
Power analysis on AES and
LoRaWAN

Robin Quetin

Promotor: Prof. Dr. Peter Quax
Co-promotor: Prof. Dr. Wim Lamotte

Supervisor: Mr. Pieter Robyns

A thesis submitted in partial fulfillment of the requirements for
the degree of Master in Computer Science

23 August 2018



Abstract

For years cryptoanalysis has been a method to attack and determine the strength of a
cryptographic algorithm. Side-channel attacks introduce an alternate method of attacking
cryptographic algorithms by targeting the implementation of the computer system rather
than the algorithm itself. One of these side-channel attacks is the power analysis attack and
has shown to be successful in attacking various device implementations using cryptographic
algorithms which are considered to be secure. One of these victims is the popular and well-
used AES algorithm. AES is used in various contexts such as the encryption of Web traffic
and wireless network communication. Power analysis attacks could thus provide a method
to break the security of these communication channels.

However, the practicality and effectiveness of these attacks in practice are often undoc-
umented. In this thesis, the author will try to answer to question: ”Is the AES algorithm
in modern IoT appliances vulnerable for power analysis attacks?” and ”Are power analysis
attacks usable in practice?”. To answer these questions, a detailed description about the
AES algorithm and power analysis attacks is provided in this thesis. Next, several case stud-
ies are performed to address the practicality and effectiveness of the power analysis attacks.
During these case studies the author was able to conclude that the quality of the measure-
ments directly affects the effectiveness of the power analysis attacks. The quality of the
measurements relies on several conditions such as electrical noise and measurement set-ups.
Due to problems involving these conditions, the attacks on modern IoT appliances could not
be performed and a conclusion regarding the vulnerability in these appliances could not be
formed.
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Chapter 1

Introduction

For several centuries cryptography has been a means to provide two parties with a secure
method of communicating to each other over insecure communication channels. Until the
last century the usage of cryptography was mainly limited to verbal and written commu-
nication. But with the introduction of the computer and publicly accessible networks, the
role of cryptography has changed dramatically. Nowadays, cryptography is one of the key
components in providing secure communication over the Internet. According to studies, over
60 percent of the websites accessed by Google Chrome is securely transferred using cryp-
tographic algorithms [Goo18]. While Web traffic is the most commonly known example of
how cryptographic algorithms are being used in a modern-day context, there are numerous
other examples in which it is used to provide security over insecure channels such as wireless
networks like WiFi and cellular networks.

One of the most commonly used cryptographic algorithms is the Advanced Encryption
Standard (AES) algorithm. It is used in various applications such as the encryption of Web
traffic and wireless protocols. While invented in 1999, the AES algorithm is still considered
to be a secure encryption algorithm. Previous studies have not (yet) been able to break the
algorithm using cryptanalysis. However, several years ago a new form of attacks called side-
channel attacks have been introduced in the field of computer security. Instead of targeting
the algorithm itself, these attacks focus on the implementation of the device. Side-channel
attacks have shown to be successful in the past against algorithms that were considered to
be cryptographically secure [KJJ99] [Ber05] [DKH13]. Since the implementation of devices is
dependant on the manufacturer and often unregulated in terms of security, insecure devices
can still exist even if the cryptographic algorithms are considered secure.

Because AES is so widely used in the Internet-of-Things context, this thesis will focus
on the security aspect of AES against power analysis attacks. The main research questions
of this thesis are: ”Is the AES algorithm in modern IoT appliances vulnerable for power
analysis attacks?” and ”Are power analysis attacks usable in practice?”. In order to answer
this question, the inner workings of the AES algorithm will be first described thoroughly
in section 2.2. Chapter 3 introduces the concept of side-channel attacks. One category of
side-channel attacks, the power analysis attacks, will be described in more detail. The power
analysis attacks will also be tested in practice according to an incremental approach of case
studies. The final goal is to perform the power analysis attacks on a network component
which uses a wireless protocol intended for Internet-of-Thingss applications. For this final
test, the LoRaWAN protocol, a promising Low Power Wide Area Network (LPWAN) pro-
tocol specifically designed for Internet-of-Thingss applications, will be the targeted wireless
networking protocol. The LoRaWAN protocol will be further described in section 2.4.
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Chapter 2

AES and LoRa(WAN)

2.1 Introduction to cryptography

To the general population it is often unclear how much cryptography is involved in daily
applications. Since the existence of basic communication, people have sought to communicate
with each other in such a way that unwanted individuals (also referred to as adversaries)
could not overhear their conversations. One possibility to keep this communication private
is by using cryptography. Cryptography is a field in information science that is dedicated to
the practice and study of techniques in order to provide secure communication between two
parties in the presence of adversaries [Lee90]. This field has become increasingly popular
since the introduction of publicly accessible mediums such as radio and the Internet.

The most commonly known part of cryptography is probably the encryption process.
Encryption is the process of transforming unencrypted data or plaintext into encrypted data
or ciphertext [And14]. However, encryption alone is not able to provide secure communica-
tion. Modifying the original communication through interception or blocking communication
could also lead to a breach in secure communication. In the field of computer security, ex-
perts often refer to the CIA triad as a guideline to address the level of security in a system
[And14]. The CIA triad stands for the following principles:

• Confidentiality: confidentiality deals with the principle that the information or re-
sources should only be available to the allowed entities [And14]. This also means that
even if an entity is deemed trustworthy, it should not be able to access the information
or resources if it was not granted access to the resource. Authentication and autho-
rization checks play an important role in the realisation of this principle. Encryption
itself can be a measure to extend confidentiality: if a malicious party is unable to use
the information or resource due to the encryption, it will be also unable to access the
information or resource.
• Integrity: integrity provides the involved parties with certainty that the information

or resource is indeed transferred and remains identical during the delivery from sender
to receiver [Sta05]. Measurements such as hashes provide the users with a means to
validate if the information or resource has remained unchanged.
• Availability: availability revolves around the fact that resource or information should

remain accessible by the allowed entities at all times [Sta05]. This concept is often
difficult to place in the context of security. However, if valid users cannot access the
resource or information, then the system itself cannot fulfil its purpose and will prevent
end-users from performing their jobs.

2



2.1.1 Encryption and decryption

As mentioned before, encryption is the process of transforming plaintext into ciphertext
[And14]. The process is often formulated as an algorithm and thus called an encryption
algorithm. However, without a way to transform the encrypted information back to its
original form, this process would make it impossible for others to interpret the information,
even for a legitimate receiver. For that reason another algorithm called the decryption
algorithm is also specified as a means to revert the scrambled information back to its original
form. In cryptography, these algorithms are referred to as ciphers [And14].

To prevent that a cipher would always yield the same result for a given plaintext, ciphers
will allow the user to specify extra parameters which will affect the obtained result [And14].
The most common example is the use of one or multiple secret keys. A secret key is a
string of bits which will be used during the encryption process to transform the plaintext
into ciphertext. Depending on the type of encryption algorithm, the secret key or a related
decryption key will be shared amongst the receivers of the ciphertext. Only the owners of
the decryption key(s) will then be able to decipher the ciphertext; the use of other keys will
yield an invalid result.

Arguably the easiest way of using keys in an encryption context is by using the same
keys for both the encryption and decryption process. This type of encryption is also referred
to as symmetric key or single-key encryption [Sta05]. However, this introduces the issue of
keeping the secret key(s) confidential between the trusted participants, as owning the secret
key would allow the owner to both encrypt and decrypt the communication. This is especially
difficult when the keys still need to be exchanged between the participants. Key exchange
protocols such as Diffie-Hellman have been defined which can provide a secure method for
establishing a secret key between participants [Mer78] [DH76]. As an alternative, encryption
algorithms were invented which used separate keys for encrypting and decrypting data. Such
algorithms are called asymmetric key or public key encryption algorithms. These algorithms
generally provide the receiver with a secret or private key which is used to decrypt incoming
data and provide the senders with one or more public keys derived from the private key
which in turn can be used to encrypt the data. This results in a one-way encryption: using
a single key pair the sender can only encrypt data and the receiver can only decrypt data.

Figure 2.1: A schematic overview of how a symmetric key algorithm (left) and an asymmetric
key algorithm (right) work. The arrows indicate the direction in which encryption and
decryption are possible.

While it can be argued that the asymmetric encryption system provides better security
due to the separate purpose of keys, it does come at the disadvantage of a higher compu-
tational cost. Key generation for public-key algorithms is often met with high computation
times due to the mathematical problems they are based on. At the moment of writing, these
mathematical problems have no efficient solution available [And14][Sta05]. Encryption and
decryption of data blocks is also slower. A performance test to support this statement is
given by listing 2.1. Another disadvantage of public-key algorithm is that they often require
larger key sizes to provide an equivalent level of security compared to symmetric algorithms.
In [Bar16], it was advised to use a 3072-bit key for integer-factorization related asymmet-
ric algorithms such as RSA to provide the same algorithm strength as the AES symmetric

3



algorithm provides with a 128-bit key. For these reasons, asymmetric encryption is primar-
ily used to encrypt small portions of data (such as secret keys) and small battery-powered
devices often use symmetric encryption algorithms instead to encrypt their data.

1 $ openssl.exe speed aes

2 ...

3 Doing aes -128 cbc for 3s on 1024 size blocks: 385612 aes -128 cbc ’s in

3.00s

4 ...

5 Doing aes -192 cbc for 3s on 1024 size blocks: 320795 aes -192 cbc ’s in

3.00s

6 ...

7 Doing aes -256 cbc for 3s on 1024 size blocks: 275300 aes -256 cbc ’s in

3.00s

8
9 $ openssl.exe speed rsa1024

10 Doing 1024 bit private rsa ’s for 10s: 59368 1024 bit private RSA ’s in

9.98s

11 Doing 1024 bit public rsa ’s for 10s: 866784 1024 bit public RSA ’s in

10.00s

Listing 2.1: Performance test performed with OpenSSL 1.0.2o to compare the
performance between RSA (an asymmetric algorithm) and AES (a symmetric
algorithm). AES performs better than RSA even when larger keys are being used.

2.1.2 Data integrity and authentication

While encryption provides a method to partially guarantee confidentiality1of communication
between two parties, it will be insufficient to provide a completely secure way of commu-
nication. The CIA triad also mentions the integrity and availability as essential principles
within a security context. Encryption alone cannot guarantee that the communication data
will not be changed or will actually reach the receiver.

As stated in section 2.1, availability revolves around the fact that the resource or informa-
tion should remain accessible by the allowed entities [And14]. Solutions to ensure availability
are more often found in hardware and application software instead of cryptography. Common
examples of such solutions include DDoS protection hardware and load-balancing hardware
or cloud solution. However, cryptography can be a means to improve integrity in a security
context. Encryption itself partially provides integrity as a successful decryption of a cipher-
text will prove that the sender has the same key as or a key derived from the receivers secret
key [Sta05]. However, this means that the receiver needs to have an idea about how the
plaintext is supposed to be formatted (e.g. a correct English sentence). In case of random
byte values without a checksum, this method cannot guarantee integrity since there is no
fixed data pattern [Sta05]. Therefore, other cryptographic algorithms exist which are able
to verify the authenticity and integrity of data regardless of their formatting. The two most
common techniques to provide data integrity using cryptography will be explained in the
following paragraphs.

Message digest

A message digest is a fixed-length data string which is calculated based on a given message
[Sta05]. Message digests are also known as hash codes or hash values. To calculate a message
digest, a hash function must be defined. A hash function is a one-way, keyless cryptographic

1Encryption is unable to provide authorization and access control
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function which is able to transform data of a variable length to a fixed-length data string
[Sta05]. The message digest for a given message remains the same regardless of the entity
that performs it. However, if the original message was changed, the hash function would
yield a different message digest. Common examples of hash functions are MD5 and the SHA
hash functions.

While message digests can be used to provide data integrity, some security measures
should be considered to prevent misuse by third parties. The first measure to be taken is
choosing a strong hash function. A hash function should be able to generate a unique digest
for a given message. Suppose it would be possible that two messages M and M ′ would yield
the same digest. This would be called a collision [Sta05]. An attacker would be able to
intercept message M and replace it with message M ′ while leaving the digest untouched. In
this case, the receiver would not be able to detect the change in messages.

A second measure is that the hash code should be secured as well. Let H(M) be the
message digest for a message M and E(M) be the encryption of M . If a message digest
H(M) is appended in plaintext to the ciphertext E(M), then the attacker would have a
way to verify if a guessed decryption of E(M) is correct. Sending a hash of the ciphertext
(i.e. H(E(M))) is not useful, since the ciphertext can still be tampered with as long as the
hash is recalculated. An improved method of sending both a digest and a ciphertext is by
appending the digest to the plaintext and encrypt both the plaintext and the digest (i.e.
E(M +H(M))). However, even this form of securing a hash can be misused by changing the
ciphertext, potentially even allowing it to be used for padding oracle attacks [Sut13]. For
these reasons, the use of a MAC is preferred over message digests in a security context.

At last, it should also be noted that a message digest is unable to provide authentication
since every entity is able to calculate the message digest while the result remains the same
for a given message.

Message authentication code

Like the message digest, a message authentication code (MAC) is also a fixed-length block
of data that is based on the original message [Sta05]. However, while message digests are
calculated without the need of keys, the MAC assumes that both involved parties are in
possession of a shared secret key. If is M the input message, k the shared secret key,
MacFunc the MAC function and mac the resulting MAC. A typical MAC calculation can
then be defined as follows:

mac = MacFunc(M,k)

The sender performs the calculation with his secret key and appends the MAC to the
message. The sender then sends the message to the receiver. Once received, the receiver will
extract the message and the MAC and will then perform the same MAC calculation on the
message with his secret key. If both MACs are equal to each other, then the authenticity
and integrity of the message are verified.

While this method adds an authenticity check to the verification process, it can only be
considered valid as long as the shared secret key remains a secret. Any third party acquiring
the shared key will break the authenticity and integrity. Another point of concern is the
re-use of the keys. While it is possible to use the same secret key for the encryption and
the MAC calculation, it is advised to use separate keys for each operation. If this is not the
case, then the possibility would exist that breaking one of the cryptographic systems would
lead to compromising the other system.
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2.2 Advanced Encryption Standard

Advanced Encryption Standard (AES) is a symmetric cryptographic specification designed
by Vincent Rijmen and Joan Daemen [NIS01]. It is a subset of the Rijndael cipher and allows
encryption using three key lengths: 128-bits, 192-bits, and 256-bits. AES was designed as a
replacement of the older and then popular Data Encryption Standard (DES) in response to
the proof that DES was breakable in less than a week due to a short key size (56-bits) and
the evolution of raw computing power [Ele98][KPP+06]. In 2002, AES became a federal gov-
ernment standard [Com03] and has continued to become one of the most popular symmetric
encryption methods to be used in data encryption.

2.2.1 Global overview of the AES encryption process

The AES encryption process assumes two input values: a 128-bit block of plaintext data
and a shared secret key which can either be 128, 192, or 256 bits long [NIS01]. Both the
plaintext data and/or the shared secret can be preprocessed before they are being used in
the encryption process.

AES usually works with a two-dimensional array to perform all calculations on. This
means that the original plaintext data is divided into rows and columns before execution
[NIS01]. The resulting two-dimensional array is also called the state. Each column of the
state contains a 32-bit word. Words can be regarded as a quadruple of bytes. An example
of a state representation of the plaintext ASCII string ‘WE LOVE SECURITY’ is shown in
figure 2.2.

Figure 2.2: Example of a state representation of a plaintext ASCII string

The algorithm defines five functions which are used during the encryption process [NIS01]
which are further explained in subsections 2.2.2 to 2.2.6:

• KeyExpansion: expands a short key to a number of round keys;
• AddRoundKey: bitwise XOR-operation between the round key and the state bytes;
• SubBytes: S-box based substitution of state bytes;
• ShiftRows: shifting the rows of the state array using the row index as the number of

places to shift;
• MixColumns: mixes the columns of the state array.

These functions are executed in the following order:
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Figure 2.3: Execution steps for AES encryption

In the diagram, the sequence of SubBytes→ ShiftRows→MixColumns→ AddRoundKey
is repeated Nr times. Nr is dependent on the key size; for the possible key sizes of 128, 192,
and 256 bit the number of rounds will respectively be 10, 12, and 14 rounds [NIS01].

Galois fields

In order to explain the procedures of AES in more detail, the concept of Galois fields or finite
fields needs to be explained first. In mathematics, a field is ”an algebraic structure consisting
of a set of elements for which the operations of addition, subtraction, multiplication, and
division satisfy certain prescribed properties” [MM07]. The most commonly known field is
the field of real numbers, which contains the numbers used for day-to-day calculations and
represents a set of infinite decimal representable elements (e.g. 42, 3.14159, ...). The size of
such a field is called an order, which is infinite for the field of real numbers.

A finite field is a field that is limited to a number of elements defined by its order [Gal30].
A finite field is also called a Galois field, named after the French mathematician Évariste
Galois who introduced the concept of finite fields [Gal30]. The notation of a Galois field is
defined as GF (q), where q is the order of the field [HMV03]. One of the properties of Galois
fields is that a Galois field of order q exists if and only if q = pn with p being a prime number
and n a positive integer [Gal30].

In such a context, p and n are respectively referred to as being the characteristic and the
degree of the finite field. If a finite field can be expressed as GF (pn) = 0, 1, · · · , pn − 1, each
element in the finite field can be expressed using its polynomial representation:

∀z ∈ GF (pn) : z =

n∑
i=1

an−ix
n−i with an−i ∈ {0, · · · , p− 1} (2.1)

Finite fields must also define basic arithmetic operations. These operations include ad-
dition and multiplication. For finite fields, the addition can be described as an addition of
the terms in the polynomial representations of the elements, with a reduction of the result
using modulo the characteristic. For example, the addition of two elements in GF (28) can
be described as follows:
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a+ b =
7∑

i=0

(aix
i + bix

i) mod 2

= ((a7 + b7) mod 2)x7 + ((a6 + b6) mod 2)x6 + ((a5 + b5) mod 2)x5

+ ((a4 + b4) mod 2)x4 + ((a3 + b3) mod 2)x3 + ((a2 + b2) mod 2)x2

+ ((a1 + b1) mod 2)x1 + ((a0 + b0) mod 2)x0

(2.2)

Notice that the coefficients for each term in GF (28) can either be 0 or 1. Assume that
a = 1 and b = 1. If a and b were real numbers, the sum of a and b would yield a 2. However,
in case of GF (2n), the number 2 cannot exist as a coefficient [MM07]. Therefore, the modulo
2 operation will be applied to the sum of coefficients when an addition is performed in GF (2)
(i.e., a+ b =

∑7
i=0

(
((ai + bi) mod 2)xi

)
).

The multiplication in Galois fields also follows a specific procedure. Multiplication in
a finite field is equal to the multiplication of the terms in the polynomial representation,
followed by a reduction of the result using modulo a fixed irreducible polynomial that is
used to describe the finite field. For the aforementioned finite field GF (28), this irreducible
polynomial is x8 + x4 + x3 + x + 1. For example, the multiplication of a = x4 + x2 and
b = x2 + x0 will initially result in aḃ = x6 + x4 + x4 + x0. This result is further reduced
using modulo x8 + x4 + x3 + x+ 1, but since the result is of a lower order than the modulo
argument, the original result will remain the same.

Given these properties, one could observe that this would allow elements in Galois fields
using 2 as the characteristic to be represented by polynomials similar to bit strings. The
degree of the finite field would then determine the number of bits used in the bit string and
the coefficients of the terms would represent bit values. For this reason, finite fields of the
order 2n are also called binary fields or characteristic-two finite fields [HMV03]. For obvious
reasons, binary fields are often used in computer science to express arithmetic operations
on a bit level. In the context of AES, GF (28) will be used because the algorithm performs
operations on a byte-per-byte level [NIS01]. The polynomial representation of a byte value
in GF (28) will be noted as b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x

1 + b0x
0. An example

of polynomial representation of a byte in GF (28) is given in figure 2.4. It should also be
noted that, as demonstrated in 2.2, that an addition on two elements in a binary field can
be seen as an XOR operation between the bit string representations of the elements.

Figure 2.4: Conversion of byte 2B to a polynomial in GF (28)

2.2.2 KeyExpansion

KeyExpansion takes the cipher key and performs Rijndael’s key schedule algorithm to gen-
erate new round keys which will be used during the AddRoundKey procedure [NIS01].
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The procedure starts by creating an array w which will contain 32-bit words. Each word
in this array can be described as w[i], where i will indicate the position of the word in the
array. In total the array will consist of Nb×(Nr+1) words, where Nb is the (plaintext data)
block size in terms of 32-bit words (4 for AES) and Nr is the number of rounds (dependent
on the key size, see 2.2.1). Nk will also be defined as the number of 32-bit words that the
cipher key contains. For example, a 128-bit key will yield Nk = 128/32 = 4.

The Nk first words of w will be filled in by the cipher key itself [NIS01]. The cipher key
will be divided in portions of 32-bit words and these portions will be the first elements of
word array w. The remaining words w[i] will be based upon the XORed value of w[i−1] and
w[i−Nk] until the array is filled with Nb× (Nr+ 1) words. However, when i mod Nk = 0,
w[i− 1] will be preprocessed before it is used for the XOR-operation:

1. RotWord will shift the order of bytes one position to the left (i.e. (b0, b1, b2, b3) →
(b1, b2, b3, b0))

2. SubWord will use the S-box to substitute the each of the four bytes in the word with
the corresponding value in the S-box;

3. The result of the previous two operations will be XORed with Rconbi/Nkc. As noted in
[NIS01], ”Rcon[i] contains the values given by [xi−1, 00, 00, 00], with xi−1 being powers
of x (...) in the field GF (28).”

Apart from this, AES will also perform an extra run of SubWord on w[i − 1] before the
XOR operation when Nk > 6 and i− 4 mod Nk = 0. Note that this is only the case when
the cipher key is 256 bits long [NIS01].

Reverting KeyExpansion in a 128-bit key context

Since the KeyExpansion procedure exists exclusively of shifting, substitution and XOR op-
erations, the results can be reversed since all of the operations are reversible:

• Shifting: shift the bytes in the opposite direction;
• Substitution: if the original substitution yields a unique result (as the Rijndael S-Box

does), an inverse substitution lookup table can be built to reverse the substitution;
• XOR operation: An XOR operation of two values van be reverted by XOR-ing the

result with one of the two values; the result will be the other value.

The full algorithm to perform a KeyExpansion reversal on a i-th round key is outlined
in listing 2.2.

1 def reverseRoundKey(rndkey , round):

2 initkey = list(rndkey)

3 for rnd in range(round , 0, -1):

4 # 128-bit key consists of 4 32-bit words

5 for w_idx in range(3, 0, -1): # 3 words remaining

6 start_idx = w_idx*4

7 end_idx = (w_idx + 1)*4

8 prev_word = initkey[start_idx -4: end_idx -4]

9 for b_idx in range (4): # 4 bytes per word

10 initkey[start_idx+b_idx] ^= prev_word[b_idx]

11
12 # For i%Nk = 0 preprocessing is executed on the word i during

encryption

13 # i%Nk = 0%4 = 0 => first word (encryption) => last word (decryption)

14 last_word = initkey [12:]

15
16 # Shift one position to the left
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17 preproc_word = [last_word [1], last_word [2], last_word [3],

last_word [0]]

18
19 # Substitute each byte by its corresponding S-box value

20 preproc_word = [aes_sbox[t] for t in preproc_word]

21
22 # XOR first word with Rcon

23 preproc_word [0] ^= aes_rcon[rnd]

24
25 for idx in range (4):

26 initkey[idx] ^= preproc_word[idx]

27
28 return initkey

Listing 2.2: KeyExpansion reversal for an i-th round key

2.2.3 AddRoundKey

The AddRoundKey procedure adds a round key to the current state by a bitwise XOR op-
eration [NIS01]. The round keys are pre-generated by the KeyExpansion procedure. The
AddRoundKey procedure is executed Nr times during the algorithm. Per procedure call an-
other round key is used to perform the addition. Each round key consists of Nb 32-bit words.
Since Nb = 4 for the AES algorithm and a single column in the state array consists of 32-bit
words, each word from the round key can be added to a column in the state. If w0, w1, w2, w3

describe the words of the round key and if s0,c, s1,c, s2,c, s3,c describe the bytes in the column
c of the state array, then the addition can be defined as:

[s′0,c, s
′
1,c, s

′
2,c, s

′
3,c] = [s0,c, s1,c, s2,c, s3,c]⊕ wc (2.3)

2.2.4 SubBytes

The SubBytes procedure will substitute the values in the state array with the associated
value from the Rijndael S-box [NIS01]. The Rijndael S-box or substitution box is a matrix
of 28 elements where each element is associated to a specific byte value (e.g. the first element
associates with byte 0x00, the second with 0x01, . . . ). When put in a 2-D matrix, the row
index can be regarded as the value of the first nibble2 of the input byte and the column index
as the value of the second nibble. The output value corresponding to a certain input value
can be calculated by the multiplicative inverse of the input byte in GF (28), where 0 (having
no multiplicative inverse) is mapped to 0. In order to prevent calculating the S-box value for
each input byte, the S-box will be stored as a constant matrix by the AES implementation3.

2.2.5 ShiftRows

The ShiftRows procedure will shift the rows in the 2-D representation of the state array to
the left [NIS01]. The rows of the state array are shifted according to their row index i where
0 ≤ i < 4. Thus the first row will be not be shifted as i = 0, the second (i = 1) will be
shifted one position to the left, and so on. Elements at left-most position of the row will be
moved to the end of the row.

2A nibble is a group of 4 bits
3Calculating each value per input byte would result in performance loss and a possible security risk
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1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

→

1 5 9 13

6 10 14 2

11 15 3 7

16 4 8 12

Table 2.1: Example of the ShiftRow procedure on the state array

2.2.6 MixColumns

The MixColumns step will transform the state array column-per-column by performing a
multiplication modulo x4+1 of its GF (28) polynomial representation with a fixed polynomial
a(x) = 3x3 + 1x2 + 1x1 + 2x0 [NIS01]. Suppose the GF (28) polynomial representation of a
state array’s column can be noted as follows:

b(x) = b3x
3 + b2x

2 + b1x
1 + b0x

0

Each coefficient represents a single byte of the column in the above equation. The mul-
tiplication of the state array’s column with the fixed polynomial a(x) will then result in:

c(x) = a(x) · b(x)

= (a3x
3 + a2x

2 + a1x
1 + a0x

0) · (b3x3 + b2x
2 + b1x

1 + b0x
0)

= c6x
6 + c5x

5 + c4x
4 + c3x

3 + c2x
2 + c1x

1 + c0x
0

(2.4)

with:

c0 = a0 · b0
c1 = a1 · b0 ⊕ a0 · b1
c2 = a2 · b0 ⊕ a1 · b1 ⊕ a0 · b2
c3 = a3 · b0 ⊕ a2 · b1 ⊕ a1 · b2 ⊕ a0 · b3
c4 = a3 · b1 ⊕ a2 · b2 ⊕ a1 · b3
c5 = a3 · b2 ⊕ a2 · b3
c6 = a3 · b3

Since c(x) is a 7-term polynomial, it would imply that the multiplication would yield
7 bytes instead of the 4 bytes foreseen in the state array’s column. The modulo x4 + 1
operation is performed to solve this issue [NIS01] and will reduce c(x) to a 4-term polynomial
d(x) = d3x

3 + d2x
2 + d1x

1 + d0x
0 with:

• d0 = (a0 · b0)⊕ (a3 · b1)⊕ (a2 · b2)⊕ (a1 · b3)
• d1 = (a1 · b0)⊕ (a0 · b1)⊕ (a3 · b2)⊕ (a2 · b3)
• d2 = (a2 · b0)⊕ (a1 · b1)⊕ (a0 · b2)⊕ (a3 · b3)
• d3 = (a3 · b0)⊕ (a2 · b1)⊕ (a1 · b2)⊕ (a0 · b3)

Because a(x) is a fixed polynomial for which the coefficients are known, d(x) can be
rewritten to a matrix multiplication (2.5) [NIS01]. Note that the matrix multiplication
below shows the MixColumns step for a single column of the state array. By adding the
remaining columns to the second matrix of the multiplication, the other columns will be
processed in a similar way.
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d0
d1
d2
d3

 =


a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

 ·

b0
b1
b2
b3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ·

b0
b1
b2
b3

 (2.5)

The matrix multiplication will thus perform additions and multiplications in the GF (28)
domain. Additions for GF (28) are equal to an XOR operation and are thus not complex to
implement. However, the multiplication for two elements in GF (28) is a complex operation
[NIS01]. Many AES implementations will therefore use lookup tables for the multiplication
step, because there are only three different coefficients in a(x) and 256 possible input bytes
for b(x).

2.3 Block cipher modes of operation

In the previous section it was assumed that the plaintext input was a 128-bit data block.
In practice the plaintext input could be much larger in size, effectively spanning hundreds
of 128-bit blocks. In its core AES is only able to process blocks of 128 bits of data; extra
processing is necessary in order to make AES capable of encrypting plaintexts larger than
128 bits. Therefore, AES and various other block ciphers are used in combination with a
block mode of operation, an algorithm that uses a block cipher to provide an information
service such as confidentiality or authenticity, regardless of the plaintext size [And14].

Since block cipher modes can perform operations on the plaintext, secret key, and/or
ciphertext, they can also introduce security vulnerabilities or performance issues to the en-
cryption process. In the following subsections an overview will be provided of the basic set
of block cipher modes recommended by [Dwo01] and the block cipher mode CCM [Dwo04],
which is commonly used in Internet-of-Things protocols [IEE11][BTS16][Gem17]. Through-
out the explanations of the block cipher modes, two terms will be used namely the input and
output block, which are respectively the block that is used as the input for the cipher and
the resulting block after the cipher operation.

2.3.1 Electronic Codebook mode (ECB)

The Electronic Codebook (ECB) mode is arguably the simplest block cipher mode. ECB will
perform the block cipher on a block-per-block basis without making changes to the plaintext,
the ciphertext or the secret key [Dwo01]. Let Pi be the i-th block of plaintext and Ci be the
i-th ciphertext block, then the encryption process using ECB can be described as:

Ci = Cipher(Pi,K) (for i = 1, · · · , n)

The decryption process is effectively the inverse of the encryption process:

Pi = Decipher(Ci,K) (for i = 1, · · ·n)

Notice that in the context of ECB, the input block is the plaintext block and the output
block is the ciphertext without any for of preprocessing. While this mode is quite effective
and easy to use, it comes with the disadvantage that any given plaintext P will always yield
the same ciphertext (e.g., if Pi = Pj ⇒ Pi ⊕K = Pj ⊕K ⇒ Ci = Cj) [Dwo01]. This makes
the ciphertexts vulnerable to pattern recognition and replay attacks 4. It is therefore not
recommended to use this block cipher mode if this behaviour is unwanted [Dwo01].
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2.3.2 Cipher Block Chaining mode (CBC)

The Cipher Block Chaining (CBC) mode is a block cipher mode which uses the ciphertext
of the previously encrypted block to modify the current block of plaintext before encrypting
it using the block cipher [Dwo01]. This prevents (to a certain degree) that a given plaintext
block always yields the same ciphertext. However, it also introduces a problem: the first
block of plaintext cannot be modified since there is no previously encrypted ciphertext block
to use. To solve this problem, an initialization vector (IV) is used instead. An IV is a vector
of random bits equal to the size of a regular block. The IV itself need not to be kept a secret,
but should be unpredictable [Dwo01].

A complete overview of the algorithm is provided by figure 2.5. The CBC mode of
operation can be described as follows. Let n be the number of plaintext blocks to encrypt,
Pi be the i-th plaintext block, Ci be the i-th ciphertext block and IV be the initialization
vector, then the encryption process will be:

C1 = Cipher(P1 ⊕ IV,K)

Ci = Cipher(Pi ⊕ Ci−1;K) (for i = 2, · · · , n)

The decryption process will be the inverted operation, namely:

C1 = Decipher(C1,K)⊕ IV
Ci = Decipher(Pi;K)⊕ Ci−1 (for i = 2, · · · , n)

In this context, the input block will either be P1 ⊕ IV or Pi ⊕ Ci−1 depending on the
position i of the plaintext block to process. However, the output block still remains the
result of the cipher operation (i.e., the ciphertext block).

Figure 2.5: Overview of the CBC block cipher mode. Image from Recommendation for Block
Cipher Modes of Operation: Methods and Techniques (2001) by Dworkin, Morris J..

2.3.3 Cipher Feedback mode (CFB)

The Cipher Feedback (CFB) is a block cipher mode of operation which, similar to CBC, uses
the ciphertext of the previous block to prevent the encryption process from yielding the same

4Replay attacks are attacks which resend or delay valid messages with the intention of performing malicious
or fraudulent actions.
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ciphertext given a specific plaintext block. However, CFB differs from CBC at multiple key
points. The first difference is found in the input blocks. In contrary to the previous block
cipher modes, CFB will not use the plaintext block as a part of the input block [Dwo01].
Instead, the cipher is executed on the previous ciphertext block and afterwards XORed with
the plaintext block.

A second difference with CBC is that CFB is also able to further randomize the input
blocks used for the cipher operations [Dwo01]. It does so by using only a part of the ciphertext
block to form a new input block. For this reason, CFB will also require an integer parameter
s to indicate how much bits of the previous ciphertext block will be used to form the new
input block. The s most significant bits of the previous ciphertext block will be prepended
with the b − s least significant bits of the previous input block (with b being the block size
in bits). The consequence of limiting the number of ciphertext block bits to be used for
the next input block is that only s usable bits of ciphertext will be yielded per block. This
causes the plaintext and ciphertext to be divided in segments of s bits, thus requiring more
processing to complete the encryption process [Dwo01].

Finally, the CFB mode can be described as follows. Let n be the number of plaintext
segments to encrypt, P#

i the i-th plaintext segment, C#
i the i-th ciphertext segment, IV

the initialization vector, s the integer parameter and Ii and Oi be the i-th input and output
block, then the encryption process can be described as:

I1 = IV

Ii = LSB(Ii−1, b− s)|MSB(C#
i−1, s) (for i = 2, · · · , n)

Oi = Cipher(Ii,K) (for i = 1, · · · , n)

C#
i = P#

i ⊕MSB(Oi, s) (for i = 1, · · · , n)

The decryption process will be the inverted operation, namely:

I1 = IV

Ii = LSB(Ii−1, b− s)|MSB(C#
i−1, s) (for i = 2, · · · , n)

Oi = Cipher(Ii,K) (for i = 1, · · · , n)

P#
i = C#

i ⊕MSB(Oi, s) (for i = 1, · · · , n)

2.3.4 Output Feedback mode (OFB)

The Output Feedback (OFB) is a block cipher mode of operation which combines the prin-
ciple of output blocks with the CBC mode [Dwo01]. Like the CBC mode, OFB requires
an initialization vector to randomize its output for a given plaintext. The IV however is
not directly applied to the plaintext, but is first encrypted using the encryption algorithm.
This process yields an output block that will be used for an XOR operation on the plaintext
block. This results in the ciphertext block for the first plaintext block.

The second block uses the output block of the previous block encryption as an input
block for the encryption algorithm. Therefore, no information of the plaintext or ciphertext
is required to calculate the output block for the second block encryption. The second output
block will then be used as the input block for the third block encryption. The process is
repeated for each plaintext block that needs to be encrypted, with the output block of the
previous block encryption (Oi−1) being the input block for next block encryption (Ii). This
makes it possible to calculate the output block for the OFB mode prior to the availability of
the plaintext blocks [Dwo01].

Let n be the total number of blocks, IV be a random IV, K the initial secret key, Ii the
ith input block, Oi the ith output block, Pi the ith plaintext block and Ci the ith ciphertext
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block, then the encryption process can be defined as:

I1 = IV

Ii = Oi−1 (for i = 2, 3, ..., n)

Oi = Cipher(Ii,K) (for i = 1, 2, ..., n)

Ci = Pi ⊕Oi (for i = 1, ..., n− 1)

C∗n = P ∗n ⊕MSB(On, u) (with u the bit length of P ∗n)

The decryption process will be the inverted operation, namely:

I1 = IV

Ii = Oi−1 (for i = 2, 3, ..., n)

Oi = Cipher(Ii,K) (for i = 1, 2, ..., n)

Pi = Ci ⊕Oi (for i = 1, ..., n− 1)

P ∗n = C∗n ⊕MSB(On, u) (with u the bit length of C∗n)

2.3.5 Counter mode (CTR)

The Counter (CTR) mode is very similar to the OFB mode with the sole exception that a
counter and nonce are used to generate the output blocks instead of the same IV for each
block [Dwo01]. The combination of counter and nonce must be different for each block
and each message to avoid repeated use of the same output block. This is achieved by
incrementing the counter value for each block of the message.

The CTR mode is also able to make a block cipher behave like a stream cipher. In order
to this, CTR will treat the last block of the message differently from the rest. The CTR
mode will generate the candidate key stream like in the previous runs, but will only use an
equal number of significant bits as the plaintext block needs for the output block. This way
the plaintext block and the output block will have the same number of bits, which can be
XORed with each other and will result in a ciphertext block with an equal bit length as the
plaintext block.

An overview of the CTR mode is provided by figure 2.6. Finally, the CTR mode can
be described as follows. Let n be the total number of blocks, N be a random nonce, K the
initial secret key, Oi the ith output block, Pi the ith plaintext block and Ci the ith ciphertext
block, then the encryption process is:

Ti = N + i (for i = 1, 2, ..., n)

Oi = Cipher(Ti,K) (for i = 1, 2, ..., n)

Ci = Pi ⊕Oi (for i = 1, ..., n− 1)

C∗n = P ∗n ⊕MSB(On, u) (with u the bit length of P ∗n)

The decryption process is performed the same way as the encryption process, except that
the plaintext block and the ciphertext block are swapped in the XOR operation:

Ti = N + i (for i = 1, 2, ..., n)

Oi = Cipher(S, Ti) (for i = 1, 2, ..., n)

Pi = Ci ⊕Oi (for i = 1, 2, ..., n− 1)

P ∗n = C∗n ⊕MSB(On, u) (with u the bit length of C∗n)
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Figure 2.6: Overview of the CTR block cipher mode. Image from Recommendation for Block
Cipher Modes of Operation: Methods and Techniques (2001) by Dworkin, Morris J..

2.3.6 Counter with Cipher Block Chaining-Message Authentication Code
(CCM)

The Counter with Cipher Block Chaining-Message Authentication Code (CCM) mode is a
block cipher mode of operation which also provides authenticity to the encrypted data. It
combines the aforementioned CTR mode with the CBC-MAC algorithm [Dwo04]. Figure
2.7 gives an overview of the encryption-generation and decryption-verification process.

Figure 2.7: Overview of AES in CCM mode. The encrypted message is authenticated and
unmodified if the original MAC and MACtest are the same after the decryption-verification
step.

The encryption-generation process starts by generating the MAC using the CBC-MAC
algorithm. The CBC MAC (CBC-MAC) algorithm is a MAC algorithm which uses AES in
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combination with the CBC mode and a fixed zero-only IV to generate a MAC. The CBC-
MAC algorithm identifies several input values:

• A nonce N ;
• The associated data A, which is data which will be authenticated but not encrypted

by the AES algorithm in CTR mode. Examples of this form of input are headers and
flags;
• The payload P , which is the data which will be authenticated and encrypted. This is

usually the confidential data.

The CBC-MAC will thus serve as an authentication and integrity measure for the whole
message and not only the confidential data. This requires all the relevant data to be packed
into one data stream. An input formatting function InputFormat will therefore be defined
to ensure that both the sender and receiver pack the data in a common format.

Let Cipher(x,K) the cipher (AES) which encrypts data x with key K, Ti the counter for
block i, s the desired size of the MAC in bits, n the size of the payload in bits, InputFormat
be the input formatting function, and r the number of blocks generated by InputFormat,.
The CBC-MAC algorithm can then be described as follows [Dwo04]:

m = dn/128e
Oi = Cipher(Ti,K) (for i = 1, ...,m)

Bi = InputFormat(N,A, P ) (for i = 1, ..., r)

Y1 = Cipher(B1,K)

Yi = Cipher(Bi ⊕ Yi−1,K) (for i = 2, ..., r)

T = MSB(Yr, s)

W = (T ⊕MSB(O1, s))

U = O2...Om

V = P ⊕MSB(U, n)

C = V ‖ W

Notice that calculations 3 until 7 are related to the the calculation of the CBC-MAC
and calculations 8 and 9 are related to AES CTR encryption. The decryption-verification
process is mostly the inverse operation. Let l be the length of the ciphertext:
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V,W = Split(V,W )

m = d(l − n)/128e
Oi = Cipher(Ti,K) (for i = 1, ...,m)

U = O2...Om

V = MSB(C, (l − n))

P = V ⊕MSB(S, (l − n))

W = LSB(C, s)

T = W ⊕MSB(01, s)

Bi = InputFormat(N,A, P ) (for i = 1, ..., r)

Y1 = Cipher(B1,K)

Yi = Cipher(Bi ⊕ Yi−1,K) (for i = 2, ..., r)

Tt = MSB(Yr, s)

ok = (T = Tt)

2.4 The LoRaWAN protocol

In the introduction it was mentioned that a wireless protocol called LoRaWAN would be
targeted for the power analysis tests. The choice for the LoRaWAN protocol was made for
several reasons.

With the exponential growth of Internet connected device it becomes more plausible that
a larger variety of devices will become connected to the Internet. At first, the Internet was
primarily used by immobile computers and mainframes, allowing the use of cables to connect
the devices to the Internet. With the introduction of portable devices such as the laptop and
smartphone, a need for a more mobile solution started to grow amongst the population. This
lead to the adoption of wireless technologies such as WiFi and cellular networks, providing
Internet access to mobile devices through radio waves. While these technologies provided
a wireless and portable method of connecting devices to the Internet, they also came with
several disadvantages such as limited range, high power consumption and high set-up costs.
These are especially problematic for devices with small batteries such as sensor devices. As
a response, various low-power wireless radio technologies have been created to address these
issues.

One of these low-power wireless technologies is LoRa. LoRa is a wireless connectivity
technology which uses unlicensed MHz ISM radio frequency bands to exchange data [AF17].
LoRa is designed to be used for long ranges and high endurance on battery-powered devices,
allowing data communication up to a range of 10 km in rural areas and for an operation
cycle of several years using regular AA batteries [AF17]. These advantages do come at the
price of a lower data rate: where WiFi and cellular networks are capable of transferring data
at a data rate of several megabits per second, LoRa will only be able to transfer data at
several kilobits per second.

However, LoRa itself is only a physical layer protocol; it provides a method for physically
sending signal through radio frequencies, but it does not define the protocols to interconnect
devices [AF17]. Therefore LoRa is often used in combination with the LoRaWAN protocol
which serves as a MAC protocol for LoRa enabled devices. While the MAC protocol is
primarily created to interconnect devices within the network, it also defines the measurements
used to ensure secure data exchange over LoRaWAN networks.
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Figure 2.8: Structure of a basic LoRaWAN network

Figure 2.8 shows the typical structure of a LoRaWAN network [The18]. The end devices
or nodes are the entities which will retrieve data from the environment such as sensor data.
They will send their data using the LoRa radio technology to Internet connected LoRaWAN
gateways which are basically LoRa enabled relay stations capable of sending and receiving
LoRa packets. If the gateway is part of the LoRaWAN network which the node is trying
to contact, it will be able to relay the packet to a LoRaWAN network server which will
further handle the LoRaWAN MAC functionalities. The data is then often transferred to an
application server which will process and optionally respond to the data.

The key features which make LoRaWAN an interesting target for side-channel attacks
are the following:

• Low (deployment) costs Since LoRa uses the unlicensed ISM radio frequencies,
entities are able to deploy their own devices without having to pay license costs unlike
other wireless technologies such as cellular technologies. LoRaWAN radio modules are
also relatively cheap (less than 10 euros) to purchase. This improves accessibility to
the network and thus allows the technology to be adapted more easily, resulting in a
large user base which can be targeted;
• Long range and low power consumption The combination of long range connec-

tivity and low power consumption makes it more plausible for LoRaWAN enabled end
devices to be left unmonitored for longer periods of time. This makes it easier to probe
said devices, since it is more likely that the devices are left unsupervised.

2.4.1 LoRaWAN security

Before the LoRaWAN protocol can be targeted using side-channel attacks, a better un-
derstanding of the security measures are needed. Since LoRa uses radio technology for
data transfer, it is susceptible to interception by third-parties. The specifications and in-
ner workings of the LoRa protocol are proprietary and not made available for the public,
although attempts have been made and were successful in reverse engineering the protocol
[Kni16][Rob18]. To prevent that third-party entities would be able to intercept and decode
the radio signals (i.e., breaking confidentiality) and to prevent that the original payload could
be modified unintentionally (i.e., breaking integrity), LoRaWAN uses an encryption scheme
based on the algorithm described in IEEE 802.15.4/2006 Annex B [LoR15].

The exact working of this encryption scheme are subject to change from specification to
specification. At the time of writing, the latest final specification of LoRaWAN is version 1.1.
This version introduced extra security measures compared to the previous version (1.0.2).
However, the LoRaWAN device that will be used in the case studies does not support this
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Figure 2.9: The format of a LoRaWAN MAC message according to the LoRaWAN speci-
fication v1.0.1 [LoR15]. The payload defined by the developer resides in FRMPayload. In
version 1.0.1, only FRMPayload is encrypted, while both FRMPayload and FOpts are encrypted
according to version 1.1.

specification yet. For this reason, the focus in this thesis will be turned to the latest supported
specification by the device, version 1.0.1.

In version 1.0.1, the LoRaWAN protocol uses two secret keys to encrypt its traffic: the
application session key (AppSKey) and the network session key (NwkSKey). How the device
obtains these keys is dependent on the way it joins the network [LoR15]. LoRaWAN de-
fines two join methods: Over-The-Air Activation (OTAA) and Activation-by-Personalisation
(ABP). The ABP method is straightforward: AppSKey and NwkSKey are directly stored into
the device memory. However, in case of the OTAA method, AppSKey and NwkSKey are dy-
namically generated by the network server [LoR15]. During the join procedure, the node will
provide AppEUI, DevEUI and DevNonce to the network server. AppEUI and DevEUI can be
chosen freely by the developer although both should be unique within the network. DevNonce
is randomly generated per session context by the node. The network server will use these
three values to generate an application nonce (AppNonce). The application nonce is then
sent back to the node where it will be used in combination with AppKey and DevNonce to
generate the session keys. The node stores both keys for the duration of the session context.
The exact calculation for the session keys is performed as follows [LoR15]:

NwkSKey = aes128 encrypt(AppKey, 0x01|AppNonce|NetID|DevNonce|pad16)
AppSKey = aes128 encrypt(AppKey, 0x02|AppNonce|NetID|DevNonce|pad16)

After completing the join process, the keys can be used for data communication. The
application session key is used to encrypt application data; this is usually the payload that
has been defined by the developer to be sent to the cloud. The network session key is used
for encrypting the information that is relevant for the node and the gateway; this is usually
network related information [LoR15]. Figure 2.9 shows the format of a data-containing
LoRaWAN MAC message5. According to the LoRaWAN specification 1.0.1 [LoR15], the
frame payload (FRMPayload) is first encrypted using the AES CTR algorithm with a 128-bit
key. The choice of encryption key depends on the frame port (FPort) value:

• 0: FRMPayload contains MAC commands (i.e., network related information), thus
NwkSKey is used as the encryption key;
• 1...223: FRMPayload contains application-specific data, thus AppSKey is used as the

encryption key;
• 224: indicates that the LoRaWAN message is a test message and will also use AppSKey

as the encryption key;

20



• 225...255: reserved for future usage. AppSKey will be used as the encryption key.

Once the frame payload has been encrypted, a Message Integrity Code (MIC) is generated
from the LoRaWAN message, more specifically the part that encapsulates MHDR, FHDR, FPort,
and FRMPayload [LoR15]. For the MIC calculation, the AES CBC-MAC algorithm is used
with a 128-bit key (NwkSKey). The calculation of the MIC is defined as follows:

cmac = aes128 cmac(NwkSKey,B0|msg)

MIC = cmac[0...3]

B0 in the previous formula is constructed from information about the message itself.
Figure 2.10 shows the format of B0 [LoR15]. After the payload is encrypted and the MIC is
calculated and added to the message, the message is sent to the LoRaWAN gateway. The
gateway will be configured to relay the message to the network server. Since the network
server possesses the NwkSKey, it will be able to verify the message using the MIC and decrypt
the relevant network related information. The encrypted payload is then relayed to the
application server for which the message is destined to. Finally the application server, which
possesses the AppSKey, will be able to decrypt the payload.

Figure 2.10: The format of the data block B0 that is used during the calculation of the MIC.
Dir indicates whether the message is an uplink (0) or downlink message, while FCntUp or
FCntDown specifies the frame uplink or downlink message counter.

Differences in version 1.1

In the newer LoRaWAN specification (v1.1), several security measures have been added
[LoR17]:

• More cryptographic keys: version 1.1 defines more cryptographic keys to fit the
purpose that each needs to fulfil. Apart from the aforementioned application key
(AppKey), a network key (NwkKey) is now also defined per end-device. This ensures
that the application and network session keys are generated independently of each
other. The network session key (NwkSKey) is also further split into multiple keys
according to their purpose: FNwkSIntKey, SNwkSIntKey and NwkSEncKey;
• JoinEUI instead of AppEUI: AppEUI is in name changed with JoinEUI, but its purpose

remains the same;
• DevNonce cannot be freely chosen: previously, DevNonce could be freely chosen by

the developer as long as it was unique in the network. Version 1.1 states that DevNonce
is now a counter that gets incremented with each join and is persisted over power-cycles
as long as JoinEUI remains the same;
• FOpts is also encrypted: apart from the FRMPayload, FOpts is now also encrypted.

The encryption key that is used to encrypt this field is NwkSEncKey;
• Other keys for MIC calculation: instead of NwkSKey, SNwkSIntKey is now used

to calculate the MIC for downlink messages to both gls:lorawan 1.0 and 1.1 network
servers, FNwkSIntKey for uplink messages to LoRaWAN 1.1 network servers;
• B0 is changed for MIC calculation: when calculating the MIC for LoRaWAN 1.1

network servers, a block format represented by figure 2.11 is used instead.
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Figure 2.11: The format of the data blocks B1 that are used during the calculation of the
MIC. The data blocks for uplink messages define two extra attributes TxDr and TxCh, which
respectively indicate the transmission data rate and channel.
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Chapter 3

Power analysis attacks

While AES is considered to be a strong cryptographic algorithm, it will not guarantee that
a cryptographic device will be able to provide secure data encryption. Over the past years,
researchers have performed attacks on the system implementation of cryptographic devices
with the hope of attacking and breaking otherwise secure cryptographic algorithms. These
attacks have been named side-channel attacks and have been known to be successful against
algorithms such as DES and AES. In this chapter, an introduction to side-channel attacks
will first be given to construct an overview about how these side-channel attacks can be used
to attack cryptographic devices. Several popular forms of side-channel attacks will be briefly
described to give the reader an idea of which side-channels can be used during these attacks.
Afterwards, the basic forms of power analysis attacks and techniques related to performing
power analysis attacks will be explained in more detail. Finally, several case studies will
be performed to address the practicality and effectiveness of the power analysis attacks in
practice.

3.1 Side-channel attacks

The security of a system is often affected by the knowledge an attacker has about the system.
Take for example that an attacker would like to gain access to information in a secured
facility. Knowing which security system is used allows the attacker to closer investigate the
system and benefits the attackers chances to infiltrate the secured facility and retrieve the
information. In this situation, the attacker would have access to the security details of the
facility. But assume that the attacker would not have access to the security details. Would
that make the facility secure all of the sudden? There is no certain answer, since the facility
could be insecure due to other (external) factors.

A similar situation is also applicable to cryptographic systems. In a cryptographic system,
there are also multiple layers on which information about the cryptographic system can be
gathered. In general, the more information an attacker is able to gather from a system, the
easier it will become to attack the system. Figure 3.1 shows the information layers available
inside and outside a cryptographic system.

The various layers indicate where the information can be retrieved from. The following
layers are identified:

• Communication media: information from radio signals and other physical media
is gathered in this layer which is not part of the cryptographic device itself. These
physical media are mostly public accessible, which makes it the easiest layer to gather
information from. An example of gathering information from this layer is signal fin-
gerprinting and packet sniffing;
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Figure 3.1: The information layers available inside and outside a cryptographic system. The
accessibility of the information is represented by the layers from easily accessed (out-most
layer) to very difficult to access (inner-most layer).

• Physical device: in this layer the information comes from the physical properties
of the cryptographic device itself e.g., power consumption of a specific chip or acous-
tic from the CPU fan. However, custom implementations could prevent information
leakage from physical properties;
• Implementation: the implementation of the device is often crucial to the security

of a system. A bug or vulnerability in the implementation could weaken or break the
security of a cryptographic device. Having more information about the implementation
of a system is often more difficult to retrieve, but could be critical in attacking the
device;
• Cryptographic engine: information from the cryptographic engine will provide the

attacker with information about the used cryptographic algorithms and possibly the
cryptographic keys used by the engine.

The goal of the attacker is to retrieve information about the cryptographic keys in order
to decrypt the confidential information. However, as displayed by figure 3.1, this information
is often the most difficult to access. Therefore, the attacker may choose to rather focus on
the other, more accessible information layers first. The combination of information from
several layers could then lead to information about the cryptographic keys. This concept
did not apply in the older forms of cryptography from before the age of computers. Up
until the last century, cryptography was a mostly a manual operation. A person would have
to use an algorithm or a cryptographic device to encrypt the message to ciphertext. The
medium was also less accessible, because communication often happened through physical
objects such as sealed paper or boxes. Therefore, the strength of the cryptographic system
was and still is primarily determined by the strength of the cryptographic keys and the
mathematical correctness of the implementation. Since the introduction of the computer
and wired and radio communication channels, cryptography shifted from being a manual
operation to a more automated operation. Hardware implementations for encrypting and
decrypting confidential information became more common.

However, since 1943 it has been known that hardware implementations are prone to leak
information about the encrypted data [NSA72]. In 1996, Kocher et al. [Koc96] pointed
out that the implementations of modern-day cryptographic algorithms (both in terms of
hardware and software) were also a factor to consider when addressing the level of security
hardness [Koc96]. Several physical properties of a cryptographic device such as the time or
the power needed to encrypt a certain piece of data, could lead to information leakage. By
specifically attacking these physical properties, a malicious person could retrieve information
such as the cryptographic keys of the encryption algorithms, which would in turn undermine
the security of the cryptographic system. These attacks were named side-channel attacks,
since these properties were observable outside the cryptographic system.

24



In a real-life situation a vast variety of side-channels would be involved in the usage of
a cryptographic device. However, not all of them can be used in a realistic manner when
attacking a device. When considering side-channel attacks, one could categorize the attacks
based on a level of intrusiveness or destructiveness. For example, some side-channel attacks
would require deconstruction of the cryptographic device in order to observe specific parts of
the system. In case of a power analysis, this could be the process of opening the enclosure and
removing several electronic components such as capacitors which are known to interfere with
power measurements. These intrusive side-channel attacks are more likely to be observed by
the owners and could therefore lead to the identification of the attack(er). However, there are
some side-channel attacks which are less intrusive and destructive like the electromagnetic
attacks.

In the following subsections, various forms of side-channel attacks will be briefly de-
scribed. Afterwards, power analysis attacks will be described in more detail. Power analysis
attacks can be a powerful method to attack cryptographic devices. The cryptographic algo-
rithms used by the devices are often paired with intensive calculations such as searching large
prime numbers or performing repetitive algebraic calculations. Since heavy computation is
often met with an increased power consumption and fluctuations in power consumption, the
analysis of the device’s power consumption could lead to revealing information about the
communication that’s being encrypted.

3.1.1 EM analysis attack

The electromagnetic analysis attack is a side-channel attack which focuses on the electro-
magnetic output of an electrical device during operation time. The electromagnetic attack
often targets the electromagnetic radiation that is output by electronic components upon
power consumption. The origin of the electromagnetic radiation is found on the level of
electrons. Because electrons are charged particles, they emit a magnetic field around them.
The amount of electrons moving in the medium will therefore determine the strength of the
magnetic field generated in the medium. Given that the magnetic field is strong enough,
which corresponds to an adequate current flowing through the medium, the magnetic field
will also be observable outside the medium. The electromagnetic analysis attack will target
the fluctuations in the strength of the magnetic field to determine the change of the current
flow in the targeted device. Similar to the power analysis attack, the electromagnetic analysis
attack will also try to correlate the electromagnetic fluctuations and the associated changes
in current to the bit changes in the device’s memory.

3.1.2 Timing attacks

The timing attack is a side-channel attack which focuses on time-based properties to deter-
mine vulnerable information [ZF05]. During a timing attack the attacker will measure the
time which is required to perform certain operations using different inputs. Based upon the
recorded times the attacker then tries to uncover information which will lead to discovering
the vulnerable information.

In general there are two types of timing attacks: the conventional timing attack and the
cache timing attack. The conventional timing attack will simply measure the time that is
needed to perform a specific (part of the) operation. This attack is mostly used on algorithms
that have different runtimes based upon different inputs.

The subtype of timing attacks, the cache timing attack, will also measure the time that is
needed to perform a certain (part of an) operation. However, cache timing attacks specifically
target the time that is needed for the system to store and use values in their cache memory
[Ber05]. Cache memory is a special type of memory which is optimized for fast access by the
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system, thus improving the performance of the system. The downside of cache memory is
that it is very expensive to manufacture compared to the slower main memory. The result is
that many systems have a limited amount of cache memory available and are thus required
to swap variables between the cache memory and the slower, but larger main memory. When
a system tries to execute an operation, it will have to check whether the required variables
are available in the cache memory. When the variable is present in the cache memory, the
system will be able to retrieve it relatively quickly from the cache memory. This is also
called a cache hit [Ber05]. However, if the variable is not present in the cache memory, the
system would have to access the relatively slow main memory to retrieve the variable. This
is also called a cache miss. While the outcome of the algorithm would unlikely be affected by
the absence of the variable in the cache memory, the difference in execution time would be
noticeable. This difference in access time forms the base for the cache timing attack. Two
notable examples of cache timing attacks are the Meltdown [LSG+18] and Spectre attacks
[KHF+18].

3.1.3 Fault attack

Fault attacks are a form of attacks which focus on particular faults in device implementations.
In general, there are two types of fault attacks which can be determined: computational
fault attacks and input related fault attacks. The first type focuses on computational faults
occurring in the cryptographic device [ZF05]. These can be randomly or intentional be
induced by modifying physical properties or requirements of the device. One example is
inducing faults by changing the supply voltage abruptly.

The second type of fault attacks, the input related fault attacks, are used when the de-
vice has shown to follow special routines or be incapable of handling certain inputs. The
attacker could use these inputs to gain information about the cryptographic system or could
potentially render it unusable for genuine users. An example of an input related fault attack
is the fault attack on RSA signature implementation using the Chinese-Remainder-Theorem
[BDL97]. By comparing the differences between correct and faulty signatures, a secret mod-
ulo N could be derived which is used on the input data to form the signatures. Once N is
known, other signature can be forged and thus the cryptosystem will be broken. The use of
faulty input thus is the foundation of the attack.

3.1.4 Acoustic attack

Acoustic attacks rely on sound waves to extract information about the cryptographic system.
Acoustic attacks in the field of computer security are relatively new, but have shown to be
successful in the past [GST14] [GST17]. The technique works by correlating the emitted
sound waves of a computer to the operation it is performing. The source of the sound is
often found with the low frequency sounds emitted by the processor. Although the processor
often operates at much higher clock frequencies, the execution of certain long operations can
cause a characteristic acoustic spectral signature to be generated by the processor [GST17].
The timing of the low frequency sound emission can also be associated to the timings of the
operations. An example of a successful acoustic attack is the RSA key extraction attack
performed by Genkin et al in [GST14].

3.1.5 Error message attack

Error message attack are side channel attack which try to extract information from a crypto-
graphic device by analysing the error messages that are received in response to invalid events
or inputs [ZF05]. The most commonly form of attacks using this pattern are the padding
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oracle attacks. These attacks use padding errors to guess the otherwise inaccessible infor-
mation. Padding oracle attacks on AES CBC have been shown to be successful in the past.
This attack relies on the error responses by the receiver to determine the last plaintext byte
associated with a given ciphertext byte. Once the last byte is known, the second-to-last byte
can be determined in a similar way, and the process is repeated until the whole plaintext is
known.

3.2 The design of a cryptographic device

Before the power analysis attacks can be explained in more detail, the fundamentals upon
which it relies need to be explained first. Cryptographic devices are constructed using multi-
ple electronic components. In general, a cryptographic device will have one or more proces-
sors and memory which will be used to perform the cryptographic operations. The processors
can be dedicated cryptographic processing units or a general-purpose processing units. In
high-level terms the difference between these two types of processors is that the first one
will only perform cryptographic operations while the latter could be also be used for other
operations. While both processors have different purposes, their designs often consist of a
common component: the Complementary Metal Oxide Semiconductor (CMOS) cell. CMOS
cells are the smallest components which are able to store and manipulate logic data values
(i.e., bits).

To further explain how this is relevant for power analysis attacks, the inner workings of
a CMOS cell and their inner components have to be explained first. Processors are able to
process data that is represented by the aforementioned logic data values. But from a physical
perspective, these data values are represented by electricity. The logic data values in CMOS
cells are typically defined by the voltage inside the components: a voltage level equal to
the components supply voltage VDD represents a value of 1, while a supply voltage equal
to the ground voltage GND represents a 0. To manipulate these values, CMOS cells use a
network of transistors to form so called logic gates. Logic gates provide binary operations on
one or more binary inputs in order to produce a single binary output. These logic gates are
implemented using transistors which can be used as electrical switches, allowing a current
to flow between two entry points (the drain and source) based on the voltage between the
source entry and a third entry point (the gate) within the transistor. Depending on the
gate-source voltage of the transistor and the type of transistor, a current will flow between
the drain and source of the transistor. Using n- and p-channel transistors, numerous logic
gates can be constructed such as the NAND gate displayed in figure 3.2.

Whenever a transistor is in the ”off” state, the resistance between the source and drain
is extremely high, thus only a very low current will be flowing between the source and drain.
To switch the ”off” state to the ”on” state, a voltage higher than the threshold voltage
must be applied to the gate of the transistor. In the ”on” state, the resistance between the
source and drain is defined by the transistors specifications, often referred to as RDS(on).
However, the complementary use of transistors in CMOS designs will always cause at least
one transistor between VDD and GND to be in the ”off” state, effectively creating a high
resistance on the path and thus limiting the current flow to be a very small point during
static operations. It is only during the switching of states that a high current will flow
through the cell, since the switching will momentarily cause a short circuit between VDD and
GND [Fai83]. Consequently, a CMOS cell will only consume an adequate amount of power
whenever the input values change.

The power consumption characteristics of a CMOS cell will directly be associated with
the power analysis attacks since most microprocessors are designed with CMOS logic gates,
and use SRAM and static caches which are also commonly implemented with CMOS cells
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Figure 3.2: An example of a CMOS NAND cell implemented using p- and n-channel MOS-
FETs. The threshold voltage for all transistors is equal to 0 V, allowing direct application
of input voltages and source voltage (VDD) on the transistors.

(figure 3.3 shows an example of a CMOS based SRAM cell). Because both the processing
and storage of data in a cryptographic device will involve the use of CMOS technology, it
is safe to assume that the execution of cryptographic algorithms, which will involve changes
in bit values in the CMOS cells, will have a direct effect on the power consumption of the
cryptographic device.

Figure 3.3: Design of a CMOS SRAM cell using 6 transistors 1

1Image source: https://en.wikipedia.org/wiki/Static_random-access_memory#/media/File:SRAM_Cell_(6_

Transistors).svg
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3.3 Simple power analysis (SPA)

The first type of power analysis attacks that will be described is the simple power analysis
(SPA) attack. Kocher et al. described simple power analysis as ”a technique that involves
directly interpreting power consumption measurements collected during cryptographic oper-
ations” [KJJ99]. Using SPA, the attacker would thus try to extract the cryptographic key(s)
from the measured power consumption traces using a minimal amount of data processing.
While the main goal of an SPA attack is to retrieve the cryptographic key(s), it is also possi-
ble that other valuable information can be retrieved from the power traces. Several examples
include:

• Identification of loops (i.e. identical power consumption patterns) which, for example,
can lead to the determination of key lengths;
• Identification of memory accesses (i.e. often lower power consumption) which can be

used to identify certain steps within the algorithm;
• Identification of non-intentional repetitive steps (i.e. identical power consumption pat-

terns) which can (for example) be used to identify the re-usage of keys;
• Identification of ‘special’ events in algorithms (i.e. anomaly in power consumption

patterns) which can (for example) be used to derive the secret key(s).

An SPA attack can be performed in several ways depending on the number of traces
that are available. A brief description of the most popular methods will be described in the
following subsections.

3.3.1 Visual inspection

One of the most straightforward methods to perform an SPA attack is to visually inspect
the power traces. In most cases, cryptographic algorithms are sequentially executed by the
microprocessor (i.e., instructions are performed in a predefined fixed order). This means that
a sequence of instructions is likely to generate the same power consumption characteristics
if it is executed repeatedly. On the other hand, some instructions might be known to have
a high power consumption such as memory IO operations. These characteristics are often
referred to as patterns. By identifying the patterns in a power trace, the attacker could
potentially extract information about the cryptographic system.

Kocher et al. demonstrated that a visual inspection of the power consumption traces
could be used to target the DES algorithm. The overall steps of the DES algorithm are
explained by listing 3.1. Performing a simple power analysis allowed Kocher et al. to
determine the number of rounds used by the algorithm as seen in figure 3.4(a). Further
analysis also allowed Kocher et al. to identify the number of rotations in the key scheduling
algorithm per round. Figure 3.4(b) shows the power consumption of round 2 and 3 of the
DES algorithm. In the second round the key scheduling algorithm will rotate the round key
once (visible by only one peak in the trace), while the third round will rotate the round key
twice (visible by the two peaks in the trace). However, the cryptographic system was not
completely broken after the simple power analysis; it only revealed information that could
be used to help with other attacks [KJJ99].
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Figure 3.4: Power consumption traces of the DES encryption cipher measured by Kocher
et al in [KJJ99]. Subfigure (a) focuses on the overall algorithm with its distinguishable 16
rounds, while subfigure (b) focuses on the round key rotation of rounds 2 and 3.

Visual inspection of power traces does have a couple of requirements before it can be
used. First of all, the attacker will need to have a decent knowledge of the internal workings
of the cryptographic device. Certain microcode could introduce operand-dependent power
consumption, which would increase the device’s vulnerability [KJJ99]. Secondly, the attacker
must know or derive what kind of encryption algorithm is used by the cryptographic device
before he can associate characteristics in the power trace to an algorithms properties. Even
when the algorithm is known, there is still the possibility that an SPA attack is unable
to extract useful information from the power traces. Kocher et al. [KJJ99] noted that
symmetric cryptographic algorithms were less vulnerable to SPA attacks, because in most
cases they do not produce as much power variation as asymmetric cryptographic algorithm
do.
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1 function festel(data , round , key):

2 # data = half block of data (32 bits)

3 # round = current round

4 # key = original secret key

5 roundkey = keysched(key , round)

6 ext_data = expand(data)

7 temp = xor(ext_data , roundkey)

8 b = sbox(temp)

9 permute(b)

10
11 function des_encrypt(pt, key):

12 # pt = 64 bits of plaintext data

13 # key = 64 bits secret key

14 permute(pt)

15 a = pt [0:32]

16 b = pt [32:64]

17
18 for 16 rounds:

19 festel(b)

20 a = xor(a, b)

21 swap(a, b)

22
23 ct = concat(a, b)

24 invPermute(ct)

Listing 3.1: Pseudocode describing the global operations of the DES encryption cipher

3.3.2 Template attacks

A second type of SPA attacks that will be explained are the template attacks. Templates
attacks build further on the characterization of power consumption by cryptographic opera-
tions. While visual inspection depends on the visual representation of the power consumption
trace, template attacks will use the statistical properties to characterise the power traces.
In a way, template attacks can be seen as the first steps into a machine learning approach
of analysing the power consumption traces. A template attack is executed in two steps: the
template building step and the template matching step.

Template building

A template attack will need to build templates in order to categorize new power traces. The
categorization will afterwards be used to determine the input values (e.g. plaintext, secret
key, . . . ). However, for this categorization to be accurate, a large number of sample data will
be needed to form a correct and fine-grained categorization procedure. In machine learning,
this sample data is often referred to as training data.

The template building step is therefore the first step to be executed in a template attack.
This step requires a large number of power traces along with the plaintext or ciphertext and
the used keys. For example, if the first key byte of an AES 128-bit algorithm was targeted
and every possible data value was considered, it would take 2562 power consumption models
for the template attack (one model per possible key byte value) [MOP07]. For each model, a
couple of thousand power traces would be required to assure an adequately accurate model.
However, the number of power consumption models can be reduced if another template is
chosen. For example, if the template is chosen to be the result of an operation such as
SBox(di ⊕ kj), with di a data byte value and kj a key byte value, then the number of
templates would be reduced to 256 possibilities (all possible resulting byte values) [MOP07].
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However, by mapping multiple inputs to a single power model, the efficiency of the power
model will be decreased. As a result, a reduced template will be unable to find the correct
key byte given a single power trace from the target device.

Collecting these traces is also not evident as the attacker needs both the data and the
key for the template. The most viable approach in doing this is by retrieving an exact copy
of the cryptographic device and configuring the device to process chosen plaintexts using
chosen secret keys. The power traces are then characterized using statistical properties. In
[MOP07], the mean vector m and the covariance matrix C are suggested as characterization
properties. However, it should be noted that the covariance matrix grows quadratically with
the number of data points in the trace [MOP07]. In the next section it will become clear that
a large covariance matrix will influence the processing time during the template matching.
Thus, it is advised to determine key points in the power traces which are most unique to a
power trace. One possible method of determining unique points over a number of traces is
by calculating the sum of distances (see appendix C). After the template building step, each
pair of data and key values (di, kj) will be linked to a template (m(tdi,kj ), C(tdi,kj )).

Template matching

The second step involves matching the templates to the power traces captured from the device
under attack. A frequently used metric to compare sets of data points is the probability
density of the normal distribution. The probability density of the normal distribution is
defined as follows:

f(X|µ, σ2) =
1√

(2π)kσ2
e−

(x−µ)2

2σ2 (3.1)

with k the number of data points inX. Adjusted to the available templates (m(tdi,kj ), C(tdi,kj )),
the metric is calculated as follows [MOP07]:

f(t|m,C) =
1√

(2π)kC
e−

(t−m)2

2C

=
1√

(2π)kC
e−

(t−m)T C−1(t−m)
2

(3.2)

The attacker then proceeds by calculating the probability densities for the power trace(s)
captured from the target device for every available power consumption model. Calculating
the probability density requires several matrix multiplications to be performed. As mentioned
in 3.3.2, the number of data points used for building the templates will affect the size of the
covariance matrix C and the mean vector m. Considering the number of probability density
calculations that have to be performed, the matching process can be considerably reduced
by having smaller covariance matrices. This means that using less data points to generate
the templates will have a positive effect on the duration of the template matching.

Once all the probability densities have been calculated for a power trace, the highest
probability density will be selected and its arguments (i.e., the power consumption model)
will be considered the best guess for this power trace. If a direct power consumption model
is used (i.e., a model for each pair (di, kj)), processing a single trace from the target device
might yield the correct key byte as a result. Other models will need more power traces in
order to derive the correct key bytes.

32



3.4 Differential power analysis (DPA)

In [GP99], Goubin defined a differential power analysis (DPA) as ”an attack that allows
to obtain information about the secret key (...) by performing a statistical analysis of the
electric consumption records measured for a large number of computations with the same
key”. Concretely this means that differential power analysis will try to extract the key given
a) a set of input values, b) a set of power consumption graphs and c) the output values. The
process can (abstractly) be described by the following steps:

1. The attacker targets a certain part of the algorithm and starts collecting the power
consumption curves (denoted as Ei) and the output ciphertexts (denoted as Ci) until
the targeted part of the algorithm has executed its computations;

2. The attacker defines a selection function D(C, j,K)→ bj which simulates the encryp-
tion process done by the targeted part of the algorithm on the j-th bit of a ciphertext
C that would yield an output bj using the secret key K.

3. The attacker then generates a curve that represents the mean of the collected power
consumption curves. This will be called the Mean Curve in further mentions;

4. The attacker then sets a hypothetical key Kh and uses this key to evaluate D(C, j,K)
for each collected Ci.

5. The attacker is now left with combinations of (D(Ci, j,Kh), Ei) → bj where bj can
only be a limited number of possible values. Given the fact that the same sequence of
calculations should be done to generate the same output (otherwise the calculations
would be irreversible), the attacker can then form groups of combinations which yield
the same (expected) output bj .

6. The attacker can now generate the mean curves for each group and differentiate these
curves with each other. The result is a differential trace ∆E.

Kocher et al. [KJJ99] formed a formula which describes this differential trace ∆E as
follows:

∆E[t] =

∑m
i=1D(Ci, j,K) · Ei[t]∑m

i=1D(Ci, j,K)
−
∑m

i=1(1−D(Ci, j,K)) · Ei[t]∑m
i=1(1−D(Ci, j,K))

≈ 2

(∑m
i=1D(Ci, j,K)Ei[t]∑m

i=1D(Ci, j,K)
−
∑m

i=1Ei[t]

m

) (3.3)

If Kh is incorrect, then the selection function D will yield random results which are
uncorrelated to the actual output. Because the creation of groups is dependent on the result
of D, it will cause the groups to formed at random as well. Regarding 3.3, this would result
in the differential trace to converge to zero since m → ∞. However if Kh proves to be
correct, it will yield a differential curve which also converges to zero, but shows clear power
consumption differences when the targeted bit was accessed or manipulated. The attacker
then knows the guessed key Kh was indeed correct.

3.4.1 Higher-order differential power analysis

The DPA attack described above only mentions the use of one intermediate value during the
evaluation of the power traces. However, the reliance on this single value also means that the
success of the attack depends entirely on the correct interpretation of the intermediate value.
Using this knowledge, several cryptographic algorithms have implementations which try to
prevent basic power analysis attacks from being successful [MOP07]. This involves modifying
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the typical power consumption by performing special operations during the execution of the
algorithm. These operations will be further explained in 3.7.

However, these countermeasures can be bypassed by extending the aforementioned dif-
ferential power analysis attack. Until now, the DPA attacks were assumed to be executed
on the original power traces without any preprocessing. Such an approach is also called
a first-order differential power analysis attack (1O-DPA), since the attack only consists of
a single attacking step. However, when the previously mentioned countermeasures are in
place, this direct approach will be unsuccessful since the traces contain information related
to the processing of misleading intermediate values. Messerges [Mes00] introduced a variant
of the original DPA attack which extended the DPA attack by exploiting the leakage derived
from two or more intermediate values instead of a single one. This variant was called the
higher-order differential power analysis attack (HO-DPA).

Usually higher-order DPA attacks are constructed using a preprocessing stage and an
attacking stage. Like the attacking stage, the preprocessing stage is also focussed on a
specific operation. Thus, a specific time window can be used during the preprocessing step,
namely the time window in which the targeted operation takes place. The following actions
are usually taken for the preprocessing stage:

1. Determine the time window in the traces where the vulnerable procedure takes place;
2. Use the interval I from the time window to form all possible pairs of points within the

window without introducing duplicates. The order of points in the pair are irrelevant
and duplicate pairs are not allowed (i.e. let vx, vy ∈ Ti and x 6= y then (vx, vy) =
(vy, vx));

3. Create new traces with each trace containing the absolute difference of two points
formed by the previously formed pairs (i.e. a = ‖vx − vy‖).

The attacking phase is then executed similarly to the first-order differential power analysis
attack attack, with the main difference being the change of intermediate values that are used
for the evaluation.

3.5 Correlation Power Analysis (CPA)

While differential power analysis (DPA) provides an alternative to the simple power analysis
(SPA), it is not an ideal method in every situation where an attacker tries to break the cryp-
tographic system. In [BCO04], Brier et al. stated that there were three major assumptions
made when deploying the DPA attack:

• Word space assumption: DPA assumes that the prediction of the target bits or
bytes is independent of non-targeted bits.
• Guess space assumption: DPA assumes that when using wrong hypothetical key

information, the predicted values will not depend on the values obtained when using
the correct key information. However, if these values are even partially correlated,
it could result in unexpected peaks because of additional noise distorting the correct
result. These unintended peaks are also called ‘ghost peaks’ and can be regarded as
false positives;
• Time space assumption: DPA assumes that a DPA peak will happen only when

the value bit is explicitly handled. However it could be that a peak occurs during the
algorithm while it is not explicitly handling the value bit.

To overcome these problems, Brier et al. introduced a new power analysis variant called
the correlation power analysis (CPA) which uses a leakage model based on Hamming dis-
tances.
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3.5.1 Coupling Hamming distances to power consumption

The Hamming distance is a metric which is used to express the number of transitions between
0→ 1 and 1→ 0 between two states of machine words over a period of time [MOP07]. For
example, assume we have words R = 0x11001010 and S = 0x00101100. The Hamming
distance between words R and S of length n could then calculated as follows:

H(R,S) =
n∑

i=0

(1 if Si 6= Ri) = 5 (3.4)

In section 3.2 it was explained that CMOS cells consume an adequate amount of power
when the transistors within the cells are forced to switch between on and off states. The
transistors in the CMOS cell must switch states when their logic input values change. Since
the Hamming distance expresses the number of bit transitions in a machine between states, it
can be assumed that the power consumption of CMOS cell is related to the Hamming distance
over an equal time period [BCO04]. This however assumes that the power consumption
needed to flip a bit from 0 to 1 is equal to the power consumption of flipping a bit from 1 to
0. Brier et al. stated that these assumptions are quite realistic [BCO04].

Brier et al. also assumed that a linear relationship existed between the power consump-
tion of the device and the Hamming distance between the two states. Given this assumption
and by using the Hamming distance as defined by 3.5.1, the number of bits which have been
flipped over (the part of) the encryption process can be described as H(R,S). It should be
noted that it is difficult to determine exactly what the current state of bits is in the chip’s
memory at a certain moment; therefore H(R,S) is often replace by hypothetical values. If it
can be assumed that the chip has a certain base power consumption b which is unrelated to
the flipping of the bits and that the power consumption of flipping the bits is linearly related
to the number of bits that are being flipped by a factor a, then the total power consumption
during the encryption process can be defined as:

W = aH(R,S) + b (3.5)

The main question concerning this formula is which states should be chosen as the ref-
erence state R and input state C. Ideally, the states before and after the algorithm has
accessed or modified critical words are chosen as reference and input states.

3.5.2 Improving the guessing

Since the Hamming distances and the power consumption are put in a linear model, a
relationship between the variables should exist. In [BCO04], Brier et al. used the Pearson
correlation coefficient (PCC) to describe this relationship:

ρW,H =
cov(W,H)

σWσH
(3.6)

The main advantage of the correlation coefficient is that if the model is correct, the
correlation coefficient should be maximized when the noise variance is minimized. During
the CPA attack, each possible change between two states is considered as a guess. The
correlation coefficient can be used as an indication of how well a guess ‘fits’ within the
model. Thus each guess R′ for the reference word R can be tested by the following formula:

ρW,H(R′,S) =
cov(aH(R,S) + b,H(R′, S)

σWσH(R′,S)
(3.7)
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After expanding the formula further, Brier et al. came up with the following formula for
the correlation coefficient test:

ρW,H(R′,S) = ρW,H(R,S)
m− 2k

m
(3.8)

where m is the number of bits in the word and k = H(R,R′) or simply the number of
bits different between R and R′. This formula leads to three possible situations:

• k > m
2 ⇒ ρW,H(R′, S) < 0: the guessed state change is badly correlated to the

observation and thus likely to be wrong;
• 0 < k ≤ m

2 ⇒ 0 ≤ ρW,H(R′,S) < 1: the guessed state change is correlated to the
observation and thus a good candidate;
• k = 0 ⇒ ρW,H(R′,S) = 1: the guessed state change is strongly correlated to the obser-

vation and most likely to be the actual reference string.

The total number of guesses can thus be greatly reduced by using the correlation coeffi-
cient.

3.6 Vulnerable points in the AES algorithm

3.6.1 Simple Power Analysis and template attacks

In terms of simple power analysis attacks, one could attempt to perform a visual inspection of
the power traces in order to identify key parts of the algorithm in the power trace. However,
directly retrieving the secret key from the visual inspections is very unlikely to occur. Further
processing of the power traces using Hamming weights and distances have proven to be
successful in the past though [Man02][CMW14]. These attacks focused on deriving (a part
of) the secret key from the KeyExpansion step. Clavier et al. were even able to perform
the attacks on AES implementations which had countermeasures in place to prevent power
analysis attacks [CMW14]. Template attacks and other profiling attacks have been shown
to be successful while not specifically targeting specific parts of the AES algorithm [OM07].
However, it should be noted that they require an extensive number of power traces in order
to be able to create the templates or profiles.

3.6.2 Differential Power Analysis

Differential and correlation power analysis attacks will use the differences in power consump-
tion to derive the bit changes in the memory of the target device. However, to know the
differences in memory is only the first step in deriving the secret key; the bit changes still
need to be linked to an operation which involves the use of the secret key [MOP07]. It is
therefore that a DPA and CPA attack will target a function f(d, k) where k is the secret
key and d is input data on which the secret key is used. In general, there are two options of
input data that the attacker could use: the plaintext data that was encrypted (for example,
fixed headers of a message protocol) or the ciphertext itself [MOP07].

In CBC mode

Suppose the AES algorithm in CBC mode with a 128-bit key is targeted. In case the
plaintext is chosen as the input data d, the CPA attack can focus on the initial steps of
the encryption process. The first steps of the encryption process include KeyExpansion,
AddRoundKey, and SubBytes. KeyExpansion will generate round keys which will be used
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during the AddRoundKey step [NIS01]. However, the first round key is always the unmodified
secret key, effectively making the first AddRoundKey an XOR operation between the unen-
crypted data stream and the secret key. The following SubBytes operation could thus be
seen as a lookup operation of every byte in the XORed data stream against the AES S-box.
Since this operation only modifies the bits in the state array, it is often chosen as a point
to attack. In this case, the target function for the calculation of intermediate values will be
f(di, ki) = SBox(di⊕IVi⊕ki) with di being the ith byte of plaintext, IVi being the ith byte
of the IV and ki being the ith key byte.

It should be noted that in educational examples the IV is almost always set to an all-
zero IV, effectively removing the IV from the XOR operation during the calculation of the
intermediate value. However, if implemented correctly, the encryption process would use a
random IV for each message. It is assumed that this IV is unknown to the attacker, since it
could be a fixed value stored onto the device or it could be encrypted during the AES CTR
encryption. Therefore, another approach is used to overcome this issue.

In [Jaf07], Jaffe was able to find the secret key of an AES CTR encryption without
knowing the counter. Note that the counter in AES CTR is used in a similar way as the
IV is used in the CBC mode of AES, namely to randomize the input data2. The same
principle as Jaffe described can be used for the CBC mode with an unknown IV. First
a standard CPA attack is performed on a block Bm. Instead of finding the secret key
k, a hypothetical modified key k′ = k ⊕ Cm−1 will be found instead, with Cm−1 being
the ciphertext of the previous block. At first this modified key seems not useful, since it
can only be used for encrypting block m. However, remember that the first thing that
happens when encrypting a block Bm is the AddRoundKey procedure. For a block Bm, this
equals to AddRoundKey(a, b) = a⊕ b⇒ AddRoundKey(k, Pm ⊕ Cm−1) = k ⊕ Pm ⊕ Cm−1.
Since the XOR operation is associative, k ⊕ Cm−1 can be taken apart and be replaced with
the hypothetical modified key k′. Thus the AddRoundKey procedure can be expressed as
AddRoundKey(k′, Pm). With this in mind, the hypothetical modified key can be considered
as the first round key of the encryption of block Bm and a new CPA attack can be performed
on the second round. The calculation of the intermediate value used for this attack is
described in listing 3.2. The result of this attack will be the second round key, which can be
reverted to the initial key using the algorithm in section 2.2.2.

1 def aes_intermediate(key_guess , plaintext , byte_pos , round1_key):

2 state = [plaintext[i] ^ round1_key[i] for i in range (16)]

3 state = sub_bytes(state)

4 state = shift_rows(state)

5 state = mix_columns(state)

6 return sbox(state[byte_pos] ^ key_guess[byte_pos ])

Listing 3.2: Algorithm to calculate the intermediate result for AES CBC round 2

Another possible point of attack is the last round of the AES encryption. Since the last
rounds of the algorithm are attacked, the ciphertext will used as the input data instead of
the plaintext [MOP07]. This point of attack is often considered when hardware accelera-
tion is available in the microchip. Depending on the hardware implementation, hardware
acceleration could in theory be able to perform a single round of AES in a single clock cycle
[dO18]. This makes it more difficult to detect possible bit changes in the memory. However,
the last round of AES is different than the other rounds; it does not perform a MixColumns

operation. Since the MixColumns operation adds complexity to the AES rounds, the last
round would be less complex and thus easier to analyse than the other rounds. This attack

2N + ctr will change the input block for each block during CTR mode. P ⊕ IV will change the plaintext
before it is used as the input block during CBC mode.
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strategy will thus target the last round of AES, which includes the SubBytes, ShiftRows,
and AddRoundKey operation between the 9th and 10th round states. The calculation of the
intermediate value for this point in the algorithm depends on reversing these operations,
which is described in listing 3.3. Effectively, the result of the calculation is the difference of
the processed input byte between 9th and 10th round of AES [FAA+17]. Note that the IV
is not required in this attack strategy, since the IV is only applied to the plaintext at the
start of the algorithm.

1 def aes_intermediate(keyguess , ciphertext , byte_pos):

2 state10_byte = ciphertext[CPABase.INVSHIFT_undo[byte_pos ]]

3 state9_byte = aes_inverse_sbox[ciphertext[byte_pos] ^ keyguess]

4 return state9_byte ^ state10_byte

Listing 3.3: Reverse operations for the 10th round of AES on a given ciphertext byte and a
key guess

In CTR mode

Attacking AES in CTR mode is different from the previous attacks. As explained in 2.3.5,
the CTR performs the cipher using the secret key on a counter. This result is then XORed
with the plaintext byte. If the attacker is able to identify the initial counter, the previous
attack on the S-box in the first round can be adapted to using the current counter instead.
The resulting target function will then be f(ctri + b, ki) = SBox((ctri + b) ⊕ ki) with ctri
being the ith byte of the initial counter, b the incremental value corresponding to the number
of successful processed blocks and ki the ith byte of the secret key. Attacking the last round
of the encryption process is also a possibility, although slightly different from the last round
attack on CBC mode. When attacking the last round, one must take into account that the
ciphertext is the result of the XOR operation of the plaintext byte Pi and the output block
byte Oi. Attacking the last round of AES requires the result of the cipher which in this case
is the output block Oi. In theory, the XOR operation can be reverted to obtain the output
block:

Ci = Oi ⊕ Pi ⇒ Oi = Ci ⊕ Pi

However, this requires both the plaintext P and the ciphertext C to be known. An attack
on the S-box operation of the first round is therefore more plausible in practice. This attack
strategy does require the initial counter to be known. In [Jaf07], Jaffe was able to determine
a method to perform a first-order differential power analysis attack on AES in CTR mode
without having to know the initial counter. The attack can be described briefly as follows:

1. For the data acquisition, a minimum of four rounds of the AES algorithm must be
captured and a total of T encryptions must be captured [Jaf07];

2. A DPA attack is performed against the first round of the AES algorithm to obtain the
15th and 16th output bytes for the SubBytes operation;

3. The encryptions Ti are then selected for which the first fourteen bytes of the input
block remain constant throughout the AddRoundKey and SubBytes operations. This
allows the attacker to use a hypothetical output Z1 for the SubBytes operation of the
first round [Jaf07];

4. The remaining operations of the round, ShiftRows and MixColumns, are performed
on the hypothetical output values of Z1. This provides the attacker with a hypothet-
ical input block X2 for the AddRoundKey of the second round. For the known values
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X2,1 · · ·X2,8, an error term E1,j will be symbolically added, with j being the byte po-
sition corresponding to the byte of Z1 for which it is added. The other input bytes
X2,9 · · ·X2,16 are unknown, but constant [Jaf07];

5. AddRoundKey is performed on the hypothetical input block X2 (i.e., X2⊕K2), preserv-
ing unknown variables such as the round key K2 and the error terms E1,j determined
in the previous step;

6. Perform a new DPA attack on the second round to acquire the outputs of the SubBytes
operation for the second round. This will introduce error terms E2,j , which are the
same fixed error terms that occurred in step 4 [Jaf07]. Therefore, the error terms of
the first eight input bytes of X2 are negated by the XOR operation and the results of
the first eight bytes from the SubBytes operation of the second round will be known
correctly (not hypothetical); the other eight bytes will be unknown but constant;

7. Steps 4, 5, and 6 are repeated to reveal the remaining eight unknown bytes, resulting
in the complete and correct output bytes for the SubBytes operation of the third
encryption round [Jaf07];

8. The ShiftRows and MixColumns operations are applied to the correct output of the
previous step to acquire the correct input for the AddRoundKey procedure of the fourth
round;

9. A last DPA attack is performed on the fourth round to acquire the correct round key
for the fourth encryption round;

10. The resulting round key is reversed using the procedure described in section 2.2.2 to
result in the initial secret key.

3.7 Countermeasures

Several countermeasures exist to prevent simple power analysis and differential power analysis
from being successful. The first countermeasure that will be discussed is masking. Masking is
the process of randomizing the intermediate values of a cryptographic algorithm. It involves
a vector of mask values which is used to process the original data before, during and/or
after the critical and potentially vulnerable encryption steps are executed. This allows the
designer to ’trick’ the attacker into believing other input values are being used during the
encryption steps, which would result in different intermediate values being used during the
critical encryption steps. Since power analysis attacks rely on these intermediate values, the
attacker would be presented with misleading information which would influence the efficiency
of the power analysis dramatically.

Another well used countermeasure is hiding. Hiding is a technique which tries to break the
relation between power consumption and the processed values. There are two possible ways
to achieve this. The first one is by completely randomizing power consumption of the device.
For this to happen, the device will have to consume a random amount of power per cycle on
top of its regular usage. The second method is by levelling the overall power consumption
to a constant level. This means that the power consumption of the device remains the same
independent of the operations that were performed and data values involved.

While both approaches sound promising, it is not so evidently implemented as a solu-
tion: perfect randomization or equalization cannot be reached in practice [MOP07]. Several
solutions have been suggested over the past which do try to achieve a similar result. These
solutions have been sorted into two categories: the time related and amplitude related so-
lutions. Time dimension related solutions include the addition of dummy operations and
the shuffling the operations that can be run independently. Amplitude dimension related
solutions include increasing and reducing the noise3generated during the execution of the
operations. However, both approaches can often be bypassed by higher-order differential
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power analysis attacks.

3.8 Measuring power consumption

All of the above methods require traces of power consumption from the device to extract the
key information from the device.

To accomplish this, a digital storage oscilloscope (DSO) can be used. A regular oscillo-
scope is an electronic measuring device capable of measuring the electrical quantities (usually
voltage) as a function of time [IEE00]. A DSO makes it possible to store these quantities
in memory for analysis and data transfer. An oscilloscope is able to measure the electrical
quantities via a tool called a probe. A probe features two important connections: the probe
pin, which is usually responsible for measuring the electrical quantities, and a ground clip
which is directly connected to the oscilloscopes ground and serves as a reference point for
the measurements. The probe is connected to the electrical circuit using the probe pin and
optionally the ground clip. In most cases the oscilloscope is used to measure voltages in an
electrical circuit. In this scenario the potential difference between the probe pin and the
ground clip will determine the voltage value.

For the power analysis measurements the current of a device must be measured since the
current flow in the CMOS cell will increase temporarily if one or more values change. Most
oscilloscopes cannot read electrical current values directly. In order to measure the current,
a resistor can be placed in series with either the power or ground input of the targeted
component. This provides the attacker with a voltage Ur across the resistor. Since the
current is equal across all components in a series connection, the current I can be calculated
from the voltage Ur using Ohm’s law:

I =
Ur

R
(3.9)

Since resistors placed in series will affect the voltage to other components in the series
connection, it will be necessary to keep the resistor small in terms of resistance. The higher
the resistance of the resistor is, the higher the voltage over the resistor will become within
the series connection, potentially causing the other devices to receive an insufficient amount
of voltage. This statement is proven in appendix B. On the other hand, when the resistor
is too small, it will become more difficult to measure voltage differences with the measuring
device since the voltage differences over the resistor will become smaller and the oscilloscope
is limited in the resolution of voltages it can measure.

While inserting the resistor gives the attacker a method of measuring the current changes
in an electrical circuit with an oscilloscope, there are still other aspects that need to be taken
into account.

Bandwidth and sample rate

In signal processing, it is assumed that each signal can be represented by a sum of sinusoidal
functions multiplied by specific coefficients [MOP07]. The sinusoidal functions present in
the signal have a specific frequency f at which it occurs in the signal. Figure 3.5, for
example, shows a sum of two sinusoids, one at 14 MHz and the other at 20 MHz. By
using a Fast-Fourier transformation (FFT), these frequencies can be extracted from a signal.
The distance between the lowest and highest frequency component in a signal is called the
bandwidth of a signal [MOP07]. Oscilloscopes have a limited range of bandwidth they can

3Reducing the noise actually means that the differences in power consumption for different data values are
mitigated as much as possible by use of filters, etc.
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measure. Most modern oscilloscopes are able to handle signals with bandwidths of several
100 MHzs [MOP07]. The advertised bandwidth of a digital oscilloscope is often equal to the
maximum frequency that can be measured by the oscilloscope. The reason for this is because
oscilloscopes have no trouble measuring low-frequency signals. Therefore, the bandwidth of
an oscilloscope is equal to fmax − 0.

Another requirement to keep in mind during the measurements, is the minimal sample
rate that has to be used. Most digital oscilloscopes have sample rates of a couple of hundred
million samples per second or megasamples per second. The sample rate indicates how
many times per second the oscilloscope is able to measure the amplitude of the signal. For
example, if the oscilloscope has a sample rate of 500 megasamples, it will be able to measure
the amplitude of the signal every 2 ns. While the sample rate and bandwidth are closely
related to one another, they can have a different meaning when used in the specifications of
digital oscilloscopes [dme17]. Digital oscilloscopes sometimes advertise to be able to capture
signals with bandwidths higher than the sample rate (for example 100 MHz bandwidth using
a 40 megasamples per second sample rate). A digital oscilloscope is able to do this when a
periodic signal is detected. The digital oscilloscope will then use sub-sampling to reconstruct
the higher frequency signals from multiple measurements. During power analysis attacks, the
voltage measurements are prone to change based on the input that the device has to process,
so the sample rate is often of more relevance to the measurements than the advertised
bandwidth.

Both the sample rate and the actual bandwidth are important when considering measur-
ing power consumption of an electronic device. Microprocessors such as the ATmega328P
usually run at a clock speed ranging from 1 to 20 MHz. This means that the transistors
within the processor are able to switch 1 to 20 million times per second. Since the oscil-
loscope is supposed to measure the current changes involved with the logic value changes
within the microprocessor, it will (in theory) need to be able to measure at a rate of at least
the clock speed of the microprocessor.

However, it should be noted that measuring samples of a signal only provides a linear
change between the samples. Since voltage signals are actually sinusoids, this can cause
a problem when the sample rate is too low or the signals frequency too high. Figure 3.5
shows what the result of using various sample rates can cause. This is also confirmed by
the Shannon-Nyquist theorem; it states that the sample rate fs should be at least 2fmax

[MOP07]. However, it should be noted that electrical components are occasional capable
of generating unwanted high-frequency noise signals. Therefore, it is often recommended
to find the dominant frequency (e.g. the highest operating frequency of relevant electrical
components in the circuit) and to use a sample rate equal to twice or more the dominant
frequency [MOP07].

Resolution

A third requirement that the oscilloscope has to fulfil is the minimum resolution. A digital
storage oscilloscope uses an analogue-to-digital converter (ADC) to convert analogue samples
to digital values. However, an ADC is often limited in the number of output values it can
use to map analogue values to. This is also called the ADCs resolution. For example, an
8-bit ADC will be able to output 28 distinct values. These output values will not directly
represent an absolute voltage value, but an integer value. This integer value will be used to
calculate the absolute voltage value based on the voltage range applied by the oscilloscope.
For example, a voltage range from 20 mV to 276 mV results in a 1 mV step size for the
possible output values on an 8-bit ADC. For an output value i, the absolute voltage can then
be calculated as follows:
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Figure 3.5: Example of how different sample rates influence the reproducibility of the signal.
The simulated signal is generated by the function f(t) = sin(20 ·106 ·2πt)+sin(14 ·106 ·2πt).
The highest frequency component is thus 20 MHz. Note that the characteristics of the signal
are best saved when a sample rate of 80 MHz is used, i.e. when fs > 2fmax.

V = Vmin + i · Vmax − Vmin

28

= 20 mV + i · 276 mV− 20 mV

256

Since analogue signals are able to produce an infinite number of distinct values within a
range, the ADC could (and will) map multiple distinct values to a single digital representable
value. This could cause a problem during the measurements when the voltage differences are
too small to map to other output values. Decreasing the voltage range on the oscilloscope
could solve this problem, but could also cause analogue values outside this range to be cut
off. A second problem is that the upper and lower bounds of the ranges are limited on most
oscilloscopes. Therefore, it could be possible that a large offset (e.g. 5 V when a 100 mV scale
is used) cannot be applied on the oscilloscope. This would make it impossible to measure
small voltage differences above or below the offset even if the resolution would allow it. This
is often one of the reasons why the resistor in a measuring set-up is place at the ground
pin: when using a probe referenced to the ground, the voltage measured at the ground pin
is often near to 0 V, thus eliminating the need to apply an offset on the oscilloscope.
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Triggers

An oscilloscope shows measured samples over a period of time. Since the internal storage
of an oscilloscope is limited, it will be unable to store samples over a long period of time.
Therefore the oscilloscope is often set up to save information over a specific time window.
However, when performing a power analysis attack the attacker is usually interested in
a specific time window where a specific event occurs. In order to do so, an oscilloscope
features a triggering mechanism. Triggers allow the oscilloscope user to define an event or
restriction which ”triggers” the oscilloscope into measuring and storing the samples within
a certain time window. For example, suppose the interested part of a signal starts with a
short peak voltage of 5 V. An oscilloscopes trigger could then be set to an edge trigger with
threshold value 5 V. Whenever a peak of 5 V would occur in the real-time measurements, the
oscilloscope will perform measurements to complete the current time window, but afterwards
will stop measuring new samples and let the current time window of samples remain in the
memory.

Determining which trigger is most useful for measurements often depends on the power
consumption characteristics of the target device and the implementation. Most power anal-
ysis set-ups use a communication protocol bus as a point of triggering. Some oscilloscope
are capable of decoding communication protocols such as RS-232 and I2C allow a trigger
to be set on the occurrence of specific data values in this communication protocol. Other
methods include the combined use of edge, pulse and slope triggers and trace characteristics
to trigger the readings at a specific time. This also includes trigger on GPIO output values.

Data storage and transfer

In the previous subsection it was already mentioned that the internal memory of an oscillo-
scope is often limited. For this reason, DSOs often provide ways of storing or transferring
trace data to other devices. Most modern DSOs provide an USB connection to either connect
the oscilloscope to a PC or a USB storage device to the oscilloscope. Depending on the im-
plementation and the software provided by the manufacturer this could be a straightforward
operation. However, sometimes the software or implementation could be a limiting factor
during measurements. Manufacturers therefore often include remote access functionality for
the oscilloscope, using protocols such as LXI, VXI-11, and USBTMC to provide developers
with low-level functionality to the oscilloscope.

3.8.1 Measuring issues

Even when the equipment is configured and capable of measuring the signal in theory, there
are still issues that could arise during the measurements. Several issues that have been
experienced during the experiments in the case studies are described in this subsection.

Electrical noise

Electrical noise or interference are undesirable signals which distort or interfere wth the
desired signals [VBB04]. The presence of electrical noise could cause the oscilloscope to
measure distorted power consumption values. These distorted values could decrease the
effectiveness of the power analysis attacks described in the previous sections. Therefore it is
adamant that the electrical noise in a circuit is kept to a minimum.

Electrical noise can be cause by numerous things, for example faulty power supplies or
components and cross talk from other devices. Vijayaraghavan [VBB04] stated that for
electrical noise to exist in a circuit, three contributing factors must be in place: a source
of electrical noise (e.g. faulty component or other devices on the power grid), a mechanism
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coupling the source to the affected circuit (e.g., the power grid itself) and a circuit conveying
sensitive communication signals. While there is no concrete communication signal targeted
during power analysis measurements, the voltage signal that must be captured using the
oscilloscope can be seen as a ”communication signal” since it will be interpreted by the
oscilloscope and later by one of the power analysis attack algorithms.

To mitigate the electrical noise from the affected circuit, the attacker has several options
[VBB04]. The first option is to find the source of the electrical noise and remove it or its
coupling mechanism. There are various sources known to cause interference in a circuit.
Examples include electrical motors, fluorescent tubes and welding equipment. However,
there may also be other causes for devices to become a source of noise; badly manufactured
or ageing capacitors are also notorious for generating noise in otherwise stable electrical
circuits. For this reason, it is often difficult to locate all noise sources. An alternative option
is to separate the affected circuit from other circuits and provide an isolated and stable power
supply. Lab grade power supplies and battery packs can be used to achieve this.

Another option is to filter the noise from the measured signal. This requires signal
analysis to determine which frequencies are dominant and which are redundant. A Fast-
Fourier transformation (FFT) of the measured signal could provide more insight into these
frequencies. When referring to noise in terms of frequencies, there are three types of noise
to be determined [VBB04]:

• Wideband noise: wideband noise often occurs in various amplitudes and frequencies
and are thus difficult to filter from the signal without loss of information from the
desired signal;
• Impulse noise: impulse noise is defined by a sudden peak or drop in the signal, often

occurring for a limited time of period in the signal. This type of noise could also cause
loss of information to the original signal, but is less widespread than the wideband
noise. If the impulse occurs in a periodic manner and are fixed in amplitude, then a
notch filter could still be able to filter most of the noise from the measured signal;
• Constant frequency noise: constant frequency noise may be the easiest noise to

filter from the measured signal. Low-pass, high-pass and band-pass filters can be used
to filter this type of noise with reasonable results.

Ground loops

IEEE states that ground loops occur ”when two or more points in the electrical system, that
are nominally at ground potential, are connected by a conducting path such that either or
both points are not at the same ground potential” [IEE00]. The probes of the oscilloscope
that will be used for the case studies are connected to the oscilloscope via a BNC connector.
The BNC connector is a connector type used for coaxial cables. Like the coaxial cable, a
BNC connector has two conduction parts: the centre core, which is a conducting wire in
the centre of the cable, and a shield which is a woven layer of small wires or a metallic foil
on the outside of the isolated layer around the centre core. The shield of the coax cable
and BNC connector are typically kept at ground potential while a signal carrying voltage is
applied to the center core. For an oscilloscope, this means that the ground clip of the probe
is connected to the ground potential of the scope, which is usually the mains earth. Note
that the path between the ground clip of the scope and the mains earth is a low impedance
path, which means a current can flow through the path with almost no resistance [Jon12].

The problem of ground loops occurs when differential probing is performed using a single
probe. Differential probing with a single probe means that the ground clip is inserted into
the electrical circuit which needs to be measured. This can cause the ground clip to be
connected to a potential different from the ground potential (e.g., the 5 V supply voltage).
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When this happens the mains earth line will act as a conductor wire with a different potential
applied to one end [Jon12]. This can potentially cause a short circuit if the circuit is closed
between the scopes ground pin and another device with the ground connected to the same
ground wire. An example of such a construction is given in figure 3.6c.

Figure 3.6: Measurement set-ups for common electrical circuits involving grounding. The
first two constructions are not susceptible for ground loops, where the last two constructions
can potentially be shorted by a ground loop.

At first, this does not seem to be a problem since no earth-grounded power supply is
applied to the development board in the measuring set-ups. However, the issue lies with
the ”hidden” earth-ground on the USB connection that is used for the serial communication
[Jon12]. While the USB connection can provide a 5 V DC current to the development board,
it is not an isolated power supply. The ground pin of the USB connection is connected to
the internal ground line of the computer4. This ground line is mostly connected to the mains
earth, effectively causing the ground pin of the USB connection to act as a mains earth
connection. Figure 3.6d shows an example of this scenario.

Several solutions exist to prevent these scenarios from happening. In case of the USB
scenario, a laptop could be used instead of an AC powered computer. However, the power
supply of the laptop could still provide an earth-grounded connection for the USB ports
on the laptop. To validate this, the resistance between the ground connector of the laptop
supply and the ground pin of the power supply cable can be measured using a multimeter
[Jon12]. Figure 3.7 shows how this measurement is performed. If the measurement reads
anything else than the maximum impedance of the multimeter, then it indicates that the
laptop is mains earth grounded. In this case it is advised to disconnect the power supply
when performing measurements.

Another solution is to use an isolated differential probe instead of a regular probe to
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Figure 3.7: Verification of a grounded laptop power supply and the ground of the oscillo-
scope. The laptop power supply features a resistance of 1 MΩ, which is considered enough to
discharge any regular current at an interval of less than a second. The oscilloscope however
has a low impedance path to the mains earth.

perform the measurements [Jon12]. The ground clip of a differential probe is isolated from
mains earth, effectively preventing another potential to reach the mains earth line. However,
purchasing a differential probe can be costly. If multiple regular probes are available, a
differential probe can be simulated by two regular probes. Instead of inserting the ground
clip of the first probe to the electrical circuit, the measuring tip of the second probe is
inserted. The two measurements can then be subtracted from each other to achieve the
same measurements as with the differential probe. This set-up also eliminates potential
noise from the power supply from being recorded.

Misaligned traces

When performing power analysis measurements with an oscilloscope, a common measuring
strategy is to use a trigger signal that can be found right before or after the cryptographic
operation takes place. The two most used trigger signals are from either direct power readings
or communication signals [MOP07].

Triggering on direct power signals is often very difficult. It requires a reoccurring pattern
to be present in the power consumption trace that is observable closely before or after, or
during the cryptographic operation. Most trigger values for this type of signals are based
on peaks or pulses. However, noise can also be a cause for triggers to be fired during
measurements. A second problem is that most devices do not show a clear power consumption
pattern that can be linked to the cryptographic operation [MOP07].

As an alternative, one of the communication signals is often used to fire a trigger. For
example, a GPIO pin can be momentarily set to high (1) just before the cryptographic
operation starts. The oscilloscope notices the change in signal and starts to measure the
voltage data after the trigger signal. However, communication IO is often not performed
synchronously with the clock signal of the processor [MOP07]. It is also possible that other
instructions are performed before the cryptographic operations that are variable in duration.
Therefore, it is possible that there is a variable delay between the trigger signal and the
power consumption samples of interest.

In this scenario, the traces will need to be realigned. A possible method is to use a
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reference pattern and shift other traces according to this reference pattern. Metrics such as
the mean squared error (MSE), the distance between maximum values, or the correlation
coefficient can be used to find the number of position shifts that yields the best results.
In this thesis, the correlation coefficient is used as the primary metric for the alignment of
traces.

3.9 Case studies

Since there are various parameters which could cause a power analysis to fail, an incremental
approach was opted in order to test the various parts involved in a power analysis. The first
tests involve verifying the attack algorithm by using test datasets which were proven to be
vulnerable for a power analysis (see section 3.9.3). Afterwards, different set-ups using an
actual device were used to verify that the power consumption measurements were performed
correctly. The target device was an ATmega328P microcontroller. The next step was to
implement the AES algorithm in CCM mode on the ATmega328P using the same construc-
tion in order to retrieve traces and modify the attack algorithm to perform correctly under
the CCM mode. The final step was to perform the attack on a Microchip RN2483 LoRa
transmitter.

3.9.1 Measuring equipment

A Rigol DS1104Z digital storage oscilloscope (DSO) was used to measure the power consump-
tion of the devices in the case studies. The Rigol DS1104 provides the following features:

• 4 input channels, allowing up to four probes to be connected to the oscilloscope;
• Maximal bandwidth of 100 MHz;
• Maximal sample rate of 1 gigasamples per second;
• Deep Memory, allowing up to 12 million points to be stored in-memory;
• Remote access via USBTMC and LAN connectivity;
• Extensive trigger support;
• Real-time mathematical functions;
• Support for decoding communication protocols such as RS-232.

The measured points are initially stored in the main memory of the oscilloscope. The
Rigol oscilloscope supports remote control via USB and Ethernet. First it was opted to use
the USB port to transfer the data to the host computer via USB flash drive. The Rigol
oscilloscope supports exporting data in waveform format (.wmf) and in comma-separated
text format (.csv). The waveform format is encoded with a proprietary format that is
susceptible for changes across firmware versions. The waveform format is also not described
in the programmer’s and user manual, which makes decoding the format a difficult process.
This made it impractical to use the waveform format for prolonged usage. The comma-
separated text format was also not practical in use: the oscilloscope needed to convert the
byte values from the internal memory to ASCII readable characters, which took 10 to 15
minutes given the limited processing power of the oscilloscope. Thus it was opted to use
remote access over the network to retrieve the voltage samples. The oscilloscope provides
two ways to communicate with it: either by installing a device driver which can be used as
a back-end service to communicate according to the VISA specification, or via a Telnet-like
TCP connection using the LXI specification. Both specifications use the syntax standard
SCPI to format commands and data for the measuring instruments. Basic implementations
exists for the Rigol oscilloscope in Python, but are rather limited in usability. To increase
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the usability of the oscilloscope in Python, a new library based upon the LXI specification
was developed for the Rigol DS1104Z by the author.

3.9.2 Implementation details

The implementation of the correlation power analysis (CPA) is written in Python 3 and was
adapted from the algorithm used by the power analysis tool ChipWhisperer [New16][New13].
The algorithm from ChipWhisperer itself is derived from the CPA algorithm described in
section 3.5. One noticeable detail about the implementation is that it can use different attack
strategies to target different parts of the AES algorithm. For first-order CPA attacks, the
only difference is often the leakage value which will be used to determine the appropriate
Hamming distance for calculating the correlation coefficient. Like in the ChipWhisperer
implementation, this implementation will use attack strategy classes where each class defines
the calculation for the leakage value in a function aes intermediate. An example of an
attack strategy class is presented by listing 3.4.

Apart from the calculation of the leakage value, some attack strategies will also yield
a specific round key instead of the initial secret key. Therefore, an attack strategy class
will also provide a method postprocessKeyguess. This method will process the outputted
round key and return the initial secret key. In case of an attack strategy that is targeted
towards the final round of AES, this method will reverse the round key of the 10th round to
the initial key. An explanation of how this procedure works is described in section 2.2.2.

During the attack, the partial guessing entropy (PGE) values are calculated for each
key byte guess if the secret key was known prior to the attack. The PGE value is a metric
which indicates how many successive guesses are needed to determine the true key byte value.
Positive PGE values indicate that there are n incorrect guesses higher ranked than the actual
key byte value. Consequently; a PGE value of 0 indicates that the guess was correct.

At the end of the procedure, the key guess and the corresponding PGE values for each key
byte guess are returned. The implementation also provides the means to plot the correlation
coefficient per sample for each key guess, which shows the position in the trace where the
key guess was found to be most fitting.

1 class FirstOrderLastRoundCiphertextAttack(CPABase):

2 @staticmethod

3 def aes_intermediate(keyguess , ciphertext=None , byte_num=None , ** kwargs):

4 state10_byte = ciphertext[CPABase.INVSHIFT_undo[byte_num ]]

5 state9_byte = aes_inverse_sbox[ciphertext[byte_num] ^ keyguess]

6 return state9_byte ^ state10_byte

7
8 @staticmethod

9 def postprocessKeyguess(fullkeyguess):

10 return reverseRoundKey(fullkeyguess , 10)

Listing 3.4: Example of an attack strategy class

3.9.3 Case study: power analysis using test datasets

Since incorrect power consumption measurements could cause a power analysis attack al-
gorithm to fail, it was opted to first implement a correct attack algorithm using reference
data instead of self-recorded traces. In order to test the implementation of the CPA attack
algorithm, three test datasets were used which were already tested for CPA attacks and were
found to be vulnerable. An overview of the datasets is provided in table 3.1.
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Dataset 1: avr aes128 picoscope6403D.zip5

# traces 2000 Samples/trace 16000 Sample rate 312 MS/s

Algorithm AES CBC Key size 128 Target round First

Dataset 2: sakurag-picoscope6403d-4000.zip6

# traces 4000 Samples/trace 1500 Sample rate 156 MS/s

Algorithm AES CBC Key size 128 Target round Last

Dataset 3: ASCAD.h57

# traces 10000 Samples/trace 700 Sample rate 2 GS/s

Algorithm AES CBC Key size 128 Target round First

Table 3.1: Overview of test datasets used to verify CPA algorithm

The first two datasets (avr aes128 picoscope6403D.zip and sakurag-picoscope6403d

-4000.zip) follow the file structure used by the power analysis tool ChipWhisperer. The
file structure provides the following files:

• <prefix> traces.npy: an array of traces with each trace containing a number of
voltage values;
• <prefix> textin.npy: an array of input strings used during the encryption process.

Each input string is linked to one of the previously mentioned power traces in sorting
order of position and each input string is 128 bits long;
• <prefix> textout.npy: an array of output strings (ciphertexts) resulting from the

encryption process. Like the input strings, each output string is linked to one of the
previously mentioned power traces in order of position and each output string is 128
bits long;
• <prefix> knownkey.npy: a single secret key which was used for all encryption pro-

cesses. This is the key that should be obtained from the CPA attack.

<prefix> keylist.npy and config <prefix> .cfg are also included in the datasets,
but will not be used in the power analysis attacks.

The third dataset is a test dataset provided by ANSSI and CEA. The ASCAD dataset
was constructed by measuring EM signals coming from an ATmega8515 while performing a
masked implementation of the AES algorithm. The associated paper [PSB+18] states that
the third key byte should be targeted for non-profiling attacks. It also mentions that there
is no first-order leakage in the unmasked S-box output SBox(p[3]

⊕
k[3]). However, the

paper also states that it is possible to calculate the masked output after the first round by
using SBox(p[3]

⊕
k[3])

⊕
rout. rout is the output mask byte which was also provided in the

dataset per trace.
The dataset itself is represented by an H5 data file which contains the trace values and

other information about the traces. The data file provides two groups of traces: the attack
traces and the profiling traces. The profiling traces are originally meant to create machine
learning profiles, the attack traces are meant for the actual attacking phase. For this case
study, the attack traces will be targeted.

Unlike the previous two datasets, the ASCAD dataset is differently formatted. Using
h5py, the dataset is represented as a dictionary-like object which includes the following

7
https://www.assembla.com/spaces/chipwhisperer/documents/auoySCKlGr44oRacwqjQXA/download/

auoySCKlGr44oRacwqjQXA
7
https://www.assembla.com/spaces/chipwhisperer/documents/c9R60mJrSr44noacwqjQWU/download/

c9R60mJrSr44noacwqjQWU
7
https://github.com/ANSSI-FR/ASCAD
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entries:

• traces: an array of traces with each trace containing a number of voltage values;
• labels: an array of labels that are assigned to the traces for classification. This data

is specifically meant for machine-learning purposes and will not be used in this case
study;
• metadata: an array of metadata structures for each trace with each structure containing

the following fields:

– plaintext: the 128-bit input string used for the encryption process;
– key: the 128-bit key used for the encryption process;
– ciphertext: the 128-bit ciphertext resulting from the encryption process;
– masks: the different mask vectors that were used to obfuscate the data values

during the encryption process;
– desync: the amount of positions that the trace were shifted to simulate jitter

(misalignment).

Dataset 1: avr aes128 picoscope6403D.zip

The first dataset is a set of power traces from an ATmega328P using a software implemen-
tation to perform AES CBC encryptions. The microcontroller is clocked at 7.37 MHz. The
power trace was recorded using a PicoScope 6403D digital oscilloscope. During the mea-
surements, a construction with a shunt resistor inserted before the Vcc pin was used. The
description of the dataset suggests an attack on the first round of the AES algorithm.

A visual inspection of the trace was first performed to verify that the power trace repre-
sented the power consumption of an AES encryption. A good indication is often the presence
of 11 peaks or drops in the trace which corresponds to the 11 rounds in the AES algorithm.
However, a visual inspection is not always conclusive; the peaks could also be generated by
noise from other components. At the same time, other noise could also cause the distinctive
pattern to be obscured. Figure 3.8 shows the power consumption of a single AES encryption
from the first test dataset. Through visual inspection several recurring patterns of peaks
and drops can be observed in the power consumption trace. However, the number of these
patterns is much higher than the expected number of rounds that are performed by the AES
algorithm. Therefore, this first inspection is unable to conclude if the power trace is indeed
the power trace of an AES encryption.
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Figure 3.8: Power consumption trace of a single AES encryption from the first test dataset.
Note that there are several peaks vaguely observable, but their number does not relate to
the number of rounds in the AES algorithm.

As a result, a frequency analysis was performed to determine the dominant frequencies
in the power trace. Figure 3.9 shows the distribution of frequencies within the trace. Note
that the frequency range in the distribution goes from 0 Hz to 156 MHz. This is effectively
half the sample rate at which the signal was recorded. This is due to the Shannon-Nyquist
theorem which was explained in section 3.8. The distribution shows that the first dominant
frequency lies around 8 MHz, which is near the advertised clock speed of the microcontroller
(7.37 MHz). The other dominant frequencies are multiples of the first dominant frequency
and can therefore be described as harmonic frequencies of the latter. Apart from this fact, the
frequency analysis also shows high amplitudes for the frequencies before the first dominant
frequency. Therefore a low-pass filter was applied to the power trace to filter unwanted
frequencies. The result of this low-pass filter is provided by figure 3.10. While the signal
drops are more clearly after applying the filter, the distinct pattern of the AES encryption
is still not visible.
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Figure 3.9: Frequency analysis for the power trace of a single AES encryption from dataset
1.

Figure 3.10: Filtered power consumption trace of a single AES encryption from dataset 1
using a 8 MHz low-pass filter

A first-order CPA attack was then performed on both the unfiltered and filtered power
trace. The description of the dataset noted that the first round was best targeted for a
power analysis attack. The attack was thus based on the Hamming Distance model with the
Hamming distances being the number of bits changing during the AddRoundKey and SubBytes

procedure of the first AES round (i.e. SubBytes(P0
⊕
K0)). The calculated intermediate

value was set to SBox[p[i]
⊕
kh[i]] with p[i] being the plaintext byte at position i and kh[i]

being the guess for a key byte at position i in the key. The attack was first performed on the
complete dataset (i.e. using all 1000 traces). This resulted in the correct guess for the secret
key as presented by listing 3.5. The PGE values for all guesses are equal to zero, meaning
that the attack will always be successful using 1000 traces from the same set-up.

52



1 Known key:

2 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

3
4 processing.analysis.functions [DEBUG]: Subkey 0, hyp = 00: 0.14590

5 processing.analysis.functions [DEBUG]: Subkey 0, hyp = 01: 0.13911

6 processing.analysis.functions [DEBUG]: Subkey 0, hyp = 02: 0.15942

7 ...

8 processing.analysis.functions [DEBUG]: Subkey 0, hyp = 2b: 0.93816

9 ...

10 Found a new byte guess (hex: 2b, ascii: +)

11 ...

12 Found a new byte guess (hex: 3c, ascii: <)

13
14 Full key guess: 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

15 PGE: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Listing 3.5: Result from executing the CPA attack on the first dataset.

The attack can further be evaluated using less traces for the CPA attack. Figure 3.11
shows an overview of the changes in PGE values per key byte guess when incrementing the
number of traces by 1. The results show that the minimum required number of traces is
equal to 22. This gives an indication that the device is very vulnerable for power analysis
attacks; the number is very low compared to the hundreds or thousands of traces that are
usually required.

Figure 3.11: The changes in PGE values for each key byte in function of the used number of
traces in the CPA attack. The PGE values decline as more traces are used during the CPA
attack. All PGE values have reached 0 when the attack is performed with 22 traces.
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Dataset 2: sakurag-picoscope6403d-4000.zip

The second dataset is a set of power traces from an ATmega328P using a hardware imple-
mentation to perform AES CBC encryptions. The microcontroller is clocked at 1.5 MHz.
The power trace was recorded using a PicoScope 6403D digital oscilloscope. The construc-
tion for this measurement is unknown. The description of the dataset suggests an attack on
the last round of the AES algorithm.

The visual inspection of the power traces show a much clearer pattern of the AES en-
cryption than the first dataset. Figure 3.12 shows a trace from a single AES encryption. The
eleven drops in the trace indicate the eleven rounds of AES that are being executed. Since
the pattern is clearly recognizable, it was unnecessary to perform a frequency analysis and
filter the unwanted frequencies from the trace.

Figure 3.12: Power consumption trace of a single AES encryption from the second dataset.
The voltage drops in the trace correspond to the number of rounds in the AES algorithm.

Thus, a CPA attack was performed on the dataset. While the description of the dataset
suggests an attack on the last round of AES, an attack on the first round was also performed
to compare the effectiveness in this case. Listing 3.6 shows the results of both attacks. The
CPA attack on the first round of AES yielded negative results, showing an average PGE of
167.6875 across all guesses. The possibility of a non-zero IV was considered, but performing
a manual AES encryption on the plaintext using the provided secret key and an all-zero IV
still resulted in the provided ciphertext. The second attack however was able to guess the
correct secret key from the first try. During the second attack, the correlation coefficients for
each key byte were plotted. All high correlation coefficients were situated at the end of the
trace, indicating that the trace was indeed a complete AES encryption with 10 consecutive
rounds (also see figure 3.13. Therefore it is believed that the first round simply did not
contain any leakage in the power consumption trace. The reason behind this is to be found
in the way that the input and output values of the SubBytes are stored in the registers of
the device; the values are not stored in the same registers [Car15]. This means that there
is no Hamming distance to be measure between the input and output values, rendering the
intermediate value calculation for the first round invalid.

Afterwards the PGE values were also calculated in function of the number of traces.
The results of this calculation show that the CPA attack is successful when more than 2700
traces are used. Thus, the device is more resistant against the CPA attack than the previously
targeted device or the measurements were less precise than the previous ones.
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(a) first key byte (b) final key byte

Figure 3.13: The correlation coefficients plotted in function of time for the first and last key
guess while using a CPA attack targeted at the first round of AES. The darker line indicates
the correlation coefficients for the correct key guess. It should be noted that both lines peak
at the end of the trace.

1 # Targeting the first round of AES

2 Known key:

3 00 01 02 03 04 05 06 07 08 f7 15 88 09 cf 4f 3c

4
5 Found a new byte guess (hex: 85, ascii: )

6 ...

7 Found a new byte guess (hex: 87, ascii: )

8
9 Full key guess: 85 98 36 e2 72 0d 50 16 0c dc d4 7d 36 bf 42 87

10 PGE: [202, 160, 231, 216, 98, 212, 198, 209, 47, 49, 105, 99, 194, 179,

252, 232]

1 # Targeting the last round of AES

2 Known key: 00 01 02 03 04 05 06 07 08 f7 15 88 09 cf 4f 3c

3 Last round key: e6 19 d4 c4 7d ad 82 9d c0 a6 13 ed 36 6d 3a 3b

4
5 Found a new byte guess (hex: e6 , ascii: æ)

6 ...

7 Found a new byte guess (hex: 3b, ascii: ;)

8
9 Round key guess: e6 19 d4 c4 7d ad 82 9d c0 a6 13 ed 36 6d 3a 3b

10 First round key guess: 00 01 02 03 04 05 06 07 08 f7 15 88 09 cf 4f 3c

11 PGE: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Listing 3.6: Results of two CPA attacks on the second dataset. The first attack, which
is focused on the first round of AES, yields a wrong guess for the secret key, while the
second attack on the final round yields the correct key guess.

Test dataset 3: ASCAD.h5

The third dataset contains two sets of power traces of an ATmega8515 using a secured
software implementation to perform AES CBC encryptions. The microcontroller is clocked
at 4 MHz. The construction for this measurement is unknown. The description of the dataset
suggests an attack on the first round of the AES algorithm. According to the associated
paper, only the third key byte can be revealed using a first-order power analysis attack due
to the masked implementation.
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A visual inspection of a single power trace (figure 3.14) shows no particular characteristics
of the AES encryption. This is because the dataset only contains trimmed traces which are
focused on the third key byte of the AES encryption. The trace in figure 3.14 thus represents
only the third round of the encryption. From the visual inspection it can also be determined
that there is little to no interference from other signals. Therefore, a frequency analysis and
filtering are not necessary. Next, the same CPA attack from the first dataset was performed
on the dataset. However, this time the attack was unsuccessful (also see listing 3.7). Due
to the masked implementation of the AES algorithm, it was necessary to add the mask byte
to the intermediate value, thus resulting in an intermediate value SBox(p[i]

⊕
k[i])

⊕
rout.

Using this calculation as the intermediate value, a standard CPA attack could again be
performed exclusively on the third key byte. Using the modified intermediate value, the
CPA attack was successful. The results of the attack are provided in 3.7. The PGE results
for the third key byte are provided in figure 3.15 and show that the attack is successful after
only 40 traces.

Figure 3.14: Power consumption trace of a single AES encryption from the ASCAD dataset.
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Figure 3.15: The changes in PGE values for the third key byte in function of the used number
of traces in the CPA attack. The PGE value has reached 0 when the attack is performed
with 40 traces.

1 # Attack strategy: First Round Plaintext Attack

2 processing.analysis.functions [INFO]: Processing 10000 trace(s)...

3 Known key:

4 4d fb e0 f2 72 21 fe 10 a7 8d 4a dc 8e 49 04 69

5
6 Found a new byte guess (hex: 83, ascii: )

7 Full key guess: 0f 0f 83 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f

8 PGE: [0, 0, 67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

9
10 # Attack strategy: Unmasked First Round Plaintext Attack

11 processing.analysis.functions [INFO]: Processing 10000 trace(s)...

12 Known key:

13 4d fb e0 f2 72 21 fe 10 a7 8d 4a dc 8e 49 04 69

14
15 Found a new byte guess (hex: e0 , ascii: à)

16 Full key guess: 0f 0f e0 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f 0f

17 PGE: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Listing 3.7: Results of performing two CPA attacks on the ASCAD dataset. The first
implementation did not make use of the mask byte and was unsuccessful in guessing
the correct key byte. The second attempt did include the mask byte value and was
successful.
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3.9.4 Case study: testing the implementation using self-measured data

The next case study involves self-measuring the power traces of the AES algorithm on a
microcontroller. The target microcontroller in this case study is the Atmel ATmega328P,
which is clocked at 16 MHz using an external oscillator. A minimal breadboard set-up was
chosen to prevent interference from non-essential components. The ATmega328P is powered
using the 5 V GPIO pin of a RaspBerry Pi 3B version 1.2. The Raspberry Pi itself is used
to retrieve the traces from the oscilloscope via LXI and to send the random plaintexts to the
microcontroller during the second measurement option.

In the next subsection the various steps that were taken to measure the power consump-
tion will be described in more detail. First the basic measurement set-up will be discussed.
Then a measuring attempt using the RS-232 signal as trigger is described and it is explained
why this attempt failed. At last, a second solution is presented which is able to capture the
signals correctly.

Basic measurement set-up

To measure the power consumption of the microcontroller, one must insert a shunt resistor
in the electrical circuit which will power the microcontroller. The ATmega328P features
two Vcc and GND connectors. However, pins 20 (AVcc) and 22 (GND) are only used for
the integrated ADC in the ATmega328P; the processor of the ATmega328P only uses pins
7 (Vcc) and 8 (GND).

Figure 3.16: Overview of breadboard set-ups for the ATmega328P. Subfigure (a) shows
the minimal breadboard set-up without measurement additions. Subfigure (b) shows the
measurement set-up for Vcc probing and subfigure (c) shows the measurement set-up for
GND probing.

Thus, there are two options that can be chosen. The first option is to insert a shunt
resistor in series with the Vcc input and to connect the probe between the resistor and the
Vcc pin. Figure 3.16b shows this option applied to the ATmega328P. The main advantage
of this measurement method is that it will be less influenced by the internal capacitors in
the microprocessor. However, the main disadvantage is that a voltage almost equal to the
required input voltage of the microprocessor is measured if only one probe is used. This could
present a problem since oscilloscopes have a limited vertical offset which can be applied to
the measurements. This disadvantage can however be countered by using a second probe
which is inserted behind the resistor, or a differential probe. The two voltage readings are
then subtracted from one another. The result is the voltage used only by the resistor, which
is still proportional to the power consumption of the microcontroller.
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The second option is to insert the resistor in series with the GND pin and connect the
probe between the GND pin and the resistor. This set-up is preferred when only one probe
is available since the voltage measurements behind the GND will be closer to 0 V, effectively
countering the problem that is present in the first option. Figure 3.16c shows this option
applied to the ATmega328P set-up.

For this case study, the second option was chosen. To make sure that this set-up worked,
a simple Arduino programme (see appendix D) was created which performed an AES CBC
encryption with a fixed 128-bit secret key and plaintext. The output voltage of GPIO pin PB0

(pin 8 in the Arduino IDE) was set to high during the encryption. This way the oscilloscope
could be set-up with a simple rising edge trigger on the GPIO pin to capture the encryption
process. Figure 3.17 shows the result of using the single trigger mode on the oscilloscope.

Figure 3.17: Power trace of a single AES CBC encryption on an ATmega328P measured by
a Rigol DS1104Z oscilloscope. The dark blue line indicates the GPIO signal that was used
as the trigger signal.

First attempt: RS-232 as a trigger

In a first attempt, the ATmega328P was programmed to perform the following instructions
in a loop:

• Generate random plaintext data of 16 bytes long on the ATmega328P;
• Send a newline character (\n) over serial communication which serves as the operation

starting the trigger pulse;
• Perform the AES CBC encryption on the plaintext data with a fixed zero-only IV;
• Send the plaintext data over serial communication to the PC.

The illogical order of sending the newline character and the rest of the plaintext is due to
the way the trigger for this measurement set-up works. The RS-232 trigger of the oscilloscope
was unable to fire a trigger based on the data in the signal. Therefore a pulse trigger was
used instead. The trigger position of a pulse trigger starts at the end of the samples for
which the condition was valid. In other words, when a pulse trigger is used for which the
condition states that the pulse must be at least x microseconds above a certain voltage level,
then the trigger position will be placed at the end of the pulse instead of the beginning.
In this case study, the pulse trigger triggers when the pulse stays at a voltage level of 3 V
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or higher for longer than 100 µs. During the visual inspection of the traces (figure 3.18), it
can be seen that there is a moment between sending the newline character and the rest of
plaintext where the RS-232 signal outputs a logic value 1 (i.e., an idle signal). This signal
will represent the pulse for the pulse trigger.

Figure 3.18: Power trace of a single AES CBC encryption on an ATmega328P using the
RS-232 trigger.

The oscilloscope parameters and the Arduino programme used in this set-up are described
in appendix G and E. After the traces have been captured, the relevant information needed
to be extracted from the traces. Since the ATmega328P was responsible for the generation of
the plaintexts, the plaintexts were sent over RS-232 and captured by the oscilloscope during
the measurements. Therefore, both the RS-232 signal and the actual power consumption
values of the AES encryption needed to be separated and analysed individually. Similar to
the way the oscilloscopes trigger worked, the edges of the RS-232 signal were detected in
Python and used to extract the power consumption during the AES encryption. The RS-232
signal itself was further processed using the python package ripyl to extract the plaintext.
The plaintext was then saved along the power consumption trace of the encryption.

Since the pulse trigger is not an accurate trigger to use, the power consumption trace of
the encryption needed to be aligned after extraction. An alignment method based on the
correlation coefficient was used to achieve this. The results of this alignment were suboptimal:
from the thousand traces that were recorded only 301 traces were shifted within a 5 % range
relative to the reference trace. With the remaining 301 traces a CPA attack was attempted,
but resulted in an incorrect guess of the secret key. Figure 3.19 shows the PGE values
obtained from the CPA attacks on the power traces. The average PGE value does not seem
to drop during both attacks. This is an indication that the CPA attack is ineffective: during
a successful attack the average PGE value should drop as seen in the case studies using the
test datasets.
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Figure 3.19: PGE values for both the CPA attacks on the first and last round of the AES
algorithm. Both averaged PGE values do not appear to change dramatically, indicating an
unsuccessful attack.

Further research showed that the RS-232 signal of the ATmega328P could not be used
as a reliable trigger for the oscilloscope. The code in the Arduino sketch and the processing
of the RS-232 communication are executed in parallel by the ATmega328P. This is visible
in figure 3.20. Therefore, the second measurement set-up was chosen instead.
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Figure 3.20: Asynchronous RS-232 communication captured during the AES encryption
process. The dark blue line indicates the GPIO signal that was used as the trigger signal.
Note that the RS-232 signal runs in parallel with the AES encryption, which will influence
the measurements.

Second attempt: GPIO as a trigger

Due to the inaccuracy of the trigger in the previous set-up, a trigger based upon the GPIO
output by one of the GPIO pins on the ATmega328P used instead. The GPIO pin on the
ATmega328P would be set to high during the encryption of the plaintext. To mitigate the
intrusion of RS-232 communication during the measurements, the ATmega328P was pro-
grammed to only accept new plaintexts via the RS-232 communication. Once the plaintexts
were received, the ATmega328P would perform continuous encryptions using the same se-
cret key and the provided plaintext. The complete Arduino programme and the oscilloscope
parameters used for this set-up can be found in appendices F and H. Using this set-up, the
only power consumption change could then be addressed to the encryption process and the
change in GPIO output.

Initial visual inspection of the power traces shows little to no change in regard to the
previous set-up. Figure 3.21 shows the power trace of a single encryption captured using
this measurement set-up. Ten peaks can be observed in the trace. By using the averaging
function on the oscilloscope, it can be observed that a) the traces remain the same when the
same key and plaintext are used for the encryption process, and b) that the average trace
changes when the plaintext changes. These two observations lead to the conclusion that the
trigger works as intended and allows the oscilloscope to measure the encryption process.

Using the original non-averaged traces, a frequency analysis was performed to identify
unwanted frequencies. The analysis showed the first dominant frequency to be in range of
16 MHz, which is equal to the clock speed of the microcontroller. A low-pass filter with
a 18 MHz cut-off was then applied to the power consumption trace. This resulted in a
negligible difference between the original and the filtered trace. Since the frequency analysis
also showed dense peak around 8 MHz. A band-pass filter was applied to the original data
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using a range between 7.8 MHz and 8.2 MHz. Figure 3.22 shows the result of this filter. In
this filtered trace the ten peaks observed during the visual inspection are now more clearly
visible, but still cannot be associated with the ten rounds of AES.

Figure 3.21: Power consumption trace of a single 128-bit AES CBC encryption using the
GPIO trigger

Figure 3.22: Filtered power consumption trace of a single 128-bit AES CBC encryption using
the GPIO trigger. A band-pass filter with a range of 7.8 MHz and 8.2 MHz was used to filter
the original trace.

Thus an attempt to attack the power traces was made. Since both the plaintext and
ciphertext are known, both the attack on the first round and on the final round can be
performed. However, both attacks were unable to find the secret key. Figure 3.23 shows
the PGE values during both attacks on the traces. Like with the previous measurement
set-up, the PGE values do not seem to fall. Therefore it is believed that both attacks will be
ineffective in finding the secret key even with more traces. An explanation why the attacks
are ineffective remains unknown. A possible cause can be electrical noise from other devices,
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since the power grid on which the measurements were performed is used by other devices. A
faulty laptop supply or tube lights could also cause interference that is difficult to detect.

Figure 3.23: PGE values for both the CPA attacks on the first and last round of the AES
algorithm. Both averaged PGE values do not appear to change dramatically, indicating an
unsuccessful attack.

3.9.5 Case study: attack on AES CCM

The goal of this case study was to modify the original CPA attack algorithm to be capable
of attacking an AES CCM implementation on an ATmega328P. However, due to the issues
experienced in the previous case studies, this case study could not be performed.

3.9.6 Case study: attack on a Microchip RN2483 LoRa transmitter

For this case study, a Microchip RN2483 LoRaWAN transceiver was targeted. The RN2483
is a fully-certified 433/868 MHz module based on wireless LoRa technology[Mic17]. The chip
features a complete LoraWAN class A stack, which means it is able to perform the encryption
process on-chip. The concrete internal clock speed of the chip is not known. Therefore it
is assumed that the internal clock speed of the chip is lower than 50 MHz, since it requires
limited processing power to perform the encryption and LoRaWAN processing. The device
also features an UART interface which can be used as a serial communications port. The chip
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itself is soldered on a RN2483 breakout board by Azzy’S Electronics to simplify connecting
the RN2483 to a USB serial cable and a 3.3 V power supply.

Figure 3.24: Power consumption of the pre-processing done by the Microchip RN2483 before
a LoRa packet is sent.

Due to the problems experienced with the previous case studies, a detailed analysis could
not be performed on the RN2483 transceiver. In one of the preliminary tests, a trace of the
full preprocessing done by the RN2483 transceiver was captured using a pulse trigger set on
the RX pin of the transceiver. Figure 3.24 shows the result of this measurement. The trace
shows that the process starts with a series of heavy calculations. Then a repeating pattern
with a period of less calculations followed by a period of a high number of calculations can be
observed from the trace. One could try to associate these two patterns with the encryption
of the payload and the generation of the MIC, but this cannot be validated at the moment;
further measurements and analysis of the power consumption are needed to form further
conclusions.
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Chapter 4

Conclusion

Throughout this thesis, an introduction to power analysis attacks and in general side-channel
attacks has been given. During the research surrounding the subjects, it became clear that
even cryptographically strong algorithms can be prone to implementation related vulnerabil-
ities. The power analysis attacks discussed in this thesis are the essential techniques from a
vast collection of power analysis attacks; every year new forms and techniques are introduced
which improve the current techniques.

That said, it became clear throughout the case studies that performing power analysis
attacks requires a decent knowledge of cryptography, electrics and electronics, signal process-
ing and statistics. The measuring equipment required to perform this type of side channel
attack is also expensive and difficult to operate in non-ideal environments. It is therefore
doubtful that power analysis attacks while be used by individuals and non-state actors in
practice.

To the question ”Are power analysis attacks usable in practice?”, a clear verdict cannot be
given at the moment of writing. Using various test datasets it was shown that, if implemented
and measured correctly, power analysis attacks can be effective in finding the cryptographic
key of an AES enabled device. The power analysis attacks performed on the test datasets
were able to find the complete secret key using less than 10000 power consumption traces.
With the first dataset, it was even possible to derive the secret key from 22 power traces.
However, it should be noted that these results were only obtained using DPA attacks. One
of the strong points of DPA attacks is the smaller number of power traces that is required
to perform a successful attack. Other forms of power analysis attacks like the template
attacks require an impractical amount of information from the target device, which makes
the practicality of the method sometimes doubtful. However, in case of DPA attacks, the
effectiveness is strongly influenced by the quality of the power consumption traces. Incorrect
measurement set-ups, misaligned traces or electrical noise can have a direct impact on the
outcome of the DPA attacks. These issues arose during the case study using self-measured
traces. It should be noted that these measurements were performed in a lab-environment:
measurements in this setting are more optimal than in-field settings.

4.1 Future work

Since several problems occurred during the case studies, practical examples could not be
performed with success. The problems during the case studies were closely related to the
measurements using the oscilloscope and the lack of precisely documented measurement
set-ups used in other papers. Future work may thus include studying other measurement
set-ups and other techniques related to signal processing. More documentation on the basics
of power analysis attacks is also required, as the author experienced that practical examples
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were scarce or often incomplete.
Furthermore, the initial plan of attacking the AES CCM algorithm and the LoRaWAN

protocol could not be performed due to the previously mentioned issues. Provided that
the measurement issues can be solved, an attack on the AES CCM algorithm would be a
first step to undertake. In [ROSW16], an attack on AES CCM was shown to be successful,
thus the first steps into attacking the LoRaWAN would be to successfully reproduce the
attack performed in [ROSW16]. However, reproducing this attack will not guarantee a
successful attack on the LoRaWAN protocol; the implementation of the AES CCM algorithm
is performed differently from the ZigBee standard [ROSW16][LoR15] and power consumption
could possibly be influenced by other components.

Finally, it was noted that the power analysis attacks used in this thesis were limited
to the essential techniques. Further research into other power analysis techniques and the
closely related EM attacks could be researched and considered in the future as an alternative
to the CPA attacks used in this thesis.
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Appendix A

AES S-Box

last 4 input bits
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00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
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Appendix B

Proof about the effect of resistor to
voltage of series connected device

This proof shows the reasoning behind the principle that the voltage through a shunt resistor
will proportionally increase according to the current changes in a series connected device.
Throughout the proof, the construction in figure B.1 will be used as a reference. This
construction includes a single power supply Vcc, a device d, and a shunt resistor s.

Figure B.1: Single power supply electrical circuit with a device d and a shunt resistor s.

According to Kirchhoff’s Voltage Law (KVL), the directed sum of electrical potential
difference (i.e., voltages) in a closed circuit is equal to 0:

n∑
k=1

Uk = 0 (B.1)

Applied to the construction given by B.1, this equals to the following sum:

n∑
k=1

Uk = 0⇒ Ucc + Ud + Us = 0 (B.2)

As mentioned before, the voltage between two points in an electrical circuit is the dif-
ference in electrical potential between two points in the circuit. The electrical potential is
defined to be the amount of work that is needed to move a positive charge from a given
point to a reference point (often the ground potential). From a physical point of view, elec-
trons flow from the negative side of a power supply to the positive side, carrying a charge
along the way. When a low amount of work is needed to move the electrons across a path,
the difference in electrical potential between the points will be minimal. However, a path
that requires more work to move the electron (i.e., a resistor), will induce a high potential
difference between a given distance.
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According to this knowledge, a component with a high resistance will cause a voltage
drop in the circuit. This also means that these resisting components can be seen as negative
voltages, changing the previous sum of voltages in the circuit to the following equation:

|Ucc| − |Ud| − |Us| = 0⇔ |Ucc| = |Ud|+ |Us| (B.3)

In 3.2 it was mentioned that when logic values in CMOS cells transit from 0 to 1 and
vice versa, a short circuit is created for a short amount of time, effectively decreasing the
overall resistance (Rd) and the potential difference (Ud) of device while increasing the current
flow (Id) through the device. However, Kirchhoff’s Voltage Law still applies to the circuit.
Since Ud is decreased, the shunt resistor will need to ”fill the gap” by increasing its potential
difference Us. This fact is also represented in Ohm’s law (R = U/I) since the shunt resistor
specifies a fixed amount of resistance and an increase in current requires a proportionate
increase in voltage to keep the resistance equal.

Thus, this proves that a current increase caused by the device will also lead to a voltage
increase over the shunt resistor, thus proving that the voltage over the shunt resistor is
proportionate to the current flowing through device d.
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Appendix C

Finding points of interest using
sum of distances

In order to find interesting points for a template, the attacker must first aggregate traces
belonging to the same operation and then search for points that differ the most across all
different operations. This process can be done in three steps. The first step is aggregating
the traces which perform the same operation. A commonly used aggregation method is to
for a trace that represents the mean of the same-operation traces. This can be performed as
follows. Let To,i,k be the kth sample of the ith power trace for an operation o, Mo,k be the
kth sample of the mean trace M of an operation o and No be the number of traces captured
for an operation o, then M can be defined as:

Mo,k =
1

No

No∑
i=1

To,i,k (C.1)

The second step is to search for points that differ the most amongst the different oper-
ations. Once the mean traces for all operations have been calculated, the mean traces are
analysed for points in which they differ most amongst each other. A simple but effective
metric is the sum of difference. Let Mo,k be the kth sample of the mean vector M for an
operation o, Dk the sum of difference for the kth sample, then the sum of differences can be
expressed as follows:

Dk =

No∑
i

No∑
j

|Mi,k −Mj,k| (C.2)

Once D has been fully calculated, the sum of difference can be analysed for its maximum
values. The highest values in D will correspond to points which differ greatly amongst the
operation. However, picking only one point could prove to be insufficient: if the sum of
difference reached its high value because of a great difference between a fraction of the mean
traces, then only that fraction of operation would be identifiable amongst each other by that
point. Thus, other operations might eventually be seen as the same operation. It is therefore
advised to search for multiple points of interest to ensure the combination of points will lead
to a better identification of individual operations.

Another point of attention is that the interesting points should not be picked near to
each other, since chances are high that they will greatly differ for the same operations as
other nearby points. It is therefore advices to set a threshold for the minimum distance that
two points of interest must have in order to be considered unique.
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Appendix D

AES test programme for
ATmega328p

1 /* AES implementation is provided by Arduino -libs

2 * Source: https :// github.com/rweather/arduinolibs */

3 #include <Arduino.h>

4 #include <AES.h>

5 #include <Crypto.h>

6 #include <CBC.h>

7
8 uint8_t key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

9 uint8_t iv[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

10 uint8_t pt[] =

{119 ,101 ,32 ,108 ,111 ,118 ,101 ,32 ,115 ,101 ,99 ,117 ,114 ,105 ,116 ,121};

11 int len = 16;

12 int trig_pin = 8;

13
14 void setup () {

15 // put your setup code here , to run once:

16 pinMode(trig_pin , OUTPUT);

17 }

18
19 void loop() {

20 CBC <AES128 > cbc;

21 cbc.setKey(key , len);

22 cbc.setIV(iv , len);

23 uint8_t ct[len];

24
25 while (true) {

26 // Wait a small time between encryptions

27 delayMicroseconds (10);

28 digitalWrite(trig_pin , HIGH);

29 cbc.encrypt(ct , pt , len);

30 digitalWrite(trig_pin , LOW);

31 }

32 }

Listing D.1: A test programme for Arduino-compatible microcontrollers which performs AES
CBC encryptions with a fixed 128-bit secret key and plaintext
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Appendix E

AES CBC-128 programme for
ATmega328p using RS-232 as
trigger signal

1 /* AES implementation is provided by Arduino -libs

2 * Source: https :// github.com/rweather/arduinolibs */

3 #include <Arduino.h>

4 #include <AES.h>

5 #include <Crypto.h>

6 #include <CBC.h>

7 void gen_random(char* s, const int len);

8
9 uint8_t key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

10 uint8_t iv[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

11 uint8_t pt[] =

{119 ,101 ,32 ,108 ,111 ,118 ,101 ,32 ,115 ,101 ,99 ,117 ,114 ,105 ,116 ,121};

12 int len = 16;

13
14 void setup () {

15 // put your setup code here , to run once:

16 Serial.begin (115200);

17 Serial.setTimeout (10);

18 }

19
20 void gen_random(char *s, const int len) {

21 static const char alphanum [] =

22 "0123456789"

23 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

24 "abcdefghijklmnopqrstuvwxyz";

25
26 for (int i = 0; i < len; ++i) {

27 s[i] = alphanum[rand() % (sizeof(alphanum) - 1)];

28 }

29
30 s[len] = 0;

31 }

32
33 void loop() {

34 // put your main code here , to run repeatedly:

35 CBC <AES128 > cbc;

36 uint8_t ct[len];

37
38 while (true) {

39 // Wait a small time between encryptions
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40 delayMicroseconds (10);

41 cbc.setKey(key , len);

42 cbc.setIV(iv , len);

43 gen_random(pt , len);

44 Serial.println ();

45 cbc.encrypt(ct , pt , len);

46 for (int i=0; i<len; i++)

47 Serial.write(pt[i]);

48 }

49 }

Listing E.1: The encryption programme for Arduino-compatible microcontrollers which
performs AES CBC encryptions with a fixed 128-bit secret key and a random plaintext
generated on the microcontroller. Serial communication is used to send the random plaintext
to a PC and is also used as a trigger signal for the oscilloscope.
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Appendix F

AES CBC-128 programme for
ATmega328p using GPIO as trigger
signal

1 #include <Arduino.h>

2 #include <AES.h>

3 #include <Crypto.h>

4 #include <CBC.h>

5
6 uint8_t key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

7 uint8_t iv[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

8 uint8_t pt[] =

{119 ,101 ,32 ,108 ,111 ,118 ,101 ,32 ,115 ,101 ,99 ,117 ,114 ,105 ,116 ,121};

9 int len = 16;

10 int trig_pin = 8;

11
12 void setup () {

13 // put your setup code here , to run once:

14 Serial.begin (115200);

15 Serial.setTimeout (10);

16 pinMode(trig_pin , OUTPUT);

17 }

18
19 void loop() {

20 // put your main code here , to run repeatedly:

21 CBC <AES128 > cbc;

22 cbc.setKey(key , len);

23 cbc.setIV(iv , len);

24 uint8_t ct[len];

25 byte temp[len +1];

26
27 while (true) {

28 // See if new plaintext is submitted

29 int readlen = Serial.readBytesUntil(’\n’, temp , len +1);

30 cbc.setKey(key , len);

31 cbc.setIV(iv , len); // Ensure that IV is always all -zeros

32 if (readlen == len) {

33 memcpy(pt, temp , len*sizeof(uint8_t));

34 // // Used for verification of the input processing

35 // for (int i=0; i<len; i++) {

36 // Serial.write(pt[i]);

37 // }

38 // Serial.write("\n");

39 }

75



40
41 // Wait a small time between encryptions

42 delayMicroseconds (10);

43 digitalWrite(trig_pin , HIGH);

44 cbc.encrypt(ct , pt , len);

45 digitalWrite(trig_pin , LOW);

46 }

47 }

Listing F.1: The encryption programme for Arduino-compatible microcontrollers which
performs AES CBC encryptions with a fixed 128-bit secret key and plaintext provided by
a PC over serial communication. GPIO pin 8 is used to output a trigger signal for the
oscilloscope.
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Appendix G

Rigol DS1104Z parameters -
ATmega328p using RS-232 trigger

1 Model:DS1104Z

2 SN:DS1ZA155002892

3 Manufacturer:RIGOL TECHNOLOGIES

4 Board Ver :0.1.1

5 Firmware Ver :0.2.3.11

6 BOOT Ver :0.0.0.12

7 CPLD Ver :1.1

8 SoftWare Ver :00.04.04. SP1

9
10
11 DSO Vertical System

12 CH1:Off

13 Scale :1.000000V

14 Position :0.000000V

15 Coupling:DC

16 Bandwidth Limit:OFF

17 Probe Ratio :10X

18 Unit:V

19
20 CH2:On

21 Scale :0.005000V

22 Position : -0.064900V

23 Coupling:DC

24 Bandwidth Limit:OFF

25 Probe Ratio:1X

26 Unit:V

27
28 CH3:Off

29 Scale :2.000000V

30 Position : -7.280000V

31 Coupling:DC

32 Bandwidth Limit:OFF

33 Probe Ratio:1X

34 Unit:V

35
36 CH4:On

37 Scale :2.000000V

38 Position :4.120000V

39 Coupling:DC

40 Bandwidth Limit:OFF

41 Probe Ratio:1X

42 Unit:V

43
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44 DSO Horizontal System

45 Delay:Off

46 Time Mode:YT

47 Time Scale :2.000000e-04s

48 Delay Time Scale :5.000000e-07s

49 Time Offset :5.120000e-04s

50 Delay Time Offset :0.000000e+00s

51
52 DSO Acquire System

53 Acquire Mode:Normal

54 Memory Depth :600000 pts

55 Average Num :16

56 Sampling Rate :125000000 Sa/s

57
58 DSO Trigger System

59 Trigger Mode:Pulse

60 Trigger Source:CH4

61 Trigger Edge Slope:Falling

62 Trigger Sweep:Auto

63 Trigger Coupling:DC

64 Trigger Noise Reject:Off

65 Trigger HoldOff :1.600000e-08s

66
67 CH1 Level :0.000000V

68 CH2 Level : -0.089900V

69 CH3 Level :3.080000V

70 CH4 Level :1.280000V

71
72 Pulse Condition:Positive More

73 Pulse High Time :0.000010s

74 Pulse Low Time :0.000002s

75
76 Slope Condition:Positive More

77 Slope High Time :0.000002s

78 Slope Low Time :0.000001s

79 Slope Win:Win Up

80 Slope Level1 :4.000000V

81 Slope Level2 :0.000000V

82
83 Video Polarity:Positive

84 Video Sync:All Lines

85 Video Standard:NTSC

86 Video Line:1

87
88 Runt Polarity:Positive

89 Runt Condition:Do not care

90 Runt Win:Win Up

91
92 Windows Type:Rising

93 Windows Pos:Enter

94 Window Time :0.000001s

95
96 NCycle Edge:Rise

97 NCycle Time :0.000001s

98 NCycle Num:2

99
100 Pattern CH1:X

101 Pattern CH2:X

102 Pattern CH3:X

103 Pattern CH4:X

104
105 Delay A:CH1
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106 Delay B:CH2

107 Delay A Slope:Rising

108 Delay B Slope:Rising

109 Delay Range:More

110 Delay High :0.000002s

111 Delay Low :0.000001s

112
113 TimeOut Slope:Rising

114 TimeOut :1.600000e-08s

115
116 Duration Type:More

117 Dura. High :0.000002s

118 Dura. Low :0.000001s

119
120 Setup/Hold Clk:CH2

121 Setup/Hold Data:CH1

122 Setup/Hold Slope:Rising

123 Setup/Hold Patt.:H

124 Setup/Hold Type:Setup

125 Setup Time :0.000001s

126 Hold Time :0.000001s

127
128 RS232 Source:CH4

129 RS232 Type:Frame Start

130 RS232 Stop Bit:1

131 RS232 Parity:Odd

132 RS232 Data Bit:8

133 RS232 Baudrate :115200

134 RS232 Data :16

135
136 IIC Clock Source:CH1

137 IIC Data Source:CH2

138 IIC Type:Start

139 IIC Address :1

140 IIC Direction:Read

141 IIC Address Length :7

142 IIC Byte Length :1

143 IIC Data :82

144
145 SPI SCLK:CH1

146 SPI SDIO:CH2

147 SPI Mode:CS

148 SPI CS Mode:Low

149 SPI Edge:Rise

150 SPI Timeout :0.000001s

151 SPI Data Length :8

152 SPI Data :82

153
154 LA System

155 D0~D7 Threshold Type:TTL

156 D0~D7 Threshold Value :1.400000V

157 D8~D15 Threshold Type:TTL

158 D8~D15 Threshold Value :1.400000V

159 D0~D7 Status :0000 0000

160 D8~D15 Stauts :0000 0000
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Appendix H

Rigol DS1104Z parameters -
ATmega328p using GPIO trigger

1 Model:DS1104Z

2 SN:DS1ZA155002892

3 Manufacturer:RIGOL TECHNOLOGIES

4 Board Ver :0.1.1

5 Firmware Ver :0.2.3.11

6 BOOT Ver :0.0.0.12

7 CPLD Ver :0.0

8 SoftWare Ver :00.04.04. SP1

9
10
11 DSO Vertical System

12 CH1:Off

13 Scale :1.000000V

14 Position :0.000000V

15 Coupling:DC

16 Bandwidth Limit:OFF

17 Probe Ratio :10X

18 Unit:V

19
20 CH2:On

21 Scale :0.005000V

22 Position : -0.055000V

23 Coupling:DC

24 Bandwidth Limit:OFF

25 Probe Ratio:1X

26 Unit:V

27
28 CH3:On

29 Scale :2.000000V

30 Position : -7.280000V

31 Coupling:DC

32 Bandwidth Limit:OFF

33 Probe Ratio:1X

34 Unit:V

35
36 CH4:On

37 Scale :5.000000V

38 Position :10.300000V

39 Coupling:DC

40 Bandwidth Limit:OFF

41 Probe Ratio:1X

42 Unit:V

43
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44 DSO Horizontal System

45 Delay:Off

46 Time Mode:YT

47 Time Scale :5.000000e-05s

48 Delay Time Scale :5.000000e-07s

49 Time Offset : -2.800000e-04s

50 Delay Time Offset :0.000000e+00s

51
52 DSO Acquire System

53 Acquire Mode:Normal

54 Memory Depth :30000 pts

55 Average Num :16

56 Sampling Rate :50000000 Sa/s

57
58 DSO Trigger System

59 Trigger Mode:Edge

60 Trigger Source:CH4

61 Trigger Edge Slope:Falling

62 Trigger Sweep:Single

63 Trigger Coupling:DC

64 Trigger Noise Reject:Off

65 Trigger HoldOff :1.600000e-08s

66
67 CH1 Level :0.000000V

68 CH2 Level : -0.080000V

69 CH3 Level :3.080000V

70 CH4 Level :1.800000V

71
72 Pulse Condition:Negative More

73 Pulse High Time :0.000002s

74 Pulse Low Time :0.000002s

75
76 Slope Condition:Positive More

77 Slope High Time :0.000002s

78 Slope Low Time :0.000001s

79 Slope Win:Win Up

80 Slope Level1 :10.000000V

81 Slope Level2 :0.000000V

82
83 Video Polarity:Positive

84 Video Sync:All Lines

85 Video Standard:NTSC

86 Video Line:1

87
88 Runt Polarity:Positive

89 Runt Condition:Do not care

90 Runt Win:Win Up

91
92 Windows Type:Rising

93 Windows Pos:Enter

94 Window Time :0.000001s

95
96 NCycle Edge:Rise

97 NCycle Time :0.000001s

98 NCycle Num:2

99
100 Pattern CH1:X

101 Pattern CH2:X

102 Pattern CH3:X

103 Pattern CH4:X

104
105 Delay A:CH1
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106 Delay B:CH2

107 Delay A Slope:Rising

108 Delay B Slope:Rising

109 Delay Range:More

110 Delay High :0.000002s

111 Delay Low :0.000001s

112
113 TimeOut Slope:Rising

114 TimeOut :1.600000e-08s

115
116 Duration Type:More

117 Dura. High :0.000002s

118 Dura. Low :0.000001s

119
120 Setup/Hold Clk:CH2

121 Setup/Hold Data:CH1

122 Setup/Hold Slope:Rising

123 Setup/Hold Patt.:H

124 Setup/Hold Type:Setup

125 Setup Time :0.000001s

126 Hold Time :0.000001s

127
128 RS232 Source:CH4

129 RS232 Type:Frame Start

130 RS232 Stop Bit:1

131 RS232 Parity:Odd

132 RS232 Data Bit:8

133 RS232 Baudrate :115200

134 RS232 Data :16

135
136 IIC Clock Source:CH1

137 IIC Data Source:CH2

138 IIC Type:Start

139 IIC Address :1

140 IIC Direction:Read

141 IIC Address Length :7

142 IIC Byte Length :1

143 IIC Data :82

144
145 SPI SCLK:CH1

146 SPI SDIO:CH2

147 SPI Mode:CS

148 SPI CS Mode:Low

149 SPI Edge:Rise

150 SPI Timeout :0.000001s

151 SPI Data Length :8

152 SPI Data :82

153
154 LA System

155 D0~D7 Threshold Type:TTL

156 D0~D7 Threshold Value :1.400000V

157 D8~D15 Threshold Type:TTL

158 D8~D15 Threshold Value :1.400000V

159 D0~D7 Status :0000 0000

160 D8~D15 Stauts :0000 0000
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