
Viewport dependent
MPEG-DASH streaming of 360

degree natively tiled HEVC video
in web browser context

Dissertation presented to obtain the degree of master

in computer science/ICT/knowledge technology

Moesen Gert

Academic year: 2017-2018 Supervisor:

Prof. dr. Quax Peter

Co-supervisor:

Prof. dr. Quax Peter

Mentor:

Dr. Wijnants Maarten

ii

Abstract

H.264/MPEG-4 AVC has been the mainstream video consumption standard for years.
However, with the current diversity of services, the still growing popularity of high quality
videos, and continuously increasing video resolution and qualities, a more efficient coding
performance is demanded than H.264/MPEG-4 AVC can supply. Therefor, new video
codecs are being developed to support these high resolution videos. One of those video
standards is H.265/HEVC which supports for the same quality videos up to 50% decrease
in size compared to H.264. Not only did HEVC have a huge impact on the files size, it
also came with native support of tiles. Tiles allow a video to be divided in rectangular
regions. These regions can then be coded independently of each other.

With the announcement of HEVC support in the Apple Safari and the Microsoft Edge
web browser, we wondered if it was possible to natively stream tiled HEVC MPEG-DASH
content and decode this in web browser context. By using MPEG-DASH, an adaptive
control of the quality per tile can be gained. This is done by using an AdaptationSet per
tile and allowing the tile to have multiple representation qualities. The adaptive control
is needed as we work with 360 degree video in which a user has only a spatially limited
viewport. Based on the viewport and its position in regard to the tiles, we can adjust the
quality of the tiles.

We started by asking ourselves if the HEVC tiled MPEG-DASH stream can be reformed
to a native tiled HEVC video in the web browser. The restructure of the tile stream is
needed to play the HEVC video content. This is done by remapping the input streams
for each tile into one native tiled video bit stream which the HEVC decoder can then
decode. By doing this, video playback is possible. In this thesis, we test and implement
the restructure process in a web application and measure the preprocessing times to show
if live playback is feasible.

iii

iv ABSTRACT

Acknowledgements

Firstly, I would like to thank my mentor dr. Maarten Wijnants for his continues help and
feedback throughout this thesis. I would also like to thank my supervisor prof. dr. Peter
Quax and co-supervisor prof dr. Wim Lamotte for their guidance.

Secondly, I would like to thank my family for their continuous support throughout the
years. And also my friends on whom I could always count.

v

vi ACKNOWLEDGEMENTS

Contents

Abstract iii

Acknowledgements v

Acronyms ix

Listings xi

List of Figures xiii

1 Introduction 1

2 H.265/HEVC 3
2.1 Slices . 3
2.2 Tiles . 4

2.2.1 Constraints on tiles . 5
2.3 Wavefront Parallel Processing . 6
2.4 Coding Tree Unit . 6
2.5 NAL Unit . 9

2.5.1 Parameter Set . 12
2.5.2 SEI . 13

3 MPEG-DASH 15
3.1 Why MPEG-DASH? . 15
3.2 HTTP MPEG-DASH streaming . 16
3.3 Media Presentation Description . 17

3.3.1 Comprehensive example . 19
3.4 Spatial Relationship Description . 21

3.4.1 Comprehensive SRD example . 22
3.5 DASH-Client . 23

4 TILED Video 25
4.1 Related work . 25

4.1.1 Equirectangular encoding . 26
4.1.2 Cubical encoding . 26
4.1.3 Pyramid encoding . 27

5 Implementation 29
5.1 Content preparation . 30

5.1.1 Comprehensive example . 33

vii

viii CONTENTS

5.2 Native application . 35
5.2.1 Phase 1 - Remux multi stream tiled HEVC MP4 to single stream

native tiled HEVC MP4 . 35
5.2.2 Phase 2 - Remux DASH encoded tiled HEVC stream to single native

tiled HEVC dash stream . 39
5.2.3 Phase 3 - Decoding DASH encoded tiled HEVC stream to JPEG

images . 43
5.3 JavaScript Implementation . 44

5.3.1 Conversion of the native application to JavaScript 45
5.3.2 Web application . 47

6 Results 51
6.1 Setup . 51
6.2 Experimental results . 52

6.2.1 1080p . 52
6.2.2 2160p . 54
6.2.3 1080p vs 2160p . 55
6.2.4 1080p semgent duration 5000 milliseconds 57
6.2.5 2160p 6x6 tiles . 58

6.3 Analyses . 59

7 Conclusion 61
7.1 Future Work . 62

8 Appendix A - Dutch Summary 63
8.1 HEVC . 65
8.2 MPEG-DASH . 65

8.2.1 Spatial Relationship Description 66
8.3 Implementatie . 67

8.3.1 Native applicatie . 67
8.3.2 Web applicatie . 69

8.4 Conclusie . 69

Acronyms

CABAC Context-Based Adaptive Binary Arithmetic Coding. 3

CB Coding Block. 6, 7

CDN Content Delivery Network. 16

CTB Coding Tree Block. 6, 7, 33

CTU Coding Tree Unit. 4–9, 11

CU Coding Unit. 6–9

HEVC High Efficiency Video Coding. xi, 1–13, 26, 29–36, 43, 45, 61, 62

MPD Media Presentation Description. 16–19, 21–23, 33, 34, 46, 47

MPEG Moving Picture Experts Group. 16

MPEG-DASH Dynamic Adaptive Streaming over HTTP. 2, 16, 23, 25–27, 29–32, 34,
35, 39–41, 49, 61

MTU Maximum Transmission Unit. 3, 4

NAL Network Abstraction Layer. 9–13

PB Prediction Block. 6, 7

PPS Picture Parameter Set. 11–13, 33

PU Prediction Unit. 6–9

SEI Supplemental Enhancement Information. 11–13

SPS Sequence Parameter Set. 7, 11–13, 33

SRD Spatial Relationship Description. 17, 21–23, 27, 34

TB Transform Block. 7

TU Transform Unit. 6–9

URL Uniform Resource Locator. 16, 18, 19

ix

x Acronyms

VCL Video Coding Layer. 9, 11, 12

VPS Video Parameter Set. 11, 12, 33

VR Virtual Reality. 25, 29

VUI Video Usability Information. 13

WPP Wavefront Parallel Processing. 6

Listings

3.1 A simple SegmentList Representation example 18
3.2 A simple SegmentTemplate Representation example 19
3.3 Comprehensive example of a MPD-file . 20
3.4 Comprehensive example of a MPD-file with SRD extensions 22
5.1 Command to convert a video in a container to a raw YUV420p video with

FFmpeg . 31
5.2 Convert a raw YUV420p input video to a HEVC tiled video. 31
5.3 Convert a HEVC tiled video into a MP4 which defines a stream for every

tile +1 extra stream for NAL units . 32
5.4 Generation of a tiled MPEG-DASH streamable video on basis of tiled MP4

videos which contain a stream per tile + 1 NAL unit stream 33
5.5 Conversion example of a raw YUV input video to a HEVC tiled video . . 33
5.6 Create a MP4 container with one stream per tile and a non VCL NAL unit

stream . 34
5.7 Generation of the MPEG-DASH files based on the MP4 input 34
5.8 Two rules to make sure FFmpeg understands and knows how to handle

streams with hvc2 and hvt1 encoding. 36
5.9 Opening the input file into an input context object 36
5.10 Sequential loop through the complete file while saving each stream in there

corresponding array index . 38
5.11 Combine the tile packets and then write them to the correct output stream 38
5.12 Implementation of the dash flush method to write all packets to the relevant

files . 42
5.13 Pseudo code for the decode packet implementation 43
5.14 Saving a decoded frame to file as a JPEG image 43
5.15 Web worker example implementation . 46
5.16 Initialization of the video element with a media source buffer to input

segments . 47
5.17 Adding of the video data to the media source buffer by queue because of

Microsoft Edge restrictions . 48

xi

xii LISTINGS

List of Figures

2.1 A frame out of a video. The picture is divided in a 3x3 tiled picture divided
by the CTU boundaries . 4

2.2 Visual representation of Wavefront Parallel Processing [GNA14] 6

2.3 CTU to CTB [Mot12] . 7

2.4 Still of a video with overlaying CTU . 8

2.5 Prediction Unit splitting types [KML+12] 9

2.6 CTU partitioning hierarchy example with corresponding CU, PU and TU.
Inspired by [RCAFE+14] . 10

2.7 NAL unit headers for the H.264/AVC and H.265/HEVC video codec . . . 10

2.8 Bit stream of a HEVC video . 11

2.9 Example Parameter Sets referring to each other in a hierarchical structure
[SCF+12] . 12

2.10 SEI NAL units for a H.265/HEVC video bit stream 14

3.1 Simple MPEG-DASH flow . 16

3.2 Media Presentation Description (MPD) model [Mue15c] 17

4.1 Cubical devision of the tiles in a demonstrator overview [SSP+17] 27

4.2 Visual representation of the generated hexaface sphere [HS17] 27

4.3 Facebook’s approach for viewport oriented encoding based on the user’s
head position with pyramids [Kuz16] . 28

5.1 Two stills showing the exact same frame with the frametile and frametile-
margin options for the --mv-constraint parameter of Kvazaar 32

5.2 Output when using the commands of Listing 5.5 34

5.3 The MP4 container with for every tile a different stream and Video 1
containing only non VCL NAL units with the complete video info 34

5.4 Phase 1 program flow from one MP4 containing a 3x3 tiled HEVC video
to a single stream HEVC tiled video . 36

5.5 Phase 2 program flow from segments containing a 3x3 tiled HEVC video
to a single native tiled HEVC video . 40

5.6 Phase 2 program flow from segments containing a 3x3 tiled HEVC video
to a single native tiled HEVC MPEG-DASH stream 40

5.7 Complete overview of the flow of the JavaScript implementation 45

5.8 The web application as seen in the web browser 49

6.1 Graph showing the execution times of the web worker remuxing step per
1000 millisecond segment for a 1080p video 53

xiii

xiv LIST OF FIGURES

6.2 Graph showing the execution times of the web worker remuxing step per
segment without the first segment for a 1080p video 54

6.3 Graph showing the execution times of the web worker remuxing step per
1000 millisecond segment for a 2160p video 55

6.4 Graph showing the execution times of the web worker remuxing step per
segment without the first segment for a 2160p video 56

6.5 Graph showing the segment index correlating the input total size without
the first segment for a 2160p 3x3 tiled video 56

6.6 Graph showing the execution times of the web worker remuxing step per
5000 millisecond segment without the first segment for a 1080p video . . . 57

6.7 Graph showing the execution times of the web worker remuxing step per
5000 millisecond segment without the first segment for a 1080p video . . . 58

6.8 First run showing the JIT compiler first compiling the script before being
executed . 60

6.9 Analyses with the chrome developer tools 60

8.1 Eerste fase van een MP4 container met een tile per stream naar een enkele
stream met tiles . 68

8.2 Fase 2 program van segmenten met een stream per tile HEVC video (en een
niet VCL NAL-unit stream) naar een enkele native tiled HEVC MPEG-
DASH stream . 68

Chapter 1

Introduction

H.264/MPEG-4 AVC has been the mainstream video consumption standard for years.
However, the current diversity of services, the still growing popularity of high quality
videos, and continuously increasing video resolution and qualities are demanding a more
efficient coding capability than H.264/MPEG-4 AVC can supply [SO10] [SOHW12]. More-
over, mobile devices are generating more and more download traffic over wireless networks
which are more prone to transport errors and have less throughput than their wired coun-
terparts. These mobile networks are in no way optimized for streaming the high quality
videos requested. Even though more bandwidth is available every day, the need for bet-
ter compression of videos with higher-resolution content is higher than ever before to
feed the ever raising demand for video content over the Internet [SCF+12]. As a result
H.265/HEVC has been designed in a joined effort of ITU-T VCEG and ISO/IEC MPEG
standardization organizations to improve on the shortcomings of H.264/AVC by support-
ing higher resolutions and by decreasing the bitrate requirement of coded videos. This
is done by allowing for size reductions of up to 50% for videos at comparable perceptual
qualities [CAMJ+12].

A more efficient encoding comes with a higher computational power needed to encode
and decode HEVC videos. While single-core processors can now easily decode a 1080p
H.264/AVC video in real-time, it is still unsure if a single-core processor can decode
2160p HEVC video in real-time without hardware decoding. Luckily, HEVC hardware
decoding is gaining ground over the last few years and becoming more popular every day.
Even though multiprocessor devices became more and more the mainstream, H.264/AVC
was developed without parallelism in mind; H.264/AVC jumped on the bus by allowing
parallelism via slices. However, parallelism introduced via slices was an afterthought and
in desperate need to be implemented more efficiently in the new HEVC codec. The HEVC
codec was designed with parallelism in mind. With this mindset, real-time decoding was
in grasp on multi-core CPUs thanks to parallelism despite the increased processing power
needed. HEVC supports a few approaches to parallelize the decoding which will be
fully explained in Chapter 2. One of those is tiles. Tiles allow a video to be divided in
rectangular regions. These regions can then be decoded independently of each other. Tiles
have been used to adaptively stream omnidirectional content in H.264/AVC which will
be discussed in Chapter 4. By using tiles a video can be cut in similar size rectangles. By
interchanging these tiles with a different quality, a video based on the available qualities
can be presented.

1

2 CHAPTER 1. INTRODUCTION

Presenting the video via Internet can be done in different manners. The one used in this
thesis is Dynamic Adaptive Streaming over HTTP (MPEG-DASH) which is explained in
Chapter 3. MPEG-DASH allows the streaming client to adaptively change the quality of
the video by interchanging video segments. A DASH-Client can choose to change quality
because of fluctuating bandwidth capacity, or a user setting change. The different qualities
we can choose from are defined in the AdaptationSets. Each AdaptationSet contains
one tile with the different possible Representations from which we can pick the desired
quality. There is also one AdaptationSet which contains only the non video coding
layer NAL units which are needed to create the native tiled video. By combining all these
AdaptationSets in the correct order, it is possible to create a single natively tiled video
bit stream which can be decoded by the web browser. NAL units will be fully explained
in Chapter 2. In this thesis the quality will be decided based upon the viewport of a
user. By allowing a user to look around in the 360 degree video, the quality will change
based on the tiles that intersect with the current viewport. The full explanation of the
implementation is given in Chapter 5.

In this thesis, we will focus on how a native tiled HEVC video can be played in the web
browser. Therefor, the main questions will be:

• Is preprocessing a MPEG-DASH tiled video in a web browser to a native tiled HEVC
video feasible?

• Can the preprocessing be implemented in a sufficiently efficient manner to ensure
live playback?

Thereby defining this thesis as a feasibility study.

These question were verified in 1920x1080 (1080p) and 3840x2160 (2160p) resolution
videos. As the segment duration can be chosen freely by the content creator, two segment
durations were tested, more precisely 1000 and 5000 milliseconds, to measure the impact
on the preprocessing step. These results will be discussed in Chapter 6. In Chapter 7 the
conclusion of this master thesis will be given, together with possible starting points for
future work.

Chapter 2

H.265/HEVC

H.265/HEVC has been designed in a joined effort of ITU-T VCEG and ISO/IEC MPEG
standardization organizations to improve on the shortcomings of H.264/AVC by sup-
porting higher resolutions and by decreasing the bitrate requirement of encoded videos.
This is done by realizing a file size reduction up to 50% while preserving the same qual-
ity [CAMJ+12].

HEVC supports several approaches to parallelize the decoding and encoding which will
be fully explained in this chapter. One of these approaches is the use of tiles. Tiles
allow a user to divide a video in rectangular regions that can be individually encoded and
decoded.

As the encoding and decoding of the H.265 video codec is not the subject of this thesis, it
will not be described in detail. A detailed explanation of the complete workings of HEVC
can be found in [SOHW12]. This chapter will give an overview of HEVC and some of the
features needed in this thesis for the implementation of tiles support in browsers.

2.1 Slices

Slices were used for parallelization in H.264/AVC even though this was not the original
purpose of slices. Originally, slices were designed to map video bit streams into smaller
chunks for transmission over the Internet. Hereby, could the size of a coded slice be
determined by the network characteristic, take for example the Maximum Transmission
Unit (MTU) size of a network. If the coded slice is smaller or equal to the MTU, a
complete slice can be sent in just one package [MSH+13]. However, this can decrease
the coding efficiency as the MTU size does not take in consideration correlations between
pixels.

Even thought slices where originally developed for resynchronization in case of packet loss
or bit stream errors, they have been progressively used for parallelization as slices allow for
reconstruction of parts of the video picture independently of other slices. However, there
are a few negative effects of using slices for parallelization. One of those is the effect of the
coding efficiency reduction by breaking the Context-Based Adaptive Binary Arithmetic
Coding (CABAC) prediction dependencies at the slice boundaries. CABAC is one of two
entropy encoding standard used in H.264/AVC. More information about CABAC can be
found in [MSW03]. Another negative effect of slices is the parsing overhead introduced to

3

4 CHAPTER 2. H.265/HEVC

find each each slice entry point at decoder side. Furthermore, for slices to be decodable,
they need header info, which further decrease the coding efficiency by adding the header
info with each slice or waiting for the slice with the header info before decoding can
start. There can also be load balancing issues because of the diversity in slice size and
complexities [GNA14].

Within HEVC, there can be a few options on how to pick slices. For example, based
on network constraints such as MTU, or the amount of pixels that can be processed by
limiting the amount of CTUs. Another option is to define a slice per tile. A more detailed
explanation of tiles and their constraints will follow in Section 2.2.

When slices get processed, it will be in raster scan order. A visual representation of the
raster scan order constrained by tiles can be seen in Figure 2.1. Notice that the sizes of
a tile is the same as the size of one slice in Figure 2.1. This does not necessarily have to
be so.

Figure 2.1: A frame out of a video. The picture is divided in a 3x3 tiled picture
divided by the CTU boundaries

2.2 Tiles

Tiles is one of the most popular new features of High Efficiency Video Coding (HEVC).
With tiles, a video frame can be divided into multiple independent rectangular regions.
More precisely, these tile regions increase the parallelization by allowing a CPU to pro-
cess each region independently. Furthermore, coding efficiency is drastically increased in
comparison to the older slice-based methods were flexible macroblock ordering (FMO) in
slices was allowed to enable slices of any size. This is because slice headers are not needed
for tiles unlike FMO [MSH+13]. Not only does parallelization increase, there are more
positive features about tiles which will be discussed throughout this section.

By not needing a tile header, the coding efficiency is increased; the same picture region

2.2. TILES 5

can be encoded in less bits than when slices were used. But this does bring the question
of how a tile is defined. A tile is defined by x horizontal and y vertical amount of Coding
Tree Unit (CTU) (see Section 2.4 for more info about CTU). Logically, this comes with
the consequence that tiles are link to CTU boundaries and do not allow half CTUs. A
visual representation is shown in Figure 2.1. A single video frame in HEVC context is
partitioned into CTUs.

All tiles will be processed in horizontal raster scan order. This means, by looking at
Figure 2.1, first tile #1, tile #2 till tile #9. Within the tiles, the encompassed CTUs will
be again processed in raster scan order. Notice how the last CTU of the first tile is 15
and the first CTU of tile #2 is 16. By processing the CTUs within a tile in scan order
with this restricted tile pattern, the needed on-chip memory is reduced. This is because
of the reduced line buffer requirements for motion estimation. Following equation shows
the needed data storage for a situation without tiles [MSH+13];

data storage(without tiles) = PicW ∗ (2 ∗ SRy + CTUHeight)

• PicW represents the width of the picture.

• SRy represents the maximal vertical size of the motion vector

• CTUHeight the height of the CTU.

As one can imagine, the data storage can get extremely big in situations with content
resolutions up to 4k. When the PicW is a lot bigger than the TileW, the saved data storage
space can be substantial. The following equation shows the data storage calculation for
tiled pictures.

data storage(with tiles) = (TileW + 2 ∗ SRx) ∗ (2 ∗ SRy + CTUHeight)

• TileW represents the width of the tile.

• SRx represents the maximal horizontal size of the motion vector

• SRy represents the the maximal vertical size of the motion vector

• CTUHeight the height of the CTU.

The location of the tiles must be signaled in some sort in the bit stream to make sure
decoding is possible. This is done by writing the offsetting in the slice header for all but
the first tile. The reason for not writing the first tile in the header is because the first tile
immediately follows the slice header, which is know at the decoder.

2.2.1 Constraints on tiles

A restriction on tiles is that their allowed size is bound by the CTUs. A tile width has
to be equal or greater than 256 luma samples, which are 4 CTUs of 64 pixels. The
minimum height is 64 luma samples, which is one 64 pixels CTU, two 32 pixels CTUs or
four 16 pixel CTUs. With this constraint, it is made sure that tiles are not too small.
The maximum amount of tiles is also constrained based on the bit stream level under
consideration [MSH+13].

6 CHAPTER 2. H.265/HEVC

Furthermore, constraints are enforced upon the combination of slices and tiles. This is so
the decoder complexity is manageable. Either all CTUs in a slice belong to the same tile,
or all CTUs in a tile belong to the same slice [IT18]. It is possible to allow more than one
tile per slice and more slices in one tile per picture.

Another constrained in this thesis to allow for parallel decoding of the tiles is the motion
vector restriction. The motion vectors will be limited to CTU within the same tile. This
means that as an object moves over tile boundaries, artifacts can be shown as the motion
prediction is restricted within a tile.

2.3 Wavefront Parallel Processing

Another parallelization method developed for HEVC is Wavefront Parallel Processing
(WPP). WPP has the upper hand when it comes to achieving higher compression and
less to no visual artifacts when comparing to tiles [GNA14] [SOHW12].

WPP achieves this by splitting the slices in CTU rows. The full explanation of a CTU
can be found Section 2.4. When the encoder or decoder starts encoding or decoding the
video picture, it depends on the previously processed row. Parallelization is gained by
allowing to start processing the current row as soon as two CTUs in the previous row are
processed. Add this to the fact that each row is processed in raster scan order, meaning
that the picture gets decoded from top-left to right-bottom.

WPP does come with the drawback that there needs to be communication between the
different processing cores as information of the previous CTU row is needed to decode
the current one. A visual representation is shown in Figure 2.2.

Figure 2.2: Visual representation of Wavefront Parallel Processing [GNA14]

2.4 Coding Tree Unit

Before any more explanation about HEVC can be done, a few important acronyms have
to be introduced; Coding Tree Unit (CTU), Coding Unit (CU), Prediction Unit (PU),
Transform Unit (TU), Coding Tree Block (CTB), Coding Block (CB), Prediction Block

2.4. CODING TREE UNIT 7

(PB) and Transform Block (TB). As mentioned before, HEVC is more efficient in com-
pression of video data in higher resolutions. One of those reasons is because of the usage
of a new structure with CTU instead of macroblocks.

The best way to start dissecting the HEVC standard is to look at the naming convention.
Take for example Coding Tree Unit and Coding Tree Block. Notice how they both start
with Coding Tree and differ in Unit and Block. When a name ends in Unit, a coding
logical unit which in time will be encoded into a HEVC bit stream is meant. However,
when something ends in Block, it indicates a process that targets a portion of the video
frame buffer [Mot12]. More precise, the terms; CTB, CB, PB and TB defined specify the
2-D sample array of a color component. For example, CTU consists of one luma CTB,
two chroma CTBs and other syntax elements related to the CTU [KML+12]. A visual
representation can be seen in figure 2.3. The same strategy can be carried on to CU, PU
and TU. Another uncommon possibility for representing a CTU that will not be further
discussed is when CTU is a CTB of a monochrome picture or a picture encoded using
three color planes [IT18]. However, in this thesis we look at 3 CTBs per CTU.

Figure 2.3: CTU to CTB [Mot12]

Now that the relationship between a CTU and CTB is know, the explanation will continue
with the use of CTU. At the top level of a HEVC picture (a single frame of a video) there
are Coding Tree Unit (CTU). The easiest way to explain these is to look at CTU as the
equivalent of a macroblock in H.264/AVC content [Mot12]. One of the most invasive
changes between macroblocks in H.264/AVC and CTU in H.265/HEVC is the ability to
change the CTU dimensions in context of the HEVC video. This is in contrast with the
fixed size of the 16x16 macroblock [KML+12]. In HEVC a CTU can have a size of 64x64,
32x32, 16x16 pixels. The size of the CTU is the same over the whole video sequence.
Furthermore, this has a direct influence over the coding efficiency of HEVC.

As the CTU can change depending on the video, it needs to be defined. The width and
height of the CTU are defined in the Sequence Parameter Set (SPS). A more detailed
view of the SPS is given in Section 2.5.1. As one can imagine is a CTU size of 64x64 or
32x32 pixels in most situations too big to know if inter-picture prediction or intra-picture
prediction should happen; for example, when their are a lot of details like snow falling in
a frame. For this reason, the CTU can get subdivided in multiple CUs of smaller sizes.
The size of a CU can go from 64x64 down to 8x8 pixels depending on the definition of the
maximum and minimum CU size in the SPS. This subdividing is defined by a Coding Tree
and is called CTU partitioning. The next steps are also part of the CTU partitioning.
A visual example of the CTU partitioning can be seen in Figure 2.6. By allowing such
a dynamic use of CUs, a video can be encoded with less symbols as a bigger CU can

8 CHAPTER 2. H.265/HEVC

(a) A picture from a HEVC video where the
tiles are shown.

(b) The same frame with the CTU overlay
with pixel size 32x32 and subdivided CU (TU
and PU) ranging pixel size 4x4 to the same size
as the CTU (32x32 pixel size)

Figure 2.4: Still of a video with overlaying CTU

be chosen compared to the H.264/AVC context with a fixed size of 16x16 pixels for the
macroblock.

Once a CTU is subdivided into CUs, the choice between inter- or intra- prediction can
be made as 8x8 pixels is small enough in most cases. Take for example Figure 2.4. In
this image, there is a big sky with a forest emerging on the right bottom (excerpt from
Big Buck Bunny [GR08]). For the flat surfaces such as the white cloud centers, a CTU
of 64x64 or 32x32 is used depending on the video size. In this example, a CTU size of
32x32 pixels has been chosen as the video is only in a full HD resolution (1920x1080
pixels). When more details emerge as with the forest and the edges of the cloud, the CU
size of 32x32 pixels will be too large to determine inter- or intra-image prediction. By
subdividing into smaller CUs of 16x16 or even 8x8, more precise decisions on inter- or
intra prediction can be made. For most situations this is enough but for the situation
where tree tops are shown, even 8x8 pixels is not fine enough to get a correct match. The
tree top might fill half the 8x8 CU, so different motion vectors for the same CU might be
interesting.

A CU can be split into one, two or four PUs depending on the PU splitting type and the
CU prediction mode. This allows for a predictions per PU. Equal to previous standards,
one of three CU prediction categories is used:

• inter coded CU, makes use of motion compensation schemes to predict the current
block

• intra coded CU, makes use of nearby reconstructed samples in the same frame.

• skipped CU, is a special case where the combination of motion vector difference and
residual energy equals to zero [KML+12].

For each category, the Prediction Unit (PU) splitting type is different as can be seen in
Figure 2.5. In the HEVC context, there are two splitting types for intra coded CU, eight
for inter coded CU and only one for skipped type [KML+12].

Similar as for PUs, multiple TUs are possible per CU. The TU contains residual or
transform coefficients for integer transformation of quantization by the decoder. More
details about the TU can be found in [KML+12].

As described before, a CTU partitioning happens recursively and can best be seen in the

2.5. NAL UNIT 9

Figure 2.5: Prediction Unit splitting types [KML+12]

example in Figure 2.6. In this image the generated Coding Tree Unit is show on the left,
while on the right the visualization on the video picture for the CTU with corresponding
CU is given.

The processing of the CTU to generate the CU starts in raster line order. This means
that the top left with the number one is the first to start. In this example the CTU has
to be split up for the CU of a size of 32x32. This has the consequence that in this CTU
all CUs have to be of size 32x32 or smaller as distribution has to be of dimension N xN.
If no further split-up is needed, next CU is processed till all CUs are done.

Take for example the first CU, in Figure 2.6. When processing this video, no further
split up has to be done as there are no real details in the image. This means the PU
en TU have to be chosen, these are represented by the nodes. The next target following
the raster scan order is taken, number 2 in the figure. Only one PU is needed which is
represented in the node, but 4 TUs are calculated as the match is not good enough for the
whole 32x32 CU. For each 16x16 PU values are calculated which end in a node. These
steps are continued for the complete tree.

2.5 NAL Unit

Network Abstraction Layer (NAL) encapsulate the coded video data so that it can be
stored [Wie14]. Within the NAL unit there are two types of data: Video Coding Layer
(VCL) and non Video Coding Layer (VCL). The VCL contains all slices and CTU data.
The non VCL data consists of all other information. More details will be given later on
in this section.

A Network Abstraction Layer (NAL) unit consists of a NAL unit header followed by a
NAL unit payload. To mark the end of the payload a stop bit 1 is used, followed by one
or more 0’s for byte alignment.

In the introduction of Chapter 2 it was mentioned that the development team of H.265/HEVC
chose to also include NAL unit headers, taken from H.264/AVC. However, HEVC de-

10 CHAPTER 2. H.265/HEVC

Figure 2.6: CTU partitioning hierarchy example with corresponding CU, PU and
TU. Inspired by [RCAFE+14]

fines a two-byte NAL unit header [SCF+12] instead of the one-byte NAL unit header of
H.264/AVC. The NAL unit header can be seen in Figure 2.7 where Figure 2.7a shows
the one-byte header in the H.264/AVC standard [SWH+05] and Figure 2.7b the two-byte
NAL header according to RFC 7798 [WSS+16]. The developers chose for a two-byte
NAL unit header as this would make the header more future proof for the introduction
of HEVC scalable coding and 3-D video encoding.

(a) One-byte NAL unit header of H.264/AVC
(b) Two-byte NAL unit header of
H.265/HEVC

Figure 2.7: NAL unit headers for the H.264/AVC and H.265/HEVC video codec

NRI of the H.264 NAL unit header has not been adopted in HEVC, as can be seen in the
Figure 2.7. NRI is a two-bit codeword that would allow for data partitioning. As HEVC
does not allow partitioning for sending the NAL unit in parts over a network, this field
was unneeded. The structure of the H.265/HEVC NAL unit is as follows:

• F consists of 1 bit and stands for the forbidden zero field. This field has to be
set to 0, if not the assumption might be that the NAL header is faulty by syntax
violation and should be discarted or requested again. The reason for including this
forbidden zero in the NAL unit header is to enable the transport of HEVC video over
MPEG-2 transport systems, by including it the start code emulations in MPEG-2
legacy environments are prevented [WSS+16].

• Type consists of 6 bits and, just as the name suggests, represents the NAL unit type.
Because the NRI field is unneeded in HEVC, the HEVC NAL unit field Type is one

2.5. NAL UNIT 11

bit bigger compared to H.264/AVC, extending it to 64 unique values to define types.
The other unused bit of the H.264 NRI field is used for possible future extensions. If
the most significant bit of the Type field is equal to 0, the NAL unit defines a VCL-
NAL unit [SCF+12]. Detailed explanation of Video Coding Layer (VCL) can be
found in [SHWW12]. However it is important to understand that the VCL contains
the coded video sequence data, this can be a slices and CTUs. Non-VCL NAL units
contain control information or parameter sets that mostly applies to multiple coded
video frames.

• LayerId consists of 6 bits and is required for the layer identifier. In the first version
of the HEVC specification, this field had to be 0. Upward from the first version, this
identifier is used for the HEVC extension for scalable video coding and multiview
coding [Wie14].

• TID consists of 3 bits and represents the TemporalId. It is unauthorized to have a
TID value of 0, this is to ensure that at least one bit in the NAL unit header is set.
Because of the 1 a differiantiation can be made between the header of the NAL and
the NAL unit payload. The TemporalId will be the id set in the TID field minus
one [WSS+16].

By having a clear definition of what the NAL unit is, a few common types of NAL units will
be discussed. For a full detailed view of all NAL units and their meaning: [ISO17].

Figure 2.8 shows part of a HEVC bit stream. This bit stream is taken from a 3x3
tiled HEVC video. To analyze a HEVC bit stream, the tool Zond 265 has been used
[Mul18].

Figure 2.8: Bit stream of a HEVC video

In Figure 2.8, the HEVC bit stream starts with 4 non VCL NAL units, each represent-
ing another type: Video Parameter Set (VPS), Sequence Parameter Set (SPS), Picture
Parameter Set (PPS) and Supplemental Enhancement Information (SEI). VPS, SPS and
PPS are three types of Parameter Sets. More details of the Parameter Sets will given in
Section 2.5.1. It is sufficient to understand that this is a hierarchical structure that gives
information to decode the HEVC video. For the video bit stream sample shown in the
figure, only one VPS, SPS and PPS are given. All slices will reference to these non VCL

12 CHAPTER 2. H.265/HEVC

NAL units to decode the whole video. A more detailed look on slices and tiles has been
given in Sections 2.1 and 2.2, respectively. In Figure 2.8, each Slice represents one tile
and can be decoded independently.

2.5.1 Parameter Set

As shown in Figure 2.8, the bit stream starts by defining the Video Parameter Set (VPS),
Sequence Parameter Set (SPS) and Picture Parameter Set (PPS). These parameter sets
follow a hierarchical structure where the PPS refers to the parent SPS and the SPS in turn
refers to the parent VPS. A visualization of this structure can be seen in figure 2.9.

Figure 2.9: Example Parameter Sets referring to each other in a hierarchical struc-
ture [SCF+12]

When talking about parameter sets, there are two options, either they are part of the bit
stream or delivered and stored separately. Just as a lot of other features of HEVC, pa-
rameter sets are an offspring of the already existing parameter set features in H.264/AVC.
However, new features were added to keep up with the time and to overcome some of the
hold-backs of the older generation codec [SCF+12].

Originally, parameter sets were developed in response to the effects of losing a picute
or sequence header when a video frame is partitioned into segments prior to network
transmission. Take for example the scenario where a video frame is partitioned into slices,
see Section 2.1. All these slices are transported on a medium that can produce errors or,
in the worst case, lose a slice. When the first slice would get lost, which contains the
picture header with all info to decode the picture, a picture can become undecodable and
has to be dropped. This is where parameter sets step in, as shown in Figure 2.9, the
slice header reference the PPS, the PPS will reference the SPS and the SPS will point to
the VPS. In example Figure 2.8 only one VPS, SPS and PPS is given for the complete
video bit stream. All slices will refer to these non VCL NAL units to decode the whole
video.

At the top of the hierarchy there is the Video Parameter Set (VPS). This parameter
set is new compared to H.264/AVC and has been introduced for HEVC to work on the
shortcomings of resending the same info in the SEI and SPS (this will be explained
in Section 2.5.2). The VPS represents the information of all layers in the bit stream
and eases the use of Scalable Video Coding (SVC) and Multiview Video Coding (MVC)
extensions [Sul]. Next is the SPS, this parameter set applies to the entire video sequence.
A coded video sequence is series of sequential access units of which all contain to the same
NAL unit stream and are linked to the same SPS. Within the SPS, there is a field that
stores the identifier for the associated VPS. Other SPS fields are the description of the

2.5. NAL UNIT 13

usage of coding tools and their parameters, or for example Video Usability Information
(VUI) with information that has no direct impact on the decoding process.

Lastly there is the PPS with the ability to change for different pictures of the same coded
video sequence. However, as seen in Figure 2.8, slices can refer to the same PPS. Just as
in the SPS, the PPS has an identifier to the parent (SPS in this case) in the hierarchy.
The parameters of the PPS other than the SPS identifier, describe the coding tools that
should be used in the slice that refers to the PPS. Also the parameters for the coding tool
are included.

2.5.2 SEI

Another NAL unit that is common in the given bit stream of Figure 2.8 is Supplemental
Enhancement Information (SEI). In H.264/AVC there was already such thing as a SEI.
However, in HEVC they chose to extend upon the predecessor SEI message by allowing
two types: prefix SEI message, which already existed in H.264/AVC and a suffix SEI
message, introduced in HEVC. Either type of SEI message provides meta data and is not
required for the decoding process [Wie14]. Some SEI messages can also be either prefix
or suffix, the payload will be the same. SEI units are used to make the decoder determine
certain features that otherwise might be computationally hard to determine and such use
extra time to decode the video bit stream. Figure 2.10 shows a prefix SEI and suffix
SEI NAL unit, the suffix SEI message contains the type 132, meaning the payload had
checksums to make sure that the decoded picture matches that produced by the encoder.
The prefix SEI message contains SEI type 5 and stands for User Data Unregistered, this
means that the unregistered user data identified by a UUID in this message is free to have
unspecified contents according to [ISO14a].

14 CHAPTER 2. H.265/HEVC

(a) Prefix SEI message (b) Suffix SEI message

Figure 2.10: SEI NAL units for a H.265/HEVC video bit stream

Chapter 3

MPEG-DASH

3.1 Why MPEG-DASH?

One of the first well-known video and audio content delivery techniques over the Internet
was RTP, shorthand for Real-Time Transport Protocol. RTP is a UDP-based streaming
protocol which maintains a streaming context at serverside. When development of RTP
started, the main goal was to deliver large amounts of video and audio data over the
Internet. However, the first problem with RTP streaming is RTP package blocking by the
firewall. There are also security risks when when a RTP package is allowed by the firewall
by making use UDP packets for transport. Firewalls have difficulties in filtering out
malicious data injected into a RTP stream [LSNHS05]. A second issue is the scalability
for RTP streaming sessions. When a RTP streaming session gets started by the client,
the server needs to save information on the current session. Without this information, the
server is unable to send real-time video and audio content to the expecting client. This
kind of communication also comes with a overhead as there needs to be an initial exchange
to start communication between the server and the client. These two big issues ask for
a better way of sending video and audio content over the Internet [Sod11]. Another
possibility to streaming is progressive downloading of the media by requesting a byte
range of the media file over HTTP. However, the HTTP web server has to support byte
range requests and a few more disadvantages [Sto11]. Take for example when an user
stops watching or listening to the media and the progressive download has started, this is
a waste of bandwidth. Another disadvantage is not supporting live media content which
is becoming more and more important.

The growth of the World Wide Web has been immense over the years. Inherent with this
growth came more and more HTTP servers. This is one of the reasons why the transition
from RTP streaming with its problems to HTTP streaming from already deployed HTTP
servers is so easy. However, this is not the only reason. HTTP streaming servers do not
need to keep streaming session info on the server as the HTTP streaming client will be re-
sponsible for asking the right package on the right moment. The only thing the server has
to do is respond with the package requested by the client. This is exactly what the HTTP
server is made for. Because of these advantages of HTTP streaming, a lot of companies
saw an opportunity to create their own implementation of the HTTP Adaptive Stream-
ing (HAS) paradigm and make it the standard. Examples of these projects are Microsoft
Smooth Streaming (MSS) [Mue15b], Apple HTTP Live Streaming (HLS) [Mue15a] and

15

16 CHAPTER 3. MPEG-DASH

Adobe HTTP Dynamic Streaming (HDS) [Ado]. As a result of every company developing
their own implementation, there was a mixture of protocols that could not work together.
In 2010 Dynamic Adaptive Streaming over HTTP (MPEG-DASH) was developed by the
Moving Picture Experts Group (MPEG). In 2011 it became the international standard
for streaming adaptive bitrate high quality media content over the Internet as defined by
ISO/IEC 23009-1 [ISO14b].

3.2 HTTP MPEG-DASH streaming

As MPEG-DASH works on top of the existing network infrastructure, the HTTP stream-
ing setup structure is simple as can be seen in Figure 3.1, where the flow from camera to
client devices is shown in a typical situation [Sto11].

Once the media is recorded and ready to be streamed, the media processing and dis-
tribution on the Content Delivery Network (CDN) has to start. Before distribution is
possible, the media file has to be segmented and the media info has to be written down in
a MPD file. In this context segmentation means the process of dividing a media stream
(e.g. video, audio, subtitles, ...) in smaller pieces of a fixed duration. Once the processing
is done, the distribution on the Internet has to start by placing the Media Presentation
Description (MPD) file with its corresponding media segments on a CDN.

A more concrete explanation of the complete syntax of a MPD file is given in Section
3.3. For now it is important to know that a MPD contains an Uniform Resource Locator
(URL) for every segment that contains video or audio content. The URL will be different
for every representation of the media content. This means that when the MPD file has
been received and parsed, the DASH client can request the segments needed to play the
media content over HTTP. In case of low bandwidth availability at client or server side,
the video buffering time can be high. This can be resolved by changing quality and
requesting lower quality segments to make sure the buffer always contains enough media
content for smooth media consumption [Sod11]; nobody likes buffering and waiting for
media content [DSA+11].

Figure 3.1: Simple MPEG-DASH flow

3.3. MEDIA PRESENTATION DESCRIPTION 17

3.3 Media Presentation Description

When the MPD file is received on the client device, it has to be parsed. Within the
parsing phase, every field of the MPD file gets extracted and interpreted to start the
streaming session. In this master thesis the streamed video content is tile-based video.
Because of the tiled nature of the content, the MPD file also includes Spatial Relationship
Description (SRD) info. The SRD will be fully explained in Section 3.4. For now it is
important to understand that SRD is extra info that does not need to be included in an
MPD file. Afterwards, when the parsing phase is done, the media content streaming can
start. Within this Section there will be an explanation of the structure of the MPD file
and important fields.

Figure 3.2: Media Presentation Description (MPD) model [Mue15c]

A MPD file has a specific structure, regardless of live or static content as can be seen in
Figure 3.2. The file consists of a XML tree structure. At the top of this structure are
Periods. Every Period is segment that is a representation of the media content of a
specific non overlapping time interval. Contextually a Period contains codec parameters,
server location or available variations of the content. As a result, a Period allows for
splicing of media content to introduce ads or logical content segments. The duration
attribute of the Period tag defines the start time relative to the start of the Media
Presentation [Sto11]. An example of this logical decoupling between media segments
within a sigle media presentation by means of the Period tag is this of an advertisement
that is only available in high quality while the other media content have multiple bitrate
representations. The advertisement will be described by a single Period containing only
one Representation, while the media content in the periods before and after the ad
contain multiple Representations [Mue15c].

A Period consists of one or more AdaptationSets. An AdaptationSet is a high-level
representation of the media content. Each AdaptationSet represents a media stream.
In a typical scenario, there exists one AdaptationSet for video and oen or more for
audio. That way the audio can have an AdaptationSet for every language available.
An AdaptationSet does not only support video and audio streams but also subtitles or
metadata [Lon15].

Subsets are defined on the same XML depth level as AdaptationSets and are used

18 CHAPTER 3. MPEG-DASH

to specify which AdaptationSets can be combined. This gives the MPD designer the
flexibility to limit combinations of AdaptationSets. Typically, a video and audio frag-
ment of the same quality will be combined. For example, in some situations it is not
satisfying to combine low resolution audio with high quality video (or vice versa) while
streaming. By defining a Subset, the client is restricted in its AdaptationSet combi-
nation freedom. This is mostly needed for automated adaptation at client-side, based on
the amount of bandwidth available. Consider the scenario where when a client has just
enough bandwidth for really good audio but bad video; depending on the content, a user
would in this case rather have medium quality audio and video. These kind of content
combination restrictions can be enforced with Subset.

The next level into AdaptationSet are Representations. A Representation is a rep-
resentation of media content in a specific quality. More precise, multiple Representa-
tions grouped in a single AdaptationSet for quality versions of the same content.

Every Representation is split up in one or more Segments with each their own URL.
Each Segment contains a short segment of media content. By having many short Seg-
ments, a client can switch between content qualities in a smooth way without noticing a
stutter or video reload. The reason for this is the interchangeability of Representations
during the streaming session. For example, a Segment of a 100Kbits per second Rep-
resentation can be used at startup of the stream. When the client notices that there
is more bandwidth available, a second Segment can be requested from another Repre-
sentation with for example a quality of 200Kbits per second. Even though the segments
are from another Representation, they visualize the same content. It is also possible
to have just one Segment describing the full content and is defined as a SegmentBase.
However, this is a rare situation that will not be further explained. The typical duration
of Segments are 2 and 10 seconds.

There are a few ways to represent Segments in the MPD file, one of those which has
already been explained is SegmentBase. However, the two most used approaches are
SegmentList and SegmentTemplate.

A more syntactic heavy approach is the SegmentList. Within this approach the URL is
explicitly enumerated for every Segment. Every Segment has to be played in the same
order as they are written in the MPD file. Listing 3.1 is an example of such a Segment
declaration approach. As can be seen, this is verbose for media content with a substantial
amount of Representations and Segments.

1 <Representation frameRate="25"

2 bandwidth="1000000"

3 width="1280" height="720">

4 <SegmentList timescale="1000" duration="2000">

5 <Initialization sourceURL="../ video /720 _1000000/dash/init.mp4"/>

6 <SegmentURL media="../ video /720 _1000000/dash/segment_0.m4s"/>

7 <SegmentURL media="../ video /720 _1000000/dash/segment_1.m4s"/>

8 ... 17 more entries

9 <SegmentURL media="../ video /720 _1000000/dash/segment_19.m4s"/>

10 </SegmentList >

11 </Representation >

12
13 <Representation frameRate="25"

14 bandwidth="2000000"

15 width="1280" height="720">

16 <SegmentList timescale="1000" duration="2000">

17 <Initialization sourceURL="../ video /720 _2000000/dash/init.mp4"/>

3.3. MEDIA PRESENTATION DESCRIPTION 19

18 <SegmentURL media="../ video /720 _2000000/dash/segment_0.m4s"/>

19 <SegmentURL media="../ video /720 _2000000/dash/segment_1.m4s"/>

20 ... 17 more entries

21 <SegmentURL media="../ video /720 _2000000/dash/segment_19.m4s"/>

22 </SegmentList >

23 </Representation >

Listing 3.1: A simple SegmentList Representation example

SegmentTemplate is a more compact approach. An example can be seen in Listing 3.2.
The media attribute of the SegmentTemplate will define an URL, the template URL.
The template URL will have a variable that is modified based on the needed represen-
tation. In the example, the id of one of the two Representations will be taken and
used to fill in the RepresentationID parameter of the media URL. Similarly, the desired
segment index will be used to substitute the number template parameter.

1
2 <SegmentTemplate media="../ video/$RepresentationID$/dash/

segment_$Number$.m4s"
3 initialization="../ video/$RepresentationID$/dash/

init.mp4"

4 timescale="1000" duration="2000"

5 startNumber="0"/>

6
7 <Representation id="720 _1000000" frameRate="25" bandwidth="1000000"

8 width="1280" height="720"/>

9
10 <Representation id="720 _2000000" frameRate="25" bandwidth="2000000"

11 width="1280" height="720"/>

Listing 3.2: A simple SegmentTemplate Representation example

3.3.1 Comprehensive example

Listing 3.3 is an example of a simple MPD file. The easiest way to scan a MPD file
manually for the content of the stream is to search for the Periods. As can be seen, this
file contains only one Period with 2 AdaptationSets. A quick look also reveals the use
of SegmentTemplate and not the syntax heavy form, SegmentList to describe media
segment URLs.

When looking at the attributes of the MPD tag, notice that this MPD file is static as
defined by the attribute type. This means that the MPD file does not need to be up-
dated as would be the case in a dynamic type (e.g., live content). Another attribute of
the MPD tag is mediaPresentationDuration (see the third line of the listing). With
this attribute the duration of the complete static MPD file is defined. The duration
is defined in xsd:duration as can be found in ISO/IEC 23009 [ISO14b]. In this exam-
ple, the duration of the described media presentation is 46 seconds. Lastly, there is the
minBufferTime attribute. As the name states, this is the minimum buffer time sug-
gested by the MPD which is 1 second in this example. The minBufferTime is, same
as mediaPresentationDuration, specified in the ISO/IEC 23009 [ISO14b] time defini-
tion.

As can be seen in Listing 3.3 and explained in Section 3.3, the next tag will be Period.
Within the Period tag, two AdaptationSets are defined. The one defined on line

20 CHAPTER 3. MPEG-DASH

6 is a video AdaptationSet, while the one on line 17 is an audio AdaptationSet.
As mentioned before, both AdaptationSets are defined with a SegmentTemplate
definition.

Considering the first AdaptationSet on line 7, there are 2 possible Representations in
the same video resolution. With a bandwidth of 3 000 000 and 1 000 000 bits per second,
respectively. While the streaming session is in play, the client can choose to switch between
these two Representations depending on the available bandwidth or client settings. The
attribute timescale of the tag SegmentTemplate represents the amount of ticks per
second. Together with attribute duration the duration of one Segment (in seconds) can
be calculated with the following equation:

segment duration =
duration

timescale

This gives a duration of 2 seconds for every Segment in this example.

For the second AdaptationSet there is no real difference besides the fact that this is an
audio AdaptationSet for English content and only contains a single Representation
of 128 000 bits per second.

Dit weg doen en mss gaan naar een voorbeeld met SRD informatie erachter maar gaat
mss al te complex zijn omdat dan ook tiling aanbod komt.

1 <?xml version="1.0" encoding="UTF -8" standalone="yes"?>

2 <MPD id="mpd -file" type="static"

3 mediaPresentationDuration="P0Y0M0DT0H0M46.000S"

4 minBufferTime="P0Y0M0DT0H0M1.000S">

5 <Period >

6 <AdaptationSet mimeType="video/mp4" codecs="avc1.42c00d">

7 <SegmentTemplate

8 media="../ video/$RepresentationID$/dash/segment_$Number$.m4s"
9 initialization="../ video/$RepresentationID$/dash/init.mp4"

10 duration="60000" timescale="30000" startNumber="0" />

11 <Representation id="800 _3000000" bandwidth="3000000"

12 width="2400" height="800" frameRate="30"/>

13 <Representation id="800 _1000000" bandwidth="1000000"

14 width="2400" height="800" frameRate="30"/>

15 </AdaptationSet >

16
17 <AdaptationSet mimeType="audio/mp4" codecs="mp4a.40.5" lang="en">

18 <SegmentTemplate

19 media="../ audio/$RepresentationID$/dash/segment_$Number$.m4s"
20 initialization="../ audio/$RepresentationID$/dash/init.mp4"
21 duration="60000" timescale="30000" startNumber="0" />

22 <Representation id="128000" bandwidth="128000"/>

23 </AdaptationSet >

24 </Period >

25 </MPD >

Listing 3.3: Comprehensive example of a MPD-file

3.4. SPATIAL RELATIONSHIP DESCRIPTION 21

3.4 Spatial Relationship Description

Throughout this chapter, the structure of a basic MPD has been explained. However, to
allow for tiled streaming (which is fully explained in Chapter 4) an extension is needed
upon the basic MPD structure. This new extension came with the second amendment of
MPD in ISO/IEC 23009-1:2014/Amd.2:2015 to identify Spatial Relationship Description
(SRD) [iso15].

The need to define a spatial relationship in the MPD file grew as Region of Interest video
streaming became more popular. Chapter 4 gives more detail about Region of Interest
streaming, more specifically about tiled video. By providing SRD information, the DASH-
client knows what video tiles to request based on the client’s viewport location in the video.
Based on this location, a DASH client can choose to stream all or only a subpart of the
video tiles provided. This allows users to stream a subset of the video in high quality or
by zooming in or out to view the complete video in a lower quality [DvdBTN16].

The SRD amendment adds a few new features to the MPD syntax. A complete description
can be found in ISO/IEC 23009-1 [iso15]. Only the important subjects in context of this
master thesis will be explained. The main concept is to define a 2 dimensional space for
the different locations of the media objects.

Two new tags have been introduced by the SRD: the EssentialProperty and Supple-
mentalProperty. Furthermore, both properties are defined in an AdaptationSet. The
EssentialProperty allows the MPD author to define that it is essential to successfully
processing this descriptor to ensure a correct processing of the parent content, which is a
AdaptationSet. When legacy DASH clients encounter this descriptor, they will discard
the video content [NTD+16]. With the SupplementalProperty, the MPD author can
define that it is not essential to correctly parse the information of the descriptor to ensure
correct processing the the parent content.

These tags define two attributes: schemeIdUri and the value. The schemeIdUri de-
fines the scheme when reading values. In this context the value of schemeIdUri will be
urn:mpeg:dash:srd:2014. The value tag is a bit more complexly structured and contains
the following fields separated by comma [NTD+16]:

• source id is a required field that exists out of an integer value identifying the contents
source. With this identifier a tile can be referenced to a video.

• object x a non-negative integer and required field representing the horizontal posi-
tion starting from the top-left corner of the corresponding media asset.

• object y a non-negative integer and required field representing the vertical position
starting from the top-left corner of the corresponding media asset.

• object width is a required field which represents the width of the corresponding
media asset with a non-negative integer.

• object height is a required field which represents the height of the corresponding
media asset with a non-negative integer.

• total width is an optional field representing a non-negative integer which expresses
the width of all media assets of the same identifier.

22 CHAPTER 3. MPEG-DASH

• total height is an optional field representing a non-negative integer which expresses
the height of all media assets of the same identifier.

• spatial set id is the last optional non-negative integer which provides an identifier
for a group of media assets.

3.4.1 Comprehensive SRD example

A simplified version of a MPD with SRD information can be seen in Listing 3.4. Note
that this example resembles a real use case and has been used in Chapter 6 to test the
set up. In listing there is a definition of a 3 by 3 tiled video with a 4K resolution.

As the SRD is built upon MPD and is created as an extension, it was of utmost importance
that clients with no knowledge of SRD info could still work with the MPD file, keeping
backwards compatibility. Therefore, the extension of two attributes. Because regular
MPD tags have already been explained and used in the comprehensive example of Section
3.3.1, no further explanation about these tags will be given and the focus will be on the
SRD information.

Under every AdaptationSet there is either the EssentialProperty or Supplemental-
Property. These tags, as described in Section 3.4, are defined by the ISO/IEC 23009-1
amendment 2 [iso15]. Structurally these tags contain two attributes schemeIdUri and
the value. In the example provided, the value of the schemeIdUri attribute is always
urn:mpeg:dash:srd:2014.

The AdaptationSet on line 4 holds an EssentialProperty (on line 5), which has as
value attribute 1,0,0,0,0. The source id is 1 and is the same for all properties (see line
9, 13, 17, 21). The other values of the value attribute consist of the x-, y-location, width
and height. The reason for defining the width and height 0 in this AdaptationSet is
the content that it represents. This AdaptationSet consists of only header info which
will be used to recreate the complete video frame, a more detailed explanation is given
in Chapter 5. For now it is good enough to understand that this AdaptationSet only
contains header info needed to decode the video.

The next SRD property to be found is the one in the second AdaptationSet on line 8.
This AdaptationSet contains a SupplementalProperty with the values 1,0,0,1280,704,
defining that the x- and y-locations are 0, the width is 1280 pixels and height 704 pix-
els. The other SupplementalProperty of the other AdaptationSets will have similar
values based on their 2 dimensional location. A reasoning behind the width and height
of the tiles and why the MPD has 10 AdaptationSets for 9 tiles is given in Chapter
5.

In our case, there is no total width or total height defined. This is because there is only
one reference space, extending the whole video.

1 <?xml version="1.0"?>

2 <MPD xmlns="urn:mpeg:dash:schema:mpd:2011" minBufferTime="PT1.000S"

type="static" mediaPresentationDuration="PT0H0M22.583S"

maxSegmentDuration="PT0H0M1.000S" profiles="

urn:mpeg:dash:profile:full:2011">

3 <Period duration="PT0H0M22.583S">

4 <AdaptationSet segmentAlignment="true" bitstreamSwitching="true"

maxWidth="3840" maxHeight="2160" maxFrameRate="24000/1001" par="

16:9" lang="und">

3.5. DASH-CLIENT 23

5 <EssentialProperty schemeIdUri="urn:mpeg:dash:srd:2014" value="

1,0,0,0,0"/>

6 ... Representation info

7 </AdaptationSet >

8 <AdaptationSet ... >

9 <SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014" value="

1,0,0,1280,704"/>

10 ... Representation info

11 </AdaptationSet >

12 <AdaptationSet ... >

13 <SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014" value="

1 ,1280 ,0 ,1280 ,704"/>

14 ... Representation info

15 </AdaptationSet >

16 <AdaptationSet ... >

17 <SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014" value="

1 ,2560 ,0 ,1280 ,704"/>

18 ... Representation info

19 </AdaptationSet >

20 <AdaptationSet ... >

21 <SupplementalProperty schemeIdUri="urn:mpeg:dash:srd:2014" value="

1 ,0 ,704 ,1280 ,704"/>

22 ... Representation info

23 </AdaptationSet >

24 ... 5 more AdaptationSet with their own values

25 </Period >

26 </MPD >

Listing 3.4: Comprehensive example of a MPD-file with SRD extensions

3.5 DASH-Client

As previously mentioned in Section 3.2 is the DASH-client an essential part of MPEG-
DASH streaming. The DASH-client will handle all client side actions which represents
the web browser in Section 5.3. Therefor, will the explanation in this section be in the
use case of this master thesis.

The client will ask for the MPD file to start the streaming session, this can be via any
medium (e.g. Internet). In the context of this master thesis, this will be with a HTTP
GET request to the server containing the MPD file. Once the MPD file has been re-
ceived, the parsing and extraction of information begins. The SRD information will be
disregarded to simplify the explanation.

After the information extraction, a scheduler is initialized. The scheduler functionality
consists of requesting the correct segment at the correct time. There are a few ways to
implement a scheduler, one of those is the steady fill approach. Within this approach,
the client looks at the buffered time, current play time and the minimum buffer time
described in the MPD. Once the the sum of the current playtime and the minimum buffer
time is higher than the buffered time, the scheduler will make a request for the new
segment(s). The quality of the requested segments is depending on the viewport location
corresponding to the tiles. A more detailed explanation of the quality selection process is
given in Section 5.3. When these segments are received, they will be added to the video
buffer to be played.

24 CHAPTER 3. MPEG-DASH

Chapter 4

TILED Video

Tiled video has been the subject of a lot of research in the field of omnidirectional (360
degree) video and Virtual Reality (VR). Major platforms like Facebook and YouTube
have also started streaming 360 degree video to a wide variety of devices. However,
these omnidirectional videos require tremendous amounts of bandwidth [SSP+17]. The
high bandwidth is linked to the multiple times high quality content that is needed. The
resolution can easily go up to 12,288 x 6,144 pixels for 4K content. This high bandwidth
needed is in contradiction with the fact that the user only sees a part of the video, from
96 degree to 110 degree of the omnidirectional video for head mounted devices [OAS17].
Some other situations allow the viewport to be increased or decreased which is the case
in our implementation, further discussed in Chapter 5. However, the complete video is
needed for when the user turns around with a head mounted display and changes his region
of interest. The region of the video that is being viewed is called the viewport.

The most common technology used to be able to provide data intensive 360 degree video
over the Internet is Dynamic Adaptive Streaming over HTTP (MPEG-DASH). With
MPEG-DASH a user is able to adaptively stream different qualities based on the available
bandwidth. A more detailed explanation of MPEG-DASH is given in Chapter 3. In
some cases, other manners of transporting the media content is used than MPEG-DASH.
However, in the related work review (Section 4.1) we only discuss situations where also
MPEG-DASH is used as this thesis conducts work based on MPEG-DASH.

4.1 Related work

The main idea within tiled 360 degree video streaming is always the same: try to limit the
high quality content to the viewport. A simple solution to making sure no extra content
is streamed is by sending only the video that can be seen in the viewport. However, what
if a user moves the viewport to another location? An unwanted situation would then be
a blank screen for the maximum of one segment duration. This is why a lot of research
is begin done in the domain of tiled streaming and also the reason why tiles that are not
in the viewport are transmitted in a lower quality.

25

26 CHAPTER 4. TILED VIDEO

4.1.1 Equirectangular encoding

In approaches of tiled streaming where the tile support was not natively included in the
video codec, multiple decoders were needed. These decoders would each decode a tile.
Once all tiles were decoded, a synchronization step between the different video elements
were needed to ensure a synchronized playback. In [MAP+10] such implementation is
presented in an online lecture context.

Allowing only a subset of the video to be streamed in high quality, more precisely the
viewport, the bandwidth usage can be reduced. By adaptively giving a quality based on
the current user’s viewport and less to the surrounding video, can give a promising visual
quality increase [SSHS16].

At one of the last stages of the thesis the [GTM17] paper was found. They also imple-
mented a web browser implementation of the MPEG-DASH tiled HEVC stream to a single
bit stream. However, no information is given on the overhead provided by the remuxing
needed to playback the HEVC stream nor how the web application works. They did how-
ever measure the impact of bandwidth management and the amount of tiles which they
found best for bandwidth versus quality in omnidirectional context for different devices.
In contrast, this thesis will give an overview how a web application can be made from
open source project FFmpeg and analyze the overhead to reproduce a single HEVC bit
stream that is decodable with one hardware decoder to be able to stream MPEG-DASH
tiled HEVC video in the web browser.

Another paper that was found in one of the later stages of the thesis was [CFD+17].
In this paper an open source implementation is provided. Furthermore, in this paper
the bandwidth streaming size overhead is measured versus non tiled video. This paper
is produced by the same people that made the guide on how to create the HEVC tiled
MPEG-DASH content which this thesis is based on (see Section 5). However, this thesis
is unique in regards of the web browser implementation based on the open source project
FFmpeg . Also, within this thesis the overhead to preprocess a tiled MPEG-DASH stream
to a natively tiled video stream is measured in regards to resolution and amount of tiles
as can be seen in Chapter 6.

4.1.2 Cubical encoding

In [SSP+17], which is the follow-up paper of [SSHS16], they presented an approach were
the resolution outside the viewport is decreased on-the-fly. They do this by using motion-
constrained HEVC tiles. These tiles are streamed using MPEG-DASH in which they
allow for adaptive resolution of the individual video areas based on the user viewport.
Tiles outside the viewport will be in lower quality. The tiles of varying quality are even-
tually merged into a single bit stream. In contrast with this thesis where equirectangular
projection is used, will the tiles be cubical formed. A visual representation can be seen
in Figure 4.1 They believe that a cubic approach fits better into the field of view of head
mounted devices. At server side they present segments in two variations, one segment is a
segment with the random access point which is needed when a tile quality is changed. To
counter bitrate peaks, a second segment with the exact same content is provided without
the random access point. These papers lacked information on how the content creation
was done. Also, was no further information given on how the merging of tiles was done
besides lightweight tile aggregation as described in [SSS15].

4.1. RELATED WORK 27

Figure 4.1: Cubical devision of the tiles in a demonstrator overview [SSP+17]

Another approach is given in [HS16] and the follow up [HS17]. In this paper they introduce
a hexaface sphere which is a underlying 3D geometry mesh of the omnidirectional video.
They do this in two parts. Firstly they partition the video in tiles and use the SRD
extension of MPEG-DASH. Secondly, they cut the 3D mesh in which the video is projected
into 3 major parts being the top, middle and bottom. After this, they cut the middle part
in 4 pieces of equal size which is a 90 degree view which can be seen in Figure 4.2. To
map the tiles on the created hexaface sphere, they use a mapping mechanism to map the
6 tiles (one for every part of the sphere) on the surfaces. By using viewport tracking, they
dynamically deliver high bitrate content to the tiles in the viewport and lower qualities
in the surrounding tiles.

Figure 4.2: Visual representation of the generated hexaface sphere [HS17]

4.1.3 Pyramid encoding

An approach that was taken by Facebook is viewport oriented encoding based on the
user’s head position with a head mounted device [Kuz16]. They do this by using pyramid
encoding and cube faces instead of equirectangular layouts. A pyramid represents the
viewport of the user. The pyramid is placed within the 360 degree viewing orb. At the
base of the pyramid is the high quality image within the viewport. The sides of the
pyramid are unwrapped and the cube is stretched to fit the whole 360 degree view of
a user. The sides of the cube have a degrading quality going from the bottom of the

28 CHAPTER 4. TILED VIDEO

pyramid to the top. However, for every direction in which the user can look is a new
pyramid needed so these pyramids have to be generated. They implemented 30 pyramids
to cover the whole 360 degree viewing sphere. When a user moves his/her head, he/she
will be placed in a new pyramid. This is done by different representations of the same
video for every pyramid. For example, 5 different representations of the video with 30
pyramids needs 150 representations of the same video content. This comes with major
overhead with respect to the generation, encoding and storage of the same original content
to allow the DASH client to switch between representations.

Figure 4.3: Facebook’s approach for viewport oriented encoding based on the user’s
head position with pyramids [Kuz16]

Chapter 5

Implementation

While the tiled subject in context of adaptive video with MPEG-DASH has been re-
searched a lot in H.264/AVC, especially in the world of Virtual Reality (VR) and 360
degree video as mentioned in Chapter 4, there is yet to be a clear definition of tiled
HEVC in MPEG-DASH. Therefore, the implementation has been a path of many trials
and errors.

The implementation started with a simple idea; Stream tiled HEVC video over MPEG-
DASH to project 360 degree video so one decoder is needed and adaptive control of quality
is possible. This is in contrast with H.264/AVC, were the need for every tile to have its
own decoder and a tile manager to ensure a synchronized playback between the processed
tiles is needed. This subject is further discussed in Chapter 4 and Chapter 2 were a
full explanation of the HEVC video codec is given and compared with H.264/AVC. By
implementing this simple idea, a user would be able to adapt the quality of the video when
looking at the 360 degree video based on the viewport of the user while fully utilizing the
hardware acceleration for HEVC decoding.

It was know that GPAC had done some work around tiled HEVC adaptive MPEG-
DASH video streaming and had already implemented and demoed such implementation
at scientific conferences. However, the only thing that was found at the start of the thesis
were contradicting tutorials on generating tiled HEVC MPEG-DASH content, [Feu17]
and [Feu18]. The first tutorial was found on their website, the second tutorial was found
on the GitHub page of the project. It was only after understanding the complete syntax
of the bit stream and asking for an explanation by creating an issue on the GitHub of the
project that the full generation process was clear. The process will be described in detail
in Section 5.1 and will hopefully be used by the GPAC team to update their tutorial
to a consistent guide for creating tiled HEVC MPEG-DASH content. Furthermore, was
it only in the last step of the implementation, the JavaScript implementation described
in Section 5.3, before the faults in the guide were clear. This is because the tests were
primarily done by content in the same quality or content made available by the GPAC
team. Another struggle of the implementation by the GPAC team was that is was a
native application for desktop. The purpose of this master thesis implementation was to
be an web application for use in web browser context.

Once the course was clear, the decision was made to start with a native application as the
support for HEVC in web browser context was so minimal that only Edge was supporting
HEVC on Windows and Safari on Mac OS. Apple announced the support of HEVC in

29

30 CHAPTER 5. IMPLEMENTATION

its yearly keynote of 2017 [Inc18]. However, the release would hold off until the new big
Mac OS X update, more specific: update 10.13 High Sierra released September 25, 2017
to the public. With this update the support for HEVC in Safari. In both web browser
there were restriction of not allowing tiled videos in separate streams.

Therefor, the choice to make a web application that could create from MPEG-DASH
segments that contained the tiled HEVC bit stream to a tiled HEVC video with one
tiled stream so the web browser could decode the video bit stream was made. However,
creating such a complex web application is hard. Especially when working with a complex
video codec as HEVC, which has been described in Chapter 2. Therefor, the choice to
start with a native application was made.

In Section 5.2 the choices and implementation of the native application will be informed
and discussed. After the native application, the conversion process of the native applica-
tion to a working web browser implementation will be explained. A complete flow of the
program as implemented in the final JavaScript product can be seen in Figure 5.7.

5.1 Content preparation

The content preparation is based on the guides from GPAC [Feu17] [Feu18]. However,
these guides are outdated and mis key information to create tiled HEVC content stream-
able over MPEG-DASH that allows for mixing qualities. In subsection 5.1.1 a detailed
example will be given that was used as an video to test the implementation in this master
thesis.

The preparation of the content has been done with Kvazaar version 1.2.0 [kva18], FFmpeg
version 2.8.14 [FFm18] and MP4Box version 0.7.1 [GPA18] which is a implementation by
GPAC . Make sure the same versions are used to generate tiled HEVC MPEG-DASH
content with this tutorial.

The content creation process starts by taking a video recording. This can be any kind
of video in any format. We start by decoding the video to raw YUV-format. A more
extensive explanation of the YUV color space can be found [Mic18]. For now, it is
important to know what YUV means:

• Y stands for the luminance which is the amount of light, leaving from a point in
any direction being that it is emitted, passes through or reflected from a surface.

• U stands for the horizontal axis in the color space representing the blue plane.

• V stands for the vertical axis in the color space representing the red plane.

The conversion of the video to a raw YUV video is because of Kvazaar . Kvazaar expects
input in YUV420p format at 8 bit depth. Understanding that 4:2:0 stands for only half
of the bits going to the color space while double the bits go to the luminance is enough
for the YUV content. Furthermore, represents the 8 bit depth the amount of bits used to
save the luminance and color.

To convert the video from any video in any container to a raw YUV420p 8 bit depth
video, FFmpeg can be used. A command for this can be seen in Listing 5.1.

• -i defines the input video.

5.1. CONTENT PREPARATION 31

• -c:v is a bit more complicated as the -c stands for defining the codec and :v is a way
of defining that this codec is specifically meant for video. The encoder that will be
used is rawvideo.

• -pix fmt defines the pixel format; as previously explained, this has to be YUV420p.

• <output video.yuv> is the last parameter which is the name of the output video.

$ ffmpeg -i <input_video > -c:v rawvideo -pix_fmt yuv420p <

output_video.yuv >

Listing 5.1: Command to convert a video in a container to a raw YUV420p video
with FFmpeg

Once the raw video has been created, it can be used as input for Kvazaar . Kvazaar will
take the raw video as input and create a HEVC tiled video. A more detailed explanation
of HEVC and tiles can be found in Chapter 2. The command to go from a raw video in
YUV420p 8bit depth format to a HEVC tiled video can be seen in Listing 5.2.

• -i the input file containing the raw YUV420p video.

• --input-res the resolution of the input video, in pixels.

• -o the output file, this will be a tiled HEVC video.

• --tiles the amount of tiles that has to be used in WidthxHeight. See Section 2.2.1
for a detailed explanation of the allowed amount of tiles in width and height.

• --slices A detailed explanation of how tiles can be encoded in HEVC can be found
in Section 2.2. For now it is important to know that this parameter defines the way
the slices have to be defined. The parameter used here is tiles, which stands for
putting the tiles in independent slices.

• --mv-constraint With this parameter the user can define how the motion vectors
should be restricted. There are two options, frametile and frametilemargin.
frametile will restrict the motion vectors within the tiles. frametilemargin will
be even more restrictive. A comparison between the two can be seen in Figure 5.1.

• --bitrate the bitrate per seconds abide the tiled HEVC video should be encoded in.

• -q the quantization parameter that has to be used. This parameter will be used to
write in the VPS header (see Chapter 2 for a detailed explanation of the VPS and
other HEVC headers) but will be disregarded in the encoding process if the bitrate
parameter has been set. In Subsection 5.1.1 this will become more clear. Setting
this parameter, even if it has no impact on the encoding process, is of paramount
importance for the subsequent MPEG-DASH segmentation step to work properly
(see later).

• --period the period of intra pictures, in frame count. This should be consistent with
the MPEG-DASH settings later on.

• --input-fps the input framerate of the raw YUV420p video.

$ kvazaar -i <input_video.yuv > --input -res 3840 x2160 -o <

output_video.hvc > --tiles 3x3 --slices tiles --mv -constraint

frametilemargin -q 30 --bitrate <bitrate > --period 30 --input -fps 30

Listing 5.2: Convert a raw YUV420p input video to a HEVC tiled video.

32 CHAPTER 5. IMPLEMENTATION

(a) A zoomed in still where the setting fram-
etile has been used. Notice how the motion
vectors are bigger than in the frametilemargin
setting

(b) A zoomed in still where the setting fram-
etilemargin has been used. Notice how the mo-
tion vectors are smaller than in the frametile
setting

Figure 5.1: Two stills showing the exact same frame with the frametile and fram-
etilemargin options for the --mv-constraint parameter of Kvazaar .

Next step is using MP4Box, provided by the team of GPAC themselves. Even though
this toolkit is one with many more features [GPA18], MP4Box will only be used to create
a MP4 file which has all tiles split up in different tracks from the created HEVC in the
previous step. In Listing 5.3 the command to create a MP4 is given. With this command
the input video.hvc will be split up by means of tiles. Each tile will be assigned to a
MP4 stream. However, there will be a track 1 that contains all non-VCL NAL units of
the created MP4. This means that the generated MP4 file will have amount of tiles +
1 -streams. This extra track will contain all non VCL NAL units needed to process the
tiles. A detailed explanation of the NAL units is given in Section 2.5 and a complete
overview of the HEVC bit stream is given in Chapter 2. For now it is good enough to
understand that each track contains one tile region, besides track 1 which contains only
non-VCL NAL units giving a total of amount of tiles + 1 tracks to the generated MP4.
When using this command it is import to make sure the FPS values are the same as in
other commands.

$ MP4Box -add <input_video.hvc >: split_tiles -fps 30 -new <

output_video.mp4 >

Listing 5.3: Convert a HEVC tiled video into a MP4 which defines a stream for
every tile +1 extra stream for NAL units

Last step in the generation of tiled HEVC MPEG-DASH content is the creation of the
MPEG-DASH content from the created HEVC tiled MP4 with MP4Box. This process is
illustrated in Listing 5.4.

• -dash defines the length of the segments in milliseconds.

• -rap with this parameter, the user defines that the program has to start every
segment with an I-frame so it is possible to start decoding and replaying the video
form each received segment.

• -segment-name represents the naming format. By including %s segment, the user
defines that the name of the segments should start with the original input filename
(%s) and then be concatenated with the fixed string ‘ segment’. Once the name
formatting is done, the name is appended with a $number$ which will represent the
number of the segment, starting from 0 till the last segment in increments of 1.

5.1. CONTENT PREPARATION 33

• -min-buffer specifies in the generated MPD how long the minimum buffer time
should be.

• -url-template defines that the segments in the MPD should be specified using the
a SegmentTemplate syntax. More info about the MPD syntax can be found in
Chapter 3

• -out the name of the generated MPD file.

$ MP4Box -dash 5000 -rap -segment -name %s_segment -min -buffer 2000 -url -

template -out <output_mpd_file.mpd > <input_video_quality_1.mp4 > <

input_video_quality_2.mp4 > ... <input_video_quality_N.mp4 >

Listing 5.4: Generation of a tiled MPEG-DASH streamable video on basis of tiled
MP4 videos which contain a stream per tile + 1 NAL unit stream

5.1.1 Comprehensive example

The first step is the decoding a video of to raw YUV-format or starting with a raw YUV-
format. In this example, the YUV-format is already acquired. As the YUV file is already
acquired and is named elephants dream.yuv, the encoding to tiled HEVC can start with
Kvazaar as seen in Listing 5.5.

$ kvazaar -i elephants_dream.yuv --input -res 3840 x2160 -o 3840

x2160_fps24_frametile_600000.hvc --tiles 3x3 --slices tiles --mv-

constraint frametile -q 30 --bitrate 600000 --period 24 --input -fps

24

Listing 5.5: Conversion example of a raw YUV input video to a HEVC tiled video

The output of the previous command can be seen in Figure 5.2. Notice how the Quanti-
zation Parameter fluctuates and is nowhere near the set value of 30. This is as previously
mentioned because of the bitrate value being set. As Kvazaar tries to maintain the en-
coding bit rate specified, it is impossible to hold a steady QP value of 30. However, the
QP value of 30 will be set in the PPS NAL unit of the HEVC stream as mentioned in
Chapter 2. The details of the different NAL units are given in Section 2.5. Setting the
PPS NAL unit to 30 is needed because of the tiles being split up in their own streams in
the next step. When the tiles are split up, one stream with the non VCL NAL units is
generated. This stream has to be the same in the different generated MP4 files for the
next steps to work. If the VPS, SPS and PPS header would not be the same, the splitting
in different streams and having one stream with the parameter sets (NAL units), would
not be possible.

Next step is the making of the MP4 container with a stream per tile and one stream
for the non VCL NAL units. This is done in Listing 5.6. The output video in the MP4
container can be seen in Figure 5.3. Notice how Video stream 1 contains the complete
video information as if no tiles were present. When zoomed in on any of the other video
streams, there is the information per tile. Something important to notice here is that the
video resolution, more precise the height, changes for the last row. This means that the
first 3 tiles will have a resolution of 1280x704 pixels, the second row is 1280x704 pixels
and the third row is 1280x752 pixels. Kvazaar tried to divide the video in blocks of 64
pixels but 2160 is not divisible by 64. This is why the last tile row has a bigger size being,
752 pixels. This is fixed by giving one CTB (see Chapter 2 for more info) 48 pixels in
height instead of 64.

34 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Output when using the commands of Listing 5.5

$ MP4Box -add 3840 x2160_fps24_frametile_600000.hvc:split_tiles -fps 24 -

new 3840 x2160_fps24_frametile_300000.mp4

Listing 5.6: Create a MP4 container with one stream per tile and a non VCL NAL
unit stream

Figure 5.3: The MP4 container with for every tile a different stream and Video 1
containing only non VCL NAL units with the complete video info

The previous two steps have to be done for all videos in all the available qualities. For
this example, the qualities 300, 600, 1200 and 2400 kilo bit per second are created. The
last step is shown in Listing 5.7, which will combine the different video qualities in a
MPD and segment the video files correctly. The output exists in two parts, one can be
seen in Section 3.4.1. This is a generated MPD file containing the needed SRD info.
The second output are all the tiled HEVC video segments and initialization MP4 for the
MPEG-DASH stream.

5.2. NATIVE APPLICATION 35

$ MP4Box -dash 1000 -frag 1000 -rap -segment -name %s_segment -min -buffer

1000 -url -template -out dash_frametile/output_mpd_file.mpd 3840

x2160_fps24_frametile_300000.mp4 3840 x2160_fps24_frametile_600000.mp4

3840 x2160_fps24_frametile_1200000.mp4 3840

x2160_fps24_frametile_2400000.mp4

Listing 5.7: Generation of the MPEG-DASH files based on the MP4 input

5.2 Native application

When the development of the native application started, a few roads could be chosen. One
was working on basis of the native application of GPAC , which was a custom application
based on FFmpeg [GPA18]. Or work with FFmpeg which can decode HEVC at the time
of writing this thesis, just like the web browser HEVC [FFm18]. Choosing FFmpeg might
seem weird at first, but there are a few reasons why FFmpeg was chosen as the baseline.
FFmpeg is an open source project written in the programming language C which can
support a wide variety of codecs. One of those is HEVC which we need. At the time it
seemed interesting to use FFmpeg because of the many integrations of FFmpeg in other
products, for example VLC media player by making use the libavcodec given by FFmpeg .
The libavcodec is a generic coding library containing a number of audio, video, subtitle
stream and bit stream filters, decoders and encoders. Another reason for using FFmpeg
is because of the multiple web browser versions of FFmpeg found. The reason for these
multiple web browser implementations is because of the C-implementation which is easy
to convert with emscripten, more details about this in Section 5.3.

Everything just mentioned were reasons enough to start developing in FFmpeg version
3.4.0 to create my own single tiled HEVC video in a MP4 container based on the input
and decode this to a working video. However, as just mentioned, FFmpeg is not well
documented in it is current state, a lot of information is outdated which is understandable
in such a huge project but a pain to start your own implementation based on the enormous
library. The best way to start a project with FFmpeg is to look at the examples given
and a debugger. This is what I did and the basis of section 5.2.1.

To make the following explanations easier, which go over the different phases of the master
thesis implementation, the input file is always a 3x3 tiled HEVC video, MPEG-DASH
segmented or a single MP4 file with one stream per MP4 track for every tile. The input
content is generated with the steps from Section 5.1.

5.2.1 Phase 1 - Remux multi stream tiled HEVC MP4 to single stream
native tiled HEVC MP4

Phase one is conceptually easy to understand and can be seen in Figure 5.4 in 3 simple
steps:

• Input: a single MP4 file containing the tiled 3x3 video in the different streams.

• Remux1 the input to a MP4 file with a single stream containing one tile per slice.

1Remuxing in the video context is an action where one file container is transformed by combining
media streams into the new container [Ple18]. This can be the same container or for example from MP4
to MKV. In our context we will remux from multiple video streams to one within the same MP4 container.

36 CHAPTER 5. IMPLEMENTATION

• Output: the HEVC video with a single stream in a MP4 container so the video can
be tested by playing it in the Microsoft Edge web browser.

Figure 5.4: Phase 1 program flow from one MP4 containing a 3x3 tiled HEVC
video to a single stream HEVC tiled video

To begin remuxing the input file, we need to open the file. This can be done with the
code in listing 5.9 on line 2. Only problem with this function is the way it works. First
it will define the context based on the file extensions. As the input file is a MP4 file, the
extension will be .mp4 which is not a problem so far. Once the file extension has been
defined, FFmpeg will automatically check the streams in the MP4 to make sure it can work
with this file. By default the streams are defined as hvc2 and hvt1 as shown in Section
5.1.1. The hvc2 code stands for a MP4 containing multiple tiles and the hvt1 represents a
tile stream. This was later also verified by the paper [CFD+17]. This was one of the first
and worst encounters of the bad documentation of FFmpeg . As FFmpeg does not know
what to do with the codec identifiers hvc2 and hvt1, it refuses to read the streams. An
apparently easy but hard to find fix for this problem was found by adding the following
two rules defined in Listing 5.8 to the isom.c file, found in the libavformat library. Now
FFmpeg will interpreter the codec identifiers hvc2 and hvt1 as HEVC streams.

1 { AV_CODEC_ID_HEVC , MKTAG('h', 'v', 'c', '2') }, /* HEVC/H.265 coded

with gpac */

2 { AV_CODEC_ID_HEVC , MKTAG('h', 'v', 't', '1') }, /* HEVC/H.265 coded

with gpac */

Listing 5.8: Two rules to make sure FFmpeg understands and knows how to
handle streams with hvc2 and hvt1 encoding.

Once the file has correctly been open and can be read, a new output context is created.
This output context will be created based on the extension give by the out filename

parameter and is allocated on on line 8.

Now that the output context has been created, it has to include an output stream. The
output stream will contain the exact same metadata as input stream 0. This is because
of the information contained in stream 0 which is the complete HEVC video information
(resolution and bit rate of all tiles combined). For a refresh of the structure of the input
data, have a look at Section 5.1.1.

1 //Open the input file

2 if ((ret = avformat_open_input (&ifmt_ctx , in_filename , 0, 0)) < 0) {

3 fprintf(stderr , "Could not open input file '%s'", in_filename);

5.2. NATIVE APPLICATION 37

4 goto end;

5 }

6
7 // Create an ouput context

8 avformat_alloc_output_context2 (&ofmt_ctx , NULL , NULL , out_filename);

9 if (! ofmt_ctx) {

10 fprintf(stderr , "Could not create output context\n");

11 ret = AVERROR_UNKNOWN;

12 goto end;

13 }

14
15 // Create a output stream

16 AVStream *out_stream;

17 AVStream *in_stream = ifmt_ctx ->streams [0];

18 AVCodecParameters *in_codecpar = in_stream ->codecpar;

19
20 out_stream = avformat_new_stream(ofmt_ctx , NULL);

21 if (! out_stream) {

22 fprintf(stderr , "Failed allocating output stream\n");

23 ret = AVERROR_UNKNOWN;

24 goto end;

25 }

26
27 ret = avcodec_parameters_copy(out_stream ->codecpar , in_codecpar);

28 if (ret < 0) {

29 fprintf(stderr , "Failed to copy codec parameters\n");

30 goto end;

31 }

32 out_stream ->codecpar ->codec_tag = 0;

Listing 5.9: Opening the input file into an input context object

In FFmpeg the term AVPacket or packet is used for a frame that is still encoded, the term
AVFrame is a frame that is decoded. The same terms will be used in this explenation.
FFmpeg works with a frame reader which will read every frame of the given input context
in sequential order. However, this means there is no control of what package should be
read in what order. FFmpeg chose to implement the packet reader this way because of
optimizations. If they did allow for a search in the reading of a packet, in worst case a
complete file had to be read to find one specific packet which would take too much time
in some cases. This does however have the drawback that the complete file will be read
in sequence and a if-test has to be done if this is the correct packet and what to do with
it. Take for example our case where every stream is grouped together in groups of X
packets of every stream. This means that for every sequence of packets first X amount of
stream 0 will be read, then x amount of packets of stream 1 continuing this situation till
stream 9. Let us give the hypothetical situation where the implementation would work
by first searching for a first packet of stream 0, then a packet of steam 1 till frame N+1
(with N tiles). Once this is done, combine these packets and search for the next series of
corresponding packets for each of the input streams. This means that as the streams are
not in order (which is the case in our situation), a search has to be done throughout the
complete file every time a packet has to be combined which is suboptimal.

Listing 5.10 will show how the packets are ordered by stream. By requesting the amount
of packets in the stream, an 2D-array can be allocated that will contain all packets of
the stream. The first index of the array will be the corresponding stream index while
the second index will be the packet number. Once the array is allocated, the file will be
read in a sequential order with a while loop. This loop will continue to read each packet

38 CHAPTER 5. IMPLEMENTATION

until no more packets are found. Each packet is copied with line 6 into the correct array
location.

1 while (1) {

2 pkt = (AVPacket *) malloc(sizeof(AVPacket));

3 ret = av_read_frame(ifmt_ctx , pkt);

4 if (ret < 0)

5 break;

6 av_copy_packet (& arrayOfStreams[pkt ->stream_index][packetIndexArray[

pkt ->stream_index]] , pkt);

7 packetIndexArray[pkt ->stream_index]++;

8 }

Listing 5.10: Sequential loop through the complete file while saving each
stream in there corresponding array index

Once all packets have been read, the last two steps of the process can begin. The first
will be the combination of the read packets, secondly the packets have to be written to
the output stream. This is done with the code in Listing 5.11. On line 2 the combined
frame size will be calculated based on the packets retrieved in previous step. Once the
size of the combined packet is known, the new packet data buffer is allocated. Once this
buffer is allocated, all the data is being copied from the different packages to the data
buffer. After the data has been copied, a new AVPackage is created based on the new
data on line 16. When the new packet has been made, it has to be filled in with meta
info such as duration, PTS, DTS and to what stream it has to be written. Now that the
packet has been completely prepared, it is ready to be written to the correct stream, this
is done on line 26. After writing the packet to the output stream, only cleaning up the
memory is needed. These steps have to be repeated for all output packets.

Another important thing is the way the AVPackets are structured and the need to use
the correct buffer size for the memcpy on line 10. On line 10 the packet data from the
buffer gets copied to the new packet. However, the size of the packet is requested with
tempArray[streamIndex].size which and not the size of the buffer. This is because when
requesting the size of the buffer, there will be 32 extra bits added. These are the param-
eters of the AVPacket while only the data is being copied.

1 for(int column = 0; column < nb_frames; column ++){

2 bufferSize = calculateBufferSize(arrayOfStreams , column);

3
4 // Create uint8_t which will hold the different tile(s) data

5 uint8_t *data = (uint8_t *) malloc(buffSize * sizeof(uint8_t));

6
7 //Copy the frame data to the new combined frame on the correct

location

8 int index = 0;

9 for(int streamIndex = 0; streamIndex < stream_mapping_size;

streamIndex ++){

10 memcpy(data + (index * sizeof(uint8_t)),

11 tempArray[streamIndex].buf ->data ,

12 tempArray[streamIndex].size * sizeof(uint8_t));

13 index += tempArray[streamIndex].size * sizeof(uint8_t);

14 }

15
16 // Create a packet from the data

17 int ret = 0;

18 if((ret = av_packet_from_data (& combinedPkt , data , buffSize)) < 0){

19 fprintf(stderr , "Welp\n");

5.2. NATIVE APPLICATION 39

20 }

21
22 // copy packet info of stream 0 to the new created packet

23 ...

24
25 //Write the new combined frame to the output stream

26 ret = av_interleaved_write_frame(ofmt_ctx , &combinedPkt);

27 if (ret < 0) {

28 fprintf(stderr , "Error muxing packet\n");

29 break;

30 }

31
32 //Clean memory

33 ...

34 }

Listing 5.11: Combine the tile packets and then write them to the correct
output stream

Only thing left is writing the MP4 trailer by using the av write trailer(ofmt ctx)

command after all packets have been processed and closing all contexts while freeing the
leftover memory.

5.2.2 Phase 2 - Remux DASH encoded tiled HEVC stream to single
native tiled HEVC dash stream

As the input of this phase is an init.mp4 file with 10 segments (each representing a tile
track besides track 1 which are the NAL units needed to decode the tiles as described in
Section 5.1) an approach had to be found to combine these files to an input that could
be used to process and eventually generate the wanted output. An even better situation
would be if the steps from phase 1 could be reused.

By looking into ISO/IEC23009-1:2014 [ISO14b], it became clear that segments can in some
cases be concatenated with each other to form a valid bit stream. The concatenation of
the files goes as follows: the init.mp4 file is placed as the first file, and then all media
segments get concatenated behind each other in any order behind the init.mp4 file.

Once the new concatenated file has been made, the same steps as in Phase 1 can be
followed to generate a single stream tiled MP4 video. A visual representation can be seen
in Figure 5.5 as the concatenation is now part of the remuxer.

Now that the process from segments to a native tiled single stream MP4 is working,
the output to MPEG-DASH segments is needed. There are two major reasons for this.
The first one being a web browser restriction as the end product is meant to be a web
application. The end product has to be a video stream in which the user can seek for
different timestamps with segments as input. If the output would be a MP4 file, only a
part of the video would be played (in case of a video with multiple segments per tile which
is mostly the case) and reinitialization of the video element has to be done when adding
the new MP4 generated from the segments. This would eventually lead to reinitializing
the video element over and over with a new MP4. Another reason is the media source
buffer that will be used in the JavaScript implementation. By using the media source
buffer, adaptive streaming is possible. A client can choose the qualities as needed and

40 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Phase 2 program flow from segments containing a 3x3 tiled HEVC
video to a single native tiled HEVC video

request these qualities. Because of these reasons, the choice was made to generate MPEG-
DASH-like output. A detailed view of how the output generated in this step is processed
for playback in the web browser can be read in Section 5.3.

Figure 5.6: Phase 2 program flow from segments containing a 3x3 tiled HEVC
video to a single native tiled HEVC MPEG-DASH stream

As can be seen in Figure 5.6, a new step has been introduced, the MPEG-DASH encoder
step. A first version of this implementation took a MP4 file generated by the previous
step as input and reformed this into a MPEG-DASH stream. However, this generated

5.2. NATIVE APPLICATION 41

two extra files, the concatenated file and the intermediate native tiled single stream MP4
file created from the segments. This single stream MP4 would then be converted to a
DASH-stream with only one segment. Eventually the implementation would be converted
to a web application so in the final version, the step to create a MP4 has been removed as
generating more files would mean more RAM usage in the browser, something that has
to be avoided if the application would also be used on low RAM devices.

The generation of the MPEG-DASH output will based on FFmpeg code. By using FFmpeg
for all steps only one program has to be converted to the web application. An alternative in
our processing chain, could of been the tool provided by GPAC : MP4Box. However, this
would mean a second program has to be converted to JavaScript . A detailed explanation
of the JavaScript workings can be found in Section 5.3.

Just as with the generation of the output stream in the previous phase, an output stream
has to be initialized. This is done with two functions: init dash context and dash init.
An important difference with phase 1 is that the input context will also be the output
context because of the way the DashEncoder of FFmpeg has been implemented. The
initialization method init dash context has been implemented by myself and is needed
because the DashEncoder by FFmpeg is a single program that takes variable set by argu-
ments in command line. These variables will always be the same for our situation. If they
would also be set by the command line, the input of the program would be the output
file name, initialization file name, tile segments and all arguments for the DashEncoder,
which would be the same every execution. The variables that have to be set are:

• init seg name this parameter defines the name of the output initialization MP4 file.

• media seg name this parameter is the name of the single output segment containing
the native tiled HEVC video.

• adaptation sets this parameter is ‘id=0,streams=0’ and represents the stream that
should be mapped on the id of one adaptation set. This means that one Adapta-
tionSet exists which contains stream 0.

When the initialization of the command line arguments is done, the original dash init

method has to be called. However, the original implementation of the DashEncoder at
the moment of writing of this master thesis (FFmpeg version 3.1.9001) worked with either
one file which would output the initialization and segments files together in one file or
generate a individual file for all outputs, meaning that there will be a initialization file and
a segment file for every frame of the video. These two outputs were both not interesting
in our situation. The output we needed was a init.mp4 to initialize the video element
and one segment that was just as long as the input segments.

The complete overhaul of the DashEncoder implementation will not be discussed in detail,
only the important parts will be discussed and explained. In the implementation of the
DashEncoder there will be a check to see if the output container of the initialization file
is a MP4 file, if so the init.mp4 file will not be written until the first packet has been
processed and is ready to be written. This is done in the method dash flush which can
be seen in Listing 5.12. dash flush is a method to flush the DASH-stream. On line 5 there
is a check to see if the initialization of the output stream has been written by checking
the size of the init.mp4 file. If this is 0, the file has yet to be written for the specified
output context.

Once the initialization file has been written, the new packet that has to be added to the

42 CHAPTER 5. IMPLEMENTATION

segment get added with all parameters on line 25. Furthermore, the data buffer gets
flushed on line 36. If nothing has been flushed or something went wrong, a break will
happen on line 38. This is because all discussed parts of the dash flush method are part
of a for-loop that handles all output streams. In our case we only have one output stream
as the files are being written in a single native tiled output stream. In Listing 5.11, line
26 will be replaced with ret = dash write packet(ifmt ctx, &combinedPkt) to call
the dash write function.

1 ... Init variable

2
3 // Check if the initialization MP4 file has to be written as this

4 // might be the first packet to be written

5 if (!os ->init_range_length) {

6 flush_init_segment(s, os);

7 ret = dash_setup_seg_file(s);

8 if (ret < 0) {

9 fprintf(stderr , "Error while setting up dash_setup_seg_file\n");

10 }

11 }

12
13 // Initialization of the the destination of the media segment string

14 snprintf(full_path ,

15 sizeof(full_path),

16 "%s%s",

17 c->dirname ,

18 c->media_seg_name);

19
20 // Find the location of the last written segment

21 find_index_range(s, full_path , os ->pos , &index_length);

22
23 // Add the new packet to be written to the media

24 // file and write it to the media file

25 add_segment(os, // OutputStreamDashEnc *os

26 full_path , // const char *file

27 os ->start_pts , // int64_t time

28 os ->max_pts - os ->start_pts , //int duration

29 os ->pos , // int64_t start_pos

30 range_length , // int64_t range_length

31 index_length); // int64_t index_length

32 os->pos += range_length;

33
34 // Flush any residue packets from the buffer in case we are

35 // working with multiple streams for example

36 ret = flush_dynbuf(os , &range_length);

37 if (ret < 0)

38 break;

39 os->packets_written = 0;

40
41 ... Write to manifest , not the case in this implementation

Listing 5.12: Implementation of the dash flush method to write all packets to
the relevant files

Just like in phase 1 needs the output context and memory be freed correctly. As an extra,
the temporary concatenated file which was created at the start of this phase has to be
removed as this file has no more purpose.

This phase is also the phase that has been implemented in the web browser. More
information on the reasons why can be read in the next phase and Section 5.3.

5.2. NATIVE APPLICATION 43

5.2.3 Phase 3 - Decoding DASH encoded tiled HEVC stream to JPEG
images

A good use case seemed to try to decode the video into raw YUV format or JPEG. This
would allow other web browsers then Microsoft Edge and Apple Safari to decode the
HEVC video as these two are the only two browsers with HEVC support at the time of
writing this thesis. By decoding into raw YUV format or JPEG images, a web browser
canvas element could display these images in a timely matter which would give the same
results as playing the video in a video element. After implementing this as a native
application, it became very clear that theoretically this seems as an interesting use case,
yet the practical experience was less than optimal as will be further explained in this
section.

Just as in phase 2, everything from phase 1 can be reused with a few modifications.
Instead of calling line 26 in Listing 5.11, the pseudo-code in Listing 5.13 will be called.
In this Listing, the video dec ctx is assumed to already be created and ready to decode
HEVC content to YUV raw image. The initialization of the decoder can be done with
dec = avcodec find decoder(AV CODEC ID HEVC) to check if the decoder exists and the
initialization of the context with video dec ctx = avcodec alloc context3(dec). On
line 2 of Listing 5.13, the packet is decoded to frame. If the decoding of the packet
went well, the new decoded frame can be saved as a JPEG with the function call on line
13.

1 ... Initialization

2 ret = avcodec_decode_video2(video_dec_ctx , frame , got_frame , pkt);

3 if (ret < 0) {

4 fprintf(stderr , "Error decoding video frame (%s)\n", av_err2str(ret))

5 return ret;

6 }

7
8 if (* got_frame) {

9 ... check if correct frame has been generated

10 }

11
12 // Save frame as jpeg

13 save_frame_as_jpeg(video_dec_ctx , frame , *video_frame_count);

Listing 5.13: Pseudo code for the decode packet implementation

Once save frame as jpeg has been called, whose implementation can be seen in Listing
5.14, the JPEG encoder has to be made to save the frame. The check to see if the JPEG
encoder is available and creation of the decoder can be seen on line 3, 7 and 17. When
the context has been created, a few output settings have to be made to minimize the size
of the output JPEG file; these settings can be seen on line 10-14.

Now that the encoder has been created, the AVFrame has to be encoded. As discussed
before, an encoded frame is an AVPacket, as such one is initialized on line 24. On line 28
the actual encoding of the frame will be done and then saved on line 33.

After correctly closing and removing memory, the recoding to images in seperate files is
done.

1 static int save_frame_as_jpeg(AVCodecContext *pCodecCtx , AVFrame *

pFrame , int FrameNo) {

2 // Check if the encoder exists

3 AVCodec *jpegCodec = avcodec_find_encoder(AV_CODEC_ID_MJPEG);

44 CHAPTER 5. IMPLEMENTATION

4 if (! jpegCodec) { return -1; }

5
6 // Allocate the JPEG context

7 AVCodecContext *jpegContext = avcodec_alloc_context3(jpegCodec);

8 if (! jpegContext) { return -1; }

9
10 jpegContext ->pix_fmt = AV_PIX_FMT_YUVJ420P;

11 jpegContext ->height = pFrame ->height;

12 jpegContext ->width = pFrame ->width;

13 jpegContext ->time_base = pCodecCtx ->time_base;

14 jpegContext ->qcompress = 0.1f;

15
16 // Open the codec with the correct parameters

17 if (avcodec_open2(jpegContext , jpegCodec , NULL) < 0) { return -1; }

18
19 FILE *JPEGFile;

20 char JPEGFName [256];

21
22 // init AVPacket

23 AVPacket packet = {.data = NULL , .size = 0};

24 av_init_packet (& packet);

25 int gotFrame;

26
27 // Encode the frame as an JPEG image

28 if (avcodec_encode_video2(jpegContext , &packet , pFrame , &gotFrame) <

0) { return -1; }

29
30 sprintf(JPEGFName , "dvr -%06 d.jpg", FrameNo);

31 //write the decoded frame to a file

32 JPEGFile = fopen(JPEGFName , "wb");

33 fwrite(packet.data , 1, packet.size , JPEGFile);

34 fclose(JPEGFile);

35
36 ... free memory

37 return 0;

38 }

Listing 5.14: Saving a decoded frame to file as a JPEG image

As mentioned before, this implementation is not suitable for web browser contexts. There
are two major reasons for this, one is the HEVC decoding and then encoding process that
would take too much time. The second problem is the size of the decoded YUV frames,
these frames would take up a lot of RAM usage. This is also the reason why the choice to
encode to JPEG images was made. Saving a YUV to eventually play in a canvas element
would take enormous amounts of RAM as the web worker has no direct access to save to
user memory. Even a single YUV frame size is too big and halts the web browser from
working.

5.3 JavaScript Implementation

After completing the C-implementation, described in Section 5.2, the conversion to JavaScript
was the next step. A complete overview of what steps will be taken in JavaScript can
be seen in Figure 5.7. First the topic of how the conversion was made from C code to
a JavaScript implementation will be handled. Then the complete workings of the ac-
tual web browser application will be discussed. The web application has been written in

5.3. JAVASCRIPT IMPLEMENTATION 45

ECMAScript 6 JavaScript .

Figure 5.7: Complete overview of the flow of the JavaScript implementation

5.3.1 Conversion of the native application to JavaScript

At the start there seemed two possible options to convert the C-implementation of phase
2 in Section 5.2: either cut the bit stream in pieces myself by reading HEVC video
bit stream headers in JavaScript , or try to convert the FFmpeg implementation to a
JavaScript implementation with tools. The latter approach was taken as there were cases
found on GitHub of FFmpeg in JavaScript . However, most cases were a simplified version
of FFmpeg which did not have all options included. After some research, more info about
web assembly was gained and how it could be used with conversion scripts to transpile
my FFmpeg implementation of Phase 2 to JavaScript .

The conversion of the C-implementation of the code to JavaScript is based on the scripts
provided by Kagami [Kag18]. Kagami provides scripts which will use Emscripten [ems18]
to convert our FFmpeg version 3.1.9001 to a working JavaScript version with restrictions
(e.g., only allowing to work with MP4 containers and a specific codec). By updating the
scripts provided by Kagami to include only the used video containers and codecs, and
using the FFmpeg version of the phase 2 implementation, a conversion was possible. It is
important to note that the correct Emscripten version is used: 1.37.40 this is because the
latest version of Emscripten by default generates WASM [web18b] while we need ASM.JS.
ASM.JS is a very strict subset of JavaScript and has a lot of C characteristics [Bam18]. It
is not needed to go in complete detail of ASM.JS in this master thesis but it is important
to understand that the eventual conversion of the C-implementation yields ASM.JS code
which is very optimized JavaScript .

The converted JavaScript implementation works based of web workers. Web workers allow
a web browser to run scripts on another thread in the background without interfering with
user interaction [web18a]. A web worker can be accessed by sending post messages and
getting messages back with the onmessage event handler which can be seen in Listing 5.15.
On line 2, the web worker is created. On lines 5 to 23, all message cases get handled. In
the situation of our conversion, the response can be

• ready when the web worker is finished loading.

46 CHAPTER 5. IMPLEMENTATION

• stdout, stderr, exit, error are messages coming from the C-implementation which
are discarded in this case.

• done means that the web worker is finished with the processing of the input.

Lastly there is the postMessage, seen on line 27, which allows for starting the web worker
with a set of arguments.

• The attribute type says the web worker should execute the program with given
parameters.

• MEMFS is a virtual file system used by Emscripten to allow input/output files to
be exchanged between the invoking thread and the web worker. It is important to
notice that when the web page gets refreshed, all content will be removed.

• arguments is a list of strings to be used as arguments just like in a native application
with command line execution.

1 // Load the web worker with a script

2 var worker = new Worker("segmenter/ffmpeg -worker.js");

3
4 // What to do if the worker has a message

5 worker.onmessage = function(e) {

6 var msg = e.data;

7 switch (msg.type) {

8 case "ready":

9 break;

10 case "stdout":

11 break;

12 case "stderr":

13 break;

14 case "exit":

15 break;

16 case "error":

17 break;

18 case "done":

19 var outputInit = msg.data.MEMFS [1];

20 var outputSegment = msg.data.MEMFS [2];

21 ... if needed add init file to media source buffer (first segment

)

22 ... else add only media segment to media source buffer

23 break;

24 }

25 };

26 // start the web worker

27 worker.postMessage ({ type:"run", MEMFS: segmentList , arguments: [...]});

Listing 5.15: Web worker example implementation

One of the restrictions of working with the web worker implementation is that all segments
and the initialization MP4 have to be downloaded and saved in an ArrayBuffer to enable
them to be input into the web worker. To cope with this situation, the amount of tiles is
read from the MPD. Once we know how many tiles are needed, the corresponding segments
are downloaded via the scheduler, more details about the scheduler will be given later
on. When a segment is received, it will be placed in the segmentList by creating an
object which contains two attributes: name and data. The name is the segment with the
corresponding tile number, the data is the ArrayBuffer. Once all tiles have been received
and if needed the init.mp4 file, the web worker receives the segmentList as input with the

5.3. JAVASCRIPT IMPLEMENTATION 47

arguments list, which is a list of all segment names and the init filename. The init.mp4
is needed every run, as such this file can be cached and reused instead of re-downloading
the file with the segments.

When the web worker finishes, the done message gets executed on line 18 of Listing 5.15.
It will load the created init and segment file out of the MEMFS memory and add the init
file (if needed) and segment file to the media source buffer. The Media source buffer will
be explained in Section 5.3.2.

5.3.2 Web application

Now that the conversion of the native application is done and the messaging from and
to the web worker is understood, the next step is including the web worker in the web
application written in EmcaScript 6. EmcaScript 6 or ES6 is a new version of JavaScript
that includes new features such as classes and is supported by all major browsers with the
latest version. For a complete overview of all new features, have a look at [Eng].

The web application works by using a video element, the media source and the media
source buffer. First the media source gets initialized on line 2 of Listing 5.16 which will
eventually (line 5) act as a source for the video element. A event listener which checks if
the source is open gets attached on line 3. Once the source is open, the function on line
8 is called. In this function the to use video codec (which is extracted from the MPD file,
in our case this will he HEVC) will be initialized. This video codec is read from the MPD
file which has been requested by a HTTP GET request earlier.

1 initSourceBuffer () {

2 this._mse = new MediaSource ();

3 this._mse.addEventListener('sourceopen ',
4 onSourceOpen.bind(null , this._videoElement , this._mse));

5 this._videoElement.src = URL.createObjectURL(this._mse);

6 let videoController = this;

7
8 function onSourceOpen(video , mse , evt) {

9 Logger.debug(VideoPlayer.getTag (), "onSourceOpen ()");

10 try {

11 videoController.sb = mse.addSourceBuffer(

12 videoController._videoCodec);

13 Logger.debug(VideoPlayer.getTag (), 'source buffer added ');
14 } catch (Exception) {

15 Logger.error(VideoPlayer.getTag (),

16 "Could not add the specified video codec");

17 }

18 };

19 }

Listing 5.16: Initialization of the video element with a media source buffer to
input segments

Adding media segments to the media source buffer is done in Listing 5.17 with a self
implemented queue. This had to be done because of a restriction in Microsoft Edge which
would not allow the adding of the event handler onupdateend. This event handler would
be called each time the buffer was done updating and could then be asked to push the new
element into the buffer. Because Microsoft Edge did not allow this, a queue that works
based on promises was developed. Promises have been around for a while in different

48 CHAPTER 5. IMPLEMENTATION

libraries but have only recently been added to the main library of JavaScript [Arc18]. A
promise allows for an asynchronous execution that will return either with a resolved value
or a reject. The queue works by seeing the next item in the queue (a function call) as a
resolve and executing the next item in the queue. To counter the disability of Edge to use
the event handler onupdateend, an interval is set for each segment that has to be added
to the SourceBuffer. These intervals will be added to the queue and executed in order.
When an interval is successfully completed, the next interval in the queue will start to
add the next segment.

As can also be seen in Listing 5.17 on line 5, there is a check to see if the source buffer
already holds data. If this is the case, the last buffer time stamp is taken and the new
segment needs to be appended on this time stamp. This approach had to be taken because
of a problem with the DashEncoder implementation of phase 2 in Section 5.2.2. Within
this implementation, the time stamps are reset every new run. This means that when a
new segment is processed, the time information always starts from zero. A bug fix for this
has not been found in the current implementation because of the lack of documentation
by FFmpeg . For this reason the JavaScript side bug fix has been introduced.

1 addToMediaSourceBuffer(arrayBuffer) {

2 let sourceBuffer = this.sb;

3 this._mseAppendQueue.add(function () {

4 let appendFunction = setInterval(function () {

5 if (sourceBuffer.updating === false) {

6 if (sourceBuffer.buffered.length !== 0) {

7 sourceBuffer.timestampOffset =

8 sourceBuffer.buffered.end (0);

9 }

10 sourceBuffer.appendBuffer(arrayBuffer);

11 clearInterval(appendFunction);

12 }

13 }, 10);

14 })

15 }

Listing 5.17: Adding of the video data to the media source buffer by queue
because of Microsoft Edge restrictions

The last important piece of the web application is the scheduler. As mentioned before, the
scheduler works on basis of a steady fill implementation. This means that when the buffer
notices it does not have enough video data buffered based on the minimum buffer time
and current playback time, the next segment gets requested. However, Microsoft Edge
has a restriction wherein the media source buffer has to have at least 5 seconds of video
content before the playback of the video is possible. Therefor, has the implementation
been made to first download and remux 5 seconds of video content and then use the
minimum buffer time to check if the next segments should be downloaded or wait. The
scheduler has been constructed in such a way that another buffer fill algorithm can be
added by inheriting from ITiledDownloadScheduler and implementing an algorithm to
calculate what qualities should be used. In our example as shown in Figure 5.8, the
quality management is straightforward. The viewport which can be seen on the left side
can be moved across the whole video on the right side. It is also possible to make the
viewport bigger and smaller by scrolling. The tile that has the most surface in the viewport
will be given the best quality available, all other tiles will get the lowest quality.

The web application also allows to update the quality of a tile manually by selecting a

5.3. JAVASCRIPT IMPLEMENTATION 49

quality from the ‘bit rate per tile’ list. This list goes from tile 1 until tile 9 in this case.
Each tile has a possibility of 4 qualities as 4 MPEG-DASH representations are available.
When moving the viewport, this quality does not change unless the tile has the most
surface in the viewport, which will make the tile automatically update to the maximum
bitrate.

It is also possible to pause the video. When an user pauses the video, the scheduler will
halt the downloading of new segments as the current play time of the video does not
change, implying that the buffered content will not decrease nor increase.

Figure 5.8: The web application as seen in the web browser

50 CHAPTER 5. IMPLEMENTATION

Chapter 6

Results

In this chapter, the results will be analyzed by first describing the setup with which the
tests were conducted. In this use case the test are done on a Windows desktop for the
Microsoft Edge, Google Chrome and Mozilla Firefox web browsers. The web application
has been tested on an Apple device in the Safari web browser and verified as working.
However, no test results from the execution in the Apple Safari web browser will be
used in this analyses. This is because no comparison between the Apple device and the
Windows device can be made. The Apple device that was available during the test had
nowhere near the same hardware specifications as the Windows device. Another problem
was the workings of Google Chrome on the Apple device. There was no knowledge on
the operating system interactions Google Chrome made on an Apple device and if these
were the same on a Windows device. Therefore, no comparison could be made.

Once the setup is discussed, different resolution and tile setup videos are tested in com-
parison of each other. The conducted tests are available in Section 6.2.

After the experimental results in Section 6.2, a deeper analyses of the web worker execu-
tion is done in Section 6.3.

6.1 Setup

The test were made using a windows desktop with the following specifications:

• CPU: Intel® Core™ i7-8700K Processor (3.70 GHz turbo boost to 4.70 GHz)

• Motherboard: ASUS ROG strix z370-E Gaming mainboard Socket 1151

• GPU: NVidia GTX780 3072 MB

• RAM: 16GB DDR4 2.666Mhz

• OS version: Windows 10 Pro 64 bit version 1803 (64 bit)

The web browser version used were:

• Microsoft Edge: 42.17134.1.0 (64-bit)

• Google Chrome: 68.0.3440.106 (Official Build) (64-bit)

• Mozilla Firefox: 61.0.2 (64-bit)

51

52 CHAPTER 6. RESULTS

It was of utmost importance to know if every web browser produced the correct output
with the web application described in Section 5.3. Therefore, every output of every web
browser has been tested and played by the same Microsoft Edge browser on a website
containing a simple media source buffer implementation that feeds the produced segments
to the media source buffer. Hereby, giving a visual verification of the correct output.

To make sure that the bandwidth does not interfere with the execution time, the as-
sumption is made that there is unlimited bandwidth available. This means that the
downloading of segments or any other content needed to produce the init.mp4 and seg-
ment files will not interfere with the execution time in any of the provided web browsers.
To give a small reminder, to generate one output segment for a 3x3 tiled video, there are
11 input segments needed. These input segments exist of one initialization MP4 which
does not need to be re-downloaded every time and can be cached. The 3x3 + 1 segment
have to be downloaded every new segment. For a detailed explanation of the structure of
the input, see Chapter 5.

The used input files to test the web application are the following:

• 1920 by 1080 pixels (1920p) 3x3 tiled video of 1000 milliseconds segments.

• 3840 by 2160 pixels (2160p) 3x3 tiled video of 1000 milliseconds segments.

• 1920 by 1080 pixels (1920p) 3x3 tiled video of 5000 milliseconds segments.

• 3840 by 2160 pixels (2160p) 6x6 tiled video of 1000 milliseconds segments.

The 2160p video is 24 seconds long, this means there will be 24 output segments. The
1080p video is 90 seconds long which means 90 output segments for a segment duration
of 1000 milliseconds and 18 for the 5000 millisecond duration.

The generation of the output has been done 10 times for each web browser for every test.
These 10 executions are then combined into one average execution time per produced
output segment. The average is taken to mediate out possible outliers.

6.2 Experimental results

The analysis of the results will go in following steps with a 3x3 tiled video unless stated
otherwise. First the execution time of the 1920 by 1080 pixels (1080p) video will be
discussed in Section 6.2.1. Then the average execution times of the 3840 by 2160 pixels
(2160p) video in Section 6.2.2. Both videos will have segment durations of 1000 millisec-
onds and will be compared against each other to see the impact of video resolution size
in Section 6.2.3. Thereafter, the segment duration will be increased to 5000 milliseconds
for the 1080p video and compared with the 1000 millisecond video to see what impact an
increased segment duration has on the processing time in Section 6.2.4. Lastly, the tile
setup will be changed for the 2160p video from 3x3 tiles to 6x6 and compared with each
other in Section 6.2.5.

6.2.1 1080p

In this test, the execution time of the 1000 milliseconds 3x3 tiled 1920x1080 resolution
video was tested. To generate one output segment, 11 input files are needed as discussed

6.2. EXPERIMENTAL RESULTS 53

before.

When looking at the graph of Figure 6.1, something weird can be seen: the first segment
takes much longer than all other segments. At first, we did not think this was a web
browser issue. We rather thought it was because of the fact that the first segment, more
precisely the first frame, took longer because of the I-frames. This made no sense as
all segments started with an I-frame. When looking at the other web browsers, we also
notice this spike for Chrome but not for Mozilla Firefox which gave a skewed view in
Table 6.1 where the average execution times are shown. The average execution time is
taken from the execution times for each individual generation of 90 output segments. The
first segment processing time is on average 1400 milliseconds for Microsoft Edge and 907
milliseconds for Google Chrome. In Section 6.3 a deeper analyses for the spike and reason
why is examined.

Figure 6.1: Graph showing the execution times of the web worker remuxing step
per 1000 millisecond segment for a 1080p video

1920x1080 pixels (1080p)
With first remux Without first remux

Microsoft Edge 81.205 ms 66.411 ms
Google Chrome 61.221 ms 52.108 ms
Mozilla Firefox 74.817 ms 74.617 ms

Table 6.1: Table showing the average execution times of the remuxing with the web
worker for a 1080p video

By removing these first segment times, we get the average execution times shown in Table
6.1 in the column Without first remux. The exact timing for each segment other than the
first can be seen in the graph of Figure 6.2. In this graph a lot of spikes are seen for a lot
of segments in comparison with the previous or subsequent segment, a deeper look into

54 CHAPTER 6. RESULTS

this, is in Section 6.2.2. Google Chrome seems to be the fastest followed by Microsoft
Edge. By looking at table 6.1 we can confirm this statement.

Figure 6.2: Graph showing the execution times of the web worker remuxing step
per segment without the first segment for a 1080p video

6.2.2 2160p

In the execution with 3840 by 2160 pixels (2160p) video, the same pattern emerges as in
the 1080p video. In the Microsoft Edge and Google Chrome web browser, the execution
times of the first segment are extremely high compared with all subsequent executions.
The exact execution times for the first segments on average are 1405 and 871 milliseconds
for Microsoft Edge and Google Chrome, respectively. This can be seen in the graph of
Figure 6.3.

An overview of the average execution times with and without the first segment execution
can be seen in Table 6.2 and Figure 6.4. Furthermore, is the average execution time of
Google Chrome lower than those of Microsoft Edge and Mozilla Firefox.

3840x2160 pixels (2160p)
With first remux Without first remux

Microsoft Edge 127.548 ms 68.346 ms
Google Chrome 88.896 ms 52.587 ms
Mozilla Firefox 75.656 ms 74.768 ms

Table 6.2: Table showing the average execution times of the remuxing step with
the web worker for a 2160p video

By having a closer look at the graph, there seem to be spikes which are on different
segments for Microsoft Edge, Google Chrome and Mozilla Firefox. An explanation for

6.2. EXPERIMENTAL RESULTS 55

Figure 6.3: Graph showing the execution times of the web worker remuxing step
per 1000 millisecond segment for a 2160p video

these spikes is yet to be found. The first assumption was the segment packages being
bigger (or lower) in size for subsequent segments but then the spikes would be on the
same segments which is not the case. If we look at segment 15 of Figure 6.4 we can see
that this segment is a spike for Google Chrome but not for Microsoft Edge or Mozilla
Firefox. Our assumption is proven invalid if we look at the segment sizes in Figure 6.5.
Here we can see that the size of segment 15 is a lot smaller than the others. A possibility
can be the Garbage collector kicking in and halting web worker execution in Google
Chrome. We will analyze this more in Section 6.3.

6.2.3 1080p vs 2160p

By looking at the average execution times of the 1920 by 1080 pixels (1080p) and 3840
by 2160 pixels (2160p) video which are represented in Table 6.3, there are a few things
to notice. When the implementation was started, the assumption was that the average
execution times would differ as the packages that have to be read are approximately 4
times larger. This is because the 1080p video fits 4 times in the 2160p video. However, this
is not represented in the numbers when looking at the execution times. Microsoft Edge
web browser differs only by 1.935 milliseconds, Google Chrome by 0.479 milliseconds and
Mozilla Firefox by 0.151 milliseconds. The differences were assumed because the memory
copies that need to happen are larger for the 2160p video as more data has to be copied.
Even though there is a small difference in execution time, there is not enough difference
to say that a higher resolution video has an noteworthy impact on the processing time of
the web worker.

56 CHAPTER 6. RESULTS

Figure 6.4: Graph showing the execution times of the web worker remuxing step
per segment without the first segment for a 2160p video

Figure 6.5: Graph showing the segment index correlating the input total size with-
out the first segment for a 2160p 3x3 tiled video

6.2. EXPERIMENTAL RESULTS 57

1080p 2160p

Microsoft Edge 66.411 ms 68.346 ms
Google Chrome 52.108ms 52.587 ms
Mozilla Firefox 74.617 ms 74.768 ms

Table 6.3: Comparison of the average execution time without first segment of the
1080p versus the 2160p video

6.2.4 1080p semgent duration 5000 milliseconds

Another test that has been done is the increase of segment durations to 5000 milliseconds
instead of 1000 milliseconds for the 1080p video content. However, this is not a real
life situation as a user wants the quality adaptation to happen as fast as possible. If a
segment duration is 5000 milliseconds, a user would need to wait 5000 milliseconds (given
that 1 segment is buffered and being the worst case that the segment just started) before
the quality changes. As such, the duration of segments should always be as short as
possible.

Just as in the other cases, the start up time is a lot higher than the subsequent executions
which will be further analyzed in Section 6.3.

Figure 6.6: Graph showing the execution times of the web worker remuxing step
per 5000 millisecond segment without the first segment for a 1080p video

In the graph of Figure 6.7, one thing stands out. The Microsoft Edge web browser has
almost the double execution time than Google Chrome and Mozilla Firefox. As the
segments are 5 times longer (from 1000 milliseconds to 5000 milliseconds) the assumption
was that the average execution time would be 5 times as long. This assumption is based
on the fact that the segment duration is 5 times longer and as such contains 5 times more
video data. Hereby, needing to read 5 times as many headers and copy 5 times as much

58 CHAPTER 6. RESULTS

data. However, the execution time is not 5 times as high for any of the execution times.
The average execution time in Google Chrome is only 3.4 times higher, Mozilla Firefox
3 times and for Microsoft Edge 6 times higher. A reason for the extreme increase for
Microsoft Edge and not for Mozilla Firefox nor Google Chrome was not found and needs
further investigation in future work.

Figure 6.7: Graph showing the execution times of the web worker remuxing step
per 5000 millisecond segment without the first segment for a 1080p video

1080p
1000 ms 5000 ms

Microsoft Edge 66.411 ms 402.678 ms
Google Chrome 52.108ms 178.009 ms
Mozilla Firefox 74.617 ms 229.052 ms

Table 6.4: Comparison of the average execution time without first segment of the
1080p with 1000 milliseconds segments versus 5000 milliseconds

6.2.5 2160p 6x6 tiles

The last test in different sized files is done with a 3840x2160 pixel video with 6 by 6 tiles.
This means that a tile will have a dimension of 640 by 360 pixels. These segments have
a duration of 1000 milliseconds and will be compared against the web worker execution
times of the 3x3 2160p test. With this test, the assumption was made that even though
there are a lot more tiles, 36 vs 9. The execution time would be higher as there would be
many small memory copies instead of a few larger ones. In table 6.5 the comparison is
shown. Our first thought is in deed correct, the average execution times without the first
segments are indeed higher for the 6x6 tiles. However, the executions times are higher,

6.3. ANALYSES 59

the expectation difference was not expected to be this high; 12,953 ms for Microsoft
Edge, 16,29 ms for Google Chrome and 8,696 ms for Mozilla Firefox. To understand
why the executions are this much higher, a deeper analyses is needed in future work.
One possibility is the time needed to copy the input files to the web worker, as many
more files are needed to be copied (37 + the init file instead of 10 + init file). Another
possibility is the concatenation step that takes longer in the execution (more details of
the concatenation step in Chapter 5. As more files are being input, more files need to
be concatenated before the input video bit stream can be read. This means that in the
concatenation, more files need to be opened and copied to a new file which takes more
time to correctly open and close the different files.

2160p 3x3 2160p 6x6

Microsoft Edge 68.346 ms 81.299 ms
Google Chrome 52.587 ms 68.877 ms
Mozilla Firefox 74.617 ms 83.313 ms

Table 6.5: Comparison of the average execution time without first segment of the
2160p 3x3 tiled versus the 2160p 6x6 tiled video

6.3 Analyses

To analyze the high execution times, the developer tools of Google Chrome were used.
It is important to notice that the web application takes a performance hit by having the
developer tools open as logging information is processed.

In Figure 6.8, the first run for the 2160p output segment is shown. Our first assumption
was that the Just in time compiler [Lau13] was the problem for the slow execution of the
first segment. However, as can be seen in Figure 6.8 the compilation process happens
before the execution. It is even so that the compilation happens before the web worker
is started as the segments are not even downloaded. The segment downloads happen at
the almost 1000 ms mark after which they are taken as input for the web worker and
the web worker execution starts. So our assumption of why the first execution is so long
in comparison with the others, is wrong and needs further examination. When looking
at the figure, it also seems as if no other function is being executed for a long period of
time. By looking at other executions, this same halt is noticed even though these halts
are smaller in time.

A close up of another execution can be seen in Figure 6.9(in which the same halt but
shorter, can be noticed). The first thing to observe is the complete execution time of the
web worker which is 115.54 milliseconds. The execution of the preRun step is 3.01ms,
this is the step that will mount the working directory of the web worker. After this is
done, the doRun function is executed. This function is the converted code from the native
application and executes for 28.66 milliseconds. Once the combination into one native
tiled HEVC segment has been made and the execution is done, the data has to be copied
to a location for the main thread to access the output. This is done in postRun and takes
0.71 milliseconds. With these timings, we can conclude that the execution of the web
worker in which actual processing is done, is: 32,38ms. However, there is an execution
gap of 83.16 milliseconds. When looking at this gap, there seem to happen no function
calls till the almost end. This execution gap occurred in all the executions with the same

60 CHAPTER 6. RESULTS

Figure 6.8: First run showing the JIT compiler first compiling the script before
being executed

average time of 80 milliseconds for the video in 2160p. This gap (in smaller size) also
occurred in the 1080p videos. An assumption could be made that this overhead is created
by the web worker and is needed to initialize the web worker before execution could
be done. However, this means that the overhead would be the same for all executions,
regardless of 1080p or 2160p content which is not the case. Another assumption is that
this overhead is generated by either the Emscripten conversion and extra JavaScript code
is added which prevents immediate execution or ASM.JS itself. To be able to verify or
reject this assumption, more research is needed.

Figure 6.9: Analyses with the chrome developer tools

Chapter 7

Conclusion

This chapter will conclude this thesis by giving an overview of what has been done and
discuss the future work possibilities. At the start of this thesis, we wondered if it was
possible to stream tiled HEVC video over MPEG-DASH to a web browser, as Microsoft
Edge at that time already supported HEVC decoding and Apple announced Safari for
HEVC playback, to be released in their High Siera update. Furthermore, we were inter-
ested in the preprocessing speed to be able to play the HEVC video content in real-time
in the web browsers.

The streaming of HEVC over MPEG-DASH works by abusing the tile feature. Tiles allow
a video to be divided in rectangular independent regions. By using tiles and MPEG-
DASH, the video content is split up so that every tile has its own AdaptationSet with
Representations. One AdaptationSet is added containing all non video coding layer
NAL units which are needed to be able to decode the whole video frame.

The first thesis question: Is preprocessing a MPEG-DASH tiled video in a web browser
to a native tiled HEVC video feasible? has successfully been answered with yes. We
implemented this by firstly creating a native application with FFmpeg . In this native
application the different segments were preprocessed to eventually yield one DASH seg-
ment containing a natively tiled HEVC video. This native application was then transpiled
to a web application. In the web application the quality of a tile changes based on the
viewport and its position in regard to the tiles.

To answer our second research question: Can the preprocessing be implemented in a suffi-
ciently efficient manner to ensure live playback? we measured the average preprocessing
execution time in three popular contemporary web browsers. Throughout Chapter 6,
these web browsers were tested with segments of a 1000 and 5000 milliseconds duration
and video content in 1080p and 2160p with 3x3 and 6x6 tiles. Even though, there is yet to
be an explanation for the high execution time of the first segment. We can conclude that
live video playback is possible with the videos tested. However, more tests are needed to
analyze the high start up times of the first segment processing.

Furthermore, we also tried if it was possible to decode the tiled HEVC video in the web
browsers that lack native HEVC decoding support like Google Chome and Mozilla Firefox.
This was done by software decoding the HEVC video content. The implementation worked
in ASM.js which is a highly optimized subset of JavaScript . The code to execute the
software decode was transpiled from the native application which was based on FFmpeg .

61

62 CHAPTER 7. CONCLUSION

The ASM.JS script was then executed using a web worker. Our goal here was to be able
to play the HEVC video content in any web browser. The software implementation in
ASM.JS decoded a HEVC video frame to raw YUV and then encoded it to JPEG to
be able to project the JPEG image in a HTML5 canvas element of the web browser.
This did seem like a technically likely situation to work, even though it would be slow
as we were decoding HEVC video in software. However, in practice it did not work
because of the size of the YUV output per frame. The web browser could not handle
the memory consumption and would eventually crash the web page or the web browser,
making playback impossible.

7.1 Future Work

A first possibility for future work could be the optimization of the native implementation
which is ported to a web browser application. In the current implementation as described
in Phase 2 of Section 5.2 the input files are concatenated into one file. An optimization
would be to use multiple input streams to read each file individually instead of first
concatenating the files and then ready the constituting frames from this concatenated
file. This optimization would decrease the processing time as no new file has to be
created.

Secondly a smart bandwidth management system could be introduced. An example of
such smart bandwidth management system is better distribution of tile qualities. It
might be interesting to give the tiles surrounding the viewport a quality other than the
lowest quality. This is especially helpful for situations were the viewport is bigger than a
single tile. Another example is by looking at the user’s viewport motion. Based on the
movement, a tile quality decision could be made. For example, give beter qualities to the
tiles in which direction the client is moving. Maybe even extent this by giving highest
quality to the tiles in the viewport and downgrading the qualities in steps of the further
the tiles are from the viewport in that specific direction.

In [FC16] there are some possible future improvements described. The difference in quality
of tiles can be noticeable when distribution of bandwidth is done in a matter of giving
max quality to the viewed tile and giving lowest to surrounding. While this might be a
good approach in some situations. It could also show hard borders with many artifacts
in other situations.

Chapter 8

Appendix A - Dutch Summary

63

64 CHAPTER 8. APPENDIX A - DUTCH SUMMARY

H.264/MPEG-4 AVC is al jaren de standaard voor videoconsumptie. De huidige diver-
siteit aan services, de nog steeds groeiende populariteit van hoge kwaliteit video’s en de
voortdurend toenemende videoresolutie vragen om een efficiëntere codeermogelijkheid dan
H.264/MPEG-4 AVC kan bieden [SO10] [SOHW12]. Bovendien genereren mobiele appa-
raten steeds meer downloadverkeer via draadloze netwerken die meer vatbaar zijn voor
transportfouten en minder bandbreedte hebben dan hun bekabeld netwerk tegenhangers.
Deze mobiele netwerken zijn op geen enkele manier geoptimaliseerd voor het streamen
van videomateriaal in de gevraagde hoge kwaliteit. Hoewel de bandbreedtehoeveelheid
van mobiele netwerken elke dag toenemen, is de behoefte aan betere videocompressie
voor video’s met hoge resolutie groter dan ooit om de steeds toenemende vraag naar
video-inhoud via internet te voeden [SCF+12]. Bijgevolg is H.265/High Efficiency Video
Coding (HEVC) ontworpen in een gezamenlijke inspanning van ITU-T VCEG en ISO/IEC
MPEG-standaardisatieorganisaties om de tekortkomingen van H.264/AVC te verbeteren
door hogere resoluties te ondersteunen en de hoeveelheid bitrate die gecodeerd video’s
vragen te verlagen. Met behulp van HEVC kan de grootte beperkt worden tot wel 50%
voor video’s in dezelfde kwaliteit [CAMJ+12].

Doordat HEVC een gevolg is van H.264 zijn er veel eigenschappen van H.264 overgenomen
maar ook verbeterd. Een van de nieuwe kenmerken die standaard ondersteund wordt in
HEVC is tiles. Tiles ondersteuning was aanwezig in H.264 via omwegen. Met behulp van
tiles, kan een video in gelijkwaardige rechthoeken opgedeeld worden. Deze tiles kunnen
dan elke afzonderlijk geëncodeerd en gedecodeerd worden. Het is ook mogelijk om de
kwaliteit van een individuele of meerdere tiles te veranderen in dezelfde video. Dit door
een of enkele tiles onderling te verwisselen met tiles in verschillende kwaliteiten.

De video waarmee gewerkt zal worden is een 360 graden video. In deze video zal de
gebruiker de mogelijkheid hebben om rond te kijken. Dit door een gebruiker toe te staan
in de 360 graden video rond te kijken met behulp van een viewport. De viewport is de
regio van de video die bekeken wordt door de gebruiker. Onze doelstelling zal zijn om de
video buiten het viewport een lage kwaliteit te geven en de videobeelden in het viewport
een hoge kwaliteit.

Aangezien de video ook tot bij de gebruiker moet geraken over het Internet om zo de
video in de web browser af te spelen, maken we gebruik van de MPEG-DASH media
streaming standaard. MPEG-DASH stelt de gebruiker in staat om de kwaliteit van de
video tijdens het afspelen te veranderen door videosegmenten van verschillende kwaliteiten
uit te wisselen. Deze segmenten kunnen een zelfgekozen tijdspanne hebben. Aangezien
onze implementatie door middel van tiles werkt, zal in de plaats van de volledige video,
de verschillende tiles in een de mogelijke kwaliteiten gestreamd worden. Wanneer alle
tiles in de hoogste kwaliteit doorgestuurd worden, zal de bandbreedte die nodig is om
de video af te spelen enorm zijn. Zoals we in de inleiding vermeld hebben is het net de
bedoeling om een zo laag mogelijke bandbreedte te halen zodat het doorsturen van de
video efficiënt kan gebeuren. Dit wilt zeggen dat de tile die de grootste oppervlakte van
het viewport inneemt in de beste kwaliteit gestreamd zal worden. Alle andere tiles zullen
in onze opstelling de laagste kwaliteit krijgen.

Het uiteindelijke doel is om de 360 graden video in de web browser af te spelen. We kunnen
alle tiles apart opvragen in de kwaliteit gebaseerd op het viewport. Het enige dat resteert
is de video samenvoegen zodat deze afgespeeld kan worden in de web browser. Dit wordt
gedaan aan de hand van een web worker. Een web worker is een stukje JavaScript code
dat parallel uitgevoerd zal worden. Met parallel bedoelen we dat dit stukje JavaScript

8.1. HEVC 65

code uitgevoerd kan worden zonder impact te hebben op de normale functionaliteiten
van de web browser. In de web worker worden de verschillende tiles samengevoegd tot
een enkele native tiled HEVC video. Deze video zal als input dienen voor het HTML5
video element dewelke de video presenteert aan de gebruiker. In deze masterproef werd
de implementatie gemaakt die het toelaat om de tiles samen te voegen tot een native
tiled HEVC video die gedecodeerd kan worden door de web browser. Verder werd in deze
masterproef ook de uitvoeringstijden voor het verwerken van 1080p, 2160p, verschillende
tijdspanne van de videosegmenten en veranderingen in het aantal tiles getest.

8.1 HEVC

H.265/HEVC is ontworpen in een gezamenlijke inspanning van ITU-T VCEG en ISO/IEC
MPEG-standaardisatieorganisaties om de tekortkomingen van H.264/AVC te verbeteren
door hogere resoluties te ondersteunen en door de bitrate vereisten van gecodeerde video’s
te verlagen. Dit wordt gedaan door een bestandsreductie tot 50% te realiseren met behoud
van dezelfde kwaliteit [CAMJ+12].

HEVC ondersteunt verschillende benaderingen om de decodering en codering te parallel-
liseren. Een van deze benaderingen is het gebruik van tiles. Met tiles kan een gebruiker
een video splitsen in rechthoekige gebieden die afzonderlijk kunnen worden gecodeerd en
gedecodeerd.

Een ander belangrijk onderdeel van H.265/HEVC zijn de NAL-units. NAL unit staat
voor Network Abstraction Layer en encapsuleren de geëncodeerde video data zodat deze
opgeslagen kunnen worden [Wie14]. Er zijn twee soorten NAL units: Video Coding Layer
en niet-Video Coding Layer NAL units. De VCL NAL unit bestaat uit alle CTU data
en slices. Slices werden origineel in H.264/AVC ontwikkeld om een video bit stream
in kleinere delen op te splitsen. Deze kleinere delen kunnen via het Internet verzonden
worden. Later werden slices ook uitgebuit om parallellisatie mogelijk te maken in H.264.
CTU staat voor Coding Tree Unit maar zal in deze sectie niet verder toegelicht worden.
De uitleg CTU kan gelezen worden in de volledige thesis tekst. Het is echter wel belangrijk
te weten dat de CTU voor de opdeling van het video frame zorgt. Deze CTU s zijn blokjes
van 16x16, 32x32 of 64x64 pixels. CTU s worden gebruikt om de video beeld per beeld te
reconstrueren.

8.2 MPEG-DASH

MPEG-DASH is een streaming standaard die ontwikkeld is door de toenemende groei van
HTTP servers en de nood aan streaming zonder overhead aan serverkant zoals bij Real-
Time Transport Protocol (RTP) wel het geval is. MPEG-DASH zal in deze masterproef
ook gebruikt worden als de streaming methode.

MPEG-DASH werkt door middel van een Media Presentation Description (MPD) be-
stand. Dit bestand zal geparset moeten worden om de streaming sessie te starten. Een
MPD omvat een aaneenschakeling van niet overlappende Periods, representaties van
tijdsintervallen. Inhoudelijk bevatten Periods de verschillende coderingsparameters en
serverlocaties van media componenten zoals: video’s met verschillende codec, video’s met

66 CHAPTER 8. APPENDIX A - DUTCH SUMMARY

verschillende kijkhoeken, ondertitels of audio voor verschillende talen, audio die meer
informatie bevat bijvoorbeeld regisseur opmerkingen, enzovoort [Sto11].

Een Period bestaat uit één of meerdere AdaptationSets. Elk van deze Adaptation-
Sets is een high level representatie van een media component. Zo staat in dezelfde
AdaptationSet een collectie van onderling verwisselbare geëncodeerde versies van een
media component. In deze thesis zal elke AdaptationSet één tile voorstellen, behalve
de eerste AdaptationSet die enkel de niet-VCL NAL units bevat zodat het totaal beeld
gereconstrueerd kan worden. De NAL-units worden in Sectie 8.1 meer toegelicht.

Een AdaptationSet bestaat uit een set van Representations. De Representations
stellen de kwaliteit van een media component voor. Zo kunnen twee Representa-
tions binnen dezelfde AdaptationSet eenzelfde video (in het geval van deze thesis, tile)
voorstellen maar dan met een verschillende bitrate. Deze Representation kan tijdens
het streamen van de video gewisseld worden.

8.2.1 Spatial Relationship Description

Om het streamen van tiles mogelijk te maken, is een uitbreiding nodig op de basisstructuur
van de MPD, Spatial Relationship Description (SRD). Deze nieuwe extensie is geleverd
met de tweede wijziging van MPD in ISO/IEC 23009-1:2014/Amd.2:2015 [iso15]. Via de
SRD informatie, weet de DASH-client welke video tiles moeten worden aangevraagd op
basis van de kijklocatie van de client in de video. Hierdoor kan een DASH-client ervoor
kiezen om alle of slechts een deel van de betreffende video tiles te streamen. Dit laat ook
toe om gebruikers bepaalde tiles van de video in hoge kwaliteit en andere in lage kwaliteit
te streamen [DvdBTN16].

De SRD extensie voegt enkele nieuwe functies toe aan de MPD syntaxis. Een volledige
beschrijving is te vinden in ISO/IEC 23009-1 [iso15]. Alleen de belangrijke onderwerpen
in de context van deze masterscriptie zullen worden toegelicht. Het hoofdconcept is
om een 2-dimensionale ruimte te definiëren voor de verschillende locaties van de media-
objecten.

SRD introduceerde twee nieuwe tags: EssentialProperty en SupplementalProperty.
Bovendien worden beide eigenschappen gedefinieerd in een AdaptationSet. Met de
EssentialProperty kan de auteur van MPD bepalen dat het essentieel is om deze de-
scriptor met te verwerken om te zorgen voor een correcte verwerking van de bovenliggende
inhoud, de AdaptationSet. Wanneer oudere DASH-clients deze descriptor tegenkomen,
negeren ze deze AdaptationSet [NTD+16]. Met de SupplementalProperty kan de
auteur van het MPD bestand definiëren dat het niet essentieel is om de informatie van de
descriptor correct te ontleden om te zorgen voor een correcte verwerking van de Adap-
tationSet.

Deze tags definiëren twee kenmerken: schemeIdUri en de value [NTD+16]. De schemeI-
dUri definieert het schema bij het lezen van waarden. In deze context is de waarde van
schemeIdUri urn:mpeg:dash:srd:2014. De tag value is iets ingewikkelder gestructureerd
en bevat de volgende velden in functie van de masterthesis:

• source id is een verplicht veld dat bestaat uit een geheel getal dat de inhoudsbron
identificeert. Met deze ID kan een tile naar een video verwijzen.

8.3. IMPLEMENTATIE 67

• object x een niet-negatief geheel getal en vereist veld dat de horizontale positie
vertegenwoordigt, beginnend in de linkerbovenhoek van het overeenkomstige media-
element.

• object y een niet-negatief geheel getal en vereist veld dat de verticale positie verte-
genwoordigt, beginnend in de linkerbovenhoek van het overeenkomstige media-
element.

• object width is een verplicht veld dat de breedte van het overeenkomstige media-
element met een niet-negatief geheel getal vertegenwoordigt.

• object height is een verplicht veld dat de hoogte van het bijbehorende media-element
met een niet-negatief geheel getal vertegenwoordigt.

8.3 Implementatie

De implementatie begon met een eenvoudig idee; Stream tiled HEVC video over MPEG-
DASH om 360 graden video te projecteren, zodat één decoder nodig is en adaptieve
kwaliteitscontrole mogelijk is. Vanaf het begin was bekend dat GPAC werk had geleverd
rondom tiled HEVC adaptieve MPEG-DASH video streaming. Ze hebben deze imple-
mentatie ook gedemonstreerd op wetenschappelijke conferenties. Het enige dat aan het
begin van het proefschrift gevonden werd, waren tegenstrijdige handleidingen over het
genereren van tiled HEVC MPEG-DASH-inhoud, [Feu17] en [Feu18]. Deze handleiding is
herschreven en is te vinden in de masterthesis.

Er is besloten om met een native toepassing te starten omdat de ondersteuning voor
HEVC in de context van de webbrowser zo minimaal was dat alleen Edge op Windows
HEVC ondersteunde. Apple had de ondersteuning van HEVC aangekondigd in zijn jaar-
lijkse keynote in 2017 [Inc18]. De release kwam in september met de nieuwe grote Mac
OS X-update: 10.13 High Sierra. In beide webbrowsers was er een beperking om tiled
video’s niet toe te staan in afzonderlijke streams. Daarom werd de keuze gemaakt om een
web toepassing te maken die van MPEG-DASH segmenten (waarin elke tiles zijn eigen
AdaptationSet bevat en een AdaptationSet voor de niet VCL NAL units) van een
tiled HEVC bit stream naar een enkele HEVC bit stream gaat. Deze bit stream kan de
webbrowser decoderen en gebruik maken van hardware decodering.

8.3.1 Native applicatie

Er werd gekozen om eerst te starten met een native applicatie zodat de volledige HEVC
bit stream begrepen werd. De ontwikkeling gebeurde in enkele delen en is begonnen met
de native applicatie in FFmpeg versie 3.4.0.

Bij de eerste implementatie is er gestart met een MP4-bestand dat dezelfde structuur had
als de MPEG-DASH stream. Een overzicht van de implementatie is te zien in Figuur 8.1.
In het input MP4-bestand was er een stream per tile en een extra stream voor de niet
VCL NAL units. Deze extra stream bevatte ook de complete informatie van de video. Om
een enkele samengevoegde video bit stream te vormen, werd van elke stream een pakket
gelezen. Zo’n pakket bevatte voor de eerste stream de niet VCL NAL units, voor de andere
streams was dit een geëncodeerde tile. Wanneer van elke stream een pakket gelezen was,

68 CHAPTER 8. APPENDIX A - DUTCH SUMMARY

werden deze pakketten in de volgorde van de tiles achter elkaar geplaatst in een nieuw
pakket. Dit pakket werd dan op zijn beurt uitgeschreven naar een MP4-container.

Figure 8.1: Eerste fase van een MP4 container met een tile per stream naar een
enkele stream met tiles

In het volgende deel vonden twee stappen tegelijk plaats. Afbeelding 8.2 is hier een
weergave van. De uiteindelijke output is een enkel segment dat een native tiled HEVC bit
stream bevat. Verder zal ook een init.mp4 geproduceerd worden, hierover later meer in
Sectie 8.3.2. Om tot de deze stap te komen wordt de input samengevoegd tot een enkel
bestand. De input bevat een init.mp4, dit bestand bevat net zoals het MP4-bestand
uit de vorige stap alle informatie die nodig is over de verschillende tiles. De verschillende
segmenten bevatten de verschillende stream data. Wanneer deze bestanden samengevoegd
zijn, is het mogelijk om dit bestand op exact dezelfde manier als in de vorige stap te lezen.
Van elke stream zal er een packet gelezen en weggeschreven worden naar de output die
nu een segment is in plaats van een MP4 bestand.

Figure 8.2: Fase 2 program van segmenten met een stream per tile HEVC video (en
een niet VCL NAL-unit stream) naar een enkele native tiled HEVC MPEG-DASH
stream

8.4. CONCLUSIE 69

Als laatste native applicatie hebben we getest of het software matig decoderen van de
HEVC video naar raw YUV of JPEG per video afbeelding mogelijk was. Dit is bij de
native applicatie gelukt, maar is echter niet gëımplementeerd in de web browser door de
grootte hoeveelheid geheugen en rekenkracht die nodig is.

8.3.2 Web applicatie

De web implementatie gaat via een web worker werken voor de MPEG-DASH segmenten
te verwerken. Een web worker is een nieuwe thread die asynchroon JavaScript code kan
uitvoeren. Door het omzetten van de implementatie van de tweede fase naar ASM.JS
is het mogelijk deze op de web worker uit te voeren. ASM.JS is een zeer strikte subset
van JavaScript en heeft veel C-kenmerken [Bam18]. Het is niet nodig om de details van
ASM.JS te begrijpen voor deze masterscriptie, maar het is belangrijk om te begrijpen
dat de uiteindelijke conversie van de C-implementatie ASM.JS code oplevert dewelke zeer
geoptimaliseerde JavaScript is.

De scheduler is een algoritme dat de desbetreffende MPEG-DASH segmenten zal opvra-
gen. Afhankelijk van het algoritme dat gebruikt wordt, worden segmenten (tiles) in
specifieke kwaliteiten opgevraagd. In het geval van deze masterthesis zal dit zijn op basis
van het viewport. Met behulp van het viewport wordt er gekeken naar de tiles die deze
bevat. De tile die de meeste oppervlakte van het viewport inneemt zal de hoogste kwaliteit
krijgen. Wanneer alle segmenten voor een enkel segment te vormen opgevraagd zijn, kan
het omzetten via de web worker beginnen. Eens het omzetten gedaan is, wordt er gekeken
of het video element gëınitialiseerd moet worden. Het video element werkt op basis van
een media source buffer. Deze buffer zal alle video data bevatten om dan de video te
decoderen. Voor het toevoegen van het eerste segment moet de initialisatie door middel
van het init.mp4 bestand gebeuren. Eens de media source buffer genoeg data bevat, kan
het decoderen en afspelen van de video beginnen.

8.4 Conclusie

Aan het begin van de masterproef vroegen we ons af of het mogelijk was om tiled HEVC-
video over MPEG-DASH naar een webbrowser te streamen terwijl Microsoft Edge HEVC
ondersteund en Apple Safari de webbrowser-ondersteuning voor HEVC aankondigde.
Verder waren we gëınteresseerd in de voorbewerkingssnelheid om de HEVC video-inhoud
in de webbrowser te kunnen afspelen.

Het streamen van HEVC over MPEG-DASH werkt door misbruik te maken van de tiles.
Met behulp van tiles kan een video verdeeld worden in rechthoekige onafhankelijke re-
gio’s. Door tiles en MPEG-DASH te gebruiken, wordt de video-content opgesplitst, zo-
dat elke tile zijn eigen segmenten in verschillende kwaliteiten heeft. Dit wilt zeggen
in MPD termen: één AdaptationSet per tile en één AdaptationSet met alle niet-
videocoderingslagen NAL-eenheden die nodig zijn om het hele videoframe te kunnen de-
coderen.

De eerste scriptievraag: Is het voorbewerken van een MPEG-DASH tiled video in een
webbrowser naar een native tiled HEVC video mogelijk? is succesvol beantwoord met ja.
We hebben dit gëımplementeerd door eerst een native applicatie te maken met FFmpeg .
In deze native toepassing worden de verschillende segmenten voorbewerkt tot uiteindelijk

70 CHAPTER 8. APPENDIX A - DUTCH SUMMARY

één DASH-segment met een native tiled HEVC video. Deze native applicatie werd vervol-
gens getranscodeerd naar een webapplicatie. In de web toepassing kan de gebruiker de tile
kwaliteiten wijzigen op basis van het viewport in de 360 graden video. De tweede vraag
waarin we vroegen: Hoe efficiënt is het voorbewerken om live afspelen te garanderen, kan
worden beantwoord met een gemiddelde uitvoeringstijd per webbrowser. We kunnen ook
bevestigen dat de voorbewerkingssnelheid laag genoeg is om continu afspelen te garan-
deren. Dit werd getest met segmenten met een duur van 1000 en 5000 milliseconden. Ook
is er getest met 1080p en 2160p video’s. Daarnaast is het aantal tiles voor de 2160p video
getest met een 3x3 en 6x6 structuur.

Verder hebben we ook geprobeerd of het mogelijk was om de tiled HEVC video in de web-
browser te decoderen. Ons doel hierbij was om de HEVC video inhoud in elke webbrowser
te kunnen afspelen. Dit is gedaan door het decoderen van een HEVC videoframe naar een
onbewerkte YUV frame en vervolgens te encoderen naar JPEG om de JPEG-afbeelding
in een canvaselement van de webbrowser te kunnen projecteren. Dit leek echter een the-
oretisch waarschijnlijke situatie om te werken. We hadden echter wel de verwachting dat
dit traag zou zijn omdat we de video in software decoderen. In de praktijk werkte het
echter niet vanwege de grootte van de YUV bestanden per decodering stap. De web-
browser kon het decoderen niet aan en uiteindelijk zou de webpagina of de webbrowser
crashen, waardoor afspelen onmogelijk werd.

Bibliography

[Ado] Adobe. Adobe HTTP Dynamic Streaming (HDS). http://www.adobe.

com/devnet/hds.html. [Online; accessed 02-07-2018].

[Arc18] Jake Archibald. JavaScript Promises: an Introduction. https://

developers.google.com/web/fundamentals/primers/promises, 2018.
[Online; accessed 14-08-2018].

[Bam18] Will Bamberg. What is asm.js, exactly? https://developer.mozilla.

org/en-US/docs/Games/Tools/asm.js, 2018. [Online; accessed 14-08-
2018].

[CAMJ+12] Chi Ching Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pa-
teux, and T. Schierl. Parallel scalability and efficiency of HEVC paral-
lelization approaches. IEEE Transactions on Circuits and Systems for
Video Technology, 22(12):1827–1838, dec 2012. doi:10.1109/tcsvt.2012.
2223056.

[CFD+17] Cyril Concolato, Jean Le Feuvre, Franck Denoual, Eric Nassor, Nael Oue-
draogo, and Jonathan Taquet. Adaptive streaming of HEVC tiled videos
using MPEG-DASH. IEEE Transactions on Circuits and Systems for Video
Technology, pages 1–1, 2017. doi:10.1109/tcsvt.2017.2688491.

[DSA+11] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya
Ganjam, Jibin Zhan, and Hui Zhang. Understanding the impact of video
quality on user engagement. ACM SIGCOMM Computer Communication
Review, 41(4):362, oct 2011. doi:10.1145/2043164.2018478.

[DvdBTN16] Lucia D'Acunto, Jorrit van den Berg, Emmanuel Thomas, and Omar Ni-
amut. Using MPEG DASH SRD for zoomable and navigable video. In
Proceedings of the 7th International Conference on Multimedia Systems -
MMSys '16. ACM Press, 2016. doi:10.1145/2910017.2910634.

[ems18] Emscripten. http://emscripten.org, 2018. [Online; accessed 14-08-2018].

[Eng] Ralf S. Engelschall. ECMAScript 6 — New Features: Overview & Com-
parison. http://es6-features.org/. [Online; accessed 15-07-2018].

[FC16] Jean Le Feuvre and Cyril Concolato. Tiled-based adaptive streaming using
MPEG-DASH. In Proceedings of the 7th International Conference on Mul-
timedia Systems - MMSys '16. ACM Press, 2016. doi:10.1145/2910017.

2910641.

71

http://www.adobe.com/devnet/hds.html
http://www.adobe.com/devnet/hds.html
https://developers.google.com/web/fundamentals/primers/promises
https://developers.google.com/web/fundamentals/primers/promises
https://developer.mozilla.org/en-US/docs/Games/Tools/asm.js
https://developer.mozilla.org/en-US/docs/Games/Tools/asm.js
http://dx.doi.org/10.1109/tcsvt.2012.2223056
http://dx.doi.org/10.1109/tcsvt.2012.2223056
http://dx.doi.org/10.1109/tcsvt.2017.2688491
http://dx.doi.org/10.1145/2043164.2018478
http://dx.doi.org/10.1145/2910017.2910634
http://emscripten.org
http://es6-features.org/
http://dx.doi.org/10.1145/2910017.2910641
http://dx.doi.org/10.1145/2910017.2910641

72 BIBLIOGRAPHY

[Feu17] Jean Le Feuvre. HEVC Tile-based adaptation guide. https://gpac.wp.

imt.fr/2017/02/01/hevc-tile-based-adaptation-guide/, 2017. [On-
line; accessed 24-07-2018].

[Feu18] Jean Le Feuvre. Tiled Streaming. https://github.com/gpac/gpac/wiki/
Tiled-Streaming, 2018. [Online; accessed 24-07-2018].

[FFm18] FFmpeg. FFmpeg. https://github.com/FFmpeg/FFmpeg, 2018. [Online;
accessed 09-08-2018].

[GNA14] Praveen GB, Prashanth NS, and Ramakrishna Adireddy. Analysis of
HEVC/H265 Parallel Coding Tools. http://pathpartner.wpengine.

com/wp-content/uploads/2016/09/PathPartner_WhitePaper_

Analysis-Of-HEVC-Parallel-Tools-1.pdf, 2014. [Online; accessed
03-08-2018].

[GPA18] GPAC. GPAC a multimedia framework. https://github.com/gpac/gpac,
2018. [Online; accessed 09-08-2018].

[GR08] Sacha Goedegebure and Ton Roosendaal. Big Buck Bunny. https://

peach.blender.org/, 2008.

[GTM17] Mario Graf, Christian Timmerer, and Christopher Mueller. Towards band-
width efficient adaptive streaming of omnidirectional video over HTTP.
In Proceedings of the 8th ACM on Multimedia Systems Conference - MM-
Sys'17. ACM Press, 2017. doi:10.1145/3083187.3084016.

[HS16] Mohammad Hosseini and Viswanathan Swaminathan. Adaptive 360 VR
video streaming: Divide and conquer! CoRR, abs/1609.08729, 2016. URL:
http://arxiv.org/abs/1609.08729, arXiv:1609.08729.

[HS17] Mohammad Hosseini and Viswanathan Swaminathan. Adaptive 360 VR
video streaming based on MPEG-DASH SRD. CoRR, abs/1701.06509,
2017. URL: http://arxiv.org/abs/1701.06509, arXiv:1701.06509.

[Inc18] Apple Inc. Advances in HTTP Live Streaming. https://developer.

apple.com/videos/play/wwdc2017/504, 2018. [Online; accessed 09-08-
2018].

[ISO14a] Information technology – coding of audio-visual objects – part 10: Ad-
vanced video coding. Standard, International Organization for Standard-
ization, 2014. URL: https://www.iso.org/obp/ui/#iso:std:iso-iec:
14496:-10:ed-8:v1:en.

[ISO14b] Iso/iec 23009-1:2014 - information technology – dynamic adaptive stream-
ing over http (dash) – part 1: Media presentation description and segment
formats. Standard, International Organization for Standardization, 2014.
URL: https://www.iso.org/standard/65274.html.

[iso15] Iso/iec 23009-1:2014/amd 2:2015 - spatial relationship description, general-
ized url parameters and other extensions. Standard, International Organi-
zation for Standardization, 2015. URL: https://www.iso.org/standard/
66486.html.

[ISO17] Iso/iec dis 23008-2: Information technology – high efficiency coding and
media delivery in heterogeneous environments – part 2: High efficiency

https://gpac.wp.imt.fr/2017/02/01/hevc-tile-based-adaptation-guide/
https://gpac.wp.imt.fr/2017/02/01/hevc-tile-based-adaptation-guide/
https://github.com/gpac/gpac/wiki/Tiled-Streaming
https://github.com/gpac/gpac/wiki/Tiled-Streaming
https://github.com/FFmpeg/FFmpeg
http://pathpartner.wpengine.com/wp-content/uploads/2016/09/PathPartner_WhitePaper_Analysis-Of-HEVC-Parallel-Tools-1.pdf
http://pathpartner.wpengine.com/wp-content/uploads/2016/09/PathPartner_WhitePaper_Analysis-Of-HEVC-Parallel-Tools-1.pdf
http://pathpartner.wpengine.com/wp-content/uploads/2016/09/PathPartner_WhitePaper_Analysis-Of-HEVC-Parallel-Tools-1.pdf
https://github.com/gpac/gpac
https://peach.blender.org/
https://peach.blender.org/
http://dx.doi.org/10.1145/3083187.3084016
http://arxiv.org/abs/1609.08729
http://arxiv.org/abs/1609.08729
http://arxiv.org/abs/1701.06509
http://arxiv.org/abs/1701.06509
https://developer.apple.com/videos/play/wwdc2017/504
https://developer.apple.com/videos/play/wwdc2017/504
https://www.iso.org/obp/ui/#iso:std:iso-iec:14496:-10:ed-8:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:14496:-10:ed-8:v1:en
https://www.iso.org/standard/65274.html
https://www.iso.org/standard/66486.html
https://www.iso.org/standard/66486.html

BIBLIOGRAPHY 73

video coding. Standard, International Organization for Standardization,
2017. URL: https://www.iso.org/standard/69668.html.

[IT18] ITU-T. H.265 : High efficiency video coding. http://handle.itu.int/

11.1002/1000/13433, 2018.

[Kag18] Kagami. ffmpeg.js. https://github.com/Kagami/ffmpeg.js, 2018. [On-
line; accessed 09-08-2018].

[KML+12] Il-Koo Kim, Junghye Min, Tammy Lee, Woo-Jin Han, and JeongHoon
Park. Block partitioning structure in the HEVC standard. IEEE Transac-
tions on Circuits and Systems for Video Technology, 22(12):1697–1706, dec
2012. doi:10.1109/tcsvt.2012.2223011.

[Kuz16] Evgeny Kuzyakov. Next-generation video encoding techniques for
360 video and VR. https://code.fb.com/virtual-reality/

next-generation-video-encoding-techniques-for-360-video-and-vr/,
2016. [Online; accessed 19-08-2018].

[kva18] Kvazaar. https://github.com/ultravideo/kvazaar, 2018. [Online; ac-
cessed 14-08-2018].

[Lau13] Thibault Laurens. How the V8 engine works? http://thibaultlaurens.

github.io/javascript/2013/04/29/how-the-v8-engine-works/, 2013.
[Online; accessed 23-08-2018].

[Lon15] Brendan Long. The structure of an MPEG-DASH MPD. https:

//www.brendanlong.com/the-structure-of-an-mpeg-dash-mpd.html,
2015. [Online; accessed 09-07-2018].

[LSNHS05] Liang Lu, Rei Safavi-Naini, Jeffrey Horton, and Willy Susilo. On securing
RTP-based streaming content with firewalls. In Cryptology and Network
Security, pages 304–319. Springer Berlin Heidelberg, 2005. doi:10.1007/

11599371_25.

[MAP+10] Aditya Mavlankar, Piyush Agrawal, Derek Pang, Sherif Halawa, Ngai-Man
Cheung, and Bernd Girod. An interactive region-of-interest video streaming
system for online lecture viewing. In 2010 18th International Packet Video
Workshop. IEEE, dec 2010. doi:10.1109/pv.2010.5706821.

[Mic18] Microsoft. About YUV Video. https://docs.microsoft.com/en-us/

windows/desktop/medfound/about-yuv-video, 2018. [Online; accessed
07-08-2018].

[Mot12] Ito Motonari. HEVC – What are CTU, CU, CTB, CB, PB,
and TB? https://codesequoia.wordpress.com/2012/10/28/

hevc-ctu-cu-ctb-cb-pb-and-tb/, 2012. [Online; accessed 29-07-2018].

[MSH+13] Kiran Misra, Andrew Segall, Michael Horowitz, Shilin Xu, Arild Fuldseth,
and Minhua Zhou. An overview of tiles in HEVC. IEEE Journal of Selected
Topics in Signal Processing, 7(6):969–977, dec 2013. doi:10.1109/jstsp.
2013.2271451.

[MSW03] D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary
arithmetic coding in the h.264/AVC video compression standard. IEEE

https://www.iso.org/standard/69668.html
http://handle.itu.int/11.1002/1000/13433
http://handle.itu.int/11.1002/1000/13433
https://github.com/Kagami/ffmpeg.js
http://dx.doi.org/10.1109/tcsvt.2012.2223011
https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://github.com/ultravideo/kvazaar
http://thibaultlaurens.github.io/javascript/2013/04/29/how-the-v8-engine-works/
http://thibaultlaurens.github.io/javascript/2013/04/29/how-the-v8-engine-works/
https://www.brendanlong.com/the-structure-of-an-mpeg-dash-mpd.html
https://www.brendanlong.com/the-structure-of-an-mpeg-dash-mpd.html
http://dx.doi.org/10.1007/11599371_25
http://dx.doi.org/10.1007/11599371_25
http://dx.doi.org/10.1109/pv.2010.5706821
https://docs.microsoft.com/en-us/windows/desktop/medfound/about-yuv-video
https://docs.microsoft.com/en-us/windows/desktop/medfound/about-yuv-video
https://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/
https://codesequoia.wordpress.com/2012/10/28/hevc-ctu-cu-ctb-cb-pb-and-tb/
http://dx.doi.org/10.1109/jstsp.2013.2271451
http://dx.doi.org/10.1109/jstsp.2013.2271451

74 BIBLIOGRAPHY

Transactions on Circuits and Systems for Video Technology, 13(7):620–636,
jul 2003. doi:10.1109/tcsvt.2003.815173.

[Mue15a] Christopher Mueller. Apple HTTP Live Streaming. https://bitmovin.

com/apple-http-live-streaming-hls/, 2015. [Online; accessed 02-07-
2018].

[Mue15b] Christopher Mueller. Microsoft Smooth Streaming. https://bitmovin.

com/microsoft-smooth-streaming/, 2015. [Online; accessed 02-07-2018].

[Mue15c] Christopher Mueller. MPEG-DASH (Dynamic Adaptive Streaming over
HTTP, ISO/IEC 23009-1). https://bitmovin.com/mpeg-dash/, 2015.
[Online; accessed 02-07-2018].

[Mul18] Solveig Multimedia. Zond 265 - HEVC Video Analyzer. http://www.

solveigmm.com/en/products/zond/, 2018. [Online; accessed 01-08-2018].

[NTD+16] Omar A. Niamut, Emmanuel Thomas, Lucia D'Acunto, Cyril Concolato,
Franck Denoual, and Seong Yong Lim. MPEG DASH SRD. In Proceedings
of the 7th International Conference on Multimedia Systems - MMSys '16.
ACM Press, 2016. doi:10.1145/2910017.2910606.

[OAS17] Cagri Ozcinar, Ana De Abreu, and Aljosa Smolic. Viewport-aware adaptive
360° video streaming using tiles for virtual reality. CoRR, abs/1711.02386,
2017. URL: http://arxiv.org/abs/1711.02386, arXiv:1711.02386.

[Ple18] Plex. Remuxing Files to MKV. https://support.plex.tv/articles/

201097958-remuxing-files-to-mkv/, 2018. [Online; accessed 09-08-
2018].

[RCAFE+14] Damian Ruiz-Coll, Velibor Adzic, Gerardo Fernandez-Escribano, Hari
Kalva, Jose Luis Martinez, and Pedro Cuenca. Fast partitioning algo-
rithm for HEVC intra frame coding using machine learning. In 2014 IEEE
International Conference on Image Processing (ICIP). IEEE, oct 2014.
doi:10.1109/icip.2014.7025835.

[SCF+12] Rickard Sjoberg, Ying Chen, Akira Fujibayashi, Miska M. Hannuksela,
Jonatan Samuelsson, Thiow Keng Tan, Ye-Kui Wang, and Stephan
Wenger. Overview of HEVC high-level syntax and reference picture man-
agement. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 22(12):1858–1870, dec 2012. doi:10.1109/tcsvt.2012.2223052.

[SHWW12] Thomas Schierl, Miska M. Hannuksela, Ye-Kui Wang, and Stephan Wenger.
System layer integration of high efficiency video coding. IEEE Transactions
on Circuits and Systems for Video Technology, 22(12):1871–1884, dec 2012.
doi:10.1109/tcsvt.2012.2223054.

[SO10] Gary J. Sullivan and Jens-Rainer Ohm. Recent developments in standard-
ization of high efficiency video coding (HEVC). In Andrew G. Tescher,
editor, Applications of Digital Image Processing XXXIII. SPIE, aug 2010.
doi:10.1117/12.863486.

[Sod11] Iraj Sodagar. The MPEG-DASH standard for multimedia streaming over
the internet. IEEE Multimedia, 18(4):62–67, apr 2011. doi:10.1109/mmul.
2011.71.

http://dx.doi.org/10.1109/tcsvt.2003.815173
https://bitmovin.com/apple-http-live-streaming-hls/
https://bitmovin.com/apple-http-live-streaming-hls/
https://bitmovin.com/microsoft-smooth-streaming/
https://bitmovin.com/microsoft-smooth-streaming/
https://bitmovin.com/mpeg-dash/
http://www.solveigmm.com/en/products/zond/
http://www.solveigmm.com/en/products/zond/
http://dx.doi.org/10.1145/2910017.2910606
http://arxiv.org/abs/1711.02386
http://arxiv.org/abs/1711.02386
https://support.plex.tv/articles/201097958-remuxing-files-to-mkv/
https://support.plex.tv/articles/201097958-remuxing-files-to-mkv/
http://dx.doi.org/10.1109/icip.2014.7025835
http://dx.doi.org/10.1109/tcsvt.2012.2223052
http://dx.doi.org/10.1109/tcsvt.2012.2223054
http://dx.doi.org/10.1117/12.863486
http://dx.doi.org/10.1109/mmul.2011.71
http://dx.doi.org/10.1109/mmul.2011.71

BIBLIOGRAPHY 75

[SOHW12] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (HEVC) standard. IEEE
Transactions on Circuits and Systems for Video Technology, 22(12):1649–
1668, dec 2012. doi:10.1109/tcsvt.2012.2221191.

[SSHS16] Robert Skupin, Yago Sanchez, Cornelius Hellge, and Thomas Schierl. Tile
based HEVC video for head mounted displays. In 2016 IEEE International
Symposium on Multimedia (ISM). IEEE, dec 2016. doi:10.1109/ism.

2016.0089.

[SSP+17] Robert Skupin, Yago Sanchez, Dimitri Podborski, Cornelius Hellge, and
Thomas Schierl. HEVC tile based streaming to head mounted displays. In
2017 14th IEEE Annual Consumer Communications & Networking Con-
ference (CCNC). IEEE, jan 2017. doi:10.1109/ccnc.2017.7983191.

[SSS15] Y. Sanchez, R. Skupin, and T. Schierl. Compressed domain video pro-
cessing for tile based panoramic streaming using HEVC. In 2015 IEEE
International Conference on Image Processing (ICIP). IEEE, sep 2015.
doi:10.1109/icip.2015.7351200.

[Sto11] Thomas Stockhammer. Dynamic adaptive streaming over HTTP –. In
Proceedings of the second annual ACM conference on Multimedia systems
- MMSys '11. ACM Press, 2011. doi:10.1145/1943552.1943572.

[Sul] Gary J. Sullivan. High Efficiency Video Coding HEVC.
http://what-when-how.com/Tutorial/topic-397pct9eq3/

High-Efficiency-Video-Coding-HEVC-12.html. [Online; accessed
01-08-2018].

[SWH+05] Thomas Stockhammer, Magnus Westerlund, Miska M. Hannuksela, David
Singer, and Stephan Wenger. RTP Payload Format for H.264 Video. RFC
3984, February 2005. URL: https://rfc-editor.org/rfc/rfc3984.txt,
doi:10.17487/RFC3984.

[web18a] Using Web Workers. https://developer.mozilla.org/en-US/docs/

Web/API/Web_Workers_API/Using_web_workers, 2018. [Online; accessed
14-08-2018].

[web18b] WebAssembly. https://webassembly.org/, 2018. [Online; accessed 14-
08-2018].

[Wie14] Mathias Wien. High Efficiency Video Coding. Springer-Verlag GmbH,
2014. URL: https://www.ebook.de/de/product/22561599/mathias_

wien_high_efficiency_video_coding.html.

[WSS+16] Ye-Kui Wang, Yago Sanchez, Thomas Schierl, Stephan Wenger, and
Miska M. Hannuksela. RTP Payload Format for High Efficiency Video
Coding (HEVC). RFC 7798, March 2016. URL: https://rfc-editor.
org/rfc/rfc7798.txt, doi:10.17487/RFC7798.

http://dx.doi.org/10.1109/tcsvt.2012.2221191
http://dx.doi.org/10.1109/ism.2016.0089
http://dx.doi.org/10.1109/ism.2016.0089
http://dx.doi.org/10.1109/ccnc.2017.7983191
http://dx.doi.org/10.1109/icip.2015.7351200
http://dx.doi.org/10.1145/1943552.1943572
http://what-when-how.com/Tutorial/topic-397pct9eq3/High-Efficiency-Video-Coding-HEVC-12.html
http://what-when-how.com/Tutorial/topic-397pct9eq3/High-Efficiency-Video-Coding-HEVC-12.html
https://rfc-editor.org/rfc/rfc3984.txt
http://dx.doi.org/10.17487/RFC3984
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://webassembly.org/
https://www.ebook.de/de/product/22561599/mathias_wien_high_efficiency_video_coding.html
https://www.ebook.de/de/product/22561599/mathias_wien_high_efficiency_video_coding.html
https://rfc-editor.org/rfc/rfc7798.txt
https://rfc-editor.org/rfc/rfc7798.txt
http://dx.doi.org/10.17487/RFC7798

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Viewport dependent MPEG-DASH streaming of 360 degree natively tiled HEVC
video in web browser context

Richting: master in de informatica
Jaar: 2018

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Moesen, Gert

Datum: 23/08/2018

