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Abstract

Objectives: To outline an evidence-based health policy, one is often
interested in the profiles of persons who are at risk to obtain certain 
diseases or who do not respond to prevention programs as e.g. cervix
cancer screening via smears.

Methods: Statistical modelling can provide a tool to discover such
profiles. In this paper the method of classification trees is described. The
use of classification trees has advantages but also limitations with
respect to their application in the survey domain. A closer look on the
handling of missing data and weighting in this context will be given.

Material: The Belgian Health Interview Survey (HIS) was conducted
in 1997. The Belgian communities are responsible for cervix cancer
screening as a part of the preventional health care.
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Results: There are no strong conclusions to be drawn with respect
to the objective of determining a typical profile for women that underwent
a screening. The application of the methods to the HIS data however
provides insights and incitements for further investigation.
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1. Introduction

According to the Nationaal Kankerregister (1), cervix cancer is the fifth
most common cancer among women in Belgium in the period of 1993-
1995. Therefore it is not surprising that, for health policy goals, cervix can-
cer is an important point of attention. In an early stage cervix cancer can
already be detected by means of a simple smear. Because early detec-
tion decreases the mortality substantially, women between 25 to 64 years
old should have a smear every 3 to 5 years, according to the European
guidelines (2, 3, 4). However, in Belgium about three out of ten women
in this risk group did not have a smear during the previous three years.
In several Flemish provinces, there has been a call-recall attempt. In
the Walloon region and the Brussels region there has been no such invi-
tation procedure to undergo a screening. The inclusion of follow-up
smears has little influence on the accuracy of the screening coverage.
Much more important is the selection- and literature bias (5). Only one
third of the women in the risk group, who received such an invitational
letter, undergo a screening in reply to this letter. This number needs to
be interpreted with some caution since also women without uterus and
women that recently had a smear were included. From a health policy
point of view it would be interesting to know what “type” of women do or
do not go for a smear after receiving an invitational letter. Unfortunately
we are not able to investigate this question based on the data of the health
interview survey 1997, because there are not enough women eligible for
screening that received a letter. 

The question investigated in this contribution is in what respect the
group of women, aged 25-64, not having a smear, is different from the
group of women that did have a smear taken in the past three years.
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Special interest goes out to whether an invitation letter increases the
probability of undergoing screening. 

In the next sections, the design of the HIS is specified; the logistic
regression approach and the classification tree methodology are intro-
duced. The results of these methods on cervix cancer screening in the
HIS are given. Finally, discussions and conclusions are drawn. 

2. Material and Methods

2.1. Design of the HIS

In the HIS a total sample of 10,000 interviews (0.1% of the Belgian
population) was planned, equally spread over the year 1997. For the three
regions of Belgium (Flemish region, Walloon region and Brussels region)
the number of individuals to be successfully interviewed was preset at
3500, 3500 and 3000, respectively. An oversampling was planned for the
German Community of Belgium (in the district Eupen-Malmédy), with 300
successful interviews. A detailed description of the sampling scheme used
in the HIS was published elsewhere (6). The most important features are
summarized in what follows. Sampling was based on a combination of
stratification, multistage sampling, and clustering (7). 

There were two stratification levels. First, stratification was done at
the regional level, to ensure that the preset regional level could be
reached. Secondly, stratification was conducted at the level of provinces,
proportional to their size. Next, the individuals’ sample is selected in
three stages within each stratum. The first stage, yielding primary sam-
pling units (PSU), consists of municipalities and sampling is carried out
proportionally to (population) size via systematic sampling. Whenever a
municipality is selected (and it can be more than once), a group of 
50 persons is to be interviewed within this municipality. The next stage
of random selection operates on households (HHs, secondary sampling
units or SSU) according to a clustered systematic sampling procedure
upon ordering of the HHs by statistical sector, size and age of the ref-
erence person. At this level, matching HHs are provided in case a HH
refuses to participate. Finally, individuals or tertiary sampling units (TSU)
are selected within HHs in such a way that 4 persons at most are inter-
viewed in each HH and the reference person and his/her partner are
automatically selected. 
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Since the design of the Health Interview Survey follows a complex
multistage probability-sampling scheme, it is necessary to reflect these
complex procedures in the statistical analysis. Individual weights, reflect-
ing the stratification at provincial level and the differential selection prob-
abilities within households were constructed. Furthermore, post-stratifi-
cation for age, gender1, and household size were applied. 

The interpretation of the individual weight is that it indicates how many
individuals the sampled subject represents. For example, in a simple
random sample (2% of the population) each person in the sample rep-
resents 50 persons in the population; it can be said that each person has
a weight of 50. 

2.2. Introduction to the data

From the HIS data file, only women aged between 25 and 64, were
selected. These 2893 subjects were all used in the analyses. The gen-

1 The analyses here are restricted to women, age 25-64 and so a post-stratification for
gender is not necessary here.

TABLE 1
General topics of which the explanatory variables were considered

Lifestyle Physical Activity
Nutritional Habits
Alcohol Consumption
Smoking 

Health Problems Subjective Complaints
Chronical Conditions
Mental Health
Functional Limitations

Prevention and Health Promotion Vaccination
Cardiovascular Prevention
Aids Prevention

Use of Health Care Contacts with GP
Contacts with specialists
Contacts with dentist
Paramedics
Alternative Methods
Hospital Admissions
Use of Medication

Health and Society Social Health
Access to Health Care
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eral topics of the explanatory variables are shown in Table 12. (Women
without uterus are excluded from the analysis.) 

2.3. Methods to analyse the data

Due to the mathematical simplicity, logistic regression is the most
commonly used statistical method for binary data. As a part of general-
ized linear models (8), logistic regression is a parametric method. Tree-
based models provide a nonparametric alternative to linear and additive
logistic models for classification problems. Trees are fitted using binary
recursive partitioning whereby the data are successively split along coor-
dinate axes of the predictor variables so that at any node, the split that
maximally distinguishes the response variable in the left and the right
branches is selected. Splitting continues until nodes are pure or data
are too sparse. This results in a so-called saturated tree, which can be
too large to be useful. Therefore this tree is pruned up from the bottom
in order to find a useful tree with an acceptable predictive value. The
selection of this final tree is based on a cost-complexity measure, which
opposes a misclassification measure against the size of the tree. This
will be explained further on.

Classification tree analysis is one of the main techniques used in data
mining. The goal is to predict or explain responses on a categorical
dependent variable, and as such, the available techniques have much in
common with the techniques used in the more traditional methods of dis-
criminant analysis, cluster analysis, nonparametric statistics, and nonlin-
ear estimation. Classification trees are widely used in applied fields as
diverse as medicine (diagnosis), computer science (data structures),
botany (classification), and psychology (decision theory). Amenability to
graphical display and ease of interpretation are perhaps partly respon-
sible for the popularity of classification trees in applied fields, but two fea-
tures that characterize classification trees more generally are their hier-
archical nature and their flexibility. Let us first have a look at the logistic
regression analyses and at the alternative classification tree methodology. 

2.3.1. Logistic Regression

The standard statistical technique to investigate the relationship
between the binary response variable “screening status” and a set of
explanatory variables is logistic regression analysis. We applied this

2 The full questionnaire can be consulted at http://www.iph.fgov.be/epidemio/epien/
crospen/hisen/table.htm.
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technique to predict the probability that a woman, aged between 25 and
65 years, underwent a cervix cancer screening examination in the past
three years. The goal of this section is to discuss such an analysis in this
context. 

A logistic regression model can be formulated as a specific member
of the parametric generalized linear models family. As for all parametric
models, disadvantages are the strong model assumptions about the dis-
tribution of the data and about underlying regression relationships that
have to be made. If such parametric assumptions do not hold, the result
of the model fit is questionable. 

With 85 explanatory variables it is almost impossible to investigate for
each covariate the nature of the relationship (linear, quadratic, etc.).
Moreover, there are 7140 possible two-way interactions, considering all
of them is not feasible. We therefore limited ourselves to the investiga-
tion of the main effects. To find the model that is relatively the best of
the competing models for the data, a model selection procedure was
used. The likelihood equation for the most complex model, i.e. including
all 85 main effects does not exist. The model has infinite parameters
due to a complete separation of the sample points. As a consequence
a backward selection procedure could not be applied to the data. The
final models, obtained from a forward selection and stepwise procedure,
are identical for the data at hand. This is however not always the case
(9). In the analyses only the observations with nonmissing values for all
independent variables and for the dependent variable were used. As a
consequence more than 60% of the observations were ignored in the
analyses, because of missingness in (at least) one of the explanatory
variables. Of course one has to question the validity of the prediction
model. Several techniques to analyse data in the presence of missing-
ness are available. Multiple imputation could be a solution to handle the
missingness and it is fairly robust to imputation model misspecification,
which could be a problem. It is however not straightforward how the M
results of the selection procedures for the M imputed data-files can be
combined to present one final model (10). 

To take in account the design features of the HIS a weighting scheme
was developed. Incorporating these weights in the logistic analysis cor-
rects for the fact that a complex sampling scheme was used. 

2.3.2. The Methodology of Classification Trees

The classification tree methodology is a classification method where,
following specific splitting rules; disjoint subsets of the data are con-
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structed. These subsets are called nodes. Further splitting is repeated
several times within these nodes. A node where a split is formed is called
a parent node. The subsequent nodes are called child nodes. Terminal
nodes are nodes that are not splitted further. The size of a tree is the
number of parent nodes plus one. We focus on binary classification
trees, where splitting occurs into exactly two child nodes. 

This partitioning process results in a saturated tree. A tree is satu-
rated in the sense that the offspring nodes subject to further division
cannot be split. The saturated binary tree is then pruned to an optimal
sized tree. This is the so-called pruning process. The final step is the
selection process, which determines the final tree. In the following para-
graphs a brief overview of the different processes is given. 

The partitioning process is based on splitting rules. The splitting rules
involve conditioning on predictor variables. The best split is the split with
the largest reduction in impurity. The impurity of a node measures the
homogeneity of this node. The least impure node has either all zeros or
all ones as outcome. Whereas, the most impure node is characterized
by 50% of zeros and 50% of ones. The impurity of a node is a good-
ness of fit measure. Not surprisingly, given the hierarchical nature of
classification trees, these splits are selected one at a time, starting with
the split at the root node, and continuing with splits of resulting child
nodes until splitting stops, and the child nodes, which have not been
split, become terminal nodes. The generally most used split-selection
method is discussed here, i.e. an exhaustive search for univariate splits
for categorical or ordered predictor variables. With this method, all pos-
sible splits for each predictor variable at each node are examined to find
the split producing the largest improvement in goodness of fit and thus
the lowest impurity for the nodes. 

One common choice as a goodness of fit measure is the Gini index.
This measure is computed as the sum of products of all pairs of class
proportions for classes present at the node. For binary trees this Gini
index can be expressed as a product p(1-p) where p is the probability
to belong to the first of the two classes in the node considered. The Gini
measure of node impurity reaches its maximum value when class sizes
at the node are equal; and a value of zero is obtained when only one
class is present at a node. The prevalence rate p at a node has to be
available to compute the Gini index. In many applications this preva-
lence rate can be estimated empirically, at other times, additional prior
information may be required. The priors are estimated from class sizes
and equal misclassification costs. For example if it is known that the two
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classes in the scoring dataset are e.g. distributed as 90% versus 10%,
then this information will be used together with the probabilities as they
are given in the training dataset using Bayes theorem as explained in
Zhang et al. (12). The Gini measure is the most generally used measure
of goodness of fit in computing packages. 

Completing this partitioning process results in a saturated tree with
the characteristic that if no limit is placed on the number of splits that are
performed, eventually “pure” classification will be achieved. Each termi-
nal node would contain only one class of observations. However, “pure”
classification is usually unrealistic. The saturated tree is usually too large
to be useful. Indeed, the terminal nodes are so small that no sensible
inference can be made because such a tree has a small predictive value.
Therefore, it is typically to set a minimum size of a node a priori. Splitting
is stopped when a node is smaller than this minimum. 

Breiman et al. (11) argue that depending on the stopping threshold,
the partitioning tends to end too soon or too late. They propose to let the
partitioning continue until it is saturated or nearly so. Beginning with this
generally large tree it is pruned from the bottom up. The point is to find
the subtree of the saturated tree that is most “predictive” of the outcome
and least vulnerable to noise in the data. 

They developed structured procedures for selecting the “right-sized
tree”. Selection of the “right-sized” tree is based on the cost complexity
measure. This function is defined as the cost for the tree plus a complexity
parameter times the tree size. In many typical applications, costs simply
correspond to the proportion of misclassified observations, but other mod-
ifications are possible too (12). Here the proportion of misclassified obser-
vations is used to define costs. 

The procedure generates a sequence of trees with a number of inter-
esting properties. Trees are nested, because successively pruned trees
contain all the nodes of the next smaller tree in the sequence. This
sequence of trees is also optimally pruned, because for every size of a
tree in the sequence, there is no other tree of the same size with lower
costs.

It is well known that a classification tree computed from a learning
sample in which the outcomes are already known, will not perform equally
well in predicting outcomes in a second, independent test sample.
Sometimes one better might use a smaller classification tree that does
not classify perfectly in the learning sample, but which is expected to pre-
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dict equally well in the test sample. V-fold cross-validation is useful when
no test sample is available and the learning sample is too small to have
the test sample taken from it. A specified V value for V-fold cross-vali-
dation determines the number of random subsamples, as equal in size
as possible, that are formed from the learning sample. The classification
tree of the specified size is computed V times, each time leaving out one
of the subsamples from the computations, and using that subsample as
a test sample for cross-validation. The CV costs computed for each of the
V test samples are then averaged to give the V-fold estimate of the CV
costs. 

While there is nothing wrong with choosing the tree with the minimum
cost as the “right-sized” tree, often there will be several trees with cross
validation (CV) costs close to the minimum. Breiman et al. (11) make the
reasonable suggestion that one should choose as the “right-sized” tree
the smallest-sized (least complex) tree whose costs do not differ appre-
ciably from the minimum costs. They proposed a “1 SE rule” for making
this selection, i.e., chose the “right-sized” tree to be the smallest-sized
tree whose costs do not exceed the minimum costs plus 1 times the stan-
dard error of the costs for the minimum costs. 

2.3.3. Classification Trees and Missing Data

One attractive feature of tree-based methods is the ease with which
missing values can be handled. The appropriateness of these methods
is however not straightforward. In this section we will have a look at four
methods proposed by Ripley (13). 

A first approach is prediction on complete observations. Quinlan (14)
suggests replacing missing values using the distribution within the class
at that node when computing the expected value of a split. In his paper
of 1993, Quinlan multiplies the impurity gain calculated on known obser-
vations by the proportion of missing values. This method has a major dis-
advantage when the number of complete observations in the node is
quite small. Another disadvantage is that other available variables for this
observation are neglected while they are possibly highly correlated with
the missing one. 

The second approach, Ripley (13) discusses, is the missing together
approach (MT). Suppose that we attempt to split a node by a variable
and that the measurement for that variable is missing for a number of
observations. The MT approach forces all of these subjects to the same
daughter node. If it is a nominal variable with several levels, the miss-
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ing value is regarded as an additional level, so the variable has one
level more. On the other hand, when the variable has a natural order,
two copies are made. If a component is missing, the component in the
first copy will be set on plus infinity and the corresponding component
in the second copy will be given the value minus infinity. In this way,
replacing the variable by its two variants, results in two possible splits
such that the observations with missing measurement are sent to the
same daughter node. The variant that gives the best split is chosen.
This the key idea of the missing together approach (MT). The advan-
tages of the MT approach are that it is very simple to implement and that
a recursive partition algorithm that assumes no missing data can still be
used without modification when the raw data contain missing values.
Also the observations with missing information can easily be located in
the tree structure. In contrast, both daughter nodes may contain some
of these subjects by using surrogate splits instead. A major disadvan-
tage of the MT approach is that imputation relies on the assumptions of
simultaneous behaviour for subjects with a missing observation for the
covariate of interest. Moreover, the most favourable split is chosen to be
the best split to take, without considering the information in the other
covariates. This can be circumvented by surrogate splits. 

The third approach of surrogate splits is analogous to replacing a
missing value in a linear model by regressing on the explanatory vari-
able with a nonmissing value most highly correlated with it. However it
is more robust because of no model assumptions. The surrogate split
approach attempts to utilize the information in the other predictors to
assist in making the decision to send a observation to the left or the right
daughter node. One looks for the predictor that is most “similar” to the
original predictor in classifying the observations. Similarity is measured
by a measure of association. It is not unlikely that the predictor that yields
the best surrogate split may also be missing. Then we have to look for
the second best, and so on. In this way, all available information is used.
If surrogate splits are used, the user should take full advantage of them.

A fourth possibility is to take missing as a further level of the attribute.
This method allows multi-way splits, which are not appealing because
making some values missing can increase the gain in impurity. This can
be circumvented by allowing only binary splits, or by penalizing multi-way
splits. 

As a conclusion one can say that in most approaches tree construc-
tion is based on the observations without any missing values. Where
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missing values are very frequent; as in large-scale surveys, this may be
unacceptable or even impossible. 

The practical implementation of the previous methods, handling miss-
ing data, is not an issue. The appropriateness of the chosen approach
is. Especially the use of all available information by surrogate splits is
appealing. Substantial improvements upon this method can be thought
of although the practical implementation can be a drawback. All of these
ideas have merits and demerits, depending on how common missing
values are and whether they are missing at random are not (15). 

3. Results and Discussion

3.1. Logistic Regression

In Table 2 the results of the weighted logistic regression are presented.

Most of the explanatory variables in the model are variables indicat-
ing an awareness of the patient towards his own health status, e.g. cho-
lesterol control, heavy drinking moments, blood pressure control ... .
Other predictor variables are of a demographic nature, e.g. age, income

TABLE 2
Output of the logistic regression

Variable DF Wald P-value

Age Category 8 34.91 <0.0001
Income 4 10.25 0.0365
Household type 4 32.99 <0.0001
Consumed Bread 1 4.17 0.0411
Snack Eating 2 14.37 0.0008
Province 10 34.09 0.0002
Hospital Admission 2 16.04 0.0003
Blood Press. Control 1 7.07 0.0078
Profession 8 21.87 0.0052
Lack of Physical Act. 1 6.08 0.0137
BMI Category 5 17.64 0.0034
Cholesterol Control 1 8.14 0.0043
Heavy Drinking Mom. 5 12.57 0.0278
Milk Consummation 1 4.79 0.0286
Daily Drinker 1 4.74 0.0294
Medication 1 4.07 0.0438
Social 1 3.85 0.0498
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and province. Appreciation of social relationships seems to have a small
influence in the model. For health policy purposes the effect of a screen-
ing invitation is of great importance. This specific explanatory variable
indicates whether a person received an invitation letter advising her to
have a cervix cancer screening. 

The predictive value of the model is given by the positive and nega-
tive predictive values. The positive predictive value is the probability that
a woman really underwent screening when she is predicted to do so. The
negative predictive value is defined in a similar way. Higher values for
these probabilities are more desirable. The positive and negative pre-
dictive value depends on the cut-off point for classification on the logit
scale. Based on the ROC-curve a cut-off point of 0.40 is chosen. This
corresponds to a positive predictive value of 75% and a negative pre-
dictive value of 68%. These values are quite high but one can question
the validity of them because we only use 40% of the data. 

Fitting a logistic regression model without weights gives a model
which retains the explanatory variables hospital admission, medication,
age, household type, lack of physical activities, eating of snacks, sort of
bread consummation, blood pressure -and cholesterol control and addi-
tional explanatory variables are screening invitation, dentist visits, pre-
ventive tooth control, region, HIV-protection knowledge, HIV screening
and eating of breakfast. We see the same trend as above, where peo-
ple with a greater awareness of the own health status will be predicted
to undergo cervix cancer screening with a higher probability. 

As is clear from this discussion, a logistic regression analysis is not
the most optimal technique to formulate an answer to our research ques-
tion due to (1) the large number of explanatory variables and (2) the
missing values in the covariates. In order to overcome these problems
the classification tree methodology will be used to analyse the data in
the next section. 

3.2. Classification Trees

There are several software packages that support the classification
tree methodology. Some of them are especially developed for classifica-
tion and regression trees. The most familiar one of this kind is CART (16)
for windows. Well-known statistical computing packages like S-PLUS (17)
and R (18) can handle classification trees. R has the main advantage
that it can use weights in a straightforward manor, while SPLUS and
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CART do not. The handling of missing data has some minor differences
in all packages, but essentially it is of no concern to the user. R was used
throughout this analysis. 

In the construction of the classification tree for the “screening status”
the Gini method was used together with the use of surrogates to handle
missing values. In this first tree-based analysis no selection weights were
included. Arbitrarily, a minimum of 20 observations had to be available in
a parent node and a minimum of 10 observations had to be present in
all nodes. To find the best split, a 10-fold cross-validation was used, the
tree with the minimal cross validation relative error is chosen as the final
tree. Figure 1 shows the cross-validation relative error, indicating a min-
imal value for a tree of size 7 corresponding with a cost complexity of
0.0094. This tree is shown in Figure 2. 

Fig. 1: The X-val relative error in function of the cost complexity parameter
and the size of the tree
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The complete output is given in Table 3. 

The surrogate splits used in this tree are given in Table 4. 

The explanatory variables that determine the final tree are compara-
ble with those of the logistic regression analysis without weights (results
not shown). Blood pressure control and HIV-protection knowledge could
again be classified under the own health knowledge while age and
province are demographic variables. The presence of the invitation to
undergo a screening is not surprisingly to be of importance. The good-
ness of fit for the model can be represented by the positive predictive

Fig. 2: The final tree with two numbers indicating the true class 1/class 2 of the response.
Left child nodes are predicted to be of class 1, while right child nodes are predicted 

to be of class 2.
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value of 0.72 and the negative predictive value of 0.65. The predictive
value of a tree without explanatory variables is about 0.65 since the
prevalence rate is almost equal to 2/3. Comparing the result of our fit with
this one, one can see that the performance is not so good. This is also
clear from the estimate of the cross-validation relative error (0.91), which
is rather high (Figure 1). 

TABLE 4
Surrogate splits used in the classification tree analysis without weights. 

The three best surrogate splits, when available, are given from best to worse

Variable Surrogate Splits

Education Level Highest Professional Category
Social Status
Age

Blood Pressure Control –
Screening Invitation Province
HIV-protection knowledge Age

Excessive Drinking
HIV-tranmission knowledge

Age Vaccination for Influenza
Social Status

TABLE 3
Output of the classification tree analysis without weights. 

Between brackets one finds the percentage correctly specified individuals 
of the corresponding outcome for the terminal nodes

Variable Number Splits left Splits right
(* = terminal node) of individuals

Education Level 2893 Superior sec Up untill inferior
education or higher sec education

Blood Pressure 1992 Yes* No*
Control (0.73 1) (0.60 2)
Screening Invitation 901 Yes* No

(0.74 1)
HIV-protection 750 Yes No
knowledge
Age 270 25-60 years old* 60-70 years old*

(0.67 1) (0.61 2)
Province 480 Antwerp, Flemish Brabant,

East Flanders, West Flanders,
Walloon Brabant Limburg, Brussels,

and Luik* Henegouwen,
Luxemburg and

Namen*
(0.67 2)
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To incorporate the complex sampling scheme in the tree construction
we fit the same model but now with weights. The final tree of the analy-
sis with weights is given in Figure 3. 

Fig. 3: The final tree with two numbers indicating the true class 1/class 2 of the response.
Left child nodes are predicted to be of class 1, while right child nodes are predicted 

to be of class 2.

The size of the final tree based on the weights is 6 and thus smaller
than the size of the tree without consideration of the weights. The vari-
ables in this tree are educational level, blood pressure control, the
province, frequency of illness and the body mass index. The latter two
variables were not present in the previous analysis but are fairly good
indicators of the overall health status of an individual. The positive pre-
dictive value equals 0.72 and the negative predictive value equals 0.67,
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indicating an acceptable model fit but the performance of this analysis
is not much higher than what can be obtained from a tree with no
explanatory variables. The complete output is given in Table 5. 

TABLE 5
Output of the classification tree analysis with weights.

Between brackets one finds the percentage correctly specified individuals
of the corresponding outcome for the terminal nodes

Variable Number Splits left Splits right
(* = terminal node) of individuals

Education Level 2893 Superior sec Up untill inferior
education or higher sec education

Blood Pressure 1992 Yes* No
Control (0.75 1) (0.57 2)
Illness Frequency 94 0 or 1* 2 or more*

(0.78 1) (0.67 2)
Province 901 Antwerp, West Flanders,

Flemish Brabant, Brussels,
East Flanders, Henegouwen, Luik,
Limburg and Luxemburg

Walloon Brabant and Namen*
(0.69 1)

Body Mass Index 644 <18, 20-25* 18-20, >25*
(0.58 1) (0.66 2)

TABLE 6
Surrogate splits used in the classification tree analysis with weights

Variable Surrogate Splits

Education Level Highest Professional Category 
Physical Functional Score 
Social Status
–

Blood Pressure Control Limitations Due to Longterm Illness
Illness Frequency Longterm Illness

Hospital Admission
Province Region

Screening Invitation
Medication Expenses

Body Mass Index Tabac Consumption
Smoking Behaviour
Age

The surrogate splits used in this analysis are given in Table 6. 
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Comparing the results with the unweighted tree indicates that the
weights have an effect on the outcome of the final tree. The logistic
regression analyses confirm this finding, although considerations have
to be made due to its limitations with respect to missingness and prob-
lems due to model specifications. There is quite some difference in the
results between the logistic regression and the classification tree analy-
sis. Explanatory variables as blood pressure control and province are
mutual for all models. In the tree analyses the education level seems to
be of great importance. The logistic regression analyses indicates that
hospital admission, medication, age, household type, lack of physical
activities, eating of snacks, sort of bread consummation, and cholesterol
control are important.

The screening invitation seems to be important in both the analyses
but disappears when weights are taken into account. The relation
between the screening invitation and the weighting variable is significant
(Wilcoxon-test, p-value <0.0001). Therefore the difference between the
weighted and unweighted result is not all that surprising. The weighted
tree analysis indicates that sending an invitational letter has no effect on
the screening status. This weighted tree analysis is the correct analysis.
Conclusions drawn from the unweighted tree can be misleading and
incorrect. 

3.3. A Combined Analysis

A combined analysis was performed by including the explanatory
variables, obtained with the weighted tree analysis, in a weighted logistic
regression model. The main advantage of such a combined analysis is that
all subjects contribute to the selection of important explanatory variables.
The performance of the obtained model is little bit better than the logistic
regression model obtained after a forward selection procedure (section
2). The positive predictive value of the model equals 71%; the negative
predictive value equals 75%. Particularly, women not undergoing a cervix
screening examination can be better classified based on this model. 

The implementation of the covariates in the logistic regression model
has once more the disadvantage of neglecting the information contained
in records with missing values. The predictive values have to be inter-
preted with caution, because they only rely on 50% of the data. 
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4. Conclusions

Logistic regression and classification tree analyses were used on the
HIS data to investigate whether people with specific characteristics have
to be encouraged to undergo cervix cancer screening. The predictive
accuracies obtained with these two methodologies are comparable in
this case. The variables used for the prediction differ. Classification tree
methodology however has some advantages to use. 

The classification tree methodology is a fully non parametric model
that deals with the two major burdens of a parametric method as logistic
regression, that is the model assumptions and the regression relationship.
The methodology also nicely deals with the problem of missingness and
uses all data in the construction of the tree, while in the parametric
method missingness can lead to additional difficulties and loss of data. 

The results according to the weighted classification tree, show that
people with a lower educational level, that did not have a blood pressure
control during the last five years, living in the Walloon region of Belgium
or with obesitas or with overweight (BMI>25) are less likely to have
underwent a cervix cancer screening. Policy actions should target these
persons.

In our analyses, we did not focus on clustering (12), which could be
of interest. How the ways to handle missing data relate to different miss-
ingness processes like missing completely at random, missing at random
and missing not at random are not fully investigated here, but are pos-
sibly further research topics. We did not fully take in account the con-
tinuous nature of explanatory variables as age. This can be easily done
but demands more computing time. 

Currently a second health interview survey is taking place in Belgium.
Together with the HIS of 1997, time trends could be investigated.

Samenvatting

Om een gefundeerd gezondheidsbeleid uit te zetten, is men geïnteresseerd in de
profielen van subgroepen van personen, bijvoorbeeld zij die vatbaar zijn voor bepaalde
ziektes of diegenen die niet reageren op preventie-programma’s zoals baarmoederhals-
kanker-onderzoek via uitstrijkjes. Statistisch modelleren kan een oplossing bieden om
zulke persoonsprofielen te zoeken. In deze tekst wordt de methode van classificatiebomen
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toegepast. Deze methode heeft vele voordelen in vergelijking met logistische regressie.
Er zijn echter ook enkele beperkingen tot het gebruik in het survey domein. Hoe deze
methode omgaat met missing data en gewichten wordt van naderbij bekeken. De eerste
Belgische Gezondheidsenquête (HIS) werd uitgevoerd in 1997. De Belgische gemeen-
schappen zijn verantwoordelijk voor het onderzoek naar baarmoederhalskanker als
onderdeel van de preventieve gezondheidszorg. De HIS laat ons toe om profielen van
personen te onderzoeken die aan zo’n onderzoek deelnemen. Mensen die niet voldoen
aan dit patroon zouden aangemoedigd moeten worden om toch aan deze onderzoeken
deel te nemen. 
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