training data sets. For

the smallest sample of 100 training instances, they show the best irace configuration

performing better on more test problem instances than the multilevel ‘average

instance’ configuration. The difference is small though, as indicated by both the

frequencies as the absolute and relative average performance differences. For the two

larger training sets, the multilevel configuration for an average problem instance is
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Table 6.10: Instance-Oblivious Tuning Performance on 2000 Test Instances

100 training 200 training 400 training

instances instances instances

Multilevel regression configuration performs better 758 1061 1159

Best irace configuration performs better 830 581 368

Same performance 412 358 473

Average performance gap (absolute)a 16.51 -87.47 -224.10

Average performance gap (%)b 0.08 -0.25 -0.52

a Calculated as the difference of the performance of the multilevel regression configuration

and the performance of the best irace configuration.
b Calculated as the absolute difference divided by the performance of the best irace config-

uration.

able to obtain a better performance than the configuration suggested by irace for the

majority of test instances. The absolute and relative differences do show that the

gap in solution quality is small, but it is a significant2 difference. Hence, multilevel

tuning performs better for larger data sets, which makes sense as these samples

contain more information the regression model can use to make a recommendation.

Note that the worst results are obtained when including all destroy operators, while

tuning performance excels when using only random removal. Part of the explanation

might be the number of iterations the configuration can run. Random removal, being

the simplest destroy operator, requires less computation time per iteration and,

therefore, the multilevel configuration is able to perform significantly more iterations

than the irace configuration which applies both random and related removal, given

the same maximum run time. On the other hand, one would expect the logic behind

an operator like related removal to be able to reach the same solution quality as

a simpler operator in less iterations. But, as the analyses of Chapter 4 showed,

operators do not always function as expected.

The choice of operators is not the only difference in both configurations. Other

parameter choices diverge as well and might contribute to the ‘average instance’

configuration performing better. The irace configuration suggests to apply some

noise (33%) during the repair phase and intensifies the search more quickly due to

the higher cooling rate (89%), while the regression analysis indicates no noise should

2Significance tested using the Wilcoxon signed rank test.
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be implemented and chooses the slowest cooling schedule. Furthermore, the search

behaviour of irace itself is controlled by parameters. For the experiments in this

chapter, these parameter are kept at their default values, but performance could be

improved by tuning irace itself (Dang et al., 2017). The configurator is also given

a tuning budget of 1000 algorithm runs, considerably less than the training data

sets used to fit the regression model. Nevertheless, irace applies guided sampling

when choosing configurations to test and should, therefore, need less algorithm run

evaluations to make a recommendation on the set of components and parameter

values to use.

The previous has shown that the multilevel methodology is able to produce an

algorithm configuration for an average problem instance that performs in line with

the configuration of an established tuning method as irace. A next step is to analyse

whether it is worthwhile to consider instance-specific configurations in this case

study. Table 6.11 compares the performance of the customised configurations with

the configuration for an average problem instance. It shows the instance-specific

configuration performing best for the smallest training sample. The difference with

the ‘average’ configuration is not significant though. Similar to the comparison with

the irace configuration, the ‘average instance’ configuration significantly outperforms

the customised configurations for the two larger training samples and this for the

majority of test instances. Hence, these findings show no real benefit of customising

the algorithm configuration per individual problem instance.

Analysing the frequencies per destroy and repair configuration shows the instance-

specific tuning clearly ‘underperforming’ for the combination of related removal

with greedy repair (Figure 6.2). For the 100-instance training set, the regression

analysis suggested this operator combination for 186 test instances. In only 8

instances an improvement is observed over the ‘average instance’ configuration,

which performs better for 138 test instances — the remaining 40 showing an equal

performance. For the 200- and 400-training set, the observations are similar for this

combination of operators: respectively 12 and 24 improvements against 173 and

184 deteriorations compared to the ‘average instance’ configuration. For all other

operator combinations, such an extreme underperformance is not observed.

Recall from the exploratory analyses of Chapters 3 and 5 that related removal

is the preferred destroy operator to use with greedy repair, but that relying only

on greedy repair is not recommended. These observations were made looking at
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Table 6.11: Instance-Specific Tuning Performance on 2000 Test Instances

100 training 200 training 400 training

instances instances instances

Instance-specific configuration performs better 846 543 464

Best configuration for average instance performs better 848 1130 1206

Same performance 306 327 330

Average performance gap (absolute)a -6.07 147 182.98

Average performance gap (%)b 0.04 0.42 0.52

a Calculated as the difference of the objective function value obtained by the instance-specific

configuration and the value obtained by of the ‘average instance’ configuration.
b Calculated as the absolute difference divided by the performance of the ‘average instance’

configuration.

effects in isolation and varying only a single problem instance characteristic. When

accounting for all significant problem instance influences at the same time, the

instance-specific tuning suggests to only use greedy repair for 10-15% of the test

instance set. The majority of these instances need to serve less than 100 customers.

Analysing some individual instances shows that this operator combination benefits

from the large positive interaction effect Greedy × Related (37.26) that makes

the combined operator effect positive. Similar to the analysis in Chapter 3, the

interaction effects between destroy and repair operator are considered as fixed

effects, meaning their performance impact is not influenced by the problem instance

characteristics. Perhaps the treatment of these interaction terms as fixed effects

incorrectly predicts greedy as sole repair operator to perform well for these problem

instances. For this reason, a model is fitted that considers these interaction terms

as random effects — as in Chapter 5. The results for this model fitted on the

200-instance training data set showed a drastic decrease in the choice for greedy

repair. It is the suggested repair operator for only 29 test instances. However, overall

instance-specific tuning performance is worse compared to the model of equations

(6.13) to (6.15). Therefore, this model has been discarded.

Thus, instance-specific tuning does not seem worthwhile to apply in this case

study. Still, past research — for example, Rice (1976) and Smith-Miles et al.

(2014) — has acknowledged the no-free-lunch theorem by Wolpert and Macready

(1997) that there is not a single best algorithm for all problem instances. Possible
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Figure 6.2: Frequencies of performance for configurations using related removal and

greedy repair.

explanations why performance differences are so small relate to the diversity of the

problem instances and the problem instance characteristics. It is possible that the

generated VRPTW instances are quite homogeneous, allowing the instance-oblivious

configuration to perform well. In terms of problem size, I believe instances show

sufficient diversity, but perhaps the other problem instance characteristics do not

bring about a clear performance distinction. The details on the sample instances

generated for the analysis in Chapter 3 (see Appendix A) suggest, for example,

given the uniformly distributed demand values and fixed vehicle capacity, the

average number of customers per route is rather small and varies little. The same

goes for the samples used in the experiments of this chapter. A second possible

explanation might be that the analysis lacks problem instance characteristics that

are distinctive for performance between instances. The choice was made to only

incorporate those problem instance characteristics that are determined at random

from some probability distribution, but other VRP specific features can be included.

For example, descriptors of the distance matrix (lowest, highest, average, standard

deviation edge cost, ...), the fraction of distinct distances, the ratio of total demand

to total capacity or the depot location (Rasku et al., 2016). These are worthwhile

ideas to pursue to show the benefit of instance-specific tuning.
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This chapter demonstrates how the multilevel regression analysis can be applied in

the context of automatic algorithm configuration using the significant effect estimates

and that the obtained algorithm configurations result in similar solution quality as

the configurator irace.

6.6 Conclusion

This chapter explored the potential of applying the multilevel methodology — pre-

sented in Chapter 3 of this thesis — to choose well-performing algorithm components

and values for the algorithm parameters. It is possible to obtain a single best

configuration to be used on all problem instances as well as customised algorithm

configurations for each individual problem instance. The latter is possible since

the multilevel methodology accounts for the problem instance characteristics in the

tuning process. It is shown how decision rules can be extracted from the regression

analysis for each algorithm parameter and component to determine which value

or component to use given a specific problem instance. The decision rules are for-

mulated using the significant problem instance influences for these algorithm elements.

An experimental study aimed at identifying optimal algorithm configurations

for a large neighbourhood search algorithm solving instances of the vehicle routing

problem with time windows. First, the performance of a configuration for an average

problem instance is compared with the performance of a similarly instance-oblivious

configuration provided by the automatic algorithm configurator irace. Three different

sample sizes were considered to train the tuning approaches on. Results showed

the ‘average instance’ configuration performing in line with the best configuration

suggested by irace. It performs increasingly better for larger training samples. So

the more data, the better multilevel tuning performs. Generating large data sets

can, however, be impractical in terms of computational cost.

Secondly, it is investigated whether it is worthwhile to consider instance-specific

configurations obtained from the regression analysis. Their performance is compared

with the ‘average instance’ configuration. Results indicate instance-specific tuning

does not improve upon the performance of the ‘average instance’ configuration. It

shows that the LNS elements responsible for the major performance variations, like

the repair operators, cannot benefit from instance-specific tuning since one single
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repair configuration is the recommended choice for all problem instances.

Another consideration to make is how diverse the set of problem instances are

on which you want to apply instance-specific tuning. If an instance set is quite

homogeneous in terms of algorithm configurations that perform best, there is little

to gain from an instance-specific tuning approach and a single general configuration

can perform equally well.

The multilevel tuning approach has the benefit of comprehensibility when provid-

ing algorithm configurations. It presents a motivation for why a specific configuration

is chosen since the regression model makes the relationship between parameter and

performance explicit, thereby helping to understand tuning decisions. Automatic

configurators such as irace are black-box approaches and do not generally motivate

their configuration choices. Elite configurations can have widely varying values for

the same parameter, thereby lacking any insight into the algorithm element’s impact

on performance. In addition, finding the multilevel decision rules is a one-time

effort to be made and can be used for all problem instances of the same population.

Black-box configurators, on the other hand, need to be re-run for each new problem

instance sample.

Finally, the approach applied to decide on optimal parameter values and compo-

nent choices can be considered naive since the decision rules for the operators do not

consider the interaction of the destroy operators with the determinism parameter, the

repair operators with the noise parameter and the interaction of all operators with the

maximum percentage of customers that can be removed. Hence, the optimisation of

the operator configuration ignores these parameters. Simultaneously optimising both

the operator and parameter choices is rather complex. It may be best to consider

all categorical variables first and make the calculations for every possible combina-

tion of operators, and then proceed with the continuous variables by optimising their

value choices for every possible categorical scenario. Pick the scenario delivering the

largest positive impact on performance. In this way both the choice of operators and

parameters values are optimised simultaneously.
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Conclusions

This doctoral thesis promoted an approach to heuristic experimentation that is fo-

cused on gaining insight and understanding of how heuristic performance is estab-

lished. This stands in contrast to the common competitive approach emphasising a

heuristic method that can outperform other methods. Chapter 2 reviewed this manner

of experimentation with heuristic algorithms and the issues regarding the generalisa-

tion of results obtained this way. Chapter 3 proposed a methodology based on the

concepts of Design of Experiments to rigorously evaluate heuristic algorithms and

Chapter 4 showed how it could be used to better understand observed performance

differences. This methodology is combined with another evaluation methodology in

Chapter 5 in order to perform a more efficient exploratory analysis that focuses on the

effects that are most relevant to performance. Chapter 6 explored the potential of the

methodology to choose well-performing parameter values and heuristic components.

Finally, in this chapter (Figure 7.1) general conclusions and opportunities for further

research are presented.

7.1 Final Conclusions

Since the introduction of the vehicle routing problem in 1959, an abundant amount of

research on the topic has been published. Given the high complexity of the problem,

solutions are mostly provided by heuristic approaches, since exact methods are only

suitable for small instances. A lot of research effort has, therefore, been dedicated on

developing heuristic methods such as 2-Opt and Or-Opt, but also on more general

metaheuristic frameworks such as Simulated Annealing and Large Neighbourhood

Search. When presenting a heuristic algorithm, the dominant approach towards

145
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Figure 7.1: Outline of Thesis — Chapter 7.

assessing its performance is by comparing it with other competing methods on one or

multiple publicly available benchmark problem sets. The aim often is to do better,

in terms of computation cost, solution quality or a trade-off of both. Yet, if a better

performance is obtained, it can rarely be explained why the method performs better.

Is it because of a new neighbourhood that is implemented in the algorithm? Is it

because of a combination of neighbourhoods that performs well together? Or did

the experimenter find more efficient ways for applying existing search strategies?

These types of questions are rarely answered when presenting the experimental

results a heuristic algorithm obtained for solving some type of vehicle routing problem.

It is by answering these kinds of questions that one can learn about the interplay

between an algorithm and problem. Having such an understanding of both the

problem and the method to solve it, will provide researchers guidance in the design,
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optimisation and comparison of heuristic algorithms.

This thesis provides a methodological framework that enables experimenters

to find answers on questions relating to why two methods or configurations of a

single method differ in the performance they obtain. This doctoral thesis sees it

as a next step in the experimental research on vehicle routing problems to obtain

a deeper understanding and insight in the effects of parameters and heuristic

components on algorithm performance. The methodology is able to identify which

algorithm elements significantly impact the solution quality of a heuristic method

and how the problem instance characteristics influence these effects. Multilevel

experimental designs are employed to efficiently study how the effects vary by the

problem instance to be solved. It enables researchers to make statements about an

entire population of problem instances, not just a small set of benchmark instances.

Different recommendations for different parts of the problem space can be obtained.

First, an exploratory analysis exposes how the algorithm elements are correlated with

algorithm performance as well as how their performance impact is correlated with

the characteristics of a problem instance. Second, a confirmatory analysis searches to

explain observed correlations through hypotheses testing. The exploratory analysis

is at first performed relying solely on the multilevel regression model. Then, it is

shown how the multilevel methodology can focus on the algorithm elements and

problem instance characteristics that are most relevant to performance. This focus

is achieved by performing a functional analysis of variance (fANOVA) before fitting

the multilevel regression model. The ranking of effects fANOVA provides will lead

to a more concise regression model with less predictor variables. The multilevel

methodology, on the other hand, provides a more detailed analysis of the effects of

algorithm elements and enables confirmatory analyses to be performed.

An analysis of a large neighbourhood search algorithm’s performance on in-

stances of the vehicle routing problem with time windows showed that including

all destroy and repair operators in an algorithm configuration does not necessarily

lead to the best results. The use of regret-2 as the sole repair was identified as

the best choice on average since it is expected to perform better than the other

two repair operator configurations for larger problem sizes. The destroy operator

combination that will obtain the best results with this repair operator is random

removal. These findings are also confirmed by fANOVA, which is not bound by

the assumptions regression models typically rely on, and makes the regression

analysis more robust. This analysis of the performance impact of the operators
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considered the moderating effect of each significant problem instance characteristic

ceteris paribus, but these characteristics can of course divert simultaneously from

their average level. Which operator combinations work well and which do not

depends on the unique combination of characteristics that constitute a problem

instance. The multilevel methodology offers guidance and insights for both an ‘av-

erage’ problem instance as for a specific problem instance with certain characteristics.

The exploratory analysis raised new questions regarding the LNS and VRPTW,

such as why removing customers at random works better than removing geographical

clusters of customers, given that the removed customers are reinserted using a diffi-

culty measure. Therefore, explanations were sought for why two destroy operators

perform different when combined with the same type of repair operator. It is found

that removing geographical clusters of customers reduces the number of insertion

alternatives to choose from during the repair phase. Several customers do not even

have a single feasible insertion option in one of the existing routes and can therefore

be considered isolated cases (at the start of the repair phase). Postponing the

insertion of these isolated customers is found to have a detrimental impact on the

solution quality. It is tested what the effect is of assigning these customers a higher

priority by allowing their insertion in an individual route from the depot to the

customer and back, an option that was previously considered as a last alternative.

Permitting these individual routes to be created sooner in the repair process adds

good insertion alternatives for other removed customers and thus enables the regret

operator to make better choices. Hence, a regret operator will make a better

estimation of customer difficulty and consequently a better prioritisation if each

individual customer has existing routes nearby in which it can be feasibly inserted.

Through this detailed analysis of a destroy and repair iteration, the majority of the

performance difference between both destroy scenarios is explained.

The analyses went from looking into a complete metaheuristic framework to

delving into the functioning of individual operators during a single iteration.

Through this approach of iterative experimentation, each time examining issues

at a more detailed level one can gain general insights that are not confined to a

specific heuristic algorithm. The analyses of Chapter 4 showed the importance of

isolated customers during solution construction. Initial solution construction for any

metaheuristic framework might be improved by treating isolated customers as high

priority insertions once the first route has been created.
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The exploratory analysis cannot only be used as a starting point for subsequent

confirmatory analyses that aim to explain observed correlations, but can also serve

to choose well-performing parameter values and components for both an average

problem instance as well as a specific problem instance. It is shown how the multilevel

regression analysis can be used to derive decision rules for each algorithm parameter

and component. These decision rules are formulated using the (significant) problem

instance characteristics which enables the definition of algorithm configurations for

each individual problem instance. It has been shown that there often is not a single

algorithm (configuration) that performs best for each individual instance, but that

heuristic algorithm performance varies over the set of problem instances solved. It

is believed that the tuning of heuristic algorithms, using the multilevel regression

analysis, can exploit such instance variations.

Results for a single LNS configuration that performs best for an average VRPTW

instance show its performance is in line with that of an established automatic

algorithm configurator as irace. The more training data, the better this ‘average

instance’ configuration performs. The performance results for the instance-specific

configurations, on the other hand, indicate no real benefit of defining instance-specific

configurations. This is probably due to the fact that the generated problem instances

are quite homogeneous and, therefore, do not provide opportunity for exploitation of

problem instance performance variation.

The main takeaway of this doctoral dissertation is that science is about under-

standing, rather than some race to be won. Performing a thorough analysis of ex-

perimental results can provide valuable knowledge that is not limited to the specific

experimental context applied, but is beneficial to all related research work. Hence,

when faced with some vehicle routing problem, the decision regarding what solution

strategies to apply or how to optimise them can be supported by previously per-

formed analyses. These analyses should account for both the heuristic algorithm as

the problem instances solved in order to be able to investigate their interplay. This

doctoral thesis encourages to conduct research that is not confined to the specifics the

experimenter has chosen to consider, but is generalisable to a wider whole of similar

contexts. The dissertation provides the VRP community the means to do this and

learn about both the problem and the method used to solve it.
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7.2 Further Research

The aim of this thesis was to propose and illustrate the use of an evaluation method-

ology for gaining insight and understanding of the interplay between a heuristic

algorithm and the problem instance it has to solve. A generic and well-studied

vehicle routing variant was considered. Chapter 3 mentioned that providing a

problem instance generator that can produce realistic problem instances is a research

question on its own that includes investigating what suitable probability distribu-

tions are for the various problem instance characteristics. Such realistic problem

instances often have additional side constraints, such as driving and rest times,

of which the influence on algorithm parameters and components can be analysed.

Opportunities for further research therefore lie in finding out which probability distri-

butions best reflect real-world instances and in studying other vehicle routing variants

that may have received far less attention and which have great potential to learn from.

A related subject is the identification of problem instance characteristics that are

distinctive in the performance a heuristic algorithm obtains. A preparatory descrip-

tive analysis on the sample of problem instances that will be used in experiments

might be a good starting point for identifying problem instance characteristics to be

included in regression analyses. Rasku et al. (2016) have already listed a number

of characteristics that are worth investigating. Finding the proper characteristics

is both beneficial for explanatory and subsequent confirmatory analyses to obtain

knowledge and understanding, and for instance-specific tuning of heuristic algorithms.

The combined methodology proposed in Chapter 5 is not yet implemented in

a single tool. At this moment, fANOVA is available as a Python package, and

the multilevel regression needs to be formulated manually. In this thesis the R

package brms was used. It would be more convenient to use if both approaches were

integrated in a single tool that first provides the fANOVA importance ranking and

then allows the experimenter to select the terms to be included in the multilevel

regression model before fitting it to the data.

The detailed analysis of a destroy and repair iteration in Chapter 4 was able to

explain the majority of the performance difference between two destroy scenarios,

given the use of the same repair operator. A small significant difference still remains

for which an explanation might be found by further improving how customers are

prioritised or by using a preparatory step in the regret operator. Furthermore, this
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analysis focused on the perspective of the regret operator to find out why there is a

performance difference, but it might be interesting to take the perspective of related

removal and find out what needs to change for the performance gap to close. This

can reinforce the conclusions of Chapter 4.

The case study used throughout this thesis considered an existing metaheuristic

framework with existing components. Yet, that does not mean the application of

the methodology is limited to established algorithms and new methods should first

be evaluated on their competitiveness. On the contrary, if a researcher has come

up with a new innovative way of searching for solution improvements, the first step

should be to verify whether the idea actually works as reasoned. Once one has a

complete understanding what one is creating, the focus can switch to developing the

best possible version of the idea.

The experiments performed in this dissertation were set up having control over

both the algorithm configurations and problem instances to be solved. By relying on

artificially generated problem instances the practitioner is able to make statements

for an entire population of problem instances. The researcher has complete control

when defining this population. One can generate a diverse population or choose to

focus on a population of difficult problem instances. In either case the methodology

is applied in the same way, but with conclusions being relevant to the population

defined. If a company provides a number of real-world instances without having

knowledge off which population these instances are a sample from, the practitioner no

longer has control over the problem instances. This is referred to as an uncontrolled

experiment. The limitation of the non-random sample of problem instances is that

it is difficult to identify the problem instance population. Furthermore, significance

tests and confidence intervals cannot be interpreted since they rely on the assumption

of the data being a random sample from some population. These limitations might

not be important if the practitioner does not have the intention to generalise

regression results (i.e., external validity), but just wants them to be valid for the

sample itself (i.e., internal validity) (Banerjee and Chaudhury, 2010).

Finally, this dissertation has focused analysis efforts on the vehicle routing

problem with time windows. The proposed multilevel methodology, however, is not

limited to the vehicle routing application, but can be used just as well for other

problem contexts, which are undoubtedly equally interesting to analyse.
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Details on Generated

Problem Instances

The diversity of the problem instances can be assessed through summary statistics as

well as plots such as histograms. This is done for the sample of problem instances used

in Section 3.4.5 in Table A.1 and Figures A.1a to A.1l. These measures are not only

provided for the problem instance characteristics listed in Table 3.2 are considered,

but also for characteristics like the spatial distribution of customers which was noted

an important aspect of a VRP problem by Tuzun et al. (1997). The latter show little

variation in their values, which is logical since a fixed 500x500 area is considered for all

problem instances. Further, given the uniformly distributed demand values and fixed

vehicle capacity, the average number of customers per route is rather small and varies

little, which makes these instances not representative for, say, small package delivery

where a single route usually serves many customers. Yet, as mentioned earlier, it is

not the focus of this paper to analyse real-life problem instances. The conclusions

from this research should be seen in the context of problem instances with a diverse

number of customers randomly dispersed in a 5002 area without peak demand values,

with small variations in the service time and time window width for each customer.
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Table A.1: Summary Table sample problem instances

Problem characteristic min max average standard deviation

Number of customers 25 397 216.45 103.65

Average demand 27.06 35.11 30.02 1.06

Average service time 20.37 39.07 29.29 4.29

Average time window width 34.50 63.58 49.35 6.68

Maximum run time (seconds) 72.55 1707.81 901.82 373.42

Average edge distance 201.03 272.24 241.44 14.76

Standard deviation edge distance 98.43 128.86 115.64 6.17

Fraction of distinct distances 0.41 1 0.72 0.17

Centroid of the nodes: x coordinate 170 331 249 33.20

Centroid of the nodes: y coordinate 160 330 248 34.42

Average distance to centroid 145.31 201.95 176.54 11.47

Average number of customers on a route 4 5.47 4.92 0.19

A.1 Problem Instance Generator

import random

import math

import os

# Specifcy folder where txt -files are to be saved

save_path = ’./ Instances_Experiment_1 ’

#How many problem instances to generate

number_of_instances = 200

for instance_id in range (1,number_of_instances + 1):

#Sample the number of customers to serve

customers = random .randint (25 ,400 )

vehicles = customers

#The capacity of each vehicle is fixed at 150 units

vehicle_capacity = 150

depot_id = 0

depot_x_coord = random .randint (0,500 )

depot_y_coord = random .randint (0,500 )

depot_demand = 0

#The depot is opened a fixed time window of 15 hours

depot_start_tw = 0
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depot_end_tw = 900

depot_service_time = 0

#Sample the maximum CPU time the algorithm gets to solve the problem

instance

runtime = random .triangular (60,1800)

#For these 3 characteristics we keep track of totals in order to

#calculate an average measure across all customers

total_service_time = 0

total_time_window_width = 0

total_demand = 0

#create txt -file

#filename = Instance + id + geographical distribution of

#customers (Random /Clustered/Semi -clustered)

filename = ’Instance %d_’ % ( instance_id ) + ’LNS_Random .txt ’

complete_name = os.path.join(save_path , filename )

f = open(complete_name ,’w’)

f.write ("%s\nruntime : %f" % (filename , runtime ))

f.write ("\n\tVEHICLE \n\tNUMBER \t\tCAPACITY \n")

f.write ("\t%d\t\t\t%d\n\n" % (vehicle_number , vehicle_capacity))

f.write ("CUSTOMERS \nCUST ID\t XCOORD \t YCOORD \t DEMAND \t

START TIME WINDOW \t END TIME WINDOW \t SERVICE TIME\n\n")

f.write ("%d\t%d\t%d\t%d\t\t%d\t\t\t%d\t\t\t%d\n" %

(depot_id , depot_x_coord , depot_y_coord , depot_demand ,

depot_start_tw , depot_end_tw , depot_service_time))

#For these characteristics we sample minimum and maximum values

#from a uniform distribution

min_service_time = random .uniform (10 ,30)

max_service_time = random .uniform (30 ,50)

min_width = random .randint (20 ,50)

max_width = random .randint (50 ,80)

#Create uniformly distributed customers

for id in range (1, customer_number+1):

feasible = False

#As long as the generated problem instance is ’infeasible’,

#generate a new one

while feasible == False :

customer_id = id

#Sample x and y coordinates for customer

x_coord = random .randint (0,500)

y_coord = random .randint (0,500)

#Sample customer demand
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demand = random .randint (10 , 50)

#Sample service time at customer from triangular

distribution

service_time = int (random .triangular (min_service_time ,

max_service_time))

distance = int (math.sqrt (( depot_x_coord - x_coord ) ** 2

+ ( depot_y_coord - y_coord ) ** 2))

if (depot_start_tw + distance < depot_end_tw - distance -

service_time):

tw_centre = random .randint ( depot_start_tw + distance ,

depot_end_tw - distance -

service_time)

tw_width = random .randint (min_width , max_width )

tw_start = time_window_centre - 0.5*tw_width

tw_end = time_window_centre + 0.5*tw_width

if (( tw_end + service_time + distance <= depot_end_tw)):

f.write("%d\t%d\t%d\t%d\t\t%d\t\t\t%d\t\t\t%d\n" %

(customer_id , x_coord , y_coord , demand ,

tw_start , tw_end , service_time))

total_service_time += service_time

total_demand += demand

total_tw_width += tw_width

feasible = True

else: feasible = False

average_service_time = total_service_time/float (customers )

average_tw_width = total_tw_width/float (customers )

average_demand = total_demand/float (customers )

f.write ("average service time: %f - average time window width : %f

- average demand : %f\n" %

(average_service_time , average_tw_width , average_demand))

f.close ()
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A.2 Histograms
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Figure A.1: Histograms
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Regression Tables

This appendix provides the complete regression tables for all models fitted in this

doctoral thesis.

B.1 Chapter 3

Table B.1: Regression Table Chapter 3

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 3, 939.77** 121.21 3, 706.59 4, 180.24

Greedy −165.77** 6.29 −178.13 −153.45

Regret2 16.64** 4.45 7.89 25.45

Random 18.02** 4.34 9.46 26.54

Worst −15.23** 5.09 −25.13 −5.19

Related −39.05** 4.76 −48.32 −29.72

RandomWorst 4.41 4.66 −4.66 13.57

WorstRelated −13.97** 4.43 −22.74 −5.30

RandomRelated 7.55 4.55 −1.34 16.56

Cooling rate −3.88 12.61 −28.49 20.97

Start temperature control parameter −66.34* 28.23 −121.81 −10.49

Noise parameter −9.37* 4.25 −17.66 −0.94

Determinism parameter 0.40 0.22 −0.03 0.84

Customers
1
3 −411.93** 28.11 −466.81 −357.71

Avg service time −24.37 27.98 −79.33 30.51

Avg time window width 42.24* 18.14 7.02 77.87

Avg demand 78.66 114.13 −142.95 307.61

Runtime −15.45 19.80 −54.78 23.81

Cooling rate × Start temperature control parameter 285.23 455.54 −600.17 1, 179.29

Random × Determinism parameter −0.23 0.30 −0.82 0.35

Worst × Determinism parameter −0.97** 0.32 −1.60 −0.35

Related × Determinism parameter −1.88** 0.32 −2.50 −1.25

RandomWorst × Determinism parameter −0.26 0.31 −0.88 0.35

WorstRelated × Determinism parameter 0.09 0.30 −0.51 0.68

RandomRelated × Determinism parameter −0.12 0.31 −0.73 0.48

Greedy × Noise parameter −37.96** 6.07 −49.90 −26.11
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Regret2 × Noise parameter 2.94 5.87 −8.71 14.36

Greedy × Random −70.62** 6.40 −83.22 −58.10

Greedy × Worst −85.48** 6.78 −98.70 −72.17

Greedy × Related 59.20** 6.80 45.87 72.44

Greedy × RandomWorst −82.93** 6.75 −96.14 −69.56

Greedy × WorstRelated 3.78 6.34 −8.58 16.25

Greedy × RandomRelated 13.85* 6.62 0.90 26.77

Regret2 × Random −7.54 6.22 −19.77 4.62

Regret2 × Worst 1.30 6.50 −11.37 14.24

Regret2 × Related −3.73 6.46 −16.26 8.91

Regret2 × RandomWorst −3.86 6.55 −16.76 8.78

Regret2 × WorstRelated −1.66 6.23 −13.88 10.54

Regret2 × RandomRelated −4.43 6.21 −16.51 7.85

Customers
1
3 × Runtime 6.73 3.87 −0.86 14.16

Greedy × Customers
1
3 −20.00** 1.06 −22.11 −17.93

Greedy × Avg service time 4.48** 1.05 2.43 6.56

Greedy × Avg time window width −4.18** 0.69 −5.52 −2.84

Greedy × Avg demand −0.15 4.30 −8.66 8.20

Greedy × Runtime 3.04** 0.74 1.61 4.49

Regret2 × Customers
1
3 2.10** 0.40 1.30 2.88

Regret2 × Avg service time −0.29 0.40 −1.08 0.48

Regret2 × Avg time window width 0.29 0.25 −0.21 0.79

Regret2 × Avg demand −1.09 1.68 −4.44 2.17

Regret2 × Runtime −0.18 0.28 −0.74 0.37

Random × Customers
1
3 0.10 0.61 −1.09 1.30

Random × Avg service time 0.75 0.61 −0.45 1.93

Random × Avg time window width −0.13 0.40 −0.93 0.65

Random × Avg demand −1.79 2.58 −6.79 3.28

Random × Runtime −0.43 0.43 −1.26 0.40

Worst × Customers
1
3 0.12 0.77 −1.41 1.63

Worst × Avg service time 1.30 0.78 −0.23 2.81

Worst × Avg time window width −0.77 0.51 −1.77 0.24

Worst × Avg demand −0.71 3.32 −7.12 5.83

Worst × Runtime −0.50 0.55 −1.57 0.60

Related × Customers
1
3 −4.84** 0.70 −6.21 −3.46

Related × Avg service time 0.54 0.70 −0.85 1.91

Related × Avg time window width −0.84 0.46 −1.75 0.08

Related × Avg demand 0.56 2.87 −5.09 6.11

Related × Runtime −0.17 0.49 −1.14 0.81

RandomWorst × Customers
1
3 −0.92 0.65 −2.21 0.34

RandomWorst × Avg service time 1.34* 0.65 0.06 2.62

RandomWorst × Avg time window width −0.63 0.43 −1.47 0.20

RandomWorst × Avg demand 0.52 2.69 −4.72 5.77

RandomWorst × Runtime −1.08* 0.45 −1.96 −0.19

WorstRelated × Customers
1
3 −0.87 0.60 −2.05 0.30

WorstRelated × Avg service time 0.27 0.61 −0.91 1.47

WorstRelated × Avg time window width 0.10 0.40 −0.68 0.88

WorstRelated × Avg demand 2.06 2.45 −2.75 6.82

WorstRelated × Runtime −0.57 0.41 −1.38 0.23

RandomRelated × Customers
1
3 0.98 0.61 −0.23 2.18

RandomRelated × Avg service time 0.13 0.61 −1.07 1.33

RandomRelated × Avg time window width −0.01 0.40 −0.79 0.78

RandomRelated × Avg demand 0.41 2.47 −4.46 5.19

RandomRelated × Runtime −0.49 0.42 −1.31 0.33

Cooling rate × Customers
1
3 −3.81 2.90 −9.51 1.88

Cooling rate × Avg service time 0.16 3.00 −5.82 6.07

Cooling rate × Avg time window width −0.44 1.91 −4.18 3.28

Cooling rate × Avg demand 19.22 11.85 −4.07 42.18
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Cooling rate × Runtime 1.21 2.05 −2.84 5.21

Start temperature control parameter × Customers
1
3 1.35 6.56 −11.42 14.26

Start temperature control parameter × Avg service time 8.06 6.72 −5.09 21.23

Start temperature control parameter × Avg time window width 3.09 4.29 −5.29 11.44

Start temperature control parameter × Avg demand −2.50 27.74 −56.41 52.58

Start temperature control parameter × Runtime −2.17 4.60 −11.22 6.75

Determinism parameter × Customers
1
3 0.02 0.02 −0.02 0.06

Determinism parameter × Avg service time −0.02 0.02 −0.06 0.02

Determinism parameter × Avg time window width 0.001 0.01 −0.02 0.03

Determinism parameter × Avg demand 0.10 0.08 −0.06 0.26

Determinism parameter × Runtime 0.0002 0.01 −0.03 0.03

Noise parameter × Customers
1
3 −1.58* 0.63 −2.82 −0.36

Noise parameter × Avg service time 0.05 0.62 −1.17 1.28

Noise parameter × Avg time window width −0.85* 0.41 −1.64 −0.06

Noise parameter × Avg demand 0.48 2.57 −4.55 5.47

Noise parameter × Runtime 0.14 0.44 −0.71 1.01

Note: ** denotes significance at 1%, * denotes significance at 5%

B.2 Chapter 4

Table B.2: Regression Table Chapter 4 — Average Insertion Cost

Dependent variable: Log(avg insertion cost) Estimate Std. Error l-95% CI u-95% CI

Intercept 4.16∗∗∗ 0.03 4.11 4.22

Customers −0.002∗∗∗ 0.0002 −0.003 −0.002

Related 0.48∗∗∗ 0.04 0.41 0.56

Customers 0.001∗∗∗ 0.0004 0.0003 0.002

Regret-3 0.02 0.02 −0.02 0.07

Customers −0.0003 0.0002 −0.001 0.0001

Regret-4 0.01 0.02 −0.04 0.05

Customers −0.0002 0.0002 −0.001 0.0002

Percentage removed 0.02∗∗∗ 0.002 0.01 0.02

Related × Regret-3 0.12∗∗∗ 0.05 0.04 0.21

Customers 0.001∗∗ 0.0004 0.0002 0.002

Related × Regret-4 0.14∗∗∗ 0.05 0.05 0.23

Customers 0.001∗∗∗ 0.0004 0.0006 0.002

Related × Percentage removed −0.002 0.003 −0.01 0.003

Regret-3 × Percentage removed −0.0005 0.002 −0.005 0.004

Regret-4 × Percentage removed 0.0002 0.002 −0.004 0.004

Related × Regret-3 × Percentage removed 0.0003 0.003 −0.006 0.007

Related × Regret-4 × Percentage removed −0.002 0.003 −0.009 0.005

Observations 6761

Num. groups: problem instances 200

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.3: Regression Table LNS experiment Chapter 4 — isolated customers not

prioritised

Dependent variable: total cost−1 Estimate Std. Error l-95% CI u-95% CI

Intercept 3891.09∗∗∗ 122.68 3647.76 4126.34

Related −62.08∗∗∗ 1.87 −65.75 −58.38

Regret-3 −0.15 1.50 −3.10 2.78

Regret-4 −4.66∗∗∗ 1.50 −7.58 −1.73

Cooling rate −5.07 8.00 −20.68 10.60

Start temperature control parameter −27.27 16.65 −59.61 5.31

Determinism parameter 0.05 0.08 −0.11 0.20

Noise parameter −14.32∗∗∗ 2.60 −19.41 −9.23

Customers
1
3 −402.14∗∗∗ 27.34 −456.11 −349.63

Avg service time −16.54 29.17 −72.07 41.55

Avg time window width 24.07 19.97 −14.52 63.13

Avg demand 181.99 139.41 −90.64 456.67

Run time 9.28 19.75 −28.78 48.29

Customers
1
3 × Run time 0.68 4.34 −7.82 9.22

Cooling rate × Start temperature control parameter −533.27∗ 306.45 −1141.61 61.88

Related × Determinism parameter −2.49∗∗∗ 0.10 −2.68 −2.29

Regret-3 × Noise parameter 6.45∗ 3.62 −0.68 13.50

Regret-4 × Noise parameter 5.56 3.59 −1.41 12.69

Related × Regret-3 14.92∗∗∗ 2.11 10.77 19.02

Related × Regret-4 16.08∗∗∗ 2.08 11.98 20.09

Related × Customers
1
3 −8.88∗∗∗ 0.33 −9.53 −8.23

Related × Avg service time 0.69∗∗ 0.34 0.02 1.37

Related × Avg time window width −0.85∗∗∗ 0.24 −1.31 −0.39

Related × Avg demand 0.83 1.64 −2.40 4.02

Related × Run time 1.51∗∗∗ 0.24 1.05 1.98

Regret-3 × Customers
1
3 1.04∗∗∗ 0.24 0.57 1.52

Regret-3 × Avg service time −0.06 0.25 −0.56 0.44

Regret-3 × Avg time window width 0.30∗ 0.17 −0.04 0.64

Regret-3 × Avg demand 1.79 1.22 −0.62 4.17

Regret-3 × Run time −0.22 0.17 −0.56 0.12

Regret-4 × Customers
1
3 0.85∗∗∗ 0.24 0.37 1.33

Regret-4 × Avg service time 0.42 0.26 −0.09 0.93

Regret-4 × Avg time window width 0.16 0.18 −0.19 0.51

Regret-4 × Avg demand −0.83 1.23 −3.25 1.56

Regret-4 × Run time −0.12 0.18 −0.47 0.23

Cooling rate × Customers
1
3 −1.58 1.80 −5.11 1.94

Cooling rate × Avg service time 1.41 1.88 −2.27 5.06

Cooling rate × Avg time window width −1.63 1.29 −4.17 0.87

Cooling rate × Avg demand −1.21 9.05 −18.88 16.68

Cooling rate × Run time 0.10 1.30 −2.47 2.62

Start temperature control parameter × Customers
1
3 3.73 3.73 −3.65 11.02

Start temperature control parameter × Avg service time 3.02 3.91 −4.62 10.76

Start temperature control parameter × Avg time window width 2.01 2.66 −3.23 7.19

Start temperature control parameter × Avg demand 37.39∗∗ 19.07 0.27 74.87

Start temperature control parameter × Run time −1.51 2.69 −6.77 3.73

Determinism parameter × Customers
1
3 −0.19∗∗∗ 0.01 −0.22 −0.16

Determinism parameter × Avg service time 0.02 0.01 −0.01 0.05

Determinism parameter × Avg time window width −0.03∗∗∗ 0.01 −0.05 −0.01

Determinism parameter × Avg demand −0.02 0.07 −0.15 0.12

Determinism parameter × Run time 0.01 0.01 −0.01 0.03

Noise parameter × Customers
1
3 −1.46∗∗∗ 0.35 −2.14 −0.77

Noise parameter × Avg service time 0.27 0.36 −0.44 0.98

Noise parameter × Avg time window width −0.17 0.25 −0.66 0.31
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Noise parameter × Avg demand 0.98 1.73 −2.44 4.36

Noise parameter × Run time 0.27 0.25 −0.22 0.75

Observations 4,000

Num. groups: problem instances 200

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.4: Regression Table LNS experiment Chapter 4 — isolated customers priori-

tised

Dependent variable: total cost−1 Estimate Std. Error l-95% CI u-95% CI

Intercept 3905.83∗∗∗ 121.19 3666.74 4146.37

Related −19.08∗∗∗ 1.37 −21.78 −16.41

Regret-3 −2.69∗∗ 1.09 −4.82 −0.55

Regret-4 −5.05∗∗∗ 1.12 −7.24 −2.86

Cooling rate 7.60 6.00 −4.14 19.47

Start temperature control parameter −9.12 12.33 −33.48 15.07

Determinism parameter 0.09 0.06 −0.02 0.21

Noise parameter −6.02∗∗∗ 1.93 −9.80 −2.24

Customers
1
3 −401.12∗∗∗ 27.60 −454.79 −345.54

Avg service time −18.13 28.66 −73.98 38.62

Avg time window width 24.01 19.49 −13.89 62.22

Avg demand 179.67 135.38 −85.85 449.95

Run time 9.76 19.56 −28.24 48.16

Customers
1
3 × Run time 1.79 4.40 −6.90 10.37

Cooling rate × Start temperature control parameter −11.09 226.59 −451.48 433.63

Related × Determinism parameter −0.64∗∗∗ 0.07 −0.78 −0.49

Regret-3 × Noise parameter 3.41 2.70 −1.88 8.68

Regret-4 × Noise parameter 1.08 2.70 −4.16 6.38

Related × Regret-3 9.58∗∗∗ 1.56 6.51 12.66

Related × Regret-4 7.84∗∗∗ 1.55 4.79 10.87

Related × Customers
1
3 −3.46∗∗∗ 0.23 −3.91 −2.99

Related × Avg service time 0.38 0.24 −0.10 0.85

Related × Avg time window width −0.63∗∗∗ 0.17 −0.96 −0.29

Related × Avg demand 0.09 1.16 −2.21 2.37

Related × Run time 0.52∗∗∗ 0.17 0.19 0.84

Regret-3 × Customers
1
3 0.74∗∗∗ 0.18 0.39 1.09

Regret-3 × Avg service time 0.15 0.18 −0.21 0.51

Regret-3 × Avg time window width 0.14 0.13 −0.11 0.39

Regret-3 × Avg demand 0.90 0.88 −0.81 2.62

Regret-3 × Run time −0.47∗∗∗ 0.13 −0.71 −0.22

Regret-4 × Customers
1
3 0.07 0.18 −0.28 0.42

Regret-4 × Avg service time 0.11 0.19 −0.27 0.48

Regret-4 × Avg time window width 0.22∗ 0.13 −0.04 0.48

Regret-4 × Avg demand 0.05 0.92 −1.76 1.85

Regret-4 × Run time −0.32∗∗ 0.13 −0.58 −0.06

Cooling rate × Customers
1
3 −1.13 1.34 −3.75 1.52

Cooling rate × Avg service time 2.61∗ 1.42 −0.21 5.41

Cooling rate × Avg time window width −0.42 0.97 −2.32 1.49

Cooling rate × Avg demand −4.57 6.71 −17.68 8.67

Cooling rate × Run time 0.36 0.97 −1.53 2.26

Start temperature control parameter × Customers
1
3 1.78 2.76 −3.68 7.14

Start temperature control parameter × Avg service time −2.24 2.90 −7.92 3.40

Start temperature control parameter × Avg time window width −0.00 1.97 −3.85 3.89

Start temperature control parameter × Avg demand −15.36 14.08 −42.85 12.48

Start temperature control parameter × Run time 1.27 2.00 −2.67 5.17
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Determinism parameter × Customers
1
3 −0.05∗∗∗ 0.01 −0.07 −0.03

Determinism parameter × Avg service time 0.01 0.01 −0.01 0.03

Determinism parameter × Avg time window width −0.02∗∗∗ 0.01 −0.03 −0.00

Determinism parameter × Avg demand −0.02 0.05 −0.12 0.07

Determinism parameter × Run time −0.00 0.01 −0.02 0.01

Noise parameter × Customers
1
3 −1.05∗∗∗ 0.26 −1.56 −0.53

Noise parameter × Avg service time 0.21 0.27 −0.31 0.73

Noise parameter × Avg time window width −0.38∗∗ 0.19 −0.74 −0.01

Noise parameter × Avg demand −0.35 1.30 −2.91 2.21

Noise parameter × Run time −0.06 0.18 −0.43 0.30

Observations 4,000

Num. groups: problem instances 200

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

B.3 Chapter 5

Table B.5: Regression Table Chapter 5 — simplified model VRPTW-LNS

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4, 082.85 122.62 3, 879.03 4, 302.29

Greedy −141.97 4.39 −149.85 −134.36

Regret2 12.67 2.46 7.81 17.51

Random 16.81 2.41 12.12 21.59

Worst −13.90 2.45 −18.78 −9.20

Related −69.67 3.16 −75.53 −63.84

RandomWorst 7.96 2.36 3.34 12.61

WorstRelated −16.26 2.43 −21.05 −11.48

RandomRelated 1.20 2.46 −3.73 5.97

Customers
1
3 −428.11 26.96 −476.64 −373.45

Greedy × Random −67.38 5.26 −77.47 −57.11

Greedy × Worst −98.09 6.36 −110.17 −85.91

Greedy × Related 88.16 4.37 79.91 96.40

Greedy × RandomWorst −87.72 5.54 −98.11 −77.07

Greedy × WorstRelated 10.27 3.94 2.54 17.94

Greedy × RandomRelated 20.17 3.91 12.53 27.83

Regret2 × Random −2.12 3.47 −8.91 4.70

Regret2 × Worst −0.59 3.47 −7.31 6.27

Regret2 × Related −9.13 3.88 −16.58 −1.39

Regret2 × RandomWorst −3.65 3.41 −10.34 3.15

Regret2 × WorstRelated −4.47 3.46 −11.30 2.15

Regret2 × RandomRelated −2.89 3.55 −9.85 4.19

Greedy × Customers
1
3 −16.63 0.97 −18.46 −14.74

Regret2 × Customers
1
3 1.71 0.57 0.60 2.80

Random × Customers
1
3 2.73 0.56 1.64 3.83

Worst × Customers
1
3 0.002 0.57 −1.12 1.13
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Related × Customers
1
3 −11.17 0.73 −12.59 −9.76

RandomWorst × Customers
1
3 1.80 0.57 0.70 2.90

WorstRelated × Customers
1
3 −2.30 0.57 −3.40 −1.19

RandomRelated × Customers
1
3 −0.45 0.56 −1.55 0.65

Greedy × Random × Customers
1
3 −11.01 1.20 −13.34 −8.63

Greedy × Worst × Customers
1
3 −1.65 1.42 −4.43 1.13

Greedy × Related × Customers
1
3 13.50 1.00 11.55 15.43

Greedy × RandomWorst × Customers
1
3 −8.14 1.27 −10.59 −5.63

Greedy × WorstRelated × Customers
1
3 3.04 0.92 1.25 4.84

Greedy × RandomRelated × Customers
1
3 1.87 0.89 0.10 3.61

Regret2 × Random × Customers
1
3 −0.73 0.80 −2.29 0.85

Regret2 × Worst × Customers
1
3 0.23 0.81 −1.36 1.78

Regret2 × Related × Customers
1
3 −2.13 0.91 −3.91 −0.32

Regret2 × RandomWorst × Customers
1
3 −0.23 0.80 −1.80 1.34

Regret2 × WorstRelated × Customers
1
3 0.06 0.81 −1.52 1.66

Regret2 × RandomRelated × Customers
1
3 −0.18 0.82 −1.79 1.41

Table B.6: Regression Table Chapter 5 — large model VRPTW-LNS

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4, 070.47 169.20 3, 860.59 4, 288.77

Greedy −141.80 5.84 −149.15 −134.63

Regret2 12.86 2.41 8.21 17.49

Random 17.23 2.43 12.56 21.93

Worst −13.99 2.49 −18.70 −9.13

Related −69.80 3.65 −75.63 −64.10

RandomWorst 8.33 2.36 3.71 12.95

WorstRelated −16.41 2.45 −21.20 −11.71

RandomRelated 1.37 2.39 −3.22 6.14

Cooling rate 0.25 1.47 −2.65 3.12

Start temperature control parameter −0.68 1.41 −3.40 2.13

Noise parameter −13.40 2.39 −17.97 −8.77

Determinism parameter 0.12 0.04 0.05 0.19

Customers
1
3 −437.47 28.38 −488.87 −391.47

Avg demand −334.42 91.96 −511.41 −151.55

Avg service time −40.39 24.39 −87.73 10.63

Avg time window width 39.59 16.09 6.86 70.09

Run time 2.16 16.99 −31.53 34.67

Greedy × Random −66.91 5.50 −76.90 −56.84

Greedy × Worst −96.90 6.53 −108.11 −85.32

Greedy × Related 88.97 4.96 81.02 97.11

Greedy × RandomWorst −88.48 6.02 −99.18 −78.20

Greedy × WorstRelated 10.55 3.92 2.73 18.26

Greedy × RandomRelated 21.04 3.83 13.46 28.46

Regret2 × Random −3.31 3.39 −10.07 3.25

Regret2 × Worst −0.60 3.36 −7.18 6.00

Regret2 × Related −8.47 3.73 −15.82 −1.15

Regret2 × RandomWorst −4.69 3.36 −11.28 1.90

Regret2 × WorstRelated −5.19 3.41 −11.89 1.45

Regret2 × RandomRelated −2.47 3.41 −9.26 4.20

Random × Determinism parameter −0.12 0.05 −0.22 −0.02

Worst × Determinism parameter −0.32 0.05 −0.42 −0.22
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Related × Determinism parameter −0.49 0.05 −0.59 −0.38

RandomWorst × Determinism parameter −0.17 0.05 −0.26 −0.07

WorstRelated × Determinism parameter −0.07 0.05 −0.17 0.02

RandomRelated × Determinism parameter −0.02 0.05 −0.12 0.08

Greedy × Noise parameter −22.70 3.46 −29.48 −16.01

Regret2 × Noise parameter 2.07 3.18 −4.16 8.31

Greedy × Customers
1
3 −16.99 1.03 −18.72 −15.28

Greedy × Avg demand 5.03 3.45 −1.70 11.83

Greedy × Avg service time 2.78 0.91 0.98 4.56

Greedy × Avg time window width −2.69 0.60 −3.87 −1.54

Greedy × Run time 1.61 0.64 0.35 2.87

Regret2 × Customers
1
3 1.63 0.56 0.53 2.71

Regret2 × Avg demand 1.71 2.19 −2.59 5.90

Regret2 × Avg service time −0.18 0.57 −1.30 0.95

Regret2 × Avg time window width 0.33 0.38 −0.39 1.06

Regret2 × Run time 0.05 0.41 −0.77 0.86

Random × Customers
1
3 2.75 0.55 1.65 3.84

Random × Avg demand 0.24 2.24 −4.17 4.70

Random × Avg service time −0.07 0.58 −1.23 1.06

Random × Avg time window width 0.11 0.37 −0.62 0.85

Random × Run time −0.15 0.40 −0.94 0.65

Worst × Customers
1
3 0.11 0.57 −1.03 1.24

Worst × Avg demand −0.23 2.37 −4.90 4.35

Worst × Avg service time −0.68 0.62 −1.88 0.52

Worst × Avg time window width 0.02 0.39 −0.74 0.78

Worst × Run time 0.05 0.41 −0.76 0.84

Related × Customers
1
3 −11.36 0.78 −12.71 −10.05

Related × Avg demand 2.48 2.70 −2.90 7.82

Related × Avg service time 0.31 0.70 −1.10 1.66

Related × Avg time window width −1.57 0.47 −2.49 −0.66

Related × Run time 0.45 0.49 −0.52 1.40

RandomWorst × Customers
1
3 1.87 0.55 0.77 2.97

RandomWorst × Avg demand 0.90 2.20 −3.37 5.20

RandomWorst × Avg service time −0.31 0.56 −1.41 0.79

RandomWorst × Avg time window width 0.15 0.36 −0.57 0.85

RandomWorst × Run time −0.29 0.42 −1.12 0.53

WorstRelated × Customers
1
3 −2.44 0.55 −3.52 −1.34

WorstRelated × Avg demand 1.77 2.24 −2.53 6.15

WorstRelated × Avg service time −0.27 0.58 −1.41 0.88

WorstRelated × Avg time window width −0.18 0.39 −0.93 0.59

WorstRelated × Run time 0.63 0.40 −0.16 1.42

RandomRelated × Customers
1
3 −0.45 0.56 −1.55 0.64

RandomRelated × Avg demand 0.54 2.24 −3.87 4.92

RandomRelated × Avg service time −0.47 0.57 −1.57 0.63

RandomRelated × Avg time window width −0.49 0.38 −1.25 0.25

RandomRelated × Run time 0.62 0.39 −0.14 1.38

Cooling rate × Customers
1
3 0.54 0.34 −0.12 1.21

Cooling rate × Avg demand 0.20 1.32 −2.40 2.82

Cooling rate × Avg service time −0.08 0.36 −0.79 0.65

Cooling rate × Avg time window width −0.26 0.24 −0.73 0.19

Cooling rate × Run time 0.22 0.25 −0.26 0.71

Start temperature control parameter × Customers
1
3 0.33 0.33 −0.31 1.00

Start temperature control parameter × Avg demand 0.43 1.32 −2.24 3.01

Start temperature control parameter × Avg service time −0.01 0.35 −0.69 0.66

Start temperature control parameter × Avg time window width 0.35 0.23 −0.10 0.80

Start temperature control parameter × Run time 0.11 0.24 −0.36 0.59

Determinism parameter × Customers
1
3 −0.001 0.003 −0.01 0.01

Determinism parameter × Avg demand −0.01 0.01 −0.03 0.02
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Determinism parameter × Avg service time 0.003 0.004 −0.004 0.01

Determinism parameter × Avg time window width 0.005 0.002 −0.0002 0.01

Determinism parameter × Run time −0.003 0.003 −0.01 0.002

Noise parameter × Customers
1
3 −1.11 0.34 −1.76 −0.42

Noise parameter × Avg demand −1.81 1.38 −4.50 0.85

Noise parameter × Avg service time 0.53 0.36 −0.18 1.23

Noise parameter × Avg time window width −0.50 0.24 −0.96 −0.03

Noise parameter × Run time 0.50 0.26 −0.01 1.00

Greedy × Random × Customers
1
3 −10.65 1.22 −12.98 −8.33

Greedy × Random × Avg demand −3.61 4.73 −13.01 5.64

Greedy × Random × Avg service time 3.07 1.25 0.61 5.55

Greedy × Random × Avg time window width −2.35 0.80 −3.90 −0.77

Greedy × Random × Run time 1.00 0.86 −0.71 2.68

Greedy × Worst × Customers
1
3 −1.53 1.32 −4.14 1.09

Greedy × Worst × Avg demand −0.34 5.28 −10.76 10.05

Greedy × Worst × Avg service time 5.59 1.44 2.79 8.42

Greedy × Worst × Avg time window width −5.04 0.95 −6.88 −3.18

Greedy × Worst × Run time −0.06 0.98 −1.98 1.82

Greedy × Related × Customers
1
3 14.31 1.05 12.46 16.18

Greedy × Related × Avg demand −3.97 3.81 −11.47 3.51

Greedy × Related × Avg service time 0.09 0.99 −1.85 2.04

Greedy × Related × Avg time window width 1.90 0.64 0.65 3.17

Greedy × Related × Run time −0.80 0.69 −2.14 0.56

Greedy × RandomWorst × Customers
1
3 −7.68 1.26 −10.10 −5.20

Greedy × RandomWorst × Avg demand −3.19 4.78 −12.62 6.11

Greedy × RandomWorst × Avg service time 3.06 1.31 0.49 5.68

Greedy × RandomWorst × Avg time window width −3.38 0.85 −5.02 −1.74

Greedy × RandomWorst × Run time 1.26 0.91 −0.55 3.03

Greedy × WorstRelated × Customers
1
3 3.52 0.90 1.73 5.30

Greedy × WorstRelated × Avg demand −1.94 3.63 −9.14 5.17

Greedy × WorstRelated × Avg service time 1.14 0.97 −0.72 3.02

Greedy × WorstRelated × Avg time window width 0.22 0.63 −1.01 1.44

Greedy × WorstRelated × Run time −1.06 0.65 −2.32 0.22

Greedy × RandomRelated × Customers
1
3 2.07 0.87 0.34 3.78

Greedy × RandomRelated × Avg demand −3.58 3.42 −10.34 3.04

Greedy × RandomRelated × Avg service time 0.17 0.91 −1.59 1.94

Greedy × RandomRelated × Avg time window width 0.55 0.60 −0.62 1.74

Greedy × RandomRelated × Run time −0.61 0.63 −1.85 0.64

Regret2 × Random × Customers
1
3 −0.72 0.78 −2.24 0.82

Regret2 × Random × Avg demand 0.28 3.08 −5.72 6.36

Regret2 × Random × Avg service time −0.55 0.82 −2.15 1.04

Regret2 × Random × Avg time window width 0.36 0.55 −0.71 1.43

Regret2 × Random × Run time −0.16 0.58 −1.28 0.98

Regret2 × Worst × Customers
1
3 0.27 0.79 −1.29 1.84

Regret2 × Worst × Avg demand 0.37 3.18 −5.76 6.59

Regret2 × Worst × Avg service time 0.78 0.85 −0.86 2.43

Regret2 × Worst × Avg time window width −0.29 0.54 −1.33 0.79

Regret2 × Worst × Run time −0.38 0.58 −1.51 0.75

Regret2 × Related × Customers
1
3 −1.77 0.87 −3.46 −0.06

Regret2 × Related × Avg demand −1.61 3.49 −8.50 5.33

Regret2 × Related × Avg service time 1.35 0.90 −0.42 3.10

Regret2 × Related × Avg time window width −0.55 0.59 −1.70 0.61

Regret2 × Related × Run time 0.63 0.63 −0.61 1.88

Regret2 × RandomWorst × Customers
1
3 −0.11 0.78 −1.62 1.44

Regret2 × RandomWorst × Avg demand −0.84 3.10 −6.90 5.19

Regret2 × RandomWorst × Avg service time −0.28 0.81 −1.90 1.29

Regret2 × RandomWorst × Avg time window width −0.48 0.53 −1.52 0.55

Regret2 × RandomWorst × Run time −0.20 0.58 −1.35 0.95
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Regret2 × WorstRelated × Customers
1
3 0.22 0.79 −1.32 1.77

Regret2 × WorstRelated × Avg demand −3.98 3.09 −10.03 2.12

Regret2 × WorstRelated × Avg service time 0.29 0.84 −1.39 1.92

Regret2 × WorstRelated × Avg time window width −0.09 0.55 −1.18 0.98

Regret2 × WorstRelated × Run time −0.34 0.57 −1.46 0.79

Regret2 × RandomRelated × Customers
1
3 −0.03 0.79 −1.60 1.52

Regret2 × RandomRelated × Avg demand −2.25 3.12 −8.33 3.86

Regret2 × RandomRelated × Avg service time 0.21 0.82 −1.42 1.81

Regret2 × RandomRelated × Avg time window width −0.23 0.55 −1.33 0.85

Regret2 × RandomRelated × Run time −0.59 0.58 −1.73 0.56

B.4 Chapter 6

Table B.7: Regression Table Chapter 6 — training data with 100 instances

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 3, 971.86 159.04 3, 657.40 4, 284.25

Greedy −126.46 5.00 −136.15 −116.61

Regret2 8.82 3.42 2.11 15.45

Random 4.78 3.49 −2.14 11.55

Worst −26.33 3.96 −34.13 −18.52

Related −24.86 3.79 −32.32 −17.52

RandomWorst −7.89 3.60 −14.98 −0.94

WorstRelated −10.46 3.44 −17.27 −3.81

RandomRelated 3.30 3.56 −3.65 10.31

Max%Removed −0.04 0.21 −0.45 0.38

Cooling rate 11.45 9.98 −8.22 31.03

Start temperature control parameter 2.09 22.23 −40.80 45.71

Noise parameter −10.99 3.54 −17.95 −4.01

Determinism parameter 0.18 0.16 −0.13 0.50

Max%Removed2 −0.01 0.004 −0.02 −0.01

Cooling rate2 247.20 189.12 −126.14 610.44

Start temperature control parameter2 694.45 852.44 −978.29 2, 382.06

Noise parameter2 32.66 7.27 18.28 46.76

Determinism parameter2 −0.01 0.01 −0.02 0.01

Customers
1
3 −386.46 37.25 −460.22 −312.59

Avg service time −50.54 42.26 −132.25 32.17

Avg time window width 76.88 24.99 26.61 126.66

Avg demand −281.85 140.32 −554.31 −6.71

Runtime −13.49 27.98 −67.97 41.96

Greedy × Random −22.67 4.72 −31.90 −13.45

Greedy × Worst −47.49 4.82 −56.97 −37.93

Greedy × Related 46.62 4.93 37.05 56.35

Greedy × RandomWorst −36.64 4.83 −45.94 −27.26

Greedy × WorstRelated 5.28 4.79 −4.05 14.73

Greedy × RandomRelated 20.03 4.91 10.32 29.74

Regret2 × Random −2.79 4.84 −12.22 6.88

Regret2 × Worst 2.82 4.91 −6.84 12.65

Regret2 × Related 0.98 4.87 −8.45 10.67

Regret2 × RandomWorst 2.45 4.89 −7.20 12.00

Regret2 × WorstRelated 3.55 4.87 −5.94 13.08

Regret2 × RandomRelated 0.88 4.88 −8.58 10.42

Cooling rate × Start temperature control parameter 63.18 369.51 −676.08 785.66

Random × Determinism parameter 0.05 0.23 −0.40 0.50

Worst × Determinism parameter −0.64 0.23 −1.10 −0.20

Related × Determinism parameter −0.96 0.24 −1.42 −0.50
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RandomWorst × Determinism parameter −0.22 0.22 −0.66 0.22

WorstRelated × Determinism parameter 0.05 0.22 −0.40 0.48

RandomRelated × Determinism parameter −0.02 0.23 −0.46 0.42

Greedy × Noise parameter −19.86 4.52 −28.67 −11.11

Regret2 × Noise parameter 5.64 4.52 −3.18 14.45

Random × Max%Removed 0.58 0.28 0.03 1.13

Worst × Max%Removed 0.87 0.30 0.29 1.46

Related × Max%Removed −1.39 0.31 −2.00 −0.78

RandomWorst × Max%Removed 0.58 0.29 0.01 1.14

WorstRelated × Max%Removed −0.12 0.29 −0.70 0.45

RandomRelated × Max%Removed −0.39 0.30 −0.98 0.20

Greedy × Max%Removed −1.82 0.29 −2.35 −1.25

Regret2 × Max%Removed 0.06 0.29 −0.51 0.63

Customers
1
3 × Runtime 10.26 5.68 −1.11 21.50

Greedy × Customers
1
3 −16.64 0.88 −18.37 −14.93

Greedy × Avg service time 2.34 1.02 0.32 4.34

Greedy × Avg time window width −3.08 0.63 −4.32 −1.86

Greedy × Avg demand −1.43 3.39 −8.11 5.14

Greedy × Runtime 1.33 0.69 −0.02 2.70

Regret2 × Customers
1
3 1.46 0.30 0.86 2.05

Regret2 × Avg service time 0.10 0.35 −0.60 0.79

Regret2 × Avg time window width 0.12 0.21 −0.30 0.54

Regret2 × Avg demand 0.84 1.17 −1.45 3.14

Regret2 × Runtime −0.16 0.24 −0.62 0.30

Random × Customers
1
3 0.21 0.51 −0.78 1.20

Random × Avg service time 1.26 0.60 0.08 2.42

Random × Avg time window width 0.07 0.35 −0.62 0.75

Random × Avg demand 3.10 1.90 −0.59 6.87

Random × Runtime 0.33 0.40 −0.45 1.11

Worst × Customers
1
3 −0.96 0.62 −2.19 0.25

Worst × Avg service time 1.59 0.72 0.20 2.98

Worst × Avg time window width −0.71 0.43 −1.55 0.11

Worst × Avg demand 2.49 2.37 −2.25 7.18

Worst × Runtime 0.86 0.47 −0.06 1.77

Related × Customers
1
3 −2.97 0.56 −4.07 −1.88

Related × Avg service time −0.47 0.64 −1.72 0.76

Related × Avg time window width −0.38 0.38 −1.12 0.37

Related × Avg demand 0.97 2.12 −3.20 5.12

Related × Runtime 0.29 0.43 −0.55 1.15

RandomWorst × Customers
1
3 −0.42 0.53 −1.46 0.60

RandomWorst × Avg service time 1.20 0.60 0.01 2.38

RandomWorst × Avg time window width −0.52 0.36 −1.24 0.18

RandomWorst × Avg demand 0.70 1.99 −3.19 4.61

RandomWorst × Runtime 0.59 0.41 −0.20 1.38

WorstRelated × Customers
1
3 −1.41 0.46 −2.30 −0.53

WorstRelated × Avg service time 0.71 0.52 −0.32 1.71

WorstRelated × Avg time window width −0.03 0.31 −0.64 0.57

WorstRelated × Avg demand 0.52 1.74 −2.85 3.92

WorstRelated × Runtime 0.37 0.35 −0.30 1.06

RandomRelated × Customers
1
3 1.49 0.49 0.54 2.46

RandomRelated × Avg service time 0.02 0.57 −1.09 1.14

RandomRelated × Avg time window width 0.09 0.34 −0.57 0.76

RandomRelated × Avg demand 3.17 1.84 −0.40 6.73

RandomRelated × Runtime 0.09 0.38 −0.65 0.84

Max%Removed × Customers
1
3 −0.17 0.01 −0.19 −0.14

Max%Removed × Avg service time −0.02 0.02 −0.05 0.01

Max%Removed × Avg time window width −0.01 0.01 −0.02 0.01

Max%Removed × Avg demand −0.05 0.05 −0.15 0.05
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Max%Removed × Runtime 0.02 0.01 −0.001 0.04

Cooling rate × Customers
1
3 0.33 2.27 −4.15 4.80

Cooling rate × Avg service time 0.94 2.66 −4.26 6.21

Cooling rate × Avg time window width −1.79 1.61 −4.95 1.39

Cooling rate × Avg demand −6.89 8.78 −24.12 10.54

Cooling rate × Runtime 0.66 1.76 −2.84 4.12

Start temperature control parameter × Customers
1
3 −5.43 5.02 −15.28 4.40

Start temperature control parameter × Avg service time 3.41 5.79 −7.91 14.73

Start temperature control parameter × Avg time window width −0.32 3.53 −7.26 6.58

Start temperature control parameter × Avg demand 27.73 18.97 −9.52 65.18

Start temperature control parameter × Runtime 0.61 3.86 −6.97 8.07

Determinism parameter × Customers
1
3 −0.01 0.01 −0.04 0.02

Determinism parameter × Avg service time 0.004 0.02 −0.03 0.04

Determinism parameter × Avg time window width −0.0004 0.01 −0.02 0.02

Determinism parameter × Avg demand 0.01 0.06 −0.10 0.12

Determinism parameter × Runtime −0.02 0.01 −0.04 0.01

Noise parameter × Customers
1
3 0.03 0.57 −1.09 1.15

Noise parameter × Avg service time −0.37 0.66 −1.66 0.90

Noise parameter × Avg time window width −0.54 0.40 −1.33 0.24

Noise parameter × Avg demand −3.19 2.16 −7.35 1.03

Noise parameter × Runtime −0.22 0.43 −1.06 0.62

Greedy × Random × Max%Removed −1.59 0.40 −2.39 −0.80

Greedy × Worst × Max%Removed −0.77 0.40 −1.56 0.02

Greedy × Related × Max%Removed 0.91 0.42 0.09 1.74

Greedy × RandomWorst × Max%Removed −1.75 0.40 −2.54 −0.97

Greedy × WorstRelated × Max%Removed −0.12 0.41 −0.91 0.67

Greedy × RandomRelated × Max%Removed 0.08 0.42 −0.75 0.90

Regret2 × Random × Max%Removed −0.24 0.41 −1.04 0.57

Regret2 × Worst × Max%Removed −0.03 0.43 −0.86 0.81

Regret2 × Related × Max%Removed 0.08 0.42 −0.74 0.91

Regret2 × RandomWorst × Max%Removed −0.02 0.42 −0.83 0.79

Regret2 × WorstRelated × Max%Removed −0.31 0.41 −1.11 0.50

Regret2 × RandomRelated × Max%Removed 0.20 0.42 −0.61 1.01

Table B.8: Regression Table Chapter 6 — training data with 200 instances

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4, 481.95 139.19 4, 212.48 4, 760.17

Greedy −122.60 3.87 −130.25 −115.04

Regret2 12.39 2.62 7.29 17.52

Random 8.86 2.67 3.67 14.13

Worst −22.86 3.05 −28.85 −16.80

Related −21.35 2.78 −26.82 −15.95

RandomWorst −4.19 2.82 −9.72 1.27

WorstRelated −7.10 2.63 −12.24 −1.98

RandomRelated 7.20 2.66 1.98 12.47

Max%Removed −0.03 0.16 −0.35 0.29

Cooling rate 21.70 7.79 6.21 36.84

Start temperature control parameter −8.57 15.49 −38.84 21.60

Noise parameter −11.19 2.59 −16.28 −6.09

Determinism parameter 0.27 0.13 0.02 0.51

Max%Removed2 −0.01 0.003 −0.02 −0.01

Cooling rate2 101.84 156.85 −207.68 409.78

Start temperature control parameter2 1, 149.01 631.41 −90.97 2, 389.64

Noise parameter2 26.27 5.50 15.51 37.08

Determinism parameter2 0.0000 0.01 −0.01 0.01

Customers
1
3 −479.46 31.53 −543.12 −418.23
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Avg service time −71.36 33.82 −138.64 −5.37

Avg time window width 40.24 21.33 −1.63 82.71

Avg demand −275.12 150.21 −567.12 21.65

Runtime −1.86 22.17 −46.60 40.55

Greedy1 × Random −26.45 3.77 −33.85 −19.17

Greedy1 × Worst −58.73 3.79 −66.20 −51.38

Greedy1 × Related 37.26 3.76 29.87 44.59

Greedy1 × RandomWorst −40.84 3.75 −48.19 −33.52

Greedy1 × WorstRelated −0.02 3.72 −7.29 7.15

Greedy1 × RandomRelated 16.63 3.73 9.35 23.93

Regret21 × Random −7.65 3.68 −14.87 −0.44

Regret21 × Worst 1.81 3.71 −5.43 9.04

Regret21 × Related −4.30 3.69 −11.56 2.89

Regret21 × RandomWorst 1.42 3.75 −5.98 8.69

Regret21 × WorstRelated −0.58 3.66 −7.71 6.68

Regret21 × RandomRelated −6.57 3.68 −13.72 0.62

Cooling rate × Start temperature control parameter 217.38 288.49 −341.15 781.97

Random × Determinism parameter −0.38 0.17 −0.71 −0.04

Worst × Determinism parameter −1.01 0.18 −1.35 −0.65

Related × Determinism parameter −1.37 0.17 −1.71 −1.02

RandomWorst × Determinism parameter −0.33 0.18 −0.67 0.03

WorstRelated × Determinism parameter −0.28 0.17 −0.62 0.06

RandomRelated × Determinism parameter 0.19 0.17 −0.15 0.54

Greedy × Noise parameter −25.75 3.52 −32.63 −18.91

Regret2 × Noise parameter 3.44 3.44 −3.28 10.21

Random × Max%Removed 0.46 0.22 0.02 0.89

Worst × Max%Removed 0.93 0.23 0.49 1.38

Related × Max%Removed −1.37 0.23 −1.81 −0.93

RandomWorst × Max%Removed 0.76 0.23 0.32 1.21

WorstRelated × Max%Removed −0.18 0.23 −0.62 0.26

RandomRelated × Max%Removed −0.11 0.23 −0.56 0.33

Greedy × Max%Removed −1.96 0.23 −2.41 −1.51

Regret2 × Max%Removed −0.005 0.23 −0.45 0.44

Customers
1
3 × Runtime −3.01 4.86 −12.48 6.88

Greedy × Customers
1
3 −18.70 0.67 −20.02 −17.39

Greedy × Avg service time 1.04 0.73 −0.41 2.47

Greedy × Avg time window width −2.08 0.46 −2.98 −1.19

Greedy × Avg demand −3.94 3.24 −10.39 2.40

Greedy × Runtime 1.53 0.48 0.57 2.46

Regret2 × Customers
1
3 1.68 0.23 1.24 2.13

Regret2 × Avg service time −0.43 0.25 −0.91 0.06

Regret2 × Avg time window width 0.08 0.15 −0.22 0.38

Regret2 × Avg demand −0.26 1.11 −2.43 1.91

Regret2 × Runtime −0.44 0.17 −0.76 −0.11

Random × Customers
1
3 0.81 0.36 0.11 1.53

Random × Avg service time 0.33 0.39 −0.44 1.10

Random × Avg time window width 0.22 0.24 −0.27 0.69

Random × Avg demand −3.74 1.73 −7.11 −0.31

Random × Runtime 0.12 0.26 −0.40 0.64

Worst × Customers
1
3 −2.07 0.50 −3.05 −1.09

Worst × Avg service time 0.78 0.54 −0.27 1.84

Worst × Avg time window width −0.33 0.34 −0.99 0.34

Worst × Avg demand −4.05 2.47 −8.87 0.77

Worst × Runtime 0.13 0.36 −0.59 0.83

Related × Customers
1
3 −4.14 0.39 −4.90 −3.38

Related × Avg service time 0.30 0.42 −0.52 1.13

Related × Avg time window width −0.15 0.26 −0.67 0.37

Related × Avg demand −2.63 1.89 −6.34 1.08

Related × Runtime 0.78 0.28 0.22 1.34
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RandomWorst × Customers
1
3 −0.36 0.42 −1.18 0.48

RandomWorst × Avg service time 0.64 0.46 −0.25 1.54

RandomWorst × Avg time window width 0.03 0.28 −0.52 0.58

RandomWorst × Avg demand −4.08 2.01 −8.00 −0.14

RandomWorst × Runtime 0.20 0.30 −0.39 0.78

WorstRelated × Customers
1
3 −1.57 0.35 −2.26 −0.89

WorstRelated × Avg service time −0.11 0.37 −0.85 0.63

WorstRelated × Avg time window width 0.28 0.23 −0.17 0.74

WorstRelated × Avg demand −3.67 1.66 −6.92 −0.41

WorstRelated × Runtime 0.23 0.25 −0.26 0.71

RandomRelated × Customers
1
3 0.65 0.36 −0.06 1.35

RandomRelated × Avg service time 0.02 0.39 −0.74 0.77

RandomRelated × Avg time window width 0.19 0.24 −0.28 0.66

RandomRelated × Avg demand −0.83 1.72 −4.19 2.54

RandomRelated × Runtime 0.28 0.26 −0.24 0.79

Max%Removed × Customers
1
3 −0.19 0.01 −0.22 −0.17

Max%Removed × Avg service time 0.01 0.01 −0.02 0.03

Max%Removed × Avg time window width −0.02 0.01 −0.03 −0.002

Max%Removed × Avg demand 0.03 0.06 −0.08 0.14

Max%Removed × Runtime 0.03 0.01 0.01 0.04

Cooling rate × Customers
1
3 3.83 1.77 0.38 7.30

Cooling rate × Avg service time −3.47 1.92 −7.23 0.30

Cooling rate × Avg time window width −1.27 1.19 −3.62 1.07

Cooling rate × Avg demand 0.88 8.47 −15.83 17.26

Cooling rate × Runtime −0.99 1.28 −3.52 1.53

Start temperature control parameter × Customers
1
3 0.71 3.50 −6.15 7.63

Start temperature control parameter × Avg service time 1.08 3.80 −6.39 8.54

Start temperature control parameter × Avg time window width 0.49 2.32 −4.02 5.07

Start temperature control parameter × Avg demand −11.36 17.01 −44.69 22.11

Start temperature control parameter × Runtime 1.70 2.56 −3.30 6.70

Determinism parameter × Customers
1
3 −0.05 0.01 −0.07 −0.03

Determinism parameter × Avg service time 0.002 0.01 −0.02 0.03

Determinism parameter × Avg time window width 0.004 0.01 −0.01 0.02

Determinism parameter× Avg demand −0.01 0.05 −0.12 0.09

Determinism parameter × Runtime 0.02 0.01 0.0004 0.03

Noise parameter × Customers
1
3 −2.04 0.36 −2.76 −1.34

Noise parameter × Avg service time 0.18 0.40 −0.60 0.96

Noise parameter × Avg time window width −0.41 0.24 −0.88 0.07

Noise parameter × Avg demand −0.46 1.77 −3.92 3.01

Noise parameter × Runtime 0.03 0.26 −0.49 0.55

Greedy × Random × Max%Removed −1.78 0.33 −2.42 −1.14

Greedy × Worst × Max%Removed −0.85 0.33 −1.50 −0.21

Greedy × Related × Max%Removed 1.05 0.33 0.41 1.69

Greedy × RandomWorst × Max%Removed −1.60 0.32 −2.23 −0.96

Greedy × WorstRelated × Max%Removed 0.12 0.32 −0.51 0.75

Greedy × RandomRelated × Max%Removed 0.05 0.33 −0.58 0.69

Regret2 × Random × Max%Removed 0.21 0.32 −0.42 0.84

Regret2 × Worst × Max%Removed −0.10 0.32 −0.73 0.54

Regret2 × Related × Max%Removed 0.11 0.32 −0.53 0.73

Regret2 × RandomWorst × Max%Removed −0.25 0.33 −0.90 0.39

Regret2 × WorstRelated × Max%Removed −0.33 0.32 −0.96 0.29

Regret2 × RandomRelated × Max%Removed 0.02 0.32 −0.61 0.65
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Table B.9: Regression Table Chapter 6 — training data with 400 instances

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4, 234.10 96.59 4, 048.98 4, 421.92

Greedy −129.60 2.67 −134.85 −124.40

Regret2 8.71 1.79 5.19 12.23

Random 9.42 1.81 5.87 12.96

Worst −22.92 2.22 −27.29 −18.63

Related −26.76 1.98 −30.66 −22.86

RandomWorst −4.26 1.95 −8.09 −0.43

WorstRelated −14.21 1.94 −17.95 −10.39

RandomRelated 3.35 1.90 −0.40 7.12

Max%Removed −0.01 0.11 −0.22 0.20

Cooling rate 27.34 5.43 16.69 38.03

Start temperature control parameter 2.15 12.60 −22.44 27.07

Noise parameter −8.19 1.77 −11.66 −4.70

Determinism parameter 0.26 0.09 0.10 0.43

Max%Removed2 −0.02 0.002 −0.02 −0.01

Cooling rate2 51.39 109.05 −162.66 265.12

Start temperature control parameter2 24.14 442.57 −834.70 895.54

Noise parameter2 24.30 3.78 16.93 31.65

Determinism parameter2 0.002 0.004 −0.01 0.01

Customers
1
3 −458.95 20.93 −499.10 −416.40

Avg service time −58.38 24.11 −103.98 −11.23

Avg time window width 42.37 15.14 13.65 72.77

Avg demand 533.46 91.32 351.00 709.62

Runtime −2.86 16.09 −33.76 29.51

Greedy × Random −20.77 2.55 −25.90 −15.77

Greedy × Worst −62.77 2.60 −67.88 −57.71

Greedy × Related 49.97 2.59 44.89 55.00

Greedy × RandomWorst −44.92 2.62 −50.05 −39.74

Greedy × WorstRelated 6.92 2.60 1.80 12.04

Greedy × RandomRelated 22.56 2.56 17.56 27.61

Regret2 × Random −3.45 2.58 −8.51 1.56

Regret2 × Worst 4.17 2.54 −0.82 9.12

Regret2 × Related 1.93 2.57 −3.12 7.00

Regret2 × RandomWorst 3.29 2.58 −1.79 8.35

Regret2 × WorstRelated 5.41 2.57 0.35 10.38

Regret2 × RandomRelated 0.84 2.55 −4.10 5.77

Cooling rate × Start temperature control parameter 53.85 202.57 −340.25 446.36

Random × Determinism parameter −0.27 0.12 −0.51 −0.03

Worst × Determinism parameter −0.65 0.12 −0.89 −0.41

Related × Determinism parameter −1.11 0.12 −1.35 −0.87

RandomWorst × Determinism parameter −0.35 0.12 −0.59 −0.11

WorstRelated × Determinism parameter −0.36 0.12 −0.60 −0.12

RandomRelated × Determinism parameter 0.12 0.12 −0.11 0.37

Greedy × Noise parameter −24.53 2.40 −29.28 −19.79

Regret2 × Noise parameter −0.19 2.39 −4.82 4.52

Random × Max%Removed 0.39 0.15 0.09 0.69

Worst × Max%Removed 0.54 0.16 0.24 0.85

Related × Max%Removed −1.67 0.16 −1.98 −1.38

RandomWorst × Max%Removed 0.58 0.15 0.28 0.88

WorstRelated × Max%Removed −0.54 0.15 −0.85 −0.24

RandomRelated × Max%Removed −0.30 0.15 −0.59 0.01

Greedy1 × Max%Removed −1.96 0.15 −2.26 −1.67

Regret21 × Max%Removed −0.05 0.15 −0.34 0.25

Customers
1
3 × Runtime 3.56 3.34 −2.94 10.14

Greedy × Customers
1
3 −18.25 0.45 −19.13 −17.38

Greedy × Avg service time 2.79 0.49 1.84 3.77
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Greedy × Avg time window width −3.17 0.32 −3.79 −2.55

Greedy × Avg demand 0.97 1.89 −2.74 4.60

Greedy × Runtime 1.91 0.34 1.24 2.58

Regret2 × Customers
1
3 1.64 0.17 1.31 1.97

Regret2 × Avg service time −0.32 0.18 −0.66 0.04

Regret2 × Avg time window width 0.25 0.12 0.02 0.48

Regret2 × Avg demand −0.55 0.70 −1.92 0.82

Regret2 × Runtime −0.38 0.12 −0.61 −0.14

Random × Customers
1
3 0.85 0.24 0.38 1.31

Random × Avg service time 0.19 0.25 −0.31 0.70

Random × Avg time window width −0.01 0.17 −0.34 0.32

Random × Avg demand 0.46 1.00 −1.53 2.41

Random × Runtime −0.33 0.17 −0.68 0.004

Worst × Customers
1
3 −1.73 0.36 −2.46 −1.02

Worst × Avg service time 1.10 0.39 0.34 1.86

Worst × Avg time window width −1.12 0.26 −1.61 −0.61

Worst × Avg demand 2.83 1.54 −0.18 5.80

Worst × Runtime 0.55 0.27 0.03 1.08

Related × Customers
1
3 −3.10 0.29 −3.68 −2.53

Related × Avg service time −0.01 0.31 −0.61 0.60

Related × Avg time window width −0.45 0.20 −0.84 −0.05

Related × Avg demand 1.49 1.22 −0.88 3.87

Related × Runtime 0.58 0.21 0.16 1.00

RandomWorst × Customers
1
3 −0.43 0.28 −0.97 0.12

RandomWorst × Avg service time 0.35 0.30 −0.24 0.95

RandomWorst × Avg demand 0.31 1.18 −1.97 2.65

RandomWorst × Runtime 0.12 0.21 −0.29 0.52

WorstRelated × Customers
1
3 −1.08 0.28 −1.64 −0.55

WorstRelated × Avg service time −0.07 0.30 −0.66 0.50

WorstRelated × Avg time window width −0.10 0.20 −0.48 0.29

WorstRelated × Avg demand 1.48 1.16 −0.81 3.72

WorstRelated × Runtime 0.36 0.21 −0.04 0.77

RandomRelated × Customers
1
3 1.13 0.27 0.60 1.67

RandomRelated × Avg service time −0.68 0.29 −1.25 −0.11

RandomRelated × Avg time window width 0.04 0.19 −0.34 0.41

RandomRelated × Avg demand 1.61 1.14 −0.56 3.85

RandomRelated × Runtime 0.20 0.20 −0.18 0.59

Max%Removed × Customers
1
3 −0.19 0.01 −0.20 −0.17

Max%Removed × Avg service time −0.003 0.01 −0.02 0.01

Max%Removed × Avg time window width −0.01 0.01 −0.02 −0.002

Max%Removed × Avg demand 0.01 0.03 −0.05 0.08

Max%Removed × Runtime 0.02 0.01 0.01 0.03

Cooling rate × Customers
1
3 0.68 1.24 −1.76 3.10

Cooling rate × Avg service time −3.68 1.29 −6.21 −1.18

Cooling rate × Avg time window width 0.41 0.85 −1.26 2.08

Cooling rate × Avg demand 2.71 4.98 −7.24 12.40

Cooling rate × Runtime 0.22 0.87 −1.48 1.92

Start temperature control parameter × Customers
1
3 1.01 2.79 −4.44 6.50

Start temperature control parameter × Avg service time −0.87 3.02 −6.79 5.12

Start temperature control parameter × Avg time window width −2.49 1.98 −6.36 1.39

Start temperature control parameter × Avg demand 21.71 11.92 −1.52 44.99

Start temperature control parameter × Runtime −2.22 2.07 −6.30 1.86

Determinism parameter × Customers
1
3 −0.01 0.01 −0.03 −0.0003

Determinism parameter × Avg service time 0.01 0.01 −0.01 0.02

Determinism parameter × Avg time window width 0.004 0.01 −0.01 0.01

Determinism parameter × Avg demand 0.04 0.03 −0.03 0.10

Determinism parameter × Runtime −0.002 0.01 −0.01 0.01

Noise parameter × Customers
1
3 −1.24 0.25 −1.72 −0.76
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Noise parameter × Avg service time −0.02 0.26 −0.53 0.50

Noise parameter × Avg time window width −0.49 0.17 −0.82 −0.15

Noise parameter × Avg demand 1.72 1.01 −0.26 3.71

Noise parameter × Runtime 0.36 0.18 0.01 0.72

Greedy × Random × Max%Removed −1.48 0.22 −1.90 −1.06

Greedy × Worst × Max%Removed −1.24 0.22 −1.68 −0.80

Greedy × Related × Max%Removed 1.40 0.22 0.96 1.83

Greedy × RandomWorst × Max%Removed −1.32 0.22 −1.75 −0.89

Greedy × WorstRelated × Max%Removed 0.58 0.22 0.15 1.01

Greedy × RandomRelated × Max%Removed −0.04 0.22 −0.47 0.39

Regret2 × Random × Max%Removed 0.22 0.22 −0.21 0.64

Regret2 × Worst × Max%Removed 0.27 0.22 −0.18 0.71

Regret2 × Related × Max%Removed 0.07 0.22 −0.37 0.51

Regret2 × RandomWorst × Max%Removed 0.14 0.21 −0.28 0.56

Regret2 × WorstRelated × Max%Removed 0.17 0.22 −0.26 0.60

Regret2 × RandomRelated × Max%Removed 0.20 0.22 −0.22 0.62
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Appendix C

Residual Plots

To assess whether a regression model is in line with the underlying assumptions of

independence, normality and homoscedasticity of the error terms, the fitted values

against the residual values are plotted. If the points in these plots show a random

pattern, the analysis can proceed with the current model, otherwise a more suitable

model has to be found. In this appendix the residual plots are provided for all

regression models used throughout this thesis.
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Figure C.1: Fitted versus residual values for regression Table 4.3.
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Figure C.2: Fitted versus residual values for regression Table 4.4 (Hypothesis 1).
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Figure C.3: Fitted versus residual values for regression Table 4.5 (Hypothesis 2).
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Figure C.4: Fitted versus residual values for regression Table B.2.
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Figure C.5: Fitted versus residual values for regression Table 4.6 (Hypothesis 3).
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Figure C.6: Fitted versus residual values for regression Table 4.7.
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Figure C.7: Fitted versus residual values for regression Table 4.8 (Hypothesis 4).
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Figure C.8: Fitted versus residual values for regression Table B.3.
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Figure C.9: Fitted versus residual values for regression Table B.4.
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Figure C.10: Fitted versus residual values for regression Table 4.9.
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Figure C.11: Fitted versus residual values for regression Table 4.10.
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Figure C.12: Fitted versus residual values for regression Table 5.2.
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Figure C.13: Fitted versus residual values for regression Table B.6.
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Figure C.14: Fitted versus residual values for regression Table B.7.

−300

−200

−100

0

100

200

5000 10000 15000

Fitted Values

R
e
s
id

u
a
l 
V

a
lu

e
s

Figure C.15: Fitted versus residual values for regression Table B.8.
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Figure C.16: Fitted versus residual values for regression Table B.9.
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Bräysy, O., Gendreau, M., Feb. 2005. Vehicle Routing Problem with Time Windows,

Part I: Route Construction and Local Search Algorithms. Transportation Science

39 (1), 104–118.

Breiman, L., 2001. Random forests. Machine Learning 45 (1), 5–32.

Brus, D., De Gruijter, J., 1997. Random sampling or geostatistical modelling? choos-

ing between design-based and model-based sampling strategies for soil (with dis-

cussion). Geoderma 80 (1), 1–44.

Bürkner, P.-C., 2017. brms: An R package for bayesian multilevel models using Stan.

Journal of Statistical Software 80 (1), 1–28.

Busing, F., 1993. Distribution characteristics of variance estimates in two-level mod-

els. Preprint PRM, 93–04.

Cameron, A. C., Trivedi, P. K., 2013. Regression Analysis of Count Data. Vol. 53.

Cambridge university press.

Chiarandini, M., Goegebeur, Y., 2010. Mixed Models for the Analysis of Optimiza-

tion Algorithms. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss,

M. (Eds.), Experimental Methods for the Analysis of Optimization Algorithms.

Springer Berlin Heidelberg, pp. 225–264.

Colorni, A., Dorigo, M., Maniezzo, V., et al., 1991. Distributed optimization by ant

colonies. In: Proceedings of the first European conference on artificial life. Vol. 142.

Paris, France, pp. 134–142.

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., Semet, F., 2002. A guide

to vehicle routing heuristics. Journal of the Operational Research society, 512–522.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., Vigo, D., 2007. Vehicle routing.

In: Barnhart, C., Laporte, G. (Eds.), Transportation, Handbooks in Operations

Research and Management Science. Vol. 14. Elsevier, Amsterdam, Ch. 6, pp. 367–

428.



190 Bibliography

Coy, S. P., Golden, B. L., Runger, G. C., Wasil, E. A., Jan. 2001. Using Experimental

Design to Find Effective Parameter Settings for Heuristics. Journal of Heuristics

7 (1), 77–97.
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Corstjens, J., Depaire, B., Caris, A., Sörensen, K., 2016. A Multilevel Methodology

for Analysing Metaheuristic Algorithms for the VRPTW. In: EU/ME 2016 Workshop

on Design and Analysis of Metaheuristics.

Corstjens, J., Caris, A., Depaire, B., 2016. Experimental Analysis of Metaheuristic

Algorithms for the VRPTW. In: The 30th Conference of the Belgian Operational

Research Society.

Corstjens, J., Depaire, B., Caris, A., Sörensen, K., 2016 Analysing metaheuristic
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Samenvatting

Combinatorische optimalisatieproblemen, waarbij gezocht wordt naar de beste

oplossing uit een eindig aantal oplossingen, behandelen vaak problemen met een

grote economische relevantie, zoals de planning van ritten voor de distributie van

goederen en het invullen van dienstregelingen. Dit heeft geleid tot de ontwikkeling

van een groot aantal procedures die in staat zijn een oplossing voor deze problemen

te genereren. Hierbij wordt een onderscheid gemaakt tussen exacte en heuristische

methoden. Veel combinatorische optimalisatieproblemen zijn moeilijk op te lossen

en worden daarom als NP-moeilijk aangeduid. Hiermee wordt bedoeld dat er geen

snel (d.i. polynomiaal) exact algoritme bestaat dat elke instantie van het probleem

in een redelijke tijd optimaal kan oplossen. Exacte methoden garanderen dat de

optimale oplossing gevonden wordt en kunnen bijgevolg een enorme hoeveelheid

rekentijd vereisen om een dergelijke oplossing te waarborgen. Deze algoritmes

zijn daarom enkel toepasbaar op kleine probleeminstanties. Het merendeel van

de ontwikkelde oplossingsmethoden zijn heuristisch van aard en in staat goede

oplossingen te genereren binnen een aanvaardbare rekentijd, zonder te garanderen

dat deze oplossing ook de optimale oplossing is.

Hoe effectief of efficiënt een heuristiek is, wordt gewoonlijk beoordeeld in

een empirische studie waarbij de performantie van een heuristiek toegepast op

een optimalisatieprobleem geëvalueerd wordt door instanties van een of meerdere

probleembenchmarks op te lossen en de vergelijking te maken met de resultaten die

bestaande methoden behaald hebben op deze benchmarks. Deze evaluatiebenadering

legt de nadruk op het competitief zijn, op het ontwikkelen van een algoritme dat

‘beter’ kan presteren dan reeds bestaande algoritmes. ‘Beter’ betekent het behalen

van een verbeterde oplossingskwaliteit, vereisen van minder rekentijd voor eenzelfde

oplossingskwaliteit, of een gunstigere afweging van beide prestatiemaatstaven. Wat

een dergelijke competitieve evaluatiebenadering niet toelaat, is het verklaren waarom
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een nieuw voorgestelde heuristiek beter presteert. Kan het toegeschreven worden aan

een ingenieus ontwikkelde operator werkzaam binnen het algoritme? Of misschien

ligt het simpelweg aan een meer efficiënte implementatie van een bestaande methode?

Dragen alle componenten significant bij tot de behaalde prestatiewaarde, of zouden

bepaalde elementen weggelaten kunnen worden om zo de efficiëntie te verhogen?

Dit zijn allemaal vragen die vaak onbeantwoord blijven wanneer een heuristiek

gepresenteerd wordt in een onderzoekspublicatie. Hoewel enige competitie tussen

onderzoekers zeker kan aanzetten tot innovatieve ontdekkingen, is het erkend dat

‘ware innovatie’ gefundeerd is op het begrijpen van hoe een heuristische oplossings-

methode zich gedraagt, niet op bewijs van concurrentievermogen. Het is het ultieme

doel van wetenschap om te begrijpen, niet om te winnen van anderen.

Een competitieve evaluatie is nuttig indien het doel is om de snelst en best

mogelijke procedure te ontwikkelen voor een specifieke probleemcontext. Indien

het doel is te begrijpen hoe een prestatiewaarde behaald werd, te ontdekken welke

elementen in de heuristiek een bijdrage leveren en conclusies af te leiden die niet

enkel gelden voor de specifiek onderzochte probleeminstanties, dan is een statistische

evaluatie vereist. De doelstelling van dit doctoraatsonderzoek is dan ook het

promoten van een werkwijze voor het experimenteren met heuristieken waarbij

de focus ligt op het verkrijgen van begrip en inzicht in hoe een heuristiek tot

een prestatiewaarde komt. De verworven kennis kan dan gebruikt worden bij het

ontwerpen en optimaliseren van algoritmes alsook bij het vergelijken van verschil-

lende algoritmes. Om deze doelstelling te vervullen wordt een evaluatiemethodologie

voorgesteld op basis van de concepten uit Design of Experiments en het gebruik ervan

gedemonstreerd in een aantal experimentele studies. De methodologie is toepasbaar

op een breed scala aan optimalisatieproblemen en algoritmes, maar in deze thesis ligt

de focus op het analyseren van de performantie van een large neighbourhood search

algoritme toegepast op instanties van het rittenplanningsprobleem met tijdvensters.

Dit is een belangrijk probleem in menig distributiesysteem en heeft daarom heel

wat onderzoekswerk naar zowel exacte als heuristische methoden gëınspireerd. Maar

relatief weinig onderzoeksinspanningen zijn geleverd waarbij statistische technieken

toegepast worden bij de analyse van deze problemen of waarbij men erop uit is te

begrijpen hoe het probleem van invloed is op de performantie van een algoritme.

Dit doctoraatsonderzoek beschouwt het als de volgende stap in experimenteel

onderzoek naar rittenplanningsproblemen om een beter begrip en inzicht te ver-

krijgen in de effecten die parameters en componenten hebben op de performantie
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van een heuristisch algoritme. De voorgestelde methodologie is in staat aan te

duiden welke elementen een significante impact hebben op de oplossingskwaliteit

die een algoritme behaalt en hoe de probleemkenmerken deze effecten bëınvloeden.

Multilevel experimentele ontwerpen worden gebruikt om efficiënt te analyseren hoe

effecten variëren naargelang de probleeminstantie die opgelost moet worden. Zo

kunnen verschillende aanbevelingen voor verschillende delen van de probleemruimte

afgeleid worden. Verder laat het onderzoekers ook toe vaststellingen te doen voor

een volledige populatie van probleeminstanties in plaats van een beperkt aantal

benchmarkinstanties.

De methodologie omvat een iteratief proces waarbij gegevens eerst geobserveerd

worden om vervolgens vragen die uit deze observaties voortkomen te beantwoorden

in vervolgstudies, die op hun beurt weer tot observaties kunnen leiden waarbij

vragen gesteld worden. Het vertrekpunt is dus het uitvoeren van een verkennende

analyse om bloot te leggen hoe de elementen van het algoritme gecorreleerd zijn

met de prestatiewaarde evenals de correlaties van de probleemkenmerken met de

algoritmeparameters en -componenten. Vervolgens zal een verklarende analyse,

waarbij hypotheses geformuleerd en getoetst worden, uitzoeken hoe geobserveerde

correlaties tot stand komen. De verkennende analyse is in eerste instantie volledig

gebaseerd op een multilevel regressieanalyse en vervolgens enkel op de elementen

en probleemkenmerken die het belangrijkst zijn om een goede prestatie van het

algoritme te behalen. Deze focus op de belangrijkste effecten wordt verkregen door

een functional analysis of variance (fANOVA) uit te voeren voordat het multilevel

regressiemodel wordt opgesteld. De rangschikking van effecten die fANOVA als out-

put aanlevert zal leiden tot een meer beknopt regressiemodel met minder variabelen.

De regressieanalyse voorziet een meer gedetailleerde analyse van de effecten die

algoritme-elementen hebben en laat ook toe om verklarende analyses uit te voeren.

De toepassing van de methodologie wordt gëıllustreerd aan de hand van een

gevalstudie waarbij de performantie van een large neighbourhood search algoritme op

het rittenplanningsprobleem met tijdvensters wordt geanalyseerd. Een verkennende

studie geeft aan dat alle destroy en repair operatoren opnemen in het algoritme niet

noodzakelijk tot de beste resultaten leidt. Enkel regret-2 als repair operator gebruiken

wordt gesuggereerd als de gemiddeld beste keuze. De destroy operator die hierbij

het best presteert is random removal. Deze bevindingen worden bevestigd door een

fANOVA die niet gebonden is aan de assumpties waaraan regressiemodellen dienen

te voldoen en dus de analyse meer robust maakt. De verkennende analyse leidde
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ook tot nieuwe vragen, zoals waarom klanten willekeurig verwijderen beter werkt

dan een geografische cluster van klanten te verwijderen indien deze klanten opnieuw

in de oplossing worden ingevoegd, gebruikmakende van een moeilijkheidscriterium

(d.i. de regretwaarde). Verklaringen worden daarom gezocht voor het geobserveerde

prestatieverschil tussen deze twee destroy operatoren in het geval zij gebruikt

worden met een bepaald type repair operator. Uit de verklarende analyse blijkt

dat geografische clusters van klanten verwijderen het aantal invoegingsalternatieven

waaruit gekozen kan worden tijdens de repair-fase reduceert. Verschillende klanten

hebben zelfs geen enkele haalbare (d.i. ‘feasible’) invoegingsoptie in een van de

bestaande routes en worden daarom beschouwd als gëısoleerde gevallen (bij het begin

van de repair-fase). De plaatsing van deze klanten uitstellen blijkt nefast te zijn

voor de oplossingskwaliteit. Daarom wordt getest of een betere oplossing verkregen

kan worden indien deze gëısoleerde klanten een hogere prioriteit krijgen door toe

te laten dat zij ingevoegd worden in een individuele route die vanuit het depot

rechtstreeks naar de betreffende klant rijdt en vervolgens terugkeert naar het depot.

Een dergelijke optie werd voorheen gezien als een laatste alternatief. Doordat deze

individuele routes eerder gecreëerd kunnen worden tijdens het herstelproces worden

ook goede invoegingsalternatieven toegevoegd voor andere verwijderde klanten,

resulterend in een posifief effect op de oplossingskwaliteit. Een regret operator zal

dus een betere inschatting maken van hoe moeilijk de plaatsing van een klant is en

dus een betere prioritering indien iedere individuele klant bestaande routes in de

nabijheid heeft waarin deze ingevoegd kan worden. Door middel van een dergelijke

gedetailleerde analyse van een destroy en repair iteratie werd het merendeel van het

performantieverschil tussen beide destroy scenario’s verklaard.

De verkennende analyse kan niet enkel gebruikt worden als vertrekpunt voor

volgende verklarende analyses die trachten geobserveerde correlaties te verklaren,

maar kan ook dienen om goedpresterende parameterwaarden en componenten te

kiezen, voor zowel een gemiddelde probleeminstantie als voor iedere individuele

instantie. De methodologie wordt hier dus toegepast om het algoritme te tunen

zodanig dat de beste prestatie verkregen wordt. Beslissingsregels worden afgeleid voor

iedere parameter en component en zijn geformuleerd op basis van de (significante)

probleemkenmerken om zo een algoritmeconfiguratie te bekomen, gepersonaliseerd op

iedere probleeminstantie. Het is aangetoond dat er vaak niet een enkele configuratie

bestaat die het best presteert voor iedere individuele probleeminstantie, maar dat de

prestatie van een heuristische methode varieert over de set van instanties die opgelost

dienen te worden. De overtuiging is dat de methodologie die in deze thesis wordt
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voorgesteld die prestatievariatie kan exploiteren.

Eerst wordt een enkele configuratie uit de analyse afgeleid die voorspeld wordt

het best te presteren voor een gemiddelde probleeminstantie, gelijkaardig aan de

configuratie verkregen uit bestaande automatische algoritmeconfiguratoren zoals

irace. Hierbij wordt de invloed van probleemkenmerken op de effecten van parameters

en componenten buiten beschouwing gelaten. Deze configuratie presteert gelijkaardig

aan die verkregen uit irace en beter en beter naargelang het regressiemodel op

meer data getraind wordt. Vervolgens wordt nagegaan hoe de instantiespecifieke

configuraties presteren. Deze blijken geen voordeel te bieden ten opzichte van een

enkele configuratie voor een gemiddelde instantie. Dit is waarschijnlijk te wijten

aan het feit dat de gegenereerde probleeminstanties vrij homogeen zijn en dus geen

mogelijkheid bieden om prestatievariatie te exploiteren.

De kernboodschap van dit doctoraatsproefschrift is dat wetenschappelijk onder-

zoek doen eerder gaat over begrijpen dan over het winnen van een competitie. Een

grondige analyse uitvoeren op experimentele resultaten kan waardevolle kennis op-

leveren die niet beperkt is tot de specifieke experimentele context, maar die nuttig

kan zijn voor elk gerelateerd onderzoek. Wanneer men geconfronteerd wordt met

een rittenplanningsprobleem, kan de beslissing over welke oplossingsstrategieën toe

te passen of hoe ze te optimaliseren beargumenteerd worden op basis van eerder

uitgevoerde analyses. Deze analyses dienen rekenschap te geven aan zowel het algo-

ritme als de probleeminstanties die opgelost worden, zodanig dat hun wisselwerking

onderzocht kan worden. Deze thesis spoort aan om onderzoek uit te voeren dat

niet gebonden is aan de specificiteiten van een experiment, maar dat veralgemeen-

baar is naar een breder geheel van gelijkaardige contexten. Dit proefschrift biedt de

onderzoeksgemeenschap een plan van aanpak om dit uit te voeren en om te leren over

zowel het probleem als de oplossingsmethode.
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