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Chapter 1

Introduction and problem

statement

1.1 Introduction

In the last decades, the economic landscape in (Western) Europe has drastically

changed. Many companies moved their manufacturing plants from Europe to low-cost

countries to remain competitive (EESC, 2003, 2014). This offshoring led to a loss of

approximately 3.5 million jobs in the manufacturing industry in the European Union

(EU) since 2008 (EESC, 2014). At the same time, many multinational companies

built a distribution centre (DC) in Europe. These DCs are generally responsible for

the deliveries of goods produced outside Europe to European customers, often within

the context of e-commerce transactions (Hultkrantz and Lumsden, 2001).

Since 2010, European business-to-consumer (B2C) e-commerce sales have been

growing annually with approximately 17% on average. More specifically, in 2016, the

B2C e-commerce sales grew with 15.43% in Europe, resulting in a sales figure of 530

billion euro in 2016 (Figure 1.1) (Ecommerce Foundation, 2017). The share of internet

users in the EU which made online purchases, increased with 16 percentage points

since 2007 up to approximately 65%. Large differences can be noticed across the

EU countries. The largest increases in percentage points are recorded in Lithuania,

the Czech Republic, Ireland, Hungary, Spain, Italy, and Slovakia. Romania has the

lowest proportion of e-shoppers (18%), while the United Kingdom has the largest

proportion of internet users that shop online (87%) (Eurostat, 2016). This expansion

of the B2C e-commerce sector has led to the creation of approximately 2.5 million jobs

1



2 Chapter 1

(a) Growth

(b) Sales

Figure 1.1: Annual B2C e-commerce (a) growth rate and (b) sales in Europe from

2009 to 2016 (Ecommerce Foundation, 2017)

in Europe (Ecommerce Europe, 2016). In a business-to-business (B2B) e-commerce

environment, the European market grew with 1.8% from 2013 to 2015 (Mehta and

Berthelmann, 2017).

In a B2C e-commerce context, customers order more frequently in smaller quantit-

ies. As a consequence, the number of consignments increases (Hultkrantz and Lums-

den, 2001). Annual revenues of the B2C parcel market in Europe have increased

with 114% from 7.14 billion euro in 2010 to 15.4 billion euro in 2015 (Hermes Europe

GmbH, 2016) (Figure 1.2). In Europe, approximately 4.2 billion B2C parcels are

sent to customers annually (Ecommerce Europe, 2016). This large number of smaller

quantities makes it more challenging to consolidate orders in an efficient way.
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Figure 1.2: Annual revenues of the B2C parcel market in Europe from 2010 to 2015,

adapted from Hermes Europe GmbH (2016)

Customers want to be able to choose the moment and location of the delivery of

their parcel. The large majority of people expect their parcel to be delivered at home

(UPS, 2015; MetaPack, 2016). Compared to traditional shopping behaviour where

goods only need to be delivered to a limited number of stores, B2C e-commerce with

home-delivery leads to a large increase in the number of possible delivery locations

(Hultkrantz and Lumsden, 2001). Thus, due to the rise of e-commerce, new distribu-

tion channels and structures arise, which leads to more complex distribution networks.

For instance, goods are often transported from a DC directly to the end customer or

to a postal office depot from where the goods are delivered to customers by a mail-

man (Hultkrantz and Lumsden, 2001). As such, compared to traditional distribution

networks, wholesalers and retailers are often bypassed.

Furthermore, online shoppers expect a fast and accurate delivery within tight time

windows (Fernie and Sparks, 2004) at low cost or even free (de Koster, 2003; UPS,

2015). Often same day or next day delivery is promised to customers. The promise

of faster deliveries implies a double logistics challenge: (1) dealing with an increasing

pressure on the warehouse operations due to later cut-off times; and, (2) creating an

efficient distribution network for parcel delivery (VIL, 2016). Accordingly, handling

a large number of orders and parcels in an efficient way puts the logistics activities of

the supply chain under pressure. E-commerce companies have to thoroughly rethink

and redesign their way of operating. Excellent logistics performance is indispensable

in order to fulfil the customer expectations at low cost and to be successful in an

e-commerce environment (Hultkrantz and Lumsden, 2001).
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In order to achieve such a high performing overall system, extensive coordination

among the different stages of the supply chain is necessary (Reimann et al., 2014).

To survive in the highly competitive market, companies do not have to (re)optimise

separate supply chain processes, but need to reconsider all activities at the same

time. Larger savings can be achieved by integrating rather than by improving indi-

vidual supply chain functions (Chen, 2004). In an e-commerce context, especially the

warehousing and delivery operations need to be optimised.

In the first place, internal warehouse processes, such as storage location, batch-

ing, zoning, and picking routing decisions, need to be considered carefully. Moreover,

after (e-commerce) orders are picked in a warehouse, the goods need to be delivered

to customers. Accordingly, order picking and distribution are interrelated. Instead of

solving an order picking problem (OPP) and a vehicle routing problem (VRP) separ-

ately and sequentially, these two problems can be integrated into a single optimisation

problem. In an integrated problem, both subproblems are solved simultaneously to

obtain an overall optimal solution.

Although supply chain functions, such as order picking and distribution, are in-

terrelated, historically, these are mostly solved separately and sequentially using the

output of one problem as input for the other problem (Archetti and Speranza, 2014b).

Unfortunately, optimising a single problem independently disregards the requirements

and constraints of the other. Therefore, such an uncoordinated approach will not al-

ways lead to an overall optimal solution (Chen and Vairaktarakis, 2005; Pundoor

and Chen, 2005; Meinecke and Scholz-Reiter, 2014a; Moons et al., 2017b). Often the

subproblems are solved in the same order as these are executed in practice. Ideally,

they need to be integrated to resolve the suboptimality problem (Côté et al., 2017).

In order to integrate order picking and delivery problems, the classical VRP needs

to be integrated with order picking issues. In the classical VRP, goods need to be

distributed by a set of vehicles located at one or more depots to a set of geographically

scattered customers by constructing routes along a network in such a way that all

requirements are fulfilled (Toth and Vigo, 2014).

Speranza (2018) identifies a more systemic, or integrated, approach as one of the

major research directions based on the current trends in transportation and logist-

ics. Recently, an increasing number of studies have been conducted on the integ-

ration of a VRP with other supply chain functions. Schmid et al. (2013) provide

an overview of interesting extensions to the classical VRP. Examples from literature

are location-routing problems, inventory-routing problems, production-routing prob-

lems, and routing problems with loading constraints. Archetti and Speranza (2014b)

demonstrate the value of integration for an inventory-routing problem with average
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cost savings of approximately 35%. Absi et al. (2018) compare two sequential ap-

proaches with an integrated production routing problem. Savings in total cost up to

approximately 60% can be achieved depending on the problem characteristics. The

integration of a dock-door assignment problem and a VRP can lead to cost savings of

approximately 12% (Enderer et al., 2017). In addition to scientific research, managers

need to implement more integrated management policies in their companies (Archetti

and Speranza, 2014b; Speranza, 2018)

One of the extensions to the VRP highlighted by Schmid et al. (2013) is the in-

tegration of order picking and delivery processes. This problem variant is a relatively

new research direction. The most related research field studies the integration of pro-

duction scheduling and vehicle routing decisions. The first studies on the integrated

production scheduling-vehicle routing problem (I-PS-VRP) at the operational level

were published in the 1990s. Especially since 2010 there is an increasing interest in

this research domain (Moons et al., 2017a). The integration of production scheduling

and vehicle routing operations can result in savings between 5% and 20% on average.

A detailed survey of these studies can be found in Chapter 2.

Recently, a small number of studies have been conducted on the integration of

order picking and distribution operations. Zhang et al. (2016, 2018) integrate an

order picking system with a distribution system, but only consider direct shipments

to customers or outsource the delivery operations. No vehicle routing decisions have

to be made. The study of Schubert et al. (2018) is one of the first studies on the

integration of order picking and vehicle routing decisions. In Chapter 3, a detailed

review of these studies is provided.

To benefit from the integration of both subproblems, it is not necessary that the

delivery operations are conducted by the same company as the one responsible for the

order picking activities. The only requirement is that there is a good coordination

and information exchange between the companies executing the order picking and

delivery operations. The implementation of an efficient information system used for

the collaboration between the different companies involved is crucial for a successful

integration. The integration of order picking, or production scheduling, with vehicle

routing decisions has been investigated for various applications, e.g., picking and

delivery of perishable goods to supermarkets using owned vehicles (Schubert et al.,

2018), production and delivery of ready-mixed concrete using owned vehicles and hired

vehicles (Naso et al., 2007), or a make-to-order production environment in which a

third-party logistics (3PL) service provider conducts the delivery operations (Zou

et al., 2018).
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1.2 Research objectives

In literature, there is a call for more integrated approaches of logistic problems (Sper-

anza, 2018). The integration of order picking and vehicle routing is only studied in

a few scientific articles. Consequently, the knowledge about this recently formulated

problem is limited. Little is known about the value of integration and how to solve

this problem efficiently. Therefore, the central research question of this dissertation

is the following:

What are the benefits of integrating order picking and vehicle routing de-

cisions in a business-to-consumer e-commerce environment?

The integration of order picking and vehicle routing decisions is especially import-

ant when customers expect a fast delivery, preferably within the same day. Therefore,

to be able to satisfy this expectation, the distance between the DC and the customer

locations has to be relatively small. Thus, the largest benefits of integration can

probably be obtained when customers are located in the proximity of the DC.

Although the focus in this dissertation is on B2C e-commerce, the mathemat-

ical formulations described and solution method proposed in this dissertation can be

applied to B2B e-commerce as well. The main differences between B2C and B2B

e-commerce are the average order size and the total number of orders requested. In

a B2B e-commerce context, the size of an order is on average larger (Samtani et al.,

2002), and a lower number of orders are requested in the same time period compared

to B2C e-commerce.

Since the integrated order picking-vehicle routing problem (I-OP-VRP) is a rel-

atively new research area, the first contribution of this dissertation is to introduce

the I-OP-VRP. The integrated problem and its characteristics are described in detail.

In order to be able to analyse the problem, a mathematical formulation for both an

uncoordinated and an integrated problem is provided. Since the most related research

is situated in the production scheduling field, these studies are used as starting point.

Similarities and differences between production scheduling problems and order pick-

ing problems are indicated to be able to translate existing integrated studies in a

production context to a warehouse context.

The second contribution is to measure and indicate the value of integration. A

comparison is made between solving an OPP and a VRP in an uncoordinated sequen-

tial way and solving an I-OP-VRP. The formulated mathematical models are used to

conduct experiments with both approaches. The results of these experiments are ana-

lysed to quantify the benefits of an integrated method over an uncoordinated method.
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Different problem characteristics are tested to indicate in which circumstances integ-

ration is more promising. For example, the impact of the number of customer orders,

cost parameters, and customer distance to the DC is evaluated.

The integrated problem studied in this dissertation is hard to solve using an exact

method. Therefore, the third contribution is to propose a heuristic algorithm which is

capable to solve the integrated problem in a reasonable amount of computation time.

A heuristic in which local search operators are implemented in a record-to-record

travel framework is presented. Record-to-record travel is a heuristic framework in

which a new solution is accepted, in case of a minimisation problem, if its objective

value is less than the best objective value found so far plus a deviation value (Dueck,

1993).

1.3 Thesis outline

The structure of this thesis is shown in Figure 1.3. Chapter 2 reviews the state-of-

the-art literature on integrated operational level production scheduling-vehicle routing

problems. A classification matrix based on production, inventory, and distribution

characteristics is proposed. The I-PS-VRP studies are classified according to these

characteristics. Thereafter, the solution methods used in these studies are discussed.

As production and warehousing operations have relatively similar characteristics,

in Chapter 3, first a comparison between production and warehousing concepts is

made. Next, the state-of-the-art literature on both order picking and vehicle routing

problems with release dates is surveyed. Then, a mathematical model for an order

picking problem, a vehicle routing problem with time windows and release dates, and

an integrated order picking-vehicle routing problem is formulated. The difference

between an uncoordinated approach and an integrated approach is indicated in order

to measure the value of integration.

A record-to-record travel algorithm is proposed to solve the I-OP-VRP for large-

size instances. In Chapter 4, the design of the heuristic is described. Computational

experiments are executed on small-size instances using both a commercial optimisa-

tion software and the heuristic to evaluate the performance of the record-to-record

travel algorithm. Furthermore, experiments using large-size instances are conducted.

Parameters are tuned using a software to automatically configure the parameters. A

sensitivity analysis on the impact of the algorithm parameters is executed. The value

of integration for large-size instances is quantified.

Since in a warehouse, multiple orders are generally picked in a single batch, an

integrated order picking-vehicle routing problem with a batch picking policy is intro-
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Introduction and problem statement (Chapter 1)

Integrated production scheduling-

vehicle routing problems (Chapter 2)

Problem description and formulation (Chapter 3)

Record-to-record travel

algorithm (Chapter 4)
Batch picking (Chapter 5)

Conclusions and future research (Chapter 6)

Integrated order picking-vehicle routing problem

Figure 1.3: Thesis outline

duced in Chapter 5. A mathematical formulation the I-OP-VRP with batch picking

is provided. A first exploratory research on the impact of batch picking on the integ-

ration of order picking and vehicle routing decisions is conducted.

Finally, in Chapter 6, general conclusions based on the preceding chapters are

presented. Managerial implications resulting from the analyses in this dissertation

are highlighted. Since the integration of order picking and vehicle routing problems

is a relatively new research domain, future research opportunities are identified based

on the limitations of this dissertation.



Chapter 2

Integrated production

scheduling-vehicle routing

problems: Review and

discussion

2.1 Introduction

The integration of order picking and vehicle routing decisions is a new research field.

Only a few studies are conducted on this topic. The most related research area

investigates the integrated operational level production scheduling and vehicle routing

problem. In this chapter1, an overview of the state-of-the-art literature of integrated

production scheduling-vehicle routing problems is presented (Figure 2.1). From this

review, insights in integrated problems with vehicle routing decisions can be gained.

The knowledge gathered, gaps indicated, and future research directions highlighted

in this chapter will be used for formulating and analysing an integrated problem of

order picking and vehicle routing operations in the following chapters. Based on the

current chapter, the integrated order picking-vehicle routing problem (I-OP-VRP)

will be introduced and a survey of the limited literature available on the integration

of order picking and distribution operations will presented in Chapter 3.

1This chapter is an updated version of Moons, Ramaekers, Caris and Arda (2017a), extended

with relevant papers published recently.

9
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Introduction and problem statement (Chapter 1)

Integrated production scheduling-

vehicle routing problems (Chapter 2)

Problem description and formulation (Chapter 3)

Record-to-record travel

algorithm (Chapter 4)
Batch picking (Chapter 5)

Conclusions and future research (Chapter 6)

Integrated order picking-vehicle routing problem

Figure 2.1: Thesis outline - Chapter 2

Similar as for order picking and vehicle routing problems, production scheduling

and vehicle routing are related since the latter can only start after the production

process is completed. Nevertheless, production and distribution have traditionally

been studied separately. Several authors, such as Thomas and Griffin (1996) and

Scholz-Reiter et al. (2011), point out some reasons why companies prefer an unco-

ordinated approach over an integrated one. First, in practice, different departments in

a company or even different companies, such as 3PL service providers, are responsible

for the production and distribution decisions. Second, the individual problems, e.g.,

a VRP for distribution planning, are hard to solve by themselves. Third, inventory

buffers between the production and distribution functions are often used to separate

them and reduce the necessity to integrate those supply chain functions.

However, an increasing trend can be observed to reduce these intermediate buf-

fer stocks to utilise resources more efficiently (Chang and Lee, 2004; Reimann et al.,

2014) and to survive in the globalised economy. Therefore, companies increasingly
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implement a just-in-time policy. In such a setting, tardy deliveries can cause enorm-

ous problems at the customer’s site, but trying to prevent such situations with high

transportation costs is pointless. Hence, integrating production and distribution into

a single problem is almost indispensable. Especially for perishable or time-sensitive

goods, an integrated approach can be valuable (Ullrich, 2013). Examples in which

an integrated approach is applied for perishable goods are newspapers (Hurter and

Van Buer, 1996; Van Buer et al., 1999; Russell et al., 2008; Chiang et al., 2009),

food (Chen et al., 2009; Farahani et al., 2012), ready-mixed concrete (Garcia et al.,

2004; Naso et al., 2007), nuclear medicine (Lee et al., 2014), and industrial adhesive

materials (Geismar et al., 2008; Viergutz and Knust, 2014).

Integrating production and routing decisions into a single decision support model

can be useful to avoid inefficiencies in the determined schedules (Geismar et al.,

2008), which can result in higher operational costs, lower customer service level,

or poor utilisation of the resources (Gao et al., 2015). As such, integrating different

supply chain functions can lead to significant cost savings and efficiency improvements

(Sarmiento and Nagi, 1999). At the operational decision level, integration can result

in an average improvement between 5% and 20% compared to an uncoordinated

approach as indicated by Chen and Vairaktarakis (2005), Park and Hong (2009),

Ullrich (2013), and Meinecke and Scholz-Reiter (2014a).

Most existing studies on integrated production-distribution problems consider the

strategic or tactical decision level (Chen, 2004, 2010). At the strategic level, decisions

about facility location and plant capacity are taken. The tactical level deals with

production lot sizes, inventory levels, and delivery quantities. A review of integrated

problems at the strategic and tactical level can be found in Vidal and Goetschalckx

(1997) and Dı́az-Madroñero et al. (2015), respectively. Even though approximately

20 years ago Thomas and Griffin (1996) remarked the scarcity of literature concerning

coordinated operational level problems, machine scheduling and distribution decisions

are still too often considered independently of each other (Chen, 2010; Reimann et al.,

2014; Wang et al., 2015).

The combination of production scheduling and vehicle routing problems is a rather

unexplored research direction, whereas both problems on their own are well-studied

in the literature. In scientific literature, a large part of the integrated studies consid-

ering operational level decisions focuses on relatively simple delivery operations, e.g.,

direct shipments to customers. A review on this research area can be found in Chen

(2004, 2010) and Wang et al. (2015). Some other studies make use of prespecified

routes, such as Gupta et al. (2012), or routes with a fixed customer sequence as in

Armstrong et al. (2008). Arda et al. (2014) take an intermediate position between a
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purely sequential approach and a fully coordinated approach. The authors present

a stochastic programming formulation for the multi-period vehicle loading problem

with stochastic release dates. The problem is used to investigate whether transport-

ation decisions can be improved when forecasts about future releases of items from

production are taken into account.

This chapter focuses on integrated operational level problems, which explicitly

include vehicle routing decisions. In the literature, different terminology is used for

these integrated problems: integrated production and outbound distribution schedul-

ing (IPODS ) problem (Chen, 2010; Meinecke and Scholz-Reiter, 2014a; Fu et al.,

2017), production and transportation scheduling problem (PTSP) (Geismar et al.,

2008; Scholz-Reiter et al., 2011; Karaoğlan and Kesen, 2017; Lacomme et al., 2018),

integrated production and distribution scheduling problem (IPDSP) (Li and Ferrell,

2011; Zu et al., 2014), and operational integrated production and distribution problem

(OIPDP) (Amorim et al., 2013; Belo-Filho et al., 2015). Two terms refer explicitly

to perishable products: production and distribution planning for single period invent-

ory products (PDPSI ) (Park and Hong, 2009) and production scheduling and vehicle

routing problem with time windows for perishable goods (PS-VRPTW-P) (Chen et al.,

2009). Furthermore, terms as medium-sized newspaper production/distribution prob-

lem (m-NDP) (Hurter and Van Buer, 1996; Van Buer et al., 1999), and nuclear

medicine production and delivery problem (NMPDP) (Lee et al., 2014) are used for

specific problems.

In this review, integrated production scheduling-vehicle routing problem (I-PS-

VRP) is used to refer to the integrated problem, in which the data, requirements,

and constraints of the production scheduling and vehicle routing problems are con-

sidered simultaneously to obtain an overall optimal solution. The integrated approach

provides: (1) the assignment of customer orders to production resources; (2) the pro-

duction start time and completion time of each customer order; (3) the assignment of

completed customer orders to delivery vehicles; (4) the delivery routes; and, (5) the

exact delivery time of each customer order. The outcome is a detailed production and

distribution schedule with the exact timing at which each individual customer order

is executed to satisfy customer demands on time.

In a completely uncoordinated approach, however, the production schedule is de-

termined first. Delivery routes can be established based on the production comple-

tion times of each customer. These completion times can be seen as release dates

in a VRP. Release dates are the moment goods become available at the depot for

delivery to the customer (Cattaruzza et al., 2016; Archetti et al., 2015a). The output

of the production scheduling problem is used as input for the VRP. It is also possible
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(a) Uncoordinated approach

(b) Integrated approach

Figure 2.2: Comparison of an uncoordinated and an integrated approach

to first determine a distribution schedule and thereafter a production schedule. Fig-

ure 2.2 illustrates production and distribution operations at the operational decision

level in an uncoordinated approach (Figure 2.2(a)) and in an integrated approach

(Figure 2.2(b)). For each customer order (or job), a number of tasks have to be

conducted in the production process. In the figure, Jji represents task j of customer

order i. Plant location l is expressed by Ll.

The aim of this chapter is not to give a review of production scheduling or vehicle

routing problems but of the integration of both problems. The reader is referred

to Eksioglu et al. (2009) and Braekers et al. (2016b) for an extensive review of the

VRP and to Potts and Strusevich (2009) for a review of scheduling problems. The

goal is to explore the existing literature on I-PS-VRPs by analysing both problem

characteristics and solution approaches applied to identify gaps in the literature and

highlight interesting future research opportunities. The main contributions of this
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study are to: (1) provide an extensive review of recent research in the field of I-

PS-VRPs; (2) propose a classification matrix based on production, inventory, and

distribution system characteristics; and, (3) classify and discuss existing literature to

indicate promising further research directions.

The review in this chapter differs from other existing literature surveys. Chen

(2004) reviews integrated production-distribution problems both at the tactical and

operational decision level. However, since operational I-PS-VRPs are a new research

domain, at that time only two papers were published, and thus the main focus of

the review paper is on direct deliveries. Chen (2010) and Meinecke and Scholz-Reiter

(2014b) present a classification scheme for integrated production-distribution studies

at the operational level. In both classification schemes different delivery methods are

considered, i.e., immediate delivery of each customer order, direct delivery of batched

orders of the same customer, delivery with fixed delivery dates, and vehicle routing.

In Chen (2010), a classification is made based on a limited number of characteristics:

the machine configuration, number and type of vehicles, and equal or general order

sizes. Meinecke and Scholz-Reiter (2014b) do not classify all papers in the scheme

but only test the robustness of the proposed scheme with a sample of papers. In

this sample, only a minority of the studies make use of vehicle routing. Reimann

et al. (2014) only review integrated studies in which vehicle routing decisions are

included, both at the tactical and operational level. The authors describe the papers

based on the machine environment, the number and type of vehicles, and the solution

approach used, but no classification is presented. Wang et al. (2015) classify integrated

production-distribution papers based on their objective function. No classification

based on production and distribution characteristics is proposed. All types of delivery

possibilities are included. However, only four of the studies mentioned use a VRP to

solve the distribution subproblem.

In contrast to previous literature reviews on integrated production-distribution

problems which mainly include studies considering direct shipments, this chapter fo-

cuses on operational studies which explicitly consider vehicle routing decisions. Fur-

thermore, a classification matrix is proposed in which the relevant production and

distribution characteristics of each paper are indicated. The matrix can be used to

identify which combinations of production and distribution characteristics are not

well studied yet. The goal is to find gaps in existing research and to identify future

research opportunities. This chapter can act as a starting point to gain insight into

the integration of production scheduling and vehicle routing operations and what can

be learned for the integration of order picking and vehicle routing problems in the

following chapters.
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The remainder of this chapter is organised as follows. The applied review method-

ology is described in Section 2.2. A classification scheme including both production

and distribution characteristics is given in Section 2.3. The characteristics of each

article reviewed in this chapter are indicated in the classification matrix. Section 2.4

reviews existing literature on I-PS-VRPs based on the problem characteristics. An

overview of the solution approaches used in existing studies is provided in Section 2.5.

Sections 2.4 and 2.5 are structured according to the characteristics which have a ma-

jor influence on the production method and its complexity: machine configuration,

batch processing, and setup operations. Finally, conclusions and further research

opportunities are given in Section 2.6.

2.2 Review methodology

The review in this chapter includes studies which fulfil the following selection criteria:

(1) production and distribution problems are tackled using an integrated approach;

(2) distribution operations are based on vehicle routing decisions; and, (3) integrated

problems focus on the operational decision level, i.e., production scheduling decisions

are considered; nevertheless, studies sometimes take into account decisions on the

strategic or tactical decision level, e.g., lot sizing decisions. More precisely, the studies

should tackle the problem to assign customer orders to production resources and

vehicles, and to determine a detailed production schedule and vehicle routes.

In order to narrow the scope of this literature review, only articles written in Eng-

lish and published (online) between 1996 and March 2018 are considered. Doctoral

dissertations are not included in the review based on the assumption that these are

(partly) published in journal articles. Conference papers are only included when no

article is published in a scientific journal by the same author(s) on the same problem.

The following search strategy is applied. First, articles published in journals with an

Impact Factor of at least 1.0 in the domain of Operations Research & Management

Science (based on the Impact Factors of 2016 by Thomson Reuters) with the follow-

ing words in the title are selected: production or machine scheduling in combination

with delivery, distribution, routing or transportation. Second, additional articles are

collected using scientific-technical bibliographic databases with access to e-journals,

such as Google Scholar, Web of Science, and ProQuest. The same search terms are

applied. The search results are filtered by additionally searching with the words in-

tegrated, synchronised, coordinated or combined in the papers. Third, relevant papers

cited in review papers on integrated production-distribution problems, such as Chen

(2004), Meinecke and Scholz-Reiter (2014b), and Reimann et al. (2014), are included.
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The relevance of each paper found is analysed with respect to their content. A

first selection is based on the abstract. Thereafter, the full-text of the remaining

papers is screened. Papers which do not fulfil the criteria mentioned above are ruled

out. More specifically, studies with one of the following elements are excluded: (1) a

single customer needs to be delivered; (2) each customer is delivered by a dedicated

vehicle, i.e., direct shipments from the manufacturing plant to each customer; and, (3)

other transportation modes than vehicles are used, e.g., rail or maritime transport.

These studies are filtered out because no vehicle routing decisions can be taken.

Furthermore, studies only dealing with the strategic or tactical decision level are

ignored for further discussion in this chapter. Finally, bibliographic references of the

relevant articles studied serve as a continuous search reference, i.e., ancestry approach.

Figure 2.3: Number of articles published per year, including cumulative percentage

This search method leads eventually to the selection of 39 papers which fulfil the

selection criteria. This small number of papers is due to the fact that the integration

of production scheduling and vehicle routing problem is a recent research area. The

first study, to the best of the author’s knowledge, on an I-PS-VRP appeared in 1996.

Thus, the studies span a period of 22 years. However, in multiple years no article

is published, as can be seen in Figure 2.3. More studies on I-PS-VRPs are being

published since 2003, and approximately 65% of the papers is published after 2010.
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The vast majority, 34 out of 39 studies, is published in scientific journals. In the

following sections, the problem characteristics and solution method(s) of each paper

are discussed.

2.3 I-PS-VRP: Classification scheme

Production scheduling problems are generally classified based on the three-field prob-

lem classification α|β|γ for scheduling problems introduced by Graham et al. (1979)

and further investigated by Lawler et al. (1993) and Pinedo (2008), among others.

The α-field specifies the machine environment, the β-field describes the job character-

istics, and the γ-field refers to the objective criterion. Eksioglu et al. (2009) propose

a classification scheme for VRPs, which has recently been updated by Braekers et al.

(2016b). The following main categories are used in the scheme: type of study, scen-

ario characteristics, problem physical characteristics, information characteristics, and

data characteristics.

Both Chen (2010) and Meinecke and Scholz-Reiter (2014b) extend the three-field

notation of Graham et al. (1979) to a five-field representation scheme covering all

relevant, according to these authors, parameters for integrated production and dis-

tribution scheduling problems. In Chen (2010), delivery characteristics, such as the

number of vehicles, vehicle capacity, delivery mode, and the number of customers are

added. Meinecke and Scholz-Reiter (2014b) make use of a modification of the VRP

classification scheme of Eksioglu et al. (2009) to incorporate distribution parameters

into the scheme of Graham et al. (1979). Additionally, inventory characteristics, such

as inventory capacity and holding costs, are included.

For I-PS-VRPs, the delivery mode characteristic should not be included as all

studies use vehicle routing to deliver goods to customers. Although the schemes are

quite extensive, still not all relevant problem characteristics are covered. For instance,

in the α-field, machine environments such as a flow shop and bundling machines are

not considered in Meinecke and Scholz-Reiter (2014b), whereas in Chen (2010) no job

shop and different parallel machine configurations are defined. Furthermore, in many

categories of production and distribution characteristics no studies are conducted yet.

For example, no study allows split deliveries, and in all studies transportation times

are deterministic. Therefore, the classification schemes of Chen (2010) and Meinecke

and Scholz-Reiter (2014b) will not be used in this chapter to classify the studies on

I-PS-VRPs.

In this review, a general classification scheme based on the machine configuration

(α) is illustrated in Figure 2.4. Machine environments with a single machine, parallel
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Figure 2.4: State-of-the-art literature classified according to machine environment

Machine

environment

Single

α = 1

Hurter and Van Buer (1996)

Van Buer et al. (1999)

Chang and Lee (2004)

Garcia et al. (2004)

Li et al. (2005)

Chen and Vairaktarakis (2005)

Naso et al. (2007)

Geismar et al. (2008)

Chen et al. (2009)

Park and Hong (2009)

Li and Ferrell (2011)

Low et al. (2013)

Low et al. (2014)

Viergutz and Knust (2014)

Zu et al. (2014)

Li and Zu (2015)

Li et al. (2016)

Jamili et al. (2016)

Cheref et al. (2016)

Devapriya et al. (2017)

Karaoğlan and Kesen (2017)

Low et al. (2017)

Zou et al. (2018)

Lacomme et al. (2018)

Parallel

α ∈ {Pm,Qm,Rm}

Pm

Chen and Vairaktarakis (2005)

Russell et al. (2008)

Chiang et al. (2009)

Farahani et al. (2012)

Ullrich (2013)

Qm

Amorim et al. (2013)

Lee et al. (2014)

Belo-Filho et al. (2015)

Kergosien et al. (2017)

Rm

Chang et al. (2014)

Fu et al. (2017)

Bundling

α = Bm

Li and Vairaktarakis (2007)

Flow Shop

α ∈ {Fm,FFc}

Scholz-Reiter et al. (2011)

Ehm and Freitag (2016)

Ramezanian et al. (2017)

Job Shop

α ∈ {Jm, FJc}

Meinecke and Scholz-Reiter (2014a)
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machines, bundling machines, flow shops, and job shops are used in the literature on

I-PS-VRPs. The single and parallel machine environments are used for jobs which

consist of a single operation. In the simplest machine environment, a single machine

(α = 1) is available to process all jobs. In a parallel machine environment, a job is

processed on one of the m machines. The processing time can be machine-independent

(identical parallel machines, α= Pm), machine-dependent (uniform parallel machines,

α = Qm), or machine and job-dependent (unrelated parallel machines, α = Rm).

When jobs consist of multiple operations, more complex machine environments

are used. In a flow shop (α = Fm), all jobs have to follow the same sequence along

m machines, whereas in a job shop (α = Jm), each job has its own predetermined

sequence for visiting machines (Graham et al., 1979; Pinedo, 2008). Extensions to a

flow shop and a job shop are a flexible flow shop (α = FFc) and a flexible job shop

(α = FJc) which are composed of c stages (or work shops) with a number of identical

machines. Each job needs to be processed on only one machine at each stage or

work shop (Pinedo, 2008). Furthermore, in a bundling configuration (α = Bm), each

job consists of m independent operations which need to be processed on m dedicated

machines. These operations can be possibly executed simultaneously. Before delivery,

all m operations are bundled together (Chen, 2010).

As can be seen from the classification scheme in Figure 2.4, most studies make use

of a single machine environment (24 studies) or a parallel machine environment (11

studies). A bundling machine configuration, a flow shop, and a job shop are studied in

a single, three, and a single article, respectively. After the classification based on the

machine environment, a matrix based on production, inventory, and distribution char-

acteristics is proposed instead of adapting and extending the classification schemes of

Chen (2010) and Meinecke and Scholz-Reiter (2014b). Classification matrices for the

single production level environments, i.e., e single and parallel machine environment,

are presented in Table 2.1. Classification matrices for the flow shop and job shop

environments are shown in Table 2.2. Table 2.3 shows the classification matrix for

the bundling machine environment.

Only the relevant production, inventory, and distribution characteristics which are

applied in at least one I-PS-VRP study are taken into account in the matrix. The

advantages of the proposed matrix are that: (1) it gives a clear overview of which

combinations of characteristics are already examined in the existing literature on I-

PS-VRPs; and, (2) it can easily be extended with additional characteristics whenever

applied in future studies. In the classification matrices, the number of studies con-

sidering a specific problem characteristic is indicated. For each characteristic, a brief

explanation is given.
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The following characteristics are used:

1. Production characteristics

(a) The number of plants specifies whether customer orders are processed in a

single manufacturing plant or in multiple plants.

(b) Batch processing is defined as producing several customer orders in par-

allel (p-batching or parallel batching) or sequentially (s-batching or serial

batching) by a resource (Pinedo, 2008).

(c) Setup times and setup costs can be incurred between orders or batches to

prepare resources to be ready for the next order or batch. Setup opera-

tions are sequence-dependent if they depend on which order was processed

immediately before a next one (Allahverdi and Soroush, 2008).

(d) Production times can be defined either as a unit processing time or as a

fixed production rate.

(e) A production cost can be incurred for each item produced or for each time

unit producing items.

(f) A production due date specifies the moment in time before which the pro-

duction of orders has to be completed.

(g) Precedence relationships exist between orders when an order cannot be

produced before another specific order is completed (Graham et al., 1979;

Pinedo, 2008).

(h) A production release date specifies the earliest moment in time at which

processing of an order can start (Graham et al., 1979; Pinedo, 2008).

2. Inventory characteristics

At the operational level, goods in storage between different steps of the produc-

tion process and between the end of the production process and the departure

of the delivery vehicle are considered to be inventory. Goods are not carried

from one planning horizon to the next.

(a) A limited, an unlimited or no inventory capacity can be available.

(b) An inventory holding cost can be incurred when inventory is hold in

storage.
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3. Distribution characteristics

(a) The fleet of vehicles refers to the number of vehicles available for delivery

(single, limited, unlimited) and the heterogeneity of this fleet (identical

vehicle properties or not).

(b) Vehicle drivers can be allowed to conduct multiple trips during the planning

horizon.

(c) Travel times between two customer locations can be explicitly considered.

(d) Transportation costs can be either a fixed cost for using a vehicle or a cost

per kilometre travelled.

(e) Service times specify the time needed to load a vehicle at the DC and to

unload the products at a customer location.

(f) Pickup and delivery operations indicate that goods can be both delivered

to customers and picked up at suppliers within the same route.

(g) Customers can have specified a delivery due date before or time window

within which they want the goods to be delivered.

(h) A penalty cost can be incurred if delivery time restrictions are violated.

In short, in the classification matrix in Table 2.1 can be seen that a single machine

environment in general is combined with a single vehicle or a homogeneous fleet of

delivery vehicles. In two-thirds, i.e., in 12 out of 18 studies which use more than one

vehicle, a limited number of vehicles are considered. In approximately 65% of the

studies, transportation costs are incurred: variable costs and fixed costs are taken

into account in 15 and 13, respectively. By contrast, production costs are in general

excluded from the problem. Production and travel times are taken into account in

all studies with a single machine. Batch processing is applied in the vast majority

of the integrated studies in contrast to setup operations which are only included in a

slight minority. Delivery time restrictions, i.e., delivery due date and time windows,

are both imposed in 6 studies with a single machine environment.

Rather similar conclusions can be made for studies with a parallel machine en-

vironment indicated in the lower part of Table 2.1. Both a homogeneous and a

heterogeneous fleet of vehicles are used in half of the studies. A single vehicle in com-

bination with parallel machines is used in a single study. Time windows are included

in 8 out of 11 studies. No pickup and delivery operations and inventory decisions are

considered in integrated studies with a single or parallel machine environment. It is
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Table 2.1: Matrix of production, inventory, and distribution characteristics for a single

and parallel machine environment
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Single machine

Single vehicle 6 5 6 1 6

Homogeneous fleet 13 2 14 15 2 3 1 1 15

Heterogeneous fleet 3 3 3 3

Unlimited number 5 1 5 6 1 6

Limited number 11 1 12 12 2 3 1 12

Multiple trips 11 2 12 13 1 1 13

Travel times 22 2 22 24 2 3 1 2 24

Variable transportation cost 13 2 14 15 1 3 1 1 15

Fixed transportation cost 12 1 12 13 1 3 1 1 13

Loading times 3 1 3 4 1 3 1 4

Unloading times 6 2 7 8 2 2 1 8

Pickup and delivery 2 2 2 2

Delivery due date 4 2 5 6 1 3 1 1 6

Time windows 5 1 4 6 1 6

Penalty cost 4 1 4 5 2 1 1 5

Number of studies 22 2 22 24 2 3 1 2 24

Parallel machines

Single vehicle 1 1 1 1

Homogeneous fleet 5 3 5 2 3 3 1 5

Heterogeneous fleet 5 3 4 1 1 1 2 1 2 5

Unlimited number 4 1 4 2 3 3 4

Limited number 6 5 5 1 1 1 3 1 2 6

Multiple trips 3 1 2 1 1 3

Travel times 11 6 10 3 4 4 3 1 3 11

Variable transportation cost 9 6 8 3 4 4 3 1 2 9

Fixed transportation cost 7 5 6 3 2 2 2 1 2 7

Loading times 4 3 3 1 2 1 2 4

Unloading times 7 3 6 3 3 3 2 1 2 7

Pickup and delivery

Delivery due date 4 3 4 1 1 3 1 3 4

Time windows 8 4 7 3 4 4 3 1 2 8

Penalty cost

Number of studies 11 6 10 3 4 4 3 1 3 11
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Table 2.2: Matrix of production, inventory, and distribution characteristics for a flow

shop and job shop machine environment

Distribution Production Inventory
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Flow shop

Single vehicle

Homogeneous fleet

Heterogeneous fleet 3 3 3 1 3 3

Unlimited number

Limited number 3 3 3 1 3 3

Multiple trips 2 2 2 1 2 2

Travel times 3 3 3 3 3

Variable transportation cost 3 3 3 1 3 3

Fixed transportation cost 3 3 3 1 3 3

Loading times

Unloading times 1 1 1 1 1

Pickup and delivery

Delivery due date 2 2 2 1 2 2

Time windows

Penalty cost 2 2 2 1 2 2

Number of studies 3 3 3 1 3 3

Job shop

Single vehicle

Homogeneous fleet 1 1 1 1 1 1 1 1

Heterogeneous fleet

Unlimited number

Limited number 1 1 1 1 1 1 1 1

Multiple trips

Travel times

Variable transportation cost 1 1 1 1 1 1 1 1

Fixed transportation cost 1 1 1 1 1 1 1 1

Loading times

Unloading times

Pickup and delivery

Delivery due date 1 1 1 1 1 1 1 1

Time windows

Penalty cost 1 1 1 1 1 1 1 1

Number of studies 1 1 1 1 1 1 1 1
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Table 2.3: Matrix of production, inventory, and distribution characteristics for a

bundling machine environment

Distribution Production Inventory
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Flow shop

Single vehicle

Homogeneous fleet 1 1 1 1

Heterogeneous fleet

Unlimited number 1 1 1 1

Limited number

Multiple trips

Travel times 1 1 1 1

Variable transportation cost 1 1 1 1

Fixed transportation cost 1 1 1 1

Loading times

Unloading times

Pickup and delivery

Delivery due date

Time windows

Penalty cost

Number of studies 1 1 1 1

observed in Table 2.2 that a flow shop environment is combined with a heterogeneous

fleet, while a job shop is integrated with homogeneous vehicles. Both production

and transportation costs are considered in these machine environments. No study

includes time windows, while 3 out of 4 studies specify a delivery due date. A bund-

ling machine environment is combined with an unlimited number of homogeneous

vehicles, as can be seen in Table 2.3. In Section 2.4, each paper is discussed in more

detail according to the problem characteristics used in the classification matrix and

the objective function.
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2.4 I-PS-VRP: Problem characteristics

This section reviews existing literature on I-PS-VRPs. In order to discuss the papers,

this section is structured in the following way. The studies are first classified based on

the machine environment used in each study. In this way, it can be discovered whether

different production, inventory, and/or distribution characteristics are implied in re-

latively simple environments, e.g., single machine, compared to more complex ones,

e.g., job shop or flow shop. Within each subsection, studies are combined according

to the following production characteristics: batch processing and setup operations.

These two criteria are selected because they have the largest impact on the way of

producing in comparison to the other production characteristics used in Tables 2.1-

2.3, such as including production costs and production times. Problems with batch

processing are often more complex since a higher number of production schedules are

possible. For each moment in time, every possible batch composition needs to be

determined. The different production schedules need to be evaluated in order to find

the best one related to the objective. Setup operations are related to batch processing

as such operations are often necessary between the production of two subsequent

batches. However, as can be seen from Tables 2.1-2.3, whereas batch processing is

mostly applied in I-PS-VRPs, setup operations are generally neglected.

Sections 2.4.1 - 2.4.3 discuss the papers in the different machine environments. A

table in which the problem characteristics of each study are indicated (• if included)

is constructed for each machine environment. In Section 2.4.4, a discussion on the

problem characteristics is provided, and gaps and future research opportunities are

indicated.

2.4.1 Single machine environment

In the majority of the studies a single machine configuration for the execution of

customer orders is applied, and orders are combined into batches in most of these

articles. Table 2.4 provides an overview of the discussed articles with their main

problem characteristics and objective function. As can be seen in the upper part of

Table 2.1, only two studies do not process orders in batches, i.e., Naso et al. (2007)

and Viergutz and Knust (2014). Setup operations are often not considered in research

on I-PS-VRPs with a single machine environment. In studies without batching, setup

operations are not incorporated.
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Table 2.4: Single machine environment (α = 1): Problem characteristics

Production Inventory Distribution Objective

Fleet of vehicles

S
in

g
le

p
la

n
t

M
u
ltip

le
p
la

n
t

B
a
tch

p
ro

c
e
ssin

g

P
ro

d
u
c
tio

n
tim

e
s

P
ro

d
u
c
tio

n
c
o
st

S
e
tu

p
tim

e
s

S
e
tu

p
c
o
st

P
ro

d
u
c
tio

n
d
u
e

d
a
te

P
re

c
e
d
e
n
c
e

re
la

tio
n
sh

ip
s

P
ro

d
u
c
tio

n
re

le
a
se

d
a
te

s

L
im

ite
d

in
v
e
n
to

ry
c
a
p
a
c
ity

In
v
e
n
to

ry
h
o
ld

in
g

c
o
st

S
in

g
le

v
e
h
ic

le

H
o
m

o
g
e
n
e
o
u
s

fl
e
e
t

H
e
te

ro
g
e
n
e
o
u
s

fl
e
e
t

U
n
lim

ite
d

n
u
m

b
e
r

L
im

ite
d

n
u
m

b
e
r

M
u
ltip

le
trip

s

T
ra

v
e
l

tim
e
s

V
a
ria

b
le

tra
n
sp

o
rta

tio
n

c
o
st

F
ix

e
d

tra
n
sp

o
rta

tio
n

c
o
st

L
o
a
d
in

g
tim

e
s

U
n
lo

a
d
in

g
tim

e
s

P
ick

u
p

a
n
d

d
e
liv

e
ry

D
e
liv

e
ry

d
u
e

d
a
te

T
im

e
w

in
d
o
w

s

P
e
n
a
lty

c
o
st

C
o
st

P
ro

fi
t

S
e
rv

ic
e

D
e
m

a
n
d

sa
tisfi

e
d

V
e
h
ic

le
s

u
se

d

D
ista

n
c
e

tra
v
e
lle

d

Q
u
a
lity

Naso et al.

(2007)

• • • • • • • • • • • • • •

Viergutz and

Knust (2014)

• • • • • •

Garcia et al.

(2004)

• • • • • • • • • • •

Chang and Lee

(2004)

• • • • • • •

Chen and Vair-

aktarakis (2005)

• • • • • • • • • •

Li et al. (2005) • • • • • • •

Geismar et al.

(2008)

• • • • • • •

Karaoğlan and

Kesen (2017)

• • • • • • •

Devapriya et al.

(2017)

• • • • • • • • • •

Lacomme et al.

(2018)

• • • • • • • •
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Table 2.4: (continued)

Production Inventory Distribution Objective
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Chen et al.

(2009)

• • • • • • • • • • • •

Li and Ferrell

(2011)

• • • • • • • • • •

Zu et al. (2014) • • • • • • • • • • •

Li and Zu

(2015)

• • • • • • • • • • •

Low et al.

(2013)

• • • • • • • • •

Low et al.

(2014)

• • • • • • • • • • • •

Low et al.

(2017)

• • • • • • • • • • • •

Li et al. (2016) • • • • • • • • • •

Jamili et al.

(2016)

• • • • • • • • • • •

Cheref et al.

(2016)

• • • • • • • • •

Zou et al. (2018) • • • • • • •
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Table 2.4: (continued)

Production Inventory Distribution Objective

Fleet of vehicles
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Hurter and

Van Buer

(1996)

• • • • • • • • • • • • •

Van Buer et al.

(1999)

• • • • • • • • • • • • •

Park and Hong

(2009)

• • • • • • • • • • • • • • • •
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2.4.1.1 No batch processing

No setup operations Naso et al. (2007) and Viergutz and Knust (2014) invest-

igate an I-PS-VRP which involves a product with a limited lifespan: ready-mixed

concrete in Naso et al. (2007) and industrial chemicals in Viergutz and Knust (2014).

Therefore, delivery has to take place within a specified period of time after production

to prevent the product from expiring. Additionally, customers have indicated a time

window in which they want the goods to be delivered. When the vehicle arrives early

it has to wait. Late deliveries are not allowed.

In Naso et al. (2007), at each plant a single loading dock is available to process

the product and load it directly onto a truck. While some plants own a fleet of

homogeneous trucks, other have to rely on the fleet of other plants. More vehicles can

be hired from external companies. Thus, a multi-depot vehicle routing problem with

time windows is integrated with a production scheduling problem. A penalty cost is

incurred when a truck has to wait for loading and unloading. The objective of the non-

linear problem is to minimise costs related to transportation, loading and unloading

waiting times, outsourced production, additionally hired trucks, and overtime work

for drivers.

In Viergutz and Knust (2014), due to the limited lifespan of the product and the

use of a single delivery tour, it is possible that not all demand can be satisfied within

the time windows at the customer locations. As such, the objective of the mixed

integer linear programming (MILP) problem is to maximise total demand satisfied.

2.4.1.2 Batch processing

No setup operations Similar to Naso et al. (2007), Garcia et al. (2004) examine

an I-PS-VRP for ready-mixed concrete. In contrast to Naso et al. (2007), at each

plant there is sufficient capacity to produce simultaneously multiple orders, i.e., p-

batching. Furthermore, no time windows are given, but each order has a due date at

which it should be delivered exactly at the customer location. The objective of the

integer linear programming (ILP) model is to select orders to maximise profit taking

into account distribution costs.

Chang and Lee (2004) investigate a scenario with two customer areas and a single

machine environment. Besides a two customer problem variant, Li et al. (2005) study

a general situation with more than two customers. Chen and Vairaktarakis (2005)

examine two variants with multiple customers for a single-machine context. The

problems differ in the performance measure, i.e., mean or maximum delivery time. In

the three studies, orders which are delivered by the same vehicle trip are produced
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immediately after each other, i.e., s-batching. In Chang and Lee (2004) and Li et al.

(2005), an order should be delivered in a single tour, but different orders of the same

customer can be delivered in different tours. The objective in Chang and Lee (2004)

is to minimise the total time for the vehicle to deliver all orders and to return to the

plant. In Li et al. (2005), the sum of order arrival times at customers is minimised.

Chen and Vairaktarakis (2005) search for a method to optimise the trade-off between

distribution costs and customer service level measured by the delivery times.

Geismar et al. (2008) examine an I-PS-VRP for a product with a limited lifespan.

In the integrated problem formulated by Geismar et al. (2008), machine scheduling

within the plant is not explicitly considered. The focus is on assigning customer

orders to production runs, determining the run size, and start time of each run.

Furthermore, it is decided which customers are served on which trip and in which

order in the specific trip. Additionally, the sequence of the different trips needs to

be decided. The objective is to minimise the makespan, i.e., the time required to

manufacture and deliver all goods. Karaoğlan and Kesen (2017) propose a mixed

integer programming (MIP) model for the same problem as Geismar et al. (2008).

Devapriya et al. (2017) extend the problem of Geismar et al. (2008) by considering

the fleet size as a decision variable instead of using a single vehicle as in Geismar et al.

(2008). Each vehicle of the fleet can conduct multiple trips. A second difference is that

a finite planning horizon is considered. The objective of the MILP is to minimise the

sum of the fixed vehicle costs and the variable travelling costs. Lacomme et al. (2018)

study an extension of Geismar et al. (2008) with multiple homogeneous vehicles. Each

vehicle can conduct at most a single tour. The objective is to minimise the makespan,

which is the latest arrival at the depot.

Chen et al. (2009) formulate an integer non-linear programming (INLP) model

for an I-PS-VRP for perishable goods having all a specific rate of decay at which

the quality of goods decreases. In Chen et al. (2009), each customer has a soft time

window. If a vehicle arrives early it has to wait, while a late delivery will result in

a penalty cost. Since customer demand is stochastic, the determined plan should

indicate the production quantities, the start of production, and the delivery routes

to maximise the expected profit of the supplier taking into account the price of the

goods and the costs related to production, transportation, and goodwill loss.

Similarly, Li and Ferrell (2011) study an I-PS-VRP for a perishable product. The

fleet of vehicles differs in capacity and cost. Zu et al. (2014) and Li and Zu (2015)

adapt and extend the previous model of Li and Ferrell (2011) with a pickup and

delivery problem. An I-PS-VRP for a three-level supply chain, including suppliers,

a single plant, and customers, is investigated. Pickup and delivery operations are
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allowed in the same trip. This can be considered to be a VRP with mixed linehauls

and backhauls (Parragh et al., 2008) in which raw materials need to be picked up at

suppliers and finished goods need to be delivered at the customers. The objective of

the MIP problem is to minimise total transportation cost.

Low et al. (2013, 2014, 2017) investigate an integrated scheduling problem at a

multi-product distribution centre. If a customer orders different goods, these are

immediately packed in a single batch. Low et al. (2013) use an INLP model to

minimise the time to deliver all orders to the customers. In subsequent studies of

Low et al. (2014, 2017), the objective is cost minimisation taking into account fixed

vehicle costs, transportation costs, and penalty costs incurred for the violation of a

time window.

Li et al. (2016) study an integer non-linear bi-objective I-PS-VRP in which both

delivery cost and total customer waiting time have to be minimised. The delivery cost

consists of a fixed cost incurred for each vehicle used and a variable cost depending

on the travel time needed. The total customer waiting time is equal to the sum of

the delivery times.

Jamili et al. (2016) also investigate a bi-objective integrated problem formulated

as an ILP model. A schedule needs to be determined which minimises both the dis-

tribution cost and the average of the delivery times. The two objectives are combined

into a single objective by using weights which represent the preference of the decision

maker. The production of an order cannot start before the release date of the order

imposed by the supplier.

Cheref et al. (2016) are the first authors to study an integrated problem in an

uncertain environment. Similar to the study of Jamili et al. (2016), each order has a

release date which indicate the earliest moment in time production of that order can

start. The release dates, processing times, travel times, and delivery due dates are

uncertain. The objective function of the MILP is to minimise a robustness criterion,

which is the maximum lateness of delivery in comparison to the delivery due dates.

Zou et al. (2018) integrate a production scheduling problem with an open VRP.

A 3PL service provider is responsible for the delivery of the goods. After conducting

a route, vehicles return to the vehicle docking station of the 3PL service provider and

not to the production plant. The goods delivered in the same route are produced

successively on the machine. The objective of the non-linear problem is to minimise

the maximum order delivery time.

Setup operations The previously mentioned studies with a single machine envir-

onment do not consider setup operations. Hurter and Van Buer (1996), Van Buer
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et al. (1999), and Park and Hong (2009) take sequence-dependent setup operations

into account. In one of the first studies which integrates production scheduling with

vehicle routing issues, Hurter and Van Buer (1996) investigate a newspaper pro-

duction/distribution problem with a single printing facility. Van Buer et al. (1999)

investigate a similar non-linear problem in spite of the fact that trucks are allowed to

conduct multiple trips. In Hurter and Van Buer (1996), the number of vehicles used

is minimised as this is the major distribution cost, whereas in Van Buer et al. (1999)

both costs of owning and using vehicles have to be minimised.

An I-PS-VRP for single-period inventory products is examined by Park and Hong

(2009). A single production line needs to process different versions of a product.

Each version is produced once and thus customer orders for the same product are

sequentially processed in a batch. A setup time is required between the production of

the different products. Customers have a soft and hard delivery deadline. A violation

of the soft deadline is penalised with a delay cost, whereas a violation of the hard

deadline is not allowed. Split deliveries of a same product are not allowed, but when

customers order multiple products it is possible to deliver each product by a different

vehicle. The objective of the MILP is to minimise costs of production, transportation,

and delay.

2.4.2 Parallel machine environment

Approximately a quarter of the studies on I-PS-VRPs consider a parallel machine

environment. Most of these studies make use of identical parallel machines. Amorim

et al. (2013), Lee et al. (2014), Belo-Filho et al. (2015), and Kergosien et al. (2017)

study integrated problems with uniform parallel machines. Unrelated parallel ma-

chines are considered in the studies of Chang et al. (2014) and Fu et al. (2017).

Similar to studies with a single machine environment, the majority of these studies

process orders in batches and mostly setup operations are ignored, as can be seen in

the lower part of Table 2.1. The problem characteristics of each paper are indicated

in Table 2.5.

2.4.2.1 No batch processing

No setup operations In the study of Ullrich (2013), each customer order needs

to be processed on one of the identical parallel machines. Time windows are taken

into account at the customer locations with a hard lower bound, as orders cannot

be delivered early. Late deliveries are allowed, but the objective of the MILP is to

minimise total tardiness of the orders.
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Table 2.5: Parallel machine environment (α ∈ {Pm, Qm, Rm}): Problem characteristics
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Ullrich (2013) • • • • • • • • • •

Kergosien et al.

(2017)

• • • • • • • •

Amorim et al.

(2013)

• • • • • • • • • • • • •

Belo-Filho et al.

(2015)

• • • • • • • • • • • • •

Fu et al. (2017) • • • • • • • • • • •

Chen and Vair-

aktarakis (2005)

• • • • • • • • • •

Russell et al.

(2008)

• • • • • • • • • • • • • • • •

Chiang et al.

(2009)

• • • • • • • • • • • • • • • • •

Lee et al. (2014) • • • • • • • • • • • • •

Chang et al.

(2014)

• • • • • • • • • •

Farahani et al.

(2012)

• • • • • • • • • • • • • •
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Kergosien et al. (2017) study an I-PS-VRP with uniform parallel machines in a

case of chemotherapy production and delivery. Production of an order cannot start

before its release date, which is the moment of treatment validation by a doctor.

Furthermore, all orders have a delivery due date, which indicates the moment of

treatment. Additionally, some orders have a stability time after the completion of

the production process. When this time period is violated, the drug can become dan-

gerous. A single delivery man is responsible for the deliveries with an uncapacitated

vehicle, and can make multiple tours. The objective is to minimise the maximum

tardiness of delivery.

Setup operations Amorim et al. (2013) examine an I-PS-VRP with uniform par-

allel machines in which some of the products are perishable. The main contribution

of this study is to evaluate whether lot sizing decisions, i.e., split a customer order

into sublots processed on different machines, may result in better results compared

to batching, i.e., process a customer order continuously in one time. The definition of

batching in Amorim et al. (2013) differs from the definition used in this dissertation.

Setup times and costs are explicitly taken into account as these can strongly affect the

results. Hard time window bounds need to be respected. The objective of the formu-

lated mixed integer (linear) models is to minimise total cost of production, setup, and

distribution. Belo-Filho et al. (2015) conduct further research on the MILP model

using the lot sizing approach.

Fu et al. (2017) study an I-PS-VRP with unrelated parallel machines in the context

of a metal packaging company. It is allowed to split a job into subjobs which can be

processed independently on one of the machines in parallel, but preemption is not

allowed. In the delivery phase, a job needs to be delivered in a single shipment

within a time window which cannot be violated. The machines have release times.

The objective is to minimise the sum of the sequence-dependent setup costs and the

transportation cost. The novelty of this study lies in the transportation cost which

depends on transportation type selected, i.e., direct shipment and routing. When

direct delivery is chosen, the transportation cost is equal to the direct delivery cost

from plant to customer. When routing delivery is chosen, the transportation cost is

equal to the most expensive direct delivery cost of a job in the route plus a drop cost

for each delivery location in the route.

2.4.2.2 Batch processing

No setup operations Besides a single machine configuration, Chen and Vairak-

tarakis (2005) investigate a parallel machine context. The same two variants as those
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for the single machine configuration which differ in the performance measure are stud-

ied for an identical parallel machine configuration. Similar as in the single machine

environment, the trade-off between distribution costs and customer service level is

used as objective criterion.

Similar to Hurter and Van Buer (1996) and Van Buer et al. (1999) with a single

machine configuration, Russell et al. (2008) study an I-PS-VRP for newspapers with

two parallel production lines. The printing of two types of newspapers cannot start

before midnight, which can considered to be a production release date. In a sub-

sequent study, Chiang et al. (2009) examine a similar problem but with an additional

newspaper edition. The production of the additional edition must be completed be-

fore the production of one of the other two editions can start. In both studies an

open VRP with hard time windows and zoning constraints, formulated as a MILP,

is considered. There is a limitation on the number of zones which can be delivered

by a single vehicle. The objective for the state editions is to minimise total dis-

tance travelled, whereas for the city editions the number of vehicles used needs to be

minimised.

Lee et al. (2014) study an I-PS-VRP for a nuclear medicine. Each order needs to

be assigned to a production run on one of the multiple cyclotrons. Multiple orders can

be produced simultaneously in a single production run as long as the machine capacity

is not violated, i.e., p-batching. Customers specify hard delivery time windows. The

upper bound of the time window is the exact medicine’s usage time. The objective

of the formulated MILP is production cost and distribution cost minimisation.

Orders of multiple customers are processed on unrelated parallel machines in the

study of Chang et al. (2014). All customer orders delivered by the same vehicle are

produced sequentially in a batch. The objective function of the non-linear mathem-

atical model formulated is similar to the one of Chen and Vairaktarakis (2005), i.e.,

minimisation of weighted combination of delivery times and total distribution cost.

Setup operations Farahani et al. (2012) investigate an I-PS-VRP for perishable

food products. A caterer produces multiple variants of products which have to be pro-

cessed on different temperature levels in one of the identical ovens. Several customer

orders can be processed simultaneously, i.e., p-batching. Similar to Fu et al. (2017),

sequence-dependent setup costs and times are taken into account in the MILP. Tight

time windows in which the goods need to be delivered are considered. The objective

is a trade-off between setup and transportation costs and the quality of the perishable

food products.



36
C
h
ap

ter
2

Table 2.6: Other machine environments: Problem characteristics
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Bundling machine environment (α = Bm)

Li and Vairak-

tarakis (2007)

• • • • • • • • • •

Flow shop machine environment (α ∈ {Fm, FFc})

Scholz-Reiter

et al. (2011)

• • • • • • • • • • • • •

Ehm and

Freitag (2016)

• • • • • • • • • • • • • •

Ramezanian

et al. (2017)

• • • • • • • • • • •

Job shop machine environment(α ∈ {Jm, FJc})

Meinecke and

Scholz-Reiter

(2014a)

• • • • • • • • • • • • • •
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2.4.3 Other machine environments

Besides a single machine environment and a parallel machine environment, five studies

consider a more advanced environment: bundling machines, flow shop, and job shop.

Table 2.6 indicates the problem characteristics and objective function of the studies.

Li and Vairaktarakis (2007) investigate an integrated problem in which each of the

two tasks of a customer order needs to be processed on a dedicated machine. The

two tasks are independent of each other and can be executed in parallel at the same

time if necessary. Delivery can start when both tasks are completed. This kind of

production operations is called bundling operations. Customer orders delivered in

the same vehicle trip are produced immediately after each other. The objective is

to minimise the sum of transportation cost and customer waiting cost based on the

delivery time at the customer locations.

Whereas the previous studies discussed consider a single production level, Scholz-

Reiter et al. (2011), Ehm and Freitag (2016), and Ramezanian et al. (2017) investigate

the integration of a VRP with a flow shop and Meinecke and Scholz-Reiter (2014a)

with a job shop. These environments have multiple production levels. To the best

of the author’s knowledge, Scholz-Reiter et al. (2011) is the first paper which expli-

citly mentions that inventory can be stored before the first production level, between

consecutive production levels, and before the departure of a vehicle trip, and takes

holding costs into account. In Meinecke and Scholz-Reiter (2014a), intermediate stor-

age is used as a linking element between the production and distribution function.

Similarly, in Ehm and Freitag (2016) and Ramezanian et al. (2017), a storage cost is

incurred when finished goods need to wait before the delivery starts.

In Scholz-Reiter et al. (2011), Meinecke and Scholz-Reiter (2014a), and Ehm and

Freitag (2016), each customer order needs to be processed on one of the machines

available at each production level, and thus it can be defined as a flexible flow shop

and a flexible job shop as discussed in Section 2.3. In Ramezanian et al. (2017), each

order has to be processed on at most one of the machines, but it is not obliged that

each order is processed at each work shop of the flow shop. In Scholz-Reiter et al.

(2011), a customer can only be visited once in a specific vehicle trip, but can be visited

by several vehicles to deliver different orders. A rolling time horizon is considered, and

stochastic events can influence the planning. Each order has a desired delivery date

before which it cannot be delivered, whereas a late delivery is penalised. The objective

of the MIP in Scholz-Reiter et al. (2011) is to minimise total cost, including processing

costs, holding costs, penalty costs for delayed deliveries, and transportation costs. The

objective of the ILP problem in Meinecke and Scholz-Reiter (2014a) is to minimise
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costs related to production, setup, distribution, storage, and violations of production

and/or delivery due dates. Ehm and Freitag (2016) have the same objective function

for their MIP problem. In Ramezanian et al. (2017), the total cost of production

and delivery need to be minimised. Two types of distribution are considered: direct

deliveries to the customer and routing deliveries.

2.4.4 Problem characteristics: Discussion

2.4.4.1 Production characteristics

A closer look at the characteristics of the considered production systems reveals that

previous studies in general consider a relatively simple environment in which each or-

der consists of a single operation. As illustrated in Figure 2.4, most studies use a single

machine environment or parallel machine environment. In this latter environment,

mostly identical parallel machines are considered. As production environments with

multiple production levels, such as job shops and flow shops, are nowadays commonly

used for mass production, integrating these with a VRP can be an interesting future

research direction. Nevertheless, these machine environments make the integrated

problem more complex and harder to solve.

As can be seen in the classification matrices in Tables 2.1 to 2.3, only two studies

examine a multiple-plant case; both consider a single machine environment. Mostly,

the assignment of customer orders to plants is a more tactical decision. However, in

the specific cases of Garcia et al. (2004) and Naso et al. (2007) with the production

of ready-mixed concrete and not all plants owning vehicles, also operational decisions

have to be taken to construct routes between plants and customers. Several authors,

such as Chen (2010) and Reimann et al. (2014), highlight the need for more studies

which incorporate multiple production sites. Production costs and productivity can

vary among plants due to, for example, variations in labour cost and skills. On the

one hand, the problem becomes more extensive and complex as orders need to be

allocated to machines in plants with different parameter values. On the other hand,

coordination between various plants can result in a better solution, i.e., lower costs

and/or better schedules (Gupta et al., 2012).

In order to determine reliable production schedules, processing times cannot be

ignored. All studies reviewed take production times explicitly into account, except

Lee et al. (2014) who consider production runs with fixed start and end times. Pro-

duction costs are less generally included. The majority of the articles discussed do

not consider processing costs based on the assumption that all goods need to be pro-

duced. Consequently, the total quantity produced is equal for all possible production
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schedules, and as such, production costs are not influenced by the schedule chosen.

However, when production costs are machine-dependent or demand is stochastic and

the production quantities need to be determined, then these costs should be incorpor-

ated into the problem. As such, in all studies with a shop environment, production

costs are included.

As already mentioned and as can be seen in the classification matrices, most

studies produce orders in batches. Related to batch processing are setup operations

between consecutive batches. Explicitly taking into account setup times and setup

costs can lead to an increase in productivity, a reduction of non-value added activities,

and an improvement of resources utilisation (Allahverdi, 2015). Nevertheless, setup

operations are often assumed to be negligible. When setup operations are sequence-

dependent, these should be incorporated, since these can have an important impact on

the decision which schedule is chosen. Thus, its inclusion into models is an important

future research direction.

Four studies imply a production due date, either unified or order-dependent.

Orders need to be processed before this specific moment in time. Production due

dates are only incorporated in studies with a parallel machine environment and a job

shop. In an I-PS-VRP, the only relevant time restriction is that orders need to be

delivered within the specified time windows, and as such, a production due date is

less important.

Release dates are considered in six studies. The release date of an order can

either be known in advance or be uncertain until the orders are effectively released.

Including release dates into the problem makes it more realistic, since not all orders

are available at the start of the planning horizon. On the other hand, the problem

becomes more complex. Only a single study incorporates precedence relationships

in the production process.

In short, relatively simple machine environments are generally combined with

simple production characteristics. For instance, although in most papers batch pro-

cessing is applied, setup operations are ignored. More advanced characteristics such

as production release dates and precedence relationships are often neglected in I-PS-

VRP studies. In addition to the problem characteristics mentioned above, there are

constraints which are not incorporated in I-PS-VRPs yet. For example, Fan et al.

(2015) include a machine non-availability constraint in an integrated scheduling

problem of production and distribution. The single machine can be unavailable due

to regular preventive maintenance or unexpected breakdowns. However, in the study

only a single customer was considered. It can be interesting to incorporate such avail-

ability constraints into I-PS-VRPs. The periods in which machines cannot produce
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any orders may have a significant impact on the production and distribution schedule.

Ignoring these constraints when determining the schedules may result in unexpected

late deliveries.

2.4.4.2 Inventory characteristics

A remarkable observation is that all research published on the combination of pro-

duction scheduling and vehicle routing with a single or parallel machine environment

do not explicitly consider inventories and inventory holding costs, as can be seen in

Table 2.1. In contrast, studies considering a production environment with multiple

stages do explicitly incorporate inventories. Inventories between different production

levels and/or between production and distribution operations are allowed. Associ-

ated holding (or waiting) costs are taken into account. Ehm and Freitag (2016) and

Ramezanian et al. (2017) consider a waiting cost when completed goods have to wait

before delivery starts.

Ullrich (2013) indicates that including inventory holding costs can be valuable

to find the optimal trade-off against transportation, earliness, and tardiness costs.

Furthermore, Wang et al. (2015) remark that holding intermediate inventory between

production and distribution operations can help to balance production rate and deliv-

ery speed. As such, including inventory in integrated machine scheduling and vehicle

routing problems is a promising research direction. In single-period problems, the

inventory which needs to be considered is the work-in-progress inventory between the

end of the production of an order and the start of the delivery, or between different

production stages. By minimising work-in-progress holding costs, the time between

production and delivery is minimised.

2.4.4.3 Distribution characteristics

On the delivery side of the integrated problem, an unlimited availability of vehicles is

assumed in 11 studies. In these cases, it is generally supposed that additional vehicles

can be hired from external partners or that distribution operations are executed by

a 3PL service provider. However, in reality, a company has a fixed fleet size. Even

when the deliveries are carried out by a third-party carrier, the unlimited availability

assumption is not always realistic as their number of vehicles can be limited at a

certain moment in time. For instance, Li et al. (2008) investigate a context in which

a manufacturer makes use of a 3PL provider for its distribution operations. The 3PL

provides services to multiple manufacturers, and as such, each manufacturer has to

book the required capacity in a specific vehicle whose departure time is determined
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by the 3PL. Thus, there is a limited capacity available at each moment in time which

should be taken into account when solving the integrated problem.

Furthermore, most studies assume a homogeneous fleet of vehicles. Nevertheless,

in real-world applications, vehicle fleets are mostly heterogeneous as these are more

flexible and cost-effective (Hoff et al., 2010). Only recently researchers have been

considering a heterogeneous fleet of vehicles with different capacity restrictions

and/or costs. In future research, besides differences in capacity restrictions, hetero-

geneity in other parameters, e.g., delivery speed, can be valuable to be considered. For

example, Toptal et al. (2014) examine heterogeneity in cost structures and time avail-

ability. However, in their study vehicle routing is not considered, since consolidation

of different orders is not possible.

Travel times are included in all but one study. Similar to the inclusion of pro-

cessing times, including transportation times are important to obtain a reliable dis-

tribution schedule. Furthermore, the majority of papers take into account trans-

portation costs, consisting of variable transportation costs based on, for example,

the distance or time travelled, and fixed transportation costs for using or hiring a

vehicle. The studies which do not consider transportation costs all have a service

objective. Furthermore, in 18 studies, each vehicle can conduct multiple trips. If

fixed transportation costs are incurred based on the number of vehicles a company

owns, allowing vehicles to execute multiple trips can lead to cost savings, because a

company has to own fewer vehicles, as indicated by Van Buer et al. (1999). Thus,

relaxing the single trip constraint can be beneficial. Moreover, it is more realistic to

allow drivers to conduct multiple routes per day (Hoff et al., 2010).

Another important issue are service times, i.e., loading and unloading times.

Some researchers explicitly take service times into account, while other incorporate

these in the travel times to the customer. Including service times into travel times can

only work in a VRP with time windows (VRPTW) if the service time of the departure

location is included. Otherwise, if the service time of the arrival location is included, it

can occur that the vehicle arrives at the location at the start of the time window, but in

fact then the service is already conducted. Alternatively, to avoid the aforementioned

problem, the time window bounds can be recalculated taking into account the service

time at each delivery location. Ignoring service times can have an important impact

on the delivery times. In order to obtain reliable schedules, loading and unloading

times should be included in further studies on I-PS-VRPs. Besides including loading

times, loading constraints, such as multi-dimensional packing constraints, unloading

sequence constraints, stability constraints, and axle weight limits, can be incorporated

in a VRP (Pollaris et al., 2015), and as such, in an I-PS-VRP.
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Furthermore, time windows are a common characteristic in distribution oper-

ations. It can be observed that these are included in the majority of the studies

published since 2007. Delivery time windows indicate in which period of time goods

should be delivered at the customer locations. In contrast to time windows, a delivery

due date indicates the moment in time before or at which goods need to be delivered

to a customer. In a single machine environment, time windows are included in all

studies without batch processing, whereas when orders are batched only four studies

include time windows. Similarly, in a parallel machine context and no batching, all

studies except one take time windows into account, and the majority of studies with

batching in a parallel machine context considers time windows. In the studies with

a bundling machine environment, a job shop, and a flow shop no time windows are

included. Thus, time windows are not included in integrated studies with a more

complex machine environment.

Related to time windows are waiting times during a route. When hard time

window bounds are considered, unloading at the delivery location cannot start before

the beginning of the time window. Thus, a vehicle has to wait if it arrives early with

respect to the lower bound of a time window. All studies in the review considering

time windows, except two, do not allow early deliveries, and as a consequence vehicles

have to wait in such cases. The two studies allowing early deliveries penalise this

earliness with a cost. A second type of waiting times are these before the start of a

vehicle route. This variant of waiting times is related to the integration of production

scheduling and vehicle routing operations. A vehicle cannot leave the production plant

until the production process of all goods delivered by that vehicle is completed. This

type of waiting times especially occurs when vehicles are allowed to conduct multiple

trips during the planning horizon. When a vehicle returns to the plant before the

production process of the goods delivered in the next trip is finished, the vehicle has

to wait. Waiting times, both within a route and before the start of a route, have to

be avoided as much as possible since these are time-consuming without adding any

value.

Penalty costs can be incurred when delivery due dates or time windows are

violated. Some studies incorporate a time-dependent penalty cost. The later the

goods are delivered compared to the specified delivery deadline or time window upper

bound, the higher the penalty cost incurred. Other apply a uniform penalty cost,

which is incurred for every violation of delivery due date or time window. In Low

et al. (2014, 2017), additionally a time-dependent penalty cost for early deliveries is

incurred.
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Currently, the major part of the studies is assuming deterministic models. In the

literature reviewed, uncertainties are often neglected. For instance, disruptions in

production lines or traffic jams are not taken into account in existing studies on I-

PS-VRPs. Nevertheless, these unexpected events can lead to violation of production

and distribution due dates or time windows. Thus, more research which incorporates

stochastic aspects can be valuable to be conducted, e.g., uncertainty in travel times

and service times (Hoff et al., 2010). A review of stochastic VRP can be found in

Toth and Vigo (2014, pp. 213-240) and of stochastic production scheduling in Aytug

et al. (2005).

To conclude, the first integrated studies often included a basic VRP with a ho-

mogeneous fleet without time windows. Recently, researchers have considered hetero-

geneity in vehicle characteristics and time windows. However, service times are still

only incorporated in a minority of studies. Furthermore, extensions to the classical

VRP can be incorporated in I-PS-VRPs. For example, split deliveries are not in-

cluded yet. In all studies discussed before, an order must be delivered to a customer

in one time. Some studies allow an intermediate level of load splitting. Customers

can be visited in multiple trips to deliver different orders, but a single order still can-

not be split. However, when split deliveries are allowed more efficient schedules can

be possibly established, which can result in lower inventory holding costs and higher

service levels (Koc et al., 2013). Furthermore, reverse logistics can be included

in the vehicle routing part of the I-PS-VRP problems. Pickup and delivery opera-

tions of damaged goods, wrongly delivered goods, or waste collection can be done

simultaneously with delivery of new goods. The VRP in the integrated problem can

be extended with backhauls. An extended review on vehicle routing problems with

backhauls can be found in Parragh et al. (2008).

2.4.4.4 Objective function

The overview of the problem characteristics reveals that most studies only optimise

a single objective, mainly cost minimisation or service level maximisation. However,

real-world companies have to take into account several goals at the same time. On

the one hand, costs have to be minimised in order to be competitive in the glob-

alised economy. On the other hand, customers have high service level expectations

when purchasing goods. Additionally, companies have to take care about, e.g., sus-

tainability and pollution. Thus, scheduling problems often have multiple conflicting

objectives which need to be considered simultaneously since optimising a single ob-

jective can result in a poor performance on another objective. A solution has to be

obtained which meets all these objectives. Therefore, multi-objective integrated
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problems have to be studied in order to find the best possible compromise between

conflicting objectives. In most cases several equivalent solutions, i.e., Pareto-optimal

solutions, are possible. Based on the decision maker’s preferences a solution is selec-

ted.

In the review conducted in this chapter, three studies consider two objectives

but translate these into a single-objective function by using the weighted sum or

scalarization method. In this method, multiple objectives are combined into a single

function by giving weights to the different objectives. The method is a relatively

easy approach. The disadvantage of this method, however, is that weights have to be

chosen by the decision maker, who often does not know what the impact of different

weight values is on the solution obtained (Caramia and Dell’Olmo, 2008). Moreover,

the different objectives are often non-commensurable and consequently difficult to

aggregate (Branke et al., 2008). Only two articles study two objectives which have to

be optimised simultaneously, i.e., bi-objective optimisation.

Thus, future research on I-PS-VRPs should consider multi-objective problems.

Existing methods for solving multi-objective problems can be used or adapted for a

multi-objective variant of an I-PS-VRP. One example of a multi-objective approach is

the ε-constraints method. In this method, one objective needs to be minimised, while

the other objectives are formulated as constraints and need to be less than or equal to

a given upper bound (Chankong and Haimes, 1983). For a more elaborate overview

of multi-objective methods, the reader is referred to, e.g., Branke et al. (2008) and

Caramia and Dell’Olmo (2008).

2.5 I-PS-VRP: Solution approaches

This section describes the solution approaches which have been applied in the studies

mentioned in Section 2.4. Following the same structure as in the previous section

makes it possible to identify whether there is a link between the problem charac-

teristics, machine environment, and the solution method used. Table 2.7 offers an

overview of the solution methods applied in existing literature.

2.5.1 Single machine environment

2.5.1.1 No batch processing

No setup operations The I-PS-VRP for ready-mixed concrete considered by Naso

et al. (2007) is decomposed into two subproblems. In the first subproblem, orders are

assigned to a production plant. A production and loading schedule at the plants
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Table 2.7: Solution methods

Authors Opt. S. EX H SA TS ILS GA MA ACO LNS ALNS GRASP ELS ICA Sim.

Single machine environment

No batching - No setup operations

Naso et al. (2007) •

Viergutz and

Knust (2014)

• • •

Batching - No setup operations

Garcia et al.

(2004)

• •

Chang and Lee

(2004)

•

Chen and Vairak-

tarakis (2005)

•

Li et al. (2005) •

Geismar et al.

(2008)

• •

Karaoğlan and

Kesen (2017)

•

Devapriya et al.

(2017)

• • •

Lacomme et al.

(2018)

• •

Chen et al. (2009) • •

Li and Ferrell

(2011)

•

Zu et al. (2014) •

Li and Zu (2015) •

Low et al. (2013) • •

Low et al. (2014) • •

Low et al. (2017) • •

Li et al. (2016) •

Jamili et al. (2016) • • •

Cheref et al. (2016) •

Zou et al. (2018) •

Batching - Setup operations

Hurter and

Van Buer (1996)

•

Van Buer et al.

(1999)

• •

Park and Hong

(2009)

• •

Parallel machine environment

No batching - No setup operations

Ullrich (2013) • •

Kergosien et al.

(2017)

•

No batching - Setup operations

Amorim et al.

(2013)

•

Belo-Filho et al.

(2015)

• • •

Fu et al. (2017) •

Batching - No setup operations

Chen and Vairak-

tarakis (2005)

•

Russell et al.

(2008)

•

Chiang et al.

(2009)

• •

Lee et al. (2014) •

Chang et al. (2014) •



46 Chapter 2

Table 2.7: (continued)

Authors Opt. S. EX H SA TS ILS GA MA ACO LNS ALNS GRASP ELS ICA Sim.

Batching - Setup operations

Farahani et al.

(2012)

•

Bundling machine environment

Batching - No setup operations

Li and Vairaktara-

kis (2007)

•

Flow shop environment

No batching - No setup operations

Scholz-Reiter et al.

(2011)

•

Ehm and Freitag

(2016)

•

Ramezanian et al.

(2017)

•

Job shop environment

No batching - Setup operations

Meinecke and

Scholz-Reiter

(2014a)

•

Opt. S. = optimisation software EX = exact method

H = heuristic SA = simulated annealing

TS = tabu search ILS = iterated local search

GA = genetic algorithm MA = memetic algorithm

ACO = ant colony optimisation (A)LNS = (adaptive) large neighbourhood search

GRASP = greedy randomised adaptive search procedure ELS = evolutionary local search

ICA = imperialist competitive algorithm Sim. = simulation

is determined by using a hybrid genetic algorithm (GA). The second subproblem

determines delivery routes using constructive heuristics. The developed solution al-

gorithm is compared with four other constructive heuristics on a case study with

five production plants in the Netherlands. The total cost obtained by the GA-based

method is approximately 15% to 50% lower than the lowest cost provided by the other

solution approaches considered. Furthermore, in general, by applying the GA-based

method less requests need to be outsourced and a lower number of vehicles need to

be hired.

Recently, Viergutz and Knust (2014) have proposed two heuristics based on a

tabu search (TS) algorithm for an I-PS-VRP for industrial chemicals with a limited

lifespan. These solution approaches are applied on cases in which the production

and distribution sequence are the same. One TS based metaheuristic decomposes the

problem into two subproblems, while the other one solves the problem in an integ-

rated way. One subproblem in the decomposition approach determines the sequence,

whereas the other chooses the customer orders to process and deliver. For problems

in which the production and delivery sequences do not need to be the same, Viergutz

and Knust (2014) provide an iterated local search (ILS) algorithm. Instances with

up to 4 time window widths and 50 customers for TS and 30 customers for ILS are

used. The integrated TS approach leads on average to better results compared with
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the decomposition based TS method, especially for instances with a larger number

of customers. The instances are additionally solved using the optimisation software

CPLEX with a one-hour time limit.

2.5.1.2 Batch processing

No setup operations Garcia et al. (2004) solve an I-PS-VRP with multiple plants

for ready-mixed concrete using a heuristic based on a minimum cost flow problem. The

performance of the heuristic approach is compared with a graph-based exact solution

method. In the experiments, 11 combinations with up to 70 orders, 4 vehicles, and

3 plants are used. The performance of the solution algorithm decreases when the

number of vehicles increases.

Chang and Lee (2004) investigate a scenario with two customer areas and a single

machine. The proposed solution method combines the First Fit Decreasing bin-

packing rule and Johnson’s (1954) rule. Worst-case analyses are provided for the

heuristic. Dynamic programming algorithms can optimally solve the two variants

with a single machine environment in Chen and Vairaktarakis (2005) and the prob-

lem in Li et al. (2005). Li et al. (2005) show that the complexity decreases if only

direct shipments are allowed and if the capacity of the single vehicle is unlimited. The

proposed algorithms in Chang and Lee (2004), Chen and Vairaktarakis (2005), and

Li et al. (2005) are not applied to data instances or a practical case.

Geismar et al. (2008) make use of a two-phase solution approach to solve an I-PS-

VRP for an industrial chemical adhesive with a limited lifespan. In the first phase,

an order sequence for production and distribution is generated by applying either a

GA or a memetic algorithm (MA). In the second phase, the sequence is divided into

trips, the order in which the customers are visited within a trip is optimised, and

the trips are reordered using a shortest path algorithm. Six data sets are used of

which three have 40 customers each, and three have 50 customers each. Using the

GA approach leads to significantly better solutions than the MA approach. However,

the efficiency of the algorithm decreases in instances in which the routing component

has more influence.

Karaoğlan and Kesen (2017) develop a branch and cut algorithm to solve the

same problem as Geismar et al. (2008). In the lower bound procedure, integrality

constraints are relaxed and valid inequalities are included. The upper bound pro-

cedure make use of the Clarke and Wright (1964) algorithm. In order to sequence

the orders optimally, Johnson’s (1954) algorithm is applied. The same data as in

Geismar et al. (2008) are used to evaluate the algorithm. The experiments show that

the branch and cut algorithm outperforms the algorithm of Geismar et al. (2008).
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Devapriya et al. (2017) propose a GA and two MAs to solve the presented I-PS-

VRP. A “route first, cluster second” method is applied to generate subtours. Next,

an algorithm to reduce the makespan is used. The results obtained by the heuristics

are compared with lower bounds. Instances with up to only 4 customers can be

solved within 20 hours with CPLEX. Experiments with 20, 30, and 40 customers

are executed using the three heuristics. For each number of customers, 30 instances

are generated. Which heuristic generates the best results, depends on the number of

customers included.

In Lacomme et al. (2018), a MILP model is formulated for the integrated problem

considering a single perishable product. The authors develop a greedy randomised ad-

aptive search procedure (GRASP) combined with an evolutionary local search (ELS)

the problem. Experiments are conducted with a single vehicle in order to compare

their results with these of Geismar et al. (2008) and Karaoğlan and Kesen (2017). In

these experiments, 72 instances are used based on the instances generated by Geismar

et al. (2008). The results show that the proposed GRASP x ELS obtains better solu-

tions in approximately half of the instances. In only six instances, a worse solution

is generated. For the problem with multiple vehicles, 150 instances are created. The

developed solution algorithm is capable of finding solutions within an average gap of

0.09% compared to the lower bound.

Chen et al. (2009) decompose the I-PS-VRP for perishable goods into two sub-

problems. The constrained Nelder-Mead (1965) method, which is a direct search

method, is used to solve the production scheduling problem. A heuristic making use

of insertion and improvement methods is used to solve the VRPTW. Data of 100

retailers are generated based on Solomon’s (1987) problem set. Small-size instances

are solved with the commercial optimisation software LINGO in order to examine

the performance of the proposed solution method. Furthermore, a sensitivity ana-

lysis shows that the objective value decreases with an increasing rate of decay and

increases with the fleet size independent of the time window requirements. Moreover,

using more vehicles leads to lower average loading ratio and less deterioration.

Li and Ferrell (2011) make use of AMPL and Gurobi software to solve an I-

PS-VRP for a perishable product. Ten data sets with up to twenty customers are

used. However, only small instances up to 7 customers can be solved exactly. The

extension of Zu et al. (2014) results in a MILP which is solved for problems with up to

4 suppliers and 4 customers using the same software as used by Li and Ferrell (2011).

Instances in which the sum of the number of customers and suppliers is less than or

equal to five can be solved to optimality in a reasonable computation time. For larger

problems, both studies show that heuristics need to be developed. Li and Zu (2015)



I-PS-VRP: review 49

develop an ILS approach to solve the problem described in Zu et al. (2014). In the

experiments, 16 scenarios are tested with at most 12 customers and 12 suppliers. The

optimisation software is able to find a solution within one hour for instances with at

most 6 customers and 6 suppliers, while the heuristic can find solutions for instances

twice as large.

Low et al. (2013, 2014) apply two versions of a GA in each study in a “route

first, cluster second” method to solve a non-linear I-PS-VRP in a DC. The second

GA is an adaptive GA (AGA) in which the initial parameter values are dynamically

modified. The heuristics are tested on problems with up to 100 customers in Low

et al. (2013) and up to 80 customers in Low et al. (2014). The number of customers

determines which of the two solution approaches leads to better results. Furthermore,

using different vehicle types results in a lower total cost.

In Low et al. (2017), a backward adaptive genetic algorithm (B-AGA) and a for-

ward adaptive genetic algorithm (F-AGA) are developed. The F-AGA first solves the

production scheduling problem and later the vehicle dispatching and routing prob-

lem, whereas the B-AGA first deals with the routing problem, and thereafter with the

vehicle dispatching and production scheduling problem. The two AGAs are compared

to each other on instances with up to 80 customers. The B-AGA performs better in

most cases, but the F-AGA needs smaller CPU time for cases with more than 50

customers. Moreover, similar to the study of Low et al. (2014), total cost decreases

when different types of vehicles are used.

In order to solve the multi-objective I-PS-VRP, Li et al. (2016) develop a non-

dominated sorting GA with an elite strategy. The proposed algorithm is compared

with a Strength Pareto Evolution Algorithm (see Zitzler and Thiele, 1999). Exper-

iments with 20, 30, and 40 orders are conducted. The developed GA outperforms

the method of Zitzler and Thiele (1999). The quality of the solutions increases with

the number of iterations. Furthermore, the higher the vehicle capacity, the lower the

distribution costs and waiting time.

Jamili et al. (2016) develop a TS metaheuristic to solve the single-objective prob-

lem. In the experiments, small, medium, and large instances have up to 7, 40, and

200 orders, respectively. Additionally, two heuristics are proposed for the bi-objective

problem in which the weighted sum of the average delivery time and total distribu-

tion cost are considered to be two separate objectives. The single-objective variant is

solved with CPLEX using a time limit as stopping criterion. The heuristic is capable

of obtaining similar solution in a short computation time. A sensitivity analysis is

executed to investigate the impact of several parameters on the solutions. Better

solutions are obtained when the number of customers increases and the number of
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suppliers decreases. The vehicle capacity has a positive influence on the distribution

cost, but a negative one on the average delivery time. Finally, the integrated approach

is compared to an uncoordinated approach. It is illustrated that the integrated ap-

proach leads to better solutions, especially for large-size problems.

Cheref et al. (2016) propose two TS methods to solve the integrated problem

with uncertainties. The first one is a standard robust optimisation method, while the

other is an online recoverable robust optimisation method. Random instances with

a number of jobs between 10 and 100 are generated to test the proposed solution

approaches. The results show that the online recoverable robust method in general

leads to better and more robust solutions.

In Zou et al. (2018), a GA is applied to solve an I-PS-VRP in a make-to-order con-

text. Two variants are proposed in the production scheduling part of the algorithm:

backward batching method and forward batching method. The initial solution is

improved using a local search method called modified Unstring-String method. Fur-

thermore, a two-phase uncoordinated approach is proposed to which the results of

the integrated approach are compared. Instances with up to 100 customers and 15

vehicles are generated based on VRP benchmark data sets. The proposed GA is also

compared with the GA of Ullrich (2013) (described in Section 2.5.2). The developed

algorithms both outperform the solution method of Ullrich (2013) and the two-phase

uncoordinated approach.

Setup operations Hurter and Van Buer (1996) make use of a two-stage “route first,

cluster second” procedure to solve an integrated problem for newspapers. The routes

are constructed using a forward looking greedy algorithm. The distribution schedule

consisting of delivery routes implies a production schedule as the time between the

start of production and the latest possible delivery date is limited. Finally, the time

feasibility of this implied production schedule is checked. Applying their proposed

solution approach to an American newspaper company results in lower distribution

costs and distribution time compared with the current practice of the company. For

a similar non-linear problem, Van Buer et al. (1999) propose a simulated annealing

(SA) and a TS approach. Experiments show that allowing trucks to conduct multiple

trips decreases costs significantly. Similar to Hurter and Van Buer (1996), Van Buer

et al. (1999) make use of data from an American newspaper company.

Park and Hong (2009) propose a hybrid GA in combination with local optimisa-

tion algorithms. Using instances with 100 customers and 9 products, the integrated

approach is compared with an uncoordinated solution method in which production

sequencing and vehicle routing are treated separately. The obtained total cost is on



I-PS-VRP: review 51

average 20% lower. Furthermore, the results are compared with the optimal solutions

obtained by CPLEX. Additionally, a sensitivity analysis shows a positive relationship

between the number of customers and the total cost savings. The influence of the

vehicle capacity is less straightforward. Small and large capacities lead to higher cost

reductions, whereas intermediate capacities leads to smaller cost savings.

2.5.2 Parallel machine environment

2.5.2.1 No batch processing

No setup operations Besides a GA, for small instances, Ullrich (2013) uses a com-

mercial optimisation software and two decomposition methods to solve an I-PS-VRP.

The decomposition approaches solve the production and distribution subproblem se-

quentially and combine the obtained solutions into an overall solution. Experiments

show that the GA leads to better solutions than the decomposition methods on 90

small-size instances with 7 orders, 2 machines, and 2 vehicles. As such, integrat-

ing both problems can result in significant performance improvements. Furthermore,

the more vehicles or machines are used, the lower the performance of the proposed

algorithm becomes. For large instances, the optimisation software and the decom-

position methods cannot be applied. In total 4,800 instances with up to 50 orders,

5 machines, and 10 vehicles are generated. The number of orders, vehicles, and

machines has a negative impact on the performance. Additionally, the more order

destinations are included in the problem, the lower the performance of the genetic

algorithm becomes.

Kergosien et al. (2017) propose a Benders decomposition-based heuristic incorpor-

ating TS. The problem is subdivided in a master problem, i.e., delivery problem, and

a slave problem, i.e., production problem. Random instances are generated based

on data of an oncology clinic in France. The instances consist of up to 40 orders

and 2 or 3 machines. The developed method is compared with two models which

are solved with a commercial solver. The Benders decomposition-based method finds

better lower and upper bounds.

Setup operations In order to test the difference between lot sizing and batching

in a study with perishable and non-perishable products, Amorim et al. (2013) make

use of the optimisation software CPLEX to solve instances with up to 5 customers

and 3 products. Computational results show that lot sizing leads to costs which are

on average 6.5% lower and results in a lower number of setups, a different sequence,

lower setup costs, a lower number of vehicles used, and/or total travelled distance.
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Belo-Filho et al. (2015) propose solution methods to tackle large-size instances for

the problem setting presented in Amorim et al. (2013). Four solution methods are used

by the authors: two standard MILP solvers with and without initial solution, a fix-

and-optimise heuristic, and an adaptive large neighbourhood search (ALNS). In order

to evaluate the algorithms, 20 combinations were generated with up to 4 production

lines, 15 customers, and 10 products. The proposed ALNS performs on average 12.7%

better compared with the best solutions provided by the fix-and-optimise method and

the MILP solvers after 3,600 seconds.

In Fu et al. (2017), a two-phase iterative heuristic is developed. In the first phase,

a MILP for a production scheduling problem is proposed in which an approximation

of the transportation cost is integrated. In the second phase, an ILP is used for

the distribution problem using the production completion times from the first phase.

After each iteration, production completion times and approximated transportation

costs are updated. The heuristic is tested on random instances inspired by a metal

packaging company with at most 20 jobs. Furthermore, the benefits of an integrated

approach are examined by comparing the results with these of an uncoordinated ap-

proach. Average cost savings of 7.63% can be obtained by implementing an integrated

method. The value of integration increases in cases with short or high setup times

and with medium time window widths.

2.5.2.2 Batch processing

No setup operations In contrast to the two discussed scenarios with a single ma-

chine solved using exact algorithms, the two problem variants with parallel machines

considered in Chen and Vairaktarakis (2005) are solved using a heuristic algorithm.

The randomly generated data to evaluate the heuristics consist of up to 160 orders,

8 machines, and 5 customers. The value of integration is determined by comparing

a sequential approach and an integrated approach. The improvement is significant

in most cases when the objective function is based on the mean delivery time and

in some cases when it is based on the maximum delivery time. The effect of integ-

ration depends on the number of customers, the vehicle capacity, and the weighting

parameter of both functions in the objective function. Hence, integration is more

interesting when there are more possibilities to consolidate orders. In most cases,

improvements of 5% and more are achieved, and in some cases improvements up to

even 40% can be achieved by integration.

Russell et al. (2008) make use of a two-phase approach to solve an I-PS-VRP

for newspapers. The production and vehicle loading sequencing problem is solved in

phase one. In phase two, an open VRP with time windows and zoning constraints is
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solved. A TS method is used during the route construction to improve the created

routes. Data for 68 state edition delivery locations and 70 city edition delivery loca-

tions are provided. In a subsequent study, stochastic aspects in both production and

distribution parameters are included by Chiang et al. (2009). A two-phase method

using TS is used. The robustness of this deterministic solution in terms of service

level is evaluated by a simulation model. Similar to Russell et al. (2008), experiments

using real-world data show that a lower number of vehicles are needed and less dis-

tance needs to be travelled, while additionally in Chiang et al. (2009) service levels

increase.

Lee et al. (2014) develop a large neighbourhood search (LNS) with various im-

provement algorithms to solve an I-PS-VRP for a nuclear medicine. In the overall

algorithm, four algorithms are integrated to solve the problem. By extending So-

lomon’s (1987) problem instances with production run data, 29 instances with 100

orders are developed. Based on the experiments, applying the solution approach leads

to a lower number of vehicles used for deliveries which results in lower costs compared

to a real-world case with 277 customer stops.

Chang et al. (2014) develop an ant colony optimisation (ACO) based heuristic

with a dynamic programming algorithm to solve an I-PS-VRP with unrelated parallel

machines. The ACO consists of path construction and pheromone update. The

construction is a three-step process. First, a production schedule is determined by

assigning orders to machines and determining the customer order sequence. Second,

orders are combined into distribution batches based on their completion times and

estimated transportation cost. Finally, vehicle routes are constructed. In order to

evaluate the proposed solution approach, 162 instances are generated which leads to

combinations with up to 8 machines, 20 customers, 100 orders, 3 vehicle capacities,

and 3 possible values for the objective relative preference on the customer service and

total distribution cost. Integration results in solutions which are on average 18.04%

better than these obtained by using a sequential solution approach. The value is

positively influenced by the weighting factor in the objective function and the vehicle

capacity, and negatively by the number of customers.

Setup operations In order to evaluate the integrated problem formulated for per-

ishable food products, Farahani et al. (2012) develop an iterative solution approach.

The problem is decomposed in two subproblems: production and distribution. A

block planning concept is used to solve a MILP model for the production schedule.

The distribution subproblem is solved using a LNS. Data based on a real-world food

caterer in Denmark are used and consist of up to 200 orders, 5 ovens, 25 vehicles, and
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5 temperature levels. The integrated approach leads to lower quality decay of approx-

imately 40% with only a small increase in costs compared with a sequential approach

currently used by the food caterer. Furthermore, the objective value improves as the

products become more perishable. Additionally, a small increase in the weight for

decay costs in the objective function leads to a decrease in the quality decay without

affecting the setup and transportation costs substantially.

2.5.3 Other machine environments

Li and Vairaktarakis (2007) develop polynomial time heuristics and approximation

schemes for an integrated problem with a bundling machine environment. The heur-

istics make use of dynamic programming and the Shortest Processing Time algorithm

to sequence orders. Furthermore, lower bounds are computed. The performance

is evaluated using randomly generated problems with up to 80 orders, 5 customer

locations, and 3 vehicle capacities.

Scholz-Reiter et al. (2011) test the integrated problem of a flow shop and a VRP

on a case study of an original equipment manufacturer in Germany. The problem is

solved to optimality by CPLEX. Data with up to 5 vehicles and 25 orders are used

in the experiments. For very small instances with up to 7 orders and 2 vehicles, the

optimal solution can be generated within short computation time.

Ehm and Freitag (2016) examine the value of integration in a flow shop environ-

ment. In the integrated approach, each order has a distribution due date. In order

to be able to solve the uncoordinated approach, an intermediate production due date

has to be chosen. This production due date is selected as percentage of the time-span

between the production release date of the order and the delivery due date. The

experiments are conducted by using Gurobi software for instances with six jobs, three

production levels with three, two, and three machines, respectively. The results show

that when 80% of the time is available for producing the orders, the best solutions

are generated. Overall, independent of the selected intermediate due date, the costs

of the integrated approach are on average 10% lower in comparison with these of the

uncoordinated approach.

Ramezanian et al. (2017) make use of an improved imperialist competitive al-

gorithm (ICA), which is a population-based metaheuristic, to solve an I-PS-VRP in a

flow shop environment. After an initial solution is randomly generated, three assim-

ilation policies and three revolution strategies are used to improve the solution. In

these operators, variants of swap, reversion, and 2-Opt are included. For the produc-

tion data, three flow shop benchmark data sets are used, while for the distribution

data random values are generated. The largest instances consider 50 jobs and 20 ma-
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chines. Experiments indicate the value of integration which is between 9% and 17%

on average depending on the instance size. Furthermore, the cost reduction obtained

by implementing a routing delivery policy instead of direct deliveries ranges between

9% and 21% on average.

Meinecke and Scholz-Reiter (2014a) use a multistep decomposition and integration

heuristic to solve an integrated problem of a job shop and a VRP. In the experiments,

17 customers and 3 products are used. The proposed heuristic is compared with

three uncoordinated strategies in which first a production schedule is determined and

based on this a distribution schedule, or the other way around. The results show that

applying the heuristic algorithm results in lower overall costs, with savings ranging

from 6.9% up to 17.7%.

2.5.4 Solution methods: Discussion

Although all studies discussed in this review consider an I-PS-VRP, some authors

propose an algorithm which solves the problem in a more separated way by dividing

the integrated problem into subproblems. Each subproblem is solved using its own

neighbourhoods. Afterwards the solutions are integrated and the feasibility of the

solutions according to the constraints of both subproblems is checked. Hurter and

Van Buer (1996), Naso et al. (2007), Russell et al. (2008), Chiang et al. (2009), Chen

et al. (2009), Farahani et al. (2012), Meinecke and Scholz-Reiter (2014a), Chang et al.

(2014), Kergosien et al. (2017), Fu et al. (2017), and Zou et al. (2018) make use of

such a separated solution method. Van Buer et al. (1999), Chang and Lee (2004),

Garcia et al. (2004), Geismar et al. (2008), Park and Hong (2009), Ullrich (2013), Low

et al. (2013, 2014, 2017), Lee et al. (2014), Belo-Filho et al. (2015), Li and Zu (2015),

Li et al. (2016), Jamili et al. (2016), Cheref et al. (2016), Devapriya et al. (2017),

Ramezanian et al. (2017), and Lacomme et al. (2018) apply an integrated solution

approach which works on the integrated solution and their neighbourhoods. Viergutz

and Knust (2014) present both a separated and an integrated solution algorithm,

and compare a decomposition based TS method and an integrated TS method. The

integrated method outperforms on average the decomposition approach, especially in

cases with a larger number of customers.

When production and distribution functions are solved simultaneously, the com-

plexity of the problem structure increases. The formulation of an integrated planning

problem often contains many variables and constraints. Due to this complexity of

I-PS-VRPs, exact methods are only applied for studies with a relatively simple single

machine environment. Furthermore, in a single machine context without batch pro-
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duction, metaheuristics, such as GA, TS, and ILS, are used as solution approaches.

In a single machine environment with batch processing, both heuristics and meta-

heuristics are proposed as solution methods.

All studies with a parallel machine environment are solved using a heuristic or

metaheuristics, such as TS, (A)LNS, GA an ACO. The only exception is the study of

Amorim et al. (2013) which only uses a commercial optimisation software as solution

method. Belo-Filho et al. (2015) propose a fix-and-optimise heuristic and an ALNS to

solve the problem formulated by Amorim et al. (2013). In studies with other machine

environments either optimisation software or a (meta)heuristic is used as solution

method.

In general, instances with at most 100 customer orders are used to evaluate the

performance of the developed (meta)heuristics. A few studies include instances with

up to 200 orders. Additionally, often the problem is solved with commercial optim-

isation software, such as CPLEX and LINGO, to compare the results of both solution

approaches. Commercial optimisation software is capable to find optimal solutions

for instances with up to 7 customers, except Park and Hong (2009) who are solving

instances with up to 21 customers. Furthermore, in a simple single machine envir-

onment with batching, Karaoğlan and Kesen (2017) solve instances with up to 50

customers using a branch and cut algorithm.

In short, Table 2.7 reveals that solution methods based on metaheuristics, such as

TS and GA, are often applied to find high-quality solutions in reasonable computa-

tion time. However, further research to develop fast and robust solution algorithms is

necessary to solve real-world problems. A relatively new and promising class of solu-

tion approaches are matheuristics, which combine metaheuristics and exact methods.

These methods have proven to exhibit excellent performance and to find optimal

or close-to-optimal solutions of large instances in very limited computation times

(Doerner and Schmid, 2010; Archetti and Speranza, 2014a).

2.6 Conclusions and future research opportunities

Production and distribution are traditionally solved separately. However, this

approach leads to suboptimal solutions. Integration can lead to average improve-

ments between 5% and 20% compared to an uncoordinated approach, and even

improvements up to 40% can be achieved. Therefore, in the last decade, integrating

production scheduling and vehicle routing problems at the operational decision level

received more interest in scientific literature.
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This chapter focuses on integrated studies in which distribution operations are

executed using vehicle routes, i.e., integrated production scheduling-vehicle routing

problems (I-PS-VRPs). An extensive review of recent research in the field of opera-

tional I-PS-VRPs is provided. Additionally, a classification of existing research based

on production, inventory, and distribution characteristics is made. A classification

matrix is proposed to identify which combinations of production and distribution

characteristics are already investigated. Both problem characteristics and solution

methods used in existing studies are reviewed.

In the production scheduling subproblem often a simple machine environment with

a single production level in a single plant is considered, i.e., a single or parallel ma-

chine(s). In the vast majority of studies, orders are processed in batches. Although

setup operations can have an impact on the reliability of the production schedule,

these are often neglected in the production process. Additionally, other production

characteristics such as order release dates and precedence relationships are generally

not considered in I-PS-VRP studies. In the distribution part of the integrated prob-

lem, most studies use a basic VRP with homogeneous vehicles. Transportation costs

are incurred in the majority of the published I-PS-VRPs. Delivery time restrictions

such as time windows and delivery due dates are imposed in approximately half of

the studies. Cost minimisation and service level maximisation are most commonly

used as objective criterion.

I-PS-VRPs are complex, and as a consequence solving these problems with ex-

act methods is hard for large instances. Only for production environments with a

single machine exact methods are developed. Most studies make use of metaheurist-

ics to solve the problem. Especially tabu search and genetic algorithms are frequently

applied as solution algorithms.

Based on the classification and discussion of the reviewed papers, the following

future research opportunities can be highlighted to extend the current research on

I-PS-VRPs:

Real-life characteristics I-PS-VRP models can only become valuable for decision

managers when real-life properties of the production, inventory, and distribution sys-

tem are taken into account.

1. Production characteristics: nowadays, companies use mass production to be

able to handle all customer orders as fast as possible. An efficient machine

environment for mass production is a flow shop. As such, investigating envir-

onments with multiple production levels can be highlighted as an important

opportunity for further research on I-PS-VRPs in order to, e.g., minimise the
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total time needed for production and distribution. Additionally, in reality, re-

sources need to be prepared before starting the processing of a new order. This

setup operation takes time and thus needs to be considered when production

schedules are determined.

2. Inventory characteristics: inventory aspects are a common feature of production

planning problems. Although inventory decisions are mostly taken at the tac-

tical decision level, when solving an I-PS-VRP inventory capacity restrictions

and holding costs should be taken into account as these can influence, e.g., total

cost incurred. Thus, further research should deal with holding costs and limited

inventory capacity.

3. Distribution characteristics: in future research, the distribution part should ex-

tend the classical VRP. Companies often collaborate with a 3PL service provider

for their distribution operations. These service providers have a large fleet of

vehicles, often differing in loading capacity, cost structures, and travel speed

restrictions. Including heterogeneity of vehicles in integrated studies is a valu-

able research opportunity. Moreover, in order to obtain a reliable production

and delivery schedule, service times at the plant and at the customer locations

should be taken into account as these can have an influence on the delivery time

promised to customers. Additionally, including backhauls into I-PS-VRPs can

be interesting in order to model the pickup of wrongly delivered or damaged

products at customer locations.

4. Objective criterion: in the current competitive business environment compan-

ies have to offer high quality service at the lowest possible cost in order to

remain competitive. Therefore, future research should examine multi-objective

problems instead of minimising cost or maximising service level separately.

Uncertainty In real life not all orders and parameter values are known in advance.

The exact moment of time when orders are placed by customers can often not be

known. Additionally, the travel times are influenced by traffic jams. Consequently,

instead of using deterministic models for I-PS-VRPs, in future studies stochastic

aspects should be incorporated.

Solution algorithms Companies have to deal with a large number of orders. Even

for this large amount of data, it is necessary to have a good solution for the integrated

problem in short computation time. Furthermore, for stochastic integrated studies,

solution algorithms which can cope with uncertainty need to be developed. Therefore,
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further research needs to focus on fast and robust solution approaches. Matheurist-

ics are highlighted as a promising research direction and have already proven to be

capable to obtain high-quality solutions in a short computation time.

Value of integration and sensitivity analysis Little research has been done

so far on the value of integration. Future research should be conducted to identify

in which situations integration can be most useful. The discussion of the reviewed

studies reveals that the influence of some problem characteristics, such as the number

of customers and vehicle capacity, on the value of I-PS-VRPs is not straightforward.

Thus, there is a need for further research on the impact of problem characteristics

on the value of integrating the two subproblems.

The knowledge learned from the review conducted in this chapter can act as basis

for the formulation and analysis of integrated order picking-vehicle routing problems in

the following chapters. The discussion of the studies and the future research directions

highlighted indicate the important problem characteristics which should be considered

when modelling the integration of order picking and vehicle routing decisions. It is

important that real-life characteristics, such as service times and time windows, are

included. Furthermore, solution algorithms developed for the I-OP-VRP need to

be efficient and robust. Since little is known about the integration of order picking

and vehicle routing operations, the value of integrating these problems has to be

investigated in the following chapters of this dissertation.





Chapter 3

Integrated order

picking-vehicle routing

problem: Problem

formulation

3.1 Introduction

Every year, the popularity of e-commerce is increasing, and a higher number of cus-

tomers buy goods online. When a customer purchases goods online, the products

first need to be picked in a DC in which these are stored. After completing the pick-

ing process, the goods have to be delivered to the preferred delivery location of the

customer. Thus, since orders can only be delivered after they are picked in the DC,

picking and delivery decisions are interrelated. The increasing number of orders puts

the picking and delivery operations under pressure. E-commerce companies need to

reconsider and re-optimise their logistics activities to handle efficiently and effectively

the large number of customer requests. Therefore, ideally, the order picking and de-

livery operations should be integrated into a single optimisation problem similar to

the I-PS-VRP discussed in Chapter 2. The integration of the two problems results

in an integrated order picking-vehicle routing problem (I-OP-VRP). In this chapter1,

the I-OP-VRP is introduced and the value of integration is examined (Figure 3.1).

1This chapter is based on Moons, Ramaekers, Caris and Arda (2017b).
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Introduction and problem statement (Chapter 1)

Integrated production scheduling-

vehicle routing problems (Chapter 2)

Problem description and formulation (Chapter 3)

Record-to-record travel

algorithm (Chapter 4)
Batch picking (Chapter 5)

Conclusions and future research (Chapter 6)

Integrated order picking-vehicle routing problem

Figure 3.1: Thesis outline - Chapter 3

In the I-OP-VRP, picking lists and vehicle routes are determined simultaneously.

Requirements and constraints of both the order picking problem (OPP) and the VRP

are considered at the same time. For example, delivery time windows are taken into

account when picking lists are established. In the I-OP-VRP, decisions have to be

made about the assignment of orders to pickers, the picking schedule of each picker,

the assignment of orders to routes, and the vehicle routes.

However, traditionally order picking and delivery decisions are decided in an unco-

ordinated way. B2C e-commerce companies often outsource their delivery operations

to a 3PL service operator. Every day, the 3PL operator picks up the goods at the DC

at a fixed time, mostly in the evening. The e-commerce company determines a cut-off

time. All goods ordered before this cut-off time are picked before the 3PL service

provider arrives at the DC. Goods ordered after the cut-off time are handled in the

DC before the next pickup time. As can be seen in Figure 3.2(a), the order picking

process and the delivery process are strictly separated by the pickup time implied by

the 3PL service provider.
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(a) Uncoordinated approach (with 3PL)

(b) Integrated approach

Figure 3.2: Timeline for an uncoordinated and an integrated approach

In an integrated approach, the e-commerce company executes the delivery op-

erations itself, or there is coordination between the e-commerce company and the

3PL service provider. No fixed pickup times are implied any more. By coordinating

the order picking and distribution process and exchanging information, a vehicle can

leave the DC whenever a sufficient number of orders to conduct a delivery route have

been picked. As such, the start of the distribution process is more flexible. The

picking and delivery operations overlap in time, as illustrated in Figure 3.2(b). A

vehicle has already left the DC to deliver picked orders, while orders which will be

delivered by another vehicle are still being picked in the DC. Consequently, goods

which are ordered late can possibly still be delivered within short time, whereas in

the uncoordinated approach the delivery would be after the next pickup time.

The relevance of the integrated problem in a warehouse environment is demon-

strated by the example of Amazon, an international e-commerce company. In Ger-

many, Amazon started with its own package delivery service to deliver customer orders

handled in their warehouses instead of outsourcing these activities to a 3PL service

provider. By delivering orders itself, Amazon has more flexibility in their delivery

services (VerkehrsRundschau, 2015).
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This chapter is organised as follows. A comparison of production and warehousing

operations is made in Section 3.2. In Section 3.3, the problem characteristics of the

proposed I-OP-VRP are explained. A review of the state-of-the-art literature on order

picking, vehicle routing with release dates, and I-OP-VRP is given in Section 3.4.

Mathematical models are formulated for an order picking problem, a vehicle routing

problem with time windows and release dates, and an I-OP-VRP in Section 3.5. The

data generation is described in Section 3.6. Section 3.7 sets out the computational

experiments executed and assesses the value of integration. Finally, in Section 3.8,

conclusions and future research directions are presented.

3.2 Comparing production and warehousing

In this dissertation, the integration of a VRP with an OPP in the context of B2C

e-commerce sales is studied. The most related problem is the integration of supply

chain functions in a production environment. As production and warehousing have

relatively similar characteristics, models comparable to the I-PS-VRPs described in

Chapter 2 can be formulated for the integration of order picking and vehicle routing

operations. In both problems, jobs need to be assigned to resources in such a way that

an objective is met, e.g., cost minimisation or service level maximisation. However, in

research on production and warehousing, different terminologies are generally used to

describe similar processes. Therefore, the production processes and properties need

to be translated to a warehouse context. To the best of the author’s knowledge, no

other studies compared these combinatorial optimisation problems before. The focus

is on the basic concepts of both supply chain functions. It is not the aim to compare

all existing production and warehousing concepts. Table 3.1 gives an overview of the

related terminology used in production and warehousing environments.

In a manufacturing plant the main activity is production, while in a warehouse

it is order picking. Production refers to the processes which transform inputs, such

as raw materials, into outputs demanded by customers using resources (Jacobs and

Chase, 2011). Production scheduling is the process of allocating scarce resources, e.g.,

machines and employees, to jobs over time to optimise a single or multiple objective(s)

(Graves, 1981; Lawler et al., 1993). For each resource in a production environment a

schedule is determined. The schedules of the multiple resources can be represented

in a Gantt chart. An example can be found in Figure 3.3(a) in which Ji represents

job i.

Order picking is the warehousing process of retrieving products from specific stor-

age locations in a warehouse to satisfy customer requests (Petersen and Schmenner,
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Table 3.1: Terminology used in production and warehouse context

Production context Warehouse context

production order picking

production scheduling order sequencing

job order

task or operation order line

machine order picker

production time retrieval time/order picking time

single or parallel machine scheduling discrete order picking

single or parallel machine scheduling with p-batching batch picking

make to order pick by line/pick to zero

bundling machine environment synchronised zoning

job shop or flow shop progressive zoning

1999; Henn, 2015). Order sequencing is determining the sequence in which the dif-

ferent customer orders should be picked (Elsayed et al., 1993) to meet the due date

of each order. The result is a pick list for each order picker which indicates the or-

der lines he/she should pick and in which sequence (Henn et al., 2012), as shown in

Figure 3.3(b).

(a) Gantt chart (b) Pick list

Figure 3.3: Example of a Gantt chart and a pick list

In order to refer to a customer request, the term job is used in a production

environment and the term order is used in a warehouse environment. A job consists

of multiple tasks (or operations) which should all be completed before the entire job

is finished, while an order consists of order lines, each of which indicating a different

product with the corresponding requested quantity and storage location (de Koster

et al., 1999a).

Both in production and order picking, customer requests need to be assigned to a

limited number of resources. Resources in a production context, i.e., machines, can
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be compared with these in a warehouse, i.e., order pickers. In fact, a resource can

be generally defined as a time scale with certain time intervals available (Conway

et al., 1967) to which jobs or orders can be assigned to be processed and completed

for delivery. Furthermore, in both problems, decisions have to be made about the

sequence in which the different customer requests should be processed.

In order picking, two main types of manual picking systems occur, i.e., picker-to-

product systems and product-to-picker systems. In a picker-to-product system, an

order picker travels through the warehouse to the storage locations of all items re-

quested. In a product-to-picker system, the items requested are delivered to the order

picker by, e.g., automated stacker cranes in an AS/RS (Automated Storage/Retrieval

System). Thus, either products are delivered to a resource, an order picker, or the

other way around. In contrast, in a production environment, machines are mainly

located at a fixed location in the production plant. The orders are transferred to the

machines. This corresponds with a product-to-picker system, in which the resource

in this situation is a machine instead of an order picker.

The production processing time is the time needed using the resources to produce

the quantity demanded of a product. A setup time to prepare a resource to process a

job (Allahverdi and Soroush, 2008) is often included in the processing time (Allahverdi

et al., 1999). The order picking processing time (or retrieval time) is the time needed

by an order picker to complete a route in a warehouse to pick the items requested

in a specific order. The picking time consists of several components: travel times

between storage locations which need to be visited; search times to find the required

items; pick times to grab the required quantity of items; and, setup times. The setup

time in an order picking process is the administrative time at the start and end of a

picking tour. It includes the time needed for an order picker to obtain a new pick list

and an empty picking device at the start point of a tour and to return to this point

after completing a tour (Van Nieuwenhuyse and de Koster, 2009). Travel times are

the dominant component in the picking time, responsible for approximately half of

the total order picking time, while setup times are rather negligible (Tompkins et al.,

2003; de Koster et al., 2007; Henn et al., 2012).

In a production environment, the processing time can be machine- and job-

dependent in case uniform or unrelated parallel machines are used. However, the

production processing time of a job is fixed once it is known to which machine the

job is assigned. In a warehouse environment, the picking time is often independent of

the order picker to which an order is assigned, since mainly it is assumed that order

pickers travel at the same speed. Nevertheless, the order picking processing time de-

pends on the routing policy applied in the warehouse. Several routing policies exist,
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e.g., S-shape, return, or largest-gap strategy (Wäscher, 2004). Each policy constructs

picking routes based on its own decision rule resulting in other travel distances to pick

all items. Consequently, picking times differ among the routing policies. Additionally,

the storage location policy implemented influences the picking time. When goods are

stored in another way, the routes to pick the items requested change and accordingly

the picking times differ.

A discrete order picking policy (or pick-by-order) in which a single order is picked

at a time in a warehouse can be compared with, depending on the number of order

pickers, single or parallel machine scheduling in the case that each job consists of a

single task. In a warehouse context, however, order batching (or pick-by-batch or batch

picking), in which several orders are picked in a single picking tour by an order picker

(de Koster et al., 1999a, 2007; Henn, 2015), is often applied. The order batching

problem investigates how orders can be grouped into batches, given storage locations

of items, routing strategies, and picking device capacity, in order to minimise the

total length of tours necessary to pick all orders (Wäscher, 2004). Each order has

to be assigned to a single batch which results in a set partitioning problem. Order

batching in a warehouse can be seen as single or parallel machine scheduling with

p-batching in a production environment. In p-batching (or parallel batching) jobs are

processed simultaneously on a machine. The largest processing time of a job in a

batch defines the processing time of the batch (Brucker, 2007). However, the picking

time of a batch is generally not equal to the largest order picking time in the batch.

The batch picking time is greater than the picking time of each individual order in

the batch, but in general less than the sum of all individual order picking times. In

order to determine the picking time a travelling salesman problem for each order or

batch needs to be solved. At the end of a picking route with batch picking, the picked

items need to be sorted by each customer order.

A specific picking method is pick by line (pick to zero). This picking method is

mainly applied in a DC which executes cross-docking operations. In a cross-docking

DC, goods are not stored for a long period of time. When goods arrive at the DC,

they are immediately sorted and loaded into roll cages for each individual store (or

customer) in the required quantities. In contrast to a traditional DC, goods are not

assigned to a storage location from which the required number of items is picked

(Rushton et al., 2001; Fernie and Sparks, 2004). Pick by line can be compared to a

make to order process in a production environment. In this situation, a manufacturer

starts producing after a good has been requested by a customer. Then, the exact

number of items is produced. Thus, the customer is not being delivered from stock

(Jacobs and Chase, 2011).
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Furthermore, a warehouse can be divided into different zones. Order pickers pick

only items in the zone to which they are assigned. An order can consist of order lines

with picking locations in different zones. Consequently, multiple order pickers should

work on the order. Two variants of zoning occur. In the first variant, called parallel

picking (or synchronised zoning), order pickers of each zone work simultaneously (in

parallel) on the same order. In each zone, the order lines of which the storage locations

are located in that specific zone are picked. At the end, the order lines picked in each

zone are merged together. Synchronised zoning can be compared with a bundling

machine environment in a production context in which m independent tasks of a

job need to be processed on m dedicated machines. These m operations need to be

bundled together before the job can be delivered (Chen, 2010). The tasks of a job

which need to be processed on a specific machine can be compared with order lines

of an order which need to be picked in specific warehouse zones. The second variant

is called progressive zoning (or pick-and-pass or sequential zoning). In contrast to

synchronised zoning, an order is picked sequentially in the different zones. One order

picker starts with the order. Once all order lines in one zone are picked, the order

is passed on to an order picker in another zone (de Koster et al., 2007). Progressive

zoning can be related to a flow shop or a job shop in a production environment.

In a job shop or flow shop, a job is processed on different machines in a specified

sequence. Similar to passing on a job to the next machine in a job shop or flow shop,

in progressive zoning an order is passed on to an order picker in the next zone.

To summarise, although different terminologies are used, production and ware-

housing have many concepts in common. Nevertheless, differences arise between these

two problems. In a production context, the main decision to be taken is the choice and

design of the machine environment including the number of machines. A warehouse

context, however, is a more complex environment in which multiple decisions have

to be taken. Besides the number of order pickers to hire, a routing policy, storage

location policy, batching policy, and zoning policy have to be determined. The choice

of these policies has an impact on the picking time.

The comparison of production and warehouse processes in this section has two

objectives: (1) to act as a starting point for describing and formulating an I-OP-VRP

in a warehouse context; and, (2) to show the relationship between warehousing and

production in order to connect the two research communities. It could stimulate the

application of concepts and solution approaches in each other’s domain.
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3.3 Problem description

An I-OP-VRP is investigated to determine an overall solution for both the order

picking process and the vehicle routing problem. In a DC, customer orders, each

consisting of one or more articles (order lines), need to be picked by order pickers.

After the orders are picked, they need to be delivered to customers. Both order

picking schedules and vehicle delivery routes need to be determined. Currently, in

most warehouses a fixed due date is being implied before which all orders need to

be picked. The due date separates the order picking process and the vehicle routing

operations and represents the pickup time by a 3PL service provider, or the internal

distribution department when there is no coordination. A cut-off time is determined,

which indicates the time before which orders should be requested if they need to be

picked up by a vehicle at the pickup time. In the integrated problem, the influence

of eliminating this picking due date is examined.

The following assumptions related to the DC are made. All customer orders need

to be handled in a single DC. A number of order pickers work in parallel in a single

zone to pick items requested by customers. The order pickers may have picking devices

with different capacities and are available at the beginning of the planning horizon.

Additional temporary order pickers can be hired from a fixed pool of workers in case of

a high customer demand. However, to avoid congestion in the aisles of the warehouse,

the number of order pickers that can work during a specified time period is limited.

The labour cost, which is incurred for each minute working, is different for both types

of order pickers. The labour cost of a temporary order picker is slightly higher than

that of a regular order picker due to the uncertainty they have about their work and

to value their flexibility. Each order picker is allowed to work a maximum amount of

time during a single shift. In a real-world setting, order pickers will probably be hired

for at least half a day or an entire day. In the problem considered in this dissertation,

it is assumed that the order pickers are only paid for the time they actually work. In

this way, the operational cost of the time needed to actually pick all goods requested is

considered. No labour cost is incurred for breaks in the picking schedule during which

order pickers have to wait for new orders. During these time periods, the order pickers

are conducting other tasks such as storing the incoming goods in the warehouse.

In the DC, a discrete order picking policy in which each order is picked in an

individual route through the warehouse, is applied using a picker-to-product system,

i.e., manual order pickers travel along the picking locations (van den Berg, 1999).

Splitting an order into suborders or combining orders in batches is not allowed. Each

order, consisting of one or more order lines, is picked individually without interruption
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in a single tour. The storage locations of each good in the DC are known in advance.

Therefore, the picking routes can be determined in advance using well-known routing

policies such as the S-shape heuristic or the midpoint method (de Koster et al., 2007)

or by solving a travelling salesman problem (e.g., Theys et al., 2010), and are used as

input for the I-OP-VRP. The picking time of an order is independent of whether it is

picked by a regular or temporary order picker as these travel at the same speed.

When the picking of a customer order is completed, the corresponding goods are

released to be delivered. The routing problem is defined on a complete undirected

graph. Travel times of the delivery network are symmetric. The distribution opera-

tions are executed by an unlimited number of vehicles (vans) which can have different

capacities and costs. Both a cost per time unit of the tour length, which includes

the labour cost of the driver and the fuel cost, and a fixed cost for using a vehicle is

incurred. The working time during a driver’s shift is limited. Service times, which

are the loading times at the DC and unloading times at the customer locations, are

explicitly taken into account. The fleet is originally located at the DC to which each

vehicle should return at the end of a route. Each vehicle is allowed to conduct at most

a single route. This assumption is made to fairly compare the uncoordinated approach

and the integrated approach in the experiments conducted later in this dissertation.

In the uncoordinated approach, all vehicles arrive at the DC at the same moment in

time every day once, i.e., the pickup time. Therefore, although in the integrated ap-

proach there is more flexibility about the start of the delivery operations, each vehicle

is also allowed to conduct only a single trip to compare the results. Allowing multiple

trips in the integrated approach may lead to a lower number of vehicles needed and

can avoid long waiting times within a route before the start of a time window.

During the online purchase process, customers can select from a limited list, a time

window, in which they want the goods to be delivered. In an e-commerce context, the

time window corresponds with the time period customers are available at the delivery

location to accept the parcel. As such, an early or tardy delivery is not possible.

When a vehicle arrives early, it has to wait at the customer location until the start

of the time window. A customer order cannot be split, i.e., an order is delivered by a

single vehicle. An order can be delivered immediately to the corresponding customer

after completion of the picking process or different orders can be consolidated into a

route. It is assumed that as long as the total physical space of the orders loaded onto

a vehicle does not exceed the capacity of that vehicle, a loading plan can be found in

which all orders fit into the vehicle.

In the I-OP-VRP, the following decisions need to be made: (1) the assignment

and scheduling of orders to order pickers, (2) the assignment of orders to vehicles,
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(3) the construction of vehicle routes, and (4) the scheduling of vehicle routes. The

outcome is a detailed picking and distribution schedule indicating for each customer

order the exact start and completion time of the picking process, the exact delivery

time at the customer location, and the departure time of each vehicle at the DC.

Picking schedules and vehicle routes have to be determined for a single shift of order

pickers and drivers.

The described problem is a first attempt to integrate order picking processes and

vehicle routing in an e-commerce environment. Hence, relatively basic formulations

are applied, especially for the order picking subproblem. The author is aware that in

a real-world DC the order picking process is more complex. First, several orders are

generally batched to be picked in the same route through the warehouse. However, to

be able to compute the effective impact of integration, and not the impact of assigning

orders to different batches, a discrete order picking policy is applied in the current

chapter and Chapter 4. In Chapter 5, an I-OP-VRP with a batch picking policy

is introduced to investigate the impact of batch picking on the integrated problem.

Second, customers can order goods on the Internet 24/7. Thus, demand cannot be

known in advance and the arrival time of the orders is uncertain. As the described

problem is static, the scattering of the order placement over time will be simulated

in the computational experiments by using different values for the order times, which

indicate the moment in time that the orders are requested by customers. Moreover,

recent developments in order picking research are not included. For instance, more

advanced picking policies, e.g., pick by line (Rushton et al., 2001) are not incorporated.

3.4 I-OP-VRP: Literature review

The described problem is an integration of an order picking problem and a vehicle

routing problem with release dates. The state-of-the-art literature on both problems

as well as the integrated problem is reviewed in this section.

3.4.1 Order picking problem

In a warehouse, order picking is the major cost component as it is a labour-intensive

activity (Tompkins et al., 2003). In a B2C e-commerce environment, a large number

of small orders need to be picked, which makes it even more labour-intensive (Agatz

et al., 2008). Additionally, late orders are accepted to provide excellent customer

service (de Koster et al., 2007). Therefore, the order picking process needs to be

planned carefully such that the requested items are picked as fast as possible in a
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cost-efficient way. In a warehousing context, decisions need to be taken on three

major aspects: the picking policy, the routing policy, and the storage policy. For a

thorough review on warehousing and order picking, the reader is referred to de Koster

et al. (2007), Chen et al. (2010), and van Gils et al. (2018b).

In the majority of papers on order picking, the total route length is minimised

(Davarzani and Norrman, 2015). When order pickers travel at a constant speed

and there is no congestion, the total order picking time is minimised as well (Chen

et al., 2010). The shorter the picking time, the sooner the orders are available to be

delivered to customers (de Koster et al., 2007). Additionally, by minimising the route

lengths and thus the picking times, a single order picker can pick more orders during

his working hours, or a lower number of order pickers are needed to pick the same

number of orders. Consequently, lower labour costs are incurred (Ruben and Jacobs,

1999).

In the problem considered in this chapter and Chapter 4, a discrete order picking

policy is used as a first step to integrate an OPP and a VRP. Discrete order picking

is easy to operate and orders need not to be sorted afterwards which reduces the

possibility of errors. Since both the customer orders and the storage locations of each

item are considered to be known in advance in the problem studied in this dissertation,

the tour length of each order can be determined based on the routing strategy applied.

Consequently, based on the tour lengths and the travel speed of the order pickers, the

order picking times can be predetermined in a separate optimisation problem. The

total order picking time is the sum of the picking time of all orders.

Hence, in contrast with most studies on order picking, in the integrated problem

considered in this dissertation, the total route length and picking times are known

in advance. Two types of order pickers are considered: regular order pickers and

temporarily hired order pickers. The only decision which needs to be made in the OPP

is the assignment of orders to regular or temporary order pickers. As the labour cost of

a temporary order picker is higher than that of a regular order picker, orders need only

to be assigned to temporary order pickers when a picking schedule with only regular

order pickers is not feasible. In the latter scenario, temporary order pickers need to

pick the orders with the smallest picking times. Consequently, in order to estimate

the impact of the I-OP-VRP, total picking costs per minute working for regular and

temporary order pickers are minimised instead of minimising total distance travelled

which is generally the objective function in order picking problems.
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3.4.2 VRP with release dates

In the classical VRP, goods need to be distributed from one or more depot(s) to a

set of geographically scattered customers by constructing routes along a network in

such a way that all requirements are fulfilled and an objective is met. A fleet of

vehicles is located at the depot(s). Both the vehicles and the goods are available at

the beginning of the time horizon (Toth and Vigo, 2014). A detailed classification

and review of classical VRPs can be found in Braekers et al. (2016b).

Recently, some studies have considered VRPs in which not all goods are available

at the beginning of the time horizon. The moment the goods become available at the

depot for delivery to customers is called the release date. It is the earliest time the

orders are ready to be loaded on a vehicle. A vehicle delivering an order cannot leave

the depot before the release date of the order. Release dates link different levels in

a supply chain: production and delivery, or order picking and delivery. This class of

problems is called vehicle routing problems with release dates (VRP-rd). Including

release dates into a VRP results in a trade-off between delaying a vehicle departure

to load more customer orders in that vehicle and departing earlier to have a longer

time period available for delivering and meeting the deadlines (Reyes et al., 2018).

To the best of the author’s knowledge, Cattaruzza et al. (2013, 2014, 2016) are

the first ones to investigate a VRP-rd. Time windows are included in the problem

resulting in a VRP with time windows and release dates (VRPTW-rd). The delivery of

goods should start within the time window specified. Each of the identical capacitated

vehicles can conduct multiple trips. All vehicles have to return to the depot before

the end of the time horizon. The objective is to minimise the total time travelled in

Cattaruzza et al. (2013), and to minimise the total distance travelled in Cattaruzza

et al. (2014, 2016). A genetic algorithm is proposed to solve the VRPTW-rd.

Archetti et al. (2015a) examine the complexity of a VRP-rd when the graph de-

scribing the locations of the depot and the customers has a special structure, either a

star or a line. For both graph structures, two cases are considered. In the first case,

a single vehicle is available which can conduct multiple trips during the time horizon,

while in the second case an unlimited number of vehicles are available which all can

conduct a single tour. The vehicles have no capacity limitations. For both cases,

two different objectives are evaluated: (1) minimise the total travelling distance when

there is a delivery deadline, and (2) minimise the maximum value of the sum of travel

times and waiting time when there is no delivery deadline. The best way to meet

the first objective, i.e., minimise total distance travelled, is to wait until all goods

are released at the DC. In the second objective, in order to increase the service level
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offered to the customers, it can be beneficial to leave the DC earlier to deliver the

goods that are already released at the moment the vehicle departs. Thus, although

there is no delivery deadline when the second objective function is used, the aim is

to have all orders delivered as fast as possible. Choosing between the two objective

functions is a trade-off between operational costs and service level. Due to the special

structure of the graph, the problem can be solved in polynomial time.

Archetti et al. (2015b) investigate a multi-period VRP with release and due dates

between which goods need to be delivered by a fleet of homogeneous vehicles. The

objective is to minimise the sum of transportation costs, inventory holding costs,

and penalty costs. Three mathematical formulations are proposed: a flow based

formulation, a flow based formulation with assignment variables, and a load based

formulation. The effect of the flexibility of the due date and the number of vehicles

is investigated.

In Reyes et al. (2018), alternative dynamic programming algorithms are proposed

for the first case problems of Archetti et al. (2015a) on the half-line structure. A

service guarantee is added such that each order is delivered within a fixed amount of

time after its release date. The completion time of the last route and the distance

travelled taking into account that the last route has to be finished by the deadline are

minimised. The service guarantee is also implemented in the second problem case of

Archetti et al. (2015a) in which the distance travelled needs to be minimised. Solving

these problems can be done in polynomial time.

Shelbourne et al. (2017) study a VRP with release and due dates. The release

dates are considered to be the completion times of a machine scheduling problem.

Homogeneous vehicles are used for the delivery operations, and each vehicle conduct

at most a single route. The objective is to minimise the combination of the total

distance cost and the total weighted tardiness. The authors develop a path-relinking

algorithm to solve the VRP-rd.

Liu et al. (2017) formulates a VRP with order available times (or release dates)

in an e-commerce industry. Similar to the problem in this dissertation, the order

available times are the completion times of the order picking and packing process. A

fleet of homogeneous capacitated vehicles is used to deliver the parcels. The objective

is to minimise the sum of the vehicle completion times, which includes the travel times

plus the vehicle departure time at the depot. A TS method is proposed. Additionally,

a Lagrangian relaxation algorithm is used to obtain lower bounds.

The vehicle routing part of the I-OP-VRP in this dissertation differs from the

above mentioned studies in the following ways. First, a fleet of heterogeneous vehicles

is used instead of a single or an unlimited number of uncapacitated vehicles in Archetti
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et al. (2015a), or a homogeneous capacitated fleet in Cattaruzza et al. (2013, 2014,

2016), Archetti et al. (2015b), Liu et al. (2017), and Shelbourne et al. (2017). In

reality, a company often owns vehicles with different capacity restrictions and cost

structures. As such, a heterogeneous fleet is a more realistic assumption. Second,

hard time windows are considered in the problem in this dissertation. Archetti et al.

(2015a,b) and Liu et al. (2017) do not consider time windows. A delivery deadline

is imposed in Archetti et al. (2015b), the first case of Archetti et al. (2015a), and

Shelbourne et al. (2017). An increasing number of B2C e-commerce companies offer

their customers the opportunity to select a time window within which they want

the goods to be delivered. Third, a single-period problem is considered instead of a

multi-period problem as in Archetti et al. (2015b). Finally, each vehicle can conduct

a single trip as in Shelbourne et al. (2017) instead of multiple trips.

Although VRP-rd did not receive a lot of attention in the literature where produc-

tion (or order picking) and distribution are linked, release dates are indispensable in

such integrated studies. Release dates are equal to the completion times of the pro-

duction process or order picking. Although the term release date is not used in the

I-PS-VRP, it is required that the distribution can only start after the goods are pro-

duced in these integrated studies. In mathematical models, often a constraint is added

which requires that the departure time of the vehicle or the arrival time at the cus-

tomer is greater than the completion time of the production process, e.g., in Park and

Hong (2009) and Ullrich (2013). Arda et al. (2014) formulate a multi-period vehicle

loading problem with stochastic release dates. This problem intermediates between a

purely uncoordinated approach and a fully integrated approach. The problem invest-

igates whether transportation decisions can be improved when forecasts about future

releases of items from production are taken into account.

3.4.3 Integrated problem

As discussed in Chapter 2, distribution operations are mostly integrated with pro-

duction tasks. These integrated studies often focus on relatively simple delivery op-

erations, e.g., direct shipments to customers. In the last decade, integrated studies

in which distribution operations are formulated as a VRP have received more atten-

tion in the literature. A detailed analysis of I-PS-VRPs is given in Chapter 2. In

this section, the most related literature within the research field of integrated studies

considering order picking and delivery operations is discussed. Table 3.2 provides an

overview of the related literature indicating the main problem characteristics of each

study. The table has a similar structure as the overview tables in Chapter 2. The
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production characteristics are replaced by order picking characteristics. Additionally,

delivery mode characteristics are included because not all studies on the integration

of order picking and distribution operations consider vehicle routing. In Table 3.2,

the problem considered in this dissertation is indicated as well.

Low et al. (2013, 2014, 2017) and Zhang et al. (2016, 2018) make a first step

towards the integration of order picking and delivery operations. In Low et al. (2013,

2014, 2017), customer orders need to be handled in a DC by a single work centre,

i.e., an order picker. The authors investigate the integration of a practical scheduling

problem in a DC with a VRP. Nevertheless, in their problem formulation, production

concepts are used. For instance, to calculate the processing time of an order in

the DC a unit processing time of a retailer is multiplied by the demand of that

retailer. For example, if the unit processing time is equal to 5 and a customer orders

7 units, the total picking time becomes 35. However, order picking processing times

are not proportional to the demand requested. Travel times between different picking

locations are the major component in order picking times (Tompkins et al., 2003;

de Koster et al., 2007), which are independent of the quantity ordered. The travel

times depend on the storage locations of the goods in the warehouse.

The problem described in this dissertation differs from the problem formulated

by Low et al. (2013, 2014, 2017) in the following ways. First, instead of using a

single workstation (or order picker) for picking and packing, multiple order pickers

are available in the I-OP-VRP in this dissertation as is the case in most real-life

e-commerce DCs. Second, the objective in Low et al. (2013) is to minimise the

time required to process and deliver all customer orders. However, a processing

time in order picking proportional to customer demand is incorporated, which is not

realistic in order picking. As such, in this dissertation, the appropriate order picking

terminology is used instead of production concepts. Third, in Low et al. (2014, 2017),

costs need to be minimised, but only transportation costs and penalty costs incurred

for violation of time windows are incorporated; order processing costs in the DC

are neglected. Besides delivery costs, order picking costs are also included in this

dissertation, but penalty costs are not relevant since hard time windows which may

not be violated are considered. While the aim of Low et al. (2013, 2014, 2017) is

to develop an efficient algorithm to solve the integrated problem, in this dissertation

indicating the value of integration is the main focus.

Zhang et al. (2016, 2018) consider the integration of an order picking system,

in which customer orders arrive dynamically over time, with a distribution system.

The authors mainly focus on the processes in the DC considering a dynamic order

batching problem, and simplify the delivery operations. To the best of the author’s
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Table 3.2: Integrated order picking-distribution problems: Problem characteristics
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Low et al.

(2013)

• • • • • • • • •

Low et al.

(2014)

• • • • • • • • • • • •

Low et al.

(2017)

• • • • • • • • • • • •

Zhang et al.

(2016)

• • • • • • •

Zhang et al.

(2018)

• • • • • • • • • • •

Schubert et al.

(2018)

• • • • • • • •

Current study • • • • • • • • • • • •
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knowledge, Zhang et al. (2016) are the first authors to study the integration of an

OPP with distribution operations in an e-commerce environment. However, in Zhang

et al. (2016), the delivery process is outsourced to a 3PL service provider, who picks

up the orders at the DC at a fixed moment in time. As such, the OPP is integrated

with simple distribution operations, and not with a VRP. In Zhang et al. (2018), the

delivery operations are taken into account when solving the problem. Nevertheless,

the customer locations are assigned to different zones, and each zone is delivered by

a direct shipping method. Thus, in both papers of Zhang et al. (2016, 2018), no

vehicle routing decisions need to be taken. The authors highlight the integration of

order picking processes and VRP as a future research direction. In a real-world e-

commerce context, multiple customers are delivered in a single route, and as such,

vehicle routing decisions should be considered. This research is an answer to this call

for more research on integrated order picking-vehicle routing problems.

Whereas Zhang et al. (2016, 2018) basically focus on the order picking process

and include more realistic characteristics, such as dynamic arrival of orders and batch

picking, in this chapter, the focus is on the integration order picking and vehicle

routing and its benefits. In Chapter 5, a batch picking policy is implemented in the

I-OP-VRP. Furthermore, Zhang et al. (2016) maximise the number of delivered orders

and minimise the service time. In Zhang et al. (2018), the objective is to minimise

total cost, which is the sum of the makespan and the delivery cost. In the problem

formulated in this dissertation, total cost of picking and distribution is minimised in

order to indicate the value of integration compared with an uncoordinated approach.

The study of Schubert et al. (2018) is one of the first studies on the integration

of order picking and vehicle routing decisions. Similar to problem formulation in this

chapter and Chapter 4, a discrete order picking policy is applied in the warehouse.

The picking routes to retrieve the requested goods from their storage location in a

warehouse are solved in advance in a separate problem. Homogeneous vehicles are

used for the delivery operations, and each vehicle is allowed to conduct multiple tours.

Schubert et al. (2018) develop an ILS algorithm for an I-OP-VRP with delivery due

dates for the supply of perishable goods from a central DC to supermarkets. A variable

neighbourhood descent method, with four neighbourhoods impacting the VRP and

two adapting the OPP, is proposed. The objective is to minimise total tardiness

with respect to the delivery due dates. Experiments with instances with 100 and 200

customers are executed. Tardiness is reduced with on average 37.8% compared to an

uncoordinated sequential approach. The problem considered in this chapter differs

from Schubert et al. (2018) by using a heterogeneous fleet instead of a homogeneous

fleet. Furthermore, total cost is minimised in contrast to total tardiness.
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3.5 Mathematical formulation

First, mathematical formulations for an uncoordinated approach are presented. MILP

models for each subproblem, i.e., OPP and VRP, are provided in Section 3.5.2 and

3.5.3, respectively. Then, the formulations of the two subproblems are combined into

a MILP model for the I-OP-VRP, which is presented in Section 3.5.4. In several

constraints, a Big M -parameter is introduced, which has a large value. The value of

the Big M -parameter is restricted by the values of the other parameter coefficients

in the specific constraints. Thus, each constraint has its own specific value for the

Big M -parameter, and, therefore, an index is added to the parameter. By taking the

other parameter coefficients into account, the Big M -parameter can be set to a value

as small as possible.

3.5.1 Notation

The sets, indices, parameters, and decision variables needed in the mathematical

models are defined as follows:

Sets and indices

I = {0, ..., n} set of customer orders, indices i and j, where i = j = 0

indicates the DC

P = {1, ..., p̄, ..., p̂} set of order pickers, index p, where {1, ..., p̄} indicates regu-

lar order pickers and {p̄+ 1, ..., p̂} temporary order pickers

V = {1, ..., v̄} set of vehicles, index v

The indices are related in the following way: an order i is picked by an order

picker p in the warehouse and thereafter delivered to the location of customer order

i by a vehicle v.

Parameters

Cp capacity of order picker p, in number of items

Cv capacity of vehicle v, in number of items

wi capacity utilisation (or size) of customer order i, in number

of items

pti time needed to pick customer order i, in minutes

oti order time of customer order i, in minutes

pd picking due date, in minutes
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rdi release date for delivery of customer order i (i ≥ 1), in

minutes

si service time at delivery destination of customer order i, in

minutes; index i = 0 indicates the loading time at the DC

tij travel time between delivery destination of customer order

i and delivery destination of customer order j, in minutes.

When two orders belong to the same customer, then tij = 0.

[ai, bi] lower bound ai and upper bound bi of delivery time window

of customer order i (i ≥ 1); index i = 0 indicates the time

window in which vehicles can leave and return to the DC,

in minutes

creg/ctemp labour cost minute of a regular/temporary order picker

wtmaxreg /wt
max
temp maximum working time of a regular/temporary order

picker, in minutes

fv fixed cost of using vehicle v

ctlv cost per minute of the tour length of vehicle v, also called

variable travel cost

TLmax maximum tour length, in minutes

Decision variables

STOi start time of picking customer order i (i ≥ 1), in minutes

CTOi completion time of picking customer order i (i ≥ 1), in

minutes

STTv start time of loading vehicle v, in minutes

TLv tour length of vehicle v, in minutes

DTi delivery time of customer order i (i ≥ 1), i.e., start of un-

loading, in minutes

Xip binary variable which is equal to 1 (Xip = 1) if customer

order i is picked by order picker p

Uijp binary variable which is equal to 1 (Uijp = 1) if customer

order j is picked immediately after customer order i (i 6= j)

by order picker p
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Yiv binary variable which is equal to 1 (Yiv = 1) if customer

order i is delivered by vehicle v

Zijv binary variable which is equal to 1 (Zijv = 1) if customer

order j is delivered immediately after customer order i (i 6=
j) by vehicle v

3.5.2 Order picking subproblem

In the order picking subproblem, a picking due date before which all orders should be

picked needs to be respected in such a way that the vehicles delivering the orders can

leave the DC on time. This due date is considered to be the time the vehicles arrive

at the DC to pick up all orders. The new proposed MILP for the OPP is formulated

as a VRP. In both a VRP and an OPP, a sequence needs to be determined. For each

order picker, a picking sequence is determined which starts and ends with a dummy

order 0. The order picking time pt0, capacity utilisation w0, and order time ot0 of

this dummy order are equal to zero.

min creg ·
n∑
i=1

pti ·
p̄∑
p=1

Xip + ctemp ·
n∑
i=1

pti ·
p̂∑

p=p̄+1

Xip (3.1)

subject to

p̂∑
p=1

Xip = 1, ∀i ∈ I \ {0} (3.2)

Xip =

n∑
j=0

Uijp =

n∑
j=0

Ujip, ∀i ∈ I, p ∈ P, i 6= j (3.3)

n∑
j=1

U0jp ≤ 1, ∀p ∈ P (3.4)

wi ·Xip ≤ Cp, ∀i ∈ I, p ∈ P (3.5)

STOi ≥ oti, ∀i ∈ I (3.6)

STOj ≥ CTOi −M1 ·

(
1−

p̂∑
p=1

Uijp

)
, ∀i, j ∈ I, i 6= j,M1 = pd (3.7)

CTOi = STOi + pti, ∀i ∈ I (3.8)

CTOi ≤ pd, ∀i ∈ I (3.9)
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n∑
i=1

pti ·Xip ≤ wtmaxreg , ∀p = 1, ..., p̄ (3.10)

n∑
i=1

pti ·Xip ≤ wtmaxtemp, ∀p = p̄+ 1, ..., p̂ (3.11)

CTOi, STOi ≥ 0, ∀i ∈ I (3.12)

Xip, Uijp ∈ {0, 1}, ∀i, j ∈ I, i 6= j, p ∈ P (3.13)

The objective function (3.1) of the order picking subproblem minimises the sum

of the labour costs for both regular and temporary order pickers. Constraints (3.2)

guarantee that each customer order is assigned to exactly one order picker. Con-

straints (3.3) specify that the number of predecessors and successors of a customer

order in the picking schedule needs to be equal. Inequalities (3.4) express that each

order picker can have at most one order to be picked as first in a sequence. Con-

straints (3.5) ensure that the capacity of the order picker is not violated. Inequalit-

ies (3.6) indicate the earliest possible start time for picking a customer order. Con-

straints (3.7) and (3.8) compute the start time and completion time of the picking

process of a customer order, respectively. Inequalities (3.9) impede that the picking

due date is violated. Constraints (3.10) and (3.11) limit the working time of regular

and temporary order pickers, respectively. Constraints (3.12) and (3.13) define the

domains of the decision variables.

3.5.3 Vehicle routing subproblem

In contrast to a classical VRP, in the I-OP-VRP not all customer orders are available

for delivery at the same moment in time. In this dissertation, an order is released for

delivery when the order picking process of that order in the DC is completed. This

completion time CTOi can be considered to be the release date rdi in the VRP-rd.

The release dates are considered to be known in the VRP and are used as input

from the order picking subproblem. The formulation is based on Ullrich (2013) with

the following modifications: (1) All vehicles are available at the beginning of the time

horizon and can conduct a single trip. (2) Hard time windows are considered instead of

time windows with a soft upper bound. When a vehicle arrives late, it is possible that

the customer is no longer at home to accept the parcel which would result in a failed

delivery. (3) As tardy deliveries are not allowed, instead of minimising total tardiness,

total cost related to the tour lengths and vehicle usage needs to be minimised. (4)

The route length of each vehicle trip is limited. Restricting the route lengths and

minimising these is similar to the studies of Moon et al. (2012) and Belhaiza et al.

(2014). In Moon et al. (2012), the sum of the travel cost, regular drivers’ labour cost,
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and overtime drivers’ labour cost is minimised, and in Belhaiza et al. (2014) the sum

of the travel times and the waiting times is minimised. These two objective functions

are equivalent to minimising the route lengths. A MILP model for a VRPTW-rd is

formulated below.

min

v̄∑
v=1

fv · Y0v +

v̄∑
v=1

ctlv · TLv (3.14)

subject to

Zijv = 0, ∀i, j ∈ I \ {0}, i 6= j,

∀v ∈ V, ai + si + tij ≥ bj (3.15)

v̄∑
v=1

Yiv = 1, ∀i ∈ I \ {0} (3.16)

Y0v ≥ Yiv, ∀i ∈ I \ {0}, v ∈ V (3.17)

Yjv =

n∑
i=0

Zijv =

n∑
i=0

Zjiv, ∀j ∈ I, v ∈ V, i 6= j (3.18)

n∑
i=1

wiYiv ≤ Cv, ∀v ∈ V (3.19)

rdi ≤ STTv +M2
i · (1− Yiv) , ∀i ∈ I \ {0}, v ∈ V,

M2
i = rdi (3.20)

a0 ≤ STTv, ∀v ∈ V (3.21)

STTv + s0 + t0j ≤ DTj +M3
j · (1− Z0jv) , ∀j ∈ I \ {0}, v ∈ V,

M3
j = b0 + s0 + t0j − aj (3.22)

DTi + si + tij ≤ DTj +M4
ij ·

(
1−

v̄∑
v=1

Zijv

)
, ∀i, j ∈ I \ {0}, i 6= j,

M4
ij = bi + si + tij − aj (3.23)

ai ≤ DTi ≤ bi, ∀i ∈ I \ {0} (3.24)

DTi + si + ti0 ≤ b0 +M5
i ·

(
1−

v̄∑
v=1

Zi0v

)
, ∀i ∈ I \ {0},

M5
i = bi + si + ti0 − b0 (3.25)

DTi + si + ti0 − STTv ≤ TLv +M6
i · (1− Zi0v) , ∀i ∈ I \ {0}, v ∈ V,

M6
i = bi + si + ti0 (3.26)
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TLv ≤ TLmax, ∀v ∈ V (3.27)

DTi ≥ 0, ∀i ∈ I \ {0} (3.28)

STTv, TLv ≥ 0, ∀v ∈ V (3.29)

Yiv, Zijv ∈ {0, 1}, ∀i, j ∈ I, i 6= j, v ∈ V (3.30)

In the objective function (3.14) of the VRPTW-rd, the sum of the fixed vehicle

usage costs and the variable costs based on the total tour lengths is minimised. Con-

straints (3.15) ensure that a customer cannot be visited before another customer if

the time window of the former one starts after the end of this of the latter one. Con-

straints (3.16) ensure that each customer order is delivered by exactly one vehicle.

Inequalities (3.17) force that the DC is visited in each tour. Constraints (3.18) in-

dicate that each customer order location is entered and left once. Constraints (3.19)

guarantee that the capacity of a vehicle is not exceeded. Constraints (3.20) and (3.21)

indicate the earliest possible start time of a vehicle tour. Inequalities (3.22) and (3.23)

compute the delivery time of each order. Constraints (3.21)-(3.23) are adapted from

Braekers et al. (2016a). Inequalities (3.24) ensure that the delivery time is within

the time window of a customer order. Each vehicle needs to be back at the DC on

time as indicated by constraints (3.25). The maximum tour length is restricted by

constraints (3.26) and (3.27). Constraints (3.28)-(3.30) indicate the domain of the

decision variables.

3.5.4 Integrated order picking-vehicle routing problem

In the integrated problem, both mathematical formulations are combined into a single

optimisation problem. In the order picking process, a due date is no longer considered.

The only relevant time restriction is that orders need to be delivered within the spe-

cified time windows. By solving the subproblems simultaneously, more flexibility is

possible. Vehicles can leave the plant at any time and thus have no fixed departure

time which was equal to the picking due date in the uncoordinated approach. There-

fore, constraints (3.9) used in the order picking subproblem, is not incorporated in

the I-OP-VRP formulation. Furthermore, the computation of the Big M changes in

constraints (3.7) as follows:

STOj ≥ CTOi −M7
i ·

(
1−

p̂∑
p=1

Uijp

)
, ∀i, j ∈ I \ {0}, i 6= j,

M7
i = bi − t0i − s0 (3.31)
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As already mentioned, the completion times of the order picking in the OP-

subproblem in Section 3.5.2 are used as release dates in the VRPTW-rd in Sec-

tion 3.5.3. In the integrated approach, the release date rdi, which is a parameter, in

constraints (3.20) is replaced by variable CTOi. As such, constraints (3.20) become:

CTOi ≤ STTv +M7
i · (1− Yiv) , ∀i ∈ I \ {0}, v ∈ V,M7

i = bi − t0i − s0 (3.32)

In short, the formulation of the I-OP-VRP is the following:

min

n∑
i=1

pti ·
n∑
j=0

p̄∑
p=1

creg · Uijp +
n∑
i=1

pti ·
n∑
j=0

p̂∑
p=p̄+1

ctemp · Uijp

+

v̄∑
v=1

fv · Y0v +

v̄∑
v=1

ctlv · TLv (3.33)

subject to (3.2)-(3.6), (3.8), (3.5)-(3.13), (3.15)-(3.19), and (3.21)-(3.32).

3.6 Data generation

3.6.1 Benchmark instances

In the I-OP-VRP, data are required for both the order picking part and the vehicle

routing part of the problem. Since this dissertation is one of the first studies in which

an integrated problem is solved, no benchmark instances exist for this specific prob-

lem. The only study on an I-OP-VRP of which the author is aware, i.e., Schubert

et al. (2018), is conducted at the same time of the research described in this disserta-

tion. Consequently, both the data generation procedure and the instances were not

available at the time the experiments in this dissertation were executed. Furthermore,

these instances are not publicly available. Therefore, these instances are not used in

the experiments.

The instances used by Viergutz and Knust (2014) and Belo-Filho et al. (2015)

for an I-PS-VRP are publicly available. Nevertheless, these instances could not be

used or adapted for the problem considered in this dissertation. Both papers consider

the production and delivery of perishable goods. Viergutz and Knust (2014) do not

take into account any costs, while in Belo-Filho et al. (2015), the production cost per

unit of a product is set equal to zero. Thus, in their experiments only delivery costs,

consisting of a travel cost which is incurred for each distance travelled and a fixed

vehicle usage cost, are considered. In Viergutz and Knust (2014), a single vehicle

executes the delivery operations, whereas in Belo-Filho et al. (2015) the number of

vehicles is equal to the number of customers. In both studies, no service times are



86 Chapter 3

taken into account. Time windows are considered in both papers. In Belo-Filho

et al. (2015), all time windows have a width of 40 time units, while in Viergutz and

Knust (2014), the time windows can have any width. In a B2C e-commerce context,

customers can choose a delivery time window from a limited number of options. The

time window width is mostly a multiple of 60 minutes. Moreover, the time windows

start at a fixed moment in time, e.g., every hour. Furthermore, the demand values

in these instances are relatively high to be used in an e-commerce context, in which

customers order small quantities. In Viergutz and Knust (2014), a mean demand of

50 units is considered, and in Belo-Filho et al. (2015), the demand is generated from

U(40,60). In Belo-Filho et al. (2015), the unit production time of a product is set

equal to one, and in Viergutz and Knust (2014) a fixed production rate is applied.

This cannot be used in an order picking context, where the picking time depends

on the travel time through the warehouse to pick all goods at their storage location.

Transforming the benchmark instances so that these could be used for the I-OP-VRP

without affecting the optimal solutions is not possible.

For the vehicle routing problem, several benchmark instances are available. So-

lomon (1987) and Gehring and Homberger (1999) generated instances for the capacit-

ated VRPTW for small-size problems and large-size problems, respectively. The same

problems occur as with the instances of Viergutz and Knust (2014) and Belo-Filho

et al. (2015). The time window can start at any moment in time and have any width.

Moreover, the service times, 10 or 90, are too large for usage in an e-commerce con-

text. Additionally, the demand ranges between 1 and 43 units. Solomon (1987) and

Gehring and Homberger (1999) use the same coordinates for each instance within

each class. New benchmark instances for the capacitated VRP were generated by

Uchoa et al. (2017). No time windows and service times are considered. Thus, these

VRP benchmark instances cannot be used for the I-OP-VRP.

3.6.2 Instance generation

In order to conduct the experiments, artificial data instances are generated. Three

classes of instances with different problem sizes are generated: 10, 15, and 20 customer

orders. Each class consists of 20 instances. The generated instances are available

online at http://alpha.uhasselt.be/kris.braekers.

The capacity utilisation of an order wi is randomly generated from TRIA(1, 2, 6),

where TRIA(a, c, b) defines a triangular distribution with a the minimum value, c

the mode, and b the maximum value. Random numbers generated from a triangular

distribution are rounded to the closest integer. The average order size is 3 items,

http://alpha.uhasselt.be/kris.braekers
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which is the same as in the studies of Ruben and Jacobs (1999), Petersen (2000), and

Zhang et al. (2016) considering a mail order or B2C e-commerce problem setting. The

capacity of the picking devices is measured in number of items as in, for example,

Ruben and Jacobs (1999), de Koster et al. (1999a), and Henn (2012). All order

pickers have the same picking device with a capacity Cp of 20 items, similar as in

Zhang et al. (2018). Thus, with the instances used, each order picker is capable to

pick every order as the maximum order size is less than the picking device capacity.

The order processing time pti is equal to the sum of a setup time, i.e., two minutes, and

the route time. The route time is randomly generated from U(8, 25), where U(x1, x2)

defines a uniform distribution between x1 and x2. The average order processing time

is equal to 18.5 minutes which is equivalent to the data used in Gong and de Koster

(2008), who consider online retailers. The picking due date pd is equal to 240. Thus,

the order pickers have at most four hours to complete the picking process for all

customer requests. Two regular order pickers are available to pick the orders. Four

order pickers can work at a time, and as such, at most two temporary order pickers

can be hired. The variable picking cost per minute working is equal to 1 and 1.5 for

regular and temporary order pickers, respectively. Both regular and temporary order

pickers work in a half-day shift, and thus are allowed to work 240 minutes. All orders

are available for order picking at the same moment in time and have the same order

time.

In order to solve the problem with CPLEX, a limited number of vehicles is con-

sidered in the distribution part of the problem. The number is sufficiently high to

solve small-size instances. Three vehicles are available with a capacity Cv of 100,

50, and 25 items, and a fixed vehicle cost fv of 250, 200, and 150, respectively. The

route length cost ctlv is equal to 1 for all vehicles. Customer locations are spread in

a geographic area having the shape of a square. The x-coordinates and y-coordinates

of the destinations of the customer orders are randomly sampled from U(0, 30). The

DC is located at the middle of the square, i.e., (15,15). The travel times tij are equal

to the rounded Euclidean distance between the locations of the customer orders and

satisfy the triangle inequality, i.e., tij + tjk ≥ tik. The loading time at the plant s0

is fixed at 20 minutes. The same value is used in the I-OP-VRP of Schubert et al.

(2018). Unloading times si (i ≥ 1) are uniformly distributed from U(2, 10). These

bounds are used in the e-grocery problems of Punakivi and Saranen (2001) and Lin

and Mahmassani (2002).

In an e-commerce context, companies often propose several time windows from

which customers can choose one within which they want the goods to be delivered. In

order to obtain a feasible solution, the lower bound of the time window ai should be
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at least equal to the picking due date plus the loading time at the DC plus the largest

possible travel time between the DC and the farthest possible customer location. This

customer location is located at the corner of the square. Then, the largest travel time

is computed as follows: tmax0j =
√

(xmax/2)2 + (ymax/2)2. For a square of 30 by

30, the maximum rounded travel time between the DC and a customer is equal to

22. The picking due date is at 240 and the loading time at the DC is 20 minutes.

Consequently, the lowest value of ai is equal to 282, i.e., pd + s0 + tmax0j . The upper

bound of the time window is equal to the lower bound plus 60 minutes. As such, each

customer order should be delivered within a one-hour time window. After servicing

the last customer in a route, a vehicle has to return to the DC. A driver works in

8-hour shift (480 minutes), starting after the picking due date in the uncoordinated

approach. Punakivi and Saranen (2001) have the same restriction on the working

time of the drivers. Consequently, the time window of the DC is [240,720]. Since time

windows of one hour are offered, seven lower bounds for the time window are possible

so that a vehicle can return to the DC on time: {282, 342, 402, 462, 522, 582, 642}.

3.7 Computational experiments

In this section, experiments are executed using the mathematical models formulated

in Section 3.5. The value of integration is computed by comparing the results of

an integrated approach with these of an uncoordinated approach in which the two

subproblems are solved sequentially. For each class with 20 instances, the results

obtained by the uncoordinated and the integrated approach are compared. Thus, the

value of integration is evaluated for in total 60 instances. The problem class with 10

customer orders which need to be delivered in a square of 30 by 30 is referred to as

the basis problem setting. The instances are tested on an Intel Core i5 with 2.6 GHz

and 8GB RAM. CPLEX 12.6.2 from IBM is used as MILP-solver.

3.7.1 Solution methodology

3.7.1.1 Uncoordinated approach

In the uncoordinated approach, first the order picking subproblem, formulated in

Section 3.5.2, is solved, followed by the VRPTW-rd, formulated in Section 3.5.3. The

vehicles arrive at the DC at the picking due date. The lower bound of the TW of the

DC is equal to the picking due date. As such, the orders cannot be loaded onto the

vehicle earlier and, therefore, the release date in the VRP of all orders is set equal to

the picking due date. Thus, a0 = pd = rdi = 240. Consequently, constraints (3.20)



I-OP-VRP: Problem formulation 89

and (3.21) are the same, and to avoid duplicate constraints the latter one is removed

from the mathematical formulation in the experiments. Additionally, it is assumed

that all picking devices have the same capacity restriction and thus constraints (3.5)

are removed from the formulation. The working time of the drivers starts at the

moment they arrive at the DC. Therefore, the computation of the tour lengths starts

at the lower bound of the time window of the DC. In constraints (3.26), the start

time of the tour STTv is replaced by the TW lower bound a0:

DTi + si + ti0 − a0 ≤ TLv +M10
i · (1− Zi0v) , ∀i ∈ I \ {0}, v ∈ V,

M10
i = bi + si + ti0 − a0 (3.34)

3.7.1.2 Integrated approach

In the integrated approach, the model formulated in Section 3.5.4 is used. The same

data instances as in the uncoordinated approach are used. Similarly as in the unco-

ordinated approach, constraints (3.5) on the picking device capacity are removed from

the formulation since homogeneous devices are considered. As mentioned before, the

picking due date is not necessary any more. Due to the increased flexibility, vehicles

can arrive at the DC at any moment in time, which results in the following time

window of the DC: [0,720]. Again, constraints (3.21) is removed from the formulation

as this is equivalent to the non-negativity constraints (3.29). The working time of the

drivers starts at the moment the vehicle is loaded.

3.7.2 Value of integration

The results of the two approaches are compared in order to compute the value of

integration. The savings in total cost, which represents the value of integration, are

computed as follows: 100 · [(TCint − TCunc)/TCunc], with TCunc the total cost of

the uncoordinated approach and TCint this of the integrated approach. A negative

percentage indicates that the integrated approach has lower costs in comparison with

the uncoordinated approach.

The value of integration is calculated for the basis problem setting using the prob-

lem characteristics as described in Section 3.6.2. Additional experiments are con-

ducted with different values for several problem characteristics. First, the value of

integration is examined for a larger number of customer orders. Second, the impact

of the order time is investigated. A dynamic environment is simulated to get an idea

of the value of integrating both problems in a real-world e-commerce context. Third,

experiments with different travel cost values are conducted. Finally, the impact of
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the size of the geographical area in which the customers are located is studied. De-

tailed results of all experiments can be found in Appendix A. Tables A.1-A.10 present

detailed results per instance and per scenario tested.

Table 3.3 shows the average number of regular order pickers, temporary order pick-

ers, and vehicles used in each scenario described in the following sections. Columns

1 and 2 specify the problem characteristics. Columns 3 and 4 show the average num-

ber of regular order pickers used in an uncoordinated approach and an integrated

approach, respectively. The average number of temporarily hired order pickers is

presented in columns 5 and 6 for an uncoordinated and integrated approach, respect-

ively. Columns 7 and 8 indicate the average number of vehicles needed to deliver the

orders to customers in either an uncoordinated or integrated approach, respectively.

Table 3.3: Average number of pickers and vehicles used

Number of

regular pickers

Number of

temporary pickers

Number of

vehicles

Unc. Int. Unc. Int. Unc. Int.

Basis

scenario

n = 10

oti = 0

ctlv = 1

square = 30x30

1.00 1.00 0.00 0.00 1.20 1.20

Changing

parameter
Parameter value

n 15 1.95 1.95 0.00 0.00 1.35 1.35

20 2.00 2.00 0.00 0.00 1.70 1.70

oti 180 2.00 1.85 1.70 0.00 1.20 1.20

210 - 1.95 - 0.20 1.20 1.20

{0, 60, 120, 180, 210} 1.85 1.00 0.15 0.00 1.20 1.20

ctlv 1.5 1.00 1.00 0.00 0.00 1.20 1.30

2 1.00 1.00 0.00 0.00 1.20 1.50

Square size 20x20 1.00 1.00 0.00 0.00 1.05 1.10

40x40 1.00 1.00 0.00 0.00 1.60 1.60

3.7.2.1 Impact of number of customer orders

In Table 3.4, the average cost changes over the 20 instances per class of problem size

are shown per cost component. Furthermore, the lowest (min.) and highest (max.)

savings in total cost of the 20 instances are presented. The savings in total cost are

split per cost component for the instance with the lowest and highest savings. Based
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on the experiments executed, no relationship can be indicated between the problem

size and the value of integration. Nevertheless, the integrated approach always leads

to a better solution, as indicated by the lowest savings which are different from zero.

The average savings are approximately 12%, which demonstrates the importance of

integration. Savings of up to approximately 30% can be achieved by integrating both

problems. In more detail, in the uncoordinated and integrated approach, the same

number of regular order pickers (∆ TCcreg) and number of vehicles (∆ TCfv ) is used

within the same instance (Table 3.3), and as such, no savings are obtained on these

cost components. No temporary pickers (∆ TCctemp) are hired in both approaches.

The only difference between the uncoordinated and the integrated approach are the

variable travel costs (∆ TCctlv ). Tables A.1-A.3 show the results for each individual

instance in Appendix A.

Table 3.4: Impact of number of customer orders

n ∆ TC (%) ∆ TCcreg(%) ∆ TCctemp(%) ∆ TCctlv (%) ∆ TCfv (%)

10 avg. -12.65 0.00 0.00 -22.99 0.00

min. -3.86 0.00 0.00 -7.30 0.00

max. -29.82 0.00 0.00 -48.16 0.00

15 avg. -11.83 0.00 0.00 -22.61 0.00

min. -2.66 0.00 0.00 -5.72 0.00

max. -28.87 0.00 0.00 -49.38 0.00

20 avg. -11.87 0.00 0.00 -24.50 0.00

min. -0.82 0.00 0.00 -1.89 0.00

max. -22.64 0.00 0.00 -44.47 0.00

The difference in variable travel costs is caused by the presence of a picking due

date in the uncoordinated approach. In this approach, the delivery operations are

outsourced to a 3PL service provider, who picks up the goods daily at the same

fixed time. The pickup time does not depend on the number of orders requested

or the associated delivery time windows. Consequently, even if the customers select

the latest possible delivery time window, the pickup time remains the same. In

the uncoordinated approach, the driver arrives at the DC at the pickup time, and

consequently the labour cost of the driver is incurred starting from this picking due

date. However, the actual start of the vehicle tours is often later in time to satisfy

the customer delivery time windows. As such, drivers have to wait at the DC before

travelling to the first customer in the route. Nevertheless, the drivers are being paid

during the waiting period. In the integrated approach, as there is no fixed pickup

time any more, the start time of the distribution process is more flexible. The vehicles

arrive at the DC just before the actual start of the routes, and as such, the vehicles
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do not have to wait before leaving the DC. The drivers are paid for the time they

actually work. Thus, no waiting costs before the start of a route are incurred any

longer. The total variable travel cost decreases. This is illustrated in Figure 3.4 for

instance 1 with 10 customer orders.

(a) Uncoordinated approach

(b) Integrated approach

Figure 3.4: Timeline of instance 1 with 10 customer orders

From a service level point of view, looking at the actual vehicle departure time, an

e-commerce company can allow customers to request their goods later in time. The

waiting time in the uncoordinated approach can be used in the integrated approach

for picking operations of goods ordered close to the departure time. For goods ordered

at the same time as before, earlier time window options to choose from can be offered

to the customers. Thus, the time period between purchasing goods online and their

delivery can be shortened by using an integrated approach.

Although in Table 3.4 no improvements on fixed vehicle costs are indicated, in

larger examples with more customer orders and a longer time horizon, cost savings on

this component may possibly be obtained. In an uncoordinated approach, all goods

ordered after the cut-off time are not picked up by the 3PL at the pickup time. In

an integrated approach, the cut-off time and fixed pickup time are no longer valid.
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Since vehicles depart at different times throughout the day, these goods can be picked

and loaded on a vehicle the same day. Thus, in the integrated approach more orders

will probably already be picked when a vehicle leaves the DC to deliver goods to the

final customers. For example, in Figure 3.4, orders requested between 240 and 290

cannot be delivered the same day in the uncoordinated approach, but can be delivered

using an integrated approach. Hence, in examples spanning a longer time horizon,

more consolidation options are possible. This can have an impact on the number of

vehicles used. Nevertheless, in order to quantify the impact of a longer time horizon

and more customer orders, additional experiments need to be conducted in future

research. In Chapter 4, experiments with 100 customer orders are executed using a

record-to-record travel algorithm.

3.7.2.2 Impact of order times

In order to examine the impact of the moment in time an order is requested, two ad-

ditional values for the order time are tested on the instances with 10 customer orders:

180 and 210. Each of the 20 instances is tested for each order time value. The other

input data of each instance remain the same as in the previous experiments. Thus, the

only difference between the experiments in this section and these in Section 3.7.2.1 for

the instances with 10 customers is the value of the order time. Average cost savings

are indicated in Table 3.5.

Table 3.5: Impact of order time on instances with 10 customer orders

oti ∆ TC (%) ∆ TCcreg(%) ∆ TCctemp(%) ∆ TCctlv (%) ∆ TCfv (%)

0 avg. -12.65 0.00 0.00 -22.99 0.00

min. -3.86 0.00 0.00 -7.30 0.00

max. -29.82 0.00 0.00 -48.16 0.00

180 avg. -15.75 52.47 -100.00 -22.99 0.00

min. -6.63 38.33 -100.00 -7.30 0.00

max. -31.50 59.48 -100.00 -48.16 0.00

210 avg. - - - - -

min. - - - - -

max. - - - - -

{0, 60, 120, 180, 210} avg. -12.76 1.35 -15.00 -22.99 0.00

min. -3.86 0.00 0.00 -7.30 0.00

max. -30.19 8.82 -100.00 -48.16 0.00

In the uncoordinated approach, all orders still need to be picked before the due

date of 240. In the experiments in which all orders have an order time of 180, only

60 minutes per order picker are left to pick orders. In the uncoordinated approach,
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temporary order pickers need to be hired, whereas in the integrated approach all

orders can be picked on time by regular order pickers, as can be seen in Table 3.3.

The uncoordinated approach results in higher labour costs of the order pickers for an

e-commerce company.

Furthermore, with a common order time of 210, the instances cannot be solved in

the uncoordinated approach. With this order time, each order picker has 30 minutes

to pick orders before the due date. In total, with four order pickers 120 minutes are

available. However, the total time needed to pick all orders is greater than 120 minutes

in all instances generated. Thus, in the uncoordinated approach, no feasible solution

in which each order is assigned to an order picker within the time period available

can be found for these instances even if the maximum number of order pickers is

hired. Only partial order picking lists with a part of the customer orders can possibly

be created. In the integrated approach, no picking due date has to be respected.

All order pickers can work 240 minutes. In four instances, an additional order picker

needs to be temporarily hired. Due to the infeasibility of the uncoordinated approach,

the value of integration in costs cannot be quantified. The value of integration in this

scenario is that the service level increases because requesting goods later in time is

possible when an integrated approach is implemented.

The infeasibility of the problem can be solved by increasing the number of order

pickers that is allowed to work at the same time. In Chapter 4, experiments on

the value of integration are executed with large-size instances. In these experiments,

the number of order pickers is increased in the uncoordinated approach in order to

avoid infeasibility. Furthermore, there is no guarantee that the integrated problem is

always capable of obtaining a feasible solution. However, since there is more flexibility

about the start and end of order pickers’ working shift, there is a higher probability

that a feasible solution can be found without increasing the number of order pickers

compared to the uncoordinated approach.

In Table 3.5 can be seen that the value of integration (∆ TC) increases with

a later order time. The average cost savings with an order time of 180 is 15.75%

compared to average savings of 12.65% with an order time of 0. This is mainly

caused by the higher picking costs in the uncoordinated approach due to the need of

temporary order pickers which have a higher labour cost per minute worked. In the

integrated approach, the total regular picking cost (∆ TCcreg) increases compared to

the uncoordinated approach, but this is compensated by a decrease in total temporary

picking cost (∆ TCctemp).

In the previously executed experiments, all orders have the same order time. The

experiments with order time values equal to 180 and 210 are worst-case scenarios
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in which all orders are requested close to the picking due date in the uncoordinated

approach. Therefore, additional experiments are conducted in which the orders do not

have a common order time. The order times are more spread over the time horizon.

The same instances with 10 customer orders are used, but the orders have a different

order time within an instance. The possible order times are {0, 60, 120, 180, 210}.
Thus, the system is updated every hour, and a last time 30 minutes before the due

date of 240. Similar findings as in the experiments with oti = 180 are observed, as

indicated in Table 3.5. The value of integration (∆ TC) is slightly higher compared

with the instances having oti = 0. The increase in the total picking cost of regular

pickers (∆ TCcreg) in the integrated approach is compensated by savings in the total

picking cost of temporary pickers (∆ TCctemp). In the uncoordinated approach, in

three instances an additional temporary order picker needs to be hired, while in the

integrated approach only regular order pickers are needed in all instances (Table 3.3).

Hence, even in a scenario where orders arrive at different points in time as in a real-

world e-commerce DC, integration is valuable.

Changing the order time value has no impact on the vehicle routing costs since

no delivery characteristics are influenced. The release date of the orders is equal to

the picking due date in the uncoordinated approach in each scenario tested. The

picking due date is fixed at 240 as it is independent of the order time value. The time

windows remain the same and thus the vehicle routes are unaffected. The VRP is only

influenced in the scenario with an order time value of 210. Since no feasible picking

schedules can be determined in which all orders are picked on time, the orders can not

be released to be delivered. Thus, no VRP can be solved. For the other scenarios, the

cost changes between the uncoordinated and the integrated approach are the same

in Table 3.5. In these scenarios, an average cost decrease (∆ TCctlv ) of 22.99% is

obtained.

The order time can also be interpreted as the latest time the company allows

customers to place an order with the promise to be delivered in the time windows

proposed, i.e., cut-off time. In this case, the order time determines the time period

between the order placement and the earliest time window possible. By integration,

the company can allow customers to request their orders later in time and still offer

the same delivery time window options to their customers, which results in a faster

delivery. In other words, at each moment of time a customer requests an order,

more and earlier time window options from which the customer can choose during

the purchasing process, are available. Hence, integration can lead to a higher service

level offered. The total time needed to pick and deliver all orders can be shortened

in the integrated approach compared to the uncoordinated approach.
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3.7.2.3 Impact of cost parameters

In the experiments in Section 3.7.2.1, the picking cost of the regular order pickers

and the variable travel cost have the same value, i.e., creg = ctlv = 1. In order to

investigate the impact of an increase in, for example, fuel price, experiments with

higher values for the variable travel cost ctlv are conducted. The same instances as in

the basis problem setting with 10 customer orders are used with the only difference

being the value of ctlv which is equal to 1.5 or 2. A summary of the results is set out

in Table 3.6.

Table 3.6: Impact of cost parameters on instances with 10 customer orders

ctlv ∆ TC (%) ∆ TCcreg(%) ∆ TCctemp(%) ∆ TCctlv (%) ∆ TCfv (%)

1 avg. -12.65 0.00 0.00 -22.99 0.00

min. -3.86 0.00 0.00 -7.30 0.00

max. -29.82 0.00 0.00 -48.16 0.00

1.5 avg. -14.90 0.00 0.00 -25.45 7.50

min. -5.04 0.00 0.00 -32.36 75.00

max. -34.28 0.00 0.00 -50.62 0.00

2 avg. -17.03 0.00 0.00 -29.29 22.32

min. -7.15 0.00 0.00 -10.40 0.00

max. -37.29 0.00 0.00 -50.62 0.00

The results show that the value of integration (∆ TC) increases with the variable

travel cost. The higher the variable travel cost, the more valuable integration is.

Thus, in the case the variable distribution cost outweighs the picking cost, integration

becomes more beneficial. Total picking costs do not change in the integrated approach.

Whereas in the experiments with a variable travel cost of 1 no difference in the total

fixed vehicle cost (∆ TCfv ) is observed, in the experiments with a higher variable

travel cost an increase in the total fixed vehicle cost is noticed. When the variable

travel cost is higher, it can be more beneficial to conduct more routes if there is a

considerable amount of waiting time with a lower number of vehicles, and a higher

number of vehicles is needed compared to the basis scenario in the integrated approach

(Table 3.3). Thus, the higher total vehicle fixed cost is compensated by a reduction in

waiting time per vehicle route. This leads to a decrease in the total variable travel cost

(∆ TCctlv ) incurred. As can be seen in Table 3.6, a higher variable travel cost value

results on average in a larger decrease of the total variable travel cost. Table 3.3

indicates the increase in the average number of vehicles needed when the variable

travel cost increases in the integrated approach.
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3.7.2.4 Impact of customer distance to the warehouse

In the basis problem setting, customers are located in a geographic area that has

the shape of a square. The square has a width and length of 30 units. In this

section, experiments are conducted on the instances with 10 customer orders in which

customers are located in a smaller (20x20) or larger (40x40) square. Adapting the

square size influences the available time windows since the earliest lower bound of a

time window is computed as follows: pd + s0 + tmax0j . The largest travel time tmax0j

changes when the square size is modified. The largest travel time in a 20x20-square

and a 40x40-square is 15 and 29, respectively. The corresponding earliest lower bounds

are 275 and 289. Compared to the basis problem setting with a 30x30-square, the

earliest lower bound is 7 minutes earlier or 7 minutes later. Thus, in the instances, the

time windows for each order are updated according to the new time window bounds.

Table 3.7: Impact of customer distance to the warehouse on instances with 10 cus-

tomer orders

Square size ∆ TC (%) ∆ TCcreg(%) ∆ TCctemp(%) ∆ TCctlv (%) ∆ TCfv (%)

20x20 avg. -10.05 0.00 0.00 -20.90 3.75

min. -4.12 0.00 0.00 -7.80 0.00

max. -30.56 0.00 0.00 -53.20 0.00

30x30 avg. -12.65 0.00 0.00 -22.99 0.00

min. -3.86 0.00 0.00 -7.30 0.00

max. -29.82 0.00 0.00 -48.16 0.00

40x40 avg. -18.81 0.00 0.00 -33.18 0.00

min. -5.16 0.00 0.00 -9.56 0.00

max. -34.09 0.00 0.00 -56.64 0.00

Table 3.7 shows average savings over the 20 instances tested. The experiments

indicate that the larger the square in which customers are located, the higher the

value of integration due to higher savings in total variable travel cost (∆ TCctlv ).

When customers are located in a larger square, the average distance between two

customers is larger. Hence, more vehicles are needed to deliver all orders within their

time windows, as indicated in Table 3.3. Consequently, in problems with a larger

square, more vehicles arrive at the DC at the picking due date in the uncoordinated

approach compared to problems with a smaller square. However, the vehicles have to

wait before they depart. During the waiting time a variable travel cost is incurred.

The higher the number of vehicles needed, the higher the total waiting time. In

the integrated approach, the vehicles arrive at the exact departure time at the DC.

Accordingly, there is no waiting time at the depot, and thus the total variable travel
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costs decrease. Therefore, with a larger square, the waiting time for a higher number

of vehicles is reduced which leads to higher total savings in comparison with a smaller

square size.

Additionally, when an integrated approach is applied it can be beneficial to use

more vehicles compared to an uncoordinated approach. By using more vehicles, wait-

ing times within a route can be avoided which lead to cost savings. In an uncoordin-

ated approach, however, conducting an additional route probably leads to waiting

times before the actual start of this route. No difference is made between waiting

times before the start of a route or waiting times within a route. An additional route

is only conducted whenever needed to satisfy the delivery time windows selected by

customers.

The experiments in this section on the impact of the customer distance to the

DC and the experiments in the previous section on the impact of the distribution

cost parameters can be related. In the previous section, by increasing the cost value

of ctlv, the travel times and distances are unaffected. Nevertheless, travelling to a

customer becomes more expensive although the same distance needs to be travelled.

In this section, however, by changing the square size, travel times and distances to

customers decrease (increase) when the square becomes smaller (larger). In a smaller

square, a vehicle arrives faster at the next customer. Consequently, there is a higher

probability that a vehicle arrives early with respect to a delivery time window. In

both cases, i.e., a higher distribution cost and a smaller area, it can be more beneficial

in the integrated approach to split a route over multiple vehicles when there is a large

amount of waiting time within the route. In this section, to avoid waiting times due

to earliness, routes can be split, while in the previous section, routes will be split

when waiting times become more expensive due to an increase of the variable travel

cost compared to the fixed cost of hiring an additional vehicle. No costs are incurred

any longer for the waiting times before the departure of the vehicle in the integrated

approach.

3.7.2.5 Tour length restriction

The maximum tour length allowed, based on the driving time restriction, is 480

minutes (8 hours). Table 3.8 provides detailed information about the tour lengths

conducted by the vehicles in the optimal solutions. Columns 1 and 2 specify the

problem scenario considered. Column 3 presents the average tour length, while column

4 shows the maximum tour length observed over the 20 instances. In column 5, the

number of instances in which multiple vehicles are used, i.e., 2 or 3 vehicles routes, is

presented.
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Table 3.8: Tour lengths: Detailed information

Average

TL

Maximum

TL

# inst. using

multiple veh.

Basis

scenario

n = 10

oti = 0

ctlv = 1

square = 30x30

286.32 417.00 4

Changing

parameter
Parameter value

Average

TL

Maximum

TL

# inst. using

multiple veh.

n 15 279.61 410.00 7

20 259.29 466.00 14

oti 180 286.32 417.00 4

210 286.36 381.00 4

{0, 60, 120, 180, 210} 286.32 417.00 4

ctlv 1.5 257.56 417.00 5

2 218.77 417.00 8

Square size 20x20 300.95 414.00 2

40x40 230.00 402.00 12

The average tour length in all scenarios is not close to the tour length limit of

480 minutes. The maximum tour length is approximately 60 minutes less than the

maximum allowed tour length. Thus, based on these results, it can be preliminary

concluded that the tour length restriction is not binding in most instances. However,

in several instances, multiple vehicles are used to deliver the orders. It cannot be

derived from the results whether multiple vehicles are needed because assigning all

orders to a single route would violate the tour length restriction or because of a high

number of customers with overlapping time windows so that these customers cannot

be delivered in the same route without violating the time window bounds.

3.7.2.6 Computation times

Table 3.9 provides the minimum, average, and maximum computation time for each

problem scenario tested. In the integrated approach, the instances with 10 and 15

customer orders can be solved in less than one minute on average. The more customer

orders are included, the more time is needed to find the optimal solution by CPLEX,

with up to approximately 26,000 seconds (7 hours) to solve an instance with 20 orders.

Thus, to solve real-world instances with a larger number of orders a heuristic solution

method is needed. In Chapter 4, a heuristic algorithm for the I-OP-VRP is proposed.



100 Chapter 3

Table 3.9: Computation times of I-OP-VRP

Minimum

time (s)

Average

time (s)

Maximum

time (s)

Basis

scenario

n = 10

oti = 0

ctlv = 1

square = 30x30

0.28 1.91 9.30

Changing

parameter
Parameter value

Minimum

time (s)

Average

time (s)

Maximum

time (s)

n 15 4.23 22.86 141.78

20 33.49 4,965.16 25,774.23

oti 180 0.22 1.68 8.47

210 0.28 982.56 12,612.72

{0, 60, 120, 180, 210} 0.20 1.63 6.55

ctlv 1.5 0.25 2.46 13.55

2 0.31 2.81 11.97

Square size 20x20 0.20 1.17 6.56

40x40 0.25 1.94 6.27

Additionally, later order times make the problem less likely to be feasible since

the same number of orders have to be scheduled in a shorter planning horizon. The

average computation time increases in the experiments with order times equal to 180

and 210. Moreover, the higher the value of the variable travel cost, the higher the

average computation time to solve to optimality with CPLEX. Similarly, the size of

the delivery area and the computation time are positively related.

3.7.2.7 Symmetry breaking constraints

As indicated in the previous section, computation times increase significantly with

the number of customer orders. This can be caused by a higher number of feasible

solutions. However, in the I-OP-VRP, symmetry occurs in the possible solutions. For

example, whether a picking list is assigned to regular order picker 1 or to regular

order picker 2, total cost does not differ. By taking into account and dealing with

this symmetry in the mathematical formulation, the computation time can possibly

be decreased (Walsh, 2006). Symmetry breaking constraints can be introduced in

the mathematical model. In this section, several variants of such symmetry breaking

constraints are added to the mathematical formulation presented in Section 3.5, and

their impact on the computation time is evaluated.
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The first type of symmetry breaking constraints that is tested tries to deal with

symmetry between order pickers. The following constraint is added to the mathem-

atical formulation:

X1,1 +X1,p̄+1 = 1 (3.35)

This constraint guarantees that the first customer order is assigned to either the first

regular order picker or to the first temporary order picker. Since all order pickers of

the same type, either regular or temporary, have the same labour cost, it does not

have to be checked whether lower total picking costs can be obtained by assigning

the order to an order picker of the same type with a higher index number. In the

experiments, only two order pickers of each type are available, and thus no additional

symmetry breaking constraints of this type can be added without being in overlap

with constraints (3.2). Similar symmetry breaking constraints can be formulated for

the vehicle routing subproblem when homogeneous vehicles are considered. In this

chapter, however, three vehicles with different cost values and capacities are available.

Consequently, no symmetry breaking constraints can be used, since it needs to be

examined whether assigning a route to another vehicle results in lower total cost.

A second variant of symmetry breaking constraints focuses on the sequence of or-

ders within picking lists. To deal with this type of symmetry, the following constraints

can be added to the mathematical formulation:

p̂∑
p=1

Ujip ≤ 2− Yiv − Yjv ∀i, j ∈ I \ {0}, i ≤ j, v ∈ V,

ai + si + tij ≤ bj (3.36)

The sequence of orders in itself is not important. The only requirement is that the

picking process is finished before the departure time of the vehicle delivering the goods.

Constraints (3.36) state that when two orders are delivered by the same vehicle and

picked by the same picker, the customer order with the lowest index number needs to

be picked first.

Experiments2 are conducted to examine the impact of these symmetry breaking

constraints on the computation time. The effect of each type of symmetry breaking

constraints is evaluated by introducing each type individually and by introducing

both types simultaneously. The instances with 10, 15, and 20 customer orders are

2The experiments are conducted on a 12-core Xeon E5-2680v3 CPUs with 128 GB RAM. The

computational resources and services used in this work were provided by the VSC (Flemish Supercom-

puter Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government

- department EWI.
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used for the experiments. In Table 3.10, the average computation times using the

different mathematical formulations are provided.

Table 3.10: Computation times using symmetry breaking constraints

Instance size Basis* (3.35) (3.36)
(3.35)

& (3.36)

10 orders min. time (s) 0.18 0.25 0.22 0.25

avg. time (s) 2.56 2.89 3.11 3.99

max. time (s) 16.59 19.65 26.34 28.74

15 orders min. time (s) 2.39 5.26 2.82 10.39

avg. time (s) 98.86 74.17 140.81 321.97

max. time (s) 742.18 448.09 894.79 3,338.88

20 orders min. time (s) 154.38 137.14 206.94 157.60

avg. time (s) 6,516.55 6,792.62 7,263.81 7,824.47

max. time (s) 48,880.60 41,604.30 61,474.30 55,324.20

* The computation times differ from these presented in Table 3.9

since different computational resources are used.

As can be seen in Table 3.10, the average computation times in general increase

when symmetry breaking constraints are added to the mathematical formulation.

When symmetry breaking constraints (3.35) are added to deal with the symmetry of

assigning orders to order pickers of the same type, then the average computation times

only slightly differ compared to the basis mathematical formulation. For the instances

with 10 and 20 customer orders, the average computation times increase, while for the

instances with 15 customer orders the average computation time slightly decreases.

The second type of symmetry breaking constraints (3.36), dealing with the symmetry

in the picking sequence, has a negative impact on the average computation times

for all instance sizes. Additionally, when adding both types of symmetry breaking

constraints to the mathematical formulation, the negative impact is even larger than

when adding a single type of symmetry breaking constraints. Furthermore, both

the minimum computation time and the maximum computation time over the 20

instances increase in most cases. Thus, based on these experiments, no important

improvement on the computation times is found.

3.7.2.8 Results: An overview

Based on the experiments, integration in an e-commerce context has the following ad-

vantages compared to an uncoordinated approach. First, cost savings can be obtained

mainly due to a lower number of temporary order pickers needed and by avoiding wait-

ing times before the departure of a vehicle at the DC since the start of the delivery
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operations is more flexible. Thus, savings on the total labour cost of both the order

pickers and the drivers can be achieved. Second, a higher service level can be offered

as companies allow customers to order later in time and are still able to deliver within

the same time windows. The time period between placing an order and its delivery

is shorter. However, allowing these late orders implies that more orders need to be

picked closer to the departure times of the vehicles. Consequently, more order pickers

need to be hired compared to the case of earlier order times, which results in higher

personnel costs. As such, there is a trade-off between customer service offered and

personnel costs incurred, which is illustrated in Figure 3.5 for the instances with 10

customer orders. The average picking costs over the 20 instances tested are repres-

ented by the line graph and are indicated on the left axis. Both the average number

of regular and temporary pickers needed over the 20 instances tested is shown in the

column chart and are indicated on the right axis. The order time is indicated on the

x-axis. A later order time represents a higher service level.

Figure 3.5: Trade-off personnel costs and service level in the integrated approach

Higher service levels result in higher picking costs and a higher number of order

pickers needed. In the uncoordinated approach, due to the maximum number of orders

pickers allowed and the fixed arrival times of vehicles at the DC, no feasible solution

can be obtained when too many orders are requested close to the due date. In similar

situations, the integrated approach has a higher probability to find feasible solutions
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due to the higher flexibility. In the experiments conducted in this dissertation, a

higher service level is interpreted as allowing the customers to request their orders

later in time.

To conclude, for several scenarios with different parameter values and problem

characteristics, an uncoordinated approach and integrated approach are compared.

The integrated approach leads in all scenarios and for all instances to better solu-

tions compared to the uncoordinated approach. Hence, independent of the specific

parameter values and problem characteristics, companies can benefit from the integ-

ration of both subproblems. The exact value of integration is influenced by the actual

parameter values and problem characteristics. Although the experiments are conduc-

ted using data based on companies in an e-commerce context, companies operating

in other sectors can also benefit from integration, especially when short throughput

times are crucial.

3.8 Conclusions and future research opportunities

B2C e-commerce sales are increasing every year. Customers expect a fast and ac-

curate delivery. In order to fulfil these high customer expectations supply chain

functions have to be optimised simultaneously. In this chapter, an order picking pro-

cess and a vehicle routing problem in an e-commerce context are integrated into a

single optimisation problem, i.e., an integrated order picking-vehicle routing problem

(I-OP-VRP). As in the literature, most integrated problems consider a production

environment, first production scheduling and order picking processes are compared

before an I-OP-VRP is formulated. In general, different terminologies are used to

define relatively similar concepts. The related concepts are linked with each other.

In both a production context and a warehouse, processed goods need to be delivered

to customers. Consequently, there are interdependencies between production and

distribution as well as between warehousing and distribution.

This dissertation is one of the first studies in which order picking and vehicle

routing decisions are integrated. Mathematical formulations for a discrete order pick-

ing problem, a vehicle routing problem with time windows and release dates, and

an integrated problem are presented. The performance of the proposed I-OP-VRP

is compared to an uncoordinated approach in which first an OPP is solved and af-

terwards a VRP. The total cost obtained by using an uncoordinated approach is

compared to the total cost obtained by using the integrated approach.

Experiments indicate that integrating both problems can lead to cost savings of

14% on average, with even up to approximately 37%. Fewer temporary order pickers
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need to be hired in an integrated approach. Vehicles can arrive at the DC at any

moment of the day, and thus arrive just before a route needs to start. Consequently,

vehicles do not have to wait before the start of a delivery route, which leads to lower

total driver labour costs. Additionally, e-commerce companies can offer a higher

service level when order picking and vehicle routing decisions are integrated into a

single optimisation problem. Customers can request their goods later in time and still

have the possibility to choose the same delivery time window as an order requested

earlier. Companies cannot offer this service in an uncoordinated approach due to the

fixed picking due date before which all orders need to be picked. Insufficient time is

left to pick orders which are requested close to the due date. Furthermore, a sensitivity

analysis indicates that both the variable travel cost and the size of the square in which

the customers are located is positively related with the value of integration.

In all scenarios tested, integration is beneficial for companies. Independent of the

exact problem characteristics, integrating order picking and vehicle routing decisions

leads to better solutions. The results can be generalised to companies operating in

other environments than e-commerce. Integration can be valuable for any company,

especially when small throughput times are important, e.g., perishable products.

In this chapter, experiments with small-size instances with at most 20 customer

orders are conducted. The optimal solution of the I-OP-VRP for instances with 10

and 15 customers is found by CPLEX within one minute. However, solving larger

instances with 20 customer orders can take up to approximately seven hours. A real-

world distribution centre handles a large number of orders a day. They need to be able

to determine order picking schedules and vehicle routes in a small amount of time.

Therefore, a heuristic solution method for the I-OP-VRP is proposed in Chapter 4.





Chapter 4

A record-to-record travel

algorithm for the I-OP-VRP

4.1 Introduction

In Chapter 3, the integrated order picking-vehicle routing problem has been intro-

duced. A mathematical formulation for both an uncoordinated and an integrated

approach is presented. Computational experiments with small-size instances are con-

ducted using CPLEX to solve the MILP model proposed. The experiments show that

solving the integrated problem to optimality takes a large amount of computation

time, especially for larger instances. Therefore, a heuristic solution algorithm, which

could be used by real-world e-commerce companies, needs to be developed to solve the

I-OP-VRP. This chapter1 focuses on the design of a record-to-record travel algorithm

to obtain high-quality solutions within a small amount of time (Figure 4.1).

The remainder of this chapter is structured as follows. An adapted objective func-

tion is introduced in Section 4.2. In Section 4.4, a record-to-record travel algorithm

to solve the I-OP-VRP is proposed. In Section 4.5, random instances are generated.

Section 4.6 describes the tuning of the parameters of the heuristic algorithm. The

performance of the solution method is evaluated by conducting experiments in Sec-

tion 4.7. In Section 4.8, the value of integration for large-size instances is examined

using the heuristic algorithm. Finally, in Section 4.10, conclusions are highlighted.

1This chapter is based on Moons, Braekers, Ramaekers, Caris and Arda (2018).
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Introduction and problem statement (Chapter 1)

Integrated production scheduling-

vehicle routing problems (Chapter 2)

Problem description and formulation (Chapter 3)

Record-to-record travel

algorithm (Chapter 4)
Batch picking (Chapter 5)

Conclusions and future research (Chapter 6)

Integrated order picking-vehicle routing problem

Figure 4.1: Thesis outline - Chapter 4

4.2 Objective function: An update

In Chapter 3, the value of integrating order picking and vehicle routing decisions is

indicated using a more conceptual approach in the objective function. The exact

benefit obtained by integrating order picking and distribution problems depends on

the actual cost figures of a company. In this chapter, the values for the different cost

components used in the experiments are based on real-world cost figures. A solution

algorithm is proposed which should be useful for real-word e-commerce companies.

Moreover, in the previous chapter, an unlimited number of vehicles is assumed.

For each vehicle used, a fixed cost is incurred. However, determining the number

of vehicles to acquire is a more strategic and tactical decision. This dissertation

focuses on the operational decision level. Therefore, in this chapter, a limited fleet

of vehicles for the delivery operations is considered. No fixed costs are incurred

any longer. Operational costs, such as fuel, maintenance, and drivers’ labour costs,
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are allocated to each vehicle tour executed based on the tour length and kilometres

travelled. Therefore, the objective function is changed in this chapter in comparison

with Chapter 3.

The cost structure of the order picking part of the problem is not changed. In the

vehicle routing part, however, a cost structure which is commonly used in transport

economics replaces the delivery cost components used in Chapter 3. In transport

economics, the distribution cost consists of two parts: an hourly cost coefficient and

a kilometre cost coefficient. The main part of the hourly cost coefficient is the labour

cost of the driver. Additionally, it covers the cost of insurance, depreciation, and road

tax. The kilometre cost coefficient includes the cost of fuel, tires, maintenance, and

fines (Blauwens et al., 2016). Thus, the fixed vehicle usage cost fv in the objective

function (3.33) in Chapter 3 is removed. A new cost component, cttv, is introduced

and is incurred for each minute actually travelling. It corresponds with the kilometre

cost coefficient.

Summarised, the objective in this chapter is to minimise total cost of the order

picking and delivery operations. The order picking costs consist of the labour cost of

both the regular and temporarily hired order pickers. The cost structure of the vehicle

routing part is composed of two parts: an hourly cost coefficient and a kilometre cost.

Consequently, the objective function (3.33) in Chapter 3 is adapted to the following:

min creg ·
n∑
i=1

pti ·
p̄∑
p=1

Xip + ctemp ·
n∑
i=1

pti ·
p̂∑

p=p̄+1

Xip

+

n∑
i=0

n∑
j=0

v̄∑
v=1

cttv · tij · Zijv +

v̄∑
v=1

ctlv · TLv (4.1)

where cttv and ctlv represent the kilometre cost coefficient and the hourly cost coef-

ficient of vehicle v, respectively.

4.3 Metaheuristics: An overview

Historically, metaheuristics are often used to solve combinatorial optimisation prob-

lems such as the one studied in this dissertation. In this section, a high-level overview

on metaheuristics is provided. A definition of metaheuristics is provided by Sörensen

and Glover (2013):

“A metaheuristic is a high-level problem-independent algorithmic frame-

work that provides a set of guidelines or strategies to develop heuristic
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optimisation algorithms. The term is also used to refer to a problem-

specific implementation of a heuristic optimisation algorithm according to

the guidelines expressed in such a framework.”

The goal of a metaheuristic algorithm is to find the best solution out of all possible

solutions within a reasonable amount of computation time. However, since it is not

an exact method, it cannot be guaranteed that the optimal solution is found. The

solution space is examined by performing operations on solutions in order to find a

better one. In general, three ways to manipulate solutions exist. First, make iter-

atively small changes to a current solution, i.e., local search metaheuristics. Second,

construct solutions from their constituting parts, i.e., constructive metaheuristics.

Third, combine iteratively existing solutions into new ones, i.e., population-based

metaheuristics (Sörensen and Glover, 2013).

A local search metaheuristic starts from a current solution and tries to improve this

solution by making moves. A move is a small change in a solution in order to get a new

solution. The set of all possible solutions that can be generated by executing a single

move on the current solution is called the neighbourhood. Classical neighbourhoods

are, e.g., 2-Opt (Croes, 1958), exchange, relocate (Savelsbergh, 1992), and cross-

exchange (Taillard et al., 1997). Moves are iteratively conducted until a stopping

criterion is reached (Sörensen and Glover, 2013; Toth and Vigo, 2014). Examples of

local search metaheuristics are iterated local search, simulated annealing, and tabu

search.

Whereas a local search metaheuristic in each iteration works on a complete solu-

tion, a constructive metaheuristic starts from an empty solution and adds a single

element of the solution in each iteration. Thus, only in the last iteration, a complete

solution is obtained (Sörensen and Glover, 2013). Constructive metaheuristics can

be used to generate an initial solution to use in other metaheuristic algorithms (Toth

and Vigo, 2014). Examples are greedy randomised adaptive search procedure and the

pilot method.

In a population-based metaheuristic, a new solution is created by combining two

or more (high-quality) existing solutions. It is often inspired by natural concepts such

as the evolution of species (Sörensen and Glover, 2013; Toth and Vigo, 2014). Ex-

amples of population-based metaheuristics are evolutionary algorithms, e.g., genetic

algorithms, or scatter search and path relinking.

Sörensen et al. (2018) describe the history of metaheuristics in five periods. A more

elaborate description of various well-known metaheuristics is given in The Handbook

of Metaheuristics by Glover and Kochenberger (2003) (first edition) and by Gendreau

and Potvin (2010) (second edition). More specifically, for an overview of metaheurist-
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ics for the classical capacitated VRP, the reader is referred to chapter 4 of Toth and

Vigo (2014). An overview of (meta)heuristics for the VRP with time windows can be

found in Bräysy and Gendreau (2005) and in chapter 5 of Toth and Vigo (2014).

4.4 Solution procedure

The solution approach proposed is based on a record-to-record travel (RRT) al-

gorithm. A RRT algorithm is an algorithm similar to simulated annealing (SA)

with a deterministic acceptance criterion. It is first introduced by Dueck (1993) as a

variant on threshold accepting (TA, or deterministic annealing). RRT and SA differ

in the following ways. First, in SA, a new better solution is always accepted, while

a new worse solution is accepted with a gradually lowered probability. In RRT, each

new solution not worse than the best solution found so far (record) plus a deviation is

accepted. The deviation is a percentage of the record value. Moscato and Fontanari

(1990) state that the probabilistic acceptance criterion in SA does not play a major

role in the search. Slower computation times are observed compared to a determin-

istic criterion due to a higher computational effort needed to calculate the accepting

probabilities. Second, in RRT, a new solution is always compared with the record,

while in SA and TA a new solution is compared with the last accepted solution. Third,

in SA a larger number of parameters of the annealing schedule need to be tuned in

comparison with a RRT algorithm. Algorithms with only a few parameters are more

easy to understand for other users (Cordeau et al., 2002).

The use of RRT leads to better solutions than SA (Dueck, 1993). Recently, a RRT

algorithm has been efficiently used to solve several variants of the VRP, e.g., open

VRP (Li et al., 2007), consistent VRP (Groër et al., 2009), split VRP (Gulczynski

et al., 2010, 2011), and VRP with simultaneous deliveries and pickups (Chen and Wu,

2006). The RRT algorithms in these studies are based on the general idea of Dueck

(1993). Benchmark instances are used to evaluate the performance of the heuristics

developed in these studies. The results are compared with these obtained by other best

heuristics in literature, e.g., tabu search and ALNS. The solution methods developed

are competitive with these existing heuristic algorithms. Thus, the RRT algorithms

are implemented rather effective and are still easy to be reproduced (Toth and Vigo,

2014).

In the RRT algorithm, local search operators are used. Local search operators,

such as exchange and relocate, are often successfully used to solve a VRPTW. The

first step of the proposed algorithm is to generate an initial solution as described in

Section 4.4.1. Next, to improve the quality of this solution, five local search operators
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are used in an iterative way in a record-to-record travel framework for a maximum

number of iterations (Section 4.4.2). A general overview of the solution method is

outlined in Algorithm 1.

Algorithm 1 Outline of solution procedure

1: Parameters: numb it, Imax

numb it: iteration number

Imax: maximum number of iterations

2: Generate initial solution S0

3: numb it := 0

4: repeat

5: Local search within a record-to-record travel framework

6: numb it := numb it+ 1

7: until numb it > Imax

The proposed solution method can be used by a B2C e-commerce company to

determine both a picking schedule and delivery plan. In an e-commerce context,

demand is not known completely in advance. Thus, it is hard to establish picking lists

and vehicle routes for the entire day at the beginning of the working day. The system is

updated on a regular basis throughout the working day, e.g., every hour. The picking

schedules and vehicle routes are adapted by eliminating the orders which are already

picked or delivered and by assigning the newly arrived orders to a picker and vehicle.

There is a strong coordination, communication, and information exchange required

between the e-commerce company and the 3PL service provider when deliveries are

outsourced. To determine reliable schedules, the e-commerce company needs to have

access to all information. The data about the orders are directly obtained from the

customers at the moment of the purchase. The 3PL service provider has to send

information to the e-commerce company about the availability of the vehicles.

4.4.1 Initial solution: Constructive heuristic

An initial solution is created by using a constructive heuristic consisting of two parts,

one for each subproblem. For the assignment of customer orders to pickers the same

procedure is used as in Belo-Filho et al. (2015) for the assignment of orders to pro-

duction lines in an I-PS-VRP. The initial vehicle routes are created by applying the

cheapest insertion principle. This procedure is also applied by Du et al. (2005) for

a dynamic VRP and by Liu et al. (2017) for a VRP-rd, both in a B2C e-commerce

context.
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Before assigning orders to pickers, the minimum number of order pickers needed

NPickmin is calculated as follows: dtotal order picking time needed/maximum work-

ing time of a pickere. The orders are assigned in a non-decreasing order of the upper

bound of their delivery time window, such that orders with an earlier time window

are picked first. The assignment procedure depends on NPickmin. If NPickmin is

less than or equal to the number of regular pickers available, then an order is assigned

to the first position of the picking schedule of each picker in the set of NPickmin

pickers. Afterwards, orders are assigned to the second schedule position, and so on

until all orders are assigned. Before an order is assigned to a picker, feasibility is

checked concerning the maximum allowed picker working time, delivery deadline, and

picking capacity. If NPickmin is greater than the number of regular pickers, then

temporary order pickers need to be hired. In this case, orders are first assigned as

much as possible to regular order pickers, and thereafter the remaining unassigned

orders are assigned to temporary order pickers using the same procedure. If, after this

procedure, still some orders are not assigned to a picker, then an additional picker is

added to the set of NPickmin pickers until all orders are assigned to a picker.

In Figure 4.2, an example of the assignment procedure for the picking schedule

is shown. Ten orders, which have a total picking time of 185 minutes, need to be

picked. Two regular order pickers are available with each a maximum working time

during a single shift of 90 minutes. Thus, NPickmin = d185/90e is equal to three.

Consequently, a third temporary order picker needs to be hired. First, orders are as

much as possible assigned to the two regular pickers in an alternating way. Next, the

remaining order is assigned to the third temporarily hired order picker.

Figure 4.2: Example of the assignment procedure for picking schedules

In order to create initial vehicle routes, orders are assigned to vehicles based on

the cheapest insertion principle (Rosenkrantz et al., 1977). The first order is assigned

to an empty route. Then, the next orders can be inserted before or after each already

inserted order, or in a new empty route. The cheapest feasible insertion option is

selected. Feasibility needs to be checked concerning the vehicle capacity, maximum

allowed route length, and delivery time windows. The time window feasibility check is

executed in constant time using the earliest departure time and latest arrival time as
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described in Vidal et al. (2015). A vehicle leaves the DC at the latest possible moment

so that still all orders are being delivered within their time window. In case the vehicle

capacity is violated, insertion possibilities are considered in other vehicles. When the

maximum route length or a time window is violated, other insertion possibilities in

the same vehicle or in another vehicle are examined such that a feasible solution can

be found. Additionally, the picking process of the order has to be finished before

the start of the vehicle route. If this relationship is violated, it is not possible to

delay the start of the route since the vehicle already departs at the latest possible

moment. Therefore, to solve the violation, the picking schedule is adapted such that

the order can be inserted at the cheapest position without violating the picking-

delivery relationship of any other order. The adaptation procedure is described later

in Section 4.4.3. If this is not possible, then the order is assigned to the next best

feasible insertion position in a route.

For example, if the best insertion position is in a vehicle with a departure time of

180 and the picking operations of that order are completed at 190, the order needs

to be rescheduled such that the picking process is completed earlier. However, when

this would lead to new violations of the picking-delivery relationship for other orders,

the order cannot be rescheduled. The order needs to be assigned to another vehicle

with a later departure time, e.g., 200.

4.4.2 Local search with record-to-record travel

In order to improve the initial solution, three well-known local search operators (neigh-

bourhoods) for the vehicle routing part of the problem and two for the order picking

part of the problem are used. For an overview of local search algorithms applied for

the VRPTW, the reader is referred to Bräysy and Gendreau (2005) and Toth and

Vigo (2014). To adapt the routes constructed, the following three operators are ap-

plied: 2-OptVRP, exchangeVRP, and relocateVRP. In Section 4.7.3, it is investigated

whether each operator contributes to the improvement of the solution quality. The

2-OptVRP operator is an edge-exchange operator in which two edges are removed and

replaced by two new edges within the same route (intra-route operator). The result

is the reversal of the direction of a subpath of a route (Croes, 1958). The edges im-

mediately before and immediately after a subpath of a route are removed. The order

immediately before the subpath is connected with the last order of the subpath, and

the order immediately after the last order of the subpath is connected with the first

order of the subpath (Figure 4.3(a)). The exchangeVRP (or swapVRP) operator swaps

two customer orders within the same route or between two routes (intra- and inter-
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route operator). An example of an inter-route exchange is shown in Figure 4.3(b).

The operator can only swap an order within the same route if there are at least three

edges between the orders in order to avoid overlap with the 2-OptVRP operator. For

example, in Figure 4.3(b), orders 1 and 3 cannot be swapped, since this is the same

as reversing the subsequence 1-2-3 to 3-2-1, as shown in Figure 4.3(a). The first order

with which order 1 can be swapped within the same route is order 4. The relocateVRP

operator removes a customer order from a route and reinserts it at another position

in the same route or in another route (intra- and inter-route operator) (Savelsbergh,

1992). An order cannot be relocated to the position before or after its current position

to avoid overlap with the 2-OptVRP operator. Figure 4.3(c) shows a relocation of an

order to another route.

(a) Example of 2-OptVRP operator

(b) Example of exchangeVRP operator

(c) Example of relocateVRP operator

Figure 4.3: Example of VRP operators

The moves are evaluated for feasibility concerning vehicle capacity, time windows,

route length, and the relationship between OPP and VRP. When the capacity of a

specific vehicle would be violated after a relocation or swap, possibilities for swapping

with or relocating to positions in other vehicles are examined. Time window feasibility

is checked in constant time with the use of earliest departure time and latest arrival

time of each order in a route (Vidal et al., 2015). If an operator move would lead to

a TW or route length violation, the operator ignores the current position to which

an order would be relocated or swapped with and goes on with the next possible
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position. In the 2-OptVRP operator, the next possible end position of the sequence

to reverse is considered in this case. When the OPP-VRP relationship is violated, a

move is not discarded directly but it is checked whether feasibility can be maintained

by adapting picking schedules using the procedure explained in Section 4.4.3.

The order picking schedules are changed using the following operators:

exchangeOPP and relocateOPP. The operators work similarly as in the routing part of

the integrated problem. The OPP-operators are only applied to moves between tem-

porary and regular order pickers since only that type of moves could possibly result in

a lower total picking cost. Swapping orders between regular order pickers or relocating

an order from a regular order picker to another one will never lead to lower picking

costs because regular order pickers all have the same labour cost. Multiple picking

sequences lead to the same total order picking costs. Consequently, any move which

changes the sequence within the picking list of a regular order picker is accepted. To

save on computational effort, moves in the picking lists of regular order pickers are

only executed when required by the OPP-VRP relationship. When a change in the

picking schedules of regular order pickers is needed to obtain feasible vehicle routes

with lower costs, this change will be found by a VRP operator as will be explained

later in Section 4.4.3.

The exchangeOPP operator swaps a customer order currently being picked by a

temporary order picker with a customer order being picked by a regular order picker

(inter-picker operator). In Figure 4.4(a), an order picked by a temporary picker

(p = 3) is swapped with an order picked by a regular picker (p = 1). The relocateOPP

operator removes a customer order from the picking schedule of a temporary order

picker and reinserts it in the schedule of a regular order picker (inter-picker operator).

Figure 4.4(b) shows a relocation of an order from a temporary picker to a regular

picker. Feasibility checks are executed with respect to maximum working time and

the relationship between OPP and VRP. When the maximum working time would be

violated by a swap move, the next possible order to swap with is checked. In case of

a violation created by the relocateOPP operator, relocation possibilities for the order

to another regular picker are examined. When the OPP-VRP relationship is violated

by an OPP-operator, the procedure explained in Section 4.4.3 is used check whether

feasibility can be maintained by adapting vehicle routes.

The operators used in the RRT algorithm are also applied in related studies. Du

et al. (2005) and Liu et al. (2017) use the relocateVRP and exchangeVRP operator to

improve the initial solution for a VRP in an e-commerce environment. These operators

are used as an inter-route operator in both studies. The relocateVRP operator is addi-

tionally used as an intra-route operator in Du et al. (2005). In Schubert et al. (2018),
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(a) Example of exchangeOPP operator

(b) Example of relocateOPP operator

Figure 4.4: Example of OPP operators with two regular order pickers and one tem-

porary order picker

who consider an I-OP-VRP, the same OPP-operators are applied. An exchangeOPP

operator is used for swaps between pickers, and a relocateOPP operator as an intra-

picker operator. The heuristic algorithm proposed in this dissertation makes use of

well-known local search operators which have proven their effectiveness on the VRP

with time windows in the past (Toth and Vigo, 2014). In contrast, Schubert et al.

(2018) use less common operators to adapt the routes in their ILS algorithm, which

are mainly focusing on the changing the composition of the multiple trips conducted

by the vehicles.

4.4.3 Algorithmic framework

A detailed outline of the solution procedure is given in Algorithm 2. In each iteration

of the local search, the five operators are executed in a random order (line 8). Each

operator is executed for a single randomly selected vehicle or order picker and starts

from the last accepted solution SA (line 10). Within a vehicle route or picking schedule
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Algorithm 2 Detailed outline of solution procedure with record-to-record travel

1: Parameters: α, numb it, Imax, Inon impr, Inon−impr
max , Mnon impr, Mnon−impr

max

α: deviation rate

numb it: iteration number

Imax: maximum number of iterations

Inon impr: number of consecutive iterations without improving the record

Inon−impr
max : maximum number of consecutive iterations without improving the record

Mnon impr: number of consecutive moves without improving the record

Mnon−impr
max : maximum number of consecutive moves without improving the record

2: Solutions: SB = best solution, SA = last accepted solution

S0 = initial solution, S = current solution

3: Operators = {2-OptVRP, exchangeVRP, relocateVRP, exchangeOPP, relocateOPP}
4: Determine S0

5: SB := S0; SA := SB ; record := Z[SB ]; deviation := α · record
6: numb it := 0, Inon impr := 0, Mnon impr := 0

7: repeat

8: Shuffle operators randomly leading to an operator sequence numbered from 1 to 5

9: for operator sequence number = 1 to 5 do

10: Select random vehicle or order picker from SA

11: Mnon impr := 0

12: repeat

13: Select random order in vehicle route or order picker schedule

14: Conduct best move on SA resulting in solution S

15: if Z[S] < record + deviation then

16: SA := S

17: if Z[S] < record then

18: SB := S

19: update record and deviation

20: Mnon impr := 0

21: else

22: Mnon impr := Mnon impr + 1

23: end if

24: end if

25: until Mnon impr = Mnon−impr
max

26: end for
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Algorithm 2 (continued)

27: if record is updated then

28: Inon impr := 0

29: else

30: Inon impr := Inon impr + 1

31: end if

32: if Inon impr = Inon−impr
max then

33: SA := SB

34: Inon impr := 0

35: end if

36: numb it := numb it+ 1

37: until numb it = Imax

a random customer order is selected for which the operator is executed (line 13).

Within the loop (line 9-26), for each operator the best feasible move for the selected

order is conducted. A new solution S is accepted if its objective value Z[S] is less

than the best objective value found so far Z[SB ] (record) plus a deviation (line 15-

16). The deviation value is a fraction α of the record value. Additionally, if the

new objective value is less than the record, it becomes the new best solution. In this

case, the record and deviation value are updated (line 17-20). Otherwise, the number

of non-improving moves Mnon−impr is increased (line 22). The selected operator is

executed for the same vehicle or order picker as long as the number of consecutive

moves without improving the record Mnon−impr is less than a predefined maximum

number of consecutive non-improving moves Mnon−impr
max (line 25). Each time the

operator is executed, a random order is selected within the same vehicle route or

order picking schedule. The next operator continues with the last accepted solution.

If after executing the five operators the record is not updated, the number of non-

improving iterations Inon−impr is increased (line 30). When a maximum number of

consecutive iterations without improvement of the record Inon−imprmax is reached, then

the last accepted solution is replaced by the best solution SB (line 32-35). The RRT

heuristic is executed for a maximum number of iterations Imax (line 36).

In the VRP-operators, the best move is selected based on the impact of the oper-

ator on the total distribution costs, i.e., drivers’ labour cost and kilometre cost. In the

OPP-operators, the impact of the best move is calculated based on the total labour

cost of both types of order pickers. Before actually executing a move, it needs to

be evaluated whether the relationship between OPP and VRP is not violated by the

move. This is where the integration of the OPP and the VRP is mainly implemented
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in the RRT heuristic. It is checked whether after a move the order picking process of

each order is still finished before the departure time of the vehicle that delivers the

order. If a violation occurs, the RRT heuristic tries to solve the violation such that

the best move can be conducted. The procedure to solve a violation depends on the

type of operator that causes the violation.

When the OPP-VRP relationship is violated by a VRP-operator, the violated

orders are removed from their original position in the picking schedules and reinserted

at other positions without creating a violation for other orders. A reinsertion position

is searched in the picking schedule of each order picker, starting with the first order

picker. A removed order is inserted at the first position found which solves the

violation. It is possible to insert the removed order at an earlier position in the picking

schedule of the order picker to which it was originally be assigned if this solves the

violation. If it is not possible to reinsert all the violated orders, the VRP-move is

considered not feasible.

If an OPP-operator leads to violations, the violated orders are removed from the

vehicle routes and reinserted in routes with a later departure time. Each possible

vehicle route is considered, starting with the first vehicle. The removed order is

inserted in the first possible route which solves the violation. Again, when it is

not possible to reinsert the orders, then the OPP-move is considered not feasible.

Additionally, a move by a VRP- or OPP-operator is considered non-acceptable if,

after repairing violations, it leads to a total cost increase which is larger than the

deviation value.

An operator is labelled as a VRP operator or an OPP operator to refer to the

initial moves which are conducted by the operator. Nevertheless, when the OPP-

VRP relationship is violated, also changes can be made in the other subproblem to

solve the violation. Consequently, the effect of executing an operator is not always

purely obtained by changing one of the subproblems. It can be a combined effect of

the operator in one subproblem and relocate moves repairing violations in the other

subproblem.

In the algorithm proposed in this dissertation, only infeasibilities are allowed which

are due to the relationship between the two subproblems, i.e., the picking process of

one or more orders is not completed before the departure time of the vehicle delivering

these orders. Nevertheless, this type of infeasibility is only allowed when the violation

can be immediately fixed by reassigning the violated orders either in the vehicle

routes or in the picking schedules. If the violated orders cannot be reassigned to

solve the infeasibility, the original operator move creating the infeasibility will not

be conducted. Moreover, infeasibilities occurring within a single subproblem are not



I-OP-VRP: RRT heuristic 121

allowed. More specifically, in the vehicle routing subproblem, violations of the vehicle

capacity, maximum route length or time windows are not tolerated. In the order

picking problem, assignments of orders to pickers must respect the picking device

capacity and working time limit.

4.5 Data generation

Since it is the first time an integrated order picking-vehicle routing problem is solved

for large problems, no benchmark instances exist. Thus, to conduct experiments,

artificial instances are generated based on real-life data or related studies in the field

of B2C e-commerce. Instance classes with three different problem sizes are generated,

i.e., 10, 15, and 100 customer orders. For each class, 100 instances are generated

resulting in 300 instances in total. The first 50 instances of each class are used

for the parameter tuning and sensitivity analysis, the remaining 50 are used for the

actual experiments. The randomly generated instances are available online at http:

//alpha.uhasselt.be/kris.braekers.

For the instances with 10 and 15 customer orders, two regular order pickers, one

temporary order picker, and three vehicles are available. For the larger instances

with 100 orders, nine regular order pickers, three temporary order pickers, and seven

vehicles are used. The number of order pickers that can be temporarily hired is often

negotiated with the labour unions. The set of order pickers consists of approximately

75% regular order pickers and 25% temporary order pickers. The total number of

order pickers available is calculated as follows: d(maximum picking time of an order

· number of orders)/maximum working time of a pickere. In real life, the number of

orders is not known in advance. To determine the number of order pickers needed, e-

commerce companies can use either historical data on the number of orders requested

during a specific time period or forecasts about future customer orders.

As described in Section 4.2, in this chapter, more realistic data values are used.

Therefore, the data generation differs for some problem characteristics in comparison

with Chapter 3. The main differences compared to Chapter 3 are described in this

section. Problem characteristics not described in this section are generated in the

same way as in Chapter 3. In the order picking part of the problem, only the labour

costs are adapted. After consulting a large international logistics service provider, the

labour cost of a regular creg and a temporary order picker ctemp are set equal to 25

and 30 euro per hour, respectively.

In the vehicle routing part of the problem more changes are made. First, ho-

mogeneous vehicles are considered instead of a heterogeneous fleet. Considering a

http://alpha.uhasselt.be/kris.braekers
http://alpha.uhasselt.be/kris.braekers
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homogeneous fleet reduces the complexity of the heuristic algorithm because no de-

cisions have to be made about the type of vehicles to which orders are assigned.

Each van has a capacity Cv of 100 items. A similar vehicle fleet is used in Cárdenas

et al. (2017) who based this value on data of a Belgian logistics carrier operating in

a B2C e-commerce context. Second, as described earlier, the cost structure has been

changed. For a small van, a cost of 0.22 euro per kilometre travelled cttv is incurred

(Blauwens et al., 2016). The labour cost of the driver ctlv is equal to 25 euro per

hour (VIL, 2016). Third, the average unloading time si of a parcel is equal to four

minutes (VIL, 2016). The unloading time of an order is generated from a triangular

distribution TRIA(2, 4, 6). Four, the delivery locations are located in a 50x50-square

with the DC located in the centre, as in Liu et al. (2017).

Finally, customers of e-commerce companies can often select a time window from a

limited number of options. A survey in the United Kingdom has indicated that in case

customers are allowed to choose the length of the delivery time slot approximately

52% would prefer a two-hour time window (Interactive Media in Retail Group, 2014).

Additionally, real-world B2C e-commerce companies offering this service mostly pro-

pose time slots with a two-hour width (e.g., Albert Heijn, n.d.; Coolblue, n.d.). In

the experiments, customers can choose out of nine different time windows. Seven of

the nine possible time windows have a width of 120 minutes, and the remaining two

options have a four-hour width.

Table 4.1: Time window options

Time window Width

[176, 296] 2h

[236, 356] 2h

[296, 416] 2h

[356, 476] 2h

[416, 536] 2h

[176, 416] 4h

[416, 656] 4h

[476, 596] 2h

[536, 656] 2h

Since the problem starts in an empty state, the assumption is made that if a

customer purchases goods online, then at least a two-hour time period is provided

for order picking. In total, each order picker is allowed to work four hours during a

single shift. Vehicles can leave the DC when needed to deliver goods on time, while

still other orders are being picked by order pickers. The time window bounds are

calculated in a similar way as in Chapter 3. In Table 4.1, the time window options
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used in the computational experiments are shown. When the last customer in a route

is visited, the vehicle has to return to the DC before the end of its time window, i.e.,

[0, 656]. The upper bound bi of the TW of the DC is equal to the upper bound of the

earliest TW, i.e., 176, plus the maximum driver work time, i.e., 480 minutes, resulting

in a value of 656.

4.6 Parameter tuning

In a record-to-record travel algorithm, the main parameter is the deviation rate α.

Furthermore, the number of iterations Imax, the maximum number of consecutive

non-improving iterations Inon−imprmax , and the maximum number of consecutive non-

improving moves by an operator Mnon−impr
max need to be determined. The maximum

number of iterations is the stopping criterion of the heuristic algorithm, and, therefore,

this value is determined upfront by manual parameter testing using various values

for the other parameters. Once the number of iterations is fixed, the remaining

parameters are tuned using the irace package of López-Ibáñez et al. (2016).

4.6.1 Stopping criterion

The stopping criterion for the RRT algorithm is the number of iterations. Intuitively,

the more iterations executed, the better the solution quality. However, executing

unnecessary iterations is time consuming. Especially for small-size instances, it is

pointless to keep running the RRT heuristic once the optimal solution is found. Since

the irace package does not evaluate parameter combinations on their computation

time, manual parameter testing is used to determine the number of iterations. Then,

this number of iterations is used in the irace package to tune the other parameters.

The parameter values used for the manual experiments are shown in Table 4.2 and

are chosen based on preliminary small experiments.

Manual experiments with different parameter combinations are executed for each

problem size. The results of the parameter combinations are compared with the

optimal solutions obtained by CPLEX or the best solution found by RRT heuristic

when the optimal solution is not known. The minimum, average, and maximum gap

are calculated for each combination. Two parameters have a direct impact on the

computation time: the number of iterations Imax and the maximum number of con-

secutive non-improving moves Mnon−impr
max . The number of iterations is the stopping

criterion of the algorithm. The maximum number of consecutive non-improving moves

Mnon−impr
max has an impact on the computation time as it influences the number of
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Table 4.2: Manual parameter testing values

Instance size Parameter Tested values

10 orders α 0.01; 0.05; 0.10; 0.15; 0.20; 0.25; 0.30; 0.50

Inon−impr
max 5; 10; 15; 20; 25; 30; 50; 100; 200

Mnon−impr
max 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 15

Imax 100; 200; 300; 400; 500; 600; 700; 800; 900; 1,000; 2,000; 3,000;

4,000; 5,000; 6,000; 7,000; 8,000; 9,000; 10,000; 11,000; 12,000;

13,000; 14,000; 15,000; 20,000; 25,000; 30,000; 35,000; 50,000;

100,000; 125,000; 150,000; 200,000

15 orders α 0.01; 0.05; 0.10; 0.15; 0.20; 0.25; 0.30; 0.50

Inon−impr
max 5; 10; 15; 20; 25; 30; 35; 40; 50; 100; 125; 150; 175; 200; 225; 250;

300; 400; 1,000; 1,500; 2,000; 5,000

Mnon−impr
max 1; 2; 3; 4; 5; 10; 20

Imax 500; 1,000; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 8,000; 9,000;

10,000; 11,000; 12,000; 13,000; 14,000; 15,000; 16,000; 17,000;

18,000; 19,000; 20,000; 21,000; 22,000; 23,000; 24,000; 25,000;

30,000; 35,000; 40,000; 50,000

100 orders α 0.01; 0.02; 0.03; 0.04; 0.05; 0.10; 0.15

Inon−impr
max 5; 10; 15; 20; 25; 30

Mnon−impr
max 0; 1; 2; 3; 4; 5; 10; 15; 20; 25

Imax 1,000; 2,000; 3,000; 4,000; 5,000; 6,000; 7,000; 8,000; 9,000;

10,000; 11,000; 12,000; 13,000; 14,000; 15,000; 16,000; 17,000;

18,000; 19,000; 20,000; 21,000; 22,000; 23,000; 24,000; 25,000;

30,000; 40,000; 50,000; 60,000; 70,000; 80,000; 90,000; 100,000;

125,000; 150,000; 175,000; 200,000; 250,000; 300,000

moves within a single iteration. The number of consecutive non-improving iterations

Inon−imprmax only influences after how many iterations without improvement the RRT

heuristic restarts from the best solution. This parameter has no direct impact on

the computation time. The results of the manual experiments are combined over the

number of iterations Imax, the number of non-improving moves Mnon−impr
max , and the

deviation rate α. For each combination of these three parameters, the minimum, av-

erage, and maximum gap over all experiments with a different number of consecutive

non-improving iterations Inon−imprmax is shown. The results are sorted in an ascending

order with respect to the average gap, the number of iterations, and the maximum

number of consecutive non-improving moves. In Table 4.3, the 10 combinations with

the lowest average gap and lowest number of iterations needed are presented for each

problem size. Thus, based on these tables, the minimum number of iterations needed

to obtain the best results can be determined.

For the instances with 10 customer orders, 25 instances are used with 20 runs

per instance. As can be seen in the upper part of Table 4.3, the majority of the

combinations, i.e., 7 out of 10, obtain the optimal solutions of the instances tested
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Table 4.3: Top 10 parameter combinations with lowest number of iterations - small-

size instances

Instance size Imax α Mnon−impr
max

avg.

gap (%)

min.

gap (%)

max.

gap (%)

10 orders 600 0.15 15 0.00 0.00 0.00

600 0.20 15 0.00 0.00 0.00

600 0.30 15 0.00 0.00 0.00

700 0.15 8 0.00 0.00 0.00

700 0.15 10 0.00 0.00 0.00

700 0.20 10 0.00 0.00 0.00

700 0.25 10 0.00 0.00 0.00

700 0.15 15 0.00 0.00 0.00

700 0.20 15 0.00 0.00 0.00

700 0.25 15 0.00 0.00 0.00

15 orders 6,000 0.15 20 0.00 0.00 0.00

7,000 0.15 20 0.00 0.00 0.00

8,000 0.15 20 0.00 0.00 0.00

9,000 0.15 20 0.00 0.00 0.00

10,000 0.15 20 0.00 0.00 0.00

11,000 0.15 20 0.00 0.00 0.00

12,000 0.15 20 0.00 0.00 0.00

13,000 0.15 20 0.00 0.00 0.00

14,000 0.15 20 0.00 0.00 0.00

14,000 0.30 20 0.00 0.00 0.00

within 700 iterations, but using different values for the other parameters. Therefore,

the number of iterations is set equal to 700 to tune the other parameters. Similar

experiments are conducted with 17 instances with 15 customer orders. The lower

part of Table 4.3 shows that 9 out of 10 combinations make use of the same deviation

rate value and number of non-improving moves. Thus, with these specific values for

those parameters conducting more iterations is pointless, since it leads to the same

results. The first combination to obtain the optimal solutions requires 6,000 iterations.

Therefore, to tune the remaining parameters, the number of iterations is set equal to

6,000.

For the large-size instances with 100 customer orders, the optimal solutions are

not known. Based on the results of the manual parameter testing, the best solution

for each of the 25 instances can be indicated. The parameter combination leading

to the best solution found for each instance is shown in Table 4.4. As can be seen,

the combination differs for each instance. The highest number of iterations needed

to obtain the best solution is 250,000. Therefore, in order to obtain the value for the
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Table 4.4: Best solution found for each instance using manual parameter tuning - 100

customer orders instances

Inst. α Imax Inon−impr
max Mnon−impr

max Z

1 0.01 100,000 20 20 1,494.21

2 0.01 7,000 15 15 1,392.39

3 0.02 16,000 25 15 1,457.99

4 0.01 175,000 20 25 1,435.03

5 0.01 200,000 15 5 1,471.11

6 0.01 9,000 25 10 1,410.47

7 0.01 50,000 15 15 1,393.13

8 0.01 200,000 25 10 1,389.90

9 0.01 175,000 10 25 1,444.70

10 0.01 21,000 20 25 1,449.43

11 0.02 250,000 25 25 1,449.24

12 0.03 200,000 15 25 1,451.47

13 0.03 100,000 20 15 1,462.52

14 0.03 125,000 10 25 1,454.05

15 0.02 150,000 25 15 1,450.76

16 0.02 200,000 15 25 1,467.92

17 0.03 125,000 25 15 1,481.69

18 0.01 250,000 10 20 1,509.70

19 0.01 250,000 20 25 1,406.05

20 0.01 200,000 25 20 1,444.36

21 0.01 9,000 30 25 1,461.20

22 0.01 11,000 15 10 1,377.66

23 0.01 11,000 25 15 1,414.46

24 0.03 125,000 15 20 1,449.32

25 0.04 250,000 15 20 1,379.37

avg. 133,417 19 19

mode 200,000 25 25

max. 250,000 30 25

deviation rate, the maximum number of consecutive non-improving iterations, and

the maximum number of consecutive non-improving moves, the number of iterations

is fixed at 250,000.

4.6.2 Parameter tuning with irace

In order to evaluate which parameter combination leads to the best results, the ir-

ace package, developed by López-Ibáñez et al. (2016), is used. The irace package

is a software package implementing iterated racing procedures which are used for

automatically configuring parameters of algorithms.
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The iterated racing procedure consists of three steps. First, new parameter config-

urations are sampled according to a particular distribution. Second, the best config-

urations of the newly sampled ones are selected based on a racing procedure including

a statistical test. Third, the sampling distribution is updated to bias the sampling

towards the best configurations found so far. These steps are repeated.

The following input is needed for the irace procedure: instance set, parameter

space, cost (or objective) function, and a tuning budget. The instance set refers to

the instances which are available for tuning the parameters and on which different

parameter combinations are tested. The parameter space indicates which parameters

of an algorithm needs to be tuned. For each parameter different ranges can be spe-

cified. The range indicates the possible values of the parameter. The cost function

refers to which variable needs to be optimised, e.g., total cost minimisation. The tun-

ing budget specifies the number of evaluations the irace procedure will execute during

the procedure. The number of iterations, or races, conducted depends on the number

of parameters which needs to be tuned.

During each iteration, parameter configurations are tested on the instances avail-

able. After a number of steps within an iteration, parameter configurations with

a statistically worse performance than at least another one are discarded based on

the rank-based Friedman test. The race is continued with the configurations which

survived the statistical analysis. From the second race on, the best, or elite, config-

urations of the previous race are combined with newly sampled configurations. The

procedure ends when either a minimum number of surviving configurations, a max-

imum number of instances used, or a pre-defined budget is reached. For a detailed

description of irace, the reader is referred to López-Ibáñez et al. (2016).

The following parameters of the RRT algorithm are tuned using the irace package:

the deviation rate α, the maximum number of consecutive non-improving iterations

Inon−imprmax , and the maximum number of consecutive non-improving moves of an op-

erator Mnon−impr
max . The deviation rate is a real number with two digits between zero

and one. The other parameters are integer values. The number of iterations, which is

the stopping criterion, is determined with manual experiments in Section 4.6.1, since

irace do not differentiate parameter combinations on their computation time needed.

The irace package is executed for each problem size separately because the problem

size can have an impact on the tuned values. When the irace package is used for all

instances simultaneously, the result will be a parameter combination which would

lead to good solutions on average. However, on each instance individually the results

could be worse. The ranges used for the irace package to find the best parameter

values are indicated in Table 4.5. The ranges are based on the results obtained by
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Table 4.5: Parameter tuning ranges

Parameter Type
Range

10 orders 15 orders 100 orders

α real (0, 0.20) (0, 0.20) (0.00, 0.05)

Inon−impr
max integer (0, 10) (0, 25) (5, 30)

Mnon−impr
max integer (0, 20) (5, 25) (5, 35)

the manual parameter testing executed to obtain the number of iterations needed.

The bounds of the ranges are included. The iterated racing configuration process is

stopped after 5,000 runs and 2,000 runs for the small-size (10 and 15) and large-size

(100) instances, respectively. The first 50 instances of each class are used. For each

instance size, the irace package uses 25 instances for training and 25 instances for

testing the obtained parameter configurations.

The second column of Table 4.6 indicates for each problem size the time needed

for the irace package to identify the elite configurations. These combinations are the

best parameter combinations irace could find during the racing procedure and are

presented in columns 3 to 5. For each problem size, the three best parameter settings

are shown. Irace is capable to identify elite configurations within 3 minutes for the

instances with 10 customer orders and within approximately 15 minutes for the in-

stances with 15 customer orders. For the large-size instances, approximately 50 hours

are needed to identify the elite configurations as shown in Table 4.6. More detailed

results on the irace procedure can be found in Appendix B. For each instance size,

the best elite configuration is used as parameter combination in the computational

experiments in the following sections. It can be observed that when the instance size

increases, the best value for the deviation rate decreases, while the value for the other

parameters increases.

Table 4.6: Elite configurations obtained with irace

Time

needed (s)

Elite configurations

Instance size α Inon−impr
max Mnon−impr

max

10 orders 157 0.15 5 8

0.15 6 10

0.18 7 7

15 orders 922 0.15 10 21

0.10 17 16

0.10 5 20

100 orders 177,936 0.01 26 32

0.01 28 30

0.01 29 31
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4.6.3 Sensitivity analysis of parameters

In order to investigate the impact of the different design choices in the RRT heuristic,

a sensitivity analysis is conducted. The results of this analysis are based on the

manual parameter testing used for obtaining the value of the stopping criterion, i.e.,

the number of iterations, in Section 4.6.1. The impact of the following parameters

are evaluated: number of iterations Imax, deviation rate α, the number of consecutive

non-improving iterations Inon−imprmax , and the number of consecutive non-improving

moves Mnon−impr
max . All combinations of the parameter values listed in Table 4.2 for

each problem size are used in the experiments. The effect of each parameter is shown

in Figures 4.5 to 4.8.

In each figure, the impact of a single parameter is represented for the 10, 15,

and 100 customer orders instances. The average gap for a specific parameter value

over all instances tested and all values tested for the other parameters is indicated

on the y-axis in the graphs. The scale of the y-axis is different for each graph since

several parameter combinations can lead to bad results. Especially for the large-size

instances bad solutions can be generated since there is a higher probability that the

wrong order to conduct a move on is randomly selected. For the 10 customer orders

instances, 25 instances are used, while 17 instances are used for the 15 customer orders

instances. For these small-size instances, the gap between the optimal solution and

the solution found by the RRT algorithm is calculated. For the large-size instances

with 100 customer orders, 25 instances are used. The gap between the solution found

by the RRT algorithm with a specific parameter combination and the best solution

found over all parameter combinations is calculated. The average of these gaps is

calculated over all parameter combinations for each value of the parameter of which

the effect is studied. Thus, in the graphs, the average gap for each parameter value

over all instances and other parameters is shown. Twenty runs are conducted for each

instance.

Figure 4.5 shows the impact of the number of iterations conducted on the solu-

tions obtained. In Section 4.6.1, it was supposed that more iterations would lead to

better solutions. This assumption is proven by Figure 4.5. The higher the number

of iterations conducted, the lower the average optimality gap. The effect levels out

once the optimal solution is found for the small-size instances. For the large-size

instances, the same pattern is observed. The marginal effect on the solution quality

of conducting more iterations decreases. It has to be noted that these graphs show

average gaps over all parameter combinations tested. Consequently, the number of

iterations at which the graph levels out is greater than the best number of iterations
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(a) 10 customer orders (b) 15 customer orders

(c) 100 customer orders

Figure 4.5: Impact of number of iterations on solution quality
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(a) 10 customer orders (b) 15 customer orders

(c) 100 customer orders

Figure 4.6: Impact of deviation rate on solution quality



132 Chapter 4

(a) 10 customer orders (b) 15 customer orders

(c) 100 customer orders

Figure 4.7: Impact of number of consecutive non-improving iterations on solution

quality
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(a) 10 customer orders (b) 15 customer orders

(c) 100 customer orders

Figure 4.8: Impact of number of consecutive non-improving moves on solution quality
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indicated as stopping criterion in Section 4.6.1. Nevertheless, by using these best

number of iterations in combination with the best values of the other parameters, the

RRT heuristic is capable of obtaining good solutions.

The effect of different deviation rate values on the solution is indicated in Fig-

ure 4.6. A different pattern is observed between the small-size instances and the

large-size instances. Small deviation rates lead to higher average gap values for the

small-size instances. For both the instances with 10 and 15 customer orders, the de-

viation rate values greater than 15% leads to similar results. For the instances with

100 customer orders an opposite pattern occurs. A small deviation rate results in a

lower gap on average. An explanation may be that for small-size instances only a

few number of options for conducting a (good) move are possible. Sometimes a move

resulting in a large worsening needs to be allowed before being able to obtain better

solutions generated by the subsequent moves. In the experiments with large-size in-

stances, more options are possible to execute a (good) move, and thus allowing worse

moves can be more restricted.

A more fluctuating pattern can be observed for the small-size instances in Fig-

ure 4.7, which presents the impact of the number of consecutive non-improving iter-

ations on the solution quality. Both a small and large value for this parameter leads

to worse solutions in comparison with more intermediate values. For the large-size

instances, allowing a higher number of consecutive non-improving iterations results

in a lower average gap between the best solution found and the solution found for a

specific parameter combination.

Finally, the impact of the selected number of consecutive non-improving moves is

shown in Figure 4.8. The parameter value is inversely proportional to the solution

quality. A higher number of non-improving moves result in a lower gap on average.

The effect diminishes with increasing parameter values for both small-size instances

and large-size instances.

In short, a higher number of iterations lead to better solutions. A higher deviation

rate value is required for small-size problems in comparison with large-size problems.

The number of consecutive non-improving iterations needs to be a more intermediate

value, while a large number of consecutive non-improving moves lead to better solu-

tions. The sensitivity analysis confirms the results obtained by the irace package as

can be seen by the sampling frequency plots in Appendix B.
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4.7 Validation of heuristic algorithm

In this section, computational experiments are described to evaluate the performance

of the proposed record-to-record travel algorithm. For the experiments conducted in

this section, 50 different instances for each problem size are generated compared to

these used for the parameter tuning. The experiments2 are executed on a 12-core

Xeon E5-2680v3 CPUs with 128 GB RAM. The RRT algorithm is implemented in

C++. Optimal solutions are found by the optimisation software ILOG CPLEX 12.7.1.

Detailed results of the experiments can be found in Appendix C.

4.7.1 Small-size instances: Results

To evaluate the performance of the developed RRT heuristic, experiments on small-

size instances are conducted. The solutions obtained by the heuristic algorithm are

compared with the optimal solutions obtained by CPLEX. Two different instance

sizes are considered: instances with 10 customer orders and with 15 customer orders.

For each instance size, the last 50 instances of the 100 instances generated are used for

the experiments. The optimal solutions are found for all instances with 10 customer

orders and for 43 instances with 15 customer order. For seven instances with 15

orders, the optimal solution could not be found within 500 hours. In the experiments,

two regular order pickers are available and one additional temporary order picker can

be hired. At most three vans can be used for the delivery operations.

Table 4.7: Summary of the results of experiments with small-size instances

Instance size
avg.

gap (%)

avg. time

CPLEX (s)

avg. time

RRT 1 run (s)

avg. time

RRT 20 runs (s)

avg.

# pick.

avg.

# veh.

10 orders 0.0000 180.36 0.0072 0.1530 1.18 1.58

15 orders 0.0000 227,089.45 0.2283 4.5758 1.98 1.36

Table 4.7 presents a summary of the results of the experiments conducted with the

small-size instances. Twenty replications are conducted for each instance. For both

instance sizes, the RRT algorithm is capable of obtaining the optimal solution for each

of these instances as indicated by the average gap of 0.00 %. For the seven instances

with 15 orders for which the optimal solution is not known, the RRT heuristic finds

in each run the same objective value. To obtain the optimal solution with CPLEX,

an average computation time of approximately 3 minutes is required for the instances

2The computational resources and services used in this work were provided by the VSC (Flemish

Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish

Government - department EWI.
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with 10 customer orders. For the instances with 15 customer orders, the optimal

solution is obtained by CPLEX with an average computation time of approximately

63 hours. Increasing the problem size with five customers already has a large impact

on the computation time. For both instance sizes, the RRT solution method finds the

same solution in less than a second. This indicates that the algorithm is an effective

and efficient tool for solving the I-OP-VRP, at least for small-size instances.

4.7.2 Large-size instances: Results

In order to test whether the RRT heuristic is capable of solving larger size instances,

the last 50 instances with 100 customer orders of the 100 instances generated are used

in this section. These instances cannot be solved to optimality with CPLEX in a reas-

onable amount of time. The results presented in Table 4.8 are found by using the best

parameter configuration obtained by the irace package in Section 4.6.2. To indicate

the impact of the RRT heuristic on the solution, the percentage difference between

the initial solution and the best heuristic solution found after 20 runs is provided.

The best objective value found is on average 26.83% better than the initial solution.

Thus, the heuristic algorithm developed in this study is clearly capable of drastic-

ally improving the initial solution. The gap between the best solution found within

20 runs and the solution obtained in any other run is on average 1.37%. Executing

the algorithm for a single run takes less than two minutes on average. On average,

approximately nine pickers are needed and four vehicles are used for the picking and

delivery operations.

Table 4.8: Summary of the results of experiments with large-size instances

Instance size
avg.

gap (%)

avg. time

RRT 1 run (s)

avg. time

RRT 20 runs (s)

avg.

# pick.

avg.

# veh.
∆Z[S0](%)

100 orders 1.37 101.20 2,024.02 9.13 4.11 -26.83

To be able to evaluate the robustness of the RRT algorithm, 20 runs for each

instance are conducted. In literature, 5 runs are executed in general. In the RRT

heuristic, however, a high amount of randomness is included since both a vehicle or

order picker have to be randomly selected and an order needs to be randomly selected

within a vehicle route or picking list. To compensate for this randomness, more runs

for each instance are executed. A comparison is made between the results obtained

in 5 runs and in 20 runs. In Table 4.9, the average and maximum gap are indicated

for each number of runs executed. The gap between the best solution found within

the number of runs and the solution obtained in a specific run is calculated.
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Table 4.9: Comparison of executing 5 runs and 20 runs

avg. gap (%) max. gap (%)

5 runs 0.85 3.15

20 runs 1.37 4.30

In the experiments with the instances with 10 and 15 customer orders in the

previous section, the RRT heuristic always obtains the optimal solution when this is

known. Hence, executing 5 or 20 runs has no impact on the overall quality of the

solutions for the small-size instances. For the experiments with 100 customer orders,

the results of the first five runs of each instance are compared with the results of all 20

runs. When only five runs are executed, the average gap is 0.85% and the maximum

gap is 3.15%. When executing 20 runs, the average gap is 1.37% with a maximum

gap of 4.30%. Based on these figures, executing only 5 runs seems to lead to better

results. However, for 40 of the 50 instances, a lower objective function value is found

in the last 15 of the 20 runs. Thus, executing 20 runs instead of 5 runs can lead to

finding better solutions, although the average and maximum gap are higher.

4.7.3 Contribution of local search operators

In the RRT algorithm, five local search operators are implemented to improve the

quality of the initial solution. In the VRP-part of the problem, the following operators

are used: exchangeVRP, relocateVRP, and 2-OptVRP. Two operators are applied in the

OPP-part of the problem: exchangeOPP and relocateOPP. In Section 4.4.2, the moves

allowed to be conducted by the operators are described. This section analyses the

contribution of each operator to obtaining the solutions. The same instances as in the

previous sections are used in the experiments in this section, i.e., the last 50 instances

generated for each problem size. The best parameter combination for each problem

size obtained by the irace package in Section 4.6.2 is applied. In the experiments

described in the previous sections, all operators are included in the solution algorithm.

Seven variants of the RRT algorithm are analysed to determine the contribution of

the operators. In five variants, a single operator is excluded from the algorithm. In

variant 6, the two picking operators are excluded, while in variant 7 all VRP operators

are left out. Thus, the following variants are studied:

0. All operators included

1. exchangeVRP excluded

2. relocateVRP excluded

3. 2-OptVRP excluded
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4. exchangeOPP excluded

5. relocateOPP excluded

6. All OPP operators excluded

7. All VRP operators excluded

In Table 4.10, the results for each variant are presented. The average, minimum,

and maximum gap are shown for each variant. For the small-size instances, the gap

between the heuristic solution and the optimal solution is presented. For the instances

with 100 customer orders and the seven instances with 15 customer orders for which

the optimal solution is not known, the gap between the best solution found by the

original algorithm and the solution of a run found by the variant is calculated. Since

in the experiments with large-size instances the best solution is not found in each run,

an average gap for the original variant is computed as well. Row ‘# best solution

found’ shows the number of times the best solution is found over all experiments.

The total number of experiments is equal to 1,000, i.e., 20 runs for 50 instances. Row

‘# inst. best found (once)’ indicates the number of instances for which in at least

one run the best solution is obtained, while row ‘# inst. best found (all)’ indicates

the number of instances for which the best solution is found in all 20 runs. For the

small-size instances, the best solution is equal to the optimal solution, except for the

seven instances with 15 customer orders for which the optimal solution could not

be obtained within 500 hours. For the large-size instances, the best solution found

indicates the lowest objective function value found by the RRT heuristic. When better

solutions are obtained than in the basis scenario, these are counted in ‘# best solution

found’.

The upper part of Table 4.10 presents the contribution of each operator for the

experiments with the 10 customer orders instances. Excluding the relocateVRP from

the RRT heuristic leads to the highest average and maximum gap when a single

operator is removed. The exchangeVRP and 2-OptVRP operator have no or a relatively

small impact on the performance of the RRT heuristic. Removing a single OPP

operator or both the relocateOPP operator and the exchangeOPP operator has no

impact on the solution quality. The exclusion of all VRP operators simultaneously

has a major impact on the performance of the RRT heuristic.

In the second part of Table 4.10, the contribution of the operators is indicated

for the instances with 15 customer orders. The relocateVRP operator has overall

the largest impact on the quality of the solutions obtained when a single operator

is excluded. Only for 15 of the 50 instances the optimal solution is found at least

once. In contrast to the experiments with 10 customer orders instances, excluding the

relocateOPP has a small impact on the solution quality. Removing the other operators
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Table 4.10: Contribution of local search operators

Instance

size

Variant

0 1 2 3 4 5 6 7

10 orders

Gap (%)

- average 0.0000 0.0000 2.3191 0.0089 0.0000 0.0000 0.0000 6.1081

- minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

- maximum 0.0000 0.0000 10.0105 2.3349 0.0000 0.0000 0.0000 18.9151

# best solution found 1,000 1,000 360 990 1,000 1,000 1,000 120

# inst. best found (once) 50 50 18 50 50 50 50 6

# inst. best found (all) 50 50 18 46 50 50 50 6

15 orders

Gap (%)

- average 0.0000 0.0000 2.4394 0.0000 0.0000 0.0536 0.0755 9.2229

- minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

- maximum 0.0000 0.0000 10.8139 0.0000 0.0000 1.5291 1.6551 25.4453

# best solution found 1,000 1,000 297 1,000 1,000 880 885 20

# inst. best found (once) 50 50 15 50 50 50 50 1

# inst. best found (all) 50 50 13 50 50 35 34 1

100 orders

Gap (%)

- average 1.3650 1.4475 8.1335 1.3910 1.4121 2.6762 3.0470 36.6606

- minimum 0.0000 -0.9959 3.6111 -0.7877 -1.2328 -0.3888 0.1789 25.7560

- maximum 4.3026 5.5862 13.6749 4.7517 4.2977 6.6220 7.0052 49.6177

# best solution found 50 35 0 38 34 3 0 0

# inst. best found (once) 50 19 0 22 22 2 0 0

# inst. best found (all) 0 0 0 0 0 0 0 0

individually has no impact on the solution quality for these instances. Executing

the RRT algorithm without any VRP operator leads to a worse performance. The

optimal solution is obtained for a single instance.

The lower part of Table 4.10 shows the contribution of the operators for the large-

size instances. Similar to the experiments with the small-size instances, the relocate

operators of both the OPP and the VRP have the largest individual impact. In

contrast to the small-size instances, the exchange operators do have an impact on the

solution quality. The 2-OptVRP operator has the smallest individual impact. When all

VRP operators are removed, the solution quality decreases with approximately 36%.

The solutions obtained by this variant differ only slightly from the initial solutions,

with only an average improvement of 0.17%.

A statistical analysis is conducted using a Wilcoxon matched-pairs signed-rank test

to examine whether the differences shown in Table 4.10 are statistically significant.
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This a non-parametric statistical test for analysing the difference between related pairs

equivalent to the paired-samples t-test. The advantage of using a non-parametric test

is that less assumptions have to be tested, e.g., no normal distribution is needed. The

null hypothesis of the test is that the median of the difference between the matched

pairs equals zero (Field, 2013; de Vocht, 2017). In this analysis, it is investigated

whether the difference between the average gap over the 20 runs for each instance

between the best solution found in the basis variant of the RRT heuristic and the

solution found by the variant considered is statistically different. When using the

Wilcoxon matched-pairs signed-rank test, the following assumptions need to be met:

1. The data are measured at a continuous level, i.e., interval or ratio data.

2. Each pair is randomly selected.

3. The underlying distribution of the differences is symmetric about the median

(Sheskin, 2000).

The first assumption is met since the difference of the average gap, measured in

percentage, for each instance between two variants is evaluated. The instances are

randomly generated and consequently the second assumption is satisfied. For the

third assumption, the skewness of the distribution needs to be investigated. The

null hypothesis for this test is that the skewness is zero, resulting in a symmetric

distribution. The absolute value of the skewness divided by the standard error of the

skewness needs to be less than 1.96 to consider the distribution as symmetric at a 5%

significance level (de Vocht, 2017). When the assumption of a symmetric distribution

is violated, a sign test can be executed instead of a Wilcoxon matched-pairs signed-

rank test. The sign test is a non-parametric method in which the assumption of a

symmetric distribution does not need to be met (Russo, 2003; Weiers, 2011).

In Table 4.11, the skewness values are presented for each difference between basis

variant 0 and any other variant for each problem size. For the variants in which the

solutions found by the RRT algorithm do no differ, no skewness value is indicated

(-). The skewness is zero. In fact, for these variants, no statistical analysis has to be

conducted to test whether the solutions are statistically different, since there are no

differences observed.

As can be seen in Table 4.11, the differences between variant 0 and all other

variants for instances with 10 customer orders do not have a symmetric distribution.

For each comparison between variants, the null hypothesis of a skewness equal to zero

is rejected at a 5% significance level, since the absolute value of skewness divided by

its standard error is greater than 1.96. Thus, for the problem size with 10 customer

orders, the Wilcoxon matched-pairs signed-rank test cannot be used to evaluate the
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Table 4.11: Skewness values

Instance size
Variants compared

0-1 0-2 0-3 0-4 0-5 0-6 0-7

10 orders

|Skewness/std.error| - 2.4331* 16.7257* - - - 2.2391*

15 orders

|Skewness/std.error| - 1.5837 - - 8.7367* 9.0698* 1.1164

100 orders

|Skewness/std.error| 0.8880 0.7378 0.2613 0.6282 0.3492 1.4696 0.4892

*statistically different at a 5% significance level

statistical significance of the differences between variants. A sign test is executed for

these variants.

For the instances with 15 customer orders, only the differences between variant 0

and variant 2 and between variant 0 and variant 7 have a symmetric distribution. For

these differences, the null hypothesis cannot be rejected at a 5% significance level. For

the other comparisons between variants, the skewness is statistically different from

zero. Consequently, only the difference between variant 0 and variant 2 and between

variant 0 and variant 7 can be statistically tested using the Wilcoxon matched-pairs

signed-rank test. The other variants for which differences in the results of the RRT

heuristic are observed, are tested using a sign test.

For the large-size instances with 100 customer orders, the Wilcoxon matched-pairs

signed-rank test can be used to evaluate the difference between variants. The null

hypothesis stating that the skewness is equal to zero cannot be rejected at a 5%

significance level since all test values are less than 1.96.

The null hypothesis of the Wilcoxon matched-pairs signed-rank test and the sign

test states that the median of the difference between the two variants compared is

equal to zero. The null hypothesis can be rejected when the significance value is

less than 0.05. Table 4.12 presents the results of the Wilcoxon matched-pairs signed-

rank test for the comparisons of variants for which the distribution is indicated as

symmetric and the results of the sign test for the other comparisons. Column 1

indicates the problem size. In column 2, the variants which are compared are shown.

Column 3 indicates whether either the Wilcoxon matched-pairs signed-test (W) or

the sign test (S) is used. In column 4, the significance value of the test is shown. In

column 5, it is stated whether the null hypothesis can be rejected or not. The variants

in which no differences are observed are excluded from Table 4.12.

The results for the instances with 10 customer orders are shown in the upper part

of Table 4.12. The null hypothesis of the sign test can be rejected for variant 2 and
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Table 4.12: Statistical analysis: results for contribution of operators

Instance size Variants compared Test Significance Decision

10 orders 0-2 W 0.000 Reject null hypothesis

0-3 W 0.125 Retain null hypothesis

0-7 W 0.000 Reject null hypothesis

15 orders 0-2 W 0.000 Reject null hypothesis

0-5 S 1.000 Retain null hypothesis

0-6 S 0.000 Reject null hypothesis

0-7 W 0.000 Reject null hypothesis

100 orders 0-1 W 0.018 Reject null hypothesis

0-2 W 0.000 Reject null hypothesis

0-3 W 0.534 Retain null hypothesis

0-4 W 0.104 Retain null hypothesis

0-5 W 0.000 Reject null hypothesis

0-6 W 0.000 Reject null hypothesis

0-7 W 0.000 Reject null hypothesis

W = Wilcoxon mathed-pairs signed-test S = Sign test

variant 7 at a 5% significance level. Excluding the relocateVRP operator individually

or all VRP operators lead to significant different results. All other operators have no

significant impact on the solution quality. For the comparisons for instances with 15

customer orders, the null hypothesis of the Wilcoxon matched-pairs signed-rank test or

the sign test can be rejected for variants 2, 6, and 7. Thus, excluding the relocateVRP

operator individually, all OPP operators or all VRP operators lead to significantly

different solutions compared to the variant in which all operators included.

For the instances with 100 customer orders, for five comparisons the null hy-

pothesis can be rejected at a 5% significance level. For two comparisons, the null

hypothesis cannot be rejected, i.e., difference between variant 0 and 3 and between

variant 0 and 4. When the exchangeVRP, relocateVRP, or the relocateOPP operator is

individually excluded from the RRT heuristic, the results significantly differ. Addi-

tionally, excluding either all OPP operators or all VRP operators leads to significantly

different solutions.

To conclude, excluding the relocateVRP operator has a statistically significant

impact on the solution quality independent of the instance size. For large-size

instances, additionally, the exchangeVRPand the relocateOPP influence the solutions

obtained by the RRT heuristic. Excluding all VRP operators leads to significantly

different solutions in all problem sizes, while excluding all OPP operators only has a

significant impact on the results of instances with 15 and 100 customer orders.
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Some critical notes on the results have to be made. First, although operators are

labelled as VRP operators or OPP operators, in case of OPP-VRP violations also

relocate moves are executed in the other subproblem than to which the label of the

operator refers. Thus, the large impact of the VRP operators can be a combined effect

of the VRP operators and changes made in the order picking subproblem to obtain

an overall feasible solution. Second, while the VRP operators are always executed,

the OPP operators are only used when temporary order pickers hired, which is only

the case in the minority of the instances.

Third, it has to be remarked that when the 2-OptVRP operator is excluded not

all possible exchange and relocate moves within a route are tested. The exchangeVRP

operator is not allowed to swap adjacent orders, and the relocateVRP operator cannot

relocate an order to the position immediately before or after its current position. This

effect can be an explanation why the impact exchangeVRP on the solution quality is

negligible with the small-size instances. Although the 2-OptVRP operator can execute

more moves within a route, the impact of excluding this operator for the large-size

instances is smaller than excluding the exchangeVRP operator and relocateVRP oper-

ator.

Fourth, the experiments are conducted using the best parameter configuration

indicated by the irace package in Section 4.6.2. However, this configuration is the

best one when all operators are included. In fact, when one or more local search

operators are excluded from the algorithm, the irace package should be executed to

find the best configuration for the algorithm with the remaining operators.

Finally, only the effect of removing a single operator at once is examined. How-

ever, it is possible that there are interaction effects between operators. These effects

are ignored in the analysis in this section. To thoroughly investigate the correlation

between (combinations of) operators and the performance of the heuristic algorithm,

a statistical evaluation method, such as a multi-level regression, is needed. By con-

ducting such an analysis, the impact of operators and problem characteristics on the

performance of the heuristic solution method can be investigated (Corstjens et al.,

2018; Corstjens, 2018).

4.7.4 Sequence of local search operators

The five local search operators implemented in the RRT algorithm are executed in

a random order in each iteration, see line 8 in Algorithm 2. Additional experiments

are conducted to investigate whether the sequence of the operators influences the

performance of the solution algorithm. The experiments are executed using the best

parameter combination obtained by the irace package in Section 4.6.2. The last
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50 instances generated for each problem size are used. With five operators, the total

number of possible operator sequences is 120. A sample of six different fixed sequences

are tested. In sequence 1a - 1c, the VRP operators are executed first, followed by

the two OPP operators. In sequence 1a and 1b, first the two VRP operators which

can conduct inter- and intra-route moves, i.e., exchangeVRP and relocateVRP, are

conducted. Then, the 2-OptVRP operator which can only execute intra-route moves.

In sequence 1c, first the intra-route operator is conducted and then the inter-route

operators. In sequence 2a and 2b, first, the OPP operators are used and thereafter

the VRP operators. In sequence 3, the VRP and OPP operators are executed in an

alternating way. The following sequences are tested:

0 Random sequence of operators

1a exchangeVRP - relocateVRP - 2-OptVRP - exchangeOPP - relocateOPP

1b relocateVRP - exchangeVRP - 2-OptVRP - exchangeOPP - relocateOPP

1c 2-OptVRP - exchangeVRP - relocateVRP - exchangeOPP - relocateOPP

2a exchangeOPP - relocateOPP - exchangeVRP - relocateVRP - 2-OptVRP

2b relocateOPP - exchangeOPP - exchangeVRP - relocateVRP - 2-OptVRP

3 exchangeVRP - exchangeOPP - relocateVRP - relocateOPP - 2-OptVRP

Table 4.13 presents the results of the experiments for each sequence tested. The

rows have the same meaning as these in Table 4.10. The additional rows with the

‘best iteration found’ present the average, median, minimum, and maximum iteration

number in which the best solution is found, respectively. The upper part of Table 4.13

presents the results for the 10 customer orders instances. Both the random sequence

and all fixed sequences are capable of obtaining the optimal solution in each run for

every instance within 700 iterations. Furthermore, based on the iteration number

in which the best solution is found, the random and fixed operator sequences have

a relative similar performance. Thus, no evidence is found that a specific sequence

outperforms other sequences.

The same conclusion can be made for the instances with 15 customer orders. A

single fixed sequence, i.e., sequence 2b, does not obtain the optimal solution in a single

run for an instance. Moreover, the average, median, and maximum best iteration

number do not indicate a specific sequence as dominant. Thus, from this point of

view, both a random and fixed operator sequence leads to a good performance of the

RRT heuristic.

For the instances with 100 customer orders, the gaps indicated in the lower part

of Table 4.13 represent the gap between the best solution found in the basis scenario

and the solutions obtained in the other scenarios. All variants with a fixed sequence
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Table 4.13: Impact of sequence of local search operators

Instance

size

Sequence

0 1a 1b 1c 2a 2b 3

10 orders

Gap (%)

- average 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007

- minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

- maximum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

# best solution found 1,000 1,000 1,000 1,0000 1,000 1,0000 1,000

# inst. best found (once) 50 50 50 50 50 50 50

# inst. best found (all) 50 50 50 50 50 50 50

Best iteration found

- average 27 26 27 27 26 26 26

- median 13 12 13 12 12 12 12

- minimum 0 0 0 0 0 0 0

- maximum 411 438 494 499 438 438 438

15 orders

Gap (%)

- average 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

- minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

- maximum 0.0000 0.0000 0.0000 0.0000 0.0000 0.3426 0.0000

# best solution found 1,000 1,000 1,000 1,000 1,000 999 1,000

# inst. best found (once) 50 50 50 50 50 50 50

# inst. best found (all) 50 50 50 50 50 49 50

Best iteration found

- average 150 168 171 150 170 168 175

- median 64 63 76 52 68 68 66

- minimum 1 1 1 1 1 1 1

- maximum 4,839 5,418 3,116 3,538 5,418 5,418 5,418

100 orders

Gap (%)

- average 1.3650 1.3071 1.2833 1.4713 1.2913 1.2901 1.2843

- minimum 0.0000 -1.0451 -0.9518 -0.7333 -1.0417 -1.2328 -1.0515

- maximum 4.3026 4.2841 4.9021 4.5838 4.4647 4.9095 4.4917

# best solution found 50 55 53 33 69 69 63

# inst. found (once) 50 25 27 20 32 29 30

# inst. best found (all) 0 0 0 0 0 0 0

Best iteration found

- average 78,880 105,358 103,138 99,695 109,610 103,980 106,988

- median 54,089 89,156 86,670 80,559 96,946 93,407 91,508

- minimum 2,903 5,530 4,898 1,710 6,360 4,796 7,223

- maximum 249,986 249,981 249,722 249,955 249,683 249,586 249,479
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find a better solution compared with the best solution in the original algorithm as

indicated by the negative minimum gap. All variants, except 1c, have a slightly lower

average gap. At the same time, all variants, except 1a, have a higher maximum gap.

Although the RRT heuristic is executed for the same number of iterations for each

sequence, the variants with a fixed sequence need on average more iterations to obtain

the best solution, as can be seen in the bottom rows of Table 4.13.

A statistical analysis similar to this conducted for examining the contribution of

the operators is executed for the large-size instances with 100 customers. For the

small-size instances, no analysis is conducted since no differences in the results of the

RRT heuristic are observed in Table 4.13. A Wilcoxon matched-pairs signed-rank test

is used for the analysis for the large-size instances. The first and second assumption

mentioned before are met for the same reasons as in Section 4.7.3, i.e., continuous

data and randomly selected independent pairs. The third assumption stating that a

symmetric distribution is required is tested based on the skewness values. For each

variant, the difference between the average gap obtained with the basis variant and

the average gap obtained with the variant considered is calculated for each of the

50 instances. It is tested whether the distribution of these differences is symmetric.

Table 4.14 presents the absolute value of the skewness divided by the standard error

of the skewness for each comparison of variants. All values are less than 1.96, and,

thus the null hypothesis stating that the distribution is symmetric cannot be rejected

on a 5% significance level.

Table 4.14: Skewness values

Instance size
Variants compared

0-1a 0-1b 0-1c 0-2a 0-2b 0-3

100 orders

|Skewness/std.error| 0.904 1.3201 0.5120 1.3358 0.7332 1.7955

*statistically different at a 5% significance level

The three assumptions of the Wilcoxon matched-pairs signed-rank test are

met. The null hypothesis of this non-parametric test states that the median of the

difference between the two variants is equal to zero. In Table 4.15, the results of the

Wilcoxon matched-pairs signed-rang test are indicated. The null hypothesis cannot

be rejected at a 5% significance level for three variants, i.e., 1a, 2a, and 2b. For the

other three variants, the null hypothesis is rejected. Based on these results, a fixed

sequence in which first the VRP operators are executed or in which VRP and OPP

operators are executed in alternating way leads to better solutions.
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Table 4.15: Wilcoxon matched-pairs signed-rank test: results for sequence of operators

Instance size Variants compared Significance Decision

100 orders 0-1a 0.066 Retain null hypothesis

0-1b 0.021 Reject null hypothesis

0-1c 0.004 Reject null hypothesis

0-2a 0.092 Retain null hypothesis

0-2b 0.098 Retain null hypothesis

0-3 0.013 Reject null hypothesis

To conclude, both for the small-size and large-size instances, random and fixed

operator sequences are tested. Based on the results of the experiments, it is hard to

conclude whether a fixed sequence leads to better solutions in all cases compared to

a random sequence. No sequence variant outperforms the random operator sequence

for each instance size. In the experiments with instances with 10 and 15 customer

orders, no difference can be observed when executing the operators in either a random

sequence or in a fixed sequence. For the large-size instances with 100 customer orders,

a fixed operator sequence leads to a better performance of the heuristic algorithm

based on the average gap. Only for three of the variants, the difference is statistically

significant. Additionally, it has to be noted that only 6 of the 120 possible sequences

are tested in this analysis, and, therefore, to take an informed decision all possible

sequences should to be tested.

4.7.5 Importance of allowing worsening moves

In this section, it is tested whether allowing moves that lead to worse solutions com-

pared to the best solution found so far results in better solutions at the end of the

algorithm. Thus, it is evaluated whether the deviation value is needed. Therefore,

experiments are conducted with a deviation rate equal to zero. Consequently, only

improving moves are allowed. For each problem size, the last 50 instances generated

are used for the experiments. The best parameter combination for each problem size

found by the irace package is used with the exception that the deviation rate value is

set to zero. Twenty runs are executed for each instance. Each solution found by the

algorithm with a zero deviation rate is compared with the best solution found by the

algorithm with the deviation rate value indicated by the irace package. In Table 4.16,

the results are indicated for each problem size in columns 2 to 4.

For the instances with 10 customer orders, the solutions obtained with a deviation

rate equal to zero differ with on average 2.27% from the optimal solutions. For 19 of

the 50 instances, the optimal solution is found in each of the 20 runs. In 6 of the 19
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Table 4.16: Results of RRT heuristic with α = 0

Instance size

10 orders 15 orders 100 orders

Gap (%)

- average 2.2736 3.9396 8.7725

- minimum 0.0000 0.0000 2.1619

- maximum 12.5856 15.4445 14.9439

# best solution found 444 124 0

# inst. best found (once) 28 9 0

# inst. best found (all) 19 3 0

instances, however, the optimal solution is equal to the initial solutions generated by

the constructive heuristic. Thus, in these cases, the value of the deviation rate has

no influence on the performance of the RRT heuristic.

Executing experiments for the instances with 15 customer orders and with a de-

viation rate which equals zero, the solutions are on average approximately 4% worse

than the optimal solutions or the best solution found by the RRT heuristic when the

optimal solution is not known. For only 3 of the 50 instances, the best solution is

obtained in every run conducted. Moreover, for one instance, the initial solution is

the optimal one, and thus the deviation rate value is not important.

Using the RRT heuristic with a deviation rate equal to zero and instances with

100 customer orders never leads to the best solution found by the RRT heuristic with

the best deviation rate value obtained by irace. The objective values are on average

8.77% worse than the best solutions found using the best parameter setting for the

deviation rate.

To conclude, allowing temporarily worse solutions in the RRT heuristic leads to

better solutions at the end. The larger the instance size, the higher the need for

allowing worse solutions. Thus, the record-to-record travel acceptance criterion im-

plemented in the heuristic proposed in this dissertation is needed to obtain better

solutions. However, it has to be noted that when the deviation rate is fixed to zero,

actually the irace package should have been executed again to tune the other para-

meters.

4.8 Value of integration

In Chapter 3, the value of integration is examined for small-size instances using

CPLEX. In this chapter, the RRT heuristic is used to quantify the value of integ-

rating order picking and vehicle routing decisions for larger size instances with 100
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customer orders. Therefore, an uncoordinated approach is compared with an in-

tegrated approach. An uncoordinated version of the RRT heuristic is proposed. A

picking due date is introduced in the order picking subproblem to separate both sub-

problems. The picking process of all orders has to be completed before the due date.

No order can leave the DC before the due date. The release date of each order in the

VRP is equal to the picking due date. Furthermore, a cut-off time is determined. All

orders placed before the cut-off time are picked before the due date. Thus, the cut-off

time is the latest possible moment at which customers can order goods so that these

can be delivered in the proposed delivery time windows. The due date is the moment

in time before which all goods need to be picked in order to be able to deliver all

goods on time.

Algorithm 3 Outline of uncoordinated solution approach

1: Parameters: numb it, Imax

numb it: iteration number

Imax: maximum number of iterations

Solving the OPP problem

2: Generate initial OPP solution S0

3: numb it := 0

4: repeat

5: Local search within a record-to-record travel framework using two OPP operators

6: numb it := numb it+ 1

7: until numb it > Imax

Solving the VRP problem

8: Generate initial VRP solution S0

9: numb it := 0

10: repeat

11: Local search within a record-to-record travel framework using three VRP operators

12: numb it := numb it+ 1

13: until numb it > Imax

An overview of the uncoordinated version of the RRT heuristic is given in Al-

gorithm 3. The uncoordinated solution method is mainly the same as the integrated

version except that the method is divided in two parts. In the first part of the un-

coordinated version of the RRT heuristic (line 2-7), an initial solution for the OPP

is constructed. Here, the orders are sorted based on their picking time in descending

order. Then, the two OPP operators are used to improve the initial solution. The

second part of the uncoordinated heuristic algorithm focuses on the vehicle routing

subproblem (line 8-13). The picking due date is used as release date for the orders in
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the VRP. An initial VRP solution is constructed which is afterwards improved using

the three VRP operators.

In the experiments with the integrated approach in Section 4.7, a minimum picking

time of two hours (120 minutes) is provided for the order picking operations. Vehicles

cannot leave the DC in this time period. Based on this, the delivery time window

bounds are determined. The earliest time window bound is calculated using the min-

imal two-hour picking time, taking into account the loading time and the travel time

from the DC to the farthest customer. To compare an uncoordinated approach and

an integrated approach, two scenarios are possible for the uncoordinated approach:

1. Cut-off time two hours before picking due date: In this scenario, the pickers

have two hours to complete all picking operations. Although order pickers are

allowed to work four hours within a single shift, there is only a time period

of two hours between the cut-off time and the picking due date. Thus, the

order pickers cannot work four hours as in the integrated approach. The same

number of orders needs to be picked in a shorter amount of time. However,

using the same number of order pickers would result in infeasible solutions.

With 12 pickers working each two hours, a total picking time of 24 hours is

available. Nevertheless, all instances generated with 100 customer orders have a

total picking time which is greater than 24 hours. Therefore, in this scenario, the

number of pickers available is increased to obtain feasible solutions: 17 regular

pickers instead of 9 and 6 temporary pickers instead of 3. Customers can still

be delivered within the same time windows as before.

2. Cut-off time four hours before picking due date: Customers have to request two

hours earlier in comparison with the integrated approach in order to be able to

be delivered within the same time windows. The order pickers can work four

hours as in the integrated approach. Alternatively, the delivery time windows

can be postponed with two hours compared to the previous experiments. Thus,

either the cut-off is two hours earlier or the time windows are postponed with two

hours. In both approaches, the service level offered is lower in the uncoordinated

approach. The time period between the request of a product and the delivery

of the good is extended.

Thus, in scenario 1 additional order pickers are needed to avoid infeasibility, and in

scenario 2 the service level offered to customers decreases.

Figure 4.9 shows the time line for each approach. The delivery time windows

are spread over eight hours in all scenarios. Figure 4.9(a) indicates the time line for

scenario 1 with a two-hour picking time available before the picking due date. In
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(a) Uncoordinated approach - scenario 1

(b) Uncoordinated approach - scenario 2

(c) Integrated approach

Figure 4.9: Timeline for an uncoordinated and an integrated approach

Figure 4.9(b), scenario 2 is presented with a four-hour picking time period available.

Finally, the integrated approach is shown in Figure 4.9(c). The picking operations

start at the same moment as in scenario 1, but do not have a due date. The picking

of each order has to be finished such that it can be delivered within its time window.

Similarly as in the previous experiments, 20 replications are conducted for each

instance. Each solution obtained by the uncoordinated approach is compared with

the best solution found for each instance by the integrated approach. Column 2 of

Table 4.17 shows the difference in total cost, which indicates the value of integration.

Columns 3 to 6 present the difference per cost component. A negative percentage

indicates that the integrated approach outperforms the uncoordinated approach.

Integrating both problems lead to savings in total cost (∆ TC) of approximately

1.80% on average in both scenarios, with savings up to 5.30%. In the integrated

approach, the regular order picking cost (∆ TCcreg) is slightly lower, while the labour

cost of the temporary order pickers (∆ TCctemp) is on average higher compared to an

uncoordinated approach. Hiring temporary order pickers, which have higher labour
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Table 4.17: Comparison of an uncoordinated and an integrated approach

Scenario
avg.

∆ TC (%)

max.

∆ TC (%)

avg.

∆ TCcreg (%)

avg.

∆ TCctemp (%)

avg.

∆ TCctlv (%)

avg.

∆ TCcttv (%)

1 -1.84 -5.36 -0.11 12.10 -3.75 -4.29

2 -1.83 -5.36 -0.15 14.00 -3.75 -4.29

costs, can be beneficial if this lead to lower distribution costs. The cost increase

in the order picking problem is compensated by cost savings in the vehicle routing

problem (∆ TCctlv and ∆ TCcttv ). Thus, by integrating both problems, an overall

optimum can be found instead of optimising both problems individually. The impact

on the vehicle routing costs is the same in both uncoordinated scenarios since the

time windows and customer locations are the same. The average number of vehicles

needed, approximately five, does not change when integrating both subproblems, as

shown in Table 4.18.

Table 4.18: Average number of pickers and vehicles used

Scenario
avg.

# pickers

avg.

# vehicles

Integrated 9.10 4.11

1 16.38 4.65

2 8.30 4.65

Scenario 1 is comparable to the experiments in Chapter 3 to quantify the value of

integration. The same time windows are used in both approaches. In Chapter 3, how-

ever, the time period between the cut-off time and the picking due date is four hours,

whereas in this chapter the time period is only two hours. Thus, in the uncoordinated

approach, order pickers cannot work four hours in a single shift, although they are

allowed to. In Chapter 3, the number of pickers is not increased to avoid infeasibility,

while in the current chapter a larger number of order pickers are available.

The average value of integration in this chapter is lower compared to the value

obtained in Chapter 3. A different objective function is used in this chapter, as

described in Section 4.2. Whereas in Chapter 3 the waiting time before the actual

start of a route in the uncoordinated approach is taken into account as a labour cost

for the driver, in this chapter only the actual route length is considered. As described

earlier, during the waiting time before the actual start of a route in the uncoordinated

approach, customers can still request orders in the integrated approach. Thus, while,

the savings in total cost are lower in this chapter, the service level improvement is

the same as in Chapter 3.
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Apart from these savings in operational costs, the integrated approach offers either

a large reduction in fixed costs or a drastic increase in the service level. In scenario

1, the main difference between the uncoordinated and integrated approach is the

number of pickers needed. In the uncoordinated approach with a picking due date at

120, the order pickers have two hours each to pick all goods. Thus, the same number

of orders have to be picked in a shorter time period. Consequently, a higher number

of pickers are needed to pick the same number of orders, i.e., 16 instead of 9, as

indicated in Table 4.18. As mentioned before, a higher number of regular pickers is

available. Thus, although the changes in the total labour cost of regular pickers are

small, hiring new pickers does have an additional cost in real life.

In scenario 2, total cost does not change significantly, but there is an impact on

the service level. Customers have to order their goods two hours earlier to have these

delivered in the same time window as in the integrated approach. Consequently,

the service level offered decreases. Thus, by integration, companies can offer their

customers the opportunity to purchase goods closer in time to their preferred delivery

time using the same number of pickers and vehicles.

To conclude, the integration of order picking and vehicle routing operations results

on average in a lower total cost. Furthermore, e-commerce companies can allow their

customers to purchase goods online later and still have their goods delivered within

the same time window without the need of a higher number of pickers or vehicles.

The service level offered increases.

4.9 RRT heuristic: A reflection and opportunities

The integrated order picking-vehicle routing problem is a relatively new research

problem. It combines two problems which are already hard to solve individually. In

this dissertation, the problem is introduced and described in detail. It is the first

time, except from Schubert et al. (2018), a solution method is proposed for the I-

OP-VRP. Therefore, the decision was made to select a heuristic framework with a

relatively simple structure and relatively few parameters. Algorithms with only a few

parameters are easy to understand (Cordeau et al., 2002). In this way, the focus is

on the integration of both problems instead of, e.g., finding the optimal parameter

configuration. In this section, a critical reflection is made about several aspects of

the heuristic proposed: objective function, local search operators, and algorithmic

framework. Based on this reflection, future research opportunities can be identified

in order to design a more advanced solution algorithm for the I-OP-VRP.
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4.9.1 Objective function

Since the integrated order picking-vehicle routing problem is a new problem variant,

few is known about the problem. Many objective functions can be interesting to

investigate, either focusing on the service level offered or the total cost incurred. Ex-

amples are maximising the number of orders picked and delivered within the planning

horizon, minimising the maximum delivery time, and minimising the number of order

pickers and vehicles needed. In this dissertation, total operational costs related to

order picking and vehicle routing activities are minimised.

The current objective function can be replaced by one in which, for the order

picking subproblem, the number of order pickers is minimised. Similarly, it can be

assumed that order pickers are paid for an entire shift instead of only incurring a

labour cost for the actual picking time. When order pickers are paid for working

an entire shift, the number of order pickers hired will automatically be minimised,

while with the current objective function it does not matter with respect to total cost

whether orders are picked by a single order picker or by multiple order pickers. In

both situations, the labour cost will be the same.

Although the I-OP-VRP described is a single-objective problem focusing on total

operational costs, the impact on the service level offered to the customers is high-

lighted as well when the results are discussed. When e-commerce companies integrate

order picking and vehicle routing operations, customers can be allowed to place their

order later in time while the goods can still be delivered within the same time win-

dows. Thus, although the service level offered is not explicitly incorporated into the

objective function, the effect on the service level is identified as well.

Nevertheless, real-world (e-commerce) companies have a number of objectives,

which are often conflicting. Companies want to both offer the highest possible service

level to their customers and have the lowest possible total cost at the same time.

Therefore, instead of optimising a single-objective function, multi-objective problems

for the I-OP-VRP have to be considered and solution methods which are capable

handling a multi-objective problem have to be developed in future research.

4.9.2 Local search operators

In the RRT heuristic, five local search operators are implemented. Three are focusing

on the vehicle routing part of the problem, two on the order picking part. The current

objective function focuses on operational cost minimisation. In this chapter, no fixed

cost is incurred for using an additional order picker or vehicle. Consequently, no

local search operator is implemented to reduce the number of resources. Implicitly,
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by executing an operator iteratively on the same vehicle or order picker, especially

the relocate operators, it is possible that all orders within a route or picking schedule

are relocated to other vehicles or order pickers. In that case, the number of order

pickers or vehicles is reduced. An interesting future research direction can be the

implementation of a local search operator that explicitly focuses on the reduction of

the number of resources used. For example, by selecting the order picker to which

the lowest number of customer orders are assigned and trying to reinsert the orders

of the selected order picker into the picking list of other order pickers.

In the heuristic algorithm proposed in this chapter, operators are mainly focusing

on one of the two subproblems, either the OPP or the VRP. The solution of the other

subproblem is only adapted when the relationship between the OPP and the VRP is

violated. In that case, moves in the other subproblem than the one in which the local

search operator is conducted are executed in order to fix the violated relationship.

Thus, although no integrated operator is implemented which explicitly conduct moves

in both subproblems at the same time, executing an operator for one subproblem can

lead to relocation moves in the other subproblem in case of infeasibilities.

With the current objective function, many picking sequences lead to the same

total order picking costs. The picking sequence is only important when the picking

process of an order is not finished before the departure time of the delivery vehicle.

Therefore, only in this case, changes are made in the picking schedules of regular order

pickers. When an operator is constructed which simultaneously, e.g., relocates orders

both in the picking sequences and in the vehicle routes, then often computation time

is used to change the picking sequence which finally leads to the same total order

picking costs. With the operators used in this dissertation, computational effort is

saved since only moves are conducted in both subproblems when effectively needed.

In future research, however, efficient local search operators can be developed which

explicitly execute moves in both subproblems at the same time. For instance, remov-

ing orders both from the picking lists and the vehicle routes and reassign them to

other positions in the solutions. Analyses can be conducted to investigate whether

better solutions are obtained using integrated operators instead of using operators

working on a single subproblem.

4.9.3 Algorithmic framework

The local search operators used in this dissertation are implemented in a record-to-

record travel framework. The basic RRT framework as introduced by Dueck (1993)

is used. In further research, the framework can be extended with more advanced

features. At the moment, a random resource, i.e., a vehicle or an order picker, and a
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random order within that random resource is selected to execute a local search oper-

ator. However, it is possible to select the same resource or customer order multiple

times and even immediately in the subsequent move. A memory structure, such as a

tabu list, can be added in which the previous selected orders are saved and are for-

bidden to be selected in the next operator move. Furthermore, in the current design

of the RRT algorithm, after a maximum number of non-improving iterations, the al-

gorithm restarts from the best solution found so far. No perturbation is implemented

in which the current solution is largely changed in order to diversify the search pro-

cedure. An interesting future research direction is to include a perturbation phase in

the RRT algorithm.

In the current RRT heuristic, only temporary infeasible solutions are allowed when

these are due to a violation of the relationship between the OPP and the VRP. In

other words, solutions in which the order picking operations are not finished before the

departure time of the delivery vehicle are not instantly discarded. However, this in-

feasibility type needs to be solved immediately by reassigning orders in one of the two

subproblems. If it is not possible to generate a feasible solution by rearranging orders,

the original operator move creating the infeasible solution is not executed. However,

Cordeau et al. (2002) state that using a mix of feasible and infeasible solutions re-

duces the probability of becoming trapped in a local optimum. Additionally, when

intermediate infeasible solutions are allowed the search process becomes more flexible

and simpler moves and neighbourhood structures can be used (Felipe et al., 2011).

Hence, in future research, a more advanced solution algorithm can be developed in

which intermediate infeasible solutions are allowed.

In literature, many other metaheuristic frameworks are frequently used, such as

tabu search, iterated local search, or multi-start local search. In a tabu search al-

gorithm, operator moves are conducted and in each iteration the best non-tabu move

is executed. A memory-structure is implemented in which the last executed moves are

saved. These moves are forbidden for a number of iterations and are called tabu in or-

der to avoid conducting the same move repeatedly (Glover, 1989, 1990). Iterated local

search and multi-start local search are used to escape from local optima. In iterated

local search, in each iteration the procedure restarts from the current solution which is

largely changed, which is called a perturbation (Lourenço et al., 2003). In multi-start

local search, the search restarts from a new, mostly random, initial solution (Mart́ı,

2003). The local search procedure is executed on the newly obtained solution in both

approaches. In most of the algorithms highlighted, either a memory-based structure,

a perturbation phase or diversification phase is implemented. The future research

directions indicated above are thus included in these metaheuristics. Consequently,
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these metaheuristic frameworks can be used to develop a more advanced algorithm

for the I-OP-VRP. The aforementioned metaheuristics are successfully used in related

research, e.g., tabu search in Liu et al. (2017) for a VRP-rd in an e-commerce context,

iterated local search in Schubert et al. (2018) for an I-OP-VRP, and multi-start local

search in Bräysy et al. (2004) for a VRPTW.

4.10 Conclusions

Solving an I-OP-VRP for large-size instances to optimality is hard within reason-

able time. Therefore, in this chapter, a heuristic algorithm based on record-to-record

travel algorithm is proposed. Five local search operators are implemented within the

heuristic solution method. Three operators work on the vehicle routing part of the

problem: relocate, exchange, and 2-Opt. Two operators adapt the order picking part

of the problem: relocate and exchange. The parameters of the heuristic algorithm

are tuned using an automatic configuration software, i.e., the irace software package.

Experiments on small-size and large-size instances are conducted. The algorithm pro-

posed is capable of obtaining the optimal solutions for the small-size instances within

one second. Solutions for large-size instances can be found within approximately two

minutes.

The design of the algorithm is evaluated by investigating the contribution of the

operators and the impact of the operator sequence. The relocate operator for both the

vehicle routing and order picking subproblem have the largest individual impact. The

VRP operators have overall a larger impact than the OPP operators. No operator

sequence, either a random or a fixed, outperforms the other for all instances tested.

Furthermore, the value of integration is examined by comparing an uncoordinated

and integrated approach. Two different uncoordinated scenarios are compared with

the integrated approach. In the uncoordinated approach, a picking due date strictly

separates the order picking and delivery operations. Integration has two benefits

for e-commerce companies. First, cost savings of on average 1.80% and even up to

5.30% can be obtained by integrating both problems. Total labour cost decreases

because a lower number of order pickers are required. Second, e-commerce companies

which integrate their operations can offer a higher service level. Customers can

request their goods later in time and these can still be delivered within the same

time windows. The time period between the request of an order and the delivery of

goods is shortened by integration. Thus, integration can lead to a faster and more

cost-efficient picking and delivery which is a competitive advantage in e-commerce

business.
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Since the I-OP-VRP is a relatively new problem, the heuristic algorithm proposed

in this dissertation has a relatively simple structure. This way the algorithm is under-

standable for the reader and the focus is on the integration of both problems. A more

advanced algorithm can be designed in further research in which, e.g., a perturbation

phase is implemented or temporary infeasible solutions are allowed.
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Batch picking in the

I-OP-VRP

5.1 Introduction

Order picking is the most labour-intensive activity in a warehouse because most op-

erations are executed manually, especially when a picker-to-part method is applied.

Manual picker-to-part order picking systems account for over 80% of all order picking

systems in Western Europe (de Koster et al., 2007). As described in Chapter 3, the

order picking time is composed of different components: travel times between pick-

ing locations, search times to find the requested items, pick times to grab the items

from their storage locations, and setup times. The travel times between the different

locations which need to be visited account for approximately half of the total picking

time (Tompkins et al., 2003). To save labour costs, the total time required for the

order picking activities should be minimised.

Furthermore, nowadays, customers expect a short delivery time when they pur-

chase goods online. Consequently, companies have to offer a cut-off time as close as

possible to the preferred delivery time. As a result, a large number of orders need to

be picked in a short period of time. In order to be able to offer this service level to

customers, picking operations have to be performed efficiently such that throughput

times of orders are reduced (de Koster et al., 1999b).

Either from a cost minimisation perspective or from a service level maximisation

perspective, total picking time needs to be reduced in order to pick orders as efficient

as possible. The only component of the total picking time on which savings can

be gained are the travel times, which have no value adding function. One way to

159
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Introduction and problem statement (Chapter 1)

Integrated production scheduling-

vehicle routing problems (Chapter 2)

Problem description and formulation (Chapter 3)

Record-to-record travel

algorithm (Chapter 4)
Batch picking (Chapter 5)

Conclusions and future research (Chapter 6)

Integrated order picking-vehicle routing problem

Figure 5.1: Thesis outline - Chapter 5

reduce travel times, and thus total picking time, is to implement a batch picking

policy in which multiple customer orders are combined into a single route. In the

previous chapters, a discrete order picking policy in which products ordered by a

single customer are picked in an individual route is implemented. Since batch picking

avoids that order pickers have to travel several times to the same picking locations to

pick items that are requested by multiple customers, the reduction in travel time can

be significant, especially for fast moving goods which are ordered by a large number

of customers. Therefore, in this chapter, batch picking is introduced in the I-OP-VRP

considered so far (Figure 5.1).

The difference between a discrete order picking policy and a batch picking policy

is illustrated in Figure 5.2. The coloured boxes indicate the storage locations of

the items requested by customers. The dashed lines represent the picking routes

through the warehouse. In Figure 5.2(a), the picking routes are individually performed

for two customer orders using a discrete order picking policy, resulting in an order
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(a) Discrete order picking policy for two orders

(b) Batch picking policy for two orders

Figure 5.2: Comparison of picking routes with discrete order picking and with batch

picking

picker travelling the same route twice. In Figure 5.2(b), the two customer orders are

combined into a single batch. The order picker has to travel the route through the

warehouse only once. Thus, in this example, the picking time with batch picking

is approximately half of the picking time with a discrete order picking policy. A

disadvantage of batch picking is that items of different customer orders need to be

sorted when these are picked in the same route. Two types of sorting can be applied.

Orders can be sorted either during the picking route, i.e., sort-while-pick, or at the

end of the picking route, i.e., pick-and-sort (van den Berg, 1999).

The difficulty of the batching problem is to decide which orders are grouped into

a single batch. Different strategies such as priority rule-based algorithms, seed al-

gorithms, and savings algorithms, are developed in literature to solve the problem of

assigning orders to batches. For detailed information on these strategies, the reader

is referred to de Koster et al. (1999a, 2007) and Wäscher (2004). The assignment

procedure is not the focus of this chapter. It is assumed that all demand is known
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at the beginning of the planning horizon. Thus, all feasible batches can be created

in advance and are used as input for the I-OP-VRP. The decisions which have to be

made in the order picking part of the I-OP-VRP are to: (1) select the batches that

are picked such that each order is included in a batch, and (2) determine the sequence

in which batches are picked for each order picker.

Several studies examine the impact of implementing a batch picking policy instead

of a discrete order picking policy. de Koster et al. (1999b) find that combining a

number of small orders in the same picking route can lead to a reduction in total

order picking time of on average 19%. Consequently, a lower number of order pickers

is required for the picking activities. The data in the study are based on a large

retail organisation in the Netherlands. Petersen (2000) compares five picking policies

in a mail order company. When a batch picking policy is used instead of a discrete

order picking policy, the travel times decrease with 60%. Petersen and Aase (2004)

investigate the picking activities of an online/catalog retailer using a discrete order

picking policy. The authors examine the impact of using a different batching, routing,

and storage policy. Experiments reveal that batching leads to the largest reduction

in total fulfilment time, with savings up to 29%.

The goal of this chapter is to conduct an exploratory study on the impact of a

batch picking policy on the value of integration. An integrated problem applying a

batch picking strategy is compared with one using a discrete picking policy. Experi-

ments on small-size instances are executed to quantify the difference between the two

approaches. Moreover, conceptual scenarios are introduced in which batch picking

can enlarge the value of integration compared to discrete order picking. This chapter

is a first step towards research on integrated order picking-vehicle routing problems

with a batch picking policy.

The remainder of this chapter is organised as follows. In Section 5.2, a mathem-

atical formulation for the I-OP-VRP with batch picking is proposed. Data instances

are created in Section 5.3. Experiments on the impact of batch picking in comparison

with discrete order picking are conducted in Section 5.4. The value of integration in

case of batch picking is quantified in Section 5.5. Additionally, in Section 5.6, problem

contexts are described in which I-OP-VRPs with batch picking are compared with

I-OP-VRPs with discrete order picking. The goal is to identify what the effect is of a

batch picking policy in specific circumstances on the value of integration. Conclusions

are formulated in Section 5.7. The aim of this chapter is to create a first insight into

the impact of a batch picking policy on the integration of order picking and vehicle

routing problems.
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5.2 Mathematical formulation

In this section, the mathematical formulation for the I-OP-VRP presented in Sec-

tion 3.5 is adapted such that batch picking is allowed.

5.2.1 Notation

To update the formulation, additional notation needs to be introduced, and existing

notation needs to be adapted. In the adapted parameters and decision variables, the

indices i and j indicating a customer order are replaced by indices b and c referring

to a batch of orders. The adapted or added sets, indices, parameters, and decision

variables needed in the mathematical model with a batch picking policy are defined

as follows:

Sets and indices

B = {0, ..., b̄} set of feasible batches, indices b and c, where b = c = 0

indicates a dummy empty batch

Adapted parameters

ptb time needed to pick batch b, in minutes

otb order time of batch b, in minutes

Additional parameters

wbb capacity utilisation of batch b, in number of items

gib binary coefficient indicating whether order i is picked in

batch b

Adapted decision variables

STOb start time of picking batch b, in minutes

Xbp binary variable which is equal to 1 (Xbp = 1) if batch b is

picked by order picker p

Ubcp binary variable which is equal to 1 (Ubcp = 1) if batch c is

picked immediately after batch b (b 6= c) by order picker p

Additional decision variables

CTOBb completion time of picking batch b, in minutes

The order picking time pt0, capacity utilisation w0, and order time ot0 of the

dummy batches are equal to zero.
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5.2.2 I-OP-VRP with batch picking

The mathematical model is based on the formulations in Section 3.5 in combination

with the objective function introduced in Chapter 4. Only the formulation of the OPP

is influenced by the introduction of a batch picking policy. The OPP formulation is

changed to a set partitioning problem such that each customer order is assigned to

exactly one batch. The constraints related to the VRP are unaffected.

min creg ·
b̄∑
b=1

ptb ·
p̄∑
p=1

Xbp + ctemp ·
b̄∑
b=1

ptb ·
p̂∑

p=p̄+1

Xbp

+

n∑
i=0

n∑
j=0

v̄∑
v=1

cttv · tij · Zijv +

v̄∑
v=1

ctlv · TLv (5.1)

subject to

b̄∑
b=1

p̂∑
p=1

gib ·Xbp = 1, ∀i ∈ I \ {0} (5.2)

Xbp =

b̄∑
c=0

Ubcp =

b̄∑
c=0

Ucbp, ∀b ∈ B, p ∈ P, b 6= c (5.3)

b̄∑
c=1

U0cp ≤ 1, ∀p ∈ P (5.4)

wbb ·Xbp ≤ Cp, ∀b ∈ B, p ∈ P (5.5)

STOb ≥ odb, ∀b ∈ B (5.6)

STOc ≥ CTOBb −M1
b ·

(
1−

p̂∑
p=1

Ubcp

)
, ∀b, c ∈ B, b 6= c,

M1
b = min

i∈b
{bi − t0i} − s0 (5.7)

CTOBb = STOb + ptb, ∀b ∈ B (5.8)

CTOBb ≤ CTOi +M2
ib ·

(
1− gib ·

p̂∑
p=1

Xbp

)
, ∀b ∈ B, ∀i ∈ I

M2
ib = min

i∈b
{bi − t0i}

− s0 − pti (5.9)
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CTOi ≤ CTOBb +M1
ib ·

(
1− gib ·

p̂∑
p=1

Xbp

)
, ∀b ∈ B, ∀i ∈ I

M1
ib = bi − t0i − s0 − ptb (5.10)

b̄∑
b=1

ptb ·Xbp ≤ wtmaxreg , ∀p = 1, ..., p̄ (5.11)

b̄∑
b=1

ptb ·Xbp ≤ wtmaxtemp, ∀p = p̄+ 1, ..., p̂ (5.12)

Zijv = 0, ∀i, j ∈ I \ {0}, i 6= j,

∀ ∈ V, ai ≥ bj (5.13)

v̄∑
v=1

Yiv = 1, ∀i ∈ I \ {0} (5.14)

Y0v ≥ Yiv, ∀i ∈ I \ {0}, v ∈ V (5.15)

Yjv =

n∑
i=0

Zijv =

n∑
i=0

Zjiv, ∀j ∈ I, v ∈ V, i 6= j (5.16)

n∑
i=1

wiYiv ≤ Cv, ∀v ∈ V (5.17)

CTOi ≤ STTv +M7
i · (1− Yiv) , ∀i ∈ I \ {0}, v ∈ V,

M7
i = bi − t0i − s0 (5.18)

a0 ≤ STTv, ∀v ∈ V (5.19)

STTv + s0 + t0j ≤ DTj +M3
j · (1− Z0jv) , ∀j ∈ I \ {0}, v ∈ V,

M3
j = b0 + s0 + t0j − aj (5.20)

DTi + si + tij ≤ DTj +M4
ij ·

(
1−

v̄∑
v=1

Zijv

)
, ∀i, j ∈ I \ {0}, i 6= j,

M4
ij = bi + si + tij − aj (5.21)

ai ≤ DTi ≤ bi, ∀i ∈ I \ {0} (5.22)

DTi + si + ti0 ≤ b0 +M5
i ·

(
1−

v̄∑
v=1

Zi0v

)
, ∀i ∈ I \ {0},

M5
i = bi + si + ti0 − b0 (5.23)

DTi + si + ti0 − STTv ≤ TLv +M6
i · (1− Zi0v) , ∀i ∈ I \ {0}, v ∈ V,

M6
i = bi + si + ti0 (5.24)
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TLv ≤ TLmax, ∀v ∈ V (5.25)

CTOBb, STOb ≥ 0, ∀b ∈ B (5.26)

Xbp, Ubcp ∈ {0, 1}, ∀b, c ∈ B, b 6= c, p ∈ P (5.27)

CTOi, DTi ≥ 0, ∀i ∈ I (5.28)

STTv, TLv ≥ 0, ∀v ∈ V (5.29)

Yiv, Zijv ∈ {0, 1}, ∀i, j ∈ I, i 6= j, v ∈ V (5.30)

Objective function (5.1) minimises the costs incurred for picking batches and

the vehicle routing costs. Constraints (5.2) assign each order to exactly one batch

and to exactly one picker. The picking sequence of batches is determined by con-

straints (5.3). At most a single batch can be picked first by a picker as indicated

by constraints (5.4). Constraints (5.5) impede that the picking device capacity is

violated. Constraints (5.6) specify that the picking process of a batch can only start

after the order time of the batch, which is the maximum order time of all orders

in the batch. The start and completion times of picking a batch are indicated by

constraints (5.7) and (5.8), respectively. The completion time of an order is set equal

to the completion time of the batch in which it is picked by constraints (5.10) and

(5.9). The completion time of the order is the release date for the VRP. The working

time of the regular and temporary order pickers is limited by constraints (5.11) and

(5.12), respectively. The interpretation of the VRP constraints (5.13)-(5.25) is not

changed compared to Section 3.5. Constraints (5.26)-(5.30) specify the domain of the

variables.

5.3 Data generation

The data which are analysed in the computational experiments is based on the in-

stances used in Chapter 4. Implementing a batch picking policy leads to a higher

complexity of the I-OP-VRP. Consequently, the computation times to solve the prob-

lem to optimality by CPLEX increases. To get a first insight in the impact of batch

picking, only the 50 instances with 10 customer orders generated in Section 4.5 are

transformed into instances with batch picking. The data with respect to the delivery

operations, e.g., time windows and customer locations, remain the same. The data

related to the picking operations are adapted from individual order data to batch

data. The number of possible batches is calculated as follows:
n∑
r=1

n!

r! · (n− r)!
, with

n the total number of orders and r the number of orders in a batch. The total number

of possible combinations with n = 10 is equal to 1,023.
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The batch capacity utilisation wbb is the sum of the number of items wi in each

customer order included in the batch. The order time of a batch otb is the maximum

order time oti of the orders assigned to the batch. Since the focus of this chapter

is not to select the best batching and routing policy, the picking time of a batch

ptb is randomly generated based on the picking times of the orders included. In

more detail, the picking time of a batch with a single order (r = 1) is equal to the

picking time of that order. The picking time of a batch with multiple orders (r > 1)

is randomly generated between the maximum picking time over all subbatches with

r − 1 orders selected out of the orders in the batch and the sum of the picking times

of the orders included. For example, the picking time of the batch with order 1, 2,

and 3 is randomly generated within the range of the maximum picking time of the

subbatches, i.e., (1, 2), (1, 3), and (2, 3), and the sum of the individual picking times,

i.e., U(max(pt(1,2), pt(1,3), pt(2,3)), pt1 +pt2 +pt3). Thus, picking a batch takes at least

as long as picking a smaller batch with some of the orders inside the larger batch, but

no longer than the sum of picking each order individually. The time needed to sort

the different customer orders in a batch is assumed to be negligible.

The batches with an infeasible weight utilisation with respect to the picking device

capacity of 20 items and a picking time greater than the picking time available for a

single order picker are excluded from the input data in the computational experiments.

Since by using a batch picking policy the total picking time needed decreases, the

time period available for the picking operations is shortened in comparison with the

previous chapters. Therefore, in the uncoordinated approach in this chapter, the

picking due date is after 60 minutes, while in Chapter 4 the picking due date is after

120 minutes. Thus, the picking time available for each picker in the uncoordinated

approach is only 60 minutes. The time window bounds are 60 minutes earlier than

in Chapter 4. The instances are available online at http://alpha.uhasselt.be/kris.

braekers.

5.4 Impact of batch picking

In this section, the impact of implementing a batch picking policy on total cost is

examined. The results of an I-OP-VRP with batch picking and of an I-OP-VRP with

discrete order picking are compared. The experiments1 are executed on a 12-core

Xeon E5-2680v3 CPUs with 128 GB RAM. The optimisation software ILOG CPLEX

1The computational resources and services used in this work were provided by the VSC (Flemish

Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish

Government - department EWI.

http://alpha.uhasselt.be/kris.braekers
http://alpha.uhasselt.be/kris.braekers
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12.7.1 is used to solve the mathematical formulation. The mathematical formulation

for the I-OP-VRP with batch picking described in Section 5.2.2 is used to obtain

the optimal solution for the instances with batches. For the I-OP-VRP with discrete

order picking, the mathematical formulation presented in Section 3.5 is used with an

order time equal to 60. In Table 5.1, the changes per cost component and in total

cost are presented. Detailed results are provided in Appendix D.

Table 5.1: Comparison of discrete order picking and batch picking

∆ TC (%) ∆ TCcreg (%) ∆ TCctemp (%) ∆ TCctlv (%) ∆ TCcttv (%)

-12.07 -37.60 0.00 0.00 0.00

Implementing a batch picking policy instead of a discrete order picking policy leads

to savings in total cost (TC) of approximately 12%. Costs related to the delivery

operations (TCctlv and TCcttv ) are not influenced by changing the picking policy for

these instances. The labour costs of the regular order pickers (TCcreg) decrease with

37.60% on average. While in an I-OP-VRP with discrete order picking on average

1.16 regular order pickers are needed, in an I-OP-VRP with batch picking a single

order picker can pick all orders on time. In both integrated approaches, no temporary

order pickers are used.

Investigating an I-OP-VRP with batch picking leads to a higher number of pos-

sible picking schedules compared to an I-OP-VRP with discrete order picking. Con-

sequently, the computation time required to obtain the optimal solution by CPLEX

increases. Solving instances with discrete order picking has an average computation

time of approximately two minutes, while the average computation time for instances

with batch picking is two hours.

5.5 Value of integration

In previous chapters, the value of integration has already been indicated for an I-

OP-VRP in which a discrete order picking policy is applied. In this chapter, the

value of integration is quantified for an I-OP-VRP with a batch picking policy. An

uncoordinated approach is compared with an integrated approach. The mathematical

formulation presented in Section 5.2 needs to be divided into two parts. A strict

picking due date is introduced in the order picking subproblem. Release dates at which

the goods become available for delivery are added to the vehicle routing subproblem.

In more detail, a constraint concerning the picking due date pd needs to be intro-

duced. This constraint is similar to constraints (3.9), but is adapted to batch picking
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as follows:

CTOBb ≤ pd, ∀b ∈ B \ {0} (5.31)

Furthermore, in constraints (5.7) the calculation of the Big M value needs to be

changed: M1
b = pd. Finally, in constraints (5.18), the completion time of the picking

process of an order needs to be replaced by a release date rdi, resulting in the following

constraint:

rdi ≤ STTv +M2
i · (1− Yiv) , ∀i ∈ I \ {0}, v ∈ V,

M2
i = rdi (5.32)

Due to the large computation times to solve such an I-OP-VRP, experiments

are conducted using instances with only 10 customer orders. In the uncoordinated

approach, a picking due date after 60 minutes needs to be respected. Such a small

time period for the picking operations is considered because by implementing a batch

picking policy the total picking time needed is less than in case of a discrete order

picking policy. The impact of a small picking period is examined in more detail in

Section 5.6. The problem is similar to the scenario in Section 3.7.2.2 in which all

orders have an order time equal to 180 and thus only 60 minutes are left to pick

these goods. The ten orders are ordered at the beginning of the time horizon, i.e.,

the cut-off time, and need to be picked before the due date. Although order pickers

are allowed to work 240 minutes during a single shift, only 60 minutes are left to pick

these orders on time.

Table 5.2: Cost difference between an uncoordinated and an integrated approach

∆ TC(%) ∆ TCcreg(%) ∆ TCctemp(%) ∆ TCctlv (%) ∆ TCcttv (%)

-0.32 7.70 -46.00 0.00 0.00

The value of integration, indicated by the changes in total cost (∆ TC) in Table 5.2,

is on average 0.32%. By integrating the subproblems, savings on the labour costs of

the order pickers are achieved. In the integrated approach, a single regular order

picker can pick all goods on time. In the uncoordinated approach, however, in all

instances two regular order pickers are needed and, in 23 instances an additional

temporary order picker needs to be hired to avoid violating the picking due date. The

labour costs of the regular order pickers (TCcreg) in the integrated approach are on

average 7.70% higher than in the uncoordinated approach since all orders are picked

by regular pickers in the integrated approach. The labour costs of the temporary

order pickers (TCctemp) decrease with 46.00%. Thus, the increase in the labour costs
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of the regular order pickers is compensated by the decrease in the labour costs of the

temporary order pickers. Detailed results are provided in Appendix D.

In Chapter 3, similar results are obtained for an I-OP-VRP with a discrete order

picking policy. As can be seen in Table 3.3, in the uncoordinated approach a higher

number of both types of order pickers is required compared to the integrated approach.

In the integrated approach, no temporary order pickers need to be hired.

The general results described in this section are illustrated by examining the spe-

cific results of one instance in more detail. In the uncoordinated approach, two regular

pickers both pick two batches of two orders (Figure 5.3(a)). Order picker 1 and 2 work

47 minutes and 55 minutes, respectively. The pick time of the remaining batch of two

orders is 20 minutes. Consequently, this batch needs to be assigned to a tempor-

ary order picker to avoid violating the picking due date. In the integrated approach

(Figure 5.3(b)), the order pickers can work 240 minutes without fixed end time of

a shift since it is not longer restricted by the picking due date. The batch which is

picked by a temporary order picker in the uncoordinated approach can be picked by

a regular order picker in the integrated approach. No additional order pickers need

to be temporarily hired which lead to lower labour costs. Order picker 1 works 50

minutes and picks two batches of two orders. Order picker 2 has a working time of 72

minutes and picks the remaining three batches. Thus, the same batches are picked,

but fewer order pickers are need for the picking operations. The same delivery route

is conducted in both approaches.

A critical remark has to be added on the relatively low value of integration in-

dicated in the experiments when a batch picking policy is applied. A reason for the

low value can be the way in which the batches and the associated picking times are

created. All feasible combinations of customer orders with respect to the picking

device capacity are created. The picking time of the batches are randomly generated.

As described in Section 5.3, the picking time of a batch with r number of orders is

randomly generated between the maximum picking time of all subbatches with r − 1

orders and the sum of the picking times of the individual orders in the batch. The

storage locations and picking routes are not taken into account since these data are

not available in the artificial generated instances.

In literature, batches and their picking times are generally created using batching

policies. Examples of batching policies are proximity batching and seed algorithms. In

proximity batching, customer orders are combined in a batch based on the proximity

of their storage locations in the warehouse. In a seed algorithm, first an order is

selected as seed order. Then, orders are added to the current batch based on a

distance measure (de Koster et al., 2007). Thus, when using such batching rules,
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(a) Uncoordinated approach with a temporary picker (p = 3)

(b) Integrated approach

Figure 5.3: Comparison of an uncoordinated approach with a single temporary picker

and an integrated approach

orders which are located close to each other are combined. Consequently, more travel

distance is saved in comparison to a discrete order picking policy and a random

batch policy. A first step in further research has to be conducted to investigate

the value of integration when such batch picking rules are applied. Furthermore,

higher efficiency improvements can be obtained when order batching, picking routes,

and pickers scheduling are optimised in a coordinated way instead of each problem

individually (van Gils et al., 2017, 2018a). Therefore, a second step in future research

is to examine the value of integrating order picking and vehicle routing decisions when

the internal warehouse operations are conducted in a coordinated way.

5.6 When is integration more valuable: examples

Although the value of integration is rather small in the previous section, problem

contexts exist in which integration leads to higher gains when batch picking is ap-
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plied instead of discrete order picking. In this section, several problem contexts are

described. For each problem context, a numerical example is provided which demon-

strates the value of integration in case of batch picking in the order picking part of

the problem.

5.6.1 Problem context 1: Small picking time period

In an e-commerce environment, customers expect a fast delivery. Thus, the time

period between the purchase of goods and their delivery has to be small. To offer this

service level, the cut-off time has to be close in time to the picking due date in an

uncoordinated approach. Consequently, the time available for picking goods that are

ordered close to the cut-off time is limited. To pick all orders on time, multiple order

pickers need to work at a time. Additionally, batches which require a larger picking

time than the time available cannot be selected. Therefore, when determining picking

schedules a lower number of possible batches are available to select from. Probably a

higher number of batches consisting of a small number of orders need to be picked.

In the uncoordinated approach, the delivery operations are outsourced to a 3PL

service provider. A picking due date is negotiated with the 3PL service provider. At

the due date, the 3PL service provider arrives at the DC and pick ups the goods.

This picking due date is fixed and the same for every day. The e-commerce company

and the 3PL service provider do not contact each other daily to discuss the due date

for that specific day based on the customer orders requested.

In an integrated approach, the only time restriction is the maximum working time

of an order picker during a single shift. No picking due date has to be respected.

The entire time period between the request of an order and the departure time of the

vehicle delivering the order can be used for picking the order. The batches with a

large picking time which cannot be considered in the uncoordinated approach are no

longer excluded in the integrated approach. These batches, which probably combine

a higher number of orders and lead to a lower total time for picking all orders, can

be selected.

A numerical example with three customer orders is presented. The three orders

are requested by customers at the cut-off time. After the cut-off time, 30 minutes are

available before the picking due date in the uncoordinated approach (Figure 5.4(a)).

The smallest possible total picking time is 42 minutes. Order picker 1 picks customer

order 1 (15 minutes). A batch consisting of orders 2 and 3 is picked by order picker 2

(27 minutes). In the integrated approach, however, a single order picker picks all three

customer orders in a single batch (Figure 5.4(b)). The picking time is 41 minutes.

The batch with the three orders cannot be picked in the uncoordinated approach
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(a) Uncoordinated approach with a small picking time period available

(b) Integrated approach

Figure 5.4: Comparison of an uncoordinated approach with a small picking time

period available and an integrated approach

since the picking time is larger than the time available between the cut-off time and

the pickup time. In the uncoordinated approach, the picking due date is fixed at the

same time every day. It is not possible to change the due date in order to be able

to reduce the total picking time for a specific day, especially because the goods are

ordered close in time to the picking due date. Thus, by integrating order picking

and vehicle routing decisions, the total picking time can be decreased in case batch

picking is applied, and the number of order pickers required decreases.

In case a discrete order picking strategy is implemented, the problem of a small

time period available for picking only leads to hiring more order pickers in an un-

coordinated approach, as described in Section 3.7.2.2. The smaller the time period

between the cut-off time and the picking due date, the higher the number of tempor-

ary order pickers needed in the uncoordinated approach. When the time period is

too small and the number of order pickers available is insufficient to pick all goods

on time, the uncoordinated problem becomes infeasible. Orders are picked by a lower

number of order pickers when the order picking and vehicle routing problems are in-

tegrated, and in most cases no additional order pickers need to be hired. In contrast

to a discrete order picking policy in which the sum of the individual picking times
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remains the same after integration, the total picking time decreases by integrating the

two subproblems in case of batch picking. Thus, not only the number of order pickers

needed decreases, also the total picking time is reduced in an integrated problem with

batch picking.

5.6.2 Problem context 2: Outsourcing to multiple 3PLs

An e-commerce company can outsource its delivery operations to more than one 3PL

service provider in an uncoordinated approach. The e-commerce company negotiates

with each 3PL service provider a pickup time at which the goods are picked up that

are delivered by that specific 3PL. For each pickup time, an associated cut-off time

before which goods need to be ordered, is determined.

Suppose, a contract is negotiated with two 3PL service providers leading to two

pickup times and two cut-off times. The second cut-off time is equal to the first

picking due date. All goods ordered before the first cut-off time need to be picked

before the first pickup time in such a way that the 3PL can deliver these goods to the

customers. The goods ordered after the first cut-off time have to be picked before the

second pickup time. Thus, only orders which are picked in the same period can be

combined in a batch. In this situation, two picking schedules are determined: one for

the time period between the first cut-off time and the first pickup time and another

for the time period between the first pickup time (second cut-off time) and the second

pickup time.

In the integrated approach, however, no fixed pickup times occur. The delivery

operations are conducted by the e-commerce company itself or the 3PL service pro-

viders collaborate with the e-commerce company. A picking schedule is determined

for the entire period. All possible combinations of orders can be assigned to a batch

as long as the capacity of the picking device is not violated. The picking process of

orders which need to be delivered in a late time window, i.e., after pickup time 2, can

be postponed. The system is updated regularly and new orders become available.

In this way, new batching combinations with orders from both time periods are

possible. Combinations with newly arrived orders can result in a lower picking time

than combining orders which are requested earlier. Furthermore, whereas in the

uncoordinated approach each 3PL service provider determines its delivery route, in

the integrated approach, vehicle routes for the entire delivery period are determined.

Thus, all orders can be considered at the same time when establishing vehicle routes

resulting in more consolidation possibilities. The number of routes needed to deliver

all goods can decrease.
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(a) Uncoordinated approach with multiple 3PLs

(b) Integrated approach

Figure 5.5: Comparison of an uncoordinated approach with multiple 3PLs and an

integrated approach

In Figure 5.5, an uncoordinated and integrated approach are shown. In the unco-

ordinated approach (Figure 5.5(a)), order 1, 2, and 3 need to be picked before pick

due date 1 at 120, while the picking process of order 4 and 5 has to be completed

before pick due date 2 at 240. In the first time period, order 1 and 2 are combined

in a batch (28 minutes), and order 3 is picked in an individual tour (17 minutes). In

the second time period, order 4 and 5 are combined in a single batch with a picking

time of 31 minutes. The total picking time of the uncoordinated approach is equal

to 76 minutes. Two vehicle routes are conducted. The first route leaves the DC at

picking due date 1 and delivers all goods ordered before cut-off time 1. The second

route leaves the DC at the second picking due date and delivers the remaining orders.

In the integrated approach, different orders are combined into batches (Fig-

ure 5.5(b)). Order 1 and 5 are assigned to a batch with a picking time of 20 minutes.

A second batch is composed of order 3 and 4 and has a picking time of 21 minutes.

Order 2 is picked individually (24 minutes). The total picking time is equal to 65

minutes. As can be seen, orders requested in different time periods in the unco-

ordinated approach are combined in batches in the integrated approach. Thus, by
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postponing the picking process of order 1 and 3 until additional orders have arrived

in the system, the total picking time is reduced by 14.5%. Consequently, lower labour

costs are incurred. Additionally, all orders are delivered by a single vehicle. In the

uncoordinated approach, each 3PL service provider conducts a delivery route. In the

integrated approach, however, by collaborating all orders can be delivered in a single

route.

These savings cannot be achieved when a discrete order picking policy is applied

in the DC. In such a situation, no orders are combined in a batch, and the total

picking time is the sum of all individual picking times. The total order picking time

is not influenced when orders are postponed to be picked. Thus, integration can be

more beneficial when batch picking is applied in a situation with multiple 3PL service

providers with multiple cut-off times in an uncoordinated approach.

5.6.3 Problem context 3: Dynamic environment

A typical characteristic for e-commerce sales is that goods can be ordered on the

Internet 24/7. Orders arrive in the system of the e-commerce company at any moment

in time. Every time a new order is placed, the existing picking schedules and vehicle

routes need to be updated. The picking process of the newly arrived order has to

be added to the picking list of one of the pickers, and the order needs to be inserted

in one of the vehicle routes. In contrast to the previous problem context in the

uncoordinated approach, the system is not longer updated only at the cut-off times.

In the integrated approach, the picking process of orders can be postponed. By

postponing, orders can be batched with orders that are requested later. More batching

possibilities are created. Some of these can lead to a lower total picking time needed.

In the uncoordinated approach, all orders have to be picked before the due date.

Postponing the picking process of all orders can be risky as the possibility exists that

the picking due date will be violated. In the integrated approach, a decision rule has

to be determined that indicates which orders can be postponed and to what extent.

For example, the picking process of an order can be postponed until no later than

two hours before the upper bound of the delivery time window of the order.

An example of a dynamic situation in both an uncoordinated and integrated ap-

proach is presented in Figure 5.6. Only orders placed in the time period before the

cut-off time in the uncoordinated approach are considered. Six orders are placed in

this time period. Order 6 is requested on the last possible moment in the uncoordin-

ated approach, i.e., at the cut-off time. After the cut-off time 30 minutes are left for

conducting picking operations. The time needed to pick order 6 in an individual tour

is 27 minutes.
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(a) Uncoordinated approach

(b) Integrated approach

Figure 5.6: Comparison of an uncoordinated approach and an integrated approach in

a dynamic environment

As can be seen in Figure 5.6, orders are combined in different batches in the unco-

ordinated and integrated approach. In the uncoordinated approach (Figure 5.6(a)),

order 2 is combined with order 3, while in the integrated approach (Figure 5.6(b))

orders 2, 3, and 6 are combined in a single batch. The picking process of batch (2,3)

is postponed in the integrated approach. The postponement creates the opportunity

to combine batch (2,3) with order 6 in a single batch which has a picking time of 49

minutes. When batch (2,3) is postponed in the uncoordinated approach, the batch

(2,3,6) would violate the picking due date since order 6 is requested at time 90 and

the picking due date is at 120.

In case of discrete order picking in a dynamic environment, postponing the picking

process of orders has no impact on the total time required to pick all orders. Each

customer order is picked in an individual tour through the DC. Postponement does not

change the picking time of an individual tour. Consequently, integrating order picking

processes and vehicle routing operations in a dynamic environment has a higher value

in case a batch picking policy is applied instead of a discrete order picking policy.
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5.7 Conclusions and future research opportunities

In this chapter, a batch picking policy is introduced in the I-OP-VRP used in the

previous chapters. Instead of picking each customer order in an individual picking

tour through the warehouse, multiple orders are combined in a batch to be picked in

the same tour. Batch picking reduces the total picking time needed. Consequently,

total labour cost decreases with approximately 37% on average for the instances with

10 customer orders. Total cost is reduced with approximately 12% on average.

The mathematical formulation for the I-OP-VRP introduced in Chapter 3 is ad-

apted. The order picking constraints are changed to a batch picking policy. The

constraints related to the delivery operations are unaffected by the implementation

of a batch picking policy. The mathematical model formulated in this chapter is a set

partitioning problem in which each customer order needs to be assigned to exactly

one batch.

The value of integration is quantified in case batch picking is applied in the order

picking part of the problem. Experiments with instances with 10 customer orders are

executed. Similar results as in case of a discrete order picking policy are obtained. In

an integrated approach, a lower number of order pickers are required to pick all goods

since there is more flexibility for conducting the picking operations. Consequently,

total labour cost of the order pickers decreases.

This chapter describes three problem contexts in which the integration of order

picking and vehicle routing problems has a larger value when batch picking is used

instead of discrete order picking. If the time period between the cut-off time and

the picking due date is small in the uncoordinated approach, then integration can

have a larger value if batch picking is applied instead of discrete order picking. If the

subproblems are integrated, then different orders can be batched than in the unco-

ordinated approach leading to a lower total picking time. In discrete order picking,

the total order picking remains the same as it is the sum of the individual picking

times. If in an uncoordinated approach an e-commerce company outsources its de-

livery operations to multiple 3PL service providers, then the value of integration is

larger when batch picking is used compared to when discrete order picking policy is

applied. Similar findings are obtained for the I-OP-VRP with batch picking in a dy-

namic environment. In the integrated approach, the picking process of orders which

have a late time window compared to their order time can be postponed. Both the

number of order pickers required and the number of vehicles needed decreases in the

integrated approach. By postponing, more batch combinations with the orders arriv-

ing later in the system are created. Postponing orders is not always possible in the
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uncoordinated approach as it can result in a violation of the picking due date. When

a discrete order picking policy is applied, the postponement of orders has no impact

since no orders are batched and the individual picking times are not influenced.

In this chapter, an exploratory study has been conducted on the impact of imple-

menting a batch picking policy in an I-OP-VRP. The aim is to gain a first insight into

the effect of batch picking on the value of integration. Experiments with small-size

instances with 10 customer orders are executed. In further research, the value of in-

tegration for larger problem sizes has to be examined. The problem contexts provided

indicate a first impression of which benefits can be obtained when integrating an or-

der picking problem using batch picking with a vehicle routing problem. The savings

obtained by integrating order picking and vehicle routing decisions depends on the

batching policy, routing policy, and storage policy used in the DC. In this dissertation,

the picking times of both individual orders and batches are randomly generated. Fu-

ture research should investigate the impact of different batching, routing, and storage

policies on the I-OP-VRP.





Chapter 6

Final conclusions and future

research

This dissertation focuses on the integration of order picking and vehicle routing de-

cisions in a single optimisation problem. The aim is to investigate the value of in-

tegrating both subproblems, especially in an e-commerce context. In Chapter 2, a

detailed review of integrated production scheduling-vehicle routing problems is con-

ducted in order to get a first insight in integrated problems of supply chain functions.

In Chapter 3 to 5, the integrated order picking-vehicle routing problem is analysed. In

Chapter 3, the I-OP-VRP is introduced and described in detail. A heuristic algorithm

to solve the problem is proposed in Chapter 4. The integrated problem with a batch

picking policy is investigated in Chapter 5. Finally, in this chapter, the main con-

clusions are summarised, managerial implications are identified, and future research

directions are indicated (Figure 6.1).

6.1 Final conclusions

Integrating multiple supply chain functions in a single problem is currently identified

as a major research direction. In recent years, an increasing number of studies have

been conducted on integrated vehicle routing problems, in which the classical VRP

is extended with real-life characteristics or integrated with other supply chain func-

tions. In this dissertation, a new variant of integrated problems is introduced, i.e.,

the integrated order picking-vehicle routing problem. The problem is analysed in an

e-commerce context. In the last decade, B2C e-commerce sales have been increasing
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Introduction and problem statement (Chapter 1)

Integrated production scheduling-

vehicle routing problems (Chapter 2)

Problem description and formulation (Chapter 3)

Record-to-record travel

algorithm (Chapter 4)
Batch picking (Chapter 5)

Conclusions and future research (Chapter 6)

Integrated order picking-vehicle routing problem

Figure 6.1: Thesis outline - Chapter 6

yearly. The higher number of customer orders and associated customer expectations

put the logistics activities of e-commerce companies under pressure. To be success-

ful in the highly competitive e-commerce market, companies have to thoroughly re-

think their way of working, especially concerning the picking and delivery operations.

Higher savings and efficiency improvements can be gained by integrating rather than

by improving individual supply chain functions. Therefore, this dissertation focuses

on integrating order picking and vehicle routing problems.

The integration of order picking and vehicle routing problems is a relatively new

research domain. The most related literature is on the integration of production

scheduling and vehicle routing problems at the operational decision level. Therefore,

in the first part of this thesis, a detailed review of and discussion on integrated

production scheduling-vehicle routing problems is conducted. Since production

scheduling and order picking have similar characteristics, insights can be gained from

the review.
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Based on the classification matrices proposed for the I-PS-VRP, it is remarked

that a relatively simple machine environment is integrated with a basic VRP. Real-

life characteristics, such as production setup times and delivery service times, are

often ignored in I-PS-VRPs, but should be included in further research. Most solu-

tion methods proposed are metaheuristic algorithms using tabu search or genetic

algorithms. Furthermore, average improvements of 5% to 20% can be obtained by

the integration of the two subproblems. However, more research should be conduc-

ted to investigate in which circumstances integration is most beneficial. Sensitivity

analyses to identify the impact of problem characteristics on the value of integration

need to be done. These future research directions for the I-PS-VRP act as starting

point for the formulation of an I-OP-VRP in the following chapters.

The second part of the dissertation analyses the integrated order picking-vehicle

routing problem in an e-commerce context. Little research has been conducted on

I-OP-VRPs. A few studies are published which make a first step towards the in-

tegration of order picking and distribution. The distribution operations are mostly

simplified to direct shipments to each individual customer or are outsourced to a 3PL

service provider. In this dissertation, order picking and vehicle routing operations

are integrated into a single optimisation problem. Mathematical formulations for an

uncoordinated approach in which the two subproblems are solved separately, and for

an integrated approach are proposed.

Sensitivity analyses on small-size instances are conducted to investigate the impact

of various problem characteristics on the value of integration. A higher variable travel

cost leads to a higher value of integration. Similarly, when customers are located in

a larger square around the DC, the value of integration increases. The effect of the

number of customer orders is not straightforward.

Extending a VRP, which is already NP-hard, with order picking operations results

in a complex combinatorial problem. Solving the integrated problem to optimality

by CPLEX in a small amount of computation time is difficult. In an e-commerce

environment, however, good picking schedules and vehicle routes need to be determ-

ined using a fast and efficient solution tool. Therefore, a heuristic algorithm based

on a record-to-record travel framework is proposed in this dissertation to solve the

problem in a small amount of time, even for larger size instances.

Experiments on artificial instances with up to 100 customers are conducted to

quantify the value of integration. A first observation is that the service level offered to

customers can be increased. An efficient and fast delivery is a competitive advantage.

Using an integrated approach, e-commerce companies can allow customers to purchase
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goods later in time and still deliver these goods in the same time window as goods

requested earlier. The time between placing an order and receiving the goods can be

shortened.

Second, a lower number of order pickers is needed to pick all orders on time when

an integrated approach is applied. Temporary order pickers need to be less often

hired in comparison with an uncoordinated approach. In an uncoordinated approach,

it is even possible that the problem becomes infeasible due to a lack of order pickers

available. In the integrated approach, a feasible solution can be obtained due to a

higher flexibility of the start and end times of the order pickers’ shift.

Third, costs incurred for drivers waiting at the DC before the actual start of its

route are saved in the integrated approach. Drivers arrive at the DC at the actual

start time of the delivery route. Thus, by integrating both problems, order picking

and delivery operations can be executed in a faster and more cost-efficient way.

In most real-word e-commerce DCs, orders are combined in batches to be picked

together in a picking route. The impact of batch picking on the value of integration is

studied in the last part of this dissertation. In comparison with a discrete order picking

policy, batch picking leads to a lower total time needed to pick all orders. Furthermore,

batch picking can result in larger gains obtained by integration compared to discrete

order picking, for example, in a dynamic environment or when delivery operations are

outsourced to multiple 3PL service providers. In these contexts, the picking process

of orders can be postponed in order to be able to combine these postponed orders

with orders which are requested later. The system is updated regularly to include

newly arrived customer orders in the picking lists and vehicle routes. New batching

combinations are created of which some can result in a lower total picking time.

6.2 Managerial implications

The B2C e-commerce market is highly competitive with a large number of online

stores. Customers are searching for the cheapest selling price of goods, which are

delivered fast and at low cost. To survive in this market, B2C e-commerce companies

have to execute their picking and delivery in a cost-efficient way. Throughput times

need to be as small as possible. The findings obtained in this dissertation can provide

insights for managers, especially but not limited to those working for B2C e-commerce

companies.

The analyses executed in this dissertation indicate that integration can lead to

higher service levels offered to customers. There is higher flexibility about the start

of the picking and delivery operations since no fixed picking due date needs to be re-
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spected any longer. Consequently, B2C e-commerce companies can allow customers to

purchase their goods later in time and still be delivered within the same time windows

as goods ordered earlier. The time between the request of goods and their delivery is

shortened. Thus, by integrating order picking and distribution operations, customers

can be delivered faster which is an important competitive advantage, especially in the

e-commerce market.

Additionally, order picking is the most labour-intensive warehouse activity and

thus has a large impact on the costs incurred by an e-commerce company. When

order picking and vehicle routing problems are integrated, the number of order pick-

ers needed to pick all goods decreases. Temporary order pickers need to be rarely

hired, which leads to savings in costs because these have a higher hourly labour cost.

Moreover, since in the integrated approach, no fixed picking due date has to be re-

spected, order picking operations can be more spread over time. The schedules of the

order pickers are more balanced over time instead of having a high workload before

the picking due date.

In the integrated approach, there is higher flexibility in the departure time of

vehicles leaving the DC. The drivers of a 3PL service provider do not arrive at the

same fixed time every day. Good communication and coordination between the e-

commerce company and the 3PL service operator is indispensable in order to fully

benefit from integration. Each driver needs to be informed when to pick up goods at

the DC. An information system to collaborate with the 3PL service provider should

be implemented in order to efficiently share information.

In short, integrating the order picking and vehicle routing decisions into a single

problem can be a useful way to save costs and increase service levels. In the dynamic

environment of e-commerce sales, the higher flexibility obtained by integration can

be of significant value for e-commerce companies.

6.3 Future research opportunities and critical re-

flections

The integration of order picking and vehicle routing problems is a relatively new

research area. In this dissertation, first insights in the value of the integration are

gained. However, many research directions are still open for further research. In this

dissertation, a rather basic order picking problem is analysed in the I-OP-VRP. No

storage policy or routing policy are included. It is assumed that the storage locations

of the goods are considered to be known in advance. The picking times are randomly
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generated instead of calculating these using a routing policy. The I-OP-VRP studied

in this dissertation can be extended with internal warehousing decisions, such as

storage assignment, picking routes, zoning, and batching.

In this dissertation, a first exploratory study is conducted to investigate the effect

of batch picking on the value of integration. Numerical examples for various problem

contexts are provided. Nevertheless, the savings obtained by batch picking are de-

pendent of the batching policy applied in the DC. Therefore, future research should

compare the effect of different policies.

In real life, customers can purchase goods at the Internet 24/7. Orders arrive in

the system at any moment in time. Demand is not completely known in advance.

On a regular basis, the existing picking schedules and vehicle routes are updated

to include newly arrived customer orders. Thus, a dynamic order picking problem

should be solved simultaneously with a dynamic VRP. Therefore, to convince real-

world e-commerce companies of the benefits of integration, more research should be

conducted on dynamic integrated order picking-vehicle routing problems. Further-

more, the heuristic algorithm proposed in this dissertation needs to be adapted to

be applicable in a dynamic environment handling a large number of orders. The al-

gorithm should be able to deal efficiently with the arrival of new customer orders. In a

dynamic and uncertain environment, the solution method should be robust. However,

the record-to-record travel algorithm proposed is efficient and fast, and thus can be

useful in such a context.

Moreover, B2C e-commerce companies often deliver parcels to a large number of

customers in a single vehicle route. To maximise the number of customers that can be

delivered within a single route without violating the driver’s working hour restriction,

the service time needed at each customer location needs to be as small as possible.

Therefore, the visiting sequence in a route needs to be taken into account when load-

ing the parcels into the vehicle at the DC. It must be avoided that parcels which are

delivered later in the route block the parcels that need to be delivered at a delivery

location earlier in the route. Thus, considering loading sequence constraints in in-

tegrated order picking-vehicle routing problems can be an interesting future research

direction.

The focus of this dissertation is on a B2C e-commerce environment. Nevertheless,

the integrated modelling approach can also be applied in a B2B e-commerce

environment. The main difference is the average size of an order which is generally

larger in a B2B context. Thus, in the I-OP-VRP, the capacity of the picking devices

and the vehicles should be enlarged.
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Furthermore, the integrated problem investigated and the solution method pro-

posed can be used in other environments as well. Since integration can lead to a

shorter time period between the request and the delivery of goods, it can be espe-

cially useful in contexts where the throughput time needs to be as small as possible,

e.g., in the context of perishable products, such as food.





Appendix A

Detailed results value of

integration: Small-size

instances

This appendix presents detailed results of the experiments conducted in Chapter 3,

in which an uncoordinated and integrated approach are compared for small-size in-

stances. Based on the results of these experiments the value of integration is indicated.

Furthermore, for each different scenario tested, a table with the detailed results per

instance is given. Column 1 indicates the instance number. Columns 2 to 6 provide

information about the uncoordinated approach. Columns 2 and 3 give the total labour

cost of the regular and temporary pickers, respectively. In columns 4 and 5, the total

variable travel cost and total fixed vehicle cost is presented, respectively. Column 6

indicates the total cost for the uncoordinated approach. In columns 7 to 11, the results

for the integrated approach are presented, and the same information as in columns 2-6

is provided. In the remaining columns, i.e., columns 12-16, the comparison between

the two approaches is made for the total cost and each cost component individually.

Column 12 represents the savings in total cost which indicate the value of integration.

The difference in total picking cost for both types of pickers is presented in columns

13 and 14. The cost changes with respect to the distribution operations are indicated

in columns 15 and 16.

Tables A.1-A.3 show the results for the experiments with 10, 15, and 20 customer

orders. The impact of other problem characteristics is studied using the instances

with 10 customer orders having an order time of 0 and located in a square of 30x30.
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The results for the impact of the order time are presented in Tables A.4-A.6. The

impact of the cost parameters is indicated in Table A.7 and Table A.8. Finally, the

effect of the square size in which the customers are located is shown in Table A.9 and

Table A.10.
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Table A.1: Detailed results value of integration - 10 customer orders

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 185 0 870 350 1,405 185 0 451 350 986 -29.82 0.00 0.00 -48.16 0.00

2 181 0 418 200 799 181 0 344 200 725 -9.26 0.00 0.00 -17.70 0.00

3 194 0 796 350 1,340 194 0 430 350 974 -27.31 0.00 0.00 -45.98 0.00

4 171 0 729 350 1,250 171 0 360 350 881 -29.52 0.00 0.00 -50.62 0.00

5 180 0 399 200 779 180 0 354 200 734 -5.78 0.00 0.00 -11.28 0.00

6 164 0 662 350 1,176 164 0 410 350 924 -21.43 0.00 0.00 -38.07 0.00

7 157 0 435 200 792 157 0 362 200 719 -9.22 0.00 0.00 -16.78 0.00

8 182 0 419 200 801 182 0 348 200 730 -8.86 0.00 0.00 -16.95 0.00

9 168 0 435 200 803 168 0 360 200 728 -9.34 0.00 0.00 -17.24 0.00

10 206 0 437 200 843 206 0 353 200 759 -9.96 0.00 0.00 -19.22 0.00

11 198 0 360 200 758 198 0 313 200 711 -6.20 0.00 0.00 -13.06 0.00

12 182 0 415 150 747 182 0 341 150 673 -9.91 0.00 0.00 -17.83 0.00

13 184 0 423 200 807 184 0 379 200 763 -5.45 0.00 0.00 -10.40 0.00

14 173 0 417 200 790 173 0 284 200 657 -16.84 0.00 0.00 -31.89 0.00

15 193 0 425 200 818 193 0 358 200 751 -8.19 0.00 0.00 -15.76 0.00

16 192 0 429 200 821 192 0 335 200 727 -11.45 0.00 0.00 -21.91 0.00

17 166 0 411 200 777 166 0 381 200 747 -3.86 0.00 0.00 -7.30 0.00

18 190 0 452 200 842 190 0 376 200 766 -9.03 0.00 0.00 -16.81 0.00

19 202 0 419 200 821 202 0 319 200 721 -12.18 0.00 0.00 -23.87 0.00

20 179 0 370 200 749 179 0 300 200 679 -9.35 0.00 0.00 -18.92 0.00

average -12.65 0.00 0.00 -22.99 0.00

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)
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Table A.2: Detailed results value of integration - 15 customer orders

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 277 0 435 200 912 277 0 403 200 880 -3.51 0.00 0.00 -7.36 0.00

2 292 0 779 350 1,421 292 0 396 350 1,038 -26.95 0.00 0.00 -49.17 0.00

3 277 0 883 350 1,510 277 0 447 350 1,074 -28.87 0.00 0.00 -49.38 0.00

4 261 0 449 200 910 261 0 390 200 851 -6.48 0.00 0.00 -13.14 0.00

5 292 0 472 200 964 292 0 410 200 902 -6.43 0.00 0.00 -13.14 0.00

6 285 0 416 200 901 285 0 355 200 840 -6.77 0.00 0.00 -14.66 0.00

7 287 0 881 350 1,518 287 0 448 350 1,085 -28.52 0.00 0.00 -49.15 0.00

8 275 0 729 350 1,354 275 0 398 350 1,023 -24.45 0.00 0.00 -45.40 0.00

9 275 0 430 200 905 275 0 395 200 870 -3.87 0.00 0.00 -8.14 0.00

10 296 0 475 200 971 296 0 389 200 885 -8.86 0.00 0.00 -18.11 0.00

11 302 0 441 250 993 302 0 404 250 956 -3.73 0.00 0.00 -8.39 0.00

12 277 0 653 350 1,280 277 0 372 350 999 -21.95 0.00 0.00 -43.03 0.00

13 261 0 459 200 920 261 0 357 200 818 -11.09 0.00 0.00 -22.22 0.00

14 300 0 422 200 922 300 0 392 200 892 -3.25 0.00 0.00 -7.11 0.00

15 273 0 457 200 930 273 0 391 200 864 -7.10 0.00 0.00 -14.44 0.00

16 254 0 692 350 1,296 254 0 395 350 999 -22.92 0.00 0.00 -42.92 0.00

17 262 0 402 200 864 262 0 379 200 841 -2.66 0.00 0.00 -5.72 0.00

18 255 0 408 350 1,013 255 0 380 350 985 -2.76 0.00 0.00 -6.86 0.00

19 279 0 412 200 891 279 0 334 200 813 -8.75 0.00 0.00 -18.93 0.00

20 229 0 463 200 892 229 0 394 200 823 -7.74 0.00 0.00 -14.90 0.00

average -11.83 0.00 0.00 -22.61 0.00

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)
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Table A.3: Detailed results value of integration - 20 customer orders

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 390 0 670 350 1,410 390 0 407 350 1,147 -18.65 0.00 0.00 -39.25 0.00

2 373 0 808 350 1,531 373 0 563 350 1,286 -16.00 0.00 0.00 -30.32 0.00

3 399 0 415 250 1,064 399 0 375 250 1,024 -3.76 0.00 0.00 -9.64 0.00

4 396 0 462 250 1,108 396 0 436 250 1,082 -2.35 0.00 0.00 -5.63 0.00

5 321 0 758 350 1,429 321 0 482 350 1,153 -19.31 0.00 0.00 -36.41 0.00

6 367 0 475 250 1,092 367 0 466 250 1,083 -0.82 0.00 0.00 -1.89 0.00

7 337 0 453 250 1,040 337 0 375 250 962 -7.50 0.00 0.00 -17.22 0.00

8 363 0 671 350 1,384 363 0 450 350 1,163 -15.97 0.00 0.00 -32.94 0.00

9 396 0 617 350 1,363 396 0 449 350 1,195 -12.33 0.00 0.00 -27.23 0.00

10 353 0 723 350 1,426 353 0 463 350 1,166 -18.23 0.00 0.00 -35.96 0.00

11 350 0 724 350 1,424 350 0 620 350 1,320 -7.30 0.00 0.00 -14.36 0.00

12 377 0 445 250 1,072 377 0 394 250 1,021 -4.76 0.00 0.00 -11.46 0.00

13 336 0 674 350 1,360 336 0 460 350 1,146 -15.74 0.00 0.00 -31.75 0.00

14 373 0 718 350 1,441 373 0 510 350 1,233 -14.43 0.00 0.00 -28.97 0.00

15 395 0 469 250 1,114 395 0 417 250 1,062 -4.67 0.00 0.00 -11.09 0.00

16 381 0 552 350 1,283 381 0 494 350 1,225 -4.52 0.00 0.00 -10.51 0.00

17 357 0 733 350 1,440 357 0 407 350 1,114 -22.64 0.00 0.00 -44.47 0.00

18 367 0 612 400 1,379 367 0 447 400 1,214 -11.97 0.00 0.00 -26.96 0.00

19 354 0 627 350 1,331 354 0 421 350 1,125 -15.48 0.00 0.00 -32.85 0.00

20 367 0 744 350 1,461 367 0 439 350 1,156 -20.88 0.00 0.00 -40.99 0.00

average -11.87 0.00 0.00 -24.50 0.00

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)
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Table A.4: Detailed results value of integration - order time = 180

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 116 103.5 870 350 1,440 185 0 451 350 986 -31.50 59.48 -100.00 -48.16 0.00

2 120 91.5 418 200 830 181 0 344 200 725 -12.60 50.83 -100.00 -17.70 0.00

3 120 111 796 350 1,377 194 0 430 350 974 -29.27 61.67 -100.00 -45.98 0.00

4 120 76.5 729 350 1,276 171 0 360 350 881 -30.93 42.50 -100.00 -50.62 0.00

5 119 91.5 399 200 810 180 0 354 200 734 -9.33 51.26 -100.00 -11.28 0.00

6 120 66 662 350 1,198 164 0 410 350 924 -22.87 36.67 -100.00 -38.07 0.00

7 120 55.5 435 200 811 157 0 362 200 719 -11.29 30.83 -100.00 -16.78 0.00

8 120 93 419 200 832 182 0 348 200 730 -12.26 51.67 -100.00 -16.95 0.00

9 119 73.5 435 200 828 168 0 360 200 728 -12.02 41.18 -100.00 -17.24 0.00

10 120 129 437 200 886 206 0 353 200 759 -14.33 71.67 -100.00 -19.22 0.00

11 120 117 360 200 797 198 0 313 200 711 -10.79 65.00 -100.00 -13.06 0.00

12 120 93 415 150 778 182 0 341 150 673 -13.50 51.67 -100.00 -17.83 0.00

13 120 96 423 200 839 184 0 379 200 763 -9.06 53.33 -100.00 -10.40 0.00

14 120 79.5 417 200 817 173 0 284 200 657 -19.53 44.17 -100.00 -31.89 0.00

15 120 109.5 425 200 855 193 0 358 200 751 -12.11 60.83 -100.00 -15.76 0.00

16 120 108 429 200 857 192 0 335 200 727 -15.17 60.00 -100.00 -21.91 0.00

17 120 69 411 200 800 166 0 381 200 747 -6.63 38.33 -100.00 -7.30 0.00

18 120 105 452 200 877 190 0 376 200 766 -12.66 58.33 -100.00 -16.81 0.00

19 120 123 419 200 862 202 0 319 200 721 -16.36 -68.33 -100.00 -23.87 0.00

20 118 91.5 370 200 780 179 0 300 200 679 -12.89 51.69 -100.00 -18.92 0.00

average -15.75 52.47 -100.00 -22.99 0.00

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)
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Table A.5: Detailed results value of integration - order time = 210

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 infeasible 185 0 452 350 987 - - - - -

2 infeasible 181 0 344 200 725 - - - - -

3 infeasible 194 0 430 350 974 - - - - -

4 infeasible 171 0 360 350 881 - - - - -

5 infeasible 150 45 354 200 749 - - - - -

6 infeasible 164 0 410 350 924 - - - - -

7 infeasible 157 0 362 200 719 - - - - -

8 infeasible 182 0 348 200 730 - - - - -

9 infeasible 168 0 360 200 728 - - - - -

10 infeasible 206 0 353 200 759 - - - - -

11 infeasible 154 66 313 200 733 - - - - -

12 infeasible 182 0 341 150 673 - - - - -

13 infeasible 148 54 379 200 781 - - - - -

14 infeasible 173 0 284 200 657 - - - - -

15 infeasible 193 0 358 200 751 - - - - -

16 infeasible 192 0 335 200 727 - - - - -

17 infeasible 120 69 381 200 770 - - - - -

18 infeasible 190 0 376 200 766 - - - - -

19 infeasible 202 0 319 200 721 - - - - -

20 infeasible 179 0 300 200 679 - - - - -

average - - - - -

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)
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Table A.6: Detailed results value of integration - order time ∈ {0, 60, 120, 180, 210}

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 170 22.5 870 350 1,413 185 0 451 350 986 -30.19 8.82 -100.00 -48.16 0.00

2 181 0.0 418 200 799 181 0 344 200 725 -9.26 0.00 0.00 -17.70 0.00

3 194 0.0 796 350 1,340 194 0 430 350 974 -27.31 0.00 0.00 -45.98 0.00

4 171 0.0 729 350 1,250 171 0 360 350 881 -29.52 0.00 0.00 -50.62 0.00

5 180 0.0 399 200 779 180 0 354 200 734 -5.78 0.00 0.00 -11.28 0.00

6 164 0.0 662 350 1,176 164 0 410 350 924 -21.43 0.00 0.00 -38.07 0.00

7 157 0.0 435 200 792 157 0 362 200 719 -9.22 0.00 0.00 -16.78 0.00

8 182 0.0 419 200 801 182 0 348 200 730 -8.86 0.00 0.00 -16.95 0.00

9 168 0.0 435 200 803 168 0 360 200 728 -9.34 0.00 0.00 -17.24 0.00

10 206 0.0 437 200 843 206 0 353 200 759 -9.96 0.00 0.00 -19.22 0.00

11 198 0.0 360 200 758 198 0 313 200 711 -6.20 0.00 0.00 -13.06 0.00

12 168 21.0 415 150 754 182 0 341 150 673 -10.74 8.33 -100.00 -17.83 0.00

13 184 0.0 423 200 807 184 0 379 200 763 -5.45 0.00 0.00 -10.40 0.00

14 173 0.0 417 200 790 173 0 284 200 657 -16.84 0.00 0.00 -31.89 0.00

15 193 0.0 425 200 818 193 0 358 200 751 -8.19 0.00 0.00 -15.76 0.00

16 192 0.0 429 200 821 192 0 335 200 727 -11.45 0.00 0.00 -21.91 0.00

17 166 0.0 411 200 777 166 0 381 200 747 -3.86 0.00 0.00 -7.30 0.00

18 190 0.0 452 200 842 190 0 376 200 766 -9.03 0.00 0.00 -16.81 0.00

19 202 0.0 419 200 821 202 0 319 200 721 -12.18 0.00 0.00 -23.87 0.00

20 163 24.0 370 200 757 179 0 300 200 679 -10.30 9.82 -100.00 -18.92 0.00

average -12.76 1.35 -15.00 -22.99 0.00

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)
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Table A.7: Detailed results value of integration - ctlv = 1.5

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 185 0 1305 350 1,840 185 0 676.5 350 1,212 -34.16 0.00 0.00 -48.16 0.00

2 181 0 627 200 1,008 181 0 516 200 897 -11.01 0.00 0.00 -17.70 0.00

3 194 0 1194 350 1,738 194 0 645 350 1,189 -31.59 0.00 0.00 -45.98 0.00

4 171 0 1093.5 350 1,615 171 0 540 350 1,061 -34.28 0.00 0.00 -50.62 0.00

5 180 0 598.5 200 979 180 0 531 200 911 -6.90 0.00 0.00 -11.28 0.00

6 164 0 993 350 1,507 164 0 615 350 1,129 -25.08 0.00 0.00 -38.07 0.00

7 157 0 652.5 200 1,010 157 0 543 200 900 -10.85 0.00 0.00 -16.78 0.00

8 182 0 628.5 200 1,011 182 0 370.5 350 903 -10.69 0.00 0.00 -41.05 75.00

9 168 0 652.5 200 1,021 168 0 540 200 908 -11.02 0.00 0.00 -17.24 0.00

10 206 0 655.5 200 1,062 206 0 529.5 200 936 -11.87 0.00 0.00 -19.22 0.00

11 198 0 540 200 938 198 0 469.5 200 868 -7.52 0.00 0.00 -13.06 0.00

12 182 0 622.5 150 955 182 0 511.5 150 844 -11.63 0.00 0.00 -17.83 0.00

13 184 0 634.5 200 1,019 184 0 568.5 200 953 -6.48 0.00 0.00 -10.40 0.00

14 173 0 625.5 200 999 173 0 426 200 799 -19.98 0.00 0.00 -31.89 0.00

15 193 0 637.5 200 1,031 193 0 537 200 930 -9.75 0.00 0.00 -15.76 0.00

16 192 0 643.5 200 1,036 192 0 502.5 200 895 -13.62 0.00 0.00 -21.91 0.00

17 166 0 616.5 200 983 166 0 417 350 933 -5.04 0.00 0.00 -32.36 75.00

18 190 0 678 200 1,068 190 0 564 200 954 -10.67 0.00 0.00 -16.81 0.00

19 202 0 628.5 200 1,031 202 0 478.5 200 881 -14.56 0.00 0.00 -23.87 0.00

20 179 0 555 200 934 179 0 450 200 829 -11.24 0.00 0.00 -18.92 0.00

average -14.90 0.00 0.00 -25.45 7.50

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)



19
8

A
p
p
en
d
ix

A

Table A.8: Detailed results value of integration - ctlv = 2

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 185 0 1740 350 2,275 185 0 902 350 1,437 -36.84 0.00 0.00 -48.16 0.00

2 181 0 836 200 1,217 181 0 688 200 1,069 -12.16 0.00 0.00 -17.70 0.00

3 194 0 1592 350 2,136 194 0 578 600 1,372 -35.77 0.00 0.00 -63.69 71.43

4 171 0 1458 350 1,979 171 0 720 350 1,241 -37.29 0.00 0.00 -50.62 0.00

5 180 0 798 200 1,178 180 0 530 350 1,060 -10.02 0.00 0.00 -33.58 75.00

6 164 0 1324 350 1,838 164 0 820 350 1,334 -27.42 0.00 0.00 -38.07 0.00

7 157 0 870 200 1,227 157 0 724 200 1,081 -11.90 0.00 0.00 -16.78 0.00

8 182 0 838 200 1,220 182 0 494 350 1,026 -15.90 0.00 0.00 -41.05 75.00

9 168 0 870 200 1,238 168 0 720 200 1,088 -12.12 0.00 0.00 -17.24 0.00

10 206 0 874 200 1,280 206 0 706 200 1,112 -13.13 0.00 0.00 -19.22 0.00

11 198 0 720 200 1,118 198 0 626 200 1,024 -8.41 0.00 0.00 -13.06 0.00

12 182 0 830 150 1,162 182 0 682 150 1,014 -12.74 0.00 0.00 -17.83 0.00

13 184 0 846 200 1,230 184 0 758 200 1,142 -7.15 0.00 0.00 -10.40 0.00

14 173 0 834 200 1,207 173 0 568 200 941 -22.04 0.00 0.00 -31.89 0.00

15 193 0 850 200 1,243 193 0 552 350 1,095 -11.91 0.00 0.00 -35.06 75.00

16 192 0 858 200 1,250 192 0 670 200 1,062 -15.04 0.00 0.00 -21.91 0.00

17 166 0 822 200 1,188 166 0 556 350 1,072 -9.76 0.00 0.00 -32.36 75.00

18 190 0 904 200 1,294 190 0 594 350 1,134 -12.36 0.00 0.00 -34.29 75.00

19 202 0 838 200 1,240 202 0 638 200 1,040 -16.13 0.00 0.00 -23.87 0.00

20 179 0 740 200 1,119 179 0 600 200 979 -12.51 0.00 0.00 -18.92 0.00

average -17.03 0.00 0.00 -29.29 22.32

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)
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Table A.9: Detailed results value of integration - square = 20x20

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 185 0 469 200 854 185 0 414 200 799 -6.44 0.00 0.00 -11.73 0.00

2 181 0 403 200 784 181 0 333 200 714 -8.93 0.00 0.00 -17.37 0.00

3 194 0 436 200 830 194 0 223 350 767 -7.59 0.00 0.00 -48.85 75.00

4 171 0 703 350 1,224 171 0 329 350 850 -30.56 0.00 0.00 -53.20 0.00

5 180 0 397 200 777 180 0 333 200 713 -8.24 0.00 0.00 -16.12 0.00

6 164 0 412 200 776 164 0 356 200 720 -7.22 0.00 0.00 -13.59 0.00

7 157 0 417 200 774 157 0 350 200 707 -8.66 0.00 0.00 -16.07 0.00

8 182 0 406 200 788 182 0 340 200 722 -8.38 0.00 0.00 -16.26 0.00

9 168 0 416 200 784 168 0 345 200 713 -9.06 0.00 0.00 -17.07 0.00

10 206 0 415 200 821 206 0 309 200 715 -12.91 0.00 0.00 -25.54 0.00

11 198 0 347 200 745 198 0 280 200 678 -8.99 0.00 0.00 -19.31 0.00

12 182 0 408 150 740 182 0 339 150 671 -9.32 0.00 0.00 -16.91 0.00

13 184 0 405 200 789 184 0 352 200 736 -6.72 0.00 0.00 -13.09 0.00

14 173 0 386 200 759 173 0 256 200 629 -17.13 0.00 0.00 -33.68 0.00

15 193 0 415 200 808 193 0 348 200 741 -8.29 0.00 0.00 -16.14 0.00

16 192 0 421 200 813 192 0 321 200 713 -12.30 0.00 0.00 -23.75 0.00

17 166 0 410 200 776 166 0 378 200 744 -4.12 0.00 0.00 -7.80 0.00

18 190 0 438 200 828 190 0 371 200 761 -8.09 0.00 0.00 -15.30 0.00

19 202 0 414 200 816 202 0 339 200 741 -9.19 0.00 0.00 -18.12 0.00

20 179 0 372 200 751 179 0 305 200 684 -8.92 0.00 0.00 -18.01 0.00

average -10.05 0.00 0.00 -20.90 3.75

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)
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Table A.10: Detailed results value of integration - square = 40x40

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
fv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
fv TCint (a) (b) (c) (d) (e)

1 185 0 896 350 1,431 185 0 492 350 1,027 -28.23 0.00 0.00 -45.09 0.00

2 181 0 423 200 804 181 0 347 200 728 -9.45 0.00 0.00 -17.97 0.00

3 194 0 827 350 1,371 194 0 466 350 1,010 -26.33 0.00 0.00 -43.65 0.00

4 171 0 780 350 1,301 171 0 385 350 906 -30.36 0.00 0.00 -50.64 0.00

5 180 0 730 350 1,260 180 0 391 350 921 -26.90 0.00 0.00 -46.44 0.00

6 164 0 669 350 1,183 164 0 383 350 897 -24.18 0.00 0.00 -42.75 0.00

7 157 0 751 350 1,258 157 0 392 350 899 -28.54 0.00 0.00 -47.80 0.00

8 182 0 432 200 814 182 0 357 200 739 -9.21 0.00 0.00 -17.36 0.00

9 168 0 459 200 827 168 0 391 200 759 -8.22 0.00 0.00 -14.81 0.00

10 206 0 757 350 1,313 206 0 353 350 909 -30.77 0.00 0.00 -53.37 0.00

11 198 0 379 200 777 198 0 320 200 718 -7.59 0.00 0.00 -15.57 0.00

12 182 0 666 350 1,198 182 0 371 350 903 -24.62 0.00 0.00 -44.29 0.00

13 184 0 437 200 821 184 0 367 200 751 -8.53 0.00 0.00 -16.02 0.00

14 173 0 791 350 1,314 173 0 343 350 866 -34.09 0.00 0.00 -56.64 0.00

15 193 0 436 200 829 193 0 348 200 741 -10.62 0.00 0.00 -20.18 0.00

16 192 0 548 350 1,090 192 0 375 350 917 -15.87 0.00 0.00 -31.57 0.00

17 166 0 429 200 795 166 0 388 200 754 -5.16 0.00 0.00 -9.56 0.00

18 190 0 452 200 842 190 0 384 200 774 -8.08 0.00 0.00 -15.04 0.00

19 202 0 556 350 1,108 202 0 399 350 951 -14.17 0.00 0.00 -28.24 0.00

20 179 0 632 350 1,161 179 0 338 350 867 -25.32 0.00 0.00 -46.52 0.00

average -18.81 0.00 0.00 -33.18 0.00

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCfv (%)



Appendix B

Detailed irace results

The irace package1, developed by López-Ibáñez et al. (2016), is used to tune the

parameters of the record-to-record travel algorithm in Chapter 4. For each instance

size, a table with more detailed results of the parameter tuning is shown in the

following sections. The second column of the table shows the number of parameter

configurations sampled at the beginning of each race. From the second race on,

the best configurations found (elite) in the previous race are used in the next race.

The last column of the table indicates the number of configurations which could not

be discarded after statistical testing using the Friedman test, which means that the

performance of these combinations is not significantly worse than the performance of

the elite configurations.

Additionally, for each instance size, a parameter sampling frequency plot is shown.

During the iterative tuning process, irace focuses on the best regions for each para-

meter when sampling new combinations. The frequency plot provides insight in the

promising search space for each parameter within the given range. Thus, based on

the plots, for each parameter an interval can be determined within which the value

of the parameter should be to obtain good results using the RRT algorithm.

1More information can be found at http://iridia.ulb.ac.be/irace/, at which a user guide, a tu-

torial, and examples are provided.
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B.1 Detailed irace results for 10 customer order in-

stances

Table B.1: Detailed irace results - 10 customer orders

Race Number configurations sampled Number alive at end of race

1 277 175

2 245 + 3 elite 245

3 212 + 3 elite 215

Table B.1 presents detailed information of the iterated racing procedure executed

on the instances with 10 customer orders. As can be seen, a high number of config-

urations are alive at the end of each race. In the last race, no configuration has been

discarded. This means that multiple variants of the parameter configuration lead to

good results. Figure B.1 indicates the frequency of the parameters sampled, and gives

a better idea in which interval the value of each parameter should be. The deviation

rate is mainly sampled from the interval (0.13, 0.17). The maximum number of con-

secutive non-improving iterations should be approximately between 3 and 7. The

value of the maximum number of consecutive non-improving moves by an operator is

mostly sampled from the interval (8, 12).

Figure B.1: Parameter sampling frequency - 10 customer orders
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B.2 Detailed irace results for 15 customer order in-

stances

Table B.2: Detailed irace results - 15 customer orders

Race Number configurations sampled Number alive at end of race

1 277 208

2 242 + 3 elite 237

3 213 + 3 elite 175

4 14 + 3 elite 16

Table B.2 shows similar results as for the instances with 10 customer orders.

Figure B.2 presents the sampling frequency for each parameter for the instances with

15 customer orders. To obtain a good solutions, the parameters should have the

following values: a deviation rate of approximately 15%, a maximum number of

consecutive non-improving iterations of approximately 10, and a maximum number

of consecutive non-improving operator moves between 15 and 20.

Figure B.2: Parameter sampling frequency - 15 customer orders
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B.3 Detailed irace results for 100 customer order

instances

Table B.3: Detailed irace results - 100 customer orders

Race Number configurations sampled Number alive at end of race

1 111 37

2 85 + 3 elite 48

3 75 + 3 elite 31

4 17 + 3 elite 9

5 4 + 3 elite 6

In Table B.3, it can be seen that in the first four races between 30% and 50%

of the configurations survive the statistical test. The parameter frequency plot is

shown in Figure B.3. The best parameter value of the deviation rate is approximately

1%. The maximum number of consecutive non-improving iterations has to be close

either to the lower bound or to the upper bound of the parameter range. However,

the three best elite combinations all have a maximum number of consecutive non-

improving iterations of between 25 and 30. The maximum number of consecutive

non-improving operator moves should be greater than 25.

Figure B.3: Parameter sampling frequency - 100 customer orders



Appendix C

Detailed results:

Record-to-record travel

algorithm

In this appendix, detailed results of the experiments executed in Chapter 4 with both

the small-size and large-size instances are presented. For each instance size, a table

with the results is given. Only for the small-size instances the optimal solutions are

known. Therefore, the tables for the small-size and large-size instances show slightly

different information. Column 1 indicates the instance number. For the small-size

instances, the optimal solution Z∗ found by CPLEX is shown in column 2. The

best ZRRTB and average solution ZRRTavg found by the RRT algorithm are indicated

in columns 3 and 4, respectively. Columns 5 and 6 show the average and maximum

optimality gap, respectively. In column 7, the solution time for obtaining the optimal

solution with CPLEX is presented. Columns 8 and 9 indicate the computation time

required by the RRT algorithm for a single run and for 20 runs, respectively.

For the large-size instances, column 2 shows the best solution obtained by the

RRT algorithm. The average solution over the 20 runs is indicated in column 3.

The average and maximum gap between the heuristic solution and the best heuristic

solution is presented in columns 4 and 5, respectively. The average run time and

the total computation time is indicated in columns 6 and 7, respectively. The initial

objective value Z[S0] is given in column 8, and the difference between the initial

solution value and the best heuristic solution value (∆Z[S0]) is indicated in column

9.
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C.1 Detailed results for 10 customer orders in-

stances

Table C.1 presents the results of the experiments conducted on the 50 instances

with 10 customer orders. As can be seen in the table, the RRT algorithm finds the

optimal solution for every instance in each of the 20 replications, as can be seen by

the maximum gap of 0.00%. The average computation time to solve the problem to

optimality by CPLEX is approximately 3 minutes, while a single replication of the

RRT algorithm finds a high-quality solution in 0.0072 seconds on average as shown

in columns 8 and 9, respectively.

Table C.1: Detailed results of instances with 10 customer orders with a 15% deviation

rate, 700 iterations, and 20 replications

Inst. Z∗ ZRRT
B ZRRT

avg

avg.

gap (%)

max.

gap (%)
time (s)

CPLEX

avg. time (s)

RRT

total time (s)

RRT

51 246.71 246.71 246.71 0.00 0.00 37.68 0.0070 0.14

52 285.33 285.33 285.33 0.00 0.00 55.24 0.0075 0.15

53 228.42 228.42 228.42 0.00 0.00 153.52 0.0050 0.13

54 229.10 229.10 229.10 0.00 0.00 38.59 0.0065 0.14

55 268.00 268.00 268.00 0.00 0.00 376.13 0.0070 0.15

56 252.67 252.67 252.67 0.00 0.00 186.48 0.0060 0.13

57 217.87 217.87 217.87 0.00 0.00 53.75 0.0075 0.15

58 245.47 245.47 245.47 0.00 0.00 69.49 0.0065 0.14

59 248.42 248.42 248.42 0.00 0.00 106.83 0.0075 0.15

60 256.77 256.77 256.77 0.00 0.00 129.33 0.0080 0.17

61 266.20 266.20 266.20 0.00 0.00 65.96 0.0070 0.14

62 220.97 220.97 220.97 0.00 0.00 359.50 0.0080 0.16

63 258.08 258.08 258.08 0.00 0.00 1,120.79 0.0080 0.17

64 289.11 289.11 289.11 0.00 0.00 109.54 0.0080 0.16

65 249.19 249.19 249.19 0.00 0.00 67.32 0.0070 0.14

66 227.88 227.88 227.88 0.00 0.00 281.27 0.0085 0.17

67 277.93 277.93 277.93 0.00 0.00 152.33 0.0080 0.17

68 251.54 251.54 251.54 0.00 0.00 100.73 0.0070 0.15

69 254.22 254.22 254.22 0.00 0.00 79.91 0.0070 0.14

70 217.26 217.26 217.26 0.00 0.00 61.34 0.0070 0.14

71 208.99 208.99 208.99 0.00 0.00 667.07 0.0080 0.16

72 259.87 259.87 259.87 0.00 0.00 73.82 0.0070 0.15

73 255.19 255.19 255.19 0.00 0.00 132.44 0.0070 0.14

74 238.78 238.78 238.78 0.00 0.00 94.00 0.0080 0.17

75 240.71 240.71 240.71 0.00 0.00 235.25 0.0070 0.16
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Table C.1: (continued)

Inst. Z∗ ZRRT
B ZRRT

avg

avg.

gap (%)

max.

gap (%)
time (s)

CPLEX

avg. time (s)

RRT

total time (s)

RRT

76 227.90 227.90 227.90 0.00 0.00 382.86 0.0070 0.17

77 205.39 205.39 205.39 0.00 0.00 232.66 0.0085 0.18

78 261.35 261.35 261.35 0.00 0.00 143.05 0.0070 0.16

79 225.96 225.96 225.96 0.00 0.00 39.43 0.0055 0.13

80 260.25 260.25 260.25 0.00 0.00 32.77 0.0065 0.14

81 245.14 245.14 245.14 0.00 0.00 57.86 0.0050 0.13

82 237.59 237.59 237.59 0.00 0.00 91.91 0.0065 0.14

83 247.83 247.83 247.83 0.00 0.00 53.32 0.0080 0.16

84 225.35 225.35 225.35 0.00 0.00 113.60 0.0070 0.15

85 250.78 250.78 250.78 0.00 0.00 71.23 0.0075 0.16

86 235.42 235.42 235.42 0.00 0.00 76.82 0.0075 0.15

87 253.16 253.16 253.16 0.00 0.00 69.88 0.0075 0.16

88 255.10 255.10 255.10 0.00 0.00 365.93 0.0080 0.16

89 206.96 206.96 206.96 0.00 0.00 1,654.88 0.0090 0.20

90 256.91 256.91 256.91 0.00 0.00 123.35 0.0080 0.16

91 242.99 242.99 242.99 0.00 0.00 53.97 0.0080 0.16

92 259.23 259.23 259.23 0.00 0.00 23.37 0.0065 0.15

93 253.41 253.41 253.41 0.00 0.00 60.23 0.0070 0.16

94 292.19 292.19 292.19 0.00 0.00 24.80 0.0065 0.14

95 269.22 269.22 269.22 0.00 0.00 85.70 0.0080 0.16

96 268.49 268.49 268.49 0.00 0.00 232.60 0.0080 0.17

97 257.36 257.36 257.36 0.00 0.00 51.18 0.0070 0.15

98 253.24 253.24 253.24 0.00 0.00 36.66 0.0065 0.14

99 250.47 250.47 250.47 0.00 0.00 63.44 0.0070 0.15

100 213.56 213.56 213.56 0.00 0.00 68.18 0.0075 0.15

avg. gap 0.00 avg. time 180.36 0.0072 0.1530
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C.2 Detailed results for 15 customer orders in-

stances

In Table C.2, the results of the experiments executed on the 50 instances with 15

customer orders are indicated. For seven instances, the optimal solution could not be

obtained with CPLEX within 500 hours. For these instances, the gap between the

best solution found by the RRT heuristic and the solution of each run is calculated. In

each of the 20 runs, the RRT algorithm obtains the optimal (or best known) solution

for every instance, as indicated by the maximum gap of 0.00%. Approximately 63

hours are needed to obtain the optimal solution by CPLEX. The RRT algorithm finds

the same solution within a second.

Table C.2: Detailed results of instances with 15 customer orders with a 15% deviation

rate, 6,000 iterations, and 20 replications

Inst. Z∗ ZRRT
B ZRRT

avg

avg.

gap (%)

max.

gap (%)
time (s)

CPLEX

avg. time (s)

RRT

total time (s)

RRT

51 - 313.69 313.69 0.00 0.00 - 0.2665 5.34

52 287.37 287.37 287.37 0.00 0.00 108,650.00 0.2210 4.42

53 294.64 294.64 294.64 0.00 0.00 396,035.00 0.2370 4.75

54 321.98 321.98 321.98 0.00 0.00 9,275.08 0.2100 4.20

55 316.95 316.95 316.95 0.00 0.00 95,038.70 0.2385 4.77

56 - 312.12 312.12 0.00 0.00 - 0.2635 5.28

57 321.10 321.10 321.10 0.00 0.00 812,810.00 0.2540 5.08

58 326.98 326.98 326.98 0.00 0.00 161,221.00 0.2565 5.13

59 312.27 312.27 312.27 0.00 0.00 137,414.00 0.2445 4.90

60 369.74 369.74 369.74 0.00 0.00 251,960.00 0.2225 4.47

61 306.22 306.22 306.22 0.00 0.00 733,052.00 0.2685 5.38

62 353.06 353.06 353.06 0.00 0.00 88,437.70 0.2050 4.11

63 342.30 342.30 342.30 0.00 0.00 445,411.00 0.2195 4.40

64 - 302.16 302.16 0.00 0.00 - 0.2875 5.76

65 312.63 312.63 312.63 0.00 0.00 40,266.80 0.2335 4.68

66 - 315.76 315.76 0.00 0.00 - 0.2445 4.89

67 273.94 273.94 273.94 0.00 0.00 79,786.00 0.2180 4.36

68 317.44 317.44 317.44 0.00 0.00 79,229.50 0.2310 4.64

69 366.92 366.92 366.92 0.00 0.00 62,590.90 0.2135 4.27

70 313.30 313.30 313.30 0.00 0.00 8,677.67 0.2020 4.04

71 327.10 327.10 327.10 0.00 0.00 65,436.50 0.2040 4.11

72 328.36 328.36 328.36 0.00 0.00 18,406.10 0.2105 4.22

73 339.59 339.59 339.59 0.00 0.00 229,562.00 0.2195 4.40

74 363.12 363.12 363.12 0.00 0.00 249,025.00 0.2585 5.19

75 283.75 283.75 283.75 0.00 0.00 63,330.60 0.2055 4.11
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Table C.2: (continued)

Inst. Z∗ ZRRT
B ZRRT

avg

avg.

gap (%)

max.

gap (%)
time (s)

CPLEX

avg. time (s)

RRT

total time (s)

RRT

76 353.13 353.13 353.13 0.00 0.00 174,255.00 0.1980 3.97

77 - 336.10 336.10 0.00 0.00 - 0.2120 4.24

78 311.56 311.56 311.56 0.00 0.00 64,534.20 0.2180 4.37

79 332.71 332.71 332.71 0.00 0.00 562,515.00 0.2205 4.42

80 268.33 268.33 268.33 0.00 0.00 1,068,850.00 0.2660 5.33

81 294.96 294.96 294.96 0.00 0.00 92,332.30 0.1880 3.78

82 335.76 335.76 335.76 0.00 0.00 315,838.00 0.2530 5.07

83 332.55 332.55 332.55 0.00 0.00 142,786.00 0.2370 4.76

84 324.25 324.25 324.25 0.00 0.00 95,669.90 0.2275 4.55

85 304.05 304.05 304.05 0.00 0.00 979,171.00 0.2750 5.50

86 325.89 325.89 325.89 0.00 0.00 93,256.20 0.2260 4.54

87 335.29 335.29 335.29 0.00 0.00 63,069.90 0.2075 4.17

88 328.72 328.72 328.72 0.00 0.00 610,314.00 0.2430 4.87

89 345.74 345.74 345.74 0.00 0.00 274,608.00 0.1795 3.59

90 - 313.66 313.66 0.00 0.00 - 0.2565 5.14

91 335.40 335.40 335.40 0.00 0.00 71,796.30 0.2125 4.26

92 306.26 306.26 306.26 0.00 0.00 40,675.30 0.2030 4.08

93 - 310.66 310.66 0.00 0.00 - 0.2335 4.69

94 336.51 336.51 336.51 0.00 0.00 36,700.80 0.2105 4.21

95 318.91 318.91 318.91 0.00 0.00 38,866.10 0.2140 4.28

96 327.13 327.13 327.13 0.00 0.00 21,283.30 0.2020 4.06

97 356.53 356.53 356.53 0.00 0.00 20,238.90 0.2200 4.41

98 340.98 340.98 340.98 0.00 0.00 538,161.00 0.2340 4.70

99 334.61 334.61 334.61 0.00 0.00 250,336.00 0.2215 4.44

100 307.24 307.24 307.24 0.00 0.00 73,973.50 0.2225 4.46

avg. gap 0.00 avg. time 227,089.45 0.2283 4.5758
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C.3 Detailed results for 100 customer orders in-

stances

The detailed results for the large-size instances with 100 customer orders are provided

in Table C.3. No optimal solutions are known for these instances. To indicate the

impact of the RRT heuristic on the solution, the percentage difference between the

initial solution and the best heuristic solution found is provided. The best heuristic

solution value found is on average 26.83% better than the initial solution value. The

gap between the best objective value found for each instance over the 20 runs and

the objective value of the specific run is calculated. The developed RRT heuristic is

capable of finding a solution in less than two minutes.

Table C.3: Detailed results of instances with 100 customer orders with a 1% deviation

rate, 250,000 iterations, and 20 replications

Inst. ZRRT
B ZRRT

avg

avg.

gap (%)

max.

gap (%)
avg. time (s)

RRT

total time (s)

RRT
Z[S0] ∆Z[S0](%)

51 1,458.82 1,478.55 1.35 3.56 156.60 3,132.06 2,053.63 -28.96

52 1,407.00 1,422.78 1.12 2.36 83.19 1,663.79 1,857.80 -24.27

53 1,453.03 1,473.68 1.42 3.14 119.50 2,389.95 2,176.07 -33.23

54 1,369.58 1,389.41 1.45 2.59 81.21 1,624.27 1,901.33 -27.97

55 1,470.26 1,486.47 1.10 2.49 95.62 1,912.37 2,028.65 -27.53

56 1,424.38 1,439.70 1.08 2.49 115.40 2,307.99 2,017.86 -29.41

57 1,434.37 1,451.31 1.18 3.00 106.44 2,128.85 1,901.34 -24.56

58 1,416.95 1,441.18 1.71 3.17 94.56 1,891.27 1,861.80 -23.89

59 1,434.21 1,454.56 1.42 2.43 101.46 2,029.11 1,911.77 -24.98

60 1,443.20 1,463.40 1.40 2.87 116.41 2,328.27 2,014.80 -28.37

61 1,436.77 1,459.32 1.57 2.44 95.91 1,918.17 2,037.17 -29.47

62 1,486.39 1,506.41 1.35 2.71 87.83 1,756.60 2,009.84 -26.04

63 1,490.26 1,507.73 1.17 2.77 96.51 1,930.24 1,959.02 -23.93

64 1,488.57 1,502.62 0.94 1.74 93.13 1,862.63 1,880.11 -20.83

65 1,406.13 1,431.47 1.80 3.67 99.19 1,983.81 1,940.18 -27.53

66 1,420.86 1,442.93 1.55 3.36 83.98 1,679.58 1,915.89 -25.84

67 1,419.43 1,434.03 1.03 2.31 114.84 2,296.71 1,871.85 -24.17

68 1,421.84 1,443.30 1.51 3.03 91.64 1,832.75 2,082.59 -31.73

69 1,458.22 1,477.97 1.35 2.85 89.86 1,797.25 1,947.93 -25.14

70 1,420.59 1,435.36 1.04 2.44 123.56 2,471.14 2,019.60 -29.66

71 1,380.15 1,397.15 1.23 2.09 88.64 1,772.78 1,895.46 -27.19

72 1,441.83 1,462.05 1.40 2.62 87.86 1,757.21 1,857.22 -22.37

73 1,470.68 1,486.55 1.08 3.15 109.98 2,199.54 1,990.02 -26.10

74 1,488.53 1,523.49 2.35 3.70 123.29 2,465.80 2,019.08 -26.28

75 1,357.69 1,380.34 1.67 3.45 86.65 1,732.92 1,873.76 -27.54
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Table C.3: (continued)

Inst. ZRRT
B ZRRT

avg

avg.

gap (%)

max.

gap (%)
avg. time (s)

RRT

total time (s)

RRT
Z[S0] ∆Z[S0](%)

76 1,402.91 1,433.75 2.20 4.13 85.22 1,704.32 1,901.15 -26.21

77 1,440.56 1,456.74 1.12 2.95 129.40 2,588.02 2,076.17 -30.61

78 1,428.18 1,441.08 0.90 2.06 127.77 2,555.48 1,823.25 -21.67

79 1,454.26 1,479.71 1.75 3.51 80.39 1,607.69 2,140.56 -32.06

80 1,472.62 1,491.55 1.29 2.78 95.01 1,900.27 2,019.05 -27.06

81 1,424.00 1,444.62 1.45 3.40 91.44 1,828.77 2,040.38 -30.21

82 1,471.71 1,491.98 1.38 3.15 101.91 2,038.22 2,111.98 -30.32

83 1,447.24 1,471.04 1.64 4.06 98.86 1,977.29 1,993.56 -27.40

84 1,440.92 1,467.12 1.82 3.15 123.18 2,463.56 1,980.48 -27.24

85 1,456.23 1,483.02 1.84 3.74 88.73 1,774.61 1,957.68 -25.61

86 1,418.20 1,441.25 1.63 4.30 88.48 1,769.64 1,885.15 -24.77

87 1,475.02 1,495.62 1.40 2.28 120.74 2,414.80 1,928.36 -23.51

88 1,445.90 1,465.40 1.35 3.50 119.73 2,394.56 2,033.98 -28.91

89 1,474.48 1,491.53 1.16 2.57 80.90 1,618.00 1,907.29 -22.69

90 1,441.21 1,459.20 1.25 2.67 115.33 2,306.69 2,058.66 -29.99

91 1,446.85 1,463.56 1.16 3.18 88.22 1,764.40 2,062.84 -29.86

92 1,401.45 1,424.99 1.68 3.99 83.21 1,664.24 1,926.19 -27.24

93 1,493.03 1,508.89 1.06 2.45 140.29 2,805.75 2,025.27 -26.28

94 1,476.80 1,488.76 0.81 1.84 99.41 1,988.27 1,965.88 -24.88

95 1,422.23 1,435.67 0.95 2.43 80.59 1,611.87 1,959.59 -27.42

96 1,429.75 1,443.46 0.96 1.97 85.49 1,709.78 1,974.58 -27.59

97 1,452.75 1,471.34 1.28 2.39 99.55 1,991.03 1,831.66 -20.69

98 1,469.48 1,486.98 1.19 2.73 93.23 1,864.51 1,907.64 -22.97

99 1,434.58 1,449.64 1.05 2.95 86.91 1,738.15 2,009.33 -28.60

100 1,464.22 1,488.74 1.67 3.12 112.81 2,256.22 2,119.20 -30.91

avg. gap 1.37 avg. time 101.21 2,024.02 avg. ∆ -26.83
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Detailed results batch picking

The impact of implementing a batch picking policy instead of a discrete order picking

policy is investigated in Chapter 5. Table D.1 provides detailed results for each

instance tested in the experiments. Column 1 indicates the instance number. Columns

2-7 show the results for the I-OP-VRP with a discrete order picking policy, while

columns 8-13 provide the results for the I-OP-VRP with a batch picking policy. In

columns 2 and 8, the total time to pick all orders is presented. The number of pickers

required is indicated in columns 3 and 9. The total labour cost of the order picking

subproblem is shown in columns 4 and 10. Columns 5 and 11 present the total cost

of the vehicle routing subproblem. The total cost of the integrated probem is shown

in columns 6 and 12. The computation times to obtain the optimal solution by

CPLEX is indicated in columns 7 and 13. The savings in total picking time needed

by implementing a batch picking policy are presented in column 14. Column 15 shows

the savings in total cost.

In a discrete order picking policy, on average 1.16 order pickers are required to pick

all orders in an individual tour, while with batch picking a single order picker can pick

all orders. The picking times decrease with approximately 37% on average, with even

savings up to 65%. Savings in total cost of approximately 12% are obtained. Solving

an instance with a discrete order picking policy to optimality takes approximately two

minutes on average, while the average computation time for an instance with batch

picking is two hours.

Detailed results of the experiments executed with the I-OP-VRP in which a batch

picking policy is implemented for an uncoordinated and an integrated approach, are

provided in Table D.2. For each instance, the costs per component for both the unco-

ordinated and integrated approach are presented. The difference per cost component

213



214 Appendix D

are indicated for each instance. On average, integrating order picking and vehicle

routing decisions into a single optimisation problem has value of 0.32%. The max-

imum value of integration obtained in the experiments is 0.93%. Fewer order pickers

are required to pick all goods on time. No temporary orders pickers are needed in the

integrated approach. The labour costs of the regular order pickers increase, but are

compensated by a decrease in the labour costs of the temporary order pickers, which

have a higher labour cost per hour.
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Table D.1: Detailed results of impact of batch picking

Discrete order picking Batch picking

Inst.
∑
pti #pickers TCOPP TCV RP TCdiscr Time (s)

∑
ptb #pickers TCOPP TCV RP TCbatch Time (s) ∆

∑
pt(%) ∆ TC(%)

1 155 1 64.58 143.08 207.67 8.99 98 1 40.83 143.08 183.92 5,691.10 -36.77 -11.44

2 186 1 77.50 170.44 247.94 44.09 109 1 45.42 170.44 215.85 3,543.16 -41.40 -12.94

3 197 2 82.08 143.67 225.76 358.90 122 1 50.83 143.67 194.51 7,663.89 -38.07 -13.84

4 153 1 63.75 190.75 254.50 95.74 107 1 44.58 190.75 235.34 35,352.20 -30.07 -7.53

5 192 2 80.00 165.85 245.85 197.65 120 1 50.00 165.85 215.85 1,242.23 -37.50 -12.20

6 201 1 83.75 199.78 283.53 22.50 124 1 51.67 199.78 251.45 3,543.50 -38.31 -11.32

7 193 2 80.42 173.12 253.54 41.66 118 1 49.17 173.12 222.29 4,909.63 -38.86 -12.33

8 164 1 68.33 147.76 216.09 311.71 104 1 43.33 147.76 191.09 2,947.42 -36.59 -11.57

9 174 2 72.50 145.97 218.47 171.93 111 1 46.25 145.97 192.22 2,218.70 -36.21 -12.02

10 179 1 74.58 135.14 209.73 408.53 106 1 44.17 135.14 179.31 21,387.10 -40.78 -14.50

11 222 1 92.50 173.62 266.12 94.88 138 1 57.50 173.62 231.12 7,295.57 -37.84 -13.15

12 203 1 84.58 159.12 243.70 198.72 131 1 54.58 159.12 213.70 13,008.40 -35.47 -12.31

13 194 1 80.83 147.69 228.52 68.91 120 1 50.00 147.69 197.69 4,086.31 -38.14 -13.49

14 188 2 78.33 173.32 251.65 1,159.61 117 1 48.75 173.32 222.07 1,395.28 -37.77 -11.76

15 191 1 79.58 169.58 249.16 64.68 120 1 50.00 169.58 219.58 7,695.85 -37.17 -11.87

16 183 1 76.25 174.01 250.26 81.11 64 1 26.67 174.01 200.68 8,424.44 -65.03 -19.81

17 205 1 85.42 174.21 259.63 71.33 112 1 46.67 174.21 220.88 258.72 -45.37 -14.93

18 180 1 75.00 159.97 234.97 100.28 108 1 45.00 159.97 204.97 7,126.33 -40.00 -12.77

19 215 2 89.58 151.67 241.26 152.96 125 1 52.08 151.68 203.76 254.50 -41.86 -15.54

20 174 1 72.50 138.23 210.73 38.52 107 1 44.58 138.23 182.82 8,908.61 -38.51 -13.25

21 185 1 77.50 155.94 233.44 83.35 113 1 47.08 155.94 203.03 9,437.52 -38.92 -13.03

22 184 1 76.67 201.85 278.52 57.17 118 1 49.17 201.85 251.02 5,019.10 -35.87 -9.87

23 168 1 70.00 179.20 249.20 34.72 105 1 43.75 179.20 222.95 6,577.22 -37.50 -10.53

24 166 2 69.17 182.39 251.56 26.42 110 1 45.83 182.39 228.23 7,581.51 -33.73 -9.28

25 191 1 79.58 177.56 257.14 38.98 121 1 50.42 177.56 227.97 2,406.48 -36.65 -11.34
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Table D.1: (continued)

Discrete order picking Batch picking

Inst.
∑
pti #pickers TCOPP TCV RP TCdiscr Time (s)

∑
ptb #pickers TCOPP TCV RP TCbatch Time (s) ∆

∑
pt(%) ∆ TC(%)

26 175 1 72.92 154.42 227.33 109.91 110 1 45.83 154.42 200.25 16,492.80 -37.14 -11.91

27 192 1 80.00 168.55 248.55 341.55 123 1 51.25 168.55 219.80 3,890.00 -35.94 -11.57

28 201 1 83.75 133.71 217.46 82.11 131 1 54.58 133.71 188.29 4,993.11 -34.83 -13.41

29 198 1 82.50 197.35 279.85 19.31 131 1 54.58 197.35 251.93 2,521.04 -33.84 -9.98

30 199 1 82.92 194.84 277.75 32.62 124 1 51.67 194.84 246.50 2,393.29 -37.69 -11.25

31 164 1 68.33 154.24 222.58 63.85 111 1 46.25 154.24 200.49 4,895.97 -32.32 -9.92

32 211 1 87.92 143.04 230.95 28.94 124 1 51.67 143.04 194.70 1,552.39 -41.23 -15.70

33 185 1 77.08 141.76 218.85 122.64 126 1 52.50 141.76 194.26 4,268.48 -31.89 -11.23

34 206 2 85.83 178.35 264.19 30.68 137 1 57.08 178.35 235.44 2,177.80 -33.50 -10.88

35 160 1 66.67 157.62 224.29 38.20 102 1 42.50 157.62 200.12 11,686.40 -36.25 -10.77

36 153 1 63.75 166.62 230.37 75.93 99 1 41.25 166.62 207.87 11,102.80 -35.29 -9.77

37 170 1 70.83 183.59 254.42 53.35 119 1 49.58 183.59 233.17 9,854.79 -30.00 -8.35

38 198 1 82.50 211.95 294.45 85.47 114 1 47.50 211.95 259.45 7,018.02 -42.42 -11.89

39 170 1 70.83 139.66 210.49 92.62 107 1 44.58 139.66 184.24 8,783.28 -37.06 -12.47

40 194 1 80.83 184.66 265.50 45.31 126 1 52.50 184.66 237.16 4,378.73 -35.05 -10.67

41 196 1 81.67 152.14 233.80 149.59 122 1 50.83 152.14 202.97 8,579.67 -37.76 -13.19

42 168 1 70.00 138.78 208.78 56.79 108 1 45.00 138.78 183.78 17,942.50 -35.71 -11.97

43 191 1 79.58 160.67 240.25 42.97 120 1 50.00 160.67 210.67 5,859.31 -37.17 -12.31

44 188 1 78.33 134.29 212.62 155.06 119 1 49.58 134.29 183.87 688.34 -36.70 -13.52

45 194 1 80.83 152.36 233.19 139.11 126 1 52.50 152.36 204.86 7,901.81 -35.05 -12.15

46 172 1 71.67 174.99 246.65 93.43 102 1 42.50 174.99 217.49 1,089.12 -40.70 -11.82

47 203 1 84.58 173.76 258.34 64.68 128 1 53.33 173.76 227.09 5,964.13 -36.95 -12.10

48 217 1 90.42 158.34 248.76 84.43 138 1 57.50 158.34 215.84 4,096.82 -36.41 -13.23

49 155 1 64.58 157.09 221.67 43.62 94 1 39.17 157.09 196.26 9,773.96 -39.35 -11.47

50 167 1 69.58 187.99 257.57 105.48 108 1 45.00 187.99 232.99 24,125.60 -35.33 -9.54

average 1.16 average 121.82 average 1.00 average 7,200.10 -37.60 -12.07
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Table D.2: Detailed results value of integration with batch picking

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
cttv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
cttv TCint (a) (b) (c) (d) (e)

1 40.83 0.00 104.58 38.50 183.92 40.83 0.00 104.58 38.50 183.92 0.00 0.00 0.00 0.00 0.00

2 45.42 0.00 122.92 47.52 215.85 45.42 0.00 122.92 47.52 215.85 0.00 0.00 0.00 0.00 0.00

3 42.50 10.00 105.83 37.84 196.17 50.83 0.00 105.83 37.84 194.51 -0.85 19.61 -100.00 0.00 0.00

4 44.58 0.00 133.33 57.42 235.34 44.58 0.00 133.33 57.42 235.34 0.00 0.00 0.00 0.00 0.00

5 50.00 0.00 118.33 47.52 215.85 50.00 0.00 118.33 47.52 215.85 0.00 0.00 0.00 0.00 0.00

6 42.92 10.50 145.00 54.78 253.20 51.67 0.00 145.00 54.78 251.45 -0.69 20.39 -100.00 0.00 0.00

7 49.58 0.00 122.08 51.04 222.71 49.17 0.00 122.08 51.04 222.29 -0.19 -0.84 0.00 0.00 0.00

8 46.25 0.00 104.17 41.80 192.22 46.25 0.00 104.17 41.80 192.22 0.00 0.00 100.00 0.00 0.00

9 46.25 0.00 104.17 41.80 192.22 46.25 0.00 104.17 41.80 192.22 0.00 0.00 100.00 0.00 0.00

10 44.17 0.00 97.08 38.06 179.31 44.17 0.00 97.08 38.06 179.31 0.00 0.00 0.00 0.00 0.00

11 49.58 9.50 125.00 48.62 232.70 57.50 0.00 125.00 48.62 231.12 -0.68 15.97 -100.00 0.00 0.00

12 47.50 8.50 112.92 46.20 215.12 54.58 0.00 112.92 46.20 213.70 -0.66 14.91 -100.00 0.00 0.00

13 41.67 10.00 108.75 38.94 199.36 50.00 0.00 108.75 38.94 197.69 -0.84 20.00 -100.00 0.00 0.00

14 48.75 0.00 122.50 50.82 222.07 48.75 0.00 122.50 50.82 222.07 0.00 0.00 0.00 0.00 0.00

15 43.75 7.50 122.50 47.08 220.83 50.00 0.00 122.50 47.08 219.58 -0.57 14.29 -100.00 0.00 0.00

16 26.67 0.00 125.83 48.18 200.68 26.67 0.00 125.83 48.18 200.68 0.00 0.00 0.00 0.00 0.00

17 46.67 0.00 126.25 47.96 220.88 46.67 0.00 126.25 47.96 220.88 0.00 0.00 100.00 0.00 0.00

18 45.00 0.00 121.25 38.72 204.97 45.00 0.00 121.25 38.72 204.97 0.00 0.00 0.00 0.00 0.00

19 45.00 8.50 108.33 43.34 205.17 52.08 0.00 108.33 43.34 203.76 -0.69 15.73 -100.00 0.00 0.00

20 44.58 0.00 100.83 37.40 182.82 44.58 0.00 100.83 37.40 182.82 0.00 0.00 0.00 0.00 0.00

21 47.08 0.00 114.58 41.36 203.03 47.08 0.00 114.58 41.36 203.03 0.00 0.00 0.00 0.00 0.00

22 41.67 9.00 143.33 58.52 252.52 49.17 0.00 143.33 58.52 251.02 -0.59 18.00 -100.00 0.00 0.00

23 43.75 0.00 127.50 51.70 222.95 43.75 0.00 127.50 51.70 222.95 0.00 0.00 0.00 0.00 0.00

24 45.83 0.00 133.33 49.06 228.23 45.83 0.00 133.33 49.06 228.23 0.00 0.00 0.00 0.00 0.00

25 42.50 9.50 125.42 52.14 229.56 50.42 0.00 125.42 52.14 227.97 -0.69 18.63 -100.00 0.00 0.00

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCcttv (%)
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Table D.2: (continued)

Uncoordinated Integrated

OPP VRP OPP VRP

Inst.
∑
creg

∑
ctemp

∑
ctlv

∑
cttv TCunc

∑
creg

∑
ctemp

∑
ctlv

∑
cttv TCint (a) (b) (c) (d) (e)

26 45.83 0.00 110.42 44.00 200.25 45.83 0.00 110.42 44.00 200.25 0.00 0.00 0.00 0.00 0.00

27 43.75 9.00 121.25 47.30 221.30 51.25 0.00 121.25 47.30 219.80 -0.68 17.14 -100.00 0.00 0.00

28 46.67 9.50 99.17 34.54 189.87 54.58 0.00 99.17 34.54 188.29 -0.83 16.96 -100.00 0.00 0.00

29 46.67 9.50 141.25 56.10 253.52 54.58 0.00 141.25 56.10 251.93 -0.62 16.96 -100.00 0.00 0.00

30 46.25 6.50 142.92 51.92 247.59 51.67 0.00 142.92 51.92 246.50 -0.44 11.71 -100.00 0.00 0.00

31 46.25 0.00 109.58 44.66 200.49 46.25 0.00 109.58 44.66 200.49 0.00 0.00 0.00 0.00 0.00

32 42.50 11.00 105.42 37.62 196.54 51.67 0.00 105.42 37.62 194.70 -0.93 21.57 -100.00 0.00 0.00

33 44.58 9.50 104.58 37.18 195.85 52.50 0.00 104.58 37.18 194.26 -0.81 17.76 -100.00 0.00 0.00

34 47.92 11.00 130.83 47.52 237.27 57.08 0.00 130.83 47.52 235.44 -0.77 19.13 -100.00 0.00 0.00

35 42.50 0.00 112.08 45.54 200.12 42.50 0.00 112.08 45.54 200.12 0.00 0.00 0.00 0.00 0.00

36 41.25 0.00 120.42 46.20 207.87 41.25 0.00 120.42 46.20 207.87 0.00 0.00 0.00 0.00 0.00

37 49.58 0.00 131.67 51.92 233.17 49.58 0.00 131.67 51.92 233.17 0.00 0.00 0.00 0.00 0.00

38 40.83 8.00 151.67 60.28 260.78 47.50 0.00 151.67 60.28 259.45 -0.51 16.33 -100.00 0.00 0.00

39 44.58 0.00 102.92 36.74 184.24 44.58 0.00 102.92 36.74 184.24 0.00 0.00 0.00 0.00 0.00

40 45.00 9.00 132.08 52.58 238.66 52.50 0.00 132.08 52.58 237.16 -0.63 16.67 -100.00 0.00 0.00

41 44.58 7.50 107.92 44.22 204.22 50.83 0.00 107.92 44.22 202.97 -0.61 14.02 -100.00 0.00 0.00

42 45.00 0.00 102.92 35.86 183.78 45.00 0.00 102.92 35.86 183.78 0.00 0.00 0.00 0.00 0.00

43 44.17 7.00 116.67 44.00 211.83 50.00 0.00 116.67 44.00 210.67 -0.55 13.21 -100.00 0.00 0.00

44 49.58 0.00 96.67 37.62 183.87 49.58 0.00 96.67 37.62 183.87 0.00 0.00 0.00 0.00 0.00

45 47.92 5.50 107.92 44.44 205.77 52.50 0.00 107.92 44.44 204.86 -0.45 9.56 -100.00 0.00 0.00

46 42.50 0.00 124.17 50.82 217.49 42.50 0.00 124.17 50.82 217.49 0.00 0.00 0.00 0.00 0.00

47 45.83 9.00 122.50 51.26 228.59 53.33 0.00 122.50 51.26 227.09 -0.66 16.36 -100.00 0.00 0.00

48 47.50 12.00 115.00 43.34 217.84 57.50 0.00 115.00 43.34 215.84 -0.92 21.05 -100.00 0.00 0.00

49 39.17 0.00 113.75 43.34 196.26 39.17 0.00 113.75 43.34 196.26 0.00 0.00 0.00 0.00 0.00

50 45.00 0.00 131.67 56.32 232.99 45.00 0.00 131.67 56.32 232.99 0.00 0.00 0.00 0.00 0.00

average -0.32 7.70 -46.00 0.00 0.00

(a) ∆ TC (%) (b) ∆ TCcpreg(%) (c) ∆ TCcptemp(%) (d) ∆ TCctlv (%) (e) ∆ TCcttv (%)
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Samenvatting

In het laatste decennium zijn de Europese e-commerce verkopen jaarlijks gestegen met

ongeveer 17%. Steeds meer internetgebruikers kopen producten online. Klanten van

webshops kopen frequenter, maar in kleinere hoeveelheden. Bijgevolg stijgt het aantal

te verzenden pakjes. Jaarlijks worden in Europa gemiddeld ongeveer 4,2 miljard

pakketjes verzonden naar consumenten. Dit toenemende aantal maakt een efficiënte

afhandeling van deze pakjes steeds moeilijker.

Bijkomend willen klanten zelf de plaats en het tijdstip van de levering kunnen

bepalen. Levering aan huis geniet de voorkeur bij de meerderheid van de klanten.

Ten opzichte van het traditionele winkelgedrag waarbij distributiecentra enkel winkels

moeten bevoorraden, leidt het aan huis leveren van pakjes tot een grote toename

van het aantal leveringsplaatsen. Deze nieuwe distributiekanalen zorgen voor een

complexer distributienetwerk.

E-commerce klanten verwachten een snelle en accurate levering binnen een klein

tijdsvenster tegen een lage kost of liefst zelfs gratis. Bedrijven beloven hun klanten

vaak een levering op dezelfde of de volgende dag. Deze belofte betekent een dubbele

logistieke uitdaging voor de bedrijven. Ten eerste, het kunnen omgaan met de stij-

gende druk op de distributiecentra door een latere cut-off tijd, d.i. het tijdstip tot

wanneer bestellingen worden aanvaard om nog in deze periode geleverd te kunnen

worden. Ten tweede, het creëren van een efficiënt transportnetwerk om de pakjes af

te leveren bij de eindconsument.

De hoge verwachtingen van klanten en het toenemend aantal af te handelen pak-

jes zetten de logistieke activiteiten in de toeleveringsketen onder druk. E-commerce

bedrijven moeten hun werkwijze grondig analyseren en herontwerpen. Excellente lo-

gistieke prestaties zijn noodzakelijk om op een kostenefficiënte manier aan de eisen

van klanten te voldoen. Hiervoor is een goede samenwerking en coördinatie tussen de

verschillende stappen in de toeleveringsketen noodzakelijk.

Om te overleven in de e-commerce markt kunnen bedrijven niet langer elke logis-

tieke activiteit afzonderlijk optimaliseren, maar moeten alle activiteiten gezamenlijk
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geoptimaliseerd worden. Een gëıntegreerde kijk op de kritische logistieke beslissingen

leidt tot grotere kostenbesparingen en verbeteringen van het dienstverleningsniveau

dan het individueel verbeteren van elke logistieke functie. In een e-commerce bedrijf

moeten voornamelijk de activiteiten gerelateerd aan de afhandeling van de bestellin-

gen in het distributiecentrum en de levering van de goederen zo optimaal mogelijk op

elkaar afgestemd worden. Hiervoor is nood aan gëıntegreerde beslissingsondersteu-

nende modellen.

Traditioneel worden in de wetenschappelijke literatuur de verschillende functies

van een toeleveringsketen afzonderlijk onderzocht. De verschillende logistieke proble-

men worden sequentieel opgelost. De resultaten van het ene probleem worden gebruikt

als invoergegevens voor het andere probleem. Deze sequentiële, ongecoördineerde aan-

pak leidt echter tot suboptimale oplossingen, aangezien de vereisten en beperkingen

van het andere probleem genegeerd worden.

Het gecoördineerd oplossen van verschillende functies van een toeleveringsketen

wordt gezien als één van de belangrijkste trends in de logistieke wereld. In deze

doctoraatsthesis worden beslissingen omtrent order picking en rittenplanning gecom-

bineerd in een gëıntegreerd optimalisatieprobleem. Onder order picking wordt het

verzamelen van de bestelde producten in het distributiecentrum verstaan. Een rit-

tenplanning beschrijft de routes die afgelegd moeten worden om alle goederen tijdig

tot bij de eindconsument te brengen.

Het doel van deze doctoraatsthesis is om te onderzoeken wat de voordelen zijn

van het integreren van order picking en rittenplanningsbeslissingen in een e-commerce

omgeving. Deze thesis levert drie bijdragen aan de wetenschappelijke literatuur. Ten

eerste, het introduceren en gedetailleerd beschrijven van het gëıntegreerd order picking

en rittenplanningsprobleem. Ten tweede, het onderzoeken en meten van de waarde

en de voordelen van de integratie van de twee problemen. Ten derde, het voorstellen

van een heuristische methode om het probleem in een aanvaardbare tijdspanne op te

lossen.

De integratie van deze twee problemen is een relatief nieuw onderzoeksgebied.

De meest gerelateerde literatuur onderzoekt de integratie van productie- en rit-

tenplanningsbeslissingen. In het eerste deel van deze doctoraatsthesis wordt een

gedetailleerd literatuuroverzicht gegeven van het gëıntegreerd productie- en ritten-

planningsprobleem. Classificatiematrixen op basis van de belangrijkste productie-

en distributie-eigenschappen worden opgesteld. In deze matrixen worden voor

elk gerelateerd wetenschappelijk artikel de eigenschappen aangeduid die hierin in

beschouwing zijn genomen.
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De basisconcepten van productieplanning en order picking tonen veel overeenkom-

sten. Bijgevolg kunnen de eerder vermelde literatuurstudie en de opgestelde classifica-

tiematrixen als startbasis dienen voor het onderzoek naar gëıntegreerde order picking

en rittenplanningsproblemen. Interessante onderzoekspistes voor toekomstig onder-

zoek worden gëıdentificeerd dewelke gebruikt kunnen worden voor het introduceren

van een gëıntegreerd order picking en rittenplanningsprobleem.

In het tweede deel van deze doctoraatsthesis wordt de integratie van order picking

en rittenplanningsbeslissingen in een e-commerce markt onderzocht en geanalyseerd.

De meeste studies gepubliceerd over het integreren van order picking beslissingen

met distributiebeslissingen veronderstellen eenvoudige leveringsmethoden zoals het

individueel leveren van elke afzonderlijke klant vanuit het distributiecentrum. Op

deze manier moeten geen routes bepaald worden, aangezien het om een heen-en-terug

transport tussen de klant en het distributiecentrum gaat. In dit doctoraatsonderzoek

wordt de distributie uitgebreid naar een rittenplanningsprobleem.

Eerst wordt een gedetailleerde beschrijving van het gëıntegreerde probleem gege-

ven. Vervolgens worden wiskundige formuleringen opgesteld voor zowel het individu-

ele order picking probleem en rittenplanningsprobleem alsook voor het gëıntegreerde

probleem. Voor kleine problemen tot 20 klanten wordt de optimale oplossing gevonden

met behulp van een optimalisatiesoftware. Een sensitiviteitsanalyse wordt uitgevoerd

op deze kleine problemen om de impact van verschillende probleemeigenschappen op

de waarde van integratie te onderzoeken. De variabele verplaatsingskost en de grootte

van het distributiegebied zijn positief gerelateerd aan de waarde van integratie. Het

effect van het aantal klanten is niet eenduidig.

Het optimaal oplossen met een optimalisatiesoftware is enkel mogelijk in een aan-

vaardbare tijd voor kleine problemen. Voor problemen met een hoger aantal klanten is

een exacte methode niet meer toepasbaar binnen een redelijke tijd. Hiervoor moet een

heuristisch algoritme ontwikkeld worden. In deze doctoraatsthesis wordt een record-

to-record travel algoritme voorgesteld om het gëıntegreerd probleem op te lossen.

Met behulp van de voorgestelde heuristiek wordt de waarde van integratie ook voor

grotere artificiële problemen onderzocht. Een eerste vaststelling is dat het dienstverle-

ningsniveau dat e-commerce bedrijven kunnen bieden aan hun klanten verhoogd kan

worden door integratie. De tijdspanne tussen het moment van aankoop door de klant

en de levering van de bestelde goederen kan verkort worden. E-commerce bedrijven

kunnen hierdoor hun klanten de mogelijkheid bieden om hun bestelling later te plaat-

sen en de producten toch nog te leveren binnen dezelfde tijdsvensters als producten

die eerder besteld werden. Het efficiënt en snel leveren van producten is een belangrijk

competitief voordeel voor e-commerce bedrijven.
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Een tweede vaststelling is dat een lager aantal order pickers nodig is in het

gëıntegreerd probleem om alle bestellingen op tijd af te handelen in het distribu-

tiecentrum. Minder tijdelijke order pickers moeten ingehuurd worden in vergelijking

met een niet-gëıntegreerde aanpak. De kans om een toegelaten oplossing te vinden is

groter wanneer een gëıntegreerde methode wordt gebruikt. Wanneer beide problemen

gëıntegreerd worden, is er meer flexibiliteit over de start en het einde van de werktijd

van de order pickers.

Een laatste vaststelling is dat kosten verbonden aan wachttijden voor de start van

een route vermeden kunnen worden door integratie. Chauffeurs komen aan bij het

distributiecentrum net op het moment dat de voertuigen geladen moeten worden. Op

deze manier worden chauffeurs enkel betaald voor de effectieve tijd die ze werken.

In een niet-gëıntegreerde aanpak komen chauffeurs elke dag aan op een vast tijdstip

bij het distributiecentrum. Hierdoor moeten ze vaak wachten vooraleer effectief te

vertrekken om zo de tijdsvensters van de klanten te respecteren.

Algemeen kan dus besloten worden dat door integratie van order picking en ritten-

planningsproblemen zowel het dienstverleningsniveau verbeterd kan worden alsook de

totale kosten kunnen dalen. De integratie zorgt ervoor dat deze logistieke activiteiten

op een snellere en kostenefficiëntere manier uitgevoerd kunnen worden.
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