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Under standing appr oaches to complexity and uncertainty in closed-loop supply chain
management: Past findings and futuredirections

11,766 words

Abstract

This article aims to uncover knowledge gaps regardipproaches to dynamic complexity
and deep uncertainty in a transition towards cldeed supply chain (CLSC) management,
and it articulates future research challenges addrg the identified gaps. Based on an
abductive approach, two concepts are investigategp uncertainty’ from the perspective of
the decision-support literature and ‘dynamic comipyé from the perspective of the complex

adaptive systems literature and the transition mament literature. The result is a systematic
literature review of 64 CLSC management articleblished in English. Conceptual gaps,
process gaps and methodological gaps were foumdlation to CLSC management under
deep uncertainty and dynamic complexity. The amaly®sults in concrete research
challenges for the CLSC management and sustairsaiglply chain management domains.
The added value of this article is that the corsept deep uncertainty and dynamic
complexity for CLSC management are explored systieaily for the first time. These two

concepts appear to be crucial for the analysisamisitions to CLSC management.

Keywords closed-loop supply chain management; dynamic coxitgledeep uncertainty;

systematic literature review
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1. Introduction

In the recent past, researchers’, actors’ and Btd#lers’ interests in transitioning towards
closed-loop supply chain (CLSC) management haveased (De Brito et al., 2005, Fortes,
2009, Govindan et al., 2017, Guide et al., 2003aiana et al., 2014, Stindt et al., 2016),
confirming the added value of such a transitiomiltiple economic, ecological and societal
dimensions. A CLSC integrates a forward supply cheéth a reverse supply chain, which is
especially urgent for recoverable products thatlmameprocessed and can re-enter a forward
supply chain, with the aim of multiple value creati(Alvarez-Gil et al., 2007, Stindt et al.,

2016). In Figure 1, this approach is visualized.

Figure 1 General framework of a closed-loop supply chaidagted from Sahyouni et al. (2007).
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Such an integration requires a range of decisioadenby relevant actors on issues
such as when, where, and which (combinations oBiness activities must be further

developed, implemented and monitored to closedbp.lAccording to Thissen et al. (2013),



actors are individuals who represent a single aegdion or groups of individuals capable of

making decisions and acting in a more or less c¢oateld way to directly influence the

system, e.g., in the apparel industry: clothingdpiciion companies and cotton producers. In

the CLSC management literature, various decisianaios have been identified that support

multidimensional value creation in (parts of) a @ $otably product design, the product-as-

a-service concept, operations management, produetio recovery procedures, marketing,

integrated supply chain partnerships, and inforomatechnology (see Table 1) (Schenkel et

al., 2015).

Table 1 Domains relevant for closed-loop supply chain managnt. Based on Schenkel et al. (2015).

CL SC decision Related CLSC Possible (uncertain) CL SC business decisions and
domains business functions options/activities.
Product design Research and Modularity of the design (number of componentsgetgp

development

connections); degree of customization; types ofnigs, amounts of
materials; combinations of materials; quality oftemals; eco-
friendliness of materials

Product-as-a-service Marketing
concept

Number and type of service activitiekétdack, maintenance,
advice on efficient use); types of result-orieraggeement (pay per
service unit, pay for result)

Finance and legal

Type of contractual agreemeasifig, renting, sharing, pooling)

Operations management  Procurement

Nature (cemttaliz. decentralized) and number of facilities to
purchase goods and retrieve end-of-use or endeofitiods (multi-
echelon issues); management of material requirenfgoality,
quantity, timing)

Logistics Type of forward and reverse supply chieansportation (plain, boat,
truck, train); type and nature of storage and trgomeent of
(re)produced and returned goods (multi-echeloressu
Production and Quality management Nature of testing and gradingnaf-of-use or end-of-life goods and

recovery procedures

produced or recovered goods (e.g., location, labdansity)

(Combination) of
production and
recovery

Recovery of returned goods in terms of recyclingyse,
remanufacturing, refurbishment, repair; productechniques for
combined (environmentally friendly) raw materials

Marketing Marketing and sales

Nature of marketihgecovered and raw materials, components
and/or goods (market segment, price, place)

Integrated supply chain Strategy
partnership

Nature of supply chain partnership, @t ventures, mergers,
acquisitions, vertical integration, horizontal igitetion, diagonal
integration, alliances

Information technology  Information
management

Type of information technology for signalling anidghosing
changes in the product and process architectuge (adio frequency
identification)




Recent studies have argued that transitioning tsvar CLSC is hindered by the
effects of dynamic complexity and deep uncertaihipder et al., 2017, Velte et al., 2016).
Several literature reviews of closed-loop/sustdmabupply chain management have
suggested a need to more systematically study tamagr and complexity and to better
understand the effects of these concepts on closgdsustainable supply chain management
(Akcal et al., 2009, Alexander et al., 2014, Gahan et al., 2015). For a better understanding
of the effects of uncertainty and complexity inatedn to CLSC management, it is important
to understand the different sources of complexity e sources and types of uncertainty and
the way they are dealt with. However, several receviews have suggested that so far very
little explicit attention has been paid to the vas sources of complexity and the sources and
types of uncertainty (Govindan et al., 2015), speadly regarding ‘deep uncertainty’ and the
concept of ‘dynamic complexity’.

According to the complex adaptive systems and ifiansmanagement literatures,
dynamic complexity results from the existence of multidimensional lmw@ar interactions
between the business activities inside a system, (a. CLSC) and between the business
activities of a system and its environment. Theettye 'multidimensional’ refers to variance
in the following dimensions: time horizons (shartiong term); geographical scales (local to
global); and organizational levels (individual acto multi-tier system). Multidimensional
nonlinear interactions cause the emergence of dignamreven chaotic or random patterns in
a system’s autonomous adaptive economic, ecologiedl societal behaviours (hereinafter
‘emergent patterns’). For instance, an increas@e4use and recycling in European countries
can over time, lead to a decrease in employmemnote cotton producing countries, such as
India (Van der Heijden et al., 2017). Furthermoreiltidimensional nonlinear relationships
between business activities also influence the ggoof anticipative and adaptive steering

towards structural system change (Grin et al., 20b0this study, anticipative steering refers



to the continuous development and adjustment ofsiples CLSC options for future
implementation in the supply chain system. Henca#jcipative steering is focused on
maintaining a range of options to foster resilieincéhe face of an inherently uncertain future
(Grin et al., 2010). In the context of a CLSC, therd ‘option’ may refer to new CLSC
activities derived from the various decision domsasuch as design-for-remanufacturing,
leasing or environmentally friendly material use,veell as to adjustments to existing CLSC
activities. Adjustments might involve, for exampledging or seizing activities with respect
to existing CLSC business activities. Hedging atiéis, such as installing a safety stock to
manage uncertain supply and demand of recoveredrialat spread or reduce the risk of
uncertain adverse effects of a business activigizi®g activities are undertaken to seize
available opportunities, such as an increase invexy capacity because of legislation that
stimulates recycling (Kwakkel et al., 2010). Adaptisteering refers to actors selecting their
preferred (CLSC) options in the form of transitisathways (Grin et al., 2010). These CLSC
options are implemented and adjusted, based orvanation of ecological, economic and
societal effects on different time horizons, gepbrieal scales and/or organizational levels.

In the decision-support literaturdeep uncertainty is defined as the condition wherein
actors do not know or, regarding a decision, caagote upon the future of a system (e.g., a
CLSC system in clothing), the criteria for the gysts success over time (Hallegatte et al.,
2012), or geographical scales and/or organizatitanals. In other words, deep uncertainty
cannot be reduced, yet can only be dealt with (\@fadit al., 2010). Alternatively, one might
argue that CLSC uncertainty could possibly partéy neduced by providing actors with
information via IT solutions such as radiofrequemndgntification (RFID). By providing a
product with an RFIDag, information can be obtained about the stajuantity, timing and
location of product returns. Based on the infororatbbtained, decisions can be made that

indeed contribute to a decrease in reverse logistists (Jayaraman et al., 2008). However,



more information retrieved from IT solutions is gaarantee for eliminating deep uncertainty
due to, for example, persistent disagreement an@itf§C actors regarding the information
obtained about the quantity, timing and quality ppbduct returns, as well as the CLSC
options based on this information. Moreover, onghnialso argue that closing the loop
generates uncertainties that are not very easydmcome with IT solutions and big data. For
instance, CLSC actors might be able to enumeratepleupossibilities to create employment
and minimize CQ emissions via product recovery, such as direaises-recycling or re-
manufacturing, without being able or willing to kaorder these possibilities in terms of their
effectiveness over time, geographical scales carorgtional levels.

In this article, a systematic literature reviewcsnducted to explore the available
approaches for understanding (dynamic) complexitgg édeep) uncertainty in relation to
CLSC management. The aims of this study are twofdlte first aim is to identify the
specific gaps in this knowledge by exploring thesveers in the literature to the following
guestion: What are the knowledge gaps with redpettte approaches to dynamic complexity
and deep uncertainty in a transition towards CLS&hagement? The second aim is to
indicate possibilities to close the identified kredge gaps by formulating future research
challenges. Because complexity and uncertaintyi8@management are addressed in many
disciplines, this article explores the cross-disegyy literature on closed-loop supply chain
management, green supply chain management, sustisapply chain management, and
reverse supply chain management. Important to menmsi the focus on studies in which the
forward and reverse supply chains are explicittggnated via one or multiple CLSC decision
domains. The managerial contribution of this stliey in providing practitioners with an in-
depth understanding of the different sources amegyof uncertainty and the sources of
complexity that hamper CLSC management, especi@barding deep uncertainty and

dynamic complexity. A thorough understanding of whao address) uncertainty and



complexity is assumed to improve decision making @GlySC actors when transitioning
towards a CLSC. Being better informed might infloendecisions regarding, e.g., goal
setting, the focus and means of a robust changeegyr, and/or the partners with whom to
collaborate in the transition process.

This article is structured as follows. Section 8gants a dynamic complexity and deep
uncertainty typology, with the aim of defining thateria used to assess the selected papers.
This section also elaborates on some earlier rep@pers related to CLSC management and
(dynamic) complexity and (deep) uncertainty. Secti®d then explains the methodology
applied in the systematic literature review. Dgstore and methodological research results
are described in Sections 4 and 5, respectivelg.rébults of the analysis of current gaps and
research challenges to close these gaps are mdsamdl discussed in Section 6. Section 7

presents the conclusions and limitations of thislgt

2. Theoretical framework

Recent studies have argued in favour of the relsvanh studying the effects of the concepts
of ‘dynamic complexity’ and ‘deep uncertainty’ ialation to CLSC management. Therefore,
an in-depth definition of these concepts shouldpb®vided. Before elaborating on these
concepts, it is important to mention that deep uaggy and dynamic complexity are not
purely CLSC-related challenges; traditional supgiyins also address them. However, the
structure and parameters of a CLSC might be —aat e the beginning — unknown by the
actors involved. There might also not be any hisabror present information or knowledge
about a specific CLSC structure and its paramekenghermore, because forward and reverse
supply chain activities are systematically linkédae number of multidimensional nonlinear
interactions might increase, e.g., because of gestral challenges, causing a CLSC to be

more dynamically complex than a traditional forwargply chain or a reverse supply chain.



Finally, it might be the case that there are moceora with different and sometimes
conflicting goals and interests in a CLSC than itraalitional supply chain, which makes
decision making on how to ‘close the loop’ challegg Based on the operational definitions
of ‘dynamic complexity’ and ‘deep uncertainty’, teniia are selected, based upon which the

literature review was performed.

2.1 Dynamic complexity in CLSCs and CLSC management
The components ‘nonlinearity’, ‘anticipative stegyi and ‘adaptive steering’ have been
briefly mentioned in the introduction becaukey arekey to understanding complex systems
on the one hand, and to managing dynamic compl@xigytransition process towards CLSC
management on the other hand.

Nonlinearity in a supply chain refers to the fact that changethe input of a chain
may not be proportionally related to changes imitgput (Surana et al., 2005). For instance, a
reduction in resource availability might have &ttbr no direct effect on the economic or
ecological performance of certain business actisiin a supply chain. However, it could
have significant effects in the long run within arficular geographical scale of a supply
chain, increasing the need to become less depengdentthese resources e.g. by transitioning
towards a CLSC. To understand multidimensional ineakity in a CLSC, it is therefore
important to study the CLSC'’s ‘feedback mechanisifisese mechanisms are either negative
feedback (balancing) or positive feedback (reinfagt loops. A negative feedback loop
exhibits goal-seeking behaviour. Hence, after angban the input, business activities tend to
return to a state of equilibrium. In a positivedback loop, an initial change in the input leads
to further change, suggesting the presence of dildaium (Vlachos et al., 2007), possibly
causing a relatively short period of chaos, bifticca and instability. For instance, the

introduction of a C@tax might in the short term lead to higher eneagg product prices, yet



in the medium term it might stimulate transitionsmore sustainable production and circular
chains. The understanding of multidimensional nmeedr interactions is also important to
fully grasp complex system behaviour in terms ofesgent patterns. Identifying these
patterns is important because they are often linkegleak signals indicating change, as well
as surprises and counter-intuitive information (Get al., 2010). By understanding
multidimensional nonlinear interactions and detegtemergent patterns, decision making
about goal setting and CLSC options could changjeegn Feedback mechanisms in a CLSC
can be introduced or strengthened by adjustingp#nameters and variables of existing CLSC
options. The aim of these feedback systems isdoceethe gap between actual performance
and desired performance/goals of (parts of) the @LISeedback mechanisms can also be
used as a basis for redesigning a supply chain inedge, by adding new CLSC options. The
underlying rationale is that better insight inte thonlinear dynamics of a complex supply
chain leads to a better understanding of possdslito influence a system’s transformation
into a CLSC.

In the process ofanticipative steering, actors continuously develop and adjust
potential CLSC options under deep uncertainty arnghachic complexity for future
implementation. The aim of anticipative steeringpoisncrease the responsiveness of a system
to future changes (Grin et al., 2010). The develpnand adjustment of potential CLSC
options are based on actors’ changing perceptibras @LSC, goals/objectives, ideas about
CLSC options, and their potential impacts on anémsefor operation in the CLSC under
study. Adaptive steering refers to the selection, implementation and evalonadf transition
pathways (Grin et al., 2010, Haasnoot et al., 20A3ingle pathway consists of a sequence
of (CLSC) options, which the involved actors prdf@implement over time (Haasnoot et al.,
2013), as well as geographical scales and orgamnedtlevels. A transition pathway also

consists of adaptation tipping points, which intkcevhen certain (CLSC) options along this



pathway are no longer economically, ecologicallyd/ar societally beneficial (Haasnoot et
al., 2013). Adaptation tipping points consist @rgosts and trigger values. Signposts refer to
the "variables [related to a CLSC option] that needbe tracked"”, while triggers are the
"values of those variables that would trigger aticgrated response” (Hermans et al., 2014,
p. 375). Decisions regarding transition pathwayes lzased on the actors’ insights resulting
from underlying analyses of the multidimensionahlneear dynamics of the specific supply
chain and the sets of potential (future) CLSC opiper decision domain.

The rationales underlying the concepts of ‘adaptsteering’ and ‘anticipative
steering’ are: (i) the more easily actors can gasight into the possibilities to influence a
supply chain towards a CLSC under dynamic comptexite more capable they are to
formulate multidimensional goals and select a bletaget of adaptive transition pathways to
steer towards a CLSC; and (ii) the more capableraare to apply anticipated and adaptive

steering in response to changes, the more matug@hanagement becomes.

2.2 Deep uncertainty in CLSCs

Above has been described what the main charaatsrisf decision making in business
management could be in the context of a transitmmards CLSC management under
dynamic complexity. However, to implement theserabteristics in practice is a serious
challenge. A CLSC often consists of many differstakeholders and actors (Guide et al.,
2009) with different, and sometimes persistentiyflicting, goals and interests regarding
CLSC business activities and CLSC performance.aidbers might also not, or not be able to,
know or agree how certain environmental challereges CLSC options affect parts of their
supply chains over time, as well as geographicalescand organizational levels. This
concept is also referred to as deep uncertaintgcéledeep uncertainty is a situation in which

CLSC actors and analysts are able to enumerateietywaf possibilities, without being able
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or willing to rank these possibilities in termstbéir perceived likelihood. Based on Walker et

al. (2003, pp. 5-7), the followingpurces of deep uncertainty can be identified.

The context: Context refers to the (CLSC) actorghorance and/or persistent
disagreement about grand economic, ecologicaltfiqalli societal, and technological
challenges inside and outside a system and how, whe where these grand challenges
affect the (nonlinear) dynamics of (parts of) thistem.

The structure and system behaviour: (CLSC) actageorance and/or persistent
disagreement regarding the structure and behawbuhe system’s (qualitative and
guantitative) causal models. Uncertainty about shstem’s behaviour involves the
emergent patterns of the system and (multidimeasinanlinear) interactions between
(CLSC) activities. Uncertainty about the structofea system implies that alternative
(qualitative and quantitative) model specificatiomsight each offer plausible
representations of the system.

The parameters: Parametric uncertainty is assaocwtth (CLSC) actors’ ignorance
and/or persistent disagreement regarding the s$pastooin of (future) system model
parameters and the methods used to calibrate treampters of the current system
model and the future system model. Parameterscargtants in the model, supposedly
invariant within the chosen context and developnssanarios. However, when these
parameters are essentially unknown from previousstigations or actors’ experiences,
or they cannot be transferred from previous ingasitbns or experiences to a new
context due to the lack of similarity of circumstan, they must be calibrated on data
collected for the specific case.

Uncertainty about the system model outcome: Thisedainty refers to the (CLSC)
actors’ ignorance and/or persistent disagreemeatrding the accumulated uncertainty

associated with: (i) the current system model cuesy and (ii) desirable future system
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models’ outcomes. This source of deep uncertaggigo referred to as the “prediction
error”, i.e., the discrepancy between the “realidifovalue of an outcome and the
model’s predicted value.

" Finally, the uncertainty related to the (CLSC) astognorance and/or persistent
disagreement regarding the relative importancesyflséem model’s outcomes.

One might argue that the definition and sourcedeasp uncertainty are mainly derived
from quantitative modelling and analysis. Howevsince deep uncertainty also implies
actors’ persistent disagreement, one might alsaeatbat qualitative methods are at least
equally important for grasping and analysing deegettainty, particularly those methods that
explicitly focus on the different perceptions, megts and weights related to various CLSC

options and outcomes.

3. Resear ch methodology

To support the review process, the research queftionulated in Section 1 is subdivided

into the following three review sub-questions.

= Which sources and types of uncertainty have beewliest in relation to CLSC
management?

= Which sources of (dynamic) complexity have beendistli in relation to CLSC
management?

=  Which approaches and methods have been appliegpfmog CLSC management under
(dynamic) complexity and (deep) uncertainty?

To locate studies relevant to the research questammextensive set of keywords (i.e., search

strings; see Table 2) was used to search the folfpdatabases (Tranfield et al., 2003) (i.e.,

meta-analysis): Web of Science, Business Sourceplede) Science Direct, IEEE, Wiley

Online Library, and Emerald Group. These databagge selected for their vast coverage of
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articles in the field of CLSC management under leencertainty and/or (dynamic)
complexity. To collect the broadest array of reld@vatudies, various keywords directly
related to the main research question were inclu@ledse keywords include terms related to
‘closed-loop supply chain management’, ‘green sypgtain management’, ‘sustainable
supply chain management’, and ‘reverse supply cha@magement’. Furthermore, CLSC
(management) papers were selected with an exfdicits on uncertainty and/or complexity.
Hence, the search and selection phases were nib¢dino deep uncertainty and dynamic
complexity. The meta-analysis yielded 763,222 Hitseen, the search was narrowed down by
focusing only on papers in English and by searcfanghe keywords as topics of the papers.
As a result, 320 papers were selected. These 3¥rpavere further studied based on titles
and abstracts, with the aim of selecting CLSC-fedupapers explicitly addressing (deep)
uncertainty and or (dynamic) complexity. The rasglt(128) papers were collected in a
database. Finally, the selected articles were atatufor duplications and an explicit focus on
the integration of the reverse supply chain with forward supply chain. As a result, 27
duplications were detected, and 37 papers appdarémtus merely on the forward supply
chain without considering the reverse supply ch@ime selection ultimately resulted in 64

papers, constituting a basis for the more in-depidyses in Sections 4 and 5.

Table 2 Search strings and resulting numbers of hits

Search stringgkeywords Total number of  No. of
sear ch strings hits
performed

Direct (deep) uncertainty AND closed loop supplgpichdevelopment 8 49,398

(operation/implementation) (monitoring) (management

(dynamic) complexity AND closed loop supply chain 8 108,805

development (operation/implementation) (monitoring)

(management)

Indirect (deep) uncertainty AND sustainable supigiin development 24 218,149

(operation/implementation) (monitoring) (managenyefuteep)
uncertainty AND green supply chain development
(operation/implementation) (monitoring) (managenyefuteep)
uncertainty AND reverse supply chain development

13



(operation/implementation) (monitoring) (management

(dynamic) complexity AND sustainable supply chain 24 386,870
development (operation/implementation) (monitoring)

(management); (dynamic) complexity AND green supgbigin

development (operation/implementation) (monitoring)

(management); (dynamic) complexity AND reverse syipp

chain development (operation/implementation) (rmarimg)

(management).

Total 64 763,222

4. Descriptivefindings

In the descriptive analysis, papers were furthelegm@ized/coded and studied for the
following criteria: (i) year; (ii) type of industry(iii) product categories, i.e., single
product/component/material vs. multiple product/poment/material; (iv) CLSC

management activities, i.e., CLSC development, Cldp€ration and/or CLSC monitoring;
(v) types of CLSC decision domain; (vi) sources &mbks of uncertainty; and, (vii) sources

of (dynamic) complexity included.

4.1 Year of publication

Approximately 86 percent of the 64 selected papene published between 2012 and 2017,
59 percent of which focused on CLSC management.réhmining 41 percent focused on
reverse supply chain management, green supply aghamagement or sustainable supply
chain management. These numbers suggest that Hearch in the field of CLSC
management under (dynamic) complexity and/or (deswertainty represents a relatively

new and increasingly popular research domain.

4.2 Type of industry
The papers focused on many different industriesh sas electronics (Lehr et al., 2013),
energy (Stindt et al., 2016), apparel (Marti ef a015), automotive (Jindal et al., 2015),

carpets (Biehl et al., 2007), and photocopiersddiatt al., 2016). Hence, one could argue that
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CLSC management under (dynamic) complexity and pdescertainty is a relevant

(research) phenomenon for a broad range of in@gstri

4.3 Product categories

Approximately 40 percent of the examined paperdistblCLSC management, either from a
single-product perspective or from a single-matgréaspective. The other 60 percent focused
either on multiple materials, multiple componemtsmultiple products or on a single product
and related component(s) and/or material(s) simatiasly. The number of product
categories involved in research is an indicatdhefcomplexity of the structure and nonlinear
dynamics of a CLSC model and thus of the extenviiach the particular study intends to

represent complex real-world situations.

4.4 CLSC management activities

Approximately 84 percent of the 64 selected papecsised on the management activity
‘CLSC development’, particularly the modelling apthnning of (a combination of) CLSC
options. Only four paper (six percent) concentraitedhe monitoring of (a combination of)
(implemented) CLSC options. The remaining 10 peraamcentrated on the simultaneous
development, operation and/or monitoring of (a coration of) CLSC options (Golroudbary
et al., 2015, Nazam et al., 2015). These findinggest that research into the actual operation
and monitoring of CLSC options under (dynamic) ctaripy and/or (deep) uncertainty has

so far received limited attention in the literature

4.5 Types of CLSC decision domains
The majority of the papers focused on ‘logisticsl @rocurement’ (45 papers), such as

location allocation, capacity, inventory, routing & CLSC system, and ‘production and
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recovery’ (40 papers), including recovery optioms! &orting activities (see Figure 2). The
CLSC decision domains areas were primarily adddeasea design/planning problem. Few
studies focused on the domains of ‘product designdduct as a service’, ‘integrated supply
chain partnership’, and ‘information technologyurthermore, 34 papers discussed multiple
domains simultaneously (e.g., Chen et al., 2015, ddal., 2015, Lehr et al., 2013). For
instance, Chen et al. (2015) focused on develogimtjoptimizing (i) the number and location
of distribution centres and return centres; (iie tmanufacturing and remanufacturing
guantities of goods; and (iii) the flow of new amdovered goods through the CLSC. The aim
was to determine the best economic solution forralividual stakeholder (OEM) to be

involved in a CLSC under stochastic uncertainty.

Figure 2 CLSC decision domains to which the papers are widec

64
56
48
40
32
24
16

4.6 Sources and types of uncertainty
The analysis revealed that the papers showed semattention to different sources of

uncertainty, such as ‘parameter uncertainty’ (49eps), ‘context uncertainty’ (eight papers),
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‘CLSC model structure uncertainty’ (four paper9)ddCLSC model outcome uncertainty’
(18 papers).

Parameter uncertainty. The majority of the papers focused on: (i) uraarguality,
guantity and timing of end-of-life or end-of-useogs; (ii) uncertain demand of (recovered)
goods; or (iii) uncertain system costs in the desagd planning of a CLSC. Parameter
uncertainty was primarily addressed as stochasta:,(Chen et al., 2015, Marti et al., 2015)
or fuzzy (Nazam et al., 2015, Zhalechian et al18)0‘Fuzzy’ refers to the vagueness and
impreciseness of qualitative and quantitative kmeolge or data (Reznik et al., 2013).

Context uncertainty. The examined papers concentrated on various a@wvents
inside and outside a CLSC, affecting CLSC managéntemvolved developments such as
customer/market demand and customer/market behai@hen et al., 2015, Huang et al.,
2009, Ruimin et al., 2016), legislation (Lehr et @013, Vlachos et al., 2007), and changing
weather conditions (Besiou et al., 2016, Shamsuadab15). Context uncertainty is treated
stochastically (e.g., Chen et al., 2015, Ruimialgt2016).

CLSC model structure uncertainty. The focus of the examined papers was on
uncertainty regarding the specification and operabf the “best fitting™ CLSC structure
(i.e., the combination of CLSC options) and wasrasgsed as either fuzzy (Rostamzadeh et
al., 2015) or stochastic (Dhib et al., 2013).

CLSC outcome uncertainty. Three sub-sources of uncertainty in relation 165C
outcomes were identified. The first source involuasertainty regarding the effects of adding
or connecting the multiple CLSC options of a singtemultiple decision areas to the CLSC
model outcome. Thus, the focus is on (nonlineaayldroffs between CLSC options, for
instance, the design of a hybrid manufacturing-reumfecturing system to maximize the
overall profit of this system under uncertain dethéor remanufactured products and return

of products for remanufacturing (Shi et al., 2000)e second sub-source concerns the effects
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of multiple, sometimes conflicting objectives redjag the appraisal of CLSC model
outcomes, hence a focus on trade-offs between tolgec Finally, the third sub-source
regards the ranking and classification of multiplgeria based on the CLSC outcomes to be
assessed. System outcome uncertainty is generadlietl in a stochastic manner (He, 2017,
Marti et al., 2015, Shi et al., 2010) or a fuzzywiee et al., 2015, Zhalechian et al., 2016).
On the basis of this analysis, it can be statetittigavarious sources of uncertainty are
primarily addressed as stochastic (33 papers) tuzzy (16 papers) problems. In 17 papers,
the notion of uncertainty was mentioned but nothfeir specified. Furthermore, both context
uncertainty and CLSC model structure uncertainteireed limited attention, compared to

parameter uncertainty and CLSC model outcome uaiogyt

4.7 Sources of (dynamic) complexity

Various papers addressed CLSC management undenyncomplexity by considering: (i)
the multidimensionality of the system dynamics anahnanagement task (57 papers); (ii) the
nonlinearity of the CLSC to be managed (19 papearsjjor (iii) a form of anticipative and/or
adaptive steering (32 papers).

Multidimensionality. A large majority of the studies simultaneouslgluded multiple
temporal, geographical, organizational dimensicasi/or multiple objectives (economic,
ecological and societal) in a CLSC model. Neveabg| 48 percent of the 57 papers did not
consider multiple levels within a single dimensidor, instance, by studying the nonlinear
interactions between CLSC activities at both loaatl global levels. Additionally, very
limited attention was paid to the effects of noaén interactions between CLSC activities
across multiple dimensions. An example would bel\shg the plausible economic, societal
and ecological effects of the recycling of clothimg the short- and long-term production of

new clothing for the local and national marketsomng in on individual dimensions, the
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majority of the papers that included the temponadeshsion did not explicitly specify the time
horizon in which a (complex) CLSC model under uteiaety is designed and tested.
Additionally, CLSCs are primarily modelled with diete time steps. Very limited attention
was paid to the concept of continuous time or us®d the continuous and discrete concepts
of time. In contrast, Zeigler et al. (2000) argubkdt addressing the time horizon explicitly
and making both concepts of time clear to the aataight support the understanding of both
the system dynamics and the specific system (CL®Che managed. The geographical
dimension is primarily used one-dimensionally (18pgrs out of a total of 20 papers
addressing this dimension), indicating that onlgpacific geographical scale is focused on
without considering the interactions between dédfergeographical scales, for instance, local
recycling activities on the regional scale andehenomic, ecological and societal effects on
the national or sub-global scale. Regarding thammational dimension, the great majority of
the papers addressing this dimension (34 papesg)rdsd and tested a CLSC model from an
individual organization’s point of view. Cardoso &t (2015) combined the geographical
dimension and the organizational dimension andrnedieto it as the ‘density ratio’. They
defined density ratio as the overall connectednéssCLSC, estimated as the ratio between
the actual number of measured interactions betvegganizations in terms of stocks and
flows and the potential number of interactions ineatain geographical area. They showed
that a CLSC in which the interactions between omgions are more geographically
concentrated might be more vulnerable to specitugtions. With regard to multi-objective
approaches, the majority of studies focusing ondisign of a multi-objective CLSC model
or the development of (robust) multi-objective tdgges for complex CLSCs focused on
economic and ecological objectives (e.g., Ameknesal., 2016, Marti et al., 2015, Nurjanni

et al., 2017). In general, the inclusion of sodietgectives was rather scarce.
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Nonlinearity. Various studies focused on the use of nonlineagramming techniques to
find a feasible solution for a given set of objeeti, such as to minimize total transportation
and inventory costs or to minimize ¢@€missions, together with computational proof of its
optimality (e.g., Lieckens et al., 2007, Wang et aD17, Zhalechian et al., 2016). Other
papers concentrated on the modelling and simulatfononlinear interactions in a current
and/or future CLSC system in terms of positive aadative feedback loops and/or including
system structure elements, such as ‘stocks andsfl¢etg., Bhattacharjee et al., 2015,
Bollinger et al., 2012, Golroudbary et al., 2019pecific attention to the chaos and
bifurcation phenomena as the results of negatiedlfack loops was limited. Additionally,
very limited attention was paid to the exploratairemergent patterns to fully grasp complex
system behaviours. A valuable example of an atteémpetter grasp dynamics was described
by Narayana et al. (2014). These authors exploegtbws patterns indicating trends in the
sales, prices, brands, and quality and quantifgrofluct returns in a complex causal reverse
logistics system model of the Indian pharmaceuitiwdlistry over a period of five years. As a
result, actors’ insights into the strong linkagestween time dynamics and the complex
reverse logistics system design improved.

Anticipative steering and adaptive steering. Multiple papers focused on developing
potential future-oriented CLSC options. This focmsolved, among others, options to
improve the recovery of goods, the introductionopfional collection centres, and optional
collection routes (e.g., Ameknassi et al., 2016erChkt al., 2015, Zhalechian et al., 2016).
Other papers concentrated on selecting and congpmoioust or optimal CLSC options (e.g.,
Nurjanni et al., 2017, Serrano et al., 2013, Xalet2017). Very limited attention was paid to
the specification of adaptation tipping points ¢otlaborative monitoring of the attractiveness

and sustainability of the selected and implemefte8C options.
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From this part of the literature review it can lmmcduded that, in CLSC management
theory, dynamic complexity is primarily addressedterms of (multi-objective) linear or
nonlinear programming or system dynamics over tifie inclusion of the geographical and
organizational dimensions for the analysis of tlenlimear interactions between CLSC
activities has so far received very limited attentiAs a result, studies into emergent patterns
have been scarce as well. Last, although variauBest focused on some form of anticipative
steering or adaptive steering for CLSC managemant;, limited attention was paid to the
alignment between anticipative and adaptive stgeriar instance via adaptation tipping

points.

5. Analysis of methodological approaches

In the analysis of the methodological approachgsed of approaches, and instruments used
for decision making regarding the design, operangplementation and monitoring of
CLSCs were considered. From the analysis it becel@a& that multiple approaches are
applied to study CLSC management under (deep) tamegr and/or (dynamic) complexity
(see Figure 3), notably: (i) multi-criteria decisiaid approaches (six papers); (ii) qualitative
and quantitative simulation approaches (15 pap€is); participatory approaches (eight

papers); and (iv) optimization approaches (36 Eper

Figur e 3 Methodological approaches of the papers included
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The multi-criteria decision aid approach. This type of approach addresses the process
of making decisions in the context of multiple (fmting) objectives and/or vague and
imprecise (i.e., fuzzy) knowledge or data regardimg criteria of, and the weight placed on,
various (implemented) CLSC options and CLSC outsifeeg., Chithambaranathan et al.,
2015, Rostamzadeh et al., 2015). Therefore, vanmoathods or combinations of methods
have been applied, such as ‘fuzzy Analytical Hiengr Process (AHP)’, ‘fuzzy
ViseKriterijumska Optimizacija | Kompromisno Resen(VIKOR)’, and ‘fuzzy Technique
for Order of Preference by Similarity to Ideal Saua (TOPSIS)'. Fuzzy AHP is applied to
obtain the relative weights of (evaluation) cri¢erelated to CLSC options derived from
closed-loop decision areas, such as ‘procuremethti@gistics’, ‘production and recovery
procedures’ and ‘product design’ (Nazam et al.,52®ari, 2017). Both fuzzy VIKOR and
fuzzy TOPSIS are used to rank and assess CLSCrpeamice in a fuzzy environment. The
ranking and assessment of performance are baste oelative weights of the criteria related
to the CLSC options. For instance, fuzzy VIKOR $2d to generate the rankings according to
the performance of CLSC stakeholders, and subséguentifies the best performing
organizations under a fuzzy environment (e.g.,,2417). Fuzzy TOPSIS is, among other
purposes, used to rank and assess the uncertaasesiated with the implementation of
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CLSC options in a fuzzy environment (Nazam et 3aD15). In addition, Monte Carlo
simulation is used to conduct an in-depth analysisthe uncertainties in terms of
vagueness/imprecise data regarding the weightsvalluation criteria for multiple CLSC
options. The integration of Monte Carlo simulatioasot limited to fuzzy AHP and fuzzy
VIKOR,; it can also be integrated with fuzzy TOP$&ari, 2017).

(Qualitative and quantitative) simulation approaches. A different approach to
modelling (complex) CLSCs and to exploring systeynainics is the use of other types of
simulations. The simulation approach aims to ireitdite dynamic development of complex
systems. By changing the model that simulates ®CC one aims to understand the system
dynamics over time. Therefore, the majority of dmtion-based studies applied System
Dynamics (e.g., Cardoso et al., 2013, Lee et @lL52Wang et al., 2017). With this approach,
first a causal loop diagram is developed, which ggialitative representation of a CLSC, to
understand the positive and negative feedback laopsng the different state variables of a
CLSC model (e.g., Georgiadis et al.,, 2013, Lehralet 2013, Vlachos et al., 2007). In
addition, qualitative stock-flow diagramming is #pd to develop and understand the
CLSC’s model structure (Georgiadis et al., 200&c¥bs et al., 2007). Second, the stock-
flow diagram is transformed into stock and rate.(idifferential) equations, based on which
“what-if” scenario-based system dynamics simulai@me performed to explore nonlinear
system behaviour under uncertainty over time (Blchtrjee et al., 2015, Vlachos et al.,
2007). For instance, it is suggested to explore timiinvolvement of CLSC options, such as
design-for-refurbishment, marketing campaigns, aeflirbishment, affect the sales and
profitability for various supply chain actors (Btamtharjee et al., 2015). Although the
relationships among the system variables, inclutlegfeedback loops individually might be
well understood, the interplay of several of thedations can show unexpected dynamics in a

simulation over time, varying geographical scaled/ar organizational levels. Third and last,
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as in the case of optimization-based studies, plelfpapers included sensitivity analysis to,
among other goals, increase understanding of theaeships between (uncertain) input and
output variables in a CLSC model by varying witke frarameter values (e.g., Shamsuddoha,
2015, Vlachos et al., 2007).

Participatory approaches. A small number of papers describe the involvemdnt o
relevant actors for: (i) the development of a CL®Gdel or causal model (Narayana et al.,
2014, Shamsuddoha, 2015); (ii) the selection araiuation of optional CLSC options, such
as reverse logistics options based on variousrierife.g., Chithambaranathan et al., 2015,
Jindal et al., 2015); (iii) the identification ammbnvergence of understandings of CLSC
options; and (iv) the identification of an agreemabout the complex CLSC to be managed
(Stindt et al., 2016). For the development of a CL®odel, participative group model
building was used by Narayana et al. (2014). Fer dbneration of selection criteria and
evaluation criteria, discussions and in-depth inésvs were conducted (Jindal et al., 2015,
Rostamzadeh et al., 2015). For the identificatiod eonvergence of understandings of CLSC
options among the actors involved, Stindt et all1@ organized brainstorm sessions and
applied the Delphi methodology. Brainstorm sessiomse used for the identification of
CLSC options, while a Delphi approach was usedotoverge understandings of the CLSC
options and to develop a mutual basis for commtioica For the identification of an
agreement regarding the complex CLSC to be managetrphological box was developed
(Stindt et al., 2016). A morphological elaboratearious indicators reflecting certain
dimensions (e.g., geographical dimension) and riffe attributes levels (e.g., regional,
national, international). The result of this anays the specification of different scenarios for
system intervention. For the development of thephological box, both discipline-specific

literature regarding the CLSC issue and expertudsions were considered.
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Optimization approaches. In general, optimization approaches aim to find ¢xact
(sub)optimal solution among a set of alternativathout violating the given constraints
(Taha, 1992). An example is the optimization of a@ync facility locations and capacity
adjustments in a CLSC to minimize system costs fram individual organization’s
perspective over multiple periods and under uncegeoduct demand and supply (De Rosa
et al., 2013). The general drawback to using opttion is the difficulty in developing a
model that is sufficiently detailed and accuraterdpresent the (dynamic) complexity and
(deep) uncertainty of a CLSC, while keeping the at@fficiently simple to explore options
or even to be solved. Various types of optimizatiproaches were applied to improve the
handling of this matter, such as stochastic (Kaya et al., 2014, Tao et al., 2012, Zhalechian
et al., 2016), robust optimization (e.g., De Rosalg 2013, Ruimin et al., 2016, Xu et al.,
2017), and (robust) fuzzy programming (e.g., Nikdegt al., 2014, Talaei et al., 2016, Wang
et al.,, 2010). Stochastic programming is a usefodefling approach when an accurate
probabilistic description of the random variablesassumed (Keyvanshokooh et al., 2016).
However, in the case of CLSC, there is often ndoar little historical data available to
estimate distributions. Additionally, an accuratstribution approximation requires a large
number of scenarios. However, the greater the numbescenarios that are needed to
represent an uncertainty, the more difficult thasito solve the problem to optimality. To
minimize these drawbacks, robust optimization hesnbused as an alternative approach to
manage uncertainty in the input data in a CLSCghegiroblem. Compared to stochastic
programming, less precise historical data and scexperiences can be used to derive the
boundaries of uncertainty sets, without the need goecise estimates of probability
distributions (Keyvanshokooh et al., 2016). The sapplies to (robust) fuzzy programming.
However, compared to robust programming, fuzzy mogning approaches explicitly

acknowledge and consider vague and imprecise daat&km@owledge about uncertain CLSC
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parameters, both in the objective functions anthéconstraints of a CLSC model (Dai et al.,
2015, Talaei et al., 2016). The majority of optiatian-based studies developed (a relatively
small ensemble) of scenarios and a (multi-objetiexed-integer linear or nonlinear
programming model for a CLSC to achieve one or ipleltobjectives, and they performed
sensitivity analysis to address the various souafe@stochastic or fuzzy) uncertainty over
time. In general, mixed-integer (linear or nonlinegarogramming involves optimization
problems in which some of the decision variables @@stricted to having integer/binary
values, while other decision variables are allowedhave non-integer values (Taha, 1992).
Nonlinear programming differs from the well-knowndar programming approach in that at
least one nonlinear function is included in theegbye functions and/or constraints. For
instance, Lieckens et al. (2007) introduced theéabée of nonlinear product lead time to the

objective function because of the (stochastic) ttagdy in the timing of product returns.

6. Discussion and future challenges

This section discusses the knowledge gaps dernoad this systematic literature review and
transfers these into various challenges for futesearch on deep uncertainty and dynamic
complexity in CLSC management. Based on the claasiins in Sections 4 and 5, the
knowledge gaps are categorized into three classbs tiiscussed in the following three sub-

sections: conceptual gaps, a process gap, and dsegjaps.

6.1 Conceptual gaps
Conceptual gaps refer to the following five issues.

Opportunities for considering deep uncertainty. In the CLSC management literature,
uncertainty is primarily addressed as stochasticzzy. This finding is directly related to the

level of underlying knowledge: In cases in whichoas have sufficient knowledge about the
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probability distribution, they tend to treat uneinty as a stochastic issue. However, when
transitioning towards CLSC management, these aater$acing uncertainties for which they
have insufficient knowledge about probability disitions and the possible outcomes. In
such cases, uncertainty basically cannot be adeltegechastically. The application of fuzzy
logic is then proposed in the literature as anr@dtiéve to represent uncertainty about
parameters and the relative importance of CLSGoaptand the CLSC model outcome. This
finding corresponds with the findings of the liten@ review by Govindan et al. (2015), who
stated that, instead of stochastic methods to septeuncertainty, in recent years, fuzzy logic
has been regularly used to represent uncertaintye Qight argue that fuzzy uncertainty
relates to deep uncertainty, especially in sitution which actors cannot agree about the
different sources of uncertainty. Disagreement inklgha result of vague and/or incomplete
information and knowledge available to actors (Resh al., 2013). The framework of fuzzy
logic in managing the coexistence of opposing eradbows individual actor views to be
retained despite the ambivalence they bring to dbléective view (Reznik et al., 2013).
Nevertheless, there are situations in which theoracknow absolutely nothing about
probability distributions and possible outcomesjaolimight be actor related in the sense of
the sudden withdrawal of certain actors. It migebde context based in the sense of sudden
economic swings, (the effects of) technologicalowations, or the unknown quality of
product returns. In such cases, uncertainty ihaegtochastic nor fuzzy in nature, yet it can
be interpreted as deep uncertainty. However, demertainty in this sense is completely
missing from the CLSC management literature ancetbee deserves more attention in future
CLSC management research. The paper by Walker. é2@13) might help to understand
deep uncertainty and decision making under deegrtainty.

Opportunities for considering context uncertainty and CLSC model structure

uncertainty. Parameter uncertainty and CLSC model outcome umingyt are important
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sources of uncertainty in (transitioning toward$)SC management. However, these are not
the only sources of uncertainty, as there are asotext uncertainty’ and ‘CLSC model
structure uncertainty’. In the latter case, theseairelationship between model structure
uncertainty and calibrated parameter uncertainty.ifstance, a simple supply chain model
with few parameters may be calibrated with dataioled for both input and output under
well-known conditions. In this case, model struetuncertainty will most likely dominate the
results. However, in the case of complex supplyinhasuch as CLSCs, with many
parameters, the level of information about the past current input and output of unknown
conditions might be low. In that case, model calilon will be difficult for the actors
involved and therewith will be strongly dominateg garameter uncertainty. In other words,
calibration data must contain variation in ordemtanage all of the parameters chosen for
calibration. Otherwise, the parameter estimatesorbecvery uncertain, and the model
outcome becomes uncertain accordingly (Walker.e2803). Regarding context uncertainty,
actors in a CLSC face deep uncertainties aboutadgrof contextual factors, such as climate
change and resource scarcity. The literature had pery limited attention to these
unpredictable factors and the way they should baltdeith, although they might have
significant effects on the sustainability of theecgition of supply chains.

Opportunities for considering dynamic complexity: The majority of the papers
addressing dynamic complexity focused on nonlinetractions of CLSC activities over
time. However, one might argue that there existeead to also explore the nonlinear
interactions between CLSC activities over varioesgraphical scales (local to global) and
organizational levels (single actor to multi-tigstem).

Opportunities for studying deep uncertainty and dynamic complexity in relation to life
cycle approaches. Since CLSC management is about maximizing valuaticne over the

entire lifecycle of a product, a life cycle apprbaseems obvious. Yet, at the same time it
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increases uncertainty and complexity, especiallgmwthe product has a long lifespan and
when several recovery loops are considered. Althqurgvious research shows that applying
multiple loops over the entire life cycle of a puootl is both economically and
environmentally beneficial (Krikke, 2010), the effe of deep uncertainty and dynamic
complexity on CLSC decision making in specific Idgcle assessment studies have not been
systematically studied so f&@pportunities for building a conceptual framework for a
transition. The papers studied focused mainly on the develofmedelling and selection of
(near-) optimal CLSC options under uncertainty andfdynamic) complexity. Limited
attention has been paid to the development of édtiased CLSC transition pathways, the
implementation and operation of such pathways, taedmonitoring of the sustainability of
CLSC options in terms of adaptation tipping poirti&nce, there seems to be a lack of a
conceptual framework in which the transition tovealdLSC management under dynamic
complexity and deep uncertainty is proposed as rdiramus process of anticipative and
adaptive steering. Here, the so-called ‘CapabNigturity Framework’ might be useful for
describing and refining this process in terms ofcegsive maturity stages and related

capabilities (Paulk et al., 1993).

6.2 Process gap: The involvement of actorsin the transition process

Decision-making theories emphasize that, in additio researchers, corporate actors can
deliver valuable pieces of information and knowled®oll et al., 2017) for the study of
transitions towards CLSC management under dynammptexity and deep uncertainty.
Furthermore, since corporate actors implement Cldp@Gions, their decisions ultimately
influence the causal (nonlinear) interactions betwhese business activities within a CLSC,
as well as the emergent patterns. In their liteeateview, Alexander et al. (2014) already

argued that corporate actors constitute a crucaal pf the decision-making process and
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should not be treated as an external force beyoeid $pheres of influence. There have been
some successful attempts to increase actor invawgrbased on participatory approaches, as
mentioned in Section 5. However, there remains ranas potential for applying various
participatory approaches to support actors in magagleep uncertainty and dynamic
complexity in transitioning towards CLSC manageméiltie research by Hermans et al.
(2017), although not focused on CLSC managementidcbe mentioned here because it
provides an elaborate framework for linking actéos contextual factors, signposts and
(transition) pathways. Also other qualitative papatory methods, such as the Delphi method
and participative group model building with the abfncreating (some degree of) consensus
after deliberation on contrasting viewpoints, héeen successfully applied (Narayana et al.,

2014, Stindt et al., 2016).

6.3 Method gaps
Various gaps become visible from the analysis @bble instruments to support a transition
process towards CLSC management under deep umtead dynamic complexity.
Opportunities for implementation of (qualitative and quantitative) methods and tools
to analyse deep uncertainty and dynamic complexity simultaneously. Only a few papers
focused on complexity and uncertainty simultaneguigit alone on the implementation of
instruments to study and address these conceptise Imajority of the papers, mixed-integer
linear programming models were used to supporttaeagement of stochastic uncertainty by
design. However, mixed-integer programming modeftef) do not cover dynamic processes
or nonlinearity. Mixed-integer nonlinear programgimodels do consider nonlinearity, yet
they analyse primarily stochastic uncertainty amd eeep uncertainty. In addition to the
optimization approaches, simulation approaches Heaen applied to model and simulate

dynamic processes and feedback loops in a CLSCetNeless, causal models that are being
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simulated often only implicitly and partly addragscertainty, let alone deep uncertainty. For
instance, parameter uncertainty is included in @a(SLSC) modelling, and sensitivity to
changes is generally tested via (univariate) seitgitanalysis. However, uncertainties that
exceed the boundaries of a causal CLSC model ateaddressed in the simulation
approaches, indicating that comprehensive sertgitanalysis to thoroughly test the (effects
of variety on) different sources of (deep) uncettaand (dynamic) complexity is lacking. To
analyse deep uncertainty and dynamic complexityubameously, the ‘exploratory system
dynamic modelling and analysis’ (ESDMA) approachsanted by Pruyt (2010) has a place.
ESDMA aims to offer decision support in the face ddep uncertainty and dynamic
complexity by systematically exploring the consewes of a set of uncertainties and
nonlinearity. Through many model runs and differéppes of clustering, subsets of
uncertainty are related to groups of outputs iratempt to determine the uncertainties that
cause a particular desired or undesired outcomeeametgent patterns. ESDMA combines
‘system dynamics modelling’ and ‘exploratory modwgjl and analysis’. The former focuses
on the use of models to explore the links betweesystem’s causal structure and the
nonlinear interactions and emergent patterns onex arising from the system structure. The
latter implies the development and use of theseetsdd support decision making under deep
uncertainty. However, although ESDMA takes the terapdimension into account, it does
not explicitly focus on the geographical dimension the organizational dimension.
Regarding the geographical dimension, the approfcku et al. (2012) might be of added
value. The authors combined system dynamics madeleographical information system
analysis (GIS) and 3D visualization to better expthe nonlinear interactions between, and
the geographical-temporal variations of sustaitighidicators (society, economics, ecology)
for analysing a residential development. Regartimgorganizational dimension, agent-based

modelling in combination with exploratory modellimgnd analysis might be of added value
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(Kwakkel et al., 2013) to explore the effects oé ttleeply uncertain environment and the
nonlinear interactions between heterogeneous suppéin actors on CLSC economic,
ecological and societal performance.

Need to develop a large ensemble of multidimensional scenarios. Although various
papers included scenarios to support the manageofiamicertainty, they involved a small
number of primarily probabilistic scenarios: thiteetwenty. However, in the case of deep
uncertainty, it has been argued that hundreds dastinds of (multidimensional) scenarios
should be developed (Cardoso et al., 2015, Kwaskal., 2015). Furthermore, because of the
multidimensional approach, one might argue thas itmportant to (loosely) connect the
dimensions described in the various scenarios ltg fmasp the nonlinear interactions and
emergent patterns in a CLSC model. For instanaeg-term global resource availability is
setting the scene for long-term resource availgbilh the Netherlands. The concept of
‘loosely connecting’ allows the scenarios to fraarel address the issues important to the
actors involved, while having some acknowledgena¢ind reference to potential changes at
other dimensions (levels) and how these changebtraifect the CLSC under consideration

(Scholes et al., 2013).

7. Conclusion, limitations and futureresearch

7.1 Conclusion

This literature review was triggered by the questad what the knowledge gaps are with
respect to (managing) dynamic complexity and deegemdainty in transitioning towards
CLSC management. Based on the analysis of thetsdlditerature on this subject, three
categories of gaps were identified: conceptual gagsocess gap and methodological gaps.
Conceptual gaps concern: (i) the insufficient reprgation of deep uncertainty in the study of

CLSC management; (ii) the too scarce inclusion afticimensional nonlinear interactions

32



between CLSC activities in the models; and (iiig ttack of an elaborated conceptual
framework to determine the transition pathways towaCLSC management under deep
uncertainty and dynamic complexity. The process gefers to the lack of systematic

involvement of actors in the transition processamg CLSC management under dynamic
complexity and deep uncertainty. The methodologiegs refer to: (i) a lack of methods and
tools to study and manage deep uncertainty andnalgneomplexity simultaneously; and (ii)

a lack of methods and tools to systematically dgvednd simultaneously analyse (large

numbers of) multidimensional scenarios.

7.2 Limitations

The review had several limitations. First, becaak¢he large number of articles studied,
cross-references were not included in the datalsesmnd, the search strings used often had
to be narrowed down because of the extensive nurabdrits that they generated. By
specifically searching for terms in the abstractd atles of the articles, some articles might
have been missed. However, based on the rigoutediapthe research, one might expect the
identified descriptive and methodological knowledgebe robust. Third, since this review
focuses on CLSCs, papers that only focused on forwa reverse supply chain activities
without any form of integration were excluded. Atghally, the review analysed studies
explicitly focusing on (deep) uncertainty and/oyr{dmic) complexity in relation to CLSC
management. Hence, because of the strict searceed@ction procedures, the review ended

up with a relatively small number of papers (i6el ,papers) for in-depth analysis.

7.3 Suggestions for future research
Based on the identified knowledge gaps, severactans for future research have been

suggested. To reduce the conceptual gap, furtbdy sif the theories of deep uncertainty and
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dynamic complexity and their applicability in therdain of CLSC management is needed.
Moreover, a way of thinking based on the ‘Capapilaturity Framework’ was suggested.
The process gap could be reduced by applying paatice research methods to more
systematically involve stakeholders. To addressribéhodological gaps, the potential of the
‘exploratory system dynamic modelling and analysigthodology was mentioned. However,
from the literature it becomes clear that develgpiew frames and methods and showing the
added value of these approaches for CLSC managamdat deep uncertainty and dynamic
complexity require quite some time and systemdtarte The authors of this review intend to

contribute to this challenge in the near future.
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