Assessing the public exposure related to the use of NORM in new types of building materials

5th European IRPA Congress, June 4-8 (2018)

Wouter Schroeyers, Tom Croymans, Zoltan Sas, Rosabianca Trevisi, Cristina Nuccetelli, Federica Leonardi, Tibor Kovacs, Sonja Schreurs

UHASSELT

KNOWLEDGE IN ACTION

Outline

Introduction

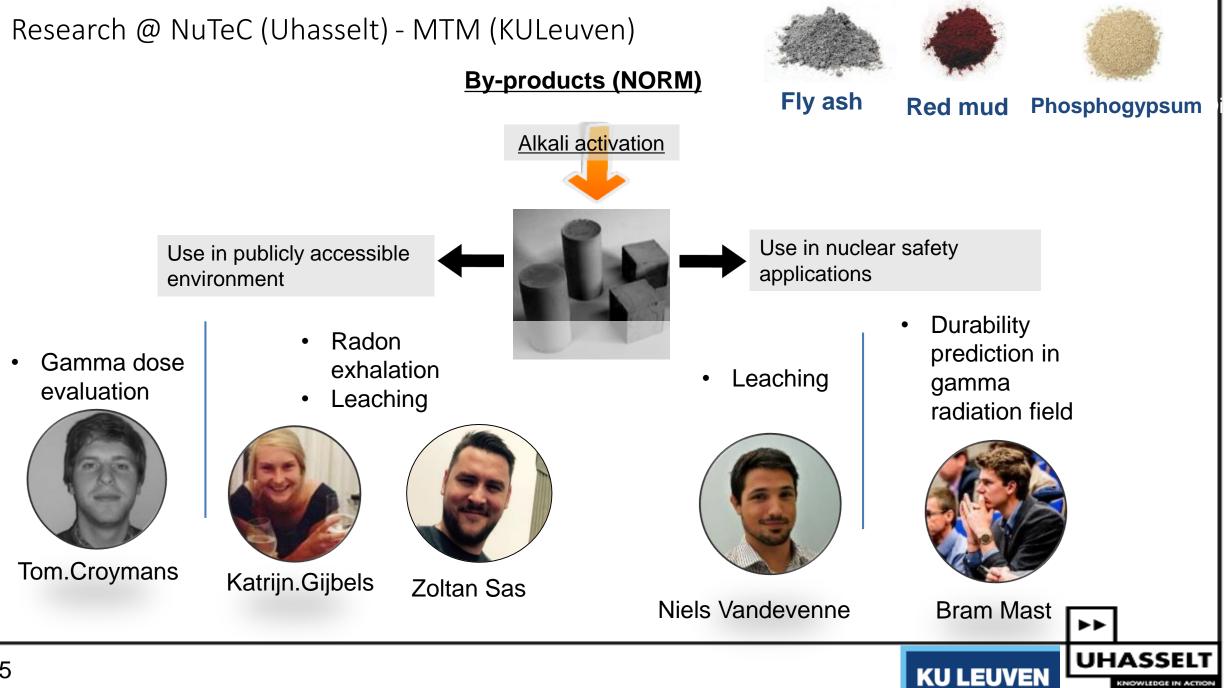
- Methodology:
 - A database to screen the potential impact of NORM
 - Screening tools for gamma dose assessment

Results & discussion

- By-products
- Building materials
- Expanded set of tools for gamma dose assessment
- Conclusion

The NORM4Building Network (2014-2017)

- Exchange of multidisciplinary knowledge and experiences (radiological, technical, economical, legislative, ecological, ...)
- NORM (Naturally Occurring Radioactive Materials)

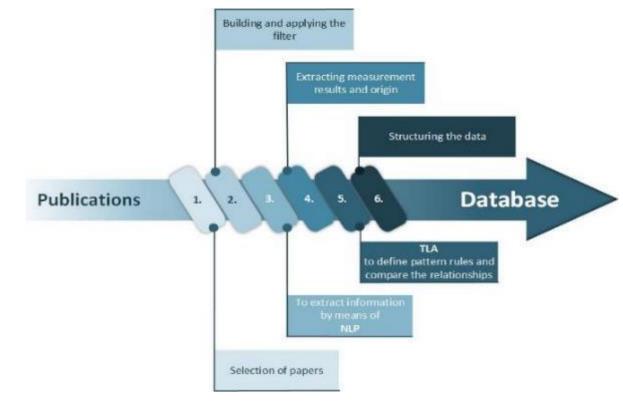

Stimulate the use of by-products in new tailor-made sustainable building materials While assuring (radiation) protection of the population / environment

UHASSEI

European NORM Association

NOWLEDGE IN ACTION

Outline


- Introduction
- Methodology:
 - A database to screen the potential impact of NORM
 - Screening tools for gamma dose assessment
- Results & discussion
 - By-products
 - Building materials
 - Expanded set of tools for gamma dose assessment
- Conclusion

NORM4Building database

7

www.norm4building.org

- Semi-automatic approach for data collection
 - >68.000 publications processed (from Science Direct, Web of Science, etc...)
 - Manual validation of entries (so far 1452 entries validated:

Database team: Tibor Kovacs **Gergo Bator**

Zoltan Sas

Verification team:

Cristina Nuccetelli Rosabianca Trevisi Federica Leonardi

OWLEDGE IN ACTION

Scenario ID	Construction Material	Composition (kg/m ³)							
ID		Cement	By-	Aggregates	Water				
			product						
l	Reference concrete	400		1850	150				
2	High volume fly ash (HVFA)	160	220 (fly ash	1700	140				
	concrete		(FA))						
3	Concrete with FA as partial	320	130 (FA)	1750	150				
	replacement of cement and sand'								
1	Concrete with FA as partial	360	90 (FA)	1800	150				
	replacement of sand								
5	Concrete with slag as partial	80	720 (slag)	1850	150				
	replacement of cement and								
	aggregates'								
5	Concrete with slag as partial	80	320 (slag)	1850	150				
	replacement of cement								
7	Concrete with slag as partial	400	400 (slag)	1450	150				
	replacement of aggregates'								
3	Alkali activated concrete containing		1800 (red	450	150				
	red mud as partial replacement of		mud)						
	cement and aggregates								

NOF

UHASSELT

WLEDGE IN ACTION

Scenarios for evaluation use of by-products: technical properties determine use

I-index calculations

$$I - index = \frac{Ac_{226Ra}}{300 B q/k g} + \frac{Ac_{232Th}}{200 B q/k g} + \frac{Ac_{40K}}{3000 B q/k g}$$

Euratom-BSS, 2013

UHASSE

- First screening to verify if I-index < 1 to assess which materials need further investigation
- Only used for building materials (or for their constituents if the constituents are also building materials)
- Values used in calculations:
 - Cement: I-index 0,38 (*)
 - Soil/aggregates:
 I-index 0,45 (*)

The room model of Markkanen

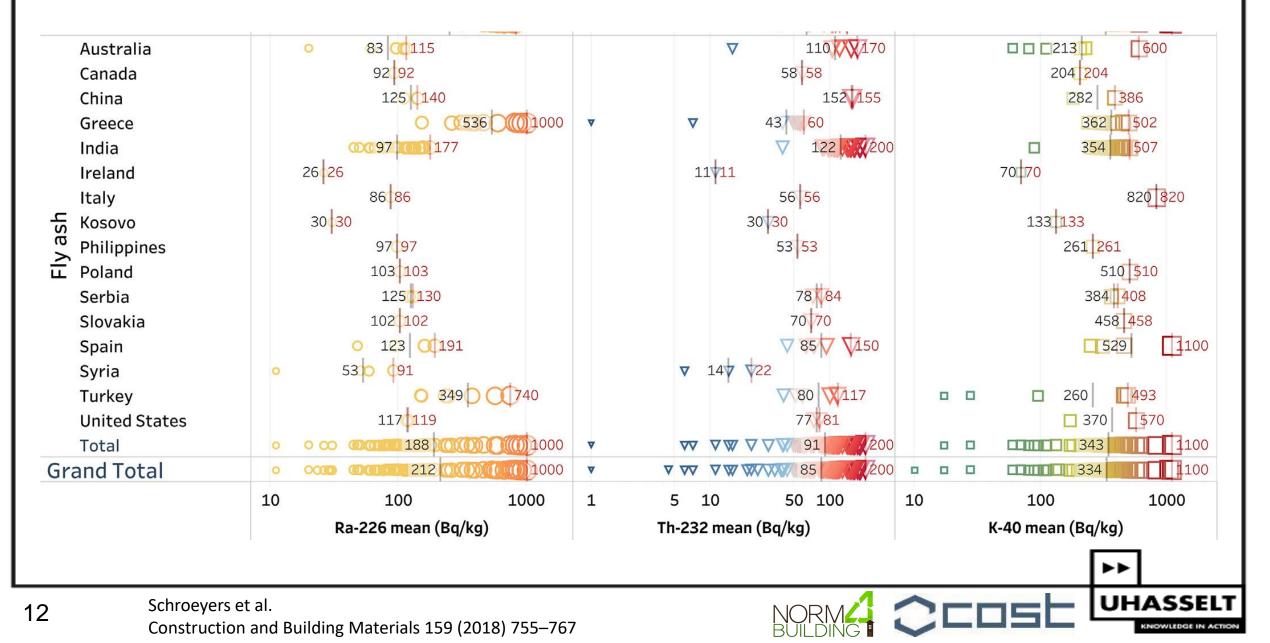
Absorbed dose rate in air:

$$D_A = 5.77 \times 10^{-7} \frac{AC \rho}{4\pi} \sum \gamma_i \left(\frac{\mu_{en}}{\rho}\right)_i E_i \int \boldsymbol{B}_i \frac{\mathrm{e}^{-\mu_i s}}{l^2} \mathrm{dV}$$

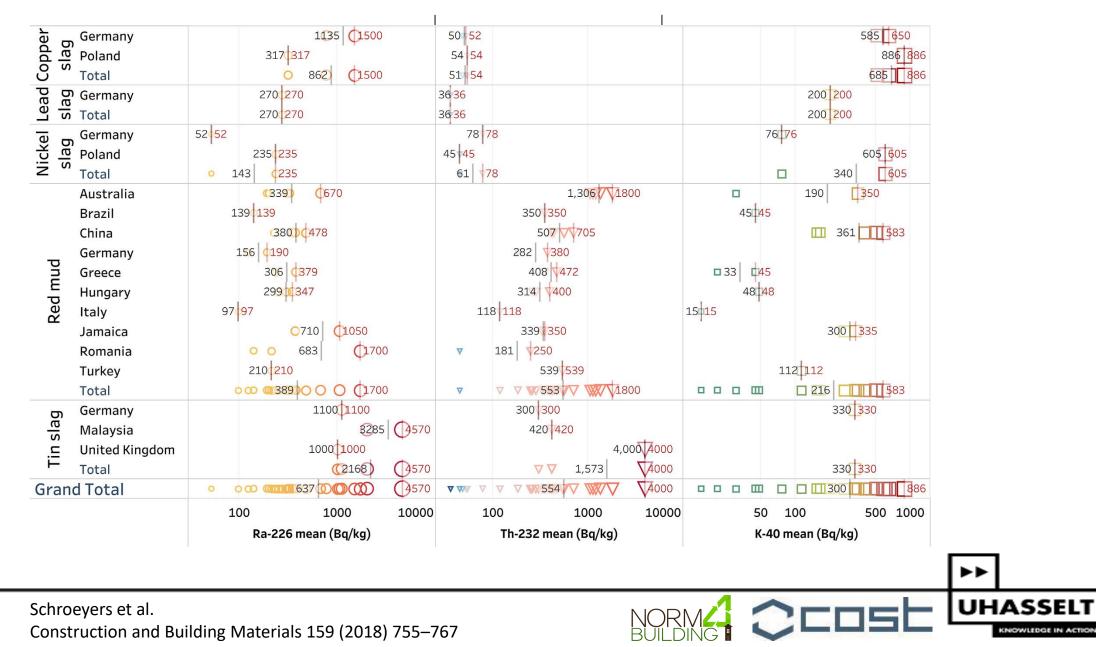
Nuclide	Averaged values used in calculations											
	Energy keV	Ŷ	μ cm ⁻¹	μ√ρ 10 ⁻⁵ cm²g ⁻¹	С	D						
²³⁸ U	810	2.12	0.166	0.0285	1.161	0.144						
²³² Th	587	2.05	0.193	0.0295	1.279	0.190						
²³² Th	2 615	0.356	0.0927	0.0217	0.734	0.0234						
⁴⁰ K	1 461	0.107	0.124	0.0257	0.946	0.0755						
137Cs	662	0.852	0.183	0.0293	1.237	0.1737						

(coefficients C and D are included in the build-up factors)

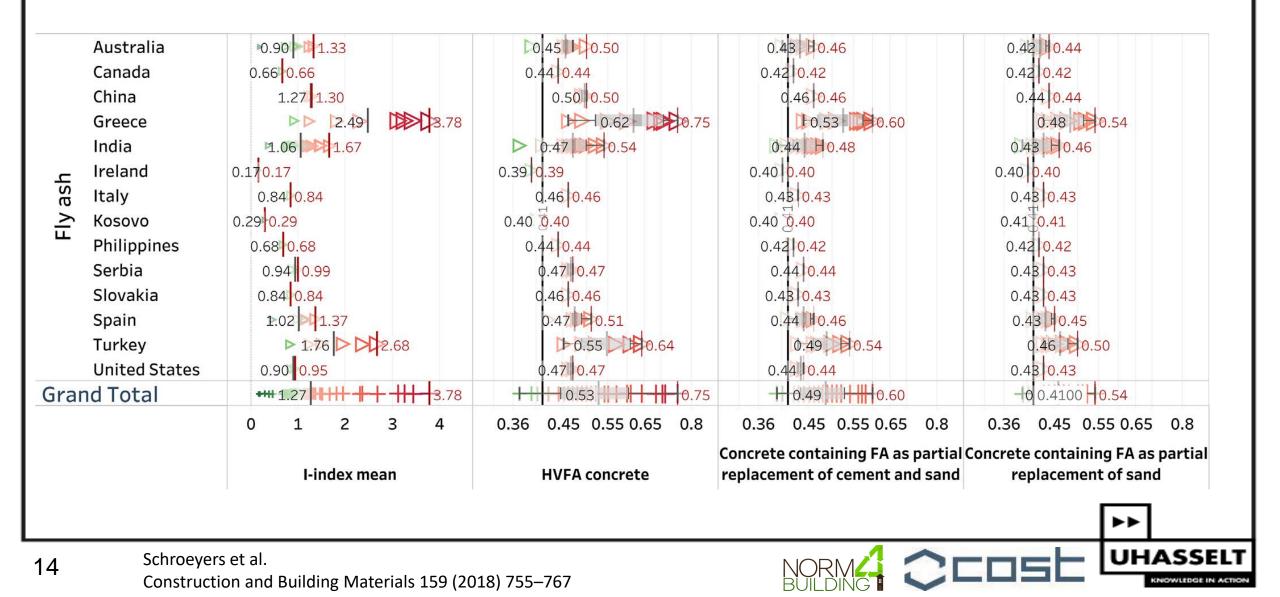
**


Outline

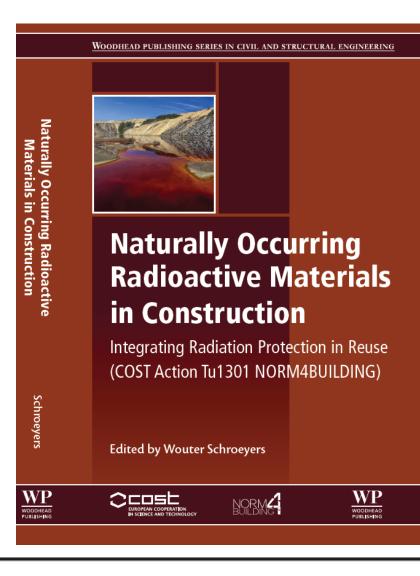
- Introduction
- Methodology:
 - A database to screen the potential impact of NORM
 - Screening tools for gamma dose assessment


Results & discussion

- By-products
- Building materials
- Expanded set of tools for gamma dose assessment
- Conclusion


Fly ash from coal, peat and heavy oil fired power plants

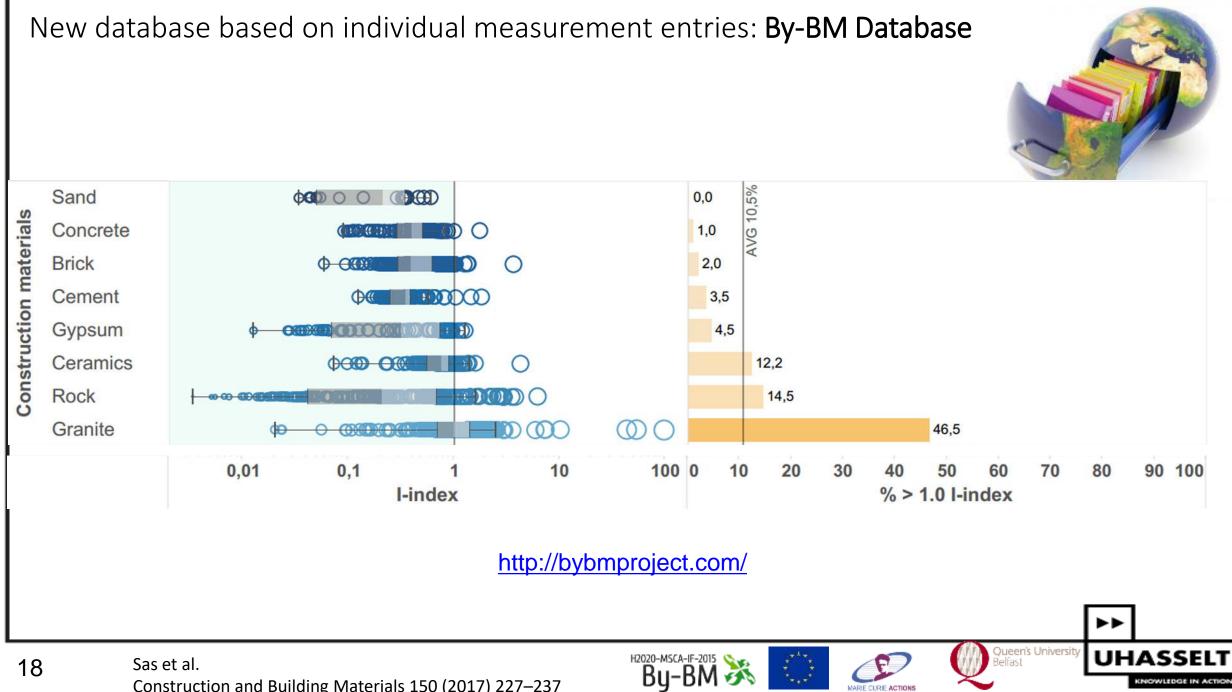
By-products from non-ferrous industry


I-index concrete containing fly ash

I-index concrete containing non-ferrous slag and red mud as replacement aggregates

																••	
		2		4 -index	6 a mean		8			2 crete con ement of gates		red	0.4 Co			1 g slag as aggrega	
Grand Total			+ 3.46	₩ +	-#	+	7.90		+		₩ 14		+		- 0.77	+ +	1.24
Tin slag	Germany				28 5.28												1.21 1.21
	Turkey			3.43	T					2.66 2							
	Jamaica	on protection	▲4	.16	5.36			0.77	10.77	3.21	4.11						
	Hungary Italy	0.920.92	3942.35	2				0.77	0.77	2.03 2.03							
	Greece		3.07 59 2.59	43.63						2.39							
	China				45.17			0.41			₩3.96		0.41				
	Brazil	2.23	2.23			4			1.	76 1.76							
Red mud	Australia					7.32	09.5				5.58	6.01		5.5 10	- 1		
Nickel slag	Germany Poland	0.5959	1										0.43	0.54 0.	54		
Lead slag	Germany	1.15 1.15	5					-						0.53 0.	53		
Copper slag	Germany Poland	1.62	.62	.23	< 5.41										1 0.61	1.04	1.24

"NORM4Building, the book": detailled assessement of impact of use of NORM in construction


- 1. Objectives
- 2. Introduction
- 3. Basic aspects of natural radioactivity
- 4. Legislative aspects
- 5. Measurement of NORM
- 6. From raw materials to NORM by-products
- 7. From NORM by-products to building materials
- 8. Leaching assessment
- 9. Nontechnical aspects
- 10. General conclusion and the way forward

UHASSEL

Discussion: evaluating datamining approach

- Strength:
 - Hundreds of publications can be processed monthly
 - Finds data accurately
 - Allows continuous (automated) search for new data: useful for keeping inventory up to date
 - Can run again on collected data using different key-words
- Limitations:
 - Reliability of the data is strongly dependent of the reliability of the published results:
 - Validation is a labour intensive step
 - Data from graphical images (eg.: histograms) is currently not collected
 - Licence for datamining software is expensive
 - Industrially relevant?
 - There is a need to filter out publications according to date, insert more data from national surveys

UHASSE

Construction and Building Materials 150 (2017) 227–237

Room for further improving the screening of building materials?

 $I - index = \frac{Ac_{226Ra}}{300 B q/k g} + \frac{Ac_{232Th}}{200 B q/k g} + \frac{Ac_{40K}}{3000 B q/k g}$

Including the density and thickness dependence?

	Dose (mSv/y)												
Model	Markkanen - ACI	D(pd)											
Thickness (cm)	20	10	10	18	20	25	40	40					
Density (kg/m³)	2350	1400	3000	3000	2350	1400	1400	3000					
Furnace slags	0.726	0.238	0.549	0.745	0.704	0.606	0.755	0.916					
Bottom ash and fly ash	1.293	0.521	1.017	1.329	1.264	1.108	1.346	1.604					
Phosphogypsum	1.592	0.659	1.237	1.595	1.521	1.342	1.614	1.905					
Bauxite residue	3.825	1.841	3.190	4.043	3.865	3.437	4.087	4.796					
Cement	0.206	-0.019	0.128	0.222	0.202	0.155	0.227	0.304					

 $= \left[\frac{Ac_{Ra226}(\rho d)^{2}}{170[(\rho d)^{2} + 156(\rho d) + 11477]} + \frac{Ac_{Th232}(\rho d)^{2}}{130[(\rho d)^{2} + 173(\rho d) + 11226]} + \frac{Ac_{Th232}(\rho d)^{2}}{130[(\rho d)^{2} + 173(\rho d) + 11226]}\right]$

 $D(\rho d)$

$$+\frac{Ac_{K40}(\rho a)^2}{1870[(\rho d)^2 + 194(\rho d) + 11610]} - 0.245$$

UHASSEI

Yellow: Markkanen – ACI overestimates

Red: Markkanen – ACI underestimates

9 Nuccetelli et al. Journal of Environmental Radioactivity 143 (2015) 70-75 Room for further improving the model?

- The room model of Markkanen
 - Absorbed dose rate in air: $D_A = 5.77 \times 10^{-7} \frac{AC\rho}{4\pi} \sum \gamma_i \left(\frac{\mu_{en}}{\rho}\right)_i E_i \int B_i \frac{e^{-\mu_i s}}{l^2} dV$

Expanded Gamma Dose Assessment: 1845 gamma lines of ²³⁸U, ²³⁵U and ²³²Th decay series and ⁴⁰K

UHASSE

Expanded Gamma Dose Assessment

	Dose D(ρd) (mSv/y)										
Thickness (cm)	10	10	18	20	25	40	40				
Density (kg/m³)	1400	3000	3000	2350	1400	1400	3000				
Furnace slags	0.238	0.549	0.745	0.704	0.606	0.755	0.916				
Bottom ash and fly ash	0.521	1.017	1.329	1.264	1.108	1.346	1.604				
Phosphogypsum	0.659	1.237	1.595	1.521	1.342	1.614	1.905				
Bauxite residue	1.841	3.190	4.043	3.865	3.437	4.087	4.796				
Cement	-0.019	0.128	0.222	0.202	0.155	0.227	0.304				
			Dose	EGDA+ (m	ıSv/y)						
Thickness (cm)	10	10	18	20	25	40	40				
Density (kg/m³)	1400	3000	3000	2350	1400	1400	3000				
Furnace slags	0.239	0.558	0.738	0.698	0.592	0.714	0.813				
Bottom ash and fly ash	0.522	1.031	1.319	1.256	1.085	1.281	1.442				
Phosphogypsum	0.664	1.256	1.580	1.510	1.317	1.536	1.711				
Bauxite residue	1.830	3.199	3.976	3.804	3.343	3.873	4.325				
Cement	-0.019	0.132	0.219	0.200	0.148	0.207	0.257				

Red: D(pd) underestimates

Yellow: D(pd) overestimates

**

UHASSELT

OWLEDGE IN ACTION

Croymans et al.

Construction and Building Materials 159 (2018) 768–778

Outline

- Introduction
- Methodology:
 - A database to screen the potential impact of NORM
 - Screening tools for gamma dose assessment
- Results & discussion
 - By-products
 - Building materials
 - Expanded set of tools for gamma dose assessment
- Conclusion

Conclusion - outlook

- Expanded **database** for screening, identifying materials of concern from a radiological perspective
- More realistic scenarios were used for assessing the impact
- An expanded sets of tools for evaluation of the (absorbed) gamma dose was developed
 - → taking adequate measures
- Outlook:
 - Combining several databases
 - Including the individual measurement entries (entries should contain adequate information on the measurement technique used, type of sample analysed,...)
 - Including the date of measurement/study as a relevant parameter
 - Including the different tools for gamma dose assessment in the online database

https://ena-norm.eu/

The 1st ENA Workshop Katowice, Upper Silesia, POLAND 19-23 November 2018

Main topics:

- 1. NORM and environment challenges due to the release of formation/process water
- 2. NORM in building materials practical approaches to control radioactivity
- 3. NORM in the industry look beyond oil and gas, phosphorite and red mud.

Silesian Centre for Environmental Radioactivity,

Central Mining Institute (GIG), Plac Gwarków 1, Katowice, Poland

Training school on 'NORM Inventories' Environet NORM Project

International case studies and technical visits

The making of an **inventory of NORM in specific industrial sectors**:

• Phosphate industry, rare earth and metal processing, oil and gas industry...

Timing: **26-30 November 2018** Location: **Hasselt University, Belgium** Contact: wouter.schroeyers@uhasselt.be

