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11
Overview of the dissertation

1.1 Outline of the dissertation

A way to enhance our understanding of the development and progression of com-
plex diseases is to investigate the influence of cellular environments on gene co-
expression (i.e., gene-pair correlations). Investigating whether metabolites regulate
the co-expression of a predefined gene module (a set of co-expressed (correlated) genes
belonging to the same biological pathway) is one of the relevant questions posed in the
integrative analysis of metabolomic and transcriptomic data (Inouye et al., 2010a). In
Part I of this dissertation, three statistical models are described for investigating the
association between gene-module co-expression and metabolite concentrations. The
suitability and versatility of the proposed models are investigated through simula-
tion studies and an application to real-life data. Specifically, using a subset of the
DILGOM (DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic
syndrome) study data (Inouye et al., 2010a), the proposed models are used to study
the association between the co-expression of the core Lipid-Leukocyte (LL) gene mo-
dule (Inouye et al., 2010b), which is of relevance to coronary artery disease, and
serum-metabolite concentrations.

An introduction to conditional co-expression analysis and the motivation behind
this research is provided in Chapter 2. The DILGOM data are described in Chap-
ter 3. In Chapter 4, we propose a multivariate linear model for studying the depen-
dence between categorised metabolite concentrations and gene-module co-expression.
Performance of statistical tests for the inference of conditional co-expression are eva-
luated through a simulation study. The proposed methodology is applied to the
gene-expression data of the core lipid-leukocyte gene module.

Often, changes in gene co-expression are investigated across two or more biologi-
cal conditions defined by categorizing a continuous covariate. However, the selection
of arbitrary cut-off points may have an influence on the results of an analysis. To
address this issue, in Chapter 5, a multivariate linear model for investigating the as-
sociation between gene-module co-expression and a continuous covariate is proposed.
The versatility of the model is illustrated by using a real-life example and a simulation
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1 study.
Background information on pseudo-likelihood estimation and copulas is provided

in Chapter 6. In Chapter 7, a pseudo-likelihood approach incorporating conditio-
nal copulas is considered for investigating the association between gene-module co-
expression and a continuous covariate. As for the previous two models, the copula-
based pseudo-likelihood approach is applied to the DILGOM data to investigate the
conditional co-expression of the core lipid-leukocyte gene module.

In Part II of this dissertation, the impact of the method for extracting metabolic
signal from proton nuclear magnetic resonance (1H-NMR) data on the classification of
lung cancer samples is studied. Extracting metabolic information from NMR spectra
is complex due to the fact that an immense amount of detail on the chemical com-
position of a biological sample is expressed through a single spectrum. The simplest
approach to quantify the signal is through spectral binning which involves subdividing
the spectra into regions along the chemical shift axis and integrating the peaks within
each region (Louis et al., 2015). However, due to overlapping resonance signals, the
integration values do not always correspond to the concentrations of specific meta-
bolites. An alternate, more advanced statistical approach is spectral deconvolution.
BATMAN (Bayesian AuTomated Metabolite Analyser for NMR data) (Astle et al.,
2012; Hao et al., 2014) performs spectral deconvolution using prior information on the
spectral signatures of metabolites. In this way, BATMAN estimates relative meta-
bolic concentrations. In this study, both spectral binning and spectral deconvolution
using BATMAN were applied to 400 MHz and 900 MHz NMR spectra of blood plasma
samples from lung cancer patients and control subjects. The relative concentrations
estimated by BATMAN were compared with the binning integration values in terms
of their ability to discriminate between lung cancer patients and controls.

An introduction to the 1H-NMR study is provided in Chapter 8. Background
information on 1H-NMR spectroscopy is provided in Chapter 9. The data and pre-
processing steps are described in Chapter 10. A description of spectral binning and
spectral deconvolution using BATMAN is described in Chapter 11. Finally, details
and results of the classification analysis appear in Chapter 12.

1.2 Aims of the research

Technological advances have brought about a rapid increase in the high-throughput
analysis of biological molecules (genes, mRNA, proteins, metabolites etcetera). The
widespread availability of omics (genomics, proteomics, metabolomics, transcripto-
mics, glycomics, and lipidomics) data has revolutionised medical research (Hasin
et al., 2017). The analysis of omics data can lead to the identification of molecu-
lar profiles that are associated with disease status, susceptibility, or progression, or it

2



1

Overview of the dissertation

may provide insight into biological pathways or processes that differ in diseased and
control patients. Biological processes are, however, extremely intricate and obtai-
ning biologically meaningful information from this mass of data is a non-trivial task.
To capture the complexity of biological processes, research is now centering on the
integrative analysis of omics data. In this context, methodological development is
lacking, leading to complex data being analysed in rather simple ways that do not
capture the complexity of the biological problem. Methodological frameworks for the
integrative analysis of multilevel omics datasets are required. The aim of Part I of this
dissertation is to improve on the methods currently available for the analysis of omics
datasets. The focus is on statistical methods for the integrative analysis of transcrip-
tomic and metabolomic data for investigating the association between gene-module
co-expression and metabolite concentrations.

High-throughput techniques enable the measurement of the chemical composition
of cells, tissues, or, biofluids. The reproducibility, precision, and inherent noise of the
measurements vary between techniques. In some instances, the biological signal may
constitute only a small portion of the collected measurements. Efficient extraction
of the biological signal is required before the data can be analysed with the aim of
gaining insights into complex pathological processes. Various approaches exist to
extract biological signal. The approach adopted for extracting the biological signal
can have an impact on downstream analyses. The aim of Part II of this dissertation is
to investigate the impact of the method of extracting metabolic signal from 1H-NMR
spectra on the classification of lung cancer samples.
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Introduction

Omics technologies have rapidly advanced giving rise to an extensive amount of omics
data with widespread availability. Genomics is a study of the genome, i.e., the col-
lection of the genetic material (including all the genes) of an organism. In contrast to
genetics, which focuses on the role of individual genes in, e.g., inheritance of diseases,
genomics aims at the characterization and quantification of all the genes involved in
a genome. Transcriptomics, which is also referred to as expression profiling, is the
study of the mRNA molecules arising from the expression of genes in a particular
biological sample at a given moment. Thus, the transcriptome, i.e., the total mRNA
of an organism, reflects the genes that are actively expressed at a given moment.
The transcriptome acts as a template for protein synthesis. Proteomics studies the
proteome, i.e., the collection of proteins that are produced by an organism, while
metabolomics focuses on the metabolome, i.e., the collection of metabolites (small
molecules), which are the products of cellular processes. As can be seen from these
examples, the omics suffix indicates a collective analysis of molecules included in the
particular study subject, which is described by the omes suffix. Figure 2.1 from Eu-
ceda et al. (2015) depicts the omics cascade. Metabolites are the final products in the
omics cascade. Thus, changes in the metabolome reflect changes in the transcriptome
and the proteome. The metabolome is closest molecular measure of the phenotype
of the biological system (Horgan and Kenny, 2011). Given the complexity of biolo-
gical processes, integrative analyses of multiple omics datasets can lead to a better
understanding of the molecular basis of complex diseases.

Figure 2.1: Illustration of the omics cascade from genes to metabolites. The source of
this Figure is Euceda et al. (2015).

7



Introduction

2

In this part of the dissertation, we focus on the integrative analysis of metabolo-
mic and transcriptomic data specifically for investigating the association between the
co-expression of a gene module (a set of co-expressed (correlated) genes belonging to
the same biological pathway) and metabolic concentrations.

Genome-wide gene expression data, often obtained through microarray experi-
ments, were initially analysed (and continue to be analysed) for changes in the ex-
pression level of individual genes across biological conditions. However, genes do not
function in singularity. It is well known that genes are not only intricately related
to one-another, but are also largely influenced by biological products (e.g., proteins,
metabolites, and glycans) in their cellular environments. Investigating the influence
of cellular environments on gene co-expression is an important step in the search for
gene regulatory mechanisms and the pathways which contribute to the development
and progression of complex diseases.

The dependence of the correlation(s) (or other measures of association) of gene ex-
pression levels on the values of a covariate is termed conditional co-expression. In this
dissertation, we use the term conditional co-expression, though the term differential
co-expression is also often used to describe the phenomenon of regulated co-expression
(Kayano et al., 2014). The covariate, which is investigated as a potential mediator
of co-expression, can be categorical (e.g., SNPs) or continuous (e.g., metabolite con-
centrations). Changes in the co-expression of gene pairs or gene modules are often
investigated across discrete biological conditions such as diseased and healthy, young
and old, male and female, or between two species such as humans and chimpanzees
(Tesson et al., 2010). A gene pair with gene expression values that are, for example,
strongly correlated in healthy samples and weakly correlated in diseased samples (or
vice-versa) exhibits a pattern of conditional co-expression. Similarly, in the case of
gene modules, if significant differences are observed in a gene-module’s co-expression
(i.e., gene-pair correlations) at high concentrations of a particular metabolite, then
the gene module exhibits conditional co-expression.

Conditional co-expression studies can be described as either targeted or untargeted
(Tesson et al., 2010). An untargeted study considers all genes and attempts to identify
conditionally co-expressed gene pairs or gene modules. A targeted study investigates
whether a predefined gene pair or gene module is conditionally co-expressed. A wide
range of methods have been proposed for the detection of conditionally co-expressed
gene pairs and gene sets (i.e., untargeted studies), particularly across two biological
conditions. Kayano et al. (2014) review the methods for the detection of conditio-
nally co-expressed gene pairs characterized by cross, i.e., a biological phenomenon in
which two genes are positively correlated under one condition and negatively correla-
ted under the other condition. Methods to detect gene sets with positive correlations
under one condition and random gene-pair correlations under the other condition are
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also reviewed. In the review, the need for more efficient techniques is highlighted.
Differential co-expression network analysis is one of the more commonly implemen-
ted techniques for the detection of conditional co-expression (de la Fuente, 2010;
Southworth et al., 2009). Fewer methodologies have been proposed for the investi-
gation of co-expression across multiple groups. Gillis and Pavlidis (2009) analyzed
co-expression across multiple-ordered groups (defined by age categories). Chen et al.
(2011) proposed a penalized-likelihood approach for bivariate conditional normal mo-
dels to identify variables that mediate the co-expression of a gene pair (i.e., a targeted
study).

We focus on a targeted conditional co-expression analysis, Specifically, we investi-
gate an a priori defined gene module with the aim of identifying variables that mediate
its co-expression. Our research is motivated by the conditional co-expression analysis
presented in Inouye et al. (2010a). Inouye et al. (2010a) provide a proof-of-concept
paper for the integrative analysis of metabolomic, transcriptomic, and genomic data.
In particular, they explore the serum-metabolite mediation of the recently characte-
rized core Lipid-Leukocyte (LL) gene-module’s (Inouye et al., 2010b) co-expression.
Toward this aim, they fit a simple linear regression model to Spearman’s correlation
coefficients for all pairs of genes of the core LL module for five subsets of samples for-
med by using quintiles of the metabolite concentrations. In this way, the dependence
of the correlation (co-expression) on metabolic concentrations can be detected and
quantified.

The method applied by Inouye et al. (2010a), although innovative, is limited in
several aspects:

1. It does not allow for the adjustment of the gene-expression values for potential
confounding factors. As a consequence, relevant correlations can be missed or
spurious correlations can be detected.

2. The simple linear model framework incorrectly treats the correlation coefficients
as independent. In addition, the estimation error in the coefficients is ignored.

3. The approach focuses only on linear trends in co-expression by metabolic con-
centrations.

4. The results may depend on the definition of the metabolic subsets. Categorisa-
tion assumes a flat relationship between the predictor (metabolite concentrati-
ons) and the response (correlations) within categories. For a linear association,
this may not be too problematic. However, consider a non-linear parabola asso-
ciation. A binary split of the trend at the axis of symmetry would result in two
categories with almost identical correlations, i.e., it would be difficult to detect
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the association. As another example, consider a non-linear ‘hockey-stick’ asso-
ciation, i.e., the slope is zero except at the largest values of the predictor, where
it increases. By using a quintile split, the fifth subset may have a correlation
that is rather different to that of the first four subsets but having four subsets
positioned in the flat region of the trend may diminish the power to detect the
association.

In this part of the dissertation, we consider various modeling approaches to ad-
dress points 1–4 from the aforementioned list. In particular, in the first approach
discussed in Chapter 4, we use a general linear model (GLM) for correlated data
(Verbeke and Molenberghs, 2011; Galecki and Burzykowski, 2013) to analyze the de-
pendence structure of gene expression measurements for different metabolic subsets.
Statistical tests for the inference of conditional co-expression are proposed. A simu-
lation study is conducted to evaluate the Type I error probability and the sensitivity
of the test statistics for different co-expression dynamics. We apply the model to
a subset of the DILGOM (DIetary, Lifestyle, and Genetic determinants of Obesity
and Metabolic syndrome) study data collected in Helsinki, Finland to study the se-
rum metabolite-induced conditional co-expression of the core Lipid-Leukocyte (LL)
module. This dataset is described in Chapter 3.

The methodology proposed in Chapter 4 is directed towards investigating the
association between the co-expression of a gene module and a categorical covariate.
Some covariates are often difficult to categorize and the selection of arbitrary cut-
off points may have an influence on the results of the analysis. To address this,
in Chapter 5 we describe a second approach for targeted conditional co-expression
investigations involving continuous mediators. We consider modeling the gene-pair
correlations (co-expression) of a gene module as a function of a continuous covari-
ate. In particular, transcriptomic and metabolomic data is used to investigate the
metabolite-co-expression association of a gene module by specifying a multivariate
model which assumes the correlation coefficients as a function of the metabolite con-
centrations. The model can be seen as a more general version of the bivariate model
described in Wilding et al. (2011). The versatility of the model is illustrated using a
subset of the DILGOM study data and a simulation study.

In Chapter 7, pseudo-likelihood estimation and conditional copulas are employed
for investigating the association between gene-module co-expression and a continuous
covariate. In particular, the multivariate density described in Chapter 5 is replaced by
the product of all pairwise densities over the set of all possible gene pairs within the
gene module. Additionally, the bivariate densities are modelled by using conditional
copulas that specify the gene-pair correlations as functions of the continuous covariate.
In this way, the computational burden is reduced and the use of conditional copulas
facilitates the estimation of non-parametric measures of the association. A simulation
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study is conducted to investigate the Type I error probability and power of the pseudo-
likelihood ratio test statistic before using the model to investigate the conditional
co-expression of the core LL module.
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Data

In this part of the dissertation, various models are described for investigating the
metabolite-mediated co-expression of a gene module. The data described in this
chapter are analyzed in Chapters 4, 5, and 7 to illustrate the versatility of the models
proposed.

A note on the composition of blood. A sample of blood can be separated into its
main constituents: plasma, white blood cells (WBCs), and red blood cells (RBCs).
Plasma is the medium of blood in which the WBCs, RBCs, and other blood constitu-
ents are suspended. It is mostly comprised of water, and contains proteins, hormones,
metabolites, antibodies etc. Blood serum has a similar composition to blood plasma
but excludes the clotting factors of blood. WBCs, also called leukocytes, play an
important role in the bodies immune system. There are numerous types of WBCs
including lymphocytes, neutrophils, monocytes, eosinophils, and basophils. RBCs,
also called erythrocytes, are involved in the transportation of oxygen throughout the
body.

3.1 Data
We consider a subset of the transcriptomic and metabolomic data from the Finnish
population-based cohort, DILGOM (DIetary, Lifestyle, and Genetic determinants of
Obesity and Metabolic syndrome). In particular, we investigate the co-expression
dynamics of the core Lipid-Leukocyte (LL) gene module (Inouye et al., 2010b) con-
ditional on serum-metabolite concentrations for 466 subjects. Of the 466 individuals
analysed, 215 correspond to males and 251 to females, with ages ranging from 25 to
74 years.

3.1.1 Metabolomic data

Proton nuclear magnetic resonance (1H-NMR) spectroscopy was used to determine
the serum-metabolite concentrations. Metabolomic data were available on 137 serum
metabolites inclusive of amino acids, lipids, and sugars. The full metabolomic dataset
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is analysed in Chapter 4. However, for illustration, we primarily focus on six meta-
bolites: 3-hydroxybutyrate, linoleic acid, large HDL particles, small HDL particles,
small LDL particles, and total cholesterol in large HDL. Histograms of the observed
values of these metabolites are shown in Figure 3.1, with summary statistics listed
in Table 3.1.

Figure 3.1: Histograms of the observed values for 3-hydroxybutyrate, linoleic acid, large
HDL particles, small HDL particles, small LDL particles, and total cholesterol
in large HDL.

3.1.2 Transcriptomic data

Gene expression data were obtained from blood lymphocytes using the Illumina HT-
12 expression array (Illumina Inc., San Diego, CA, USA). The LL gene module is
comprised of 11 highly correlated genes. The module harbors key immune response
mediators and has been shown to be strongly associated with serum-lipid concen-
trations (Inouye et al., 2010a) linking it to the two main contributors of coronary
artery disease (CAD), namely, lipid concentrations (such as, high density lipoprotein
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Table 3.1: Summary statistics of the observed concentrations for the six metabolites
selected for illustration (N = 466).

Metabolite Mean Standard 1st
Median 3rd

deviation Quartile Quartile

3-hydroxybutyrate 0.1290 0.0970 0.0768 0.0955 0.1363
linoleic acid 3.2141 0.5879 2.8233 3.1735 3.5635
large HDL particles (×10−6) 1.1334 0.4531 0.8076 1.1080 1.4133
small LDL particles (×10−6) 0.1524 0.0373 0.1249 0.1504 0.1745
total cholesterol in large HDL 0.4157 0.2008 0.2696 0.3961 0.5418
small HDL particles (×10−6) 4.6213 0.4505 4.3520 4.6075 4.8668

(HDL) and low density lipoprotein (LDL)) and inflammation (Libby et al., 2002). The
seven genes – HDC, FCER1A, GATA2, CPA3, MS4A2, SPRYD5, and SLC45A3 –
which form the core LL gene module (Inouye et al., 2010b) are of interest. Summary
statistics of the gene-expression values for the seven core LL-module genes appear
in Table 3.2. Genes forming the core LL module have heterogeneous variances (see
Figure 3.2) and are highly correlated (see Figure 3.3), with Pearson’s correlation
coefficients larger than 0.6.

Table 3.2: Summary statistics of the gene-expression values for the seven core LL-module
genes (N = 466).

Gene Mean Standard deviation 1st Quantile Median 3rd Quantile

CPA3 8.2216 0.4215 7.9318 8.2311 8.5038
FCER1A 10.6465 0.6318 10.1987 10.6922 11.0609
GATA2 7.8863 0.3693 7.6198 7.8702 8.1374
HDC 8.9903 0.6608 8.5553 9.0726 9.4352
MS4A2 7.7648 0.2771 7.5838 7.7527 7.8988
SLC45A3 8.1344 0.3556 7.8670 8.1296 8.3708
SPRYD5 8.0550 0.3171 7.8217 8.0433 8.2638

Using this data, we illustrate three methodologies for investigating the co-expression
dynamics of the core LL gene module conditional on serum-metabolite concentrati-
ons. The association of the co-expression of the core LL gene module with serum-
metabolite concentrations was initially investigated by Inouye et al. (2010a), also
using a subset of the DILGOM study data.

15



Data

3
Figure 3.2: Box-plots of the core LL module expression. Heterogeneous mean expression

values and variances are observed.
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Figure 3.3: Scatter-plot matrix of the core LL module gene-expression values. Scatter-
plots of the expression values for each gene pair appear in the lower triangular
matrix. Points are colour coded by gender: red represents males and blue
represents females. Pairwise correlation coefficients are indicated in the upper
triangular matrix. The distribution of gene-expression values for each gene
is illustrated on the main diagonal.
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A multivariate linear model for
investigating the association between
gene-module co-expression and a
categorical covariate

4.1 Introduction
In Chapter 2, the limitations of the simple linear regression approach of Inouye et al.
(2010a) for investigating the conditional co-expression of the core LL module was
discussed. To recapitulate, the approach of Inouye et al. (2010a) involves fitting a
simple linear regression model to the Spearman’s correlation coefficients of all pairs
of genes forming the gene module for five subsets of samples defined by quintiles
of the metabolite concentrations. A more detailed description of this methodology
is provided in Section 4.2.2. Limitations of the simple linear regression approach
include:

1. It does not allow for the adjustment of gene-expression values for potential
confounding factors.

2. The framework incorrectly treats the correlation coefficients as independent.

3. The focus is only on linear trends in co-expression by metabolic concentrations.

4. The results may depend on the definition of the metabolic subsets.

In this chapter, we consider a modelling approach that addresses points [1]-[3] of the
aforementioned list. In particular, we propose a multivariate linear model that models
the dependence between adjusted gene-expression values through a block-diagonal
variance-covariance structure formed by metabolic-subset specific general variance-
covariance blocks. Statistical tests for the inference of conditional co-expression are
described. The Type I error probabilities and power of the tests are investigated
through a simulation study. The models (simple linear regression and multivariate

19



Modelling the association between module co-expression and a categorical covariate

4

normal) are then applied to the DILGOM data (described in Chapter 3) to investi-
gate the metabolite-mediated co-expression of the core LL module. The chapter is
organized as follows. Section 4.2 includes a description of the statistical methodology
and the workflow of the analysis. Results of the simulation study and the application
of the models to the DILGOM data appear in Section 4.3. The chapter concludes
with a discussion of the results in Section 4.4.

4.2 Statistical methodology

4.2.1 Exploratory analysis

To get a general idea of the co-expression dynamics as a function of metabolic con-
centrations, we estimate sliding-window correlations. In preparation, for a specific
metabolite, the data are sorted in ascending order of the observed metabolic con-
centrations and a window size (expressed as a proportion, represented by w, of the
total sample size) is selected. The procedure begins by computing the correlation
coefficient between pairs of genes for the first w × N individuals, together with the
corresponding mean metabolite value. Then, the window is shifted so that it starts
from the second ordered metabolite measurement, and the window-specific correlation
coefficients and mean metabolite value are estimated. The procedure continues until
the window includes the last (ordered) metabolite measurement. The obtained corre-
lation coefficients are plotted against the mean metabolite values. The smoothness of
the plot depends on the window size: selecting a large window results in a smoother
estimate of the correlation trajectory.

4.2.2 Simple linear regression of Spearman’s correlation
coefficients

The conditional co-expression analysis by Inouye et al. (2010a) is performed per me-
tabolite. For a given metabolite, the data are split into five subsets based on quintiles
of the metabolite’s concentration. For each subset, Spearman’s rank correlation coef-
ficients are computed for all pairs of genes in the core LL module. A linear regression
model is used to relate the estimated correlation coefficients to the quintiles upon
which the metabolic subsets are defined.

Using a formal notation, the following model is fitted:

Ysp = α+ βxs + εsp, (4.1)

where s (s = 1, . . . , S) indexes the metabolic subsets (S = 5 for our case study), p
(p = 1, . . . , G(G− 1)/2) indexes the gene pairs with G denoting the number of genes
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in the gene module (G = 7 for the core LL gene module), Ysp is the Spearman’s
correlation coefficient for the p-th gene pair in the s-th metabolic subset, and xs is
the value of the s-th quintile of the metabolic concentration. As in classical linear
regression, εsp are residual errors that are assumed to be independent and normally
distributed with mean zero and variance σ2

e .

To determine whether there is a relationship between the module co-expression
and the metabolite concentrations, the null hypothesis of a zero slope, H0 : β = 0, is
tested against the alternative hypothesis, HA : β 6= 0.

4.2.3 Multivariate linear model for gene-expression measurements

In accordance with the simple linear-regression approach, this analysis is performed
per metabolite. For a given metabolite, the data are split into five metabolic-subsets
based on quintiles of the metabolite’s concentration. Gene-expression values are mo-
deled using a general linear model (GLM) allowing for a correlation between an in-
dividual’s gene-expression values. A general variance-covariance structure of within-
individual gene-expression measurements is assumed for each metabolic subset.

In a formal notation, the following model is considered:

ysi = Xsiβ + εsi, (4.2)

where ysi = (ysi1, . . . , ysiG)T is the vector of gene-expression measurements for the
i-th individual (i = 1, . . . , ns) in the s-th subset, Xsi is a G×R-dimensional matrix
of R covariates (an example of the design matrix Xsi is included in Appendix A.2),
β is an R-dimensional vector of coefficients corresponding to the R covariates, and
εsi is a G-dimensional vector of residual errors which are normally distributed with
zero mean and variance-covariance matrix Σs. In particular,

Σs =


σ2
s,1 ρs,12σs,1σs,2 · · · ρs,1Gσs,1σs,G

ρs,12σs,1σs,2 σ2
s,2 · · · ρs,2Gσs,2σs,G

...
... . . . ...

ρs,1Gσs,1σs,G ρs,2Gσs,2σs,G · · · σ2
s,G

 , (4.3)

where σ2
s,g is the variance of the g-th gene for the s-th subset and ρs,g1g2 is the

correlation between genes g1 and g2 for the s-th subset.

The null hypothesis of no metabolite-dependent co-expression can be seen as
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corresponding to the following variance-covariance structure:

Σ(0)
s =


σ2
s,1 ρ12σs,1σs,2 · · · ρ1Gσs,1σs,G

ρ12σs,1σs,2 σ2
s,2 · · · ρ2Gσs,2σs,G

...
... . . . ...

ρ1Gσs,1σs,G ρ2Gσs,2σs,G · · · σ2
s,G

 , (4.4)

in which the correlation coefficients ρg1g2 do not depend on the metabolic-subset. In
correspondence with Σs, the gene variances σ2

s,g are metabolic-subset specific.

4.2.4 Inference

Likelihood ratio test The null hypothesis of no metabolite-dependent co-expression
can be tested by using the likelihood-ratio (LR) test comparing the null model spe-
cified by (4.2) and (4.4) with the alternative model defined by (4.2) and (4.3). Wilks
(1938) showed that the asymptotic distribution of the LR test is a χ2

(k) distribu-
tion where k is the difference in the number of parameters estimated between the
alternative model and the null model. However, there is evidence suggesting that the
approximation to a chi-squared distribution may be rather poor for small sample sizes
(Pooi, 2003; Gill, 2004).

Larntz and Perlman The statistical test proposed by Larntz and Perlman (1985) is
a possible alternative to the LR test for testing the equality of correlation matrices.
In the Larntz & Perlman approach, each of the G(G − 1)/2 hypotheses of equal
correlations (i.e., Hg1g2 : ρ1,g1g2 = ρ2,g1g2 = . . . = ρS,g1g2 for all g1 6= g2 (g1, g2 =
1, . . . , G)) is tested by using the statistic

Sg1g2 =
S∑
i=1

(ns − 3)z2
s,g1g2

−

[∑S
i=1(ns − 3)zs,g1g2

]2

∑S
i=1(ns − 3)

, (4.5)

where zs,g1g2 is the Fisher’s z-transformed correlation between genes g1 and g2 for
the s-th subset. To test the equality of the correlation matrices, the composite test
statistic T , defined as the maximum of the G(G− 1)/2 test statistics, is computed:

T = max
1≤g1<g2≤G

Sg1g2 . (4.6)

Under the null hypothesis, T has an asymptotic χ2 distribution with S − 1 degrees
of freedom. The Sidák inequality is used to control the probability of committing a
Type I error. As such, the null hypothesis of no metabolite-dependent co-expression
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is rejected if
T > χ2

S−1,α′ , (4.7)

where α′ = 1 − (1 − α)2/G(G−1) is the Sidák-adjusted significance level. The Larntz
& Perlman approach has been reported to have good small-sample properties as it
relies on the univariate normality of the Fisher’s z-transformed correlations (Larntz
and Perlman, 1985).

Cole and Jennrich Other possible statistical approaches for testing the equality of
correlation matrices include the statistical tests proposed by Cole (1968) and Jennrich
(1970), which are based on a quadratic form of deviations from the mean that has an
asymptotic χ2 distribution with (S−1)G(G−1)/2 degrees of freedom (Modarres and
Jernigan, 1992). We consider the formulation of the Cole and Jennrich test statistics
reported in Modarres and Jernigan (1992).

Let Σs denote the s-th sample correlation matrix, and P s denote the s-th po-
pulation correlation matrix. Let vec(Σs) denote the vector of correlation coefficients
constructed by placing the sub-diagonal elements of Σs underneath each other in a
column-wise order. The asymptotic distribution of √nsvec(Σs − P s) is multivariate
normal with variance-covariance matrix Γ. The elements of Γ are defined as

Cov(ρjk, ρhl) = γjk,hl = ρjkhl + 1
4ρjkρhl(ρjjhh + ρkkhh + ρjjll + ρkkll)

− 1
2ρjk(ρjjhl + ρkkhl)−

1
2ρhl(ρjkhh + ρjkll), (4.8)

where j, k, h, and l index genes, i.e., j, k, h, l = 1, . . . , G, and

µj = E(yj), (4.9)
σjk = E{(yj − µj)(yk − µk)}, (4.10)

σjkhl = E{(yj − µj)(yk − µk)(yh − µh)(yl − µl)}, (4.11)

ρjk = σjk√
σjjσkk

, (4.12)

ρjkhl = σjkhl√
σjjσkkσhhσll

. (4.13)

This is the Steiger-Hakstian (Steiger and Hakstian, 1982) expression for Γ. In the
case of multivariate normal populations, a simplified expression for the elements of Γ
is given by

γjk,hl = 1
2ρjkρhl(ρ

2
jh + ρ2

jl + ρ2
kh + ρ2

kl) + ρjhρkl + ρjlρkh

− ρjk(ρkhρkl + ρjhρjl)− ρhl(ρkhρjh + ρklρjl), (4.14)
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and is obtained by substituting ρjkhl = ρjkρhl + ρjhρkl + ρjlρkh in (4.8). This result
is referred to as the Pearson-Filon (Pearson and Filon, 1898) expression for Γ.

In the two-sample case, to test the equality of the correlation matrices Σs1 and
Σs2 for the samples s1 and s2, respectively, the test statistic of Cole (1968) is given
by

Qc = ns1ns2

ns1 + nn2

vec(Σs1 −Σs2)Γ̂−1
c vec(Σs1 −Σs2), (4.15)

and the test statistic of Jennrich (1970) is defined as

Qj = ns1ns2

ns1 + ns2

vec(Σs1 −Σs2)Γ̂−1
j vec(Σs1 −Σs2). (4.16)

The difference between the methods of Cole (1968) and Jennrich (1970) is the way in
which Γ is estimated. Cole (1968) proposed to estimate Γ by pooling the estimated
covariance matrices. In particular, Γ̂c in equation (4.15) is defined as

Γ̂c = (ns1 − 1)Γ̂s1 + (ns2 − 1)Γ̂s2

ns1 + ns2 − 2 , (4.17)

where Γ̂s1 and Γ̂s2 are obtained by evaluating the Steiger-Hakstian expression (4.8)
at Σs1 and Σs2 , respectively. The approach of Jennrich (1970) involves pooling
the estimated correlation matrices. In particular, Γ̂j is obtained by evaluating the
Pearson-Filon expression (4.14) at Σ̂ where,

Σ̂ = (ns1 − 1)Σ̂s1 + (ns2 − 1)Σ̂s2

ns1 + ns2 − 2 . (4.18)

In the case of S samples, to test the null hypothesis of no metabolite-dependent
co-expression (i.e., H0 : Σ1 = Σ2 = . . . = ΣS), the test statistic Qa, which is the
sum of S(S − 1)/2 pairwise comparisons of the S correlation matrices, can be used.
Specifically,

Qa =
∑
s1<s2

ns1ns2

ns1 + ns2

vec(Σs1 −Σs2)′Γ̂−1vec(Σs1 −Σs2), (4.19)

where s1, s2 = 1, . . . , S. Modarres and Jernigan (1992) show that, under the null
hypothesis, Qa is distributed as a weighted sum of independent χ2 random variables
each with r = G(G − 1)/2 degrees of freedom. For u, v, w, z = 1, . . . , S, the weights
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of the null distribution are the eigenvalues of the matrix M defined by

Muv,wz =



1 for u = w, v = z

0 for u 6= v 6= w 6= z

λvz for u = w, v 6= z

λuw for u 6= w, v = z

−λuz for v = w, u 6= z

−λvw for v 6= w, u = z

(4.20)

where
λs1s2 =

√
ns1ns2

(nu + nv)(nw + nz)
. (4.21)

As in the two-sample case, Γ̂ can be estimated as either a pooled estimate of
the covariance of the correlation matrices which is the method of Cole (1968), or one
can use a pooled estimate of the correlation matrices, i.e., the method proposed by
Jennrich (1970).

4.2.5 Multiple comparisons p-value adjustment

The simple linear regression approach (Section 4.2.2) and the GLM approach (Section
4.2.3) both entail fitting a separate model per metabolite. Hence, a multiple testing
adjustment should be considered to control either the family-wise error rate (FWER)
or the false discovery rate (FDR). FWER-controlling procedures restrict the proba-
bility of committing a Type I error (i.e., falsely rejecting the null hypothesis for any
of the tests conducted). Controlling the FDR is a less stringent, and hence more
powerful approach that instead controls the proportion of discoveries that are allo-
wed to be false. Given the correlated nature of our hypothesis tests (i.e., due to
the correlation within the metabolomics data), we use the Benjamini and Yekutieli
FDR-controlling procedure (Benjamini and Yekutieli, 2001). It is an extension of
Benjamini and Hochberg’s correction for cases where the independence of hypothesis
tests cannot be assumed (Benjamini and Yekutieli, 2001). Lin et al. (2012) discuss
an assortment of FDR-controlling procedures and their implementation using the R
statistical programming language.

In some sense, the investigation of conditional co-expression may resemble a
dose-response study with, for instance, a placebo and five doses. However, there
is no connection from an inferential point of view. In dose-response studies one is
often interested in identifying which doses are effective, or the minimal effective dose.
The analysis may involve multiple pairwise comparisons and an adaptive strategy to
control the FWER. In the conditional co-expression setting, one is interested in the
existence of an overall association between gene-module co-expression and metabolite
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concentrations. It is not the goal to identify an optimal concentration.

4.2.6 Simulation study

To assess the Type I error probability and the power of the proposed GLM metho-
dology for different co-expression dynamics, we simulate data reflecting six variations
in metabolite-co-expression dependence (Figure 4.1). Specifically, we simulate:

– data characterised by no metabolite-co-expression dependence,

– data based on an approximately linear positive association between co-expression
and metabolic concentrations and another dataset based on an approximately
linear negative metabolite-co-expression association,

– data based on two variations of non-linear dependencies, and

– data exhibiting a weak positive metabolite-co-expression association.

For each of the six co-expression dynamics, we create 1000 datasets of 125, 450, and
800 observations each. Metabolic concentrations are sampled from a normal distribu-
tion with mean 3.2141 and variance 0.3456 (i.e., the distribution of linoleic acid in the
DILGOM subset). Gene-expression values are sampled from a multivariate normal
distribution with means and variances corresponding to that of the CPA3, FCER1A,
GATA2, HDC, MS4A2, SLC45A3, and SPRYD5 expression values in the DILGOM
data. Gene-pair correlations vary with the metabolite concentration in a manner
defined by one of the six metabolite-co-expression associations listed above. These
co-expression dynamics are illustrated in Figure 4.1. To investigate the Type I error
probability, null-hypothesis data (i.e., characterised by no metabolite-co-expression
dependence) are simulated for a four-, five-, and seven-gene module. Data for the
power investigation are simulated for a module of four genes.

To define the explicit functional forms of each of the association patterns shown
in Figure 4.1, let ρ̂DILGOM,g1g2 denote the gene-pair correlation coefficient between
genes g1 and g2 for the DILGOM subset. Additionally, let ρSIM,g1g2 denote the simu-
lated correlation coefficient between genes g1 and g2, and let ρSIM,s,g1g2 represent the
simulated subset-specific gene-pair correlation coefficient between genes g1 and g2.

The data characterised by no metabolite-co-expression association was simulated
assuming that

ρSIM,g1g2 = ρ̂DILGOM,g1g2 . (4.22)

The simulated data for a four-gene module utilizes the gene-pair correlation coeffi-
cients between CPA3, FCER1A, GATA2, and HDC. The gene-pair correlations bet-
ween these four genes plus MS4A2 are utilized to simulate the data for the five-gene
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Figure 4.1: Simulated co-expression dynamics for a gene module of four genes. The
four genes of the simulated module generate six gene-pair correlations. Each
trajectory of dots captures the metabolite-co-expression association for one
of the module gene pairs.

module. The simulated data for the seven-gene module is based on the gene-pair
correlations between all seven core LL-module genes.

The functional form of the approximate linear associations is

ρSIM,s,g1g2 = ρ̂DILGOM,g1g2 + a× (s− 3), (4.23)

where a = −0.0275 for the approximate linear negative association and a = 0.0275
for the approximate linear positive association.

The parabola metabolite-co-expression dynamic was defined as follows:

ρSIM,s,g1g2 = ρ̂DILGOM,g1g2 + a× (s− 3)2, (4.24)

where a = −0.04.
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For the simulated wave co-expression dynamic,

ρSIM,s,g1g2 =


ρ̂DILGOM,g1g2 for s ∈ {1, 3, 5},
ρ̂DILGOM,g1g2 + a for s = 2,
ρ̂DILGOM,g1g2 − a for s = 4,

(4.25)

where a = 0.06.
The simulated weak positive association had the following form:

ρSIM,s,g1g2 =
{

ρ̂DILGOM,g1g2 for s ∈ {1, 2, 3},
ρ̂DILGOM,g1g2 + a× (s− 3) for s ∈ {4, 5},

(4.26)

where a = 0.03.
The linear regression model and the GLM together with the LR, Larntz & Per-

lman, Jennrich, and Cole tests were applied to the simulated data (see Section 4.2.3
and Section 4.2.4).

4.2.7 DILGOM analysis

Using the DILGOM data, described in Chapter 3, we study the metabolite-co-expression
association by means of the GLM for gene-expression values (Section 4.2.3) and the
linear-regression approach of Inouye et al. (2010a) (Section 4.2.2). Due to the non-
normality of the metabolite distributions (see Figure 3.1), metabolic concentrations
were transformed using the two-parameter Box-Cox transformation (Box and Cox,
1964). The normalized metabolite distributions were then corrected for age, gen-
der, and their two-way interaction using metabolite-specific ANOVA models. The
mean structure of the GLM, defined in (4.2), included the four-way interaction be-
tween gene, the adjusted metabolite concentration, age, and gender. Figure A.1.2
includes plots of the gene-expression values by age and the gene-expression values
by the adjusted concentration of linoleic acid, for a subset of genes. The p-values
of the metabolite-specific tests were adjusted by using the Benjamini and Yekutieli
(Benjamini and Yekutieli, 2001) FDR-controlling procedure to control the FDR at
0.05.

4.2.8 Implementation

The GLMs were fitted using PROC GLIMMIX of SAS 9.4. The COVTEST statement
of PROC GLIMMIX enables the statistical inference on covariance parameters. The
LR test is implemented by specifying constraints in the COVTEST statement that,
when applied to the variance-covariance structure of the alternate model (4.3), defines
the null model’s variance-covariance structure (4.4). The generic SAS code is provided
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in Appendix A.3. For ease of illustration, the included code is for a module of three
genes. Functions to implement the Larntz & Perlman (1985), Jennrich (1970), and
Cole (1968) tests were coded in the R programming language. The Benjamini and
Yekutieli adjustment was performed using R 3.1.1 and the R-package multtest.

4.3 Results

4.3.1 Simulation study

Table 4.1 presents the estimated Type I error probabilities for the GLM-based LR,
Larntz & Perlman, Jennrich, and Cole test statistics by module size and sample size.
We have found that the Larntz & Perlman test statistic outperforms the Jennrich
and Cole statistics with regard to the proper control of the Type I error probability.
For the simulated data, Jennrich’s approach has better control over the Type I error
probability than Cole’s approach. However, both Jennrich’s and Cole’s test statistics
are more liberal than the Larntz & Perlman test statistic and struggle to control
the Type I error probability, at the nominal level of 0.05, when the sample size is
small relative to the number of parameters estimated. Thus, in what follows, we will
focus on the linear-regression approach, the GLM-based LR test, and the GLM-based
Larntz & Perlman test. The power results of the GLM-based Jennrich and Cole
statistics are shown in Table A.4.1 of Appendix A.4.

Table 4.2 integrates the simulation results for the investigation of the Type I error
probability. The linear-regression approach fails to control the Type I error probabi-
lity. When the sample size is small (n = 125), the Type I error probability becomes
unacceptably high. On the other hand, for large sample sizes (relative to the number
of estimated correlation coefficients), the linear regression becomes too conservative.
Due to these extreme fluctuations in the Type I error probability, the linear regression
approach cannot be deemed a reliable analysis method, as it is difficult to know in a
practical setting whether the regression-based test will be liberal or conservative. The
GLM-based LR test provides better control of the Type I error probability than the
linear-regression approach, particularly for large sample sizes (i.e., when the asymp-
totic properties of the LR test come into effect). However, the probability is inflated
for small sample sizes. The Larntz & Perlman approach properly controls the Type
I error probability, with a slight tendency to become conservative for large sample
sizes. Hence, combining the Larntz & Perlman test with a suitable multiple-testing
procedure should result in a testing framework that properly controls the FWER or
the FDR.
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Table 4.1: Type I error probabilities for the GLM-based test statistics by module size and sample size.
Module Sample Type I error probability
size size (n) LR test? Larntz & Perlman? Jennrich? Cole?

4 125 0.109 [0.089, 0.129] 0.045 [0.032, 0.058] 0.091 [0.073, 0.109] 0.198 [0.173, 0.223]
4 450 0.062 [0.047, 0.077] 0.043 [0.030, 0.056] 0.065 [0.049, 0.081] 0.082 [0.064, 0.100]
4 800 0.053 [0.039, 0.067] 0.035 [0.023, 0.047] 0.050 [0.036, 0.064] 0.063 [0.047, 0.079]
5 125 0.141 [0.119, 0.163] 0.048 [0.034, 0.062] 0.091 [0.073, 0.109] 0.288 [0.259, 0.317]
5 450 0.067 [0.051, 0.083] 0.037 [0.025, 0.049] 0.055 [0.040, 0.070] 0.088 [0.070, 0.106]
5 800 0.066 [0.050, 0.082] 0.048 [0.034, 0.062] 0.054 [0.039, 0.069] 0.073 [0.056, 0.090]
7 125 0.314 [0.285, 0.343] 0.035 [0.023, 0.047] 0.104 [0.085, 0.123] 0.572 [0.541, 0.603]
7 450∗ 0.083 [0.065, 0.100] 0.036 [0.024, 0.048] 0.068 [0.051, 0.084] 0.089 [0.071, 0.107]
7 800∗∗ 0.070 [0.054, 0.087] 0.029 [0.018, 0.040] 0.058 [0.043, 0.073] 0.080 [0.062, 0.097]

? estimate [95% confidence interval]
∗ convergence rate of GLM: 0.991
∗∗ convergence rate of GLM: 0.993



Table 4.2: Type I error probabilities for the linear regression and the GLM-based test statistics
by module size and sample size.

Module Sample Linear GLM-based GLM-based
size size (n) regression? LR test? Larntz & Perlman?

4 125 0.205 [0.179, 0.231] 0.109 [0.089, 0.129] 0.045 [0.032, 0.058]
4 450 0.056 [0.041, 0.071] 0.062 [0.047, 0.077] 0.043 [0.030, 0.056]
4 800 0.020 [0.011, 0.029] 0.053 [0.039, 0.067] 0.035 [0.023, 0.047]
5 125 0.197 [0.172, 0.222] 0.141 [0.119, 0.163] 0.048 [0.034, 0.062]
5 450 0.064 [0.048, 0.080] 0.067 [0.051, 0.083] 0.037 [0.025, 0.049]
5 800 0.022 [0.012, 0.032] 0.066 [0.050, 0.082] 0.048 [0.034, 0.062]
7 125 0.461 [0.430, 0.492] 0.314 [0.285, 0.343] 0.035 [0.023, 0.047]
7 450 0.314 [0.285, 0.343] 0.083∗ [0.065, 0.100] 0.036∗ [0.024, 0.048]
7 800 0.212 [0.186, 0.238] 0.070∗∗ [0.054, 0.087] 0.029∗∗ [0.018, 0.040]

? estimate [95% confidence interval]
∗ convergence rate of GLM: 0.991
∗∗ convergence rate of GLM: 0.993
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Table 4.3 shows the results of the power investigation. In view of the problems
with the control of the Type I error probability for the linear-regression test and
the GLM-based LR test, we focus on the sensitivity of the test statistics to detect
the co-expression dynamics in the case of a four-gene module and a sample size of
n = 450 observations. This is because for this case the Type I error probability,
shown in Table 4.2, did not differ significantly from 0.05 for the three approaches.
Table 4.3 indicates that the power of the GLM-based LR test and the Larntz &
Perlman test is comparable. The GLM-based tests are clearly more powerful than
the linear-regression-based test in detecting linear trends and are substantially more
powerful in the case of non-linear trends. The only case when the linear-regression-
based approach shows some advantage is a weak positive association.

In view of these results, we choose to use the GLM-based Larntz & Perlman test
in the DILGOM analysis.
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Table 4.3: Power of the linear regression and GLM-based test statistics for different co-expression dynamics and
sample sizes.

Co-expression Sample Linear GLM-based GLM-based
dynamics size (n) regression? LR test? Larntz & Perlman?

linear positive association 125 0.408 [0.377, 0.439] 0.314 [0.285, 0.343] 0.188 [0.163, 0.213]
linear positive association 450 0.635 [0.605, 0.665] 0.826 [0.802, 0.850] 0.797 [0.772, 0.822]
linear positive association 800 0.712 [0.683, 0.741] 0.990 [0.983, 0.997] 0.989 [0.982, 0.996]
linear negative association 125 0.451 [0.420, 0.482] 0.300 [0.271, 0.329] 0.184 [0.159, 0.209]
linear negative association 450 0.621 [0.590, 0.652] 0.838 [0.815, 0.861] 0.819 [0.795, 0.843]
linear negative association 800 0.723 [0.695, 0.751] 0.988 [0.981, 0.995] 0.987 [0.979, 0.995]
non-linear association (parabola) 125 0.219 [0.193, 0.245] 0.293 [0.264, 0.322] 0.243 [0.216, 0.270]
non-linear association (parabola) 450 0.051 [0.037, 0.065] 0.759 [0.732, 0.786] 0.856 [0.834, 0.878]
non-linear association (parabola) 800 0.010 [0.003, 0.017] 0.969 [0.958, 0.980] 0.993 [0.987, 0.999]
non-linear association (wave) 125 0.253 [0.226, 0.280] 0.348 [0.318, 0.378] 0.193 [0.168, 0.218]
non-linear association (wave) 450 0.152 [0.129, 0.175] 0.863 [0.841, 0.885] 0.841 [0.818, 0.864]
non-linear association (wave) 800 0.108 [0.088, 0.128] 0.992 [0.986, 0.998] 0.990 [0.983, 0.997]
weak positive association 125 0.278 [0.250, 0.306] 0.143 [0.121, 0.165] 0.072 [0.055, 0.089]
weak positive association 450 0.257 [0.229, 0.285] 0.182 [0.158, 0.206] 0.183 [0.159, 0.207]
weak positive association 800 0.235 [0.208, 0.262] 0.316 [0.287, 0.345] 0.351 [0.321, 0.381]

Data simulated for a four-gene module.
? estimate [95% confidence interval]
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4.3.2 DILGOM analysis

Figure 4.2 illustrates the changes in co-expression as a continuous function of the
metabolic concentrations for the six metabolites: 3-hydroxybutyrate, linoleic acid,
large HDL particles, small HDL particles, small LDL particles, and total cholesterol
in large HDL; these are the results of the sliding-window procedure (Section 4.2.1).
Evidently, the metabolite-co-expression relationship is not always monotonic as seen,
for instance, in the plots for 3-hydroxybutyrate, linoleic acid, or large HDL particles.

Figure 4.2: Co-expression dynamics by mean metabolic concentration based on sliding-
window correlation estimates (w = 0.2). The G = 7 genes of the core LL
module result in 21 gene-pair correlations. Each trajectory roughly captures
the co-expression dynamics of one of the module’s gene pairs.

Figure 4.3 presents the results obtained by using the simple linear regression
model for the six metabolites chosen for illustration. The adjusted p-values for all
six metabolites suggest a statistically significant relationship between the correlation
coefficients and the metabolite levels. Assuming a FDR of 5%, there are 80 meta-
bolites (including the six presented in Figure 4.3) for which a metabolite-dependent
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co-expression could be concluded. However, given the results shown in Table 4.2, it
is plausible that the linear-regression-based test is liberal in this case. Thus, in turn,
we cannot be sure that the FDR is indeed controlled at the 5% level.

Figure 4.3: Results of the linear-regression-based investigation of conditional co-
expression. Dots represent the estimated Spearman’s correlation coefficients
for the five metabolic subsets (defined by quintiles of the metabolite); the fit-
ted regression line is drawn in red. Benjamini and Yekutieli adjusted p-values
are reported.

Figure 4.4 shows the metabolic-subset specific correlation between gene-pairs
estimated using the GLM defined by (4.2) and (4.3). Based on the multiplicity-
adjusted p-values of the Larntz & Perlman test, a statistically significant relationship
between the co-expression and metabolite levels cannot be concluded for any of the
metabolites. Given that the Larntz & Perlman test provides a proper control of the
Type I error probability, we can expect that, in the analysis, the FDR is controlled
at the 5% level.
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Figure 4.4: GLM based gene-pair correlation estimates for the five metabolic subsets.
The estimates corresponding to a particular pair of genes are connected by
a line. Benjamini and Yekutieli adjusted Larntz & Perlman test p-values are
reported. The unadjusted p-values are p = 0.0722 for 3-hydroxybutyrate,
p = 0.0710 for linoleic acid, p = 0.0048 for large HDL particles, p = 0.0370
for small LDL particles, p = 0.2494 for total cholesterol in large HDL, and
p = 0.6069 for small HDL particles.

The GLM-framework is flexible in that it allows, for instance, the testing of a
variety of hypotheses regarding the variance-covariance structure. To illustrate this
aspect of the model, we use the concentration of apolipoprotein B as a potential me-
diator of the core LL module co-expression. The left-hand-side plot of Figure 4.5 pre-
sents the estimated correlation coefficients obtained using the GLM with the variance-
covariance structure defined in (4.3) with S = 5. We can see that the coefficients seem
to only slightly deviate from a common value across the first three subsets (quintiles of
the metabolite), while they seem to increase for the last two subsets. Using the Larntz
and Perlman statistic, we can formally test whether a common correlation-coefficient
could be assumed for the first three subsets. To this aim, we test each hypothesis of
Hg1g2 : ρ1,g1g2 = ρ2,g1g2 = ρ3,g1g2 , for all g1 6= g2 (g1, g2 = 1, . . . , G). The result of
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the Larntz & Perlman test is not statistically significant (p = 0.9950), suggesting that
the simpler variance-covariance structure might be adopted. The plot in the middle
column of Figure 4.5 presents the estimated correlation coefficients based on the sim-
plified model. In turn, one could compare the correlation matrices of the simpler
model to test for a difference between metabolic subsets, i.e., to determine whether
the GLM with the variance-covariance structure defined in (4.4) can be adopted. The
right-hand-side plot of Figure 4.5 presents the estimates of the correlation coefficients
obtained for the GLM defined by (4.2) and (4.4). The result of the corresponding
Larntz & Perlman test is statistically significant (p = 0.0079), suggesting that the
observed increase of the correlation coefficients across the last two subsets cannot
be attributed to a chance variation. The aforementioned results are data-driven and
do not take into account the multiple-testing adjustment, but they do illustrate the
potential of the GLM in testing various hypotheses that might be of interest.

Figure 4.5: Estimated correlation coefficients obtained using the general linear model
with different variance-covariance structures, for the five metabolic subsets
defined for apolipoprotein B. A. GLM with metabolic-subset specific corre-
lation coefficients defined by (4.2) and (4.3) ; B. GLM with common cor-
relation coefficients across the first three metabolic-subsets; C. GLM with
no metabolic-subset dependent correlation coefficients, i.e., the null model
defined by (4.2) and (4.4).

4.4 Discussion & Conclusions

The use of the GLM offers a formal, flexible framework to investigate the co-expression-
mediation of a gene module. The model facilitates the adjustment of gene-expression
values for any potential confounding factors. Questions regarding the conditional co-
expression can be formulated as hypotheses about the variance-covariance structure
of gene expression measurements and formally tested by using the Larntz & Perlman
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test or the LR test (provided that, for the latter, an adequate sample size is available).
The model can be fitted using existing software like SAS (PROC MIXED or PROC
GLIMMIX) (Verbeke and Molenberghs, 2011; Galecki and Burzykowski, 2013).

As compared to the approach proposed by Inouye et al. (2010a), the GLM-based
analysis requires the assumption of normality of the gene-expression measurements.
One can see it as a drawback. However, models based on such an assumption (often,
on the logarithmic scale) have already been considered in the literature (Wolfinger
et al., 2001; Haldermans et al., 2007; Furlotte et al., 2011). Assessing all aspects
of multivariate normality is difficult. However, investigating univariate normality,
though it will not guarantee multivariate normality, can detect cases of multivariate
non-normality. Quantile-quantile plots of the GLM residuals were used to assess the
univariate normality (see Appendix A.5). In this way, the plausibility of the assump-
tion can be checked. In return, the GLM-based approach removes the limitations
(1–3) of the linear-regression-based analysis mentioned in Section 4.1.

The advantages of using a formal modeling framework were illustrated in the si-
mulation study and in the analysis of the metabolite-mediated conditional co-expression
of the core LL gene module. Worth noting is the fact that we did not identify any
statistically significant metabolite-co-expression associations. The linear-regression
approach results in 80 such associations. This large discrepancy is not surprising in
light of the simulation study. For a seven-gene module and a sample size of n = 450
observations, the simulation study indicated that the linear-regression approach fails
to control the Type I error probability (SLR: 0.314 [0.285, 0.343] vs. GLM-based
Larntz & Perlman test: 0.036 [0.024, 0.048]). In a linear-regression model, inconsis-
tent standard error estimates may arise as a consequence of ignoring any estimation
error inherent in the dependent variable (Lewis, 2000). The regression approach igno-
res the estimation error in the observed correlation coefficients. In addition, the coef-
ficients estimated for the same metabolic subset are treated as independent, though
they are not. Consequently, the precision of the estimation of the linear regression
coefficients may be overestimated, resulting in too small raw p-values and an excess
of “false positive” findings even after a multiple-testing correction.

A potential issue in the use of the GLM approach is the number of parameters.
Besides the coefficients used in the mean-structure (4.2), the most general variance-
covariance structure (4.3) involves SG variances and SG(G − 1)/2 correlation coef-
ficients, i.e., SG(G + 1)/2 parameters. Depending on the size of the gene module
and the number of metabolic subsets, the number can be very large. For instance,
for the core LL gene module with G = 7 genes and S = 5 subsets, the number
of variance-covariance parameters is equal to 140. Thus, estimation of the model
requires a considerable sample size. Note, however, that the same remark applies
to the linear-regression approach, as it also requires estimation of the SG(G − 1)/2
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correlation coefficients (105 in the case of the core LL gene module).
Another drawback shared by the linear-regression and GLM approaches is that

they require the splitting of the metabolite measurements into subsets. Naturally,
this implies that the results may depend on the definition of the subsets. A possible
solution to this problem would be to model the correlation coefficients as a function
of metabolite values. One could imagine using a suitable class of functions, capturing
the trends seen in Figure 4.2, to model the correlation coefficients in the variance-
covariance matrix (4.3). Such a solution would obviate the need for defining metabolic
subsets. This is the topic of Chapter 5.
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5
A multivariate linear model for
investigating the association between
gene-module co-expression and a
continuous covariate

5.1 Introduction

In Chapter 4, we described a multivariate linear model for gene-expression values to
identify changes in a gene-module’s co-expression associated with categorized meta-
bolite levels. The correlations between adjusted gene-expression values are captured
through a block-diagonal variance-covariance structure with blocks specific to the ca-
tegorized levels of the metabolite’s concentration. In practice, some covariates may be
difficult to categorize in a meaningful way. Moreover, the selection of arbitrary cut-off
points may have an influence on the results of the analysis. To address this issue, we
consider modeling the gene-pair correlations (co-expression) of a gene module as a
function of a continuous covariate. The transcriptomic and metabolomic data is used
to investigate the dependence of a gene-module’s co-expression on metabolite concen-
trations by specifying a multivariate model which assumes the gene-pair correlation
coefficients as a function of the metabolite concentrations. The model can be seen as
a more general version of the bivariate model described in Wilding et al. (2011). A
simulation study is conducted to investigate the Type I error probability and power
of the likelihood ratio (LR) test for inferring conditional co-expression. The proposed
model is applied to the DILGOM data, described in Chapter 3, to investigate the
metabolite-co-expression association of the core LL module.

The chapter is organised as follows. Section 5.2 introduces the statistical met-
hodology. Results of the simulation study and analysis of the DILGOM data are
presented in Section 5.3. The chapter concludes with a discussion of the results in
Section 5.4.
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5.2 Statistical methodology

5.2.1 Multivariate linear model with metabolite dependent
correlation function

The general linear model (GLM) for correlated data is employed to model the asso-
ciation between gene-pair correlation coefficients and the metabolite concentrations.
In mathematical notation, the following model is considered:

yi = Xiβ + εi, (5.1)

where yi = (yi1, . . . , yiG)T is the vector of gene-expression values for G genes of the
i-th individual (i = 1, . . . , N), Xi is the G × R-dimensional matrix of covariates, β
is an R-dimensional vector of coefficients corresponding to the R covariates, and εi
is a G-dimensional vector of residual errors which are normally distributed with zero
mean and variance-covariance matrix Σi. In particular,

Σi =


σ2

1 ρi,12σ1σ2 · · · ρi,1Gσ1σG

ρi,12σ1σ2 σ2
2 · · · ρi,2Gσ2σG

...
... . . . ...

ρi,1Gσ1σG ρi,2Gσ2σG · · · σ2
G

 , (5.2)

where σ2
g is the variance of the g-th gene and ρi,g1g2 is the correlation between genes

g1 and g2 for the i-th individual.
The correlation coefficients ρi,g1g2 are linked to the continuous metabolite con-

centrations via the Fisher-z transformation:

ln
(

1 + ρi,g1g2

1− ρi,g1g2

)
= γg1g2 + δg1g2f(mi), (5.3)

where f(·) is a known function of the metabolite value mi, while γg1g2 and δg1g2 are
unknown coefficients.

Note that, instead of the Fisher-z transformation, other transformations based
on established cumulative distribution functions (CDF), such as the probit transfor-
mation, could be used in (5.3) as well.

From (5.3) it follows that

ρi,g1g2 = exp {γg1g2 + δg1g2f(mi)} − 1
exp {γg1g2 + δg1g2f(mi)}+ 1 . (5.4)

Many choices for function f(·) are possible. A natural one is to use f(mi) = mi,
which leads to a linear dependence of the Fisher-z transformation of the correlation
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coefficient on mi. Another possible choice is f(mi) = ln(mi). One could use the
exploratory plots, as described in Section 4.2.1, as a guide for the selection of the
form of f(·).

Figure 5.1 illustrates the relationship (5.4) for various choices of f(·). Note that
the graph in the left-hand-side panel was obtained by using γg1g2 = 0.5 and δg1g2 = 1,
while the graph in the right-hand-side panel was obtained by using γg1g2 = −0.5 and
δg1g2 = 1. Interestingly, for functions other than f(m) = ln(m), the lowest possible
value of the correlation coefficient is larger than −1. For instance, for γg1g2 = 0.5,
δg1g2 = 1, and f(m) = m2, the value of the correlation coefficient at m = 0 is
equal to 0.2449. On the other hand, for f(m) = m−2, the value of the correlation
coefficient tends to 0.2449 when m → ∞. For γg1g2 = −0.5, the minimum value of
the correlation coefficient for f(m) = m2 and f(m) = m−2 is approximately −0.2449.
For f(m) = ln(m), the minimum value of the correlation coefficient implied by (5.4)
is −1 and the coefficient tends to 1 when m → ∞; the convergence rate is larger for
γg1g2 = 0.5 than for γg1g2 = −0.5. Figure 5.1 suggests that, regarding the form of
f(·), the most important decision is whether to use the logarithmic function or not.

Figure 5.1: Correlation dynamics by metabolite concentration for various transformations
f(·) while keeping the intercept γg1g2 and slope δg1g2 coefficients constant.
Left: γg1g2 = 0.5 and δg1g2 = 1. Right: γg1g2 = −0.5 and δg1g2 = 1.

The parameters of the GLM are estimated by maximizing the restricted likelihood
function (Verbeke and Molenberghs, 2011) given by

LREML = C

∣∣∣∣∣
N∑
i=1

X ′iΣ−1
i Xi

∣∣∣∣∣
− 1

2

LML, (5.5)
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where C is a constant, |A| denotes the determinant of matrix A, and LML is the
likelihood function of the model defined as

LML =
N∏
i=1

{
(2π)−G2 |Σi|−

1
2 exp

(
−1

2(yi −Xiβ)′Σ−1
i (yi −Xiβ)

)}
. (5.6)

The null hypothesis of no metabolite-co-expression dependence implies that ρ1,g1g2 =
ρ2,g1g2 = . . . = ρN,g1g2 for all g1 6= g2. In terms of parameterization (5.3), it corre-
sponds to

H0 : δ12 = δ13 = . . . = δG−1,G = 0. (5.7)

Thus, the null model of no metabolite-dependent co-expression corresponds to the
following variance-covariance structure:

Σ(0)
i =


σ2

1 ρ12σ1σ2 · · · ρ1Gσ1σG

ρ12σ1σ2 σ2
2 · · · ρ2Gσ2σG

...
... . . . ...

ρ1Gσ1σG ρ2Gσ2σG · · · σ2
G

 . (5.8)

The null hypothesis (5.7) can be tested by using the likelihood-ratio (LR) test
comparing the null model, defined by (5.1) and (5.8), with the alternative model,
defined by (5.1)–(5.3).

Other hypotheses related to the nature of the metabolite-co-expression depen-
dence can be tested by using the LR test as well. For instance, one can test the
hypothesis about uniformity of a metabolite effect across gene pairs,

Hu
0 : δ12 = δ13 = . . . = δG−1,G = δ, (5.9)

by comparing model (5.1)–(5.3) with the model obtained by using the constraint
specified in (5.9).

Wilks (1938) showed that under some regularity conditions, the LR test statistic
has an asymptotic chi-squared distribution χ2

(k), where k is the difference in the num-
ber of degrees of freedom between the alternate model and the null model. However,
in some situations, the true distribution of the LR statistic can substantially differ
from the χ2

(k) distribution. For instance, if a sample size is not large enough, assuming
the asymptotic χ2

(k) distribution can result in an inflated Type I error probability (as
observed in the simulation study described in Chapter 4). As such, while the LR
test can be used to perform inference on the correlation parameters of nested models
with the same mean structure and different covariance structures, the suitability of
the asymptotic chi-square distribution should be investigated.
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5.2.2 Simulation study

In order to investigate the Type I error probability (with the nominal level set at 0.05)
and the power of the LR test, 1000 datasets of 450 observations (size of the sample
is similar to the one available in the case study) were simulated. For each dataset,
metabolite concentrations were sampled from a standard normal distribution. Gene-
expression values for a seven-gene module were sampled from a multivariate normal
distribution with means and variances corresponding to those observed for the core
LL-module genes in the DILGOM subset (see Table 3.2). Gene-pair correlations vary
with metabolite concentrations according to one of the six metabolite-co-expression
association patterns illustrated in Figure 5.2.

Figure 5.2: Simulated co-expression dynamics for a gene module of seven genes.

The explicit functional form of each of the association patterns shown in Fi-
gure 5.2 is given below using the following notation. Let ρ̂DILGOM,g1g2 denote the gene-
pair correlation coefficient between genes g1 and g2 for the DILGOM subset (as shown
in Figure 3.3), and let ẑDILGOM,g1g2 denote the corresponding Fisher-z-transformed
correlation. Additionally, let ρSIM,g1g2 denote the simulated correlation coefficient be-
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tween genes g1 and g2, and let ρSIM,i,g1g2 represent the simulated individual-specific
gene-pair correlation coefficient between genes g1 and g2. The simulated metabolite
concentration for the i-th individual is denoted by mSIM,i.

No metabolite-co-expression association was simulated assuming that

ρSIM,g1g2 = ρ̂DILGOM,g1g2 . (5.10)

For the approximate linear associations,

ρSIM,i,g1g2 = exp (ẑDILGOM,g1g2 + a×mSIM,i)− 1
exp (ẑDILGOM,g1g2 + a×mSIM,i) + 1 , (5.11)

where a = −0.15 for the approximate linear negative association and a = 0.15 for the
approximate linear positive association.

The functional form for the simulated wave co-expression dynamic and the weak
non-linear association was defined as follows:

ρSIM,i,g1g2 = exp (ẑDILGOM,g1g2 + b× sin(a×mSIM,i))− 1
exp (ẑDILGOM,g1g2 + b× sin(a×mSIM,i)) + 1 (5.12)

where a = 2 and b = 0.3 for the wave dynamic, and a = 2 and b = 0.05 for the weak
non-linear association.

The parabola metabolite-co-expression dynamic was defined as follows:

ρSIM,i,g1g2 =
exp

(
b× ẑDILGOM,g1g2 + a×m2

SIM,i

)
− 1

exp
(
b× ẑDILGOM,g1g2 + a×m2

SIM,i

)
+ 1

, (5.13)

where a = −0.1 and b = 1.1.

5.2.3 DILGOM analysis

The versatility of the GLM defined by (5.1)–(5.3) is illustrated by studying the co-
expression dynamics of the core LL gene module conditional on serum-metabolite
concentrations. The following forms of the model were fitted for each of the six
considered metabolites (described in Section 3.1.1):

model A with unrestricted intercepts γg1g2 and slopes δg1g2 (as in (5.3));

model B with δ12 = δ13 = . . . = δG−1,G (as in null hypothesis (5.9));

model C with γ12 = γ13 = . . . = γG−1,G ;

model D with δ12 = δ13 = . . . = δG−1,G = 0 (as in null hypothesis (5.7)).
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The mean structure (5.1) included the two-way interaction between gene and each
of the following covariates: gender, age, and metabolite concentration. To avoid
instability in the estimation procedure due to the exceptionally small observed me-
tabolite concentrations (see Table 3.1), the models were fitted by using standardized
metabolite concentrations. In particular,

f(mi) = mi − µm
σm

(5.14)

was used in (5.3), where µm and σm are the mean and standard deviation of the
metabolite concentrations, respectively. Subtracting by the mean in (5.14) ensures
that the intercept parameters (γg1g2) are estimated at the mean of the metabolite
concentrations, µm. Inference was based on the LR tests comparing models A and B,
A and C, A and D, and B and D.

5.2.4 Implementation

The models were implemented by using the R v.3.2.3 statistical programming lan-
guage. The restricted log-likelihood defined by (5.5) and (5.6) was optimized by
using the Newton-Raphson algorithm through the R package maxLik (Henningsen
and Toomet, 2011). An analytical gradient was supplied to accelerate convergence
(Lindstrom and Bates, 1988; Lin et al., 2013). The starting values of the models were
based on the parameter estimates of the null model, defined by (5.1) and (5.8), as
obtained by using the gls function of the R package nlme. For instance, the starting
values of the general model, defined by (5.1)–(5.3), were the estimates of the null
model rounded off to either one or six decimal places (the starting values of the slopes
δg1g2 were zero).

5.3 Results

5.3.1 Simulation study

The results of the simulation study are displayed in Table 5.1. A convergence rate
higher than 0.9 was achieved for each of the co-expression dynamics. Non-convergent
samples were excluded from Table 5.1. For a seven-gene module and a sample size
of 450 observations, the LR test controls the Type I error probability (0.061, with
the 95% confidence interval, CI, [0.046, 0.076]) and has a reasonably high power (i.e.,
greater than 0.850) to detect the approximate linear co-expression dynamics. The
power to detect the non-linear associations is lower: it is equal to 0.365, 0.141, and
0.075 for the wave, parabola, and weak association, respectively.
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Table 5.1: Simulation study results: Estimated Type I error probability and power of the
LR test for a seven-gene module and a sample size of 450 observations.

Co-expression dynamics Convergence rate Type I error / Power ∗

no metabolite-co-expression association 0.949 0.061 [0.046, 0.076]
approx. linear negative association 0.937 0.859 [0.837, 0.881]
approx. linear positive association 0.952 0.863 [0.842, 0.885]
non-linear association (wave) 0.951 0.365 [0.334, 0.395]
non-linear association (parabola) 0.979 0.141 [0.119, 0.163]
weak non-linear association 0.950 0.075 [0.058, 0.091]

∗ point estimate [95% confidence interval]

5.3.2 DILGOM analysis

Figures 5.3 to 5.8 illustrate the estimated metabolite-co-expression dynamics for the
models based on total cholesterol in large HDL, linoleic acid, large HDL particles,
small LDL particles, 3-hydroxybutyrate, and small HDL particles, in that order. Each
plot is comprised of a series of curves representing the estimated co-expression (cor-
relation) dynamic in function of the metabolite concentration for each of the core LL
module gene-pairs. The estimated metabolite-co-expression association based on the
sliding-window estimation (see Section 4.2.1) is presented in the top-left plot of each
figure. The other three graphs in each figure presents results obtained for models A,
B, and either C or D (see Section 5.2.3). It is worth noting that model C did not con-
verge successfully for 3-hydroxybutyrate, linoleic acid, total cholesterol in large HDL,
and small HDL particles; therefore, these results are not shown in the figures and,
instead, results for model D are presented. However, based on the sliding-window
correlation estimates, we expect that model C is unlikely to be suitable for the data.
Table 5.2 summarizes the LR test results of the analysis.

Table 5.2: DILGOM analysis results: Likelihood-ratio test results.
Metabolite LR test p-valuesa

A vs. B A vs. C A vs. D B vs. D

3-hydroxybutyrate 0.3982 - 0.3188 0.1138
linoleic acid 0.3107 - 0.1765 0.0388
large HDL particles 0.1302 < 0.0001 0.1090 0.1543
small LDL particles 0.3800 < 0.0001 0.2724 0.0763
total cholesterol in large HDL 0.0334 - 0.0244 0.1114
small HDL particles 0.7771 - 0.3860 0.0071

a Unadjusted p-values are reported.

Standardised metabolite concentrations, as defined by (5.14), were used to fit the
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models for linoleic acid, large HDL particles, small LDL particles, and total cholesterol
in large HDL. For total cholesterol in large HDL (Figure 5.3), the LR test comparing
model A with model B yields the unadjusted p = 0.0334. Thus, conditional on
gene-pair-specific intercepts, one cannot assume the same metabolite effect for each
gene-pair correlation coefficient. The LR test comparing models A and D results
in p = 0.0244. This is a test of conditional co-expression and indicates that total
cholesterol in large HDL is associated with the core LL module co-expression.

By comparing models A and B for linoleic acid (Figure 5.4), large HDL particles
(Figure 5.5), and small LDL particles (Figure 5.6), we find that there is insufficient
evidence of a difference in the metabolite effect for each gene-pair correlation. The LR
tests comparing model A with model C yield p < 0.0001 for large HDL particles, and
p < 0.0001 for small LDL particles implying that the same overall level of correlation
cannot be assumed for each gene-pair. This is consistent with our expectations based
on the exploratory analysis. Based on these results, LR tests comparing models B
and D are used to test for conditional co-expression. It is concluded that linoleic acid
is associated with core LL module co-expression (p = 0.0388). There is insufficient
evidence of a metabolite-co-expression association for large HDL particles and small
LDL particles.

For 3-hydroxybutyrate and small HDL particles, the models using standardized
metabolite concentrations as the covariate did not converge. To overcome this issue,
the natural logarithmic transformation was applied to the highly skewed distributions
of these metabolites (see Figure 3.1). In particular,

f(mi) =
ln(mi)− µln(m)

σln(m)
, (5.15)

where µln(m) and σln(m) are the mean and standard deviation of the logarithmically
transformed concentrations, was used in (5.3).

For 3-hydroxybutyrate (Figure 5.7), comparison of models B and D indicate no
significant metabolite-co-expression association.

For small HDL particles (Figure 5.8), there is a lack of evidence of gene-pair
differences in metabolite effect (conditional on the inclusion of gene-pair-specific in-
tercepts). The LR test comparing models B and D yields p = 0.0071. We therefore
conclude a metabolite-mediated co-expression association for small HDL particles and
the core LL module.
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Figure 5.3: Estimated correlations by the concentration of total cholesterol in large HDL.
Top-left: sliding-window correlation estimates. Top-right: unrestricted model
i.e., the model with gene-pair-specific intercepts and slopes. Bottom-left:
model with equal metabolite effect across gene pairs. Bottom-right: the null
model i.e., the model with no metabolite effect in the variance-covariance
structure.
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Figure 5.4: Estimated correlations by the concentration of linoleic acid. Top-left: sliding-
window correlation estimates. Top-right: unrestricted model i.e., the model
with gene-pair-specific intercepts and slopes. Bottom-left: model with equal
metabolite effect across gene pairs. Bottom-right: the null model i.e., the
model with no metabolite effect in the variance-covariance structure.
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Figure 5.5: Estimated correlations by the concentration of large HDL particles. Top-left:
sliding-window correlation estimates. Top-right: unrestricted model i.e., the
model with gene-pair-specific intercepts and slopes. Bottom-left: model
with equal metabolite effect across gene pairs. Bottom-right: model with
the same overall level of correlation for all gene pairs.

52



5

Modelling the association between module co-expression and a continuous covariate

Figure 5.6: Estimated correlations by the concentration of small LDL particles. Top-left:
sliding-window correlation estimates. Top-right: unrestricted model i.e., the
model with gene-pair-specific intercepts and slopes. Bottom-left: model
with equal metabolite effect across gene pairs. Bottom-right: model with
the same overall level of correlation for all gene pairs.
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Figure 5.7: Estimated correlations by the concentration of 3-hydroxybutyrate. Top-left:
sliding-window correlation estimates. Top-right: unrestricted model i.e., the
model with gene-pair-specific intercepts and slopes. Bottom-left: model with
equal metabolite effect across gene pairs. Bottom-right: the null model i.e.,
the model with no metabolite effect in the variance-covariance structure.
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Figure 5.8: Estimated correlations by the concentration of small HDL particles. Top-left:
sliding-window correlation estimates. Top-right: unrestricted model i.e., the
model with gene-pair-specific intercepts and slopes. Bottom-left: model with
equal metabolite effect across gene pairs. Bottom-right: the null model i.e.,
the model with no metabolite effect in the variance-covariance structure.
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A visual comparison of the model-based estimates with the sliding-window es-
timates shows that for the most part the model is capable of capturing the general
trend in the co-expression change in function of metabolite concentrations (see Fi-
gure 5.3 to Figure 5.8). However, for some gene pairs it seems that the assumption
of a linear relation between the Fisher z-transformed correlation coefficient and the
metabolite concentration may be too restrictive. In those cases, a non-linear function
of the metabolite concentration may provide a better fit. Figure 5.9 shows the model-
A estimated correlation coefficients with point-wise confidence intervals estimated by
the delta method for three gene pairs (FCER1A and CPA3, MS4A2 and GATA2, and
SLC45A3 and FCER1A) in function of the linoleic acid concentration. The sliding-
window correlation estimates are shown in red and the model-estimated correlation
coefficients are shown in black. The model-based results in the top row were obtained
by using standardized metabolite concentrations. The plots suggest that the model
overestimates the co-expression at lower concentrations of linoleic acid. The plots in
the bottom row of Figure 5.9 show the estimates obtained for the model with the
standardized reciprocal of the squared metabolite concentration:

f(mi) = m−2
i − µm−2

σm−2
. (5.16)

In that case, the estimated trajectories are more comparable with the sliding-window
results in that they exhibit a more curvilinear shape than the trajectories shown in
the top row of Figure 5.9.

The residuals of each of the models fitted were examined. They did not show any
substantial heteroscedasticity. However, we observed a few potential outlying obser-
vations in the residuals of the 3-hydroxybutyrate models. The univariate Q-Q plots
indicated that there were some, though not substantial, deviations from normality in
the tails of the residual distributions for gene MS4A2 (see, for instance, Figure 5.10).
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Figure 5.9: Sliding-window correlation estimates together with the model-estimated co-
expression dynamics for three gene pairs of the core LL module by linoleic acid
concentration. Top row: unrestricted model with standardized linoleic acid
concentrations. Bottom row: unrestricted model with standardized reciprocal
of squared linoleic acid concentrations. Sliding-window estimated dynamics
(window incorporates 20% of the data, i.e., w = 0.2) are shown in red and the
model-estimated co-expression dynamics are shown in black. The point-wise
confidence intervals are shown in grey.

57



Modelling the association between module co-expression and a continuous covariate

5

Figure 5.10: Univariate quantile-quantile plots of GLM residuals by gene for the linoleic
acid model with the restriction of an equal metabolite effect for all gene
pairs.
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5.4 Discussion & Conclusions

As illustrated by the simulation study and the analysis of the DILGOM data, the
proposed model offers a formal, flexible framework for investigating different (linear
and non-linear) patterns of gene-module co-expression. The model avoids the need
to categorize the values of a continuous covariate. A variety of hypotheses pertaining
to the form of the gene-module’s co-expression dependence on the covariate can be
tested in a straightforward manner by using the LR test comparing models with
appropriately constrained intercept and/or slope parameters.

Despite the similarity in the simulated metabolite-co-expression dynamics of
Chapter 4 and Chapter 5, the explicit functional forms of the association patterns,
given in Section 4.2.6 and Section 5.2.2, are different. To compare the power of the
two approaches for the various simulated metabolite-co-expression dynamics, it is
necessary to apply the categorical approach, defined in Section 4.2.3, to the simu-
lated data described in Section 5.2.2. The results of this application are presented
in Table B.1.1. The categorical approach of Chapter 4 achieves a slightly higher
convergence rate than the continuous approach proposed in this chapter. A power
comparison indicates that, for the simulated data, the LR test of the continuous-co-
expression approach (power: 0.863 and 0.859 for the positive and negative association,
respectively), described in Section 5.2.1, is substantially higher than the power of the
categorical-co-expression approach (power: 0.215 and 0.218 for the positive and nega-
tive association, respectively), described in Section 4.2.3. For the simulated non-linear
associations, the continuous approach (power: 0.365, 0.141, and 0.075 for the wave,
parabola, and weak associations, respectively) has a slight power advantage over the
categorical approach (power: 0.335, 0.124, and 0.031 for the wave, parabola, and weak
associations, respectively). Although, the increase isn’t significant for the non-linear
wave and parabola associations. The same observation is made when performing the
comparison using a merged convergence rate (i.e., only considering the model runs
which converged in both approaches) (see Table B.1.2).

The transformations and adjustments applied to the metabolite concentrations
and gene-expression values of the DILGOM data differed between Chapter 4 and
Chapter 5. Consequently, the DILGOM results reported in Section 4.3.2 cannot be
directly compared with the results reported in Section 5.3.2. A comparable analysis
of the DILGOM data using the categorical approach results in the unadjusted Larntz
& Perlman p = 0.0111 for 3-hydroxybutyrate, p = 0.0147 for linoleic acid, p = 0.2496
for the concentration of large HDL particles, p = 0.0744 for the concentration of
small LDL particles, p = 0.5182 for total cholesterol in large HDL, and p = 0.1950 for
small HDL particles. Based on these unadjusted p-values, metabolite-co-expression
associations are identified for 3-hydroxybutyrate and linoleic acid. In comparison,
the LR tests comparing model A with the null-model D identified a metabolite-co-
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expression association for total cholesterol in large HDL (p = 0.0244, see Table 5.2).
The LR test comparison of model B with model D identified co-expression associations
with linoleic acid (p = 0.0388) and the concentration of small HDL particles (p =
0.0071).

Computational difficulties are common in fitting multivariate models (Fieuws and
Verbeke, 2006). Convergence issues are amplified as the number of parameters and
the dimension of the variance-covariance matrix increases (see Table 4.2). Excluding
the parameters included in the mean structure, the general model, defined by (5.1)–
(5.3), involves the estimation of G variances and G(G − 1) correlation coefficients,
i.e., G2 parameters in total. Thus, for the seven-gene core LL module (G = 7), the
number of variance-covariance parameters to be estimated is 49. This can be seen
as an advantage over the model defined by (4.2) and (4.3), in Chapter 4, which re-
quired the estimation of SG(G + 1)/2 = 140 variance-covariance parameters for the
seven-gene core LL module (G = 7) and S = 5 subsets of metabolite concentrations.
It is difficult to visualize the likelihood surface and zoom in on the exact cause of
non-convergence or convergence to a solution with a non-zero gradient with the cor-
relation function defined by (5.3). However, some of the strategies we adopted to aid
convergence included standardizing and/or transforming (e.g., logarithmically) the
continuous covariate and selecting suitable starting values.

An important numerical challenge is ensuring that the estimated variance-covariance
matrix is positive definite. This is often achieved by performing unconstrained optimi-
zation with a parameterization that enforces the positive-definiteness of the resulting
matrices (Pinheiro and Bates, 1996). However, the parameterization does not offer a
simple way of expressing the correlation coefficients as known functions of a covariate.
Thus, in our implementation of the model, we simply used a general form of an un-
structured variance-covariance matrix, as in (5.2), and discarded non-positive-definite
solutions.

While the model allows for different functions (linear or non-linear) of the conti-
nuous covariate to be used in (5.3), it does not automatically select the most suitable
transformation based on the observed co-expression dynamic. In practice, one could
consider fitting a variety of models with different covariate functions and select the
best fitting model based on, for instance, the lowest value of Akaike’s Information
Criterion (AIC). In practice, as seen with the DILGOM data, difficulties may arise in
achieving model convergence for some of the functions.

The multivariate normality assumption of the GLM may be considered as a po-
tential drawback. Assessing all aspects of multivariate normality is not a straightfor-
ward process. In our real-life example, quantile-quantile plots of the GLM residuals
were used to assess univariate normality. While univariate normality does not gua-
rantee multivariate normality, it can detect cases of multivariate non-normality.
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To get around some of the difficulties associated with fitting the multivariate mo-
dels, one could also consider implementing the model, defined by (5.1)–(5.3), by using
a pairwise modeling approach similar to the one described by Fieuws and Verbeke
(2006) for linear mixed-effects models. This is the topic of Chapter 7.
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6
Statistical background on
pseudo-likelihood and copulas

This chapter provides a brief introduction to pseudo-likelihood estimation and copu-
las. These concepts are utilized in Chapter 7.

6.1 Pseudo-likelihood

Optimizing a full multivariate likelihood can become increasingly challenging as the
number of parameters and the size of the variance-covariance matrix increases. Pseudo-
likelihood estimation is a way of approximating a numerically complex, full multi-
variate likelihood by a simpler, less computationally burdensome function. Typi-
cally, a pseudo-likelihood function is formed by taking the product of a series of
lower-dimensional marginal and/or conditional densities. Through the use of pseudo-
likelihood functions one can obtain valid point and precision estimates without the
computational difficulties associated with optimizing a full multivariate likelihood.

The definition by Arnold and Strauss (1991) is used to formally define a pseudo-
likelihood function. See also Geys et al. (1999) and Aerts et al. (2002). Let Y i denote
the random variable corresponding to the responses for subject i with i = 1, . . . , N .
We assume that Y i is of constant length n for all i = 1, . . . , N . However, the theory
can be extended to include Y i of variable lengths.

Assume yi is the response vector for subject i. Consider the set S consisting of
2n − 1 vectors of length n. Each vector s ∈ S is comprised of zeros and ones, and
has at least one non-zero entry. Let y(s)

i denote the subvector of yi corresponding
to the components of s that are non-zero. The associated joint density is written
as fs(y(s)

i |Θi) where Θi represents the vector of parameters which characterise the
density. To define a pseudo-likelihood function, a set δ = {δs|s ∈ S} of real numbers
with at least one non-zero component is chosen.
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Definition: The log of the pseudo-likelihood is defined as

ln pl =
N∑
i=1

∑
s∈S

δs ln fs

(
y

(s)
i |Θi

)
(6.1)

The classical full multivariate log-likelihood can be attained by setting δs = 1 for
the vector s ∈ S that consists solely of ones, and δs = 0 otherwise.

Regularity conditions The regularity conditions on the density functions fs(y(s)|Θ)
listed below are necessary to ensure that the log of the pseudo-likelihood function,
defined by (6.1), can be maximised by solving the system of equations obtained by
setting the derivative of (6.1) equal to zero.

A0 The densities fs(y(s)|Θ) are distinct for different values of the parameter vector
Θ.

A1 The densities fs(y(s)|Θ) have a common support that does not depend on Θ.

A2 The parameter space Ω contains an open region ω of which the true parameter
value Θ0 is an interior point.

A3 The region ω is such that for all s ∈ S, and for almost all y(s) in the support of
Y s, the densities fs(y(s)|Θ) admit third derivatives

∂3fs(y(s)|Θ)
∂Θp1∂Θp2∂Θp3

, (6.2)

for all Θ ∈ ω.

A4 The first and second logarithmic derivatives of fs satisfy the equations

EΘ

(
∂ ln fs(y(s)|Θ)

∂Θp

)
= 0, p = 1, . . . , P, (6.3)

and
0 < EΘ

(
−∂2ln fs(y(s)|Θ)

∂Θp1∂Θp2

)
<∞, p1, p2 = 1, . . . , P. (6.4)

A5 The matrix J(Θ) defined by

Jp1p2(Θ) = −
∑
s∈S

∂sEΘ

(
δ2 ln fs(y(s)|Θ)
∂Θp1∂Θp2

)
, (6.5)

is positive definite.
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A6 There exist functions Mp1p2p3 such that

∑
s∈S

δsEΘ

∣∣∣∣ ∂3fs(y(s)|Θ)
∂Θp1∂Θp2∂Θp3

∣∣∣∣ < Mp1p2p3(y) (6.6)

for all y in the support of f, for all Θ ∈ ω, and mp1p2p3 = EΘ0
[Mp1p2p3(Y )] <∞.

The following theorem by Arnold and Strauss (1991) ensures the existence of at
least one solution to the pseudo-likelihood (score) equations that is consistent and
asymptotically normal.

Theorem 3: Consistency and asymptotic normality.
Let (Y 1, . . . ,Y N ) be independent and identically distributed with a common den-
sity that depends on Θ0. Then under regularity conditions (A1)-(A6), the maxi-
miser of the logarithm of the pseudo-likelihood denoted by Θ̂N , has the following
properties:

1. The pseudo-likelihood estimator Θ̂N converges in probability to the true
parameter value, Θ0.

2.
√
N(Θ̂N −Θ0) converges in distribution to

Nq
(
0,J(Θ0)−1K(Θ0)J(Θ0)−1) , (6.7)

where J(Θ) is defined by

Jp1p2(Θ) = −
∑
s∈S

δsEΘ

(
∂2 ln fs(y(s)|Θ)
∂Θp1∂Θp2

)
, (6.8)

and K(Θ) is defined by

Kp1p2(Θ) =
∑

s,t∈S
δsδtEΘ

(
∂ ln fs(y(s)|Θ)

∂Θp1

∂ ln ft(y(t)|Θ)
∂Θp2

)
. (6.9)

The asymptotic normality result provides a way to consistently estimate the
asymptotic covariance matrix. The matrix J is found by evaluating the second deri-
vative of the log of the pseudo-likelihood function at the pseudo-likelihood estimate
Θ̂N and the expectation in K can be replaced by the cross-products of the observed
scores. J−1 is referred to as the model-based variance estimator, which should not
be used as it overestimates the precision. K is referred to as the empirical correction,
and J−1KJ−1 as the empirically-corrected variance estimator.

As discussed by Arnold and Strauss (1991), the Cramér-Rao inequality implies
that J−1KJ−1 is greater than the inverse of I (i.e., the Fisher information matrix
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for the maximum likelihood case), in the sense that J−1KJ−1−I−1 is positive semi-
definite. Asymptotically, a pseudo-likelihood estimator is always less efficient than the
corresponding maximum-likelihood estimator. By using pseudo-likelihood estimation
you gain computational simplicity at the expense of some efficiency loss. Aerts et al.
(2002) show that in many settings asymptotic efficiency losses are minor. Additionally,
Aerts et al. (2002) investigate the small-sample relative efficiency of pseudo-likelihood
estimators versus maximum likelihood estimators, through a simulation study, and
observe relative efficiencies that fluctuate about one, showing instances in which the
the pseudo-likelihood is more favourable than the maximum likelihood estimator.

6.1.1 Pseudo-likelihood inference

Given the close connection between a pseudo-likelihood and a likelihood, Geys et al.
(1999) were able to extend the likelihood-ratio test statistic to the pseudo-likelihood
framework. Our main interest lies in the pseudo-likelihood-ratio (PLR) test statistic.
However, other statistics such as the Wald and score statistics have also been extended
to the pseudo-likelihood framework (Geys et al., 1999).

Pseudo-likelihood-ratio test statistic Suppose we are interested in testing the null
hypothesis H0 : γ = γ0 where γ is a sub-vector of the vector of regression parameters
denoted by β. Let β = (γT , δT )T . Furthermore, let Jγγ denote the r× r sub-matrix
of the inverse of J corresponding to the parameters γ, and let Σγγ denote the r × r
sub-matrix of the empirically-corrected variance-covariance matrix J−1KJ−1. The
PLR test statistic can be computed, in a similar way to the LR test statistic, as twice
the difference between the log of the pseudo-likelihood of the full and reduced models:

G∗2 = 2
[
ln pl(β̂N )− ln pl(γ0, δ̂(γ0))

]
. (6.10)

Geys et al. (1999) show that the asymptotic distribution of G∗2 is the weighted sum∑r
j=1 λjχ

2
1(j) where χ2

1(j) are independently distributed as χ2
1 variables and the weig-

hts λ1 ≥ . . . ≥ λr are the eigenvalues of (Jγγ)−1Σγγ . Alternatively, the adjusted
PLR test statistic, defined by

G∗2a = G∗2/λ̄, (6.11)

where λ̄ is the mean of the eigenvalues λj , is approximately χ2
r distributed. As Geys

et al. (1999) point out, it can be argued that G∗2a can be evaluated under both the
null and the alternative hypotheses. The adjusted statistics are therefore denoted by
G∗2a (H0) and G∗2a (H1) when evaluated under the null and the alternative hypotheses,
respectively.
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6.2 Two-dimensional (bivariate) copulas

Studying the dependence between variables is often of major interest. One way to
model the dependence between two random variables is through the use of a two-
dimensional (bivariate) copula function.

The definitions and theorems described in this chapter are given as provided by
(Nelsen, 2006).

Simply, a two-dimensional (bivariate) copula is a bivariate cumulative distribu-
tion function (CDF) with univariate margins that are uniformly distributed on the
interval [0, 1]. More formally,

Definition 1: A two-dimensional copula is a function C: [0, 1]2 7→ [0, 1] with the
following properties:

1. For every u, v ∈ [0, 1],
C(u, 0) = 0 = C(0, v); (6.12)

2. For every u, v ∈ [0, 1],

C(u, 1) = u and C(1, v) = v; (6.13)

3. For every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (6.14)

The first property implies that a copula C is grounded. If the observed value
of one variable has a marginal probability of zero, then the joint probability of the
two responses is zero. Based on the second property, should the observed value of
one variable have a marginal probability of one, then the joint probability is equal
to the marginal probability of the less certain variable. The third property implies
that the copula C is 2-increasing. This property ensures that the joint probability is
non-negative since the volume of the rectangle [u1, u2]× [v1, v2] is non-negative.

6.2.1 Sklar’s theorem

Copulas are of interest as a way of studying scale-free measures of dependence. The
theorem of Sklar (1959) forms the theoretical foundation necessary for copula based
dependence modelling. Consider the two-dimensional random vector (Y1, Y2). Sup-
pose interest lies in the association between the continuous random variables Y1 and
Y2. Let F (y1, y2) denote the joint CDF of Y1 and Y2 with marginal CDFs F1(y1) and
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F2(y2). Mathematically,

F (y1, y2) = Pr(Y1 ≤ y1, Y2 ≤ y2), (6.15)

F1(y1) = Pr(Y1 ≤ y1), and F2(y2) = Pr(Y2 ≤ y2). (6.16)

Theorem 1: Sklar’s Theorem. Let F be a joint cumulative distribution
function with margins F1 and F2. Then there exists a copula C such that for
all y1, y2 in [−∞,∞],

F (y1, y2) = C(F1(y1), F2(y2)). (6.17)

If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely determined
on RanF1 × RanF2, i.e., the ranges of F1 and F2, respectively. Conversely, if C is
a copula and F1 and F2 are distribution functions, then the function F defined by
(6.17) is a joint distribution function with margins F1 and F2.

According to Sklar’s theorem, the joint distribution of two continuous random
variables can be fully characterised by its univariate marginal distributions and a
copula that captures the dependence between the two variables. Several different
bivariate distributions can be formed by coupling any two univariate distributions,
not necessarily of the same type, with any copula.

6.2.2 Measures of association

The strength of the association modelled by the bivariate copula is commonly expres-
sed in terms of scale-free measures of association such as Kendall’s tau and Spearman’s
rho. The definitions and formulas presented in this section were obtained from Nelsen
(2006).

Kendall’s tau Kendall’s tau, denoted by τ , measures the difference in the probability
of concordance and the probability of discordance between two independent realisati-
ons, say (Y11 , Y21) and (Y12 , Y22), of the random variables Y1 and Y2. In mathematical
notation,

τ = Pr[(Y11 − Y12)(Y21 − Y22) > 0]− Pr[(Y11 − Y12)(Y21 − Y22) < 0]. (6.18)

Kendall’s tau takes on values in the interval [−1, 1]. A value of zero implies indepen-
dence between Y1 and Y2.
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Definition 2: Kendall’s tau in terms of a copula function is given by

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1. (6.19)

Kendall’s tau depends only on the copula function and is independent of the
marginal distributions of Y1 and Y2.

Spearman’s rho Spearman’s rho, denoted by ρs, is also a measure of concordance.
Let (Y11 , Y21), (Y12 , Y22), and (Y13 , Y23) be three realisations of the random variables
Y1 and Y2. Spearman’s rho is proportional to the difference in the probability of
concordance and the probability of discordance between (Y11 , Y21) and (Y12 , Y23).
Mathematically,

ρs = 3Pr[(Y11 − Y12)(Y21 − Y23) > 0]− Pr[(Y11 − Y12)(Y21 − Y23) < 0]. (6.20)

Similar to Kendall’s tau, Spearman’s rho takes on values in the interval [−1, 1]. A
value of zero implies independence between the two random variables Y1 and Y2.

Definition 3: Spearman’s rho in terms of a copula function is given by

ρs = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3. (6.21)

Spearman’s rho is independent of the marginal distributions of Y1 and Y2.

Tail dependence Measures of association, such as Kendall’s tau and Spearman’s rho,
are global measures of the association between two variables. Another concept is tail
dependence which measures the dependence between the variables in the tails of the
data, i.e., at extremely large values (in the joint upper tail of the bivariate distribution)
or at extremely small values (in the joint lower tail of the bivariate distribution). The
choice of copula has an influence on which parts of the distributions of the variables
are more strongly associated. Some examples are given in Section 6.2.4.

6.2.3 Estimation

Our interest lies in fully parametric copula models i.e., models in which both the
copula and its marginal distributions have a parametric form. In this situation, esti-
mation can be performed by maximising the log-likelihood function. Let θ denote the
copula parameter, and φ1 and φ2 denote the parameters that characterise the margi-
nal distributions of Y1 and Y2. The bivariate density of f(y1, y2|θ, φ1, φ2) is obtained

69



Statistical background on pseudo-likelihood and copulas

6

as follows:

f(y1, y2|θ, φ1, φ2) = ∂F (y1, y2|θ, φ1, φ2)
∂y1∂y2

= ∂C (F1(y1|φ1), F2(y2|φ2))
∂F1(y1|φ1)∂F2(y2|φ2) × ∂F1(y1|φ1)

∂y1
× ∂F2(y2|φ2)

∂y2

= c (F1(y1|φ1), F2(y2|φ2)|θ)× f1(y1|φ1)× f2(y2|φ2). (6.22)

The log-likelihood function is

L(θ, φ1, φ2) =
N∑
i=1

ln c (F1(y1i|φ1), F2(y2i|φ2)|θ) +
N∑
i=1

ln f1(y1i|φ1) +
N∑
i=1

ln f2(y2i|φ2).

(6.23)
These results can be found in Joe (2014).

6.2.4 Examples of copulas

Example 1: Minimum and maximum copulas The minimum and maximum copulas
denoted by W and M , respectively, are defined as

W (u, v) = max(u+ v − 1, 0) and M(u, v) = min(u, v). (6.24)

For every copula C(u, v), with (u, v) ∈ [0, 1]× [0, 1], the following inequality applies:

W (u, v) ≤ C(u, v) ≤M(u, v). (6.25)

W and M are also referred to as the Fréchet-Hoeffding lower and upper bounds,
respectively.

Example 2: Product copula The product copula is denoted by Π. It has indepen-
dent margins and has the form

Π(u, v) = uv. (6.26)

Example 3: Gaussian copula The Gaussian copula is part of the Elliptical class of
copulas. Here, we denote the marginal distributions by u1 and u2, instead of u and
v, to be consistent with the notation used in Chapter 7. The CDF of the Gaussian
copula is given by

C(u1, u2|ρ) = Φ2(Φ−1(u1),Φ−1(u2)|ρ), (6.27)

where Φ−1 is the quantile function, i.e., the inverse of the CDF of a N(0, 1) (stan-
dard normal) random variable, and Φ2(·, ·|ρ) is the CDF of two standard-normally
distributed random variables with correlation given by the copula parameter ρ.
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The density of the Gaussian copula is defined as

c(u1, u2|ρ) = 1√
1− ρ2

exp
{
−ρ

2(x2
1 + x2

2)− 2ρx1x2

2(1− p2)

}
, (6.28)

where x1 = Φ−1(u1) and x2 = Φ−1(u2).

The copula parameter ρ, which corresponds to the Pearson correlation coefficient
between u1 and u2, is restricted to the interval [−1, 1]. Closed-form expressions
exist for the relationship between Kendall’s tau and ρ, as well as for the relationship
between Spearman’s rho and ρ. In particular,

τ = 2
π

arcsin (ρ) , (6.29)

and
ρs = 6

π
arcsin

(ρ
2

)
. (6.30)

The Gaussian copula is a symmetric copula. It has no tail dependence, i.e., the same
correlation is modeled for entire span of the distributions of u1 and u2.

The t-copula is an example of another copula that belongs to the Elliptical class
of copulas.

Example 4: Gumbel-Hougaard copula As with the Gaussian copula, we use u1 and
u2 to denote the marginal distributions. The Gumbel-Hougaard copula is from the
Archimedian class of parametric copulas and is defined as

C(u1, u2|θ) = exp
[
−
{

(−ln u1)θ + (−ln u2)θ
} 1
θ

]
, (6.31)

where θ is the copula parameter that is restricted to the interval [1,∞).

The density of the Gumbel-Hougaard copula is defined as

c(u1, u2|θ) = exp
[
−
{

(−ln u1)θ + (−ln u2)θ
} 1
θ

] 1
u1u2

×
{

(− ln u1)θ + (− ln u2)θ
}−2+ 2

θ ( ln u1 ln u2)θ−1

×
[
1 + (θ − 1)

{
(− ln u1)θ + (− ln u2)θ

}− 1
θ

]
. (6.32)

The Gumbel-Hougaard copula represents the case of independence and positive
dependence. When θ approaches 1, the marginals become independent, and when
θ tends to infinity the Gumbel-Hougaard copula approaches the Fréchet-Hoeffding
upper bound (i.e., the marginals become positively dependent). The relationship
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between Kendall’s tau and θ is given by

τ = θ − 1
θ

. (6.33)

There is no closed-form expression for the relation between Spearman’s rho and the
copula parameter θ for the Gumbel-Hougaard copula. The Gumbel-Hougaard copula
has upper-tail dependence for θ 6= 1 and zero lower-tail dependence.

Example 5: Clayton copula The Clayton copula is from the Archimedian class of
parametric copulas and is defined as

C(u1, u2|θ) = (u−θ1 + u−θ2 − 1)− 1
θ , (6.34)

where θ is the copula parameter that is restricted to the interval (0,∞).
The density of the Clayton copula is defined as

c(u1, u2|θ) = (1 + θ)(u1u2)−1−θ

(u−θ1 + u−θ2 − 1) 1
θ+2 . (6.35)

For the Clayton copula, when θ approaches 0, the marginals become indepen-
dent, and when θ tends to infinity the marginals become positively dependent. The
relationship between Kendall’s tau and θ is given by

τ = θ

θ + 2 . (6.36)

The Clayton copula has lower-tail dependence and zero upper-tail dependence.
Other examples of copulas belonging to the Archimedian class include the Frank

and Joe copulas.

6.2.5 Conditional copulas

The dependence between two random variables is often characterised by a single
number. However, sometimes it is of interest to investigate whether the dependence
between two random variables, Y1 and Y2, changes depending on a covariate, M . A
way to investigate this is by using a conditional copula.

Definition 4: The conditional copula of (Y1, Y2)|M = m, where Y1|M = m ∼
F1|M (·|m) and Y2|M = m ∼ F2|M (·|m), is the conditional joint distribution
function of U = F1|M (Y1|m) and V = F2|M (Y2|m) given M = m.

Patton (2006) extended Sklar’s Theorem to conditional distributions.
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Theorem 2: Extension of Sklar’s Theorem to conditional distributi-
ons. Let F1|M (·|m) be the conditional distribution of Y1|M = m, F2|M (·|m) be
the conditional distribution of Y2|M = m, FM (·|m) be the joint distribution of
(Y1, Y2)|M = m, and M be the support of M . If F1|M (·|m) and F2|M (·|m) are
continuous in y1 and y2, for all m ∈ M, then there exists a unique conditional
copula C(·|m), such that

FM (y1, y2|m) = C(F1|M (y1|m), F2|M (y2|m|m)), (6.37)

∀ (y1, y2) ∈ (−∞,∞)×(−∞,∞) and each m ∈M. Conversely, if F1|M (y1|m) is the
conditional distribution of Y1|M = m, F2|M (y1|m) is the conditional distribution
of Y2|M = m, and C(·|m) is a family of conditional copulas measurable in m, then
the FM (·|m) defined in (6.37) is a conditional bivariate distribution function with
conditional marginal distributions F1|M (·|m) and F2|M (·|m).
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7
A copula-based pseudo-likelihood
approach for investigating the
association between gene-module
co-expression and a continuous
covariate

7.1 Introduction

Fitting a multivariate model that completely captures the dependence structure of se-
veral dependent variables is often a complex task in multivariate statistical modelling.
In Chapter 5, a multivariate normal linear model was specified for investigating the
metabolite-co-expression association of a gene module. The model utilizes a complex
correlation structure to model the correlation between adjusted gene-expression values
in function of the continuous covariate (i.e., metabolite concentrations). Maximising
the full multivariate likelihood may not always be feasible due to computational chal-
lenges that arise as the number of parameters and the number of genes that constitute
the gene module increases. Adopting a pseudo-likelihood approach can significantly
reduce the challenge of constructing the multivariate distribution.

In this chapter, we propose to estimate the parameters of the multivariate nor-
mal linear model described in Section 5.2.1 with a pseudo-likelihood function. In
particular, the multivariate density is replaced by the product of all pairwise densi-
ties over the set of all possible gene pairs within the gene module. Additionally, the
bivariate densities are modelled by using Gaussian conditional copulas that specify
the gene-pair correlations as functions of the metabolite concentration. In this way,
the computational burden is reduced. Moreover, the Gaussian conditional copula
facilitates the estimation of other non-parametric measures of the association (for in-
stance, Kendall’s tau and Spearman’s rho). Pseudo-likelihood ratio (PLR) tests can
be employed to infer conditional co-expression. The proposed model is applied to the
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DILGOM data, described in Chapter 3, to investigate the metabolite-co-expression
association of the core LL module. The Gaussian copula-based pseudo-likelihood
approach opens the possibility to consider a wide range of copulas to study the con-
ditional co-expression of a gene module. As an alternative to assuming a Gaussian
distribution, we consider modelling the bivariate densities using Gumbel-Hougaard
and Clayton conditional copulas. A simulation study is conducted to investigate the
Type I error probability and power of the PLR test.

The chapter is organised as follows. Section 7.2 describes the copula-based
pseudo-likelihood approach, simulation study, and DILGOM study. Results of the
simulation study and DILGOM study are reported on in Section 7.3. A discussion of
the results and conclusions are provided in Section 7.4.

7.2 Statistical methodology

7.2.1 Copula-based pseudo-likelihood approach

In this section, we first describe a pseudo-likelihood function with Gaussian copulas for
approximating the multivariate normal model described in Section 5.2.1. The pseudo-
likelihood is then adapted, through the use of non-Gaussian copulas, for a multivariate
model with an ‘unspecified’ distribution. The estimation of the parameters of the
pseudo-likelihood and an approach for inferring conditional co-expression is described
towards the end of the section.

Pseudo-likelihood with Gaussian copulas for a multivariate normal model

Pseudo-likelihood estimation using a pairwise-likelihood function and conditional co-
pulas is used to approximate the multivariate normal likelihood defined by (5.6) in
Section 5.2.1.

Consider the set S of indices corresponding to all possible pairs of genes (g1, g2)
in a gene module, where 1 ≤ g1 < g2 ≤ G (G = 7 for the core LL module). Let
Yg1 and Yg2 denote the gene-expression values for genes g1 and g2, respectively. Let
yi = (yi,1, . . . , yi,G)T denote the response vector for the i-th individual, where i =
1, . . . , N .

The pseudo-likelihood function, denoted by pl, is obtained by evaluating the
product of the bivariate densities of all possible pairs of genes in the gene module. In
mathematical notation,

pl =
N∏
i=1

∏
(g1,g2)∈S

fg1g2|X(yi,g1 , yi,g2 |Xi,Θ∗g1g2
), (7.1)
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where Xi is a 2 × R-dimensional matrix of covariates for the i-th individual,
fg1g2|X(yi,g1 , yi,g2 |Xi,Θ∗g1g2

) is the value of the bivariate density of genes g1 and
g2 conditional on X evaluated for the respective responses of individual i, and Θ∗g1g2

is a vector comprised of the parameters that characterise the bivariate density of genes
g1 and g2. It is a sub-vector of the full vector of parameters Θ∗. The model para-
meters Θ∗ can be chosen in the same way as the parameters of the full-multivariate
likelihood, defined by (5.6), in order to retain their meaning.

The bivariate densities of (7.1) are modeled using conditional copulas. Let the
full vector of parameters

Θ∗ = (β∗1, . . . ,β∗G, σ2∗
1 , . . . , σ2∗

G , γ
∗
1 , . . . , γ

∗
G(G−1)/2, δ

∗
1 , . . . , δ

∗
G(G−1)/2)T ,

and let the gene-pair specific vector of parameters

Θ∗g1g2
= (β∗g1

,β∗g2
, σ2∗
g1
, σ2∗
g2
, γ∗g1g2

, δ∗g1g2
)T .

By utilizing result (6.22), we obtain

pl =
N∏
i=1

∏
(g1,g2)∈S

fg1g2|X(yig1 , yig2 |Xi,β
∗
g1
,β∗g2

, σ2∗
g1
, σ2∗
g2
, γ∗g1g2

, δ∗g1g2
),

=
N∏
i=1

∏
(g1,g2)∈S

c(ui,g1 , ui,g2 |xi,β
∗
g1
,β∗g2

, σ2∗
g1
, σ2∗
g2
, γ∗g1g2

, δ∗g1g2
)

× fg1|X(yi,g1 |xi,β
∗
g1
, σ2∗
g1

)
× fg2|X(yi,g2 |xi,β

∗
g2
, σ2∗
g2

), (7.2)

where c
(
·|Θ∗g1g2

)
denotes the density of the bivariate conditional copula for genes g1

and g2, and ui,g1 and ui,g2 are the values of the conditional marginal distributions of
Yg1 and Yg2 , respectively, evaluated for the i-th individual. In particular,

ui,g1 = Fg1|X(yi,g1 |xi,β
∗
g1
, σ2∗
g1

), (7.3)
and

ui,g2 = Fg2|X(yi,g2 |xi,β
∗
g2
, σ2∗
g2

). (7.4)

Furthermore, in equation (7.2), fg1|X(yi,g1 |xi,β
∗
g1
, σ2∗
g1

) and fg2|X(yi,g2 |xi,β
∗
g2
, σ2∗
g2

)
correspond to the values of the conditional marginal densities of Yg1 and Yg2 , re-
spectively, for the i-th individual, and xi is a vector of covariates of length R for
individual i. The parameters β∗g1

, β∗g2
, σ2∗

g1
, and σ2∗

g2
characterise the conditional mar-

ginal distributions (densities), and γ∗g1g2
and δ∗g1g2

characterise the copula parameter.
Specifically, β∗g1

and β∗g2
are vectors of regression parameters corresponding to the

77



Copula-based pseudo-likelihood approach

7

conditional marginal distributions (densities) of Yg1 and Yg2 , respectively, while σ2∗
g1

and σ2∗
g2

denote the variance of gene g1 and g2, respectively. Analogous to γg1g2 and
δg1g2 in (5.3), γ∗g1g2

and δ∗g1g2
are intercept and slope parameters which define the

correlation between genes g1 and g2 as a function of the metabolite concentrations,
denoted by mi.

To approximate the multivariate normal likelihood, defined by (5.6), the Gaussian
copula density function, defined by (6.28), with normal margins is used to model the
bivariate densities.

When using the Gaussian conditional copula, the Fisher-z-transformed correla-
tions are modelled as a linear function of the metabolite concentrations mi:

ln
(

1 + ρi,g1g2

1− ρi,g1g2

)
= γ∗g1g2

+ δ∗g1g2
g(mi), (7.5)

where ρi,g1g2 is the Gaussian copula parameter (corresponding to the Pearson corre-
lation coefficient) between genes g1 and g2 for the i-th individual. This is the same
relationship that was used in the multivariate normal model. From (7.5) it can be
deduced that

ρi,g1g2 =
exp

{
γ∗g1g2

+ δ∗g1g2
g(mi)

}
− 1

exp
{
γ∗g1g2

+ δ∗g1g2
g(mi)

}
+ 1

. (7.6)

As described in Section 5.2.1, there are many choices for the function g(·). For
instance, one can assume g(mi) = mi or g(mi) = ln(mi).

The pseudo-likelihood function, defined by (7.2)–(7.5), which incorporates the
Gaussian copula density, defined by (6.28), approximates the multivariate normal
linear likelihood defined by (5.2), (5.3), and (5.6).

A benefit of using copulas is that scale-free measures of association such as Ken-
dall’s tau, denoted by τ , or Spearman’s rho, denoted by ρs, can be used to assess the
strength of the dependence between the variables.

An alternative to (7.5) is to model the logit-transformed Kendall’s tau correlati-
ons as a linear function of the metabolite concentrations. In particular,

logit(τi,g1g2) = ln
(

τi,g1g2

1− τi,g1g2

)
= γ∗g1g2

+ δ∗g1g2
g(mi), (7.7)

where τi,g1g2 is Kendall’s tau between genes g1 and g2 for the i-th individual. From
(7.7), it follows that

τi,g1g2 =
exp

{
γ∗g1g2

+ δ∗g1g2
g(mi)

}
exp

{
γ∗g1g2

+ δ∗g1g2
g(mi)

}
+ 1

. (7.8)

As stated in Section 6.2.4, the relationship between Kendall’s tau and the Gaussian
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copula parameter is given by

τi,g1g2 = 2
π

arcsin (ρi,g1g2) . (7.9)

Thus, when using (7.7), the assumed relationship between the copula parameter (i.e.,
Pearson’s correlation coefficient) and the metabolite concentration is

ρi,g1g2 = sin
[
π

2
exp

{
γ∗g1g2

+ δ∗g1g2
g(mi)

}
exp

{
γ∗g1g2

+ δ∗g1g2
g(mi)

}
+ 1

]
. (7.10)

Pseudo-likelihood with non-Gaussian copulas

The pseudo-likelihood function described up until this point approximates a multi-
variate normal model by a product of bivariate normals through the use of Gaussian
copulas. Apart from the Gaussian copula, there are many other copulas that can be
used to model the bivariate densities in (7.2). The pseudo-likelihood function that
arises from using an alternative copula, ceases to be an approximation of a multivari-
ate normal likelihood. Rather, it corresponds to an ‘unspecified’ multivariate model.
As alternatives to the Gaussian copula, we consider modelling the bivariate densities
using the Gumbel-Hougaard copula, defined by (6.31), with corresponding density de-
fined by (6.32), and the Clayton copula, defined by (6.34), with corresponding density
defined by (6.35) .

For both the Gumbel-Hougaard and the Clayton copula-based pseudo-likelihoods,
we assume that Kendall’s tau is linked to the metabolite concentrations via the logit
transformation, as defined in (7.7). The relationship between Kendall’s tau and the
Gumbel-Hougaard copula parameter is given by

τi,g1g2 = θi,g1g2 − 1
θi,g1g2

, (7.11)

where θi,g1g2 is the Gumbel-Hougaard copula parameter between genes g1 and g2 for
the i-th individual. The relationship between Kendall’s tau and the Clayton copula
parameter is given by

τi,g1g2 = θi,g1g2

θi,g1g2 + 2 , (7.12)

where θi,g1g2 is the Clayton copula parameter between genes g1 and g2 for the i-th
individual.

79



Copula-based pseudo-likelihood approach

7

Estimation

The parameters of the pseudo-likelihood can be estimated by maximising the loga-
rithm of the pseudo-likelihood function given by

ln pl =
N∑
i=1

∑
(g1,g2)∈S

ln c(ui,g1 , ui,g2 |Xi,β
∗
g1
,β∗g2

, σ2∗
g1
, σ2∗
g2
, γ∗g1g2

, δ∗g1g2
)

+ ln fg1|X(yi,g1 |Xi,β
∗
g1
, σ2∗
g1

)
+ ln fg2|X(yi,g2 |Xi,β

∗
g2
, σ2∗
g2

). (7.13)

The pseudo-likelihood estimator Θ̂
∗ is defined as the maximiser of (7.13). The

model-based variances of the parameters must be adjusted to account for the assumed
independence amongst the terms forming the pseudo-likelihood. The empirically-
corrected variance-covariance matrix is obtained from the asymptotic normality result
discussed in Section 6.1 (i.e., Theorem 3), and is given by

Σ
(
Θ̂
∗) = J

(
Θ̂
∗)−1

K
(
Θ̂
∗)
J
(
Θ̂
∗)−1

(7.14)

where J
(
Θ̂
∗) can be estimated as minus the second derivative of the pseudo-likelihood

function evaluated at Θ̂
∗, and K

(
Θ̂
∗) is the cross-product of the observed scores.

Inference

The null hypothesis model which corresponds to no metabolite-co-expression asso-
ciation can be obtained by setting the slope parameters δ∗g1g2

, in (7.5) or (7.7), to
zero. The null hypothesis can be tested using the PLR test statistic described in
Section 6.1.1.

7.2.2 Simulation study

A simulation study is conducted to investigate the performance of the pseudo-likelihood
approach in the multivariate normal case. The data simulated to investigate the Type
I error probability and power of the LR test in Chapter 5 are used in this chapter to
investigate the Type I error probability and the power of the PLR test and adjusted
PLR test statistics described in Section 6.1.1. In particular, 1000 datasets of 450
observations each were simulated for each of the metabolite-co-expression association
dynamics illustrated in Figure 5.2. For each dataset, metabolite concentrations were
sampled from a N(0, 1) distribution. Gene-expression values for a seven-gene module
were sampled from a multivariate normal distribution with means and variances cor-
responding to those observed for the core LL-module genes in the DILGOM subset.
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The gene-pair correlations were simulated according to one of the six metabolite-co-
expression association patterns illustrated in Figure 5.2. The explicit functional forms
of each of the association patterns shown in Figure 5.2 were specified in Section 5.2.2.

The multivariate normal model defined by (5.1)–(5.3), and the null-hypothesis
model defined by (5.1) and (5.8), were applied to the simulated data. Parameters were
estimated by maximising the likelihood, defined by (5.6), as well as by maximising the
pseudo-likelihood, defined by (7.2)–(7.5), with the Gaussian copula density, defined
by (6.28), and normal margins.

This simulation study is based on 1000 replicates. This may seem insufficient.
However, the decision was made taking into account the numerical complexity of the
task, in particular, for fitting the multivariate model.

7.2.3 DILGOM analysis

The DILGOM data, described in Chapter 3, is analysed to illustrate the use of the
pseudo-likelihood function, defined by (7.2)–(7.4), with bivariate densities modeled
using Gaussian copulas. The data is also used to explore the use of alternative co-
pulas such as the Gumbel-Hougaard and Clayton copulas. The pseudo-likelihood
function is applied to the DILGOM subset to study the co-expression dynamics of
the core LL-module conditional on serum-metabolite concentrations. The following
forms of the pseudo-likelihood were maximized for each of the six considered meta-
bolites (described in Section 3.1.1):

model A(H1) with the Gaussian copula density (as in 6.28) and the Fisher-z relati-
onship (as in 7.5);

model A(H0) with the Gaussian copula density and δ∗12 = δ∗13 = . . . = δ∗G−1,G = 0 in
the Fisher-z relationship (i.e., the null-hypothesis model);

model B(H1) with the Gaussian copula density and the logit relationship (as in 7.7);

model B(H0) with the Gaussian copula density and δ∗12 = δ∗13 = . . . = δ∗G−1,G = 0 in
the logit relationship;

model C(H1) with the Gumbel-Hougaard density (as in 6.32) and the logit relations-
hip;

model C(H0) with the Gumbel-Hougaard density and δ∗12 = δ∗13 = . . . = δ∗G−1,G = 0
in the logit relationship.

model D(H1) with the Clayton density (as in 6.35) and the logit relationship;

model D(H0) with the Clayton density and δ∗12 = δ∗13 = . . . = δ∗G−1,G = 0 in the logit
relationship.
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Using multiple linear regression, the gene-expression values of each gene were adjusted
for gender, age, and metabolite concentration. The metabolite concentrations were
standardized to avoid instability in the estimation procedure caused by the exceptio-
nally small observed metabolite concentrations (see Table 3.1). In particular,

g(mi) = mi − µm
σm

, (7.15)

was used in (7.5) and (7.7), where µm and σm are the mean and standard deviation
of the metabolite concentrations, respectively. Inference of conditional co-expression
was based on the PLR test statistics comparing the alternative and null-hypothesis
models, i.e., A(H1) vs. A(H0), B(H1) vs. B(H0), C(H1) vs. C(H0), and D(H1) vs.
D(H0).

A data-driven approach based on the Akaike Information Criterion (AIC) of each
gene-pair’s contribution to the pseudo-likelihood was used to select the best copula
(from the Gaussian, Gumbel-Hougaard, and Clayton copulas) for each gene pair. The
AIC is defined as

AIC = −2 (log-likelihood) + 2k, (7.16)

where k is the number of model parameters. Since the parameters of model B(H1),
model C(H1), and model D(H1) are selected in the same way and have the same inter-
pretation, the number of parameters corresponding to each gene-pair’s contribution
will be the same for the two models. As such, we can select the best copula for each
gene pair by simply comparing their corresponding likelihood contributions to the
pseudo-likelihood function. The most suitable copula for a particular gene pair, is the
one with the largest likelihood contribution to the pseudo-likelihood function.

7.2.4 Implementation

The maximisation of the pseudo-likelihood functions was accomplished by using the
R v.3.4.0 statistical programming language. The logarithm of the pseudo-likelihood
defined by (7.13) was optimized by using the Newton-Raphson algorithm through
the R package maxLik (Henningsen and Toomet, 2011). An analytical gradient was
supplied to accelerate convergence. Derivatives of the Gaussian copula, Gumbel-
Hougaard copula, and Clayton copula can be found in Appendix C.1. The starting
values for the optimization routine were obtained by fitting linear models of the
gene-expression values adjusted for age, gender, and metabolite concentrations. The
regression parameters of the linear models were rounded off to one or six decimal places
and used as starting values for the regression coefficients of the pseudo-likelihood
function. Initial estimates of the variances and intercept parameters γg1g2 were based
on the variances and correlations of the linear-model residuals (also rounded off to
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one or six decimal places), respectively. Initial estimates of zero were used for the
slope parameters δg1g2 .

7.3 Results

7.3.1 Simulation study: Gaussian copula

The Type I error probability of the PLR test statistic G∗2, defined by (6.10), and the
adjusted PLR test statistics G∗2a (H0) and G∗2a (H1), defined by (6.11), was investiga-
ted. The Type I error probabilities of the statistics are reported in Table 7.1 for a
seven-gene module and a sample size of 450 observations. Of the three test statistics,
only G∗2 (i.e., the unadjusted PLR test statistic) controls the Type I error probability
at the nominal level of 0.05.

Table 7.1: Simulation study results: Estimated Type I error
probability of the PLR test and adjusted PLR test
statistics for a seven-gene module and a sample
size of 450 observations.

Test statistic Type I error probability∗

G∗2(H0) 0.048 [0.035, 0.061]
G∗2a (H1) 0.118 [0.098, 0.138]
G∗2a (H0) 0.113 [0.093, 0.133]

∗ point estimate [95% confidence interval]

Given the results of the Type I error investigation, the remaining simulation
study results pertain to the power of the PLR test statistic G∗2. However, the es-
timated power of the adjusted PLR statistics, G∗2a (H1) and G∗2a (H0), based on the
simulated distribution of the test statistics under the null hypothesis are given in
Table C.2.1 and Table C.2.2. The simulation study results for G∗2 are shown in
Table 7.2. No convergence difficulties were encountered when optimising the pseudo-
likelihood function for the six metabolite-co-expression dynamics. For the simulated
seven-gene module and a sample size of 450 observations, G∗2 has a Type I error
probability of 0.048 (95% CI: [0.035, 0.061]). The power of the PLR test to detect
the approximately linear negative and positive associations is large (0.984 and 0.988,
respectively). Smaller estimates of the power of G∗2 were obtained for the non-linear
associations. In particular, for the wave association, a power of 0.580 is obtained; for
the weak non-linear association, a power of 0.063 is obtained; and the lowest power of
0.044 was estimated for the parabola association. This is to be expected given that,
in those cases, the simulated patterns were non-linear while the assumed relationship
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between the correlations and the metabolite concentrations were monotonic functions
of the concentrations.

Table 7.2: Simulation study results: Estimated Type I error proba-
bility and power of the PLR test for a seven-gene module
and a sample size of 450 observations.

Co-expression dynamics Type I error or power∗

no metabolite-co-expression association 0.048 [0.035, 0.061]
approx. linear negative association 0.984 [0.976, 0.992]
approx. linear positive association 0.988 [0.981, 0.995]
non-linear association (wave) 0.580 [0.549, 0.611]
non-linear association (parabola) 0.044 [0.031, 0.057]
weak non-linear association 0.063 [0.048, 0.078]

∗ point estimate [95% confidence interval]

A comparison of the PLR and the LR test results is shown in Table 7.3. The
maximisation of the full-likelihood did not achieve a hundred percent convergence,
in contrast to the pseudo-likelihood. Table 7.3 only reflects the cases in which both
the optimisation of the pseudo-likelihood and the optimisation of the full-likelihood
converged. The results show that, in the considered setting, the pseudo-likelihood ap-
proach does not lead to any considerable power loss as compared to the full-likelihood
maximization. In fact, for the approximate linear negative and positive association,
and the wave association, we observe an increase in the power of the PLR test sta-
tistic compared to the LR test statistic. It appears that the closer the estimated
co-expression dynamic is to the null hypothesis, the greater the loss in power of the
PLR test when compared to the LR test.

Density plots of the PLR and LR test statistics are shown in Figure 7.1 and Fi-
gure 7.2, respectively, for the six co-expression dynamics. Higher powers are obtained
for the co-expression dynamics with observed (PLR or LR test statistic) distributions
that have the least overlap with the asymptotic distributions of the test statistics
(shown in green). The empirical CDF plots of the PLR and LR test statistics are
shown in Figure C.3.1 and Figure C.3.2, respectively, for the six co-expression dyna-
mics.

84



Table 7.3: Simulation study results: Comparison of the PLR test and the LR test in terms of estima-
ted Type I error probability and power for a seven-gene module and a sample size of 450
observations.

Co-expression MVN Type I error or power∗
dynamics convergence PLR test LR test

no metabolite-co-expression association 918 0.041 [0.029, 0.054] 0.061 [0.046, 0.076]
approx. linear negative association 912 0.985 [0.977, 0.993] 0.863 [0.841, 0.885]
approx. linear positive association 923 0.988 [0.981, 0.995] 0.872 [0.851, 0.894]
non-linear association (wave) 922 0.573 [0.541, 0.605] 0.374 [0.343, 0.405]
non-linear association (parabola) 966 0.043 [0.031, 0.056] 0.142 [0.120, 0.164]
weak non-linear association 924 0.056 [0.041, 0.071] 0.070 [0.054, 0.087]

∗ point estimate [95% confidence interval]



Copula-based pseudo-likelihood approach

7

0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

No metabolite−co−expression association

PLR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

Approx. linear negative association

PLR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

Approx. linear positive association

PLR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

Non−linear association (wave)

PLR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

Non−linear association (parabola)

PLR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

Weak non−linear association

PLR statistic

D
en

si
ty

asymptotic distribution
observed distribution

Figure 7.1: Density plots of the observed PLR test statistics for each of the six co-
expression dynamics together with the asymptotic distribution of the PLR
test statistic. In each plot, the asymptotic distribution of the PLR test
statistic is shown in green.

86



7

Copula-based pseudo-likelihood approach

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

No metabolite−co−expression association

LR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

Approx. linear negative association

LR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

Approx. linear positive association

LR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

Non−linear association (wave)

LR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

Non−linear association (parabola)

LR statistic

D
en

si
ty

asymptotic distribution
observed distribution

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

Weak non−linear association

LR statistic

D
en

si
ty

asymptotic distribution
observed distribution

Figure 7.2: Density plots of the observed LR test statistics for each of the six co-
expression dynamics together with the asymptotic distribution of the LR test
statistic. In each plot, the asymptotic distribution of the LR test statistic is
shown in green.
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7.3.2 DILGOM analysis: Gaussian copula

Table 7.4 presents the results of the DILGOM analysis, conducted using the pseudo-
likelihood function with Gaussian copulas, for the six considered metabolites. In par-
ticular, the table shows the unadjusted p-values of the PLR tests for the comparison of
the alternative models with the null-hypothesis model of no metabolite-co-expression
association.

Table 7.4: DILGOM analysis: Gaussian copula pseudo-likelihood-ratio test results.
Pseudo-likelihood-ratio test p-values

Metabolite A(H1) vs. A(H0)a B(H1) vs. B(H0)b

3-hydroxybutyrate 0.5549 0.5573
linoleic acid 0.0571 0.0595
large HDL particles 0.0357 0.0334
small LDL particles 0.0789 0.0799
total cholesterol in
large HDL 0.0223 0.0212

small HDL particles 0.0154 0.0156
a model A(H1): with Gaussian copula and Fisher-z relationship defined by (7.5)

model A(H0): with Gaussian copula and δ∗12 = δ∗13 = . . . = δ∗G−1,G = 0 in (7.5)
b model B(H1): with Gaussian copula and logit relationship defined by (7.7)

model B(H0): with Gaussian copula and δ∗12 = δ∗13 = . . . = δ∗G−1,G = 0 in (7.7)

Based on the PLR tests of models A(H1) vs. A(H0) for the six metabolites, we
find that the core LL-module exhibits a significant metabolite-co-expression associa-
tion with the concentration of large HDL particles (p = 0.0357), total cholesterol in
large HDL (p = 0.0223), and small HDL particles (p = 0.0154). Figure 7.3 illustra-
tes the estimated metabolite-co-expression dynamics based on model A(H1) for the
six considered metabolites. Each curve corresponds to the estimated metabolite-co-
expression dynamic of a particular gene pair of the core LL-module.

Figure 7.4 illustrates the estimated co-expression dynamic for 3-hydroxybutyrate
based on model A(H1) and A(H0) in terms of Pearson’s correlation, Spearman’s rho,
and Kendall’s tau. The top row and the bottom row of each figure present the results
of the alternate model A(H1) and null-hypothesis model A(H0), respectively. The
closed form expressions for the relationship between Spearman’s rho and the Gaussian
copula parameter ρ (i.e., the Pearson correlation coefficient), defined by (6.30), as well
as between Kendall’s tau and ρ, defined by (6.29), are used to translate the estimated
correlation trajectories from the Pearson correlation scale to the Spearman’s rho and
Kendall’s tau scale.
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Figure 7.3: Estimated correlation dynamics for the considered metabolites based on mo-
del A(H1) (i.e., the pseudo-likelihood function with a Gaussian copula and
Fisher-z correlation-metabolite relationship defined by (7.5)).
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Figure 7.4: Estimated trajectories for the 3-hydroxybutyrate-co-expression association

based on model A(H1) and model A(H0) in terms of Pearson’s correlati-
ons, Spearman’s rho, and Kendall’s tau. The top row presents the results
of the alternate model A(H1) and the bottom row displays the results of the
null-hypothesis model A(H0).
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Based on the PLR tests comparing models B(H1) and B(H0), for the six meta-
bolites, a significant co-expression-metabolite effect is identified for the concentration
of large HDL particles (p = 0.0334), total cholesterol in large HDL (p = 0.0212), and
small HDL particles (p = 0.0156).

7.3.3 DILGOM analysis: Non-Gaussian copulas

Table 7.5 presents the results of the DILGOM analysis, using the pseudo-likelihood
function with non-Gaussian copulas, for the six considered metabolites. Based on
the PLR tests comparing model C(H1) vs. C(H0), there is insufficient evidence to
conclude a metabolite-co-expression association for any of the six metabolites. The
PLR test p-values for D(H1) vs. D(H0) indicate that the core LL-module exhibits a
significant metabolite-co-expression association with the concentration of large HDL
particles (p = 0.0089) and total cholesterol in large HDL (p = 0.0097).

Table 7.5: DILGOM analysis: Non-Gaussian copula pseudo-likelihood-ratio test results.

Metabolite Pseudo-likelihood-ratio test p-values
C(H1) vs. C(H0)c D(H1) vs. D(H0)d

3-hydroxybutyrate 0.7062 0.5832
linoleic acid 0.2958 0.2421
large HDL particles 0.3011 0.0089
small LDL particles 0.3750 0.0867
total cholesterol in large HDL 0.2312 0.0097
small HDL particles 0.1215 0.2240

c model C(H1): with Gumbel-Hougaard copula and logit relationship defined by (7.7)
model C(H0): with Gumbel-Hougaard copula and δ∗12 = δ∗13 = . . . = δ∗G−1,G = 0 in (7.7)

d model D(H1): with Clayton copula and logit relationship defined by (7.7)
model D(H0): with Clayton copula and δ∗12 = δ∗13 = . . . = δ∗G−1,G = 0 in (7.7)

Figure 7.5 illustrates the co-expression dynamics in terms of Kendall’s tau, as
estimated by model B(H1), model C(H1), and model D(H1) for 3-hydroxybutyrate.
Slight differences can be seen in the estimated co-expression dynamics of the three mo-
dels. Comparisons of the log-likelihood contributions of each gene pair to the pseudo-
likelihood of model B(H1) (i.e., with the Gaussian copula), the pseudo-likelihood of
model C(H1) (i.e., with the Gumbel-Hougaard copula), and the pseudo-likelihood
of model D(H1) (i.e., with the Clayton copula) indicate that the Gaussian copula
consistently provides a better fit for the bivariate densities.
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Figure 7.5: Estimated trajectories for the 3-hydroxybutyrate-co-expression association
based on model B(H1) (i.e., with the Gaussian copula), model C(H1) (i.e.,
with the Gumbel-Hougaard copula), and model D(H1) (i.e., with the Clayton
copula).
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7.4 Discussion & Conclusions

In this chapter, we proposed using pseudo-likelihood estimation, in particular, a
pairwise-likelihood function with conditional copulas, to approximate the full-multivariate
likelihood (5.6) of model (5.1)–(5.3) described in Chapter 5. By using the pseudo-
likelihood function, the computational burden is reduced. The use of conditional
copulas provides increased flexibility. By using conditional copulas, co-expression
can be modelled in terms of scale-free measures of association, such as Kendall’s tau
and Spearman’s rho, in function of the metabolite concentration. Furthermore, the
pseudo-likelihood can be implemented using a non-Gaussian copula; thereby, avoi-
ding the assumption of bivariate normally-distributed random variables. Inference
of conditional co-expression can be based on PLR test statistics comparing the the
null model of no metabolite-dependent co-expression with the alternate model with
unrestricted intercept γg1g2 and slope δg1g2 parameters.

Often, the price-to-pay for the computational simplicity gained through the use
of a pseudo-likelihood approach is a loss in efficiency. In the simulation study, when
the estimated co-expression dynamic is relatively close to the null hypothesis (i.e., for
the non-linear parabola association and weak non-linear association), the PLR test
experiences a drop in power compared to the LR test. This result is not surprising in
the context of Molenberghs et al. (2011) who investigate the asymptotic efficiency of a
pseudo-likelihood approach for partitioned samples (PPL) relative to maximum likeli-
hood (ML). The asymptotic relative efficiency is defined as the variance of the ML to
the PPL. In the case of dependent sub-samples of a compound-symmetry multivariate
normal sample, they find that full efficiency is sometimes, but not always, reached. In
fact, they illustrate that the efficiency loss depends on the parameter under considera-
tion (i.e., the mean, variance, or correlation), and, for variance-components, possibly
on the value of the parameter. Situations in which the pseudo-likelihood outperforms
a maximum-likelihood approach, as observed in our simulation study for the approx-
imate linear negative (positive) association and the non-linear wave association, have
been reported in the literature. For instance, Andor and Parmeter (2017) examine
the mean square errors of parameters estimated using PL and ML estimation, and
find that in their scenario, PL outperforms ML when the sample size is small.

In the DILGOM analysis, the PLR test comparing the alternate model A(H1) and
null-hypothesis model A(H0) for the six considered metabolites indicated that three
metabolites, i.e., large HDL particles, total cholesterol in large HDL, and small HDL
particles, are associated with core LL-module co-expression. In Section 5.3.2, the LR
test statistics comparing the alternate model A and the null-hypothesis model D only
indicated an association between total cholesterol in large HDL and core LL-module
co-expression (see Table 5.2). Thus, in comparison to the full-likelihood maximisation,
a greater number of metabolite-co-expression associations were identified through
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maximising the pseudo-likelihood.
In the DILGOM analysis, the bivariate densities of the pseudo-likelihood are mo-

deled using Gaussian copulas in model B(H1), Gumbel-Hougaard copulas in model
C(H1), and Clayton copulas in model D(H1). A multitude of other copulas can be
selected to model the bivariate densities. The Gumbel-Hougaard and Clayton copulas
were selected for ease of illustration as an alternative to the Gaussian copula. The li-
kelihood contribution of each gene pair towards the pseudo-likelihood of model B(H1),
model C(H1), and model D(H1) was compared in order to determine which copula
is better suited for modelling each pair of genes of the core LL-module. A formal
approach for pseudo-likelihood model selection was not addressed in this chapter and
is a topic for further research.
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8
Introduction to metabolic data analysis

Metabolomics is a comprehensive analysis in which the small molecule or metabolite
composition of cells, tissues, or biofluids (e.g., urine, cerebrospinal fluid, or blood
plasma) is identified and quantified. The metabolome (i.e., the complete set of meta-
bolites present in a biological sample, in a particular physiological state) is comprised
of a diverse group of small molecules with molecular masses less than 1500 Da. It in-
cludes compounds belonging to various chemical classes including amino acids, sugars,
organic acids, and lipids amongst others.

Metabolites are the intermediates or the end products of virtually all biologi-
cal processes. The metabolome is located further down the cascade from gene to
function than the transcriptome and proteome. Thus, changes that occur in the ge-
nome, transcriptome, or proteome are reflected in the metabolome (Stringer et al.,
2016). The metabolome is the closest measurable representation of the phenotype
currently available (Beisken et al., 2015). Analyzing the metabolic composition of bi-
ological samples has considerable potential for disease diagnosis (Gowda et al., 2008;
Louis et al., 2016a,b). Metabolic profiling also provides information about patient
heterogeneity that could play a pivotal role in personalized medicine (Stringer et al.,
2016).

Proton nuclear magnetic resonance (1H-NMR) spectroscopy and mass spectrome-
try (MS) are two analytical techniques that are routinely used for profiling metaboli-
tes. MS is more sensitive than 1H-NMR spectroscopy, but requires an extraction step
to separate the hydrophilic from the hydrophobic metabolites. 1H-NMR spectroscopy
is a popular choice as it requires minimal sample preparation and is non-destructive
(i.e., the biological sample remains intact).

In this study, the spectra obtained by applying 1H-NMR spectroscopy to blood
plasma are analysed. 1H-NMR spectroscopy exploits the magnetic properties of hyd-
rogen nuclei; that is, in a strong external magnetic field, a short radiofrequency (RF)
pulse causes hydrogen nuclei to absorb and subsequently emit electromagnetic (EM)
radiation. The frequency of RF radiation that is required to bring hydrogen nuclei
into resonance (i.e., the frequency of absorbed and re-emitted radiation), is called the
resonance frequency (MHz) and it is influenced by the strength of the magnetic field
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and the chemical environment of the hydrogen nuclei. Resonating hydrogen nuclei
produce an NMR response which is called the free induction decay (FID). The FID
(time domain signal) is Fourier transformed to obtain a 1H-NMR spectrum (frequency
domain signal) that is visualized as a series of peaks along a chemical shift axis (see
Figure 8.1). The peaks correspond to the resonating hydrogen nuclei. The unit of the
chemical shift axis is parts per million (ppm), i.e., the difference between the reso-
nance frequency of the hydrogen nucleus of the metabolite and the hydrogen nucleus
of a reference compound, divided by the resonance frequency of the reference com-
pound. Each metabolite in the biological sample produces a characteristic spectral
signature that is formed by a combination of peaks not necessarily adjacent to each
other along the chemical shift axis. The resonances of each metabolite present in
the biological sample appears in the spectrum with an intensity proportional to the
concentration of the corresponding metabolite in the sample.

Figure 8.1: An example of a 1H-NMR spectrum of a blood-serum sample. The spectrum
shows resonances corresponding to metabolites as well as large molecules such
as lipoproteins which have broader resonances. The source of this Figure is
Beckonert et al. (2007).
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The identification and quantification of blood plasma metabolites based on 1H-
NMR spectra is a challenge for the following reasons:

1. 1H-NMR spectrometers have detection limits that allow for only a very small
subset (approximately 40-50) of existing plasma metabolites to be reliably de-
tected and quantified.

2. Baseline (i.e., the intensity in regions not containing peaks) distortions and
broad resonances from lipoproteins and glycoproteins might mask the less pro-
minent signals arising from low concentration metabolites (de Graaf and Behar,
2003).

3. Experimental conditions (e.g., pH and temperature) might influence the che-
mical shift position of metabolic peaks. In addition, more than one metabolite
can contribute to a signal at a specific location which further complicates peak
identification and metabolite quantification.

Typically, 1H-NMR metabolomics of blood plasma is conducted using spectro-
meters with magnetic field strengths ranging from 9.4 Tesla to 14.1 Tesla, i.e., with
proton resonance frequencies ranging from 400 MHz to 600 MHz. Higher-field spectro-
meters (e.g., 900 MHz spectrometers) produce spectra with improved resolution. The
ability to resolve peaks with different chemical shifts increases with field strength.
However, higher-field spectrometers are also far more costly (Louis et al., 2017).

Spectral binning (Louis et al., 2015) is a simple and commonly used technique for
extracting metabolic signal from NMR spectra. It involves subdividing the spectra
into regions along the chemical shift axis and computing the area under the curve
within each integration region. However, peak overlap and variation in the chemi-
cal shift positions of the peaks across spectra often prevents a one-to-one mapping
between integration regions and metabolites. This may be especially problematic in
the context of sample classification. In particular, an integration region may fail to
show potential for classification if it includes metabolites which show opposite beha-
vior (under- and over-expression) in patients versus controls. For instance, assume
an integration region encompasses signal coming from two discriminative metabolites.
On average, one metabolite has a higher concentration in patients than in controls
while the second metabolite has a lower concentration in patients than in controls.
Despite the fact that the integration region contains signal from two discriminative
metabolites, the opposite behavior of the two metabolites diminishes the classification
potential of the integration region, potentially resulting in a non-differential integra-
ted spectral region (ISR). On the other hand, for an ISR that shows classification
potential it may be difficult to uniquely assign its effect to a single metabolite.

Since overlapping molecular resonances complicate the extraction of metabolic
information from 1H-NMR data, spectral deconvolution techniques are currently the
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state of the art. BATMAN (Bayesian AuTomated Metabolite Analyser for NMR
data) (Astle et al., 2012; Hao et al., 2014) is a Bayesian model for 1H-NMR spectral
deconvolution which resolves resonance peaks to obtain relative concentration esti-
mates for a set of metabolites in an automated manner. It exploits extensive prior
information on the characteristic resonance signatures of each metabolite and combi-
nes this information with the intensities observed in the actual spectrum to model the
metabolic signal. Other deconvolution models include Bayesil and the commercially
available software package Chenomx amongst others (Alonso et al., 2015; Misra and
der Hooft, 2016). The advantage of BATMAN is its flexibility and adaptability to
the problem at hand. The prior information on peak shape and relative intensity
plays an important role in any spectral deconvolution and signal extraction model.
Flexibility in setting up the prior information is desirable especially when 1H-NMR
spectroscopy is performed on a spectrometer different than the one used to create the
spectral deconvolution software.

In this part of the dissertation, the application of the widely-used spectral bin-
ning approach is compared with the automated spectral deconvolution technique,
BATMAN, for extracting metabolic signal from the 1H-NMR spectra of blood plasma
samples for the purposes of sample classification. The two approaches were applied to
400 MHz (medium-field) and 900 MHz (high-field) 1H-NMR spectra of blood plasma
samples from lung cancer patients and control subjects. The extracted features, i.e.,
the ISRs and the BATMAN estimated relative concentrations of the metabolites,
were compared in terms of their ability to correctly classify lung cancer and control
samples. This was performed separately for the 400 MHz and 900 MHz spectra.

A series of pre-processing steps were required to reduce the noise, external sources
of variation, and artifacts which result during the process of NMR data acquisition
before the metabolic signal could be extracted. Different pre-processing protocols
were applied to the 400 MHz and 900 MHz 1H-NMR spectra. In particular, the use
of a more automated approach for pre-processing the 900 MHz 1H-NMR spectra was
investigated.

The content of the next couple of chapters is as follows: background information
on 1H-NMR spectroscopy is provided in Chapter 9. The data and pre-processing steps
are described in Chapter 10. Chapter 11 provides a description of spectral binning
and BATMAN, and details on the classification analysis can be found in Chapter 12.
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Proton nuclear magnetic resonance
(1H-NMR) spectroscopy

In this chapter, various aspects of 1H-NMR spectroscopy are discussed. The technical
details of 1H-NMR spectroscopy, as described in this chapter, are based on Macomber
(1998), Rousseau (2011), and Louis (2015). Section 9.1 describes the magnetic proper-
ties of hydrogen nuclei which form the basis of 1H-NMR spectroscopy. In Section 9.2,
an 1H-NMR experiment is described, from the sample preparation to the detection
of the time domain signal, and its transformation to the frequency domain. Furt-
her details on the functional form of the time domain signal (i.e., the free induction
decay) is provided in Section 9.3, and details on the parameters which characterise
an 1H-NMR experiment are included in Section 9.4. Section 9.5 discusses the steps
involved in pre-processing the time domain signal. Lastly, Section 9.6 introduces the
parameters used to characterise the peaks of an 1H-NMR spectrum (i.e., the frequency
domain signal).

9.1 Basic principles of 1H-NMR spectroscopy
1H, 13C, 15N, and 31P are amongst the most important nuclei for biomolecular NMR
studies (Markley et al., 2017). However, the proton (1H) is the most sensitive, and
has near 100% natural abundance (Markley et al., 2017). An NMR experiment is
sensitive to only one particular isotope of one particular element. One-dimensional
(1D) 1H-NMR spectroscopy is the most widely used NMR approach in metabolomics.

1H-NMR spectroscopy exploits the magnetic properties of hydrogen nuclei. Nu-
clei with an odd atomic number, such as the nuclei of 1H particles, rotate around
an axis in a movement called nuclear spin. The spin of a nucleus (i.e., a charged
particle) generates a magnetic field along the spin axis called the magnetic moment
(see Figure 9.1).

In the absence of an external magnetic field B0, the spin of the nuclei are rand-
omly oriented (see left-side of Figure 9.2). Once a magnetic field is applied, the spin
axis aligns with the external magnetic field (see right-side of Figure 9.2). The mag-
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Figure 9.1: Illustration of the spin and magnetic moment of a positively charged hydrogen
nucleus.

netic moments of the nuclei can either align with the field B0 (i.e., become parallel or
spin aligned) or align against it (i.e., become anti-parallel or spin opposed). Protons
in parallel are in the more populated, lower-energy state, and are more stable than
anti-parallel protons.

Figure 9.2: Orientation of the magnetic moments of positively charged hydrogen nuclei
in the absence of an external magnetic field (left) and in the presence of an
external magnetic field B0 (right).

In fact, due to the interaction between the magnetic moment and the external
magnetic field, the spin axis does not align perfectly with B0, but rather precesses
around it at an angle θ with a precession rate called the Larmor frequency denoted
by ν (see Figure 9.3).

Protons can transition from the low-energy state to the high-energy state through
the absorption of energy. The difference in the energy of the spin states depends
on the strength of the external magnetic field (measured in tesla, T). The energy
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Figure 9.3: Precession of the magnetic moments of protons around the external magnetic
field B0. ν is the precession rate and θ is the angle of the proton’s magnetic
moment to B0.

difference increases with an increase in magnetic field strength. However, this energy
difference remains quite small, even for very strong magnetic fields (for example, of
21.1 tesla), and corresponds to the radio frequency (RF) range of the electromagnetic
(EM) spectrum. In 1H-NMR spectroscopy, energy is supplied to the protons via an
RF pulse. If the frequency of the applied RF and the Larmor frequency coincide,
resonance occurs. The spin absorbs the energy and shifts the proton to the higher-
energy state. The higher-energy state is less stable and upon removal of the RF pulse,
the nucleus returns to the initial low-energy state, emitting the previously absorbed
energy at a frequency equal to that of the Larmor frequency. This produces a current
in the detection coil of the NMR spectrometer. Based on the frequency of emission,
one can determine which chemical group the proton belongs to.

9.2 An 1H-NMR experiment

Before a sample is analysed by using 1H-NMR spectroscopy, several products are
added to the sample including a magnetic field lock signal and a reference compound.
For the blood plasma samples analysed in this dissertation, deuterium oxide was
added as a magnetic field lock signal, and trimethylsilyl-2,2,3,3-tetradeuteropropionic
acid (TSP) was employed to act as a reference compound.

The solution of the sample is placed between the poles of a strong magnet. Both
the energy difference and the population difference between the spin states increase
with an increase in magnetic field strength. At equilibrium, the number of spins in
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the low-energy state is slightly higher than the number of spins in the high-energy
state (see Figure 9.4). Thus, the sum of the individual magnetic moments of the
protons belonging to the same chemical group (i.e., having the same neighbourhood),
results in a net magnetic moment M0 that aligns with the direction of the external
magnetic field B0. Using a three-dimensional co-ordinate system, at equilibrium,
the z-component of magnetization, called the longitudinal magnetization, equals M0,
while the x and y components of magnetization, called the transversal magnetization,
equals 0.

Figure 9.4: Distribution of the magnetic moments at equilibrium resulting in a longitu-
dinal magnetization vector M0 in the direction of the external magnetic field
B0. The transverse magnetization (i.e., in the xy-plane) is zero.

The NMR signal is obtained by applying an RF pulse perpendicular to the ex-
ternal magnetic field at the Larmor frequency ν of the observed protons. The time
during which the RF pulse is applied is called the 90° pulse width (measured in µs).
During the 90° pulse, the magnetic moments of the protons enter a state of phase
coherence characterised by the clustering of the magnetic moments into a precessing
bundle (see Figure 9.5). This produces a shift of the net magnetization moment M0

from the longitudinal z-axis towards the y-axis of the transverse xy-plane. The energy
transmitted by the RF pulse is absorbed by the protons causing some to flip from
the low-energy state to the high-energy state. At the end of the 90° pulse, the lon-
gitudinal magnetization is zero, and the transversal magnetization equals M0. The
transversal magnetization vector rotates about the the z-axis which induces a current
in the receiver coil of the NMR spectrometer.

The NMR signal is detected once the RF pulse is switched off. At this point,
the nuclei relax and return to their equilibrium positions. The relaxation process
has two components: a longitudinal component that corresponds to the recovery
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Figure 9.5: Illustration of the shift of the magnetic moments upon applying an RF-pulse
perpendicular to the external magnetic field (i.e., along the x-axis). The net
magnetic moment M0 shifts away from the z-axis and now has a component
in the transverse xy-plane.

of the longitudinal magnetization and a transverse component which corresponds
to the transverse magnetization decay. Each relaxation process is described by an
exponential function characterised by the time constants T1 and T2, respectively.
During the relaxation period, the transversal magnetization induces a fluctuating
electric current in the receiver coil of the NMR spectrometer which forms a time-
dependent signal (see Figure 9.6). The signal decays with time as the magnetic
moments move out of phase. Each signal is characterized by it’s amplitude, frequency
ν, and decay time T2.

During an 1H-NMR experiment several RF pulses of different frequencies are
applied and several time-dependent signals are produced from protons of different
Larmor frequencies. The recorded current, called the free induction decay (FID),
is the sum of the time domain signals emitted by protons from different chemical
groups that entered into resonance (see Figure 9.7). The FID is Fourier-transformed
to produce an 1H-NMR spectrum (i.e., a signal in the frequency domain).

The Fourier transformation of the FID (i.e., time domain signal) results in an
1H-NMR spectrum that is visualized as a series of peaks in the frequency domain (see
Figure 9.8). The peaks correspond to the resonating hydrogen nuclei. The position
of the peaks in the frequency-domain spectrum corresponds to the frequency of each
component forming the FID. During the pre-processing of the FID, the frequency scale
is translated into a chemical shift scale expressed in parts per million (ppm), i.e., the
difference between the resonance frequency of the hydrogen nucleus of a compound
in the the sample and the hydrogen nucleus of a reference compound, divided by the
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Figure 9.6: A single time domain signal.

Figure 9.7: Illustration of a free induction decay (FID).

resonance frequency of the reference compound. Note that the chemical shift axis
typically extends from 0 ppm on the right to larger values (for instance, 10 ppm) on
the left, as illustrated in Figure 9.8. The area under the peak corresponds to the
amplitude of the FID component. The width of a peak at half-height is inversely
proportional to the time constant of the transverse magnetization decay, i.e., T2. The
faster the decay (i.e., smaller T2), the broader the peak. Note that the area under the
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peak remains constant, so a slower decay producing a sharper peak will also result in
an increase in the peak height.

Figure 9.8: A Fourier transformed FID.

9.2.1 CPMG pulse sequence

The 1H-NMR spectra of blood plasma samples display broad signals from macro
molecules, such as proteins and polysaccharides, with sharp peaks from metabolites
superimposed on them. Additionally, a large signal arising from water protons can
be seen in 1H-NMR spectra of biofluids. These signals obscure a large part of the 1H-
NMR spectrum if left unsuppressed. Generally, in order to improve the visibility of
the metabolite signal, a method is applied to suppress the high-intensity signal caused
by water molecules and to attenuate the broad signals from the macromolecules (i.e.,
proteins and polysaccharides). In this dissertation, slightly T2-weighted spectra that
were acquired using the Carr-Purcell-Meiboom-Gill (CPMG)-pre-saturation pulse se-
quence are analysed. The CPMG pulse sequence uses the faster transversal relaxation
times (T2) of protons in macromolecules to suppress the macromolecular signals.

9.3 Functional form of the free induction decay (FID)

As mentioned previously, an FID arises from the decay of the transverse magnetization
which induces a fluctuating current in the receiver coil once the RF pulse is removed.
The FID is composed of the signals of multiple protons from different chemical groups.
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Consider a single FID component arising from the decay of the transverse mag-
netization of protons belonging to a specific chemical group (e.g. CH3, CH2, or OH)
with a specific Larmor frequency. The net magnetization vector precesses in the
xy-plane in either a clockwise (positive frequency: ν) or anti-clockwise (negative fre-
quency: -ν). Assume that once the RF pulse is removed, the net magnetization vector
is situated along the x-axis and is precessing in the clockwise direction as illustrated
in Figure 9.9.

Figure 9.9: Precession of the transverse magnetization vector in the xy-plane.

In this situation, the x-component of magnetization is proportional to a cos(2πνt)
wave and the y-component of magnetization is proportional to sin(2πνt). It is conve-
nient to think of the detected signal as having two components, an x-component and
a y-component that are defined as

sx(t) = s0 cos (2πνt) exp
(
− t

T2

)
, (9.1)

sy(t) = s0 sin (2πνt) exp
(
− t

T2

)
, (9.2)

where s0 is the overall amplitude of the signal, ν is the Larmor frequency, t is the time,
and T2 is a time constant corresponding to the decay of the transverse magnetization.

As a consequence of the Fourier transformation, it is also convenient to consider
sx(t) and sy(t) as the Real and Imaginary parts of the detected signal s(t):

s(t) = sx(t) + isy(t)

= s0 cos (2πνt) exp
(
− t

T2

)
+ is0 sin (2πνt) exp

(
− t

T2

)
= s0 exp (i2πνt) exp

(
− t

T2

)
(9.3)

The last equality results from Euler’s formula: exp (ix) = cos (x) + i sin (x)).

108



9

Proton nuclear magnetic resonance (1H-NMR) spectroscopy

The FID is the sum of the signals arising from protons belonging to different
chemical groups. Similar to the individual components s(t), the FID is a function of
time with Real and Imaginary components.

9.4 Understanding the parameters of an 1H-NMR
experiment

A typical 1H-NMR experiment involves repeating a pulse sequence, consisting of three
stages, several times in order to improve the signal-to-noise ratio of the acquired data.
The pulse sequence begins with a preparation (or recycle) delay, which is followed by a
period called the pulse width, and then by the acquisition period. The pulse sequence
can be characterised by three parameters: (a) preparation delay, (b) pulse width,
and (c) acquisition time. A brief description of each of these parameters and other
parameters that describe an 1H-NMR experiment is provided below.

Pulse width During the pulse width (duration measured in microseconds, µs), the
RF pulse is applied causing the net magnetization vector to shift from the z-axis into
the xy-plane.

Acquisition time The RF pulse is then switched off and the acquisition period (du-
ration measured in seconds, s) begins. During the acquisition period, the transverse
magnetization decays induces a current in the receiver coils which forms the NMR
signal.

Preparation delay Although the preparation delay (duration measured in seconds, s)
appears at the beginning of a pulse sequence, it can be thought of as occurring after
the acquisition period. The preparation delay ensures that protons have sufficient
time to return to their equilibrium state after the removal of the RF pulse.

Spectrometer frequency 1H-NMR spectrometers are named after the frequency at
which protons resonate in the magnetic field of the spectrometer. For instance, pro-
tons in a spectrometer with a magnetic field strength of 9.4 T will resonate at a
frequency of 400 MHz. The spectrometer frequency corresponds to the center of the
acquired 1H-NMR spectrum.

Spectral width The spectral width corresponds to the range of the frequency domain
spectrum. The spectral width measured in ppm is independent of the spectrometer
frequency. However, the spectral width measured in Hz depends on the spectrometer
frequency. A spectral width of 10 ppm is usually necessary for 1H-NMR spectroscopy.
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Thus, for a spectrometer of 400 MHz, 1 ppm corresponds to 400 Hz. Thus, a spectral
width of at least 10 ppm × 400 Hz/ppm = 4000 Hz would be required to measure a
10 ppm frequency range. Similarly, a spectral width of 9000 Hz would be required to
measure a 10 ppm frequency range when using a 900 MHz spectrometer.

Number of data points recorded This is the number of data points used to record
an FID during the acquisition time.

9.5 Pre-processing of 1H-NMR data
Before the 1H-NMR signal is quantified, the FID is pre-processed. Pre-processing
the FID transforms the signal from the time domain to the frequency domain, and
attempts to remove noise and artefacts that may otherwise interfere with subsequent
statistical analyses. Several steps are involved in pre-processing an FID. A brief
outline of the steps involved in pre-processing the 1H-NMR data analysed in this
dissertation, is provided in this section. The content of this section is predominantly
based on Rousseau (2011), and the reader is referred to this text for further details on
the pre-processing of 1H-NMR spectra. Two pre-processing protocols were employed
on the data analysed in this dissertation, a manual pre-processing protocol and an au-
tomated pre-processing protocol based on the R statistical software package PepsNMR.

The FID The FID is the sum of the 1H-NMR signals that arise from resonating
protons of different chemical groups. These individual FID components have the
form defined by (9.3), and have real and imaginary terms defined by sx(t) (9.1) and
isy(t) (9.2), respectively. The FID, denoted by S(t), is a complex decaying function
of time, also comprised of a real and an imaginary term:

S(t) = Sx(t) + iSy(t), (9.4)

where, Sx(t) is the real term and Sy(t) is the imaginary term.

Phase correction The phase of a spectrum depends on the position (or intensity)
of the corresponding FID at time zero (i.e., S(0)). A perfectly phased FID has a real
component, Sx(t), that achieves its maximum value at time zero, and an imaginary
component, Sy(t), that is equal to zero at time zero. The Fourier transform of a
phased FID corresponds to a real spectrum consisting of only positive intensities and
an imaginary spectrum that has both positive and negative intensities.

In practice, FID’s are not perfectly phased and instead exhibit a phase shift.
Phase shifts can be split into two categories: those that are the same for all frequen-
cies (i.e., frequency independent) called zero-order phase shifts, and those that are
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frequency dependent called first-order phase shifts. Zero-order phase shifts may arise
from the inability of a spectrometer to detect the correct x and y components of the
transverse magnetization. First-order phase errors could arise due to a delay between
the cessation of the RF pulse and the start of the acquisition period. Correcting the
phase involves identifying the magnitude of the phase shift and correcting for it.

In manual phase correction, a spectroscopist visually identifies the magnitude of
the phase shift. The FID is first Fourier-transformed to obtain a spectrum in the
frequency domain. Then, a large peak is selected at one end of the spectrum and the
phase of the selected peak is optimised. This corresponds to a zero-order (frequency
independent) phase correction. A peak is then selected on the opposite end of the
spectrum and its phase is optimised corresponding to a first-order phase correction.
After phase correction the spectrum is back-transformed using an inverse-Fourier
transformation.

In PepsNMR, the phase correction is conducted in two non-consecutive steps be-
ginning with the first-order (frequency-dependent) phase correction. If τ is the delay
between the end of the RF pulse and the start of the acquisition period, correcting the
first-order phase correction corresponds to multiplying the spectrum by exp (−i2πντ).
This is a frequency-dependent linear phase shift. The FID is Fourier-transformed,
then multiplied by the linear phase shift before being back-transformed by use of the
inverse-Fourier transform.

The PepsNMR zero-order (frequency-independent) phase correction is conducted
in an automated way. A range of phase corrections between -180° and 180° are tested
and the angle which achieves the largest positive real part of the spectrum is selected.
The positiveness can be measured as the ratio of the sum of squares of the positive
intensities and the total sum of squares of all intensities forming the spectrum.

Solvent suppression A solvent is a non-informative but major component of the
solution analysed. It appears as a high intensity peak in the spectrum and has the
potential to mask informative peaks of compounds that are of interest. Water is the
solvent in metabolomics studies. The water molecules produce an intense peak in
the spectrum that, if not suppressed, masks the signals from metabolites that are of
interest.

During the pre-saturation phase of an 1H-NMR experiment, the water signal
is reduced. However, a residual water signal remains and the suppression of this
residual signal is one of the steps involved in the pre-processing of an FID. Essentially,
the residual water signal is suppressed by modeling the component of the FID that
corresponds to the water molecules and subtracting it from the original FID. Since
water is the main component of the original FID, the FID component of water is
modelled as a smoothed function of the FID.
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Apodization During the acquisition period of an 1H-NMR experiment, noise arising
from, for instance, the electronics in the spectrometer or from the receiver coil, is
recorded together with the 1H-NMR signal. Although the 1H-NMR signal decays over
time, the noise recorded remains constant. Thus, the signal-to-noise ratio decreases
over time and is lowest in the tail of the FID. The goal of apodization is to increase
the signal-to-noise ratio by multiplying the FID by a function that emphasizes the
initial portion of the FID and down weighs the latter noisy portion. This is achieved
by multiplying the FID by a decaying (negative) exponential function of the form

h(t) = exp
(
− t
d

)
, (9.5)

where d is the decay parameter. The decay parameter should be carefully selected.
If d is too small, too much of the initial portion of the signal can be lost. After
apodization, the FID will have a shorter T2 time-constant, implying a faster decay
which results in shorter, broader peaks.

Zero-filling The digital resolution of a spectrum is related to the distance (in Hz)
between two data points in a spectrum. The smaller the distance, the better the
resolution. In order to increase the digital resolution of a spectrum, one might consider
increasing the number of data points by increasing the acquisition time. However,
too large an increase of the acquisition time would result in a decrease in the signal-
to-noise ratio.

Zero-filling is a way to increase the digital resolution (i.e., reduce the number of
Hz per data point) in a spectrum without adding additional noise. It involves simply
adding data points with zero intensities to the end of the FID. Zero-filling in the
time domain corresponds to interpolation in the frequency domain and can therefore
elucidate fine coupling that may not be visible at a low digital resolution.

Fourier transform The Fourier transform is used to convert the 1H-NMR signal from
the time domain (FID) to a spectrum in the frequency domain. The Fourier transform
extracts the components of the FID and utilizes the information on the amplitude of
the signal, Larmor frequency of the proton, and the transverse relaxation time (T2) to
convert the signal to peaks with a specific height, position, and width at half-height
in the frequency domain.

For S(t) of nt complex data points, the discrete Fourier transform is used:

F (νj) =
nt−1∑
t=0

S(t) exp
(
−i2πjt
nt

)
, (9.6)

where j = 0, . . . , nf − 1, and nf = nt is the number of data points forming the
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spectrum F (ν) in the frequency domain.

Baseline correction Technically, in an 1H-NMR spectrum, frequencies at which no
signal is emitted by the solution should correspond to a zero intensity. However, even
after phase correction, due to multiple sources of noise, baseline artefacts arise (i.e.,
the recorded intensity is not zero). A convenient way to correct the baseline is to
estimate the baseline distortions and subtract them from the observed spectrum.

Manual baseline correction traditionally involves selecting several points along
the baseline and interpolating a polynomial fit between the points.

PepsNMR utlizes asymmetric least squares with a roughness penalty to estimate
the baseline distortion. The baseline estimator Z is found by minimizing Q defined
as follows:

Q =
nf−1∑
j=0

ωj (Fj − Zj)2 + λ

nf−1∑
j=2

[(Zj − Zj−1)− (Zj−1 − Zj−2)] , (9.7)

where Fj is the intensity at frequency νj in the spectrum, and Zj is the intensity
at the frequency νj in the estimated baseline. For p ∈ [0, 1] and typically close
to zero, the weight ωj = p when Fj > Zj and ωj = 1 − p when Fj ≤ Zj . This
asymmetric weighting puts less weight on positive deviations of the spectrum from
the estimated baseline, and therefore favours a positive corrected spectrum. Finally, λ
is the roughness penalty with larger values of λ corresponding to a smoother estimated
baseline.

Chemical shift conversion The frequency at which a proton resonates depends on
its chemical environment, as well as on the external magnetic field strength. When a
hydrogen atom is placed in an external magnetic field, neighbouring electrons shield
the nucleus and prevent it from experiencing the full extent of the magnetic field.
As a result, protons within different chemical environments experience different field
strengths and, therefore, have different resonance frequencies. Furthermore, two pro-
tons belonging to the same chemical group (i.e., having the same chemical envi-
ronment) can have different resonance frequencies depending on the magnetic field
strength of the spectrometer used.

The aim of this pre-processing step is to translate the frequency scale of the 1H-
NMR spectra from Hertz to a scale that is independent of the magnetic field strength.
Such a scale is the chemical shift scale and is measured in parts per million (ppm).
The conversion uses a reference compound that does not change substantially with
changes in the external magnetic field strength. In this dissertation, the compound
trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) is used as a chemical shift re-
ference compound and is conventionally situated at 0 ppm. The chemical shift of a
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data point j is calculated as the difference between the resonance frequency νj (in
Hz) of the proton considered and resonance frequency νTSP (in Hz) of the reference
compound (TSP), divided by the resonance frequency of the reference compound:

ppmj = νj − νTSP

νTSP
× 106. (9.8)

Spectral alignment Due to experimental conditions such as differences in the pH,
temperature, and concentrations of biological samples, peaks corresponding to the
same compound may appear at slightly different chemical shift locations across dif-
ferent spectra. PepsNMR corrects this misalignment through the use of a warping
algorithm that aligns the spectra to a reference spectrum. The choice of reference
spectrum can be based on the square distances of a spectrum to all other spectra
either before or after warping.

Window selection The entire spectral width does not necessarily contain peaks.
This step trims the spectral window to the region of interest, leaving the spectrum
with fewer data points. The domain is also reversed so that the spectrum is read from
0 ppm on the right to, for instance, 10 ppm on the left.

Normalization Normalization is necessary to remove the variation in the concentra-
tion of the samples. Integral or constant sum normalization is most commonly used
and involves dividing each spectral intensity by the total area, or mean intensity, of
the spectrum. Median normalization amongst others is also an option.

9.6 Peaks of an 1H-NMR spectrum
The Fourier transformation of an FID (time domain signal) results in an 1H-NMR
spectrum (frequency domain signal) that is visualized as a series of peaks along a
chemical shift axis. The peaks have the form of a Lorentzian curve. In mathematical
notation, the form of the zero-centered Lorentzian function is

lγ(δ) = 2
π

γ

4δ2 + γ2 , (9.9)

where γ is the peak width at half height. Each metabolite in the biological sample
produces a characteristic signature in the 1H-NMR spectrum that is formed by a
combination of peaks not necessarily adjacent to each other along the chemical shift
axis. Each signature appears with an intensity proportional to the concentration of
the corresponding metabolite in the sample. The peaks of an 1H-NMR spectrum are
characterised by their chemical shift, signal intensity, and J-coupling patterns.
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Chemical shift Each peak in an 1H-NMR spectrum corresponds to the resonance
of a proton belonging to a specific chemical group. As described in Section 9.5, the
chemical shift (measured in ppm) expresses a proton’s resonance relative to a reference
compound in a magnetic field. Most proton resonance signals are situated between 0
ppm and 12 ppm.

Signal intensity The area under the peak at a specific chemical shift is proportional
to the concentration of the proton in the sample that produced the peak.

J-coupling Nuclei with different chemical environments, within the same molecule
may interact with each other producing a phenomenon known as J-coupling. The
interaction of a specific proton with other protons of a different chemical group, arising
from the same molecule, may lead to the proton’s signal appearing as a multiplicity
of peaks in the 1H-NMR spectrum. The pattern with which the signal appears in
the 1H-NMR spectrum is called a J-coupling pattern and can correspond to a singlet,
doublet, triplet etc., as illustrated in Figure 9.10. The J-coupling constant is the
distance between two adjacent peaks of a split signal.

Figure 9.10: Examples of J-coupling patterns.
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Data and pre-processing

10.1 Data
To investigate the impact of the method of extracting metabolic signal from 1H-
NMR data on the classification of samples, the previously analyzed (Louis et al.,
2017), 1H-NMR spectra of blood plasma samples obtained from lung cancer patients
(ncases= 69), included in the Limburg Positron Emission Tomography center (Hasselt,
Belgium) from March 2011 to January 2012, and control subjects (ncontrols= 74),
attending Ziekenhuis Oost-Limburg (Genk, Belgium) between December 2011 and
April 2012, were used. The 1H-NMR data were acquired by analyzing the blood
plasma samples at 21.2°C on a 400 MHz spectrometer (9.4 Tesla; 54 mm bore (i.e.,
the hollow center of the magnet)-size; Varian Inova; Agilent Technologies Inc.; VnmrJ
3.2 RevisionA) and on a 900 MHz spectrometer (21.1 Tesla; 54 mm bore-size; Bruker
Avance; Bruker Biospin). The 400 MHz spectrometer was equipped with an Agilent
OneNMR 5mm probe, whereas the 900 MHz spectrometer had a triple resonance
cryoprobe. Slightly T2-weighted spectra (i.e., spectra that have been weighted based
on the transversal relaxation times of molecules, see Section 9.2.1) were acquired
using the Carr-Purcell-Meiboom-Gill pulse sequence (total spin-echo time of 32 ms;
interpulse delay of 0.1 ms), preceded by an initial preparation delay of 0.5 s, and 3 s for
water suppression presaturation. Other parameters for acquiring the 400 MHz/900
MHz data, respectively, were: a spectral width of 6000 Hz/14423 Hz, a 90° pulse
length of 6.35/9.15 µs, an acquisition time of 1.2 s, a preparation delay of 3.5 s, and
96/64 scans (7min 44sec/5min 9sec on 400 MHz/900 MHz).

10.1.1 Spiking experiments

The chemical shift of metabolite peaks depend on the cell, tissue or biofluid under
study, as well as the experimental conditions (e.g., the temperature, pH, and sample
concentration). Spiking experiments are routinely conducted to accurately determine
the chemical shift values of the metabolites of interest for a specific experiment. In
a metabolite spiking experiment, a relevant concentration of a known metabolite is
added to reference plasma and the chemical composition of the sample is measured
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through 1H-NMR spectroscopy. The characteristic spectral signature (i.e., the peak
locations, peak shape, and multiplicity) of the spiked metabolite is clearly visible in
the resulting spectrum due to its increased relative concentration in the sample (Louis
et al., 2015).

Spiking experiments (Louis et al., 2015) were conducted to determine the che-
mical shift positions of the blood plasma metabolites. Spiked spectra were acqui-
red on the 400 MHz and 900 MHz spectrometers for 37 metabolites: alanine, argi-
nine, asparagine, aspartate, cysteine, glutamine, glutamate, glycine, histidine, iso-
leucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryp-
tophan, tyrosine, valine, glucose, myo-inositol, acetate, acetoacetate, α-ketoglutarate,
β-hydroxybutyrate, citrate, lactate, pyruvate, succinate, creatine, creatinine, acetone,
betaine, choline, glycerol, and methanol.

10.2 Spectral pre-processing

A manual pre-processing protocol was applied to the 400 MHz and the 900 MHz
spectra. The 900 MHz spectra were also pre-processed using a more automated
protocol.

10.2.1 Manual pre-processing

The 400 MHz spectra were pre-processed using the Varian/Agilent software. The pre-
processing steps included zero-filling and multiplication by an exponential apodization
function of 0.7 Hz prior to the Fourier transformation. The spectra were manually
phased, automatically baseline corrected using polynomials (or splines), and referen-
ced to trimethylsilyl-2,2,3,3-tetradeuteropropionic acid (TSP) at 0.015 ppm (Louis
et al., 2016b). The final step of the spectral pre-processing was normalization by the
total area under the curve, without accounting for the water and TSP signal.

The 900 MHz Bruker files were first transformed to the Varian format for compa-
tibility with the Varian pre-processing software before being manually pre-processed
in the same way as the 400 MHz data.

10.2.2 Automated pre-processing

The 900 MHz spectra were also automatically pre-processed using the R statistical
software package PepsNMR (Rousseau, 2011). PepsNMR was applied to the raw Bruker
FIDs. Pre-processing included a first-order and zero-order phase correction, solvent
(i.e., water) suppression, apodization, zero-filling, Fourier transformation, baseline
correction, spectral alignment, and median normalization (see Figure 10.1).
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Figure 10.1: The sequence of PepsNMR pre-processing steps.

The default PepsNMR settings were utilized for all steps prior to the baseline cor-
rection. A more stringent penalty (on negative intensities) was selected for the base-
line correction in order to keep the number of spectral points with negative intensities
to a minimum. That is, the PepsNMR baseline correction asymmetry parameter was
set to 0.01 (see Figure 10.2).

The reference spectrum chosen for spectral alignment was the spectrum that
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Figure 10.2: Illustration of a portion of a 900 MHz spectrum before (grey spectrum) and
after (blue spectrum) baseline correction.

achieved the smallest sum of squared differences between itself and all other spectra
after warping. This corresponds to setting the reference choosing parameter of the
PepsNMR warping function to after (see Figure 10.3). Since we expect differences in
the metabolic profile between lung cancer patients and control subjects, warping was
performed separately for the two groups.

Figure 10.3: Illustration of warping in the region of the lactate signal. Left: a portion
of a 900 MHz spectrum before warping. Right: a portion of a 900 MHz
spectrum after warping.

The main reason for applying two different pre-processing protocols to the 900
MHz spectra was that the manual pre-processing of the 900 MHz spectra did not
provide data of sufficient quality to perform the BATMAN analysis (see Figure 10.4).
It was necessary to use the raw FID data to improve the manual baseline correction
and to avoid numerous manual steps in phasing. With PepsNMR, the pre-processing
steps and parameter settings can be clearly defined which improves the reproducibility
of the analysis.
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Figure 10.4: Illustration of a portion of a 900 MHz PepsNMR automatically pre-processed
spectrum (red) and a 900 MHz manually pre-processed spectrum (blue).
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Spectral binning and BATMAN for
extracting metabolic signal from
1H-NMR spectra

Spectral binning and spectral deconvolution using BATMAN were employed to quan-
tify the signal in the 400 MHz and 900 MHz 1H-NMR spectra of lung cancer patients
and controls. See Chapter 10 for a description of the data. In this chapter, a des-
cription of these two techniques and details of their implementation is provided. In
particular, Section 11.1 introduces spectral binning, and Section 11.2 focuses on BAT-
MAN.

11.1 Spectral binning
Spectral binning (Louis et al., 2015) is a simple and commonly used technique for ex-
tracting metabolic signal from NMR spectra. Spectral binning involves partitioning
the 1H-NMR spectra into regions along the chemical shift axis. The regions can either
be fixed- or variable-sized. The disadvantage of fixed binning is that peaks are often
split across adjacent bins. In the lung-cancer study, variable-sized regions were se-
lected. In that case, the limits of the integration regions are defined by spectroscopists
in a way that best accommodates the metabolite peaks of interest. The resonance
peaks encompassed by each region are integrated. The resulting integrated spectral
regions (ISRs) constitute a set of features that represent the NMR signal. Reliable
information on the chemical shift of metabolite peaks is essential for the identification
of biologically meaningful spectral regions.

Using the chemical shift information acquired through spiking experiments, the
400 MHz spectra were subdivided into 110 ISRs (Louis et al., 2015) of varying widths
excluding the water region and the TSP region (see Table 11.1). Similarly, the manu-
ally pre-processed 900 MHz spectra were partitioned into 105 ISRs (Louis et al., 2017)
and the PepsNMR automatically pre-processed 900 MHz spectra were partitioned into
103 ISRs (see Table 11.1).

123



Table 11.1: Spectral binning regions for the 400 MHz and 900 MHz spectra.
ABBREVIATIONS: NI: not identified, FAC: fatty acid chain, NAG: N-acetylated glycoproteins, PC: phosphatidylcholine, PL:
phospholipids, SM: sphingomyelins, TG: triglycerides, Ala: Alanine, Arg: Arginine, Asn: Asparagine, Asp: Aspartate, Cys:
Cysteine, Gln: Glutamine, Glu: Glutamate, Gly: Glycine, His: Histidine, Ile: Isoleucine, Leu: Leucine, Lys: Lysine, Met:
Methionine, Phe: Phenylalanine, Pro: Proline, Ser: Serine, Thr: Threonine, Trp: Tryptophan, Tyr: Tyrosine, Val: Valine.

400 MHz (manually pre-processed spectra) 900 MHz (manually pre-processed spectra) 900 MHz (PepsNMR pre-processed spectra)

Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End

1 NI 8.4914 8.4796 1 NI 8.4980 8.4750
2 Formate 8.3702 8.3602 2 Formate 8.3810 8.3550
3 NI 8.2601 8.2500 3 NI 8.2670 8.2480
4 NI 8.2300 8.2050 4 NI 8.2340 8.2000

1 NI 7.9500 7.8200 5 NI 7.8561 7.8104 5 NI 7.8600 7.8200
2 His 7.8200 7.7890
3 NI 7.7890 7.7780

6 His 7.7812 7.7544 6 His 7.8000 7.7644
4 His 7.7780 7.7480
5 NI 7.7480 7.7200
6 NI 7.6800 7.5920
7 NI 7.5920 7.5480

8 Phe 7.4840 7.3620
7 Phe 7.4677 7.4380 7 Phe 7.4750 7.4380
8 Phe, NI 7.4162 7.3755 8 Phe, NI 7.4210 7.3755

9 Phe, NI 7.3620 7.3300 9 Phe 7.3675 7.3484 9 Phe 7.3750 7.3510
10 NI 7.3300 7.2820 10 NI 7.3484 7.3227 10 NI 7.3510 7.3227
11 NI 7.2820 7.2550
12 Tyr, NI 7.2550 7.2390
13 Tyr, NI 7.2390 7.2000 11 Tyr 7.2327 7.2046 11 Tyr 7.2400 7.2046

12 NI 7.1894 7.1591 12 NI 7.1894 7.1591
14 His 7.1070 7.0656 13 His 7.0792 7.0597 13 His 7.0880 7.0600

14 NI 7.0201 6.9652 14 NI 7.0201 6.9600
15 Tyr 6.9430 6.9050 15 Tyr 6.9355 6.9056 15 Tyr 6.9440 6.9056



400 MHz (manually pre-processed spectra) 900 MHz (manually pre-processed spectra) 900 MHz (PepsNMR pre-processed spectra)

Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End

16 NI 6.9050 6.8810
17 NI 6.7445 6.7020 16 NI 6.7460 6.7004 16 NI 6.7600 6.7004

18 Lipids:–CH=CH–in
FAC

5.4300 5.2752 17 Lipids:–CH=CH–in
FAC

5.4422 5.2833 17 Lipids:–CH=CH–in
FAC

5.4422 5.2900

19 Glucose 5.2752 5.2526 18 Glucose 5.2751 5.2542 18 Glucose 5.2770 5.2560

20
C2H in glycerol
backbone 5.2526 5.2030

19 C2H in glycerol
backbone

5.2542 5.2301 19 C2H glycerol backbone 5.2560 5.2301

of PL and TG 20 of PL and TG 5.2186 5.2038 20 of PL and TG 5.2260 5.2038
21 NI 5.1525 5.1187 21 NI 5.1550 5.1187

21 Glucose 4.6940 4.6620 22 Glucose 4.7088 4.6421 22 Glucose 4.7088 4.6421
22 NI 4.5560 4.5380
23 NI 4.5380 4.4100

24 C1H and C3H in
glycerol

4.4100 4.3159 23 C1H and C3H in
glycerol

4.3579 4.2902 23 C1H and C3H in
glycerol

4.3579 4.2940

backbone of TG backbone of TG backbone of TG

25 O–CH2–CH2–N+(CH3)3
of PC and SM, Thr

4.3159 4.2332 24 O–CH2–CH2–N+(CH3)3
of PC and SM, Thr

4.2852 4.2536 24 O–CH2–CH2–N+(CH3)3
of PC and SM, Thr

4.2940 4.2500

26 β-hydroxybutyrate, Pro 4.2000 4.1885
25 β-hydroxybutyrate 4.2000 4.1607 25 β-hydroxybutyrate 4.2000 4.160727 β-hydroxybutyrate, 4.1885 4.1750

Pro, Lactate
28 C1H and C3H glycerol 4.1750 4.1260 26 C1H and C3H glycerol 4.1570 4.1276 26 C1H and C3H glycerol 4.1600 4.1276

backbone of PL and
TG, lactate

backbone of PL and
TG, lactate

backbone of PL and
TG, lactate

29 NI 4.1260 4.1110
27 NI 4.1276 4.0942 27 NI 4.1276 4.0950

30 NI 4.1110 4.1032
31 Creatinine 4.1032 4.0700 28 Creatinine 4.0904 4.0780 28 Creatinine 4.0950 4.0770
32 NI 4.0700 4.0570



400 MHz (manually pre-processed spectra) 900 MHz (manually pre-processed spectra) 900 MHz (PepsNMR pre-processed spectra)

Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End

33 His, Ser 4.0570 4.0310
34 Asn, His, Phe, Ser 4.0310 4.0136

35
C3H2 in glycerol
backbone of PL, Asn,
His, Phe, Ser

4.0136 4.0010 29
C3H2 in glycerol
backbone of PL, Asn,
His, Phe, Ser

4.0400 3.9913 29
C3H2 in glycerol
backbone of PL, Asn,
His, Phe, Ser

4.0420 3.9920

36 C3H2 in glycerol
backbone

4.0010 3.9810

of PL, Asn, His, Phe,
Ser

37
Creatine, Asn, His, Tyr,
Ser 3.9810 3.9590

30 Asn, His, Ser, Tyr 3.9903 3.9644 30 Asn, His, Ser, Tyr 3.9920 3.9680

31 Creatine 3.9644 3.9586 31 Creatine 3.9680 3.9600
32 Tyr 3.9586 3.9527 32 Tyr 3.9600 3.9527

38
Glucose, Asp, Met, Ser,

3.9590 3.8330
33 Glucose 3.9527 3.9120 33 Glucose 3.9527 3.9150

Tyr 34 Glucose 3.9120 3.8957 34 Glucose 3.9150 3.8920
35 Glucose 3.8881 3.8306 35 Glucose 3.8920 3.8410

39 Glucose, Ala, Ser 3.8330 3.8100
36 3.8286 3.8097 36 3.8410

3.8140
40 Glucose, Ala, Gln, Glu 3.8100 3.7956 Glucose, Ala, Gln, Glu,

Ser
Glucose, Ala, Gln, Glu,
Ser

41 Glucose, Ala, Gln, Glu,
Leu, Lys

3.7956 3.7820 37 Glucose, Ala, Gln 3.8097 3.7794 37 Glucose, Ala, Gln 3.8140 3.7794

42 Glucose, Ala, Gln, Glu,
Leu, Lys

3.7820 3.7550
38 Glucose 3.7776 3.7275 38 Glucose 3.7776 3.7275

43 Glucose, Ala, Leu 3.7550 3.7390
44 Glucose 3.7390 3.7141

45 O–CH2–CH2–N+(CH3)3
of PC and SM,
glycerol, Ile

3.7141 3.6680
39 Glycerol 3.7204 3.6453 39 Glycerol 3.7240 3.6500



400 MHz (manually pre-processed spectra) 900 MHz (manually pre-processed spectra) 900 MHz (PepsNMR pre-processed spectra)

Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End

46 Glycerol 3.6680 3.6500
47 Glycerol, Val 3.6500 3.6376
48 Val 3.6376 3.6240 40 Val 3.6453 3.6212 40 Val 3.6500 3.6250
49 Thr 3.6240 3.6097

41 Thr 3.6163 3.5861 41 Thr 3.6163 3.5930
50 Thr 3.6097 3.5914

51 Glucose, glycerol, Gly,
Thr

3.5914 3.5649 42 Glycerol 3.5861 3.5771 42 Glycerol 3.5930 3.5810

52 Glucose 3.5649 3.5510 43 Glucose 3.5771 3.5481 43 Glucose 3.5810 3.5481

53 Glucose, acetoacetate,
Pro

3.5510 3.5360

53, 54
Glucose, acetoacetate,

3.5360 3.3980
44 Glucose 3.5355 3.4798 44 Glucose 3.5481 3.4798

Pro 45 Pro 3.4772 3.4576 45 Pro 3.4798 3.4600
46 Glucose 3.4576 3.4093 46 Glucose 3.4600 3.4093

55 Methanol, NI 3.3980 3.3765
47 Methanol 3.3964 3.3924 47 Methanol 3.4004 3.3924
48 NI 3.3924 3.3746 48 NI 3.3924 3.3770

56 Pro 3.3765 3.3430 49 Pro 3.3746 3.3465 49 Pro 3.3770 3.3465
57 Phe, Pro 3.3430 3.3230

58 3.3230 3.2186

50 Phe 3.3256 3.3132 50 Phe 3.3300 3.3160

O–CH2–CH2–N+(CH3)3
51 Phe, NI 3.3132 3.3030 51 Phe, NI 3.3160 3.3050

of PC and SM, glucose, 52 NI 3.3030 3.2956 52 NI 3.3050 3.2950
His, Phe, Tyr 53 NI 3.2956 3.2909 53 NI 3.2950 3.2920

54 Glucose 3.2909 3.2616 54 Glucose 3.2920 3.2646

55 O–CH2–CH2–N+(CH3)3
of PC and SM

3.2616 3.2085 55 O–CH2–CH2–N+(CH3)3
of PC and SM

3.2640 3.2085

59 Tyr, NI 3.2186 3.1930 56 Tyr, NI 3.1972 3.1895 56 Tyr, NI 3.2000 3.1900

60 NI 3.1930 3.1760
57 NI 3.1881 3.1821 57 NI 3.1900 3.1800



400 MHz (manually pre-processed spectra) 900 MHz (manually pre-processed spectra) 900 MHz (PepsNMR pre-processed spectra)

Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End

58 NI 3.1821 3.1724 58 NI 3.1800 3.1724
61 NI 3.1760 3.1462 59 NI 3.1707 3.1571 59 NI 3.1724 3.1600
62 His, Phe 3.1462 3.1090 60 His, Phe 3.1541 3.1378 60 His, Phe 3.1600 3.1300
63 Lys, Tyr 3.1090 3.0860 61 Tyr 3.0921 3.0769 61 Tyr 3.0940 3.0785
64 Creatinine, Lys, Tyr 3.0860 3.0716 62 Creatinine 3.0769 3.0699 62 Creatinine 3.0785 3.0720

65 Creatinine, creatine,
Lys

3.0716 3.0640 63 Creatine 3.0699 3.0635 63 Creatine 3.0720 3.0655

66 α-ketoglutarate, Lys 3.0640 2.9950 64 α-ketoglutrate, Lys 3.0635 3.0047 64 α-ketoglutrate, Lys 3.0655 3.0047

67 Lipids:
=CH–CH2–CH=

2.9950 2.8860 65
Lipids:
=CH–CH2–CH= in
FAC

3.0047 2.9655 65
Lipids:
=CH–CH2–CH= in
FAC

3.0047 2.9655

in FAC, Asn 66 Asn 2.9597 2.9201 66 Asn 2.9655 2.9201

68
Lipids:
=CH–CH2–CH= in
FAC, Asn, Asp

2.8860 2.8550 67
Lipids:
=CH–CH2–CH= in
FAC, Asn, Asp

2.8874 2.8465 67
Lipids:
=CH–CH2–CH= in
FAC, Asn, Asp

2.8874 2.8450

69
Lipids:
=CH–CH2–CH= in
FAC, Asn, Asp

2.8550 2.7500 68
Lipids:
=CH–CH2–CH= in
FAC

2.8465 2.7623 68
Lipids:
=CH–CH2–CH= in
FAC

2.8465 2.7623

70 Citrate, Asp 2.7500 2.7360
69 Citrate 2.7571 2.7493

69 Citrate 2.7530 2.725070 NI 2.7472 2.7390

71 Citrate, Asp, Met 2.7360 2.6600
71 Citrate 2.7368 2.7251
72 Asp 2.7237 2.6768 70 Asp 2.7250 2.6900

72 Met 2.6600 2.6300 73 Met 2.6768 2.6597 71 Met 2.6900 2.6597
73 Citrate 2.5960 2.5340 74 Citrate 2.5865 2.5426 72 Citrate 2.5865 2.5426
74 NI 2.5340 2.5150
75 Gln 2.5150 2.4920

75 Gln 2.5183 2.4428 73 Gln 2.5250 2.4440
76 β-hydroxybutyrate,

α-ketoglutarate, Gln
2.4920 2.4500



400 MHz (manually pre-processed spectra) 900 MHz (manually pre-processed spectra) 900 MHz (PepsNMR pre-processed spectra)

Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End

77
β-hydroxybutyrate,
α-ketoglutarate,
succinate

2.4500 2.4324 76 β-hydroxybutyrate 2.4428 2.4280 74 β-hydroxybutyrate 2.4440 2.4280

78 β-hydroxybutyrate, Pro 2.4324 2.4148

79 β-hydroxybutyrate,
Glu, Pro

2.4148 2.4050

80 Pyruvate, Pro, Glu 2.4050 2.3990 77 Pyruvate 2.4060 2.3978 75 Pyruvate 2.4110 2.3980

81 β-hydroxybutyrate,
Pro, Glu

2.3990 2.3640 78 Glu 2.3978 2.3648 76 Glu 2.4000 2.3600

82 β-hydroxybutyrate,
Pro, Glu

2.3640 2.3500

83 β-hydroxybutyrate,
Pro, Val

2.3500 2.3380
79 β-hydroxybutyrate 2.3540 2.3194 77 β-hydroxybutyrate 2.3540 2.3194

84 β-hydroxybutyrate ,
acetoacetate, Pro, Val

2.3380 2.3170

85 β-hydroxybutyrate,
acetoacetate, Val

2.3170 2.3040 80 Acetoacetate 2.3134 2.3067 78 Acetoacetate 2.3194 2.3055

86

Lipids: –CH2–C=O or
–CH2–CH=CH–in
FAC, Val,
β-hydroxybutyrate

2.3040 2.2915
81

Lipids: –CH2–C=O or
–CH2–CH=CH–in FAC 2.3067 2.2630 79

Lipids: –CH2–C=O or
–CH2–CH=CH–in FAC 2.2990 2.2680

87
Lipids: –CH2–C=O or
–CH2–CH=CH–in
FAC, Met, Val

2.2915 2.2690

88 Lipids: –CH2–C=O or 2.2690 2.2300
82 Acetone 2.2630 2.2563 80 Acetone 2.2680 2.2563

–CH2–CH=CH–,
acetone, Met, Val

89 Glu, Met 2.2180 2.1970
90 Gln, Glu, Pro, Met 2.1970 2.1230 83 NI 2.1975 2.1814 81 NI 2.1975 2.1930



400 MHz (manually pre-processed spectra) 900 MHz (manually pre-processed spectra) 900 MHz (PepsNMR pre-processed spectra)

Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End

84 Gln 2.1777 2.1670 82 Gln 2.1930 2.1700
85 Met 2.1670 2.1919 83 Met 2.1700 2.1650
86 Gln 2.1619 2.1311 84 Gln 2.1650 2.1311

91

Lipids:
–CH2–CH=CH–in
FAC,

2.1230 1.9720
87 Lipids:

–CH2–CH=CH–in FAC
2.1289 2.0993 85 Lipids:

–CH2–CH=CH–in FAC
2.1300 2.0975

CH3 of NAG, Glu, Ile,
Met, Pro

88
Lipids:
–CH2–CH=CH–in
FAC, CH3 of NAG

2.0993 1.9889 86
Lipids:
–CH2–CH=CH–in
FAC, CH3 of NAG

2.0985 1.9889

92 Acetate, Ile, Lys 1.9720 1.9240
89 Acetate 1.9547 1.9421 87 Acetate 1.9547 1.9450

92
90 Lys 1.9421 1.9028 88 Lys 1.9450 1.9100

93 Ile, Lys 1.9240 1.8800
94 Leu, Lys 1.8060 1.6860 91 Leu 1.8006 1.6758 89 Leu 1.8006 1.6758

95

Lipids:
–CH2–CH2–C=O or
–CH2–CH2–CH=CH–in
FAC, Lys

1.6860 1.5600 92

Lipids:
–CH2–CH2–C=O or
–CH2–CH2–CH=CH–in
FAC

1.6530 1.5770 90

Lipids:
–CH2–CH2–C=O or
–CH2–CH2–CH=CH–in
FAC

1.6530 1.5770

96 Ala, Ile, Lys 1.5400 1.4900 93 Ala 1.5226 1.4919 91 Ala 1.5226 1.4850
97 Ile, Leu, Lys 1.4900 1.4200 94 Lys 1.4587 1.4201 92 Lys 1.4587 1.4201
98 Lactate 1.4200 1.3740 95 Lactate 1.4169 1.3675 93 Lactate 1.4169 1.3730
99 Lactate, Thr 1.3740 1.3450 96 Lactate 1.3675 1.3516 94 Lactate 1.3730 1.3516

100 Lipids:–CH3–(CH2)n–in
FAC, Ile, Thr

1.3450 1.2458 97 Lipids:
–CH3–(CH2)n–in FAC

1.3516 1.2366 95 Lipids:
–CH3–(CH2)n–in FAC

1.3500 1.2500

101 β-hydroxybutyrate, Ile 1.2458 1.2180 98 β-hydroxybutyrate 1.2366 1.2240 96 β-hydroxybutyrate 1.2500 1.2250
102 NI 1.2180 1.1300 99 NI 1.2240 1.1766 97 NI 1.2200 1.1700
103 Val 1.0930 1.0610 100 Val 1.0860 1.0592 98 Val 1.0950 1.0620
104 Ile 1.0610 1.0400 101 Ile 1.0513 1.0340 99 Ile 1.0620 1.0370



400 MHz (manually pre-processed spectra) 900 MHz (manually pre-processed spectra) 900 MHz (PepsNMR pre-processed spectra)

Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End Region Contributing
metabolites

Start End

105 Ile, Val 1.0400 1.0220
102 Val 1.0396 1.0106 100 Val 1.0370 1.0150

106 Ile, Leu, Val 1.0220 1.0020
107 Ile, Leu 1.0020 0.9860

103 Leu 1.0083 0.9766 101 Leu 1.0150 0.9800
108 Ile, Leu 0.9860 0.9760
109 Ile 0.9760 0.9660 104 Ile 0.9766 0.9663 102 Ile 0.9800 0.9550

110 Lipids: CH3–(CH2)n–in
FAC

0.9660 0.8000 105 Lipids: CH3–(CH2)n–in
FAC

0.9663 0.7961 103 Lipids: CH3–(CH2)n–in
FAC

0.9663 0.7961
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11.2 BATMAN

The Bayesian state-of-the-art spectral deconvolution technique, BATMAN, was deve-
loped by Astle et al. (2012). BATMAN resolves the resonance peaks of NMR spectra
in order to estimate the relative concentrations of a pre-specified set of metabolites.
BATMAN is a two-component model. The first component models the metabolic
signal (i.e., the signal assigned to specific metabolites) while the second component
models the residual signal. BATMAN exploits extensive prior information on the
characteristic spectral signatures of each metabolite and combines this information
with the observed intensities to model the metabolic signal. The second component
uses wavelets to capture the residual signal. The residual signal includes the signal
that arises from other uncatalogued chemical constituents such as lipids. When the
metabolic signal has been properly extracted, the wavelet signal can be divided into
carefully selected broad ISRs to approximate lipid concentrations. In this way, a set
of relative metabolite concentrations and lipid features can be obtained. In addition
to providing point estimates of the metabolic concentrations per spectrum, BATMAN
also provides 95% credible intervals for each estimate which can be used to assess the
degree of uncertainty in the estimated concentrations.

Astle et al. (2012) and Hao et al. (2014) describe BATMAN and its implementa-
tion in great detail. The next two sections provide an overview of the methodology as
described in Astle et al. (2012) and Hao et al. (2014) with additional details pertaining
to our implementation of BATMAN.

11.2.1 Specification of BATMAN

In this section, the model specification of BATMAN is provided using the notation of
Astle et al. (2012) and Hao et al. (2014). BATMAN analyses the pre-processed NMR
spectra (i.e., the frequency domain signals). Let y denote the nf × 1 dimensional
vector of intensities. The NMR spectral intensities y are modeled as the sum of
the catalogued metabolites yc, the uncatalogued metabolites yu, and the noise ε. In
mathematical notation,

y = yc + yu + ε, ε ∼ N
(

0, I
λ

)
, (11.1)

where I is the nf × nf identity matrix, and λ is a scalar precision parameter.

Catalogued metabolites The catalogued metabolite component yc is formed by
taking a weighted sum of the metabolite signatures of each catalogued metabolite
m = 1, . . . ,M . The signatures of each catalogued metabolite are specified by a tem-
plate function denoted by tm. In mathematical notation, the catalogued metabolite
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component is modeled as

yc =
M∑
m=1

βmtm(δ), (11.2)

where δ is the chemical shift parameter. The coefficient βm is of main interest and
takes on a value that is proportional to the concentration of metabolite m in the
sample.

The NMR signature for a particular metabolite m, which is modeled by the
template function tm, is expressed as a linear combination of Um multiplet functions.
The mathematical form of the template function is given by

tm(δ) =
Um∑
u=1

zmugmu(δ − δ?mu). (11.3)

In equation (11.3), zmu corresponds to the number of protons in the molecule of m
that contribute resonance signal to the multiplet u. The multiplet curve is modeled
by gmu where δ?mu is the chemical shift at the center of mass of the uth multiplet of the
mth catalogued metabolite. It is assumed that

∫∞
0 gmu(δ)dδ =

∫ 0
−∞ gmu(δ)dδ for all

m and u. Furthermore,
∫∞
−∞ gmu(δ)dδ is constant over m and u. Thus, the area under

tm is proportional to the number of protons resonating in the molecule. The multiplet
curve gmu is the sum of horizontally shifted and vertically scaled Lorentzian functions
l(δ), as defined in (9.9), with peak width at half height denoted by γm. Formally,

gmu(δ) =
Vmu∑
v

ωmuvlγm(δ − cmuv), (11.4)

where ωmuv represents the relative intensities (heights) of the peaks of the multiplet,
and cmuv determines the horizontal offset of the peaks from the center of mass of
the multiplet δ?mu. The peak widths γm are allowed to vary between metabolites
according to

ln (γm) = µ+ νm, (11.5)

where µ is the average peak width across the spectrum and νm is the deviation from
the average for metabolite m which is assumed to be normally distributed.

Uncatalogued signal The uncatalogued component yu is modeled as a linear com-
bination of wavelet basis functions with θ denoting the vector of wavelet coefficients.
In particular, Daubechie’s least asymmetric wavelets with six vanishing moments are
used as a wavelet basis. These wavelets have a similar shape to Lorentzian peaks.
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Prior specification The prior specification of the parameters is provided below.
The numerical values of the constants, used to define the priors, are discussed in
Section 11.2.2.

µ and νm Gaussian priors are assumed for the average peak width (µ) across
the spectrum, as well as for the deviation from the average peak
width (νm) for a metabolite m.

cmuv and ωmuv The parameters cmuv (i.e., the horizontal offsets) and ωmuv (i.e.,
the relative intensities which sum to one) characterize the multiplet
shapes and vary very slightly between spectra. As such, they are
assumed to be constant. The values of cmuv and ωmuv are computed
using estimates of the J-coupling constants.

δ?mu Due to differences in experimental conditions, the center of mass
of a multiplet, denoted by δ?mu, fluctuates slightly between spectra.
Smaller fluctuations are more probable than larger ones. To ac-
count for this, a truncated Gaussian prior distribution is assigned
to each δ?mu.

βm A truncated Gaussian distribution confined to positive values with
low prior information is assumed for the coefficients βm.

θ and λ In order to distinguish between the parametric and wavelet compo-
nents of the model, the wavelet component is penalized. A trunca-
ted Gaussian prior distribution with probability mass concentrated
at zero is imposed on the wavelet coefficients θ. To ensure a mostly
positive signal, a strong penalty is imposed on the parts of the wa-
velet component that lie below a small negative threshold h. The
prior distribution on the wavelet coefficients are characterised by
λ, and the hyperparameters ψ and τ . The hyperparameter vector
ψ ∼ Gamma(c, d/2) allows the prior precision associated with each
wavelet to deviate from the global precision λ ∼ Gamma(a, b/2)
and induces shrinkage of the wavelet coefficients. Smaller values
of a and b correspond to increased uncertainty in the value of λ.
The values of c and d control the degree of penalization imposed
on the wavelet coefficients. τ is a truncation limit vector associated
with the spectral data points i = 1, . . . , n. Each τi has a Gaussian
distribution that is right-truncated at a small negative intensity h.
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11.2.2 Implementation of BATMAN

BATMAN was implemented by using the R statistical software package batman, as
detailed in the protocol by Hao et al. (2014). In this section, the implementation
of the model is described and some of the steps that are crucial for improving the
extraction of the metabolic signal are summarized.

The standard BATMAN inputs are the NMR spectroscopy data (NMRdata.txt),
the parameter options file (batmanOptions.txt), the library of characteristic metabolic
signatures (multi data.csv or multi data user.csv), and a list of the metabolites of
interest (metabolitesList.csv).

BATMAN options file The parameter settings (batmanOptions.txt) used for the
400 MHz and the 900 MHz analysis are shown in Table 11.2. The parameters used
to fit the BATMAN model were selected based on the properties of the spectra and
the recommendations of Hao et al. (2014). The truncation threshold for negative
intensities was lower for the 400 MHz analysis compared to the 900 MHz analysis
in order to accommodate the negative intensities (due to minor phasing issues) in
some of the 400 MHz spectra. As per the recommendations of Hao et al. (2014),
the parameters controlling the precision parameter λ (i.e., shape (a) and scale (b) in
Table 11.2) were left at their default values. Peaks were allowed to shift more in the
400 MHz analysis as greater variation was observed in the location of the multiplets
across the 400 MHz spectra.

Template file Prior information about the spectral signatures of each metabolite is
specified in the default BATMAN template file multi data.csv. The default template
file can be modified by constructing the template file multi data user.csv. The fit of
the BATMAN model can be improved considerably by providing prior information
that more accurately describes the observed peaks. Each resonance is described in the
BATMAN template file in terms of its chemical shift position (in ppm), multiplicity
(i.e., the J-coupling pattern), J-coupling constants, and the relative intensities of the
peaks. Multiplets with well-defined coupling patterns and known coupling constants,
which exhibit second order effects (i.e., leaning effects), can be modeled empirically
by specifying the observed intensity ratios of the peaks. Further details on this as-
pect are provided in the note on empirical multiplets below. Complex multiplets
(e.g., multiplets that are not well-defined or those that exhibit higher-order coupling
patterns), for which elucidation would require a substantial amount of input from
a spectroscopist, may be modeled as raster multiplets by providing a corresponding
section of a pure compound spectrum (see the note on raster multiplets below).

Given the complexity of NMR resonances, ill-defined chemical shift positions is
the recipe for a poor fit. Prior information about the peak locations was determined
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Table 11.2: Parameters used to run BATMAN.

BATMAN options file parameters 400 MHz 900 MHz
spectra spectra

General parameters

Truncation threshold for negative intensities (h) -0.5 -0.05
Intensity scale factor 100 100
Down sampling factor 3 3
Number of burn-in iterations 3500 3500
Number of post-burn-in iterations 1500 1500
Spectrometer frequency (MHz) 399.793 900.229863

Uncatalogued (wavelet) component

Shape (a) 0.00001 0.00001
Scale (b) 0.000000001 0.000000001

Catalogued metabolite component

Mean of prior on global peak width (µ) in ln(Hz) 0 0
Variance of prior on global peak width (µ) in ln(Hz) 0.01 0.01
Variance of prior on peak width offset (νm) in ln(Hz) 0.0025 0.0025

Wavelet truncation

Mean of the prior on τ -0.05 -0.05
Inverse of variance of prior on τ 2 1

Peak shift

Truncation of prior on peak shift (ppm) 0.01 0.005

by using the splineFit routine (Hao et al., 2014) implemented in Matlab, and the
details on the 1H-NMR chemical shift locations of plasma metabolites reported by
Louis et al. (2015).

A note on empirical multiplets For the user-defined empirical multiplets, the accu-
rate specification of relative intensities is subject to the availability of pure compound
spectra (i.e., NMR spectra obtained by analyzing a sample containing only the target
metabolite). For the multiplets in regions of no overlap, baseline-corrected spiked
spectra were used as a substitute for the pure compound spectra. To compute the
relative intensities, the number of resonating protons should be taken into account.
For a particular multiplet, a simple numeric solution is to take the intensities of the
peaks observed in the pure compound spectra and to normalize them to sum to the
actual number of protons. That is, the relative intensity of a multiplet’s ith peak is
computed using the following formula:
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hi = p× yi∑
i yi

(11.6)

where yi is the observed intensity based on pure compound spectra and p is the
number of protons associated with the multiplet.

Empirical templates can be defined to model multiplets that exhibit leaning ef-
fects. If, for instance, two protons (with different chemical shifts) are coupled together,
the signal of the one proton splits the signal of the other proton and vice-versa, re-
sulting in a doublet for each proton. Sometimes, depending on the distance between
the signals in the spectrum and the strength of the coupling, the patterns lean to-
wards each other resulting in the outer peaks having a lower intensity than the inner
peaks. Figure 11.1 shows the leaning effect of two doublets of citrate. Each doublet
was produced by two resonating protons. Using equation (11.6), the relative intensity
of the peak at 2.586 ppm is h1 = 1.2 and the relative intensity of the peak at 2.547
ppm is h2 = 0.8.

Figure 11.1: Illustration of a 400 MHz spectrum with two doublets of citrate at 2.717
and 2.566 ppm. Each doublet arises from a CH2-group and thus from two
protons.

In addition to the relative intensities, the offset of the peaks should be specified
(in Hz). Offsets are specified from a point of origin. For convenience, the center of
the multiplet can be taken as the origin. The offsets can be determined from pure
compound spectra. Alternatively, the J-coupling information of 1H-NMR plasma
metabolites reported by Louis et al. (2015) and public databases like the Human
Metabolome Database (HMDB) can be used. This is depicted in Figure 11.2, where
the offset of the leftmost peak from the center of the double doublet of aspartate is
half of the sum of the two J-coupling constants.

A note on raster multiplets Raster multiplets can be modeled from pure compound
spectra. Due to the lack of pure compound spectra, spiked spectra were used for the
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Figure 11.2: A portion of a 400 MHz spectrum illustrating the identification of peak
offsets for the double doublet of aspartate at 2.702 ppm. Coupling constants
J1 and J2 can be used to obtain the location of the four peaks from the
center of the multiplet

multiplets that are found in regions where there is no significant overlap with other
metabolites. Examples of raster multiplets for the 400 MHz and 900 MHz spectra are
shown in Figure 11.3.

Figure 11.3: Illustration of raster multiplets. Left: 400 MHz raster multiplet for proline.
Right: 900 MHz raster multiplet for glutamine.

Target metabolites The BATMAN model was applied to estimate the relative con-
centrations of the following metabolites (together with their Chemical Entities of
Biological Interest (ChEBI) codes) in the 400 MHz spectra: alanine (CHEBI: 57972),
arginine (CHEBI: 32682), asparagine (CHEBI: 58048), aspartate (CHEBI: 29991),
cysteine (CHEBI: 35235), glutamine (CHEBI: 58359), glutamate (CHEBI: 29985),
glycine (CHEBI: 57305), histidine (CHEBI: 57595), isoleucine (CHEBI: 58045), leu-
cine (CHEBI: 57427), lysine (CHEBI: 32551), methionine (CHEBI: 57844), pheny-
lalanine (CHEBI: 58095), proline (CHEBI: 60039), serine (CHEBI: 33384), threo-
nine (CHEBI: 57926), tryptophan (CHEBI: 57912), tyrosine (CHEBI: 58315), valine
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(CHEBI: 57762), α-D-glucopyranose (CHEBI: 17925), β-D-glucopyranose (CHEBI:
15903), myo-inositol (CHEBI: 17268), acetate (CHEBI: 30089), acetoacetate (CHEBI:
13705), α-ketoglutarate (CHEBI: 16810), β-hydroxybutyrate (CHEBI: 10983), citrate
(CHEBI: 16947), lactate (CHEBI: 16651), pyruvate (CHEBI: 15361), succinate (CHEBI:
30031), creatine (CHEBI: 57947), and creatinine (CHEBI: 16737). In the 900 MHz
spectra, betaine (CHEBI: 17750) and choline (CHEBI: 133341) were added to the
above list of metabolites.

Verifying the goodness of the BATMAN fit The goodness of fit of the modeled
metabolic signal can be checked by using the built-in tools of the R batman package.
In particular, for multiple spectra, the fit can be assessed by examining a plot com-
paring the integrated bin intensities with the BATMAN metabolite fit and wavelet
fit for each multiplet (see Figure 11.4). Note that the bin is placed over the modeled
position of the multiplet. A lack of correlation between the integrated bin intensity
and the BATMAN-estimated intensity may reveal a poor fit. Conversely, a correla-
tion between the integrated bin intensity and the BATMAN wavelet fit may be an
indication that the metabolite fit is failing to capture signal that should be modeled
by a template.

It is worthwhile to note that comparing the integrated bin intensities with the
BATMAN metabolite fit for multiplets in crowded-peak regions is less informative
(i.e., it is not a solution for evaluating the BATMAN fit or for identifying problem
spectra). To illustrate this point, consider Figure 11.4 showing the diagnostic scat-
terplot for alanine. While the integration values are aligned for the doublet at 1.509
ppm, they are somewhat scattered for the quadruplet at 3.810 ppm. This is primarily
due to the glucose resonances that lie in the vicinity of the quadruplet and which
contribute to the integrated bin intensity.

Figure 11.4: BATMAN diagnostic plot for alanine. Each number corresponds to a spe-
cific spectrum
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Post-processing of spectral fits Once the metabolic signal has been correctly as-
signed, the residual signal captured by the wavelet component of the BATMAN
model can be used to estimate the lipid concentrations. Towards this aim, in-
tegration regions that encompass lipid resonances were specified. Lipid resonan-
ces typically appear as broad peaks in NMR spectra. In general, the lipid inte-
gration regions selected for the BATMAN analysis are broader than those used
for spectral binning (see Figure 11.5 and Table 11.3). The defined integration re-
gions aim to capture the following broad lipid resonances: CH3–(CH2)n– in the
fatty acid chain (FAC), –CH3–(CH2)n– in the FAC (captured using two integra-
tion regions in the 900 MHz analysis), –CH2–CH2–C=O or –CH2–CH2–CH=CH–
in the FAC, –CH2–CH=CH– in the FAC and CH3 in N-acetylated glycoproteins
(NAG), –CH2–C=O or –CH2–CH=CH– in FAC, =CH–CH2–CH= in FAC, lysyl,
and –CH=CH– in FAC. In this way, a set of lipid-specific features were obtained in
addition to the relative metabolic concentrations. This approach only works when
the metabolic signal has been sufficiently extracted. Should this not be the case, the
residual signal will be contaminated by other metabolites resonating in the area.

Figure 11.5: Illustration of the BATMAN wavelet-fit showing lipid integration regions
for a 400 MHz (top) and 900 MHz (bottom) spectrum. The BATMAN
integration regions that capture the broad lipid resonances are delimited by
blue solid lines. The narrower spectral binning integration regions (delimited
by red dashed lines) capture lipid signals, but not necessarily exclusively.
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Table 11.3: Comparison of the lipid integration regions for the BATMAN and spectral binning analyses.

Lipid features

Manually pre-processed Manually pre-processed PepsNMR pre-processed PepsNMR pre-processed
400 MHz spectra 400 MHz spectra 900 MHz spectra 900 MHz spectra
Spectral binning∗ BATMAN Spectral binning BATMAN

Start End Start End Start End Start End
–CH=CH– in FAC 5.4300 5.2752 5.4300 5.2800 5.4422 5.2900 5.4200 5.2833
albumin (lysyl) 3.3500 3.1500 3.2700 3.1500

=CH–CH2–CH= in FAC (b) 2.9950 2.8860 3.1000 2.9000 3.0047 2.9655 3.1000 2.90002.8860 2.8550 2.8874 2.8465
=CH–CH2–CH= in FAC (a) 2.8550 2.7500 2.8880 2.6500 2.8465 2.7623 2.8880 2.6500
–CH2–C=O 2.3040 2.2915

2.3060 2.2300 2.2990 2.2680 2.3060 2.2630or 2.2915 2.2690
–CH2–CH=CH– in FAC 2.2690 2.2300
–CH2–CH=CH– in the FAC and 2.1230 1.9720 2.1500 1.9500 2.1300 2.0975 2.1289 1.9889CH3 in NAG 2.0985 1.9889
–CH2–CH2–C=O or 1.6860 1.5600 1.6860 1.5400 1.6530 1.5770 1.6530 1.5770–CH2–CH2–CH=CH– in the FAC

–CH3–(CH2)n– in FAC 1.3450 1.2458 1.4300 1.1600 1.4169 1.3730 1.4169 1.3675
1.3516 1.2500 1.3516 1.2366

CH3–(CH2)n– in FAC 0.9660 0.8000 0.9660 0.8000 0.9663 0.7961 0.9660 0.7961
Abbreviations: FAC: fatty acid chain, NAG: N-acetylated glycoproteins
∗ As reported by Louis et al. (2015)
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In this chapter, the classification methodology used to investigate the impact of
spectral binning and BATMAN on the classification of lung cancer samples and con-
trols is described (see Section 12.1). Section 12.2 presents the results of the classifica-
tion analysis. The chapter concludes with a discussion of the results in Section 12.3.

12.1 Methodology
Spectral binning and spectral deconvolution by BATMAN were applied to the ma-
nually pre-processed (mp) 400 MHz and the PepsNMR automatically pre-processed
(ap) 900 MHz 1H-NMR spectra of lung cancer patients and control subjects (see
Chapter 10 and Chapter 11). Spectral binning was also applied to the manually pre-
processed 900 MHz 1H-NMR spectra. As a result, the following five sets of predictors
were obtained:

1. 110 integrated spectral regions (ISRs) based on the mp 400 MHz spectra.

2. Relative concentrations obtained using BATMAN for 33 metabolites and 9 lipid
features based on the mp 400 MHz spectra.

3. 103 ISRs based on the ap 900 MHz spectra.

4. Relative concentrations obtained using BATMAN for 33 metabolites and 10
lipid features based on the ap 900 MHz spectra.

5. 105 ISRs based on the mp 900 MHz spectra.

Classifiers were built by using each set of predictors. The predictive performance
of the classifiers was assessed by using a three-fold cross-validation (CV) scheme (see
Figure 12.1). CV works by dividing the dataset in two parts, a training set and a test
set. In our implementation, we ensure that the training and test set have the same
proportion of cases and control subjects as the full dataset. In K-fold CV, the data
are split into K roughly equal parts. In the kth iteration, where k = 1, . . . ,K, the kth

part of the data forms the test set and the remaining K − 1 parts form the training
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set. Thus, in three-fold CV, one-third of the data forms the test set and the remaining
two-thirds of the data (i.e., the training set) are used to build the classifier. At each
iteration, the performance of the classifier is evaluated in terms of the proportion of
misclassifications and the sensitivity and specificity of the classifier when applied to
the test set. Since the splitting is not uniquely determined (Slawski et al., 2008), the
cross validation procedure was repeated 333 times. The overall performance is based
on the mean classification error rate, the mean sensitivity, and the mean specificity
of the 999 classifiers.

For the classification analysis involving the binning features, variable selection
was based on the discriminative power of the individual bins between the two con-
ditions. This was assessed by using limma (Smyth et al., 2003), as indicated by
the asterisk in Figure 12.1. In a two-class setting, limma is a moderated t-statistic
based on a hybrid frequentist empirical Bayes linear model. Let σ2

1 , . . . , σ
2
m denote

the ISR-specific variances. Limma assumes a scaled inverse chi-square prior density
for σ2

1 , . . . , σ
2
m with hyperparameters s2

0 for the prior variance and ν0 for the prior
degrees of freedom. The hyperparameters are estimated by applying an empirical
Bayes function to the sample variances s2

1, . . . , s
2
m. Moderated t-statistics are produ-

ced by dividing the standard frequentist numerator of the t-test statistic by a deno-
minator in which the sample variance s2

i with ν degrees of freedom is replaced with
s̃2
i = (ν0s

2
0 +νs2

i )/(ν0 +ν), i.e., the posterior mean of σ2
i |s2

i . The moderated t-statistic
follows a t-distribution with ν0 + ν degrees of freedom under the null hypothesis.

The classification analysis involving the BATMAN estimated features proceeded
using the following three subsets of the features: (1) all the BATMAN-estimated
relative metabolite concentrations, (2) all the relative lipid concentrations, and (3)
all the BATMAN-estimated relative metabolic concentrations together with all the
relative lipid concentrations.

Five classification methods that are appropriate for the analysis of large, complex
datasets were used to build the classifiers, namely, elastic net, lasso, orthogonal partial
least squares-discriminant analysis (OPLS-DA), support vector machines (SVMs),
and random forests (RF). The selected range of classifiers by no means encompasses
all the possible classifiers that could be considered. It is not our goal to investigate
all the classifiers or to identify the most optimal classification approach. A brief
description of each of the selected classification methods used is provided below. The
reader is referred to Hastie et al. (2009) and Bylesjö et al. (2006) for further details.

Lasso and elastic net are both regularized regression procedures (i.e., penalty
terms are added to the regression framework, which is logistic regression in this case).
Lasso utilizes the L1 penalty which constrains the sum of absolute values of the re-
gression coefficients. Lasso enables variable selection as L1 regularization allows for
some regression coefficients to be shrunk to zero. Ridge regression, also a regularized
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Figure 12.1: The three-fold cross-validation procedure.

regression procedure, utilizes the L2 penalty which constrains the sum of squared
regression coefficients. Regularization with the L2 penalty is good for handling corre-
lated predictors. Elastic net combines the L1 penalty of lasso with the L2 penalty of
ridge regression. Thus, elastic net enables variable selection and allows for strongly
correlated predictors to either enter or be left out of the model together.

Partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least
squares-discriminant analysis (OPLS-DA) are well-known multivariate-regression ap-
proaches, used for performing classification, in metabolomics. Given two matrices, a
response matrix Y containing class information and a matrix of predictors X, PLS-DA
models X and Y simultaneously with the aim of maximizing the covariance between
X and Y. The procedure identifies latent variables (a.k.a. PLS components) in X that
are predictive of Y. In OPLS-DA, the information contained in Y is used to split the
X matrix into blocks that are correlated with Y, capturing the predictive variation,
and orthogonal to Y, capturing the non-predictive variation. Thus, the variation in
X that is not correlated with Y is removed. This reduces the complexity of the final
model making the results more interpretable. SVMs search for a hyperplane that
maximizes the margin of separation between the two classes. RF classifiers combine a
number of decision trees each based on bootstrapped samples of the training dataset.

Although limma was not used to build the BATMAN feature-based classifiers, it
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was applied (in 333 iterations of three-fold cross-validation) as a univariate approach
to identify the top 15 variables of each of the five sets of predictors. For each trai-
ning dataset in the three-fold cross-validation procedure, the predictors are ranked
according to their associated limma t-test statistics. The top ranking k = 15 fea-
tures of each dataset are selected. The frequency with which each feature appears
in the collection of top 15 feature lists is computed and those features appearing
most frequently in the top 15 lists across the iterations are selected. These variables
were identified to check whether there were any similarities in the most discriminative
variables selected from each set of predictors.

The classification analysis was conducted by using the R statistical software (ver-
sion 3.2.3, R Development Core Team, 2015). Classification methods were implemen-
ted by using the default options of the R Bioconductor package CMA (Slawski et al.,
2008).

12.2 Results
A single list of top ranking features was obtained at every step of the repeated CV
based on the ranking of limma t-test statistics (see Section 12.1). This resultant in
a total of 999 top 15 feature lists for each of the five sets of predictors. Tables 12.1
to 12.5 list the features appearing most frequently across the 999 top 15 feature
lists together with their frequency of appearance. There are similarities in the top
ISRs of the 400 MHz and 900 MHz (ap and mp) ISRs. In particular, the following
ISRs appear in the top 15 lists for all three sets of spectral binning features (see
Table 12.1, Table 12.3, and Table 12.5): isoleucine (around 0.97 ppm), threonine
(around 3.61 ppm), glycerol (around 3.66 ppm), glucose (around 3.90 ppm), and
asparagine, histidine, serine, and tyrosine (around 3.98 ppm). Unidentified ISRs also
appear in the top 15 lists. However, the chemical shift of these unidentified ISRs
differ across the three tables. Of the common ISRs listed above, only the metabolites
glucose and asparagine appear in the top 15 list of the 400 MHz BATMAN analysis
(see Table 12.1). Glucose, serine, histidine, threonine, tyrosine, and asparagine appear
in the top 15 list of the 900 MHz BATMAN univariate analysis (see Table 12.4).
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Table 12.1: Top integration regions for the 400 MHz spectral binning analysis (based on
repeated three-fold cross-validation using the limma t-test).

Top 15 integration regions

Region Chemical shift Signal found in region Top 15 frequency

36 [4.0010, 3.9810]
C3H2 in glycerol backbone of PL,

Asparagine, Histidine, Phenylalanine,
Serine

999

37 [3.9810, 3.9590] Creatine, Asparagine, Histidine,
Tyrosine, Serine 999

48 [3.6376, 3.6240] Valine 998
29 [4.1260, 4.1110] Not identified 997
49 [3.6240, 3.6097] Threonine 969

91 [2.1230, 1.9720]
Lipids: –CH2–CH=CH– in FAC, CH3

of NAG, Glutamate, Isoleucine,
Methionine, Proline

902

45 [3.7141, 3.6680] O–CH2–CH2–N+(CH3)3 of PC and
SM, Glycerol, Isoleucine 865

28 [4.1750, 4.1260] C1H and C3H in glycerol backbone of
PL and TG, Lactate 856

46 [3.6680, 3.6500] Glycerol 803
23 [4.5380, 4.4100] Not identified 766
50 [3.6097, 3.5914] Threonine 729
109 [0.9760, 0.9660] Isoleucine 690
2 [7.8200, 7.7890] Histidine 653
73 [2.5960, 2.5340] Citrate 534

38 [3.9590, 3.8330] Glucose, Aspartate, Methionine,
Serine, Tyrosine 521

Abbreviations: FAC: fatty acid chain, NAG: N-acetylated glycoproteins, PC: phospha-
tidylcholine, PL: phospholipids, SM: sphingomyelins, TG: triglycerides
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Table 12.2: Top metabolite/lipid features for the 400 MHz BATMAN
analysis (based on repeated three-fold cross-validation using
the limma t-test).

Top 15 metabolite/lipid features Top 15 frequency

Lipids: –CH2–CH=CH– in FAC and CH3 in NAG 999
Lactate 996
Lipids: =CH–CH2–CH= in FAC (a) 993
α-Ketoglutarate 987
Cysteine 934
Lipids:=CH–CH2–CH= in FAC (b) 923
Acetoacetate 887
α-D-glucopyranose 867
Lysyl 815
Lipids: –CH=CH– in FAC 778
Proline 730
Alanine 625
Lipids: CH3–(CH2)n– in FAC 597
Methionine 584
Asparagine 342

Abbreviations: FAC: fatty acid chain, NAG: N-acetylated glycoproteins
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Table 12.3: Top integration regions for the PepsNMR pre-processed 900 MHZ spectral bin-
ning analysis (based on repeated three-fold cross-validation using the limma
t-test).

Top 15 integration regions

Region Chemical shift Signal found in region Top 15 frequency

31 [3.9680, 3.9600] Creatine 999
80 [2.2680, 2.2563] Acetone 999
82 [2.1930, 2.1700] Glutamine 999

36 [3.8410, 3.8140] Glucose, Alanine, Glutamine,
Glutamate, Serine 991

71 [2.6900, 2.6597] Methionine 991
34 [3.9150, 3.8920] Glucose 975

30 [3.9920, 3.9680] Asparagine, Histidine, Serine,
Tyrosine 974

61 [3.0940, 3.0785] Tyrosine 944
16 [6.7600, 6.7004] Not identified 893
39 [3.7240, 3.6500] Glycerol 853
102 [0.9800, 0.9550] Isoleucine 767
94 [1.3730, 1.3516] Lactate 727
41 [3.6163, 3.5930] Threonine 713
10 [7.3510, 7.3227] Not identified 462
83 [2.1700, 2.1650] Methionine 433
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Table 12.4: Top metabolite/lipid features for the PepsNMR pre-
processed 900 MHz BATMAN analysis (based on repeated
three-fold cross validation using the limma t-test).

Top 15 metabolite/lipid features Top 15 frequency

α-D-glucopyranose 999
α-Ketoglutarate 999
Serine 999
Histidine 992
Citrate 986
Glycine 977
Glutamate 977
Threonine 926
Tryptophan 884
Lipids: CH3–(CH2)n–in FAC 708
Tyrosine 662
Myo-inositol 651
Lipids: –CH2–C=O or –CH2–CH=CH– in FAC 628
Lipids: =CH–CH2–CH= in FAC (b) 598
Asparagine 554

Abbreviations: FAC: fatty acid chain
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Table 12.5: Top integration regions for the manually pre-processed 900 MHz spectral bin-
ning analysis (based on repeated three-fold cross-validation using the limma
t-test).

Top 15 integration regions

Region Chemical shift Signal found in region Top 15 frequency

39 [3.7204, 3.6453] Glycerol 999

87 [2.1289, 2.0993] Lipids: –CH2–CH=CH– in FAC, CH3
of NAG 999

34 [3.9120, 3.8957] Glucose 991

88 [2.0993, 1.9889] Lipids: –CH2–CH=CH– in FAC, CH3
of NAG 988

20 [5.2186, 5.2038] C2H in glycerol backbone of PL and
TG 982

73 [2.6768, 2.6597] Methionine 973
94 [1.4587, 1.4201] Lysine 931
104 [0.9766, 0.9663] Isoleucine 917
41 [3.6163, 3.5861] Threonine 846
99 [1.2240, 1.1766] Not identified 815

30 [3.9903, 3.9644] Asparagine, Histidine, Serine,
Tyrosine 749

13 [7.0792, 7.0597] Histidine 597
16 [6.7460, 6.7004] Not identified 595
101 [1.0513, 1.0340] Isoleucine 510
40 [3.6453, 3.6212] Valine 484

Abbreviations: FAC: fatty acid chain, NAG: N-acetylated glycoproteins, PL: phospholipids,
TG: triglycerides
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Figure 12.2 illustrates the fit of the BATMAN model in the region extending
from 2.99 to 3.11 ppm for both the 400 MHz and 900 MHz spectrum of a particular
plasma sample. This region contains resonances from creatine (singlet), creatinine
(singlet), lysine (triplet), and tyrosine (double doublet), as well as a part of the lipid
=CH–CH2–CH= resonance. The resonances are more distinguishable in the 900
MHz spectrum compared to the 400 MHz spectrum. For the 400 MHz spectrum, the
four integration regions from left to right aim to capture the signal corresponding to
(1) cysteine, lysine, and tyrosine; (2) cysteine, lysine, tyrosine, and creatinine; (3)
cysteine, lysine, tyrosine, creatinine, and creatine; and (4) cysteine, lysine, tyrosine,
and α-ketoglutarate. For the 900 MHz spectrum, the four integration regions from
left to right, beginning at 3.0921 ppm, correspond to (1) tyrosine, (2) creatinine, (3)
creatine, and (4) lysine and α-ketoglutarate.

Box plots of the misclassification errors, sensitivities, and specificities of the vari-
ous classifiers (elastic net, lasso, OPLS-DA, SVMs, and RF) for each of the considered
sets of predictors are shown in Figure 12.3, Figure 12.4, and Figure 12.5, respectively.
An overview of these results are provided in Table D.1.1 and Figure 12.6. Note that
the spectral binning classifiers were built using the top k ISRs where k is a series of
numbers extending from three to the total number of ISRs forming the set of predic-
tors. The misclassification error, sensitivity and specificity of each of these spectral
binning classifiers developed using elastic net are shown in Figure D.1.1 (for the 400
MHz ISRs), Figure D.1.2 (for the ap 900 MHz ISRs), and Figure D.1.3 (for the mp
900 MHz ISRs). Of the classifiers built using the top k ISRs, only the best performing
classifiers are reported in Table D.1.1. For most of the sets of features, the classifica-
tion approaches (elastic net, lasso, OPLS-DA, RF, and SVMs) performed more or less
similarly and none stand out as being consistently better than the others. However,
based on the classification performance, i.e., the misclassification errors, sensitivity,
and specificity, of the classifiers, the decision was made to proceed with elastic net
which performed reasonably well for all the sets of features that will be focused on.
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Figure 12.2: BATMAN fit in the region extending from 2.99 to 3.11 ppm for the 400
MHz spectrum (top) and the 900 MHz spectrum (bottom) of a plasma
sample. The original spectrum is shown in yellow. The two components
of the BATMAN model fit, that is, the component modeling the metabolic
signal (metabolites fit) and the component capturing the residual signal
(wavelet fit) are indicated by blue and red curves, respectively. The fit
sum which is the sum of the metabolite fit and the wavelet fit is shown
in black. The shaded regions show the resonances from creatine (blue),
creatinine (yellow), lysine (pink), and tyrosine (green) that are captured
by the metabolite fit. The broad lipid =CH–CH2–CH= resonance in the
region is captured by the wavelet fit. Binning integration region limits for
the region are delimited by grey dotted lines.
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Figure 12.3: Box plots of the misclassification errors of the elastic net, lasso, orthogonal
partial least squares-discriminant analysis (OPLS-DA), random forest (RF),
and support vector machine (SVM) classifiers.
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Figure 12.4: Box plots of the sensitivity of the elastic net, lasso, orthogonal partial least
squares-discriminant analysis (OPLS-DA), random forest (RF), and support
vector machine (SVM) classifiers.
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Figure 12.5: Box plots of the specificity of the elastic net, lasso, orthogonal partial least
squares-discriminant analysis (OPLS-DA), random forest (RF), and support
vector machine (SVM) classifiers.
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Figure 12.6: Classification performance in terms of mean misclassification error, mean sensitivity and mean specificity of the elastic net,
lasso, orthogonal partial least squares-discriminant analysis (OPLS-DA), random forest (RF), and support vector machine
(SVM) classifiers.
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Table 12.6 presents the mean cross-validated classification error, sensitivity, and
specificity of the 400 MHz and 900 MHz elastic net classifiers. The 400 MHz classifi-
cation results indicate that the ISRs (misclassification rate: 0.125, sensitivity: 0.844,
specificity: 0.904) had greater predictive power than the relative metabolic and lipid
concentrations obtained by using BATMAN (classification error: 0.197, sensitivity:
0.775, specificity: 0.829). For the 900 MHz classification analysis, the relative meta-
bolic concentrations estimated by BATMAN (misclassification rate: 0.105, sensitivity:
0.884, specificity: 0.906) had greater predictive power than the ISRs of the 900 MHz
spectral bins (classification error rate: 0.170 (mp), 0.197 (ap); sensitivity: 0.813 (mp),
0.779 (ap); specificity: 0.846 (mp), 0.826 (ap)). Note that for the PepsNMR automa-
tically pre-processed 900 MHz spectra, an additional spectral alignment step was
carried out to improve the homogeneity of the bins (in terms of the signal captured)
across spectra.
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Table 12.6: Elastic net classification results (standard errors in parentheses).
Features Misclassification Sensitivity Specificity

400 MHz (manually pre-processed data)
Binning: top integrated spectral regionsa 0.125 (0.002) 0.844 (0.003) 0.904 (0.002)
BATMAN: all metabolites and lipidsa 0.197 (0.002) 0.775 (0.003) 0.829 (0.002)

900 MHz (PepsNMR automatically pre-processed data)
Binning: top integrated spectral regionsa 0.197 (0.002) 0.779 (0.003) 0.826 (0.003)
BATMAN: all metabolitesa 0.105 (0.001) 0.884 (0.002) 0.906 (0.002)

900 MHz (manually pre-processed data)b

Binning: top integrated spectral regions 0.170 (0.002) 0.813 (0.003) 0.846 (0.002)
a Features utilized in Figure 12.7.
b The 900 MHz manually pre-processed spectra were not of sufficient quality to fit the BATMAN
model.
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Histograms of the probability of lung cancer for the different sets of features are
presented in Figure 12.7. Each histogram is based on the classifiers developed using
the subset of features indicated by the letter ‘a’ in Table 12.6. Assuming that a
probability greater than 0.5 implies the presence of lung cancer, the ISRs of the 400
MHz spectral bins and the 900 MHz relative metabolic concentrations estimated by
BATMAN produced the best classifiers in terms of lowest misclassification error and
highest sensitivity and specificity.

Figure 12.7: Histograms of the probability of lung cancer based on 333 iterations of
three-fold cross-validation. Blue corresponds to the control samples and
red represents the lung cancer samples.

Figure 12.8 illustrates the receiver operating characteristic (ROC) curves for
the elastic net classifiers (grey curves) based on the subset of features indicated by
the letter ‘a’ in Table 12.6. The threshold averaged ROC curve is indicated in red.
The mean area under the curve for the 400 MHz Binning, 400 MHz BATMAN, 900
MHz Binning, and 900 MHz BATMAN features is 0.932 (0.001), 0.885 (0.001), 0.880
(0.002), and 0.963 (0.001), respectively. Standard errors are reported in parentheses.
Based on the ROC curves, it is once again evident that the classifiers based on the
ISRs of the 400 MHz spectral bins and the 900 MHz relative metabolic concentrations
estimated by BATMAN are more capable of distinguishing between the lung cancer
and control samples compared to the 400 MHz BATMAN features and the 900 MHz
(PepsNMR pre-processed) ISRs, respectively.

12.3 Discussion & Conclusions
In this study, spectral binning and spectral deconvolution using BATMAN were ap-
plied in order to extract metabolic signal from 1H-NMR spectra of different spectral
resolutions (400 MHz versus 900 MHz spectra).

Implementation Both spectral binning and spectral deconvolution using BATMAN
require expert knowledge of the characteristic spectral signatures (i.e., the peak lo-
cations and coupling patterns) of different metabolites. For spectral binning, this
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Figure 12.8: Receiver operating characteristic (ROC) curves of the elastic net classifiers
at each iteration of the repeated three-fold cross-validation for the feature
sets labeled with the letter ‘a’ in Table 12.6 (grey curves). The threshold
averaged ROC curve is indicated in red.

insight is necessary to select meaningful integration regions. For spectral deconvolu-
tion using BATMAN, this information is required to accurately specify and refine the
prior information on each multiplet of interest.

Despite BATMAN’s description as an automated metabolite analyzer, an ex-
tensive amount of time was spent on developing and fine-tuning the template file
in order to improve signal extraction. Although metabolites have characteristic re-
sonances, experimental parameters and pre-processing steps influence the resultant
chemical shift positions, identifiable coupling patterns, and relative peak intensities.
Note that a single template file is specified for a large number of spectra which exhi-
bit between-spectrum variation in peak shift and peak definition. Thus, template
adjustments made to improve the fit of some spectra or peaks may have an opposite
effect on others. Updating the template file is a repetitious task which is extremely
time-consuming, especially for crowded spectral regions, but it is essential. Once the
template database is developed, the process is automated.

Though selecting the integration regions for spectral binning is a manual task,
spectral binning is a relatively fast and straightforward method for 1H-NMR signal
extraction.

The magnetic field strength of the NMR spectrometer influences the resolution
of the metabolic peaks. In higher resolution spectra, peaks appear with greater defi-
nition, exhibit fewer higher-order effects, and show less overlap. This is beneficial for
both spectral binning and spectral deconvolution using the BATMAN model. Fewer
overlapping regions imply a greater one-to-one mapping between spectral bins and
metabolites (Louis et al., 2017) and the increased signal-to-noise ratio in the higher
resolution spectra is advantageous for metabolic signal extraction using BATMAN
(see Figure 12.2).
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Classification and Clinical Relevance An abundance of detail pertaining to bio-
logical functions is contained within the metabolome. There is a strong desire to
eventually utilize these data to make informed clinical decisions about disease sta-
tus, susceptibility, and progression. It is expected that metabolomics will be of vital
importance in reaching the goal of providing healthcare that is customized for indi-
vidual patients. Therefore, obtaining interpretable, reliable, and reproducible results
is essential.

The variation in chemical shift locations across spectra is a challenge for spectral
binning. Therefore, the inclusion of a spectral alignment step in the pre-processing
of NMR data is important in order to obtain reliable and interpretable features.
However, even with good spectral alignment, overlapping peaks often prevent a one-
to-one mapping between integration regions and metabolites. Integration regions,
especially those of lower resolution spectra, may contain signals from two or more
metabolites in conjunction with an unidentified signal (for illustration, see Tables 12.1
to 12.5). Thus, a drawback of the simplicity surrounding spectral binning is the lack
of biological interpretability of the resultant features. Nonetheless, for the 400 MHz
analysis, the classifier based on the binning features performed better than the one
using BATMAN-estimated features.

Spectral deconvolution, particularly the BATMAN model, provides the means to
obtain a single concentration estimate for each metabolite of interest. The residual
signal captured by wavelets can be divided into integration regions in order to cap-
ture for instance, broad lipid resonances. In the end, clinically relevant features are
extracted from the 1H-NMR spectra. The benefit obtained from the effort put into
running BATMAN is biological interpretability. In addition, although not the focus
of this manuscript, the reliability of BATMAN estimated relative concentrations can
also be assessed by using the 95% credible intervals. For the 900 MHz spectra, the re-
lative metabolic concentrations estimated by BATMAN excelled, producing the best
performing classifier in terms of mean misclassification error.
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Concluding remarks and further
research

In this dissertation, a variety of statistical methods were explored for the analysis of
transcriptomic and metabolomic data. In Part I, three statistical approaches were
proposed for investigating the metabolite-co-expression association of a gene module
(Chapter 4, Chapter 5, and Chapter 7). The motivation behind this research was
to improve on a previously implemented approach for investigating the conditional
co-expression of a gene module. Part II focused on metabolic data analysis. The
steps involved in pre-processing 1H-NMR data for metabolic signal extraction were
described (Chapter 10). Metabolic features were extracted from 1H-NMR spectra
using two signal extraction procedures and the resulting features were compared in
terms of their ability to classify lung cancer patients and control subjects (Chapter 11
and Chapter 12).

This chapter of the dissertation provides an overall discussion, concluding re-
marks, and suggestions for further research.

13.1 Conditional co-expression analysis of a gene
module

Part I begins by introducing the simple linear regression approach implemented by
Inouye et al. (2010a) for investigating the metabolite-co-expression association of
a gene module. The approach involves the simple linear regression of Spearman’s
correlation coefficients for all pairs of genes of a gene module for five subsets of
samples formed by using quintiles of the metabolite concentrations. Attention was
drawn to several limitations of the approach.

To improve on the linear-regression-based approach, three comprehensive statis-
tical models that facilitate the inference of conditional co-expression for a gene module
were presented (see Chapter 4, Chapter 5, and Chapter 7). Each of the approaches
were investigated through simulation studies and illustrated using a subset of the
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DILGOM study data described in Chapter 3.
In Chapter 4, a multivariate linear model for investigating the association bet-

ween gene-module co-expression and a categorical covariate was described. The model
uses a block-diagonal variance-covariance structure consisting of metabolic-subset spe-
cific general variance-covariance blocks to capture the dependence between adjusted
gene-expression values. Inference is based on the Larntz & Perlman test statistic. The
model addresses the limitations of the simple linear regression approach and can be
easily implemented using existing statistical software like SAS (PROC GLIMMIX).

A model for investigating the association between gene-module co-expression and
a continuous covariate was described in Chapter 5. The model avoids the arbitrary
categorisation of metabolite concentrations by modelling the gene-pair correlations
as a function of the metabolite concentrations. The likelihood ratio test statistic is
used to infer conditional co-expression. For a specific gene-module size, the number
of variance-covariance parameters that must be estimated with the continuous ap-
proach (i.e., the Chapter 5 model) is substantially smaller than for the categorical
approach (i.e., the Chapter 4 model). Moreover, the power to detect the simulated
approximately linear associations is significantly greater for the model using continu-
ous concentrations (power: 0.863 and 0.859 for the positive and negative association,
respectively) than for the model using metabolic subsets (power: 0.215 and 0.218 for
the positive and negative association, respectively).

Fitting a multivariate model that fully captures the dependence structure of
several variables can become increasingly challenging as the number of parameters
and the size of the variance-covariance matrix increases. Chapter 7 detailed a more
computationally feasible solution, than the multivariate model of Chapter 5, in the
form of a copula-based pseudo-likelihood approach for investigating the conditional
co-expression of a gene module. In addition to reducing the computational burden,
the approach facilitated the estimation of non-parametric measures of association
such as Kendall’s tau and Spearman’s rho. Furthermore, the copula-based pseudo-
likelihood approach using the pseudo-likelihood ratio test had greater power to detect
metabolite-co-expression associations that lie further away from the null hypothesis
compared to the multivariate approach of Chapter 5. A formal investigation into this
phenomenon is of interest for future work.

The versatility of the three statistical methodologies, proposed in Chapter 4,
Chapter 5, and Chapter 7, was illustrated. Additional steps could be taken to increase
the flexibility of the models. Instead of using a fixed transformation of the metabolite
concentrations (see equation 5.4), one could consider using a Box-Cox transformation.
A Box-Cox transformation could also be applied to the gene-expression values. In
order to apply this in an automated way, the selection of the optimal Box-Cox trans-
formation parameter should be embedded into the modelling process. This would
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increase the flexibility of the model, although also the complexity of it.
The DILGOM data was mainly used for illustration and we didn’t strive to

identify the optimal model for each metabolite. However, majority of the residual
plots are satisfactory. The application of a Box-Cox transformation to the expression
values of MS4A2 could be further explored.

In Chapter 7, Gaussian, Gumbel-Hougaard, and Clayton copulas were used to
model the DILGOM data. Based on a comparison of the AICs of the bivariate likeli-
hoods forming each pseudo-likelihood, it was concluded that the Gaussian copula was
most suitable. The identification of a formal approach for selecting the overall best
fitting copula-based pseudo-likelihood model is a topic for further research.

13.2 Metabolic data analysis

Metabolic data analysis was the focus of Part II of this dissertation. The impact of
spectral binning and spectral deconvolution using BATMAN (Bayesian AuTomated
Metabolite Analyser for NMR data) for extracting metabolic signal from proton nu-
clear magnetic resonance (1H-NMR) data on the classification of lung cancer samples
was studied. The 1H-NMR data of blood plasma samples, extracted from lung cancer
patients and control subjects, attained using a 400 MHz and a 900 MHz 1H-NMR
spectrometer, were analysed using the two metabolic signal extraction approaches.
A comparison of the classification performance of the extracted features, i.e., the
integrated spectral regions (ISRs) arising from spectral binning and the BATMAN
estimated relative concentrations, was performed separately for the 400 MHz and 900
MHz spectra. For the 400 MHz data, the spectral binning approach provided greater
discriminatory power. However, for the 900 MHz data, the relative metabolic con-
centrations obtained by using BATMAN provided greater predictive power. Spectral
binning is computationally advantageous and less laborious. However, BATMAN es-
timated features correspond directly with specific metabolites and therefore have a
simpler interpretation.

Although the aim of this study was to compare the overall performance of the
features in terms of classification accuracy, it would be of value to further investigate
the features selected by the classifiers in an attempt to understand the reason for the
differences in classification performance of the ISRs and BATMAN features.

In this study, two resolutions of 1H-NMR spectra, i.e., 400 MHz and 900 MHz
spectra, were analysed. Further research could focus on conducting the same inves-
tigation using samples analysed with, for instance, a 600 MHz spectrometer. This
could contribute to the establishment of more concrete conclusions regarding the in-
fluence of the technological platform on the classification performance of the ISRs and
BATMAN features.
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BATMAN was used to estimate the relative concentrations of metabolites. Es-
timating absolute metabolite concentrations and exploring the performance of these
features on the ability to distinguish between samples could be another topic for
further research.
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A.1 Plots of the gene-expression values

Figure A.1.1: Box plots of gene-expression values by gender.
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Figure A.1.2: Scatter plot of gene-expression values against age (top row) and gene-

expression values against the concentration of linoleic acid (bottom row).
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A.2 Design matrix Xsi

An example of the design matrix, Xsi, for the i-th individual in the s-th subset (see Equation 4.2 of Section 4.2.3) is provided on
the next page. This representation is based on a model including the covariates: gene, metabolic concentration, age, gender and
the two-way interaction between gene and metabolic concentrations.

Xsi =

µ g1 g2 · · · gG−1 conc. age gender g1 ∗ conc. g2 ∗ conc. · · · gG−1 ∗ conc.



1 1 0 · · · 0 0.3 30 1 0.3 0 · · · 0
1 0 1 · · · 0 0.3 30 1 0 0.3 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
1 0 0 · · · 1 0.3 30 1 0 0 · · · 0.3
1 0 0 · · · 0 0.3 30 1 0 0 · · · 0
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A.3 SAS code
SAS procedure GLIMMIX GLM code for a gene module comprised of three genes.

proc GLIMMIX data = DATA;
* DATA is in long format, sorted by m_INDEX, SUBJECT and GENE;
* GE is the vector of gene expression values;
* adjMETABOLITE is the adjusted metabolic concentrations;

ods select none;
by m_INDEX;
nloptions TECHNIQUE = NRRIDG;
class SUBJECT GENE GENDER m_QUINTILE;
model GE = AGE|GENE|adjMETABOLITE|GENDER;
random _residual_ / subject = SUBJECT type = unr group = m_QUINTILE;

* OPTIONAL: Input initial values using the PARMS statement to solve
convergence problems;

covtest "test for homogeneous correlations" general
0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 ,
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 ,
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 ,
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 ,
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 ,
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 ,
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 ;

ods output FitStatistics = Fit
CovParms = Estimates
CovTests = TestResults;

run;
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A.4 Power of the GLM-based test statistics

Table A.4.1: Power of the GLM-based test statistics for different co-expression dynamics and sample sizes.
Co-expression Sample size LR test? Larntz & Perlman? Jennrich? Cole?

approx. linear positive association 125 0.314 [0.285, 0.343] 0.188 [0.163, 0.213] 0.239 [0.212, 0.266] 0.374 [0.344, 0.404]
approx. linear positive association 450 0.826 [0.802, 0.850] 0.797 [0.772, 0.822] 0.711 [0.682, 0.740] 0.690 [0.661, 0.719]
approx. linear positive association 800 0.990 [0.983, 0.997] 0.989 [0.982, 0.996] 0.962 [0.950, 0.974] 0.953 [0.939, 0.967]
approx. linear negative association 125 0.300 [0.271, 0.329] 0.184 [0.159, 0.209] 0.228 [0.201, 0.255] 0.358 [0.328, 0.388]
approx. linear negative association 450 0.838 [0.815, 0.861] 0.819 [0.795, 0.843] 0.716 [0.688, 0.744] 0.693 [0.664, 0.722]
approx. linear negative association 800 0.988 [0.981, 0.995] 0.987 [0.979, 0.995] 0.960 [0.947, 0.973] 0.949 [0.935, 0.963]
non-linear association 125 0.293 [0.264, 0.322] 0.243 [0.216, 0.270] 0.240 [0.213, 0.267] 0.457 [0.426, 0.488]
non-linear association 450 0.759 [0.732, 0.786] 0.856 [0.834, 0.878] 0.744 [0.716, 0.772] 0.748 [0.721, 0.775]
non-linear association 800 0.969 [0.958, 0.980] 0.993 [0.987, 0.999] 0.963 [0.951, 0.975] 0.960 [0.947, 0.973]
non-linear association 125 0.348 [0.318, 0.378] 0.193 [0.168, 0.218] 0.228 [0.201, 0.255] 0.371 [0.341, 0.401]
non-linear association 450 0.863 [0.841, 0.885] 0.841 [0.818, 0.864] 0.693 [0.664, 0.722] 0.648 [0.618, 0.678]
non-linear association 800 0.992 [0.986, 0.998] 0.990 [0.983, 0.997] 0.956 [0.943, 0.969] 0.943 [0.928, 0.958]
weak positive association 125 0.143 [0.121, 0.165] 0.072 [0.055, 0.089] 0.131 [0.110, 0.152] 0.267 [0.239, 0.295]
weak positive association 450 0.182 [0.158, 0.206] 0.183 [0.159, 0.207] 0.192 [0.167, 0.217] 0.205 [0.179, 0.231]
weak positive association 800 0.316 [0.287, 0.345] 0.351 [0.321, 0.381] 0.342 [0.312, 0.372] 0.340 [0.310, 0.370]

Data simulated for a four-gene module.
? estimate [95% confidence interval]
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A.5 Plots of the GLM residuals

Figure A.5.3: Univariate quantile-quantile plots of the GLM residuals for 3-
hydroxybutyrate.
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Figure A.5.4: Univariate quantile-quantile plots of the GLM residuals for linoleic acid.
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Figure A.5.5: Univariate quantile-quantile plots of the GLM residuals for large HDL par-
ticles.
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Figure A.5.6: Univariate quantile-quantile plots of the GLM residuals for small LDL par-
ticles.
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Figure A.5.7: Univariate quantile-quantile plots of the GLM residuals for total cholesterol
in large HDL.
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Figure A.5.8: Univariate quantile-quantile plots of the GLM residuals for small HDL
particles.
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Figure A.5.9: Studentised residuals for the linoleic acid GLM.
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B.1 Simulation study results
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Table B.1.1: Simulation study results: Estimated Type I error probability and power of the Larntz & Perlman test and LR test for
a seven-gene module and a sample size of 450 observations.

Co-expression dynamics Convergence Type I error / Power ∗ Convergence Type I error / Power ∗
rate Larntz & Perlman (Chapter 4) rate LR test (Chapter 5)

no metabolite-co-expression association 0.980 0.036 [0.024, 0.047] 0.949 0.061 [0.046, 0.076]
approx. linear negative association 0.958 0.218 [0.192, 0.244] 0.937 0.859 [0.837, 0.881]
approx. linear positive association 0.955 0.215 [0.189, 0.241] 0.952 0.863 [0.842, 0.885]
non-linear association (wave) 0.958 0.335 [0.305, 0.365] 0.951 0.365 [0.334, 0.395]
non-linear association (parabola) 0.994 0.124 [0.103, 0.144] 0.979 0.141 [0.119, 0.163]
weak non-linear association 0.968 0.031 [0.020, 0.042] 0.950 0.075 [0.058, 0.091]

∗ point estimate [95% confidence interval]

Table B.1.2: Simulation study results: Estimated Type I error probability and power of the Larntz & Perlman test and
LR test for a seven-gene module and a sample size of 450 observations.

Co-expression dynamics Merged Type I error / Power ∗ Type I error / Power ∗
convergence rate Larntz & Perlman (Chapter 4) LR test (Chapter 5)

no metabolite-co-expression association 0.929 0.037 [0.025, 0.049] 0.060 [0.045, 0.076]
approx. linear negative association 0.897 0.219 [0.191, 0.246] 0.857 [0.834, 0.880]
approx. linear positive association 0.911 0.211 [0.184, 0.237] 0.863 [0.840, 0.885]
non-linear association (wave) 0.910 0.333 [0.302, 0.364] 0.360 [0.329, 0.392]
non-linear association (parabola) 0.973 0.125 [0.105, 0.146] 0.142 [0.120, 0.164]
weak non-linear association 0.920 0.028 [0.018, 0.039] 0.076 [0.059, 0.093]

∗ point estimate [95% confidence interval]
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C.1 Derivatives of the Gaussian, Gumbel-Hougaard,
and Clayton copulas

Gaussian copula CDF, density, and derivatives.

The CDF of the Gaussian copula is given by

C(u1, u2|ρ) = Φ2(Φ−1(u1),Φ−1(u2)|ρ).

The density of the Gaussian copula is given by

c(u1, u2|ρ) = 1√
1− ρ2

exp
{
−ρ

2(x2
1 + x2

2)− 2ρx1x2

2(1− p2)

}
,

where x1 = Φ−1(u1), x2 = Φ−1(u2), and Φ−1 is the inverse of CDF of a N(0, 1)
(standard normal) variable. The first derivatives of the Gaussian copula density are
provided below based on Schepsmeier and Stöber (2014). By taking the first derivative
of the density with respect to ρ, we obtain

∂c

∂ρ
= −

(ρ3 − x1x2ρ
2 + x2

1ρ+ x2
2ρ− ρ− x1x2) exp

{
ρ(x2

1ρ+x2
2ρ−2x1x2)

2(ρ−1)(ρ+1)

}
(1− ρ2) 5

2
. (C.1)

The first derivative with respect to u1 is

∂c

∂u1
= c(u1, u2|ρ)

−
(

2ρ2x1
∂x1
∂u1
− 2ρx2

∂x1
∂u1

)
2(1− ρ2)

 , (C.2)

and,

∂c

∂u2
= c(u1, u2|ρ)

−
(

2ρ2x2
∂x2
∂u2
− 2ρx1

∂x2
∂u2

)
2(1− ρ2)

 , (C.3)
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where,
∂xi
∂ui

=
√

(2π)
exp {−Φ−1(ui)2/2} , for i = 1, 2. (C.4)

Gumbel-Hougaard copula CDF, density, and derivatives.

The CDF of the Gumbel-Hougaard copula is defined as

C(u1, u2|θ) = exp
[
−
{

(−ln u1)θ + (−ln u2)θ
} 1
θ

]
.

Let t1 = (− ln u1)θ and t2 = (− ln u2)θ, then

C(u1, u2|θ) = exp
{
−(t1 + t2) 1

θ

}
.

The density of the Gumbel-Hougaard copula is given by

c(u1, u2|θ) =C(u1, u2|θ)
1

u1u2
(t1 + t2)−2+ 2

θ ( ln u1 ln u2)θ−1

×
{

1 + (θ − 1) (t1 + t2)−
1
θ

}
. (C.5)

As report by Schepsmeier and Stöber (2014), the first derivative of the Gumbel-
Hougaard copula density with respect to θ is given by

∂c

∂θ
= c(u1, u2)

[
−(t1 + t2) 1

θ

{
− ln (t1 + t2)

θ2 + t1 ln (− ln u1) + t2 ln (− ln u2)
θ(t1 + t2)

}

+
{
−2 ln (t1 + t2)

θ2 +
(
−2 + 2

θ

)
t1 ln (− ln u1) + t2 ln (− ln u2)

t1 + t2

}

+ ln ( ln u1ln u2)
]

+ C(u1, u2)(t1 + t2)−2+ 2
θ

( ln u1 ln u2)θ−1

u1u2

[
(t1 + t2)− 1

θ (θ − 1)(t1 + t2)− 1
θ

×

{
ln (t1 + t2)

θ2 − t1 ln (− ln u1) + t2 ln (− ln u2)
θ(t1 + t2)

}]
. (C.6)
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The derivative with respect to u1 is

∂c

∂u1
= c(u1, u2)

{
−(t1 + t2) 1

θ−1 t1
u1 ln u1

− 1
u1

+ (t1 + t2)−1 (−2 + 2
θ )t1θ

u1 ln u1
+ (θ − 1)
u1 ln u1

}

− C(u1, u2)(t1 + t2)−2+ 2
θ

( ln u1 ln u2)θ−1

u1u2
(θ − 1)(t1 + t2)− 1

θ−1 t1
u1 ln u1

.

(C.7)

The derivative with respect to u2 is

∂c

∂u2
= c(u1, u2)

{
−(t1 + t2) 1

θ−1 t2
u2 ln u2

− 1
u2

+ (t1 + t2)−1 (−2 + 2
θ )t2θ

u2 ln u2
+ (θ − 1)
u2 ln u2

}

− C(u1, u2)(t1 + t2)−2+ 2
θ

( ln u1 ln u2)θ−1

u1u2
(θ − 1)(t1 + t2)− 1

θ−1 t2
u2 ln u2

.

(C.8)

Note that the latter two derivatives of the Gumbel-Hougaard copula density differ to
those reported by Schepsmeier and Stöber (2014).

Clayton copula CDF, density, and derivatives.

The CDF of the Clayton copula is defined as

C(u1, u2|θ) = (u−θ1 + u−θ2 − 1)− 1
θ .

The density of the Clayton is given by

c(u1, u2|θ) = (1 + θ)(u1u2)−1−θ

(u−θ1 + u−θ2 − 1) 1
θ+2 . (C.9)

The first derivative of the Clayton copula density with respect to θ is given by

∂c

∂θ
= (u1u2)−1−θ

(u−θ1 + u−θ2 − 1) 1
θ+2 − c(u1, u2)

[
ln (u1u2)−

{
ln (u−θ1 + u−θ2 − 1)

θ2

+
(−2− 1

θ )(−u−θ1 ln (u1)− u−θ2 ln (u2))
(u−θ1 + u−θ2 − 1)

}]
. (C.10)

As report by Schepsmeier and Stöber (2014), the derivative with respect to u1 is

∂c

∂u1
= − c(u1, u2)(θ + 1)

u1
+

c(u1, u2)(2 + 1
θ )θ

uθ+1
1 (u−θ1 + u−θ2 − 1)

. (C.11)
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The derivative with respect to u2 is

∂c

∂u2
= − c(u1, u2)(θ + 1)

u2
+

c(u1, u2)(2 + 1
θ )θ

uθ+1
2 (u−θ1 + u−θ2 − 1)

. (C.12)

C.2 Simulation study results for the adjusted PLR test
statistics
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Table C.2.1: Simulation study results: Estimated power of the PLR and adjusted PLR tests for a seven-gene module and a
sample size of 450 observations.

Co-expression dynamics Power∗
PLR test: G∗2(H0) adjusted PLR test: G∗2a (H1)a adjusted PLR test: G∗2a (H0)a

approx. linear negative association 0.984 [0.976, 0.992] 0.987 [0.980, 0.994] 0.987 [0.980, 0.994]
approx. linear positive association 0.988 [0.981, 0.995] 0.990 [0.984, 0.996] 0.989 [0.983, 0.995]
non-linear association (wave) 0.580 [0.549, 0.611] 0.558 [0.527, 0.589] 0.600 [0.570, 0.630]
non-linear association (parabola) 0.044 [0.031, 0.057] 0.064 [0.049, 0.079] 0.055 [0.041, 0.069]
weak non-linear association 0.063 [0.048, 0.078] 0.065 [0.050, 0.080] 0.066 [0.051, 0.081]
∗ point estimate [95% confidence interval]
a using the empirical distribution of the test statistic.

Table C.2.2: Simulation study results: Estimated power of the PLR test, the adjusted PLR tests, and the LR test for a seven-gene module and
a sample size of 450 observations.

Co-expression dynamics
Type I error or power∗

MVN PLR test: adjusted PLR test: adjusted PLR test: LR test
convergence G∗2(H0) G∗2a (H1)a G∗2a (H0)a

approx. linear negative association 912 0.985 [0.977, 0.993] 0.988 [0.980, 0.994] 0.988 [0.980, 0.994] 0.863 [0.841, 0.885]
approx. linear positive association 923 0.988 [0.981, 0.995] 0.990 [0.984, 0.996] 0.989 [0.983, 0.995] 0.872 [0.851, 0.894]
non-linear association (wave) 922 0.573 [0.541, 0.605] 0.561 [0.527, 0.589] 0.604 [0.570, 0.630] 0.374 [0.343, 0.405]
non-linear association (parabola) 966 0.043 [0.031, 0.056] 0.064 [0.049, 0.079] 0.055 [0.041, 0.069] 0.142 [0.120, 0.164]
weak non-linear association 924 0.056 [0.041, 0.071] 0.067 [0.050, 0.080] 0.068 [0.051, 0.081] 0.070 [0.054, 0.087]
∗ point estimate [95% confidence interval]
a using the empirical distribution of the test statistic.
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C.3 Empirical CDF plots

Figure C.3.1: Empirical CDF of the observed PLR test statistics for each of the six co-
expression dynamics together with the asymptotic CDF of the PLR test
statistic. In each plot, the asymptotic CDF of the PLR test statistic is
shown in green. Dashed lines indicate the critical value of the asymptotic
distribution (green) and the observed distribution (yellow) on the x-axis.
Dot-dashed lines indicate the cumulative density of the empirical CDFs at
the asymptotic critical value.
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Figure C.3.2: Empirical CDF of the observed LR test statistics for each of the six co-
expression dynamics together with the asymptotic CDF of the LR test
statistic. In each plot, the asymptotic CDF of the PLR test statistic is
shown in green. Dashed lines indicate the critical value of the asymptotic
distribution (green) and the observed distribution (yellow) on the x-axis.
Dot-dashed lines indicate the cumulative density of the empirical CDFs at
the asymptotic critical value.
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D.1 Classification results

Table D.1.1: Classification results.
Features Misclassification Sensitivity Specificity

Elastic net

400 MHz (manually pre-processed data)
Binning: top 50 integration regions 0.125 (0.002) 0.844 (0.003) 0.904 (0.002)
BATMAN: all metabolites 0.336 (0.002) 0.634 (0.003) 0.691 (0.003)
BATMAN: lipids 0.260 (0.002) 0.705 (0.003) 0.772 (0.003)
BATMAN: all metabolites and lipids 0.197 (0.002) 0.775 (0.003) 0.829 (0.002)

900 MHz (PepsNMR automatically pre-processed data)
Binning: top 90 integration regions 0.197 (0.002) 0.779 (0.003) 0.826 (0.003)
BATMAN: all metabolites 0.105 (0.001) 0.884 (0.002) 0.906 (0.002)
BATMAN: lipids 0.323 (0.002) 0.611 (0.003) 0.738 (0.003)
BATMAN: all metabolites and lipids 0.111 (0.001) 0.874 (0.002) 0.902 (0.002)

900 MHz (manually pre-processed data)
Binning: top 45 integration regions 0.170 (0.002) 0.813 (0.003) 0.846 (0.002)

Lasso

400 MHz (manually pre-processed data)
Binning: top 45 integration regions 0.136 (0.002) 0.825 (0.003) 0.901 (0.002)
BATMAN: all metabolites 0.333 (0.002) 0.632 (0.003) 0.700 (0.003)
BATMAN: lipids 0.261 (0.002) 0.704 (0.003) 0.771 (0.003)
BATMAN: all metabolites and lipids 0.197 (0.002) 0.768 (0.003) 0.834 (0.002)

900 MHz (PepsNMR automatically pre-processed data)
Binning: top 90 integration regions 0.206 (0.002) 0.764 (0.003) 0.821 (0.003)
BATMAN: all metabolites 0.112 (0.001) 0.877 (0.002) 0.899 (0.002)
BATMAN: lipids 0.324 (0.002) 0.612 (0.003) 0.737 (0.003)
BATMAN: all metabolites and lipids 0.122 (0.001) 0.862 (0.002) 0.892 (0.002)

900 MHz (manually pre-processed data)
Binning: top 45 integration regions 0.170 (0.002) 0.799 (0.003) 0.859 (0.002)

Orthogonal Partial Least Squares - Discriminant Analysis

400 MHz (manually pre-processed data)
Binning: top 60 integration regions 0.141 (0.002) 0.768 (0.003) 0.943 (0.002)
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Features Misclassification Sensitivity Specificity

BATMAN: all metabolites 0.307 (0.002) 0.650 (0.003) 0.732 (0.003)
BATMAN: lipids 0.225 (0.002) 0.697 (0.003) 0.848 (0.002)
BATMAN: all metabolites and lipids 0.217 (0.002) 0.725 (0.003) 0.838 (0.003)

900 MHz (PepsNMR automatically pre-processed data)
Binning: top 90 integration regions 0.193 (0.002) 0.746 (0.003) 0.863 (0.002)
BATMAN: all metabolites 0.109 (0.001) 0.883 (0.002) 0.898 (0.002)
BATMAN: lipids 0.253 (0.002) 0.714 (0.003) 0.778 (0.002)
BATMAN: all metabolites and lipids 0.103 (0.001) 0.891 (0.002) 0.903 (0.002)

900 MHz (manually pre-processed data)
Binning: top 60 integration regions 0.199 (0.002) 0.697 (0.003) 0.897 (0.002)

Random forest

400 MHz (manually pre-processed data)
Binning: top 60 integration regions 0.160 (0.002) 0.805 (0.003) 0.872 (0.002)
BATMAN: all metabolites 0.362 (0.002) 0.584 (0.003) 0.689 (0.003)
BATMAN: lipids 0.279 (0.002) 0.689 (0.003) 0.750 (0.003)
BATMAN: all metabolites and lipids 0.265 (0.002) 0.703 (0.003) 0.765 (0.003)

900 MHz (PepsNMR automatically pre-processed data)
Binning: top 80 integration regions 0.222 (0.002) 0.746 (0.003) 0.807 (0.003)
BATMAN: all metabolites 0.124 (0.001) 0.858 (0.002) 0.893 (0.002)
BATMAN: lipids 0.284 (0.002) 0.691 (0.003) 0.739 (0.003)
BATMAN: all metabolites and lipids 0.131 (0.002) 0.855 (0.002) 0.881 (0.002)

900 MHz (manually pre-processed data)
Binning: top 45 integration regions 0.175 (0.002) 0.773 (0.003) 0.874 (0.002)

Support vector machines

400 MHz (manually pre-processed data)
Binning: top 90 integration regions 0.137 (0.001) 0.838 (0.003) 0.887 (0.002)
BATMAN: all metabolites 0.353 (0.002) 0.548 (0.005) 0.739 (0.004)
BATMAN: lipids 0.225 (0.002) 0.713 (0.003) 0.833 (0.002)
BATMAN: all metabolites and lipids 0.226 (0.002) 0.735 (0.003) 0.811 (0.003)

900 MHz (PepsNMR automatically pre-processed data)
Binning: top 80 integration regions 0.213 (0.002) 0.759 (0.003) 0.813 (0.003)
BATMAN: all metabolites 0.142 (0.001) 0.850 (0.002) 0.866 (0.002)
BATMAN: lipids 0.246 (0.002) 0.699 (0.003) 0.806 (0.003)
BATMAN: all metabolites and lipids 0.117 (0.001) 0.879 (0.002) 0.887 (0.002)

900 MHz (manually pre-processed data)
Binning: top 80 integration regions 0.177 (0.002) 0.785 (0.003) 0.858 (0.003)
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Figure D.1.1: Classification performance of the elastic net models utilizing the top k 400
MHz spectral binning integration regions.

Figure D.1.2: Classification performance of the elastic net models utilizing the top k
PepsNMR pre-processed 900 MHz spectral binning integration regions.
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Figure D.1.3: Classification performance of the elastic net models utilizing the top k

manually pre-processed 900 MHz integration regions.
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Omics technologies have rapidly advanced giving rise to an extensive amount of omics
data with widespread availability. The analysis of omics data can lead to the iden-
tification of molecular profiles that are associated with disease status, susceptibility,
or progression, or it may provide insight into biological pathways or processes that
differ in diseased and control patients. Biological processes are, however, extremely
intricate and obtaining biologically meaningful information from this mass of data
is a non-trivial task. To capture the complexity of biological processes, research is
now centering on the integrative analysis of omics data. However, methodological
development in this area is lacking. As a result, complex data is analysed in rather
simple ways that fail to capture the complexity of the biological problem. The rese-
arch presented in Part I of this dissertation aims to improve on currently implemented
methods for the integrative analysis of omics datasets.

A way to enhance our understanding of the development and progression of
complex diseases is to investigate the influence of cellular environments on gene co-
expression (i.e., gene-pair correlations). Investigating whether metabolites regulate
the co-expression of a predefined gene module (a set of co-expressed (correlated) genes
belonging to the same biological pathway) is one of the relevant questions posed in the
integrative analysis of metabolomic and transcriptomic data (Inouye et al., 2010a). In
Part I of this dissertation, three statistical models are described for investigating the
association between gene-module co-expression and metabolite concentrations. The
suitability and versatility of the proposed models are investigated through simulation
studies and an application to real-life data. Specifically, a subset of the DILGOM
(DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome)
study data (Inouye et al., 2010a) is analysed.

Part I of the dissertation begins with a description of a simple linear regres-
sion (SLR) approach that has been previously implemented for the investigation of
conditional co-expression (Inouye et al., 2010a). Attention is drawn to several limi-
tations of the approach. As an alternative, a multivariate linear model for studying
the dependence between categorised metabolite concentrations and gene-module co-
expression is proposed in Chapter 4. The approach addresses the limitations of the
linear-regression-based analysis. Through a simulation study it is shown that the SLR
approach suffers from a highly inflated type I error probability and that the proposed
multivariate model is less prone to the detection of spurious conditional correlations.

Often, changes in gene co-expression are investigated across two or more biologi-
cal conditions defined by categorising a continuous covariate. However, the selection
of arbitrary cut-off points may have an influence on the results of an analysis. To
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address this issue, in Chapter 5, a multivariate linear model for investigating the as-
sociation between gene-module co-expression and a continuous covariate is proposed.

Fitting a multivariate model that fully captures the dependence structure of
several variables can become increasingly challenging as the number of parameters
and the size of the variance-covariance matrix increases. Chapter 7 provides a more
computationally feasible solution for investigating the conditional co-expression of a
gene-module. In particular, a copula-based pseudo-likelihood approach is proposed.
The multivariate density described in Chapter 5 is replaced by a pseudo-likelihood
function formed by the product of all pairwise densities over the set of all possible
gene pairs within the gene module. Furthermore, bivariate densities are modeled
using Gaussian, Gumbel-Hougaard, and Clayton copulas that specify the gene-pair
correlations as a function of the metabolite concentrations. In addition to reducing the
computation burden, this approach facilitates the estimation of other non-parametric
measures of association such as Kendall’s tau and Spearman’s rho.

High-throughput techniques enable the measurement of the chemical composition
of cells, tissues, or, biofluids. The reproducibility, precision, and inherent noise of the
measurements vary between techniques. In some instances, the biological signal may
constitute only a small portion of the collected measurements. Efficient extraction
of the biological signal is required before the data can be analysed. A variety of
approaches exist to extract biological signal. The adopted approach can have an
impact on downstream analyses. In Part II of this dissertation, the impact of the
method for extracting metabolic signal from proton nuclear magnetic resonance (1H-
NMR) data on the classification of lung cancer samples is studied.

Extracting metabolic information from NMR spectra is complex due to the fact
that an immense amount of detail on the chemical composition of a biological sam-
ple is expressed through a single spectrum. The simplest approach to quantify the
signal is through spectral binning which involves subdividing the spectra into regions
along the chemical shift axis and integrating the peaks within each region (Louis et
al., 2015). However, due to overlapping resonance signals, the integration values do
not always correspond to the concentrations of specific metabolites. An alternate,
more advanced statistical approach is spectral deconvolution. BATMAN (Bayesian
AuTomated Metabolite Analyser for NMR data) (Astle et al., 2012; Hao et al., 2014)
performs spectral deconvolution using prior information on the spectral signatures of
metabolites. In this way, BATMAN estimates relative metabolic concentrations. Both
spectral binning and spectral deconvolution using BATMAN were applied to 400 MHz
and 900 MHz NMR spectra of blood plasma samples from lung cancer patients and
control subjects (Chapter 11). The relative concentrations estimated by BATMAN
were compared with the binning integration values in terms of their ability to discri-
minate between lung cancer patients and controls (Chapter 12). For the 400 MHz
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data, the spectral binning approach provided greater discriminatory power. However,
for the 900 MHz data, the relative metabolic concentrations obtained by using BAT-
MAN provided greater predictive power. While spectral binning is computationally
advantageous and less laborious, BATMAN estimated features correspond directly
with specific metabolites and therefore have a simpler interpretation.
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‘Omics’ technologie is bezig aan een sterke opmars, waardoor er een grote stijging
in hoeveelheid en beschikbaarheid van deze omics data is. Het analyseren van deze
‘omics’ data kan leiden tot de identificatie van moleculaire profielen die geassoci-
eerd worden met eigenschapen van ziektes zoals status, ontvankelijkheid, vooruitgang,
maar het kan ook inzicht verschaffen in de biologische methodes en processen die ver-
schillen tussen de zieke en controle patiënten. Maar biologische processen zijn extreem
ingewikkeld en het verkrijgen van zinvolle biologische informatie uit deze grote hoe-
veelheid data is geen sinecure. Om de complexiteit van deze biologische processen te
vatten, richt onderzoek zich momenteel op het gezamenlijk analyzeren van verschil-
lende bronnen van omics data. Desondanks blijft de methodologische ontwikkeling
hier achter. Hierdoor wordt complexe data geanalyseerd op een relatief simplistische
wijze die de complexiteit van het biologisch probleem niet vatten. Het onderzoek
voorgesteld in deel I van dit proefschrift richt zich op het verbeteren van de huidige
gëımplementeerde methodes voor de integratieve analyse van omics gegevens.

Een manier om ons begrip omtrent de ontwikkeling en de vooruitgang van com-
plexe ziektes te vergroten, is om de invloed te onderzoeken die een cellulaire omgeving
heeft op de gene co-expressies (b.v.; gene-paar correlaties). Eén van de belangrijke
vragen die gesteld werden in de gezamenlijke analyse van metaboloom en transcrip-
toom data (Inouye et al., 2010a), is het onderzoek naar het regulerend effect van
metabolieten op de co-expressie van vooraf bepaalde gen modules (een paar genen die
een co-expressie (correlatie) hebben en behoren tot het zelfde biologisch mechanisme).
In het eerste deel van deze thesis worden er drie statistische modellen beschreven voor
het onderzoek naar de associatie tussen gene-module co-expressie en metaboliet con-
centraties. De geschiktheid en de veelzijdigheid van de voorgestelde modellen zijn
onderzocht met behulp van gesimuleerde data en reële data. Meer specifiek is er een
gedeelte van de DILGOM (DIeet, Levensstijl en Genetische determinant van Obesity
en Metabolisch syndroom) studie data (Inouye et al., 2010a) gebruikt.

Deel I van de verhandeling begint met de beschrijving van een eenvoudige lineaire
regressie (ELR), die voorheen gebruikt werd bij het onderzoek naar voorwaardelijke
co-expressie (Inouye et al., 2010a). Hier wordt de aandacht gevestigd op de vele be-
perkingen van deze methode. Als alternatief wordt, in Hoofdstuk 4, een multivariaat
lineair model voor de studie van afhankelijkheid tussen metaboliet concentraties (ver-
deeld in categorien) en gen-module co-expressie voorgesteld. Deze aanpak geeft een
antwoord op de beperkingen van de lineair regressie analyse. Door middel van een
simulatie studie is er aangetoond dat de ELR een serieus verhoogde kans op type I
fouten heeft, en dat het multivariate model minder gevoelig is voor het waarnemen
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van onechte voorwaardelijke correlaties.
Vaak worden veranderingen in gen co-expressies onderzocht over twee of meerdere

biologische condities, die gedefinieerd worden door het verdelen van een continue
variabele. Echter de keuze van deze arbitraire categorieën, en meer bepaald het
begin en eindpunt, kan een invloed hebben op het resultaat van de analyse. Om
dit probleem aan te kaarten wordt, in Hoofdstuk 5, een multivariaat lineair model
voorgesteld voor het onderzoek naar het verband tussen gene-module co-expressie en
continue covariaat.

Het schatten van een multivariaat model dat de afhankelijkheid van verschil-
lende variabelen beschrijft, kan zeer complex worden wanneer het aantal parameters
en de grote van de variatie-covariatie matrix toeneemt. Hoofdstuk 7 introduceert
een computationeel meer haalbare oplossing voor het nagaan van voorwaardelijke
co-expressie van een gene-module. Meer specifiek wordt er een pseudo-likelihood aan-
pak gebaseerd op copulas voorgesteld. De multivariate dichtheidsfunctie, beschreven
in Hoofdstuk 5, is vervangen door een pseudo-likelihood functie die het product is
van alle paar-gewijze dichtheden over de set van alle mogelijke gene paren binnen een
gene module. Verder zijn de bivariate dichtheidsfuncties, gemodeleerd met behulp van
Gaussian, Gumbel-Hougaard en Clayton copulas die de correlatie tussen twee genen
verduidelijken als een functie van de metaboliet concentraties. Bovenop het vermin-
deren van de computationele belasting, vergemakkelijkt deze methode de schatting
van niet-parametrische associatie-maten zoals Kendall’s tau en Spearman’s rho.

High-throughput technieken maken het meten van de chemische samenstelling
van cellen, weefsels of vloeistoffen mogelijk. De herhaalbaarheid, nauwkeurigheid en
de inherente ruis van de metingen verschillen van techniek tot techniek. In bepaalde
omstandigheden, bestaat het biologisch signaal slechts uit een klein deel van de ver-
zamelde data. Een efficiënte extractie van het biologisch signaal is een noodzaak
vooraleer de data geanalyseerd kan worden. Verscheidene benaderingen bestaan om
het biologisch signaal eruit te halen. De gekozen benadering kan een invloed hebben
op de verdere analyse. In deel II van deze thesis wordt de invloed van de methode
voor het extraheren van het metabolische signaal van proton nucleair magnetisch
resonantie (H-NMR) data op de classificatie van longkanker stalen bestudeerd.

Extractie van metabolische informatie van het NMR spectrum is complex door-
dat een gigantische hoeveelheid aan details over de chemische samenstelling van een
biologisch monster in één enkel spectrum aanwezig is. De meest eenvoudige aanpak
om het biologische signaal te bepalen is spectral binning wat inhoud dat het spectrum
onderverdeeld wordt in zones langs de chemische verschuiving as, en het integreren
van de pieken binnen elke zone (Louis et al., 2015). Echter door overlapping van de
resonantie-signalen, komen de gëıntegreerde waarden niet altijd overeen met de con-
centraties van een specifiek metaboliet. Een alternatieve, meer geavanceerde statistis-
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che methode is spectral deconvolution. BATMAN (Bayesian AuTomated Metabolite
Analyser for NMR data) (Astle et al., 2012; Hao et al., 2014) voert spectrale decon-
volutie uit met behulp van gekende informatie over spectrale kenmerken van meta-
bolieten. Op deze wijze schat BATMAN relatieve metabolische concentraties. Zowel
spectral binning en spectral deconvolution door BATMAN werden toegepast op 400
MHz en 900 MHz NMR spectrum van bloedplasma stalen afkomstig van patiënten
met longkanker en van een controlegroep (Hoofdstuk 11). De relatieve concentraties,
die door BATMAN geschat zijn, werden vergeleken met de binning integratie waardes,
wat de mogelijkheid geeft om een onderscheid te maken tussen longkanker patiënten
en de controle groep (Hoofdstuk 12). Voor de 400 MHz data, heeft de spectral bin-
ning aanpak een groter onderscheidend vermogen. Hiertegenover staat dat voor de
900 MHz data, de relatieve metabolische concentraties verkregen door BATMAN een
groter voorspellend vermogen hadden. Ondanks het feit dat spectral binning min-
der rekenkracht vereist, komen de kenmerken geschat door BATMAN overeen met de
specifieke metabolieten waardoor de interpretatie eenvoudiger wordt.
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