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ABSTRACT	

BACKGROUND:	 Endometrioid	 endometrial	 carcinoma	 (EEC)	 is	 the	 most	 common	 subtype	 of	

endometrial	 cancer.	 Routine	 clinical	 parameters	 such	 as	 tumor	 stage	 and	 grade	 provide	

important	prognostic	 information	for	EEC	patients,	but	combining	these	clinical	variables	with	

tumor	 biomarkers	 such	 as	 epigenomic	 alterations	 may	 significantly	 improve	 patient	 risk	

stratification	 for	 cancer	 recurrence.	 Accurately	 predicting	 the	 prognosis	 of	 EEC	 patients	 is	

important	 to	 help	 guide	 clinical	 decision-making	 for	 post-operative	 disease	 management	

strategies.	

METHODS:	Publically-available	molecular	and	clinical	data	from	The	Cancer	Genome	Atlas	(TCGA)	

were	 used.	 The	 data	 set	 included	 primary	 tumor	 samples	 from	 312	 surgically-treated	 EEC	

patients.	Data	on	tumor	DNA	methylation	levels	(β-value;	range:	0	–	1)	at	22,443	CpG	sites	across	

the	epigenome	were	analyzed.	Based	on	tumor	stage	and	grade,	patients	were	classified	as	low-

risk	(stage	I	and	grade	1;	n	=	50)	or	high-risk	EEC	(stage	IV	or	grade	3;	n	=	162);	and	all	other	

patients	 were	 in	 the	 intermediate-risk	 group	 (n	 =	 100).	 Different	 (un)-supervised	 statistical	

techniques	were	used	to	identify	methylation	phenotypes,	study	differential	DNA	methylation	at	

single	CpGs,	and	generate	a	prognostic	methylation	signature.	

RESULTS:	Unsupervised	 clustering	 identified	 four	 distinct	methylation	phenotypes	 including	 a	

subset	of	tumors	associated	with	 lower	methylation	 levels	 (23	percent	of	tumors),	which	was	

enriched	 for	 high-risk	 tumors	 (P-value	 <	 0.0001).	 In	 total,	 1,503	 CpG	 sites	were	 differentially	

methylated	between	high	and	low-risk	EEC	(FDR	q-value	<	0.01	and	mean	methylation	β-value	

difference	 ≥	 0.05),	 including	 15	 top-ranked	 CpG	 sites	 with	 a	 mean	 methylation	 difference	

between	subgroups	of	at	least	0.2.	These	top-ranked	CpGs	were	in	different	genes:	ARSE,	FCRL3,	

HIST1H2BB,	HIST1H3C,	HLA-DOB,	 ITGB7,	KRTAP11-1,	REG3A,	RNASE3,	SLC25A35,	TMED6,	 and	

TMEM101.	Using	LASSO	feature	selection,	a	56-CpG	methylation	signature	of	high	versus	low-

risk	EEC	was	generated	(mean	five-fold	cross-validation	misclassification	error	rate	=	0.114).	In	

the	 subset	 of	 intermediate-risk	 patients,	 this	 signature	 classified	 patients	 who	 developed	

recurrence	(n	=	11)	versus	those	who	remained	recurrence-free	(n	=	84;	AUC	=	0.85,	95%	CI:	0.71,	
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0.99).	 Further,	 combining	 the	 signature	 with	 routine	 clinical	 parameters	 for	 predicting	 EEC	

recurrence	significantly	improved	the	classification	performance	compared	to	the	clinical	model	

only	(AUC	=	0.88	vs.	0.70;	likelihood-ratio	test,	P-value	=	0.0001).	In	the	intermediate-risk	group,	

higher	levels	of	the	signature	correlated	with	increased	expression	of	genes	in	known	pathways	

of	 cell	 proliferation	 (E2F	 targets,	 G2M	 checkpoint,	MYC	 targets).	 Finally,	 in	 a	 second	 smaller	

validation	 set	 from	 TCGA	 (n	 =	 99),	 the	 signature	 classified	 high	 versus	 low-risk	 EEC	

(misclassification	error	rate	=	0.159),	and	recurrent	(n	=	4)	versus	non-recurrent	disease	(n	=	76;	

AUC	=	0.80;	95%	CI:	0.62,	0.97).	

CONCLUSION:	 Using	 data	 on	 tumor	 stage	 and	 grade,	 EEC	 patients	 were	 classified	 into	 low,	

intermediate,	 and	 high-risk	 groups	 for	 having	 a	 poor	 prognosis.	 A	 tumor	 DNA	 methylation	

signature	for	distinguishing	high	from	low-risk	EEC	was	generated.	This	study	showed	that,	in	the	

subset	of	intermediate-risk	patients,	the	signature	predicted	the	risk	of	cancer	recurrence.	The	

methylation	signature,	therefore,	has	potential	as	a	prognostic	classifier	for	these	patients.	 	



	 7	

INTRODUCTION	

Endometrial	cancer	is	a	tumor	originating	in	the	endometrium,	the	inner	membrane	of	the	uterus	

[1].	It	is	the	most	common	gynecological	tumor	in	developed	countries,	with	an	estimated	61,380	

new	cases	and	10,920	deaths	 in	 the	United	States	 in	2017	 [2].	The	most	common	subtype	of	

endometrial	 cancer	 is	 endometrioid	 endometrial	 cancer	 (EEC),	 which	 accounts	 for	 about	 80	

percent	of	all	cases	[1].	

EEC	tumors	are	classified	based	on	tumor	stage	(I,	II,	III,	IV)	and	grade	(1,	2,	3)	[1,	3].	Tumor	stage	

provides	information	on	the	extent	of	the	tumor.	While	stage	I	tumors	are	confined	to	the	uterus,	

stage	IV	tumors	have	grown	outside	the	uterus	(e.g.,	bladder)	or	metastasized	to	distant	sites	in	

the	body	(e.g.,	lungs)	[4].	Most	EEC	patients	are	diagnosed	with	localized	tumors	(stage	I/II),	and	

the	standard	treatment	for	these	patients	is	surgery	(hysterectomy)	[1].	Information	on	tumor	

grade	 is	 obtained	 by	 histological	 examination	 by	 a	 pathologist.	 Grade	 1	 EEC	 cells	 are	 well-

differentiated	and	are	most	similar	to	normal	endometrial	cells.	At	the	other	end	of	the	extreme	

are	grade	3	tumors,	which	are	poorly	differentiated	and,	therefore,	aggressive.	

Tumor	stage	and	grade	are	important	prognostic	variables.	However,	these	clinical	parameters	

do	not	accurately	classify	all	individual	patients	[5].	For	example,	EEC	tumors	that	have	the	same	

stage	 and	 grade	 may	 behave	 very	 differently	 and	 have	 a	 different	 prognosis.	 Accurately	

predicting	the	prognosis	of	individual	patients	is	important	to	help	guide	clinical	decision	making,	

and	 identify	 the	 best	 post-operative	 disease	 management	 strategy	 (e.g.,	 adjuvant	 radiation,	

chemotherapy,	no	additional	therapy)	[1,	6].	

Tumor	biomarkers	hold	potential	to	improve	EEC	patient	risk	stratification	[5].	Tumor	biomarkers	

include	 transcriptomic	 changes,	 protein	 expression,	 genomic	 mutations,	 and	 epigenomic	

alterations.	 Prognostic	 tumor	 biomarkers	 are	 expected	 to	 be	 particularly	 important	 for	 EEC	

patients	with	intermediate	stage/grade	tumors	(e.g.,	stage	1/2	and	grade	2)	as	the	prognosis	of	

these	patients	often	is	unclear	[5,	7].	



	 8	

DNA	methylation	 is	 the	most	widely	 studied	epigenomic	mechanism	 [8,	 9].	DNA	methylation	

involves	the	addition	of	a	methyl-group	to	a	CG	dinucleotide	or	CpG	site.	DNA	methylation	 is	

related	 to	 gene	 transcription,	 as	 it	 is	 one	mechanism	 to	 control	 gene	 expression	 levels.	 For	

example,	higher	methylation	levels	in	a	gene	promoter	region	can	suppress	transcription	of	that	

gene.	In	cancer,	including	EEC,	DNA	methylation	changes	are	widespread	[10].	

Aims	and	outline	of	the	thesis	

In	this	thesis	project,	publically-available	clinical	and	molecular	data	from	The	Cancer	Genome	

Atlas	 (TCGA)	 were	 used	 [3].	 The	main	 aim	 of	 the	 project	 was	 to	 build	 a	 tumor	methylation	

signature	 for	 predicting	 EEC	 prognosis;	 specifically,	 for	 patients	 who	 have	 intermediate	

stage/grade	tumors.	

The	outline	of	the	thesis	was	as	follows.	First,	EEC	patients	were	classified	into	risk	categories	on	

the	basis	of	tumor	stage	and	grade.	Low-risk	EEC	was	defined	as	stage	I	and	grade	1.	High-risk	

disease	was	 defined	 as	 stage	 IV	 or	 grade	 3.	 All	 other	 patients	were	 in	 the	 intermediate-risk	

category.	Second,	epigenome-wide	DNA	methylation	profiles	were	compared	between	high	and	

low-risk	EEC,	and	a	DNA	methylation	signature	of	high	versus	low-risk	EEC	was	generated.	Third,	

the	methylation	signature	was	applied	in	the	remaining	intermediate-risk	patients,	and	used	to	

further	risk	stratify	these	patients.	Further,	the	DNA	methylation	data	were	also	integrated	with	

whole-genome	gene	expression	data	of	the	same	patients’	tumors	to	perform	a	gene	set	analysis	

and	study	correlations	between	CpG	methylation	and	gene	expression	levels.	 	
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METHODS	

Data	set	

The	study	 included	data	from	endometrioid	endometrial	carcinoma	(EEC)	patients	 included	 in	

The	Cancer	Genome	Atlas	(TCGA-UCEC).	As	described	previously,	TCGA	primary	tumor	specimens	

were	collected	from	newly	diagnosed	EEC	patients	who	received	surgical	resection,	and	had	no	

prior	treatment	for	their	disease	[3].	All	primary	tumor	samples	were	from	surgical	specimens	

and	no	biopsy	specimens	were	used.	Samples	were	restricted	to	those	that	contained	at	least	

60%	tumor	nuclei	by	pathological	review.	

TCGA	clinical	and	molecular	(i.e.,	DNA	methylation	and	gene	expression)	data	were	downloaded	

from	 the	UCSC	Xena	browser	 (http://xena.ucsc.edu/).	 In	 total,	 the	data	 set	 included	411	EEC	

patients	who	had	a	tumor	sample	for	molecular	profiling	and	information	on	pathological	stage	

and	 grade.	 The	 molecular	 data	 used	 in	 this	 thesis	 project	 were	 already	 pre-processed	 and	

normalized.	Therefore,	the	data	also	did	not	contain	methylation	or	gene	expression	markers	for	

which	the	variance	across	samples	was	equal	to	zero.	

Tumor	DNA	methylation	

In	TCGA,	two	different	assays	were	used	for	epigenome-wide	DNA	methylation	profiling,	i.e.,	the	

Methylation27K	(No.	patients	=	99)	and	Methylation450K	assay	(No.	patients	=	312).	There	were	

22,443	CpG	sites	that	had	methylation	levels	measured	on	both	assays,	and	which	were	therefore	

used	 in	 the	present	 study.	This	 ‘natural	 split’	 in	 the	data	was	used	 to	define	a	discovery	and	

validation	set.	The	largest	of	the	two	data	sets	(n	=	312)	was	used	as	the	main	discovery	set.	The	

smaller	set	(n	=	99)	was	used	for	validation.		

DNA	 methylation	 levels	 are	 represented	 as	 β-values,	 which	 range	 from	 0	 (completely	

unmethylated)	 to	 1	 (completely	 methylated).	 Note	 that	 although	 a	 single	 CpG	 is	 either	

methylated	or	not	 (0	or	1),	 a	 tissue	 sample	always	 contains	a	mixture	of	 cells	 [11].	 This	may	

include	 tumor,	 normal	 (e.g.,	 epithelial,	 stromal),	 and	 infiltrating	 immune	 cells.	 A	 β-value	



	 10	

therefore	always	has	a	value	between	0	and	1,	which	represents	the	proportion	of	methylated	

CpGs	in	the	sample.	

Tumor	gene	expression	

The	 study	 also	 used	 tumor	 gene	 expression	 data	 from	 TCGA	 (exon	 expression	 RNAseq	 –	

IlluminaGA).	Gene	expression	data	were	available	for	20,359	genes.	Of	the	312	patients	in	the	

discovery	 set	 who	 had	 tumor	 DNA	 methylation	 data,	 208	 patients	 also	 had	 tumor	 gene	

expression	data.	The	expression	levels	are	represented	as	reads	per	kilobase	of	exon	model	per	

million	mapped	reads.	

Defining	risk	groups	

Based	on	(AJCC)	tumor	stage	(I,	II,	III,	IV)	and	(FIGO)	grade	(1,	2,	3),	the	EEC	patients	were	classified	

into	 low,	 intermediate,	 and	 high-risk	 groups	 for	 having	 adverse	 cancer	 outcomes	 (e.g.,	

recurrence/relapse	or	cancer	death).	The	definition	of	high-risk	disease	was	pathological	stage	IV	

or	grade	3.	The	definition	of	low-risk	EEC	was	pathological	stage	I	and	grade	1.	All	other	patients	

were	classified	as	having	an	intermediate-risk	for	having	a	poor	prognosis.		

Unsupervised	hierarchical	clustering	

Using	 a	 Euclidean	 distance	 matrix	 of	 the	 DNA	 methylation	 data	 (dist	 in	 R),	 unsupervised	

hierarchical	clustering	of	the	samples	was	performed	(hclust	in	R).	The	5%	most	variable	CpG	sites	

were	used	as	input	for	this	analysis	(i.e.,	the	markers	with	the	largest	standard	deviation	[SD];	n	

=	1,122).	Ward's	minimum	variance	method	was	used	for	clustering,	which	aims	to	minimize	the	

total	within-cluster	variance.	

A	dendrogram	of	the	clustering	results	was	generated,	and	methylation	clusters	were	defined	by	

cutting	the	dendrogram	at	a	specific	height.	The	optimal	value	for	the	height	of	the	dendrogram	

was	obtained	by	visual	inspection.	The	methylation	data	were	then	visualized	using	a	heatmap	

(pheatmap	in	R).	 	
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Identifying	differentially	methylated	CpG	sites	in	high	versus	low-risk	EEC	

Linear	models	were	 used	 to	 test	 for	 differential	 DNA	methylation	 at	 single	 CpG	 sites	 in	 high	

compared	to	low-risk	EEC	(limma	in	R/Bioconductor)	[12].	The	limma	procedure	uses	an	empirical	

Bayes	method	to	moderate	the	standard	errors	of	the	estimated	log-fold	changes.	This	has	the	

effect	of	borrowing	 information	from	the	full	the	set	of	markers	to	help	with	 inference	about	

each	individual	marker.	All	22,443	CpG	sites	were	used	as	input	for	the	analysis,	and	filtering	was	

not	performed	[13].	The	 false	discovery	rate	 (FDR)	procedure	was	used	to	adjust	 for	multiple	

testing,	 and	 FDR	 q-values	 were	 computed	 [14].	 Genomic	 annotation	 data	 (e.g.,	 gene	 name,	

chromosome,	 location	 in	gene,	epigenomic	 location)	for	all	CpG	sites	were	downloaded	from:	

https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/d

ownloads.html.	

Generating	a	methylation	signature	of	high	versus	low-risk	EEC	

A	DNA	methylation	signature	of	high	versus	low-risk	EEC	was	generated	using	feature	selection	

and	 regularization	 with	 LASSO	 (least	 absolute	 shrinkage	 and	 selection	 operator)	 regression	

(glmnet	in	R)	[15].	The	30%	most	variable	CpG	sites	were	used	as	input	for	the	analysis	(n	=	6,384).	

A	logistic	LASSO	regression	procedure	was	utilized	where	high	(coded	as	1)	versus	low-risk	EEC	

(coded	as	0)	was	the	response	variable.	LASSO	logistic	regression	is	implemented	by	minimizing	

𝐿 + 𝜆 |𝛽&|
'

&()

	.	

Here,	𝐿	is	the	negative	log	likelihood	from	logistic	regression,	𝜆 ≥ 0	is	a	tuning	parameter	to	be	

determined	separately,	𝑝	represents	the	CpG	markers,	and	𝛽& 	is	the	model	coefficient	for	the	𝑗01	

CpG	marker.	The	second	term	in	the	formula,	called	a	shrinkage	penalty	(ℓ)),	has	the	effect	of	

shrinking	some	model	coefficients	to	be	exactly	zero.	As	such,	the	procedure	produces	a	model	

based	on	a	subset	of	the	CpG	markers	(with	non-zero	coefficients)	for	distinguishing	high	from	

low-risk	EEC.	
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Five-fold	cross-validation	(CV)	was	used	to	identify	the	optimal	value	for	the	tuning	parameter	

(log	 𝜆)	 for	 classification	 and	 feature	 selection	 (grid	 search	 using	 default	 glmnet	 settings).	

Specifically,	the	value	for	log	𝜆	that	corresponded	with	the	lowest	five-fold	CV	misclassification	

error	rate	was	chosen.	The	misclassification	error	rate	was	calculated	as	follows:	the	predicted	

probabilities	were	categorized	using	0.5	as	a	cut-point;	where	a	value	larger	than	0.5	represents	

predicted	 high-risk	 EEC,	 and	 a	 value	 lower	 than	 0.5	 represents	 predicted	 low-risk	 EEC.	 The	

misclassification	(error)	rate	is	the	sum	of	all	false	positive	and	false	negative	findings	divided	by	

the	total	number	of	samples.	

This	process	was	repeated	500	times,	each	time	using	a	different	CV	split,	which	resulted	in	500	

DNA	methylation	models.	The	average	CV	misclassification	error	rate	was	calculated.	Average	

LASSO	 coefficients	 of	 the	 CpG	 markers	 across	 all	 500	 repetitions	 were	 calculated.	 The	 CpG	

markers	that	had	a	model	coefficient	different	from	zero	in	at	least	half	of	the	500	repetitions	

were	included	in	the	final	methylation	signature.	The	methylation	signature	was	then	calculated	

as	 follows:	 for	each	patient,	 the	methylation	 level	of	each	selected	CpG	was	multiplied	by	 its	

corresponding	LASSO	coefficient;	and	the	sum	of	these	products	was	computed.	

In	an	additional	analysis,	 gene	expression	 levels	 (20,359	genes)	of	 the	 same	patients’	 tumors	

were	used.	Correlations	between	methylation	levels	of	the	CpGs	included	in	the	signature	and	

gene	expression	levels	of	the	same	genes	the	signature	CpGs	map	to	were	investigated.	FDR	q-

values	were	calculated.	

Applying	the	methylation	signature	in	intermediate-risk	patients	

Using	the	intermediate-risk	patients,	which	were	not	used	to	generate	the	methylation	signature,	

associations	between	the	signature	and	tumor	stage	and	grade	were	evaluated.	Boxplots	of	the	

methylation	signature	in	subgroups	based	on	stage	and	grade	were	generated.	

Predicting	cancer	recurrence	

Associations	 between	 the	 signature	 and	 cancer	 recurrence	were	 studied.	 For	 this,	 a	 receiver	

operating	characteristic	(ROC)	analysis	was	performed	(pROC	and	ROCR	in	R).	A	95%	confidence	
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interval	(CI)	for	the	area	under	the	curve	(AUC)	was	computed	using	2,000	stratified	bootstrap	

replicates.	The	performance	of	the	signature	was	compared	to	that	of	a	clinical	model	based	on	

tumor	stage	and	grade.	Likelihood-ratio	(LR)	tests	were	used	to	compare	the	clinical	model	versus	

a	model	based	on	the	clinical	variables	and	the	methylation	signature	combined	(lmtest	in	R).	

Gene	set	analysis	

A	 gene	 set	 analysis	 was	 performed	 to	 identify	 sets	 of	 genes	 that	 are	 significantly	 up-	 or	

downregulated	 with	 higher	 levels	 of	 the	 methylation	 signature	 [16].	 For	 this	 analysis,	 gene	

expression	levels	(20,359	genes)	of	the	same	patients’	tumors	were	used.	The	camera	method	

was	used,	which	is	implemented	as	part	of	limma	in	R/Bioconductor.	First,	gene	expression	levels	

of	all	 individual	genes	were	modelled	 in	 relation	 to	 the	methylation	 signature.	 Second,	 these	

analytical	 results	 were	 compared	 to	 the	 predefined	 HALLMARK	 gene	 sets	 (n	 =	 50)	 [17],	 to	

determine	whether	specific	sets	of	genes	(e.g.,	genes	involved	in	DNA	repair)	are	more	up-	or	

down-regulated	with	higher	levels	of	the	methylation	signature.	Barcodeplots	were	generated	

for	the	top-enriched	pathways,	and	FDR	q-values	were	computed.	

Independent	validation	of	the	methylation	signature	

The	validation	set	was	used	to	further	evaluate	the	signature.	First,	boxplots	of	the	signature	by	

risk	category	(low,	intermediate,	high)	were	generated.	Second,	using	the	subset	of	high	and	low-

risk	EEC	patients,	a	logistic	regression	model	was	fit	of	the	signature	as	a	predictor	in	relation	to	

high-risk	 EEC	 (coded	 as	 1;	 low-risk	 EEC	 was	 coded	 as	 0).	 The	 predicted	 probabilities	 were	

categorized	using	0.5	as	a	cut-point;	where	a	value	larger	than	0.5	represents	predicted	high-risk	

EEC,	and	a	value	lower	than	0.5	represents	predicted	low-risk	EEC.	Using	these	predicted	classes,	

a	confusion	matrix	was	generated	and	the	misclassification	error	rate	was	computed	as	described	

previously.	

After	that,	the	signature	was	studied	in	relation	to	cancer	recurrence.	For	this,	an	ROC	analysis	

was	performed.	
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RESULTS	

Patient	characteristics	

Baseline	characteristics	

The	discovery	data	set	included	50	low-risk	(stage	I	and	grade	1)	and	162	high-risk	patients	(stage	

IV	or	grade	3).	There	were	100	intermediate-risk	patients.	Note	that	the	large	number	of	high-

risk	tumors	is	the	result	of	oversampling	more	advanced	and	aggressive	tumors	in	TCGA	[3].	Table	

1	shows	selected	baseline	characteristics	of	the	study	participants	by	risk	group.	The	mean	age	

of	the	312	EEC	patients	was	62.7	years	(SD	=	11.7),	and	this	was	not	substantially	different	for	

patients	in	the	low,	intermediate,	and	high-risk	category	(ANOVA,	P-value	=	0.4).	

Follow-up	information	on	cancer	recurrence	

The	median	follow-up	time	for	disease	recurrence	was	2.0	years	(interquartile	range	[IQR]:	1.2,	

3.8).	The	number	of	patients	who	experienced	disease	recurrence	in	the	low,	intermediate,	and	

high-risk	group	was	3,	11,	and	30,	respectively	(Table	1).	

Hierarchical	clustering	identified	four	methylation	phenotypes	

Figure	 1A	 shows	 a	 dendrogram	 of	 hierarchical	 clustering	 of	 the	 tumor	 samples	 based	 on	

epigenome-scale	DNA	methylation	data.	Four	distinct	clusters	or	methylation	phenotypes	were	

identified:	C1	(n	=	87),	C2	(n	=	53),	C3	(n	=	100),	and	C4	(n	=	72).	Figure	1B	shows	a	heatmap	of	

the	methylation	levels	with	the	samples	grouped	by	methylation	cluster.	Average	methylation	

levels	were	significantly	different	between	the	methylation	clusters	(ANOVA,	P-value	<	0.0001):	

C1	 =	 0.39,	 C2	 =	 0.53,	 C3	 =	 0.50,	 C4	 =	 0.35.	 Age	was	 not	 associated	with	methylation	 cluster	

(ANOVA,	P-value	=	0.08).	Figure	1C	 shows	the	proportion	of	samples	by	risk	category	 in	each	

methylation	cluster.	Cluster	4	 included	 the	highest	proportion	of	high-risk	 tumors	and	 lowest	

proportion	of	low-risk	tumors	(chi-square	test,	P-value	<	0.0001).	 	
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A	large	number	of	CpG	sites	were	differentially	methylated	in	high	versus	low-risk	EEC	

For	 the	 following	 analysis,	 the	 intermediate-risk	 patients	 were	 excluded.	 Differentially	

methylated	CpG	sites	were	identified	by	comparing	high	(n	=	162)	versus	low-risk	tumors	(n	=	50).	

In	total,	1,503	CpGs	were	differentially	methylated	between	the	groups	(FDR	q-value	<	0.01	and	

mean	 methylation	 β-value	 difference	 ≥	 0.05;	 Figure	 2A).	 Of	 these,	 15	 CpGs	 had	 a	 mean	

methylation	difference	of	at	least	0.2	(Table	2).	

The	majority	of	the	significant	CpGs	(n	=	1,503)	had	a	higher	mean	methylation	level	in	high-risk	

tumors	(67%).	Compared	to	the	non-significant	CpGs,	the	significant	CpGs	were	enriched	in	Open	

Sea	regions,	and	were	less	commonly	found	in	CpG	Island	regions	(Figure	2B;	chi-square	test,	P-

value	<	0.0001).	

A	56-CpG	methylation	signature	of	high	versus	low-risk	EEC	

Using	a	repeated	LASSO	procedure	(No.	repetitions	=	500),	a	DNA	methylation	signature	of	high	

versus	low-risk	EEC	was	generated	(Figure	3A).	The	average	five-fold	CV	misclassification	error	

rate	 from	 repeated	 LASSO	 logistic	 regression	was	 0.114	 (median	 =	 0.113;	 IQR:	 0.104,	 0.123;	

Figure	3B).	The	final	methylation	signature	included	56	CpG	markers	(Figure	3C-D).	Three	of	the	

CpG	markers	were	also	in	the	list	of	15	top-ranked	differentially	methylated	CpG	sites	(Table	2):	

ITGB7	cg08374799,	ARSE	cg11964613,	and	HIST1H3C	cg25438963.	Figure	3E	shows	a	heatmap	of	

the	methylation	 levels	 of	 the	 CpGs	 in	 the	 signature.	Methylation	 signature	 levels	 were	 then	

calculated	as	described	in	the	Methods	and	using	the	LASSO	coefficients	 in	Table	3.	Figure	3F	

shows	that	average	levels	of	the	methylation	signature	increase	with	each	higher	risk	group.	

Applying	the	methylation	signature	in	the	remaining	intermediate-risk	patients	

The	methylation	signature	was	then	applied	in	patients	with	intermediate-risk	tumors	(n	=	100).	

In	this	subset	of	patients,	higher	signature	levels	were	associated	with	higher	grade	(G2	vs.	G1;	t-

test,	P-value	=	0.02;	Figure	4B),	but	not	stage	(ANOVA,	P-value	=	0.89;	Figure	4A).	The	majority	

of	patients	in	the	intermediate-risk	group	had	stage	I	and	grade	2	tumors	(n	=	64;	Figure	4C).	



	 17	

The	methylation	signature	predicted	cancer	recurrence	

Mean	signature	levels	where	higher	in	patients	who	experienced	recurrence	(n	=	11)	compared	

to	those	who	had	no	evidence	of	recurrence	(n	=	84;	Figure	4D).	The	signature	revealed	an	AUC	

for	recurrence	of	0.85	(95%	CI:	0.71,	0.99;	Figure	4E).	The	clinical	model	based	on	tumor	stage	

and	grade	had	an	AUC	of	0.70,	and	adding	the	signature	to	this	model	significantly	improved	the	

model	fit	(LR	test,	P-value	=	0.0001),	which	corresponded	with	a	18%	improvement	in	the	AUC.	

The	signature	was	then	applied	in	patients	with	stage	I	and	grade	2	tumors	(n	=	64).	Importantly,	

in	this	subset	of	patients	who	have	the	same	grade	and	stage,	the	classification	performance	of	

the	signature	for	cancer	recurrence	(No.	events	=	7)	remained	statistically	significant	(AUC	=	0.82;	

95%	CI:	0.60,	1.00;	Figure	4F).	

Higher	levels	of	the	methylation	signature	were	associated	with	increased	cell	proliferation	

Whole-genome	gene	expression	data	(20,359	genes)	of	the	same	patients’	tumors	were	used	to	

perform	a	gene	set	analysis	of	the	methylation	signature.	Figure	4G-I	show	barcodeplots	for	the	

top	3	enriched	HALLMARK	gene	sets	(total	No.	gene	sets	=	50),	which	are	cell	proliferation	gene	

sets	[17].	As	such,	higher	signature	levels	correlate	with	higher	expression	of	genes	involved	in	

cell	proliferation.	The	 top	10	HALLMARK	gene	sets	are	 shown	 in	Table	4.	 Further,	a	different	

pathway	analysis	tool,	 iPathwayGuide,	was	used,	which	confirmed	that	higher	signature	levels	

are	associated	with	increased	DNA	replication	and	cell	cycle	progression.	

Methylation	levels	of	about	half	of	the	signature	CpGs	were	associated	with	gene	expression	

levels	

Gene	expression	data	of	the	same	patients’	tumors	were	then	used	to	study	correlations	between	

methylation	levels	of	the	56	CpGs	included	in	the	signature	and	expression	levels	of	the	genes	

these	CpGs	map	to.	The	56	CpGs	map	to	59	genes	(thus,	some	CpG	are	located	in	more	than	one	

gene).	26	of	the	CpGs/genes	had	a	significant	correlation	(FDR	q-value	<	0.05;	Table	5).	Twenty-

four	of	these	26	correlations	were	inverse.	 	



	 18	

The	methylation	signature	predicted	high-risk	EEC	and	cancer	recurrence	 in	an	 independent	

data	set	

The	signature	was	then	applied	in	an	additional	EEC	cohort	from	TCGA	(No.	patients	=	99;	Table	

6).	Average	signature	levels	increased	with	each	higher	risk	category	(ANOVA,	P-value	<	0.0001;	

Figure	5A).	The	signature	distinguished	high	from	low-risk	EEC	with	a	misclassification	error	rate	

of	0.159	(Figure	5B).	Four	low-risk	tumors	and	six	high-risk	tumors	were	misclassified.	

There	were	 only	 four	 patients	 who	 experienced	 disease	 recurrence	 in	 this	 data	 set	 (median	

follow-up	 time	=	4.9	 years;	 IQR:	 2.4,	 6.3).	Despite	 the	 small	 number	of	 events,	 the	 signature	

statistically	 significantly	 classified	 the	patients	who	experienced	 recurrence	versus	 those	who	

remained	recurrence-free	during	follow-up	(AUC	=	0.80;	95%	CI:	0.62,	0.97;	Figure	5C-D).	Because	

of	the	small	number	of	recurrence	events,	further	testing	of	the	signature	in	combination	with	

clinical	prognostic	parameters	was	not	performed.	 	
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DISCUSSION	

Cancer	patients	with	intermediate	clinical-pathological	features,	in	particular	tumor	stage	and	

grade,	typically	have	an	unclear	prognosis	[18-20].	Finding	biomarkers	to	better	risk	stratify	

these	patients	is	therefore	important.	A	few	previous	studies	have	generated	prognostic	

biomarkers	specifically	for	intermediate-risk	cancer	patients,	including	patients	with	thyroid	

cancer,	leukemia,	and	breast	cancer	[21-23].		

In	this	thesis	project,	information	on	tumor	stage	and	grade	were	used	to	classify	EEC	patients	

into	low,	intermediate,	and	high-risk	groups.	The	study	demonstrated,	for	the	first	time,	that	a	

DNA	methylation	signature	of	high	versus	low-risk	EEC	can	be	used	as	a	prognostic	classifier	in	

the	remaining	intermediate-risk	patients.	

The	DNA	methylation	signature,	which	was	developed	using	supervised	learning	with	the	LASSO	

method,	included	CpGs	in	different	genes	that	are	involved	in	various	biological	processes	such	

as	signaling,	transcription	regulation,	DNA	repair,	immunity,	and	developmental	processes.	Some	

of	the	CpGs	are	in	known	cancer-related	genes	(e.g.,	CDX2,	RAD54,	VAV1	[24-26]).	Further,	a	few	

of	 the	 signature	CpGs	are	 in	 genes	 involved	 in	 cell	 proliferation	 (e.g.,	BUB3,	CETN1	 [27,	 28]).	

Increased	cell	proliferation	is	a	key	driver	of	tumor	growth	and	progression	[29].	The	study	also	

showed	 that	 in	 the	 intermediate-risk	 patients,	 higher	 levels	 of	 the	 signature	 correlated	with	

higher	expression	of	cell	proliferation	genes	(E2F	targets,	G2M	checkpoint,	and	MYX	targets	[17]).	

Therefore,	 the	 signature	 included	 CpGs	 in	 major	 cellular	 pathways	 and	 captures	 important	

biological	variation	associated	with	cell	cycle	proliferation	and,	therefore,	tumor	progression.	

In	 addition	 to	 supervised	 learning,	 the	 present	 study	 also	 applied	 unsupervised	 statistical	

clustering,	 and,	 as	 such,	 identified	 four	 tumor	 clusters	or	phenotypes	 in	 the	overall	 data	 set.	

Although	these	methylation	phenotypes	were	statistically	significantly	associated	with	EEC	risk	

category,	 this	 clustering	 did	 not	 accurately	 distinguish	 high	 from	 low-risk	 tumors,	 and	 it	 is	

therefore	not	a	strong	independent	prognostic	classifier.	This	is	not	surprising	as	unsupervised	

techniques	are	not	typically	used	to	generate	predictive	signatures	for	clinical	decision	making	

[30].	 	
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Strengths	and	limitations	

An	 important	 strength	 of	 the	 project	 is	 the	 large	 overall	 number	 of	 EEC	 patients,	 and	 the	

availability	 of	 a	 validation	 set	 to	 independently	 test	 the	 classification	 performance	 of	 the	

methylation	signature	generated	in	the	discovery	data	set.	Further,	TCGA	includes	multiple	omics	

data	types	from	the	same	tumors.	In	this	project,	tumor	DNA	methylation	data	were	integrated	

with	 tumor	RNAseq	data	 to	obtain	 further	biological	 insights	 into	 the	role	of	 the	methylation	

signature	in	EEC	progression.	

A	limitation	of	the	study	is	the	short	follow-up	for	cancer	recurrence.	It	is	therefore	not	unlikely	

that	 some	 of	 the	 patients	 who	 were	 classified	 as	 recurrence-free,	 actually	 experienced	

recurrence	after	the	end	of	follow-up;	suggesting	endpoint	misclassification.	Note,	however,	that	

this	did	not	influence	the	methylation	signature,	because	the	definitions	of	high	(stage	IV	or	grade	

3)	and	low-risk	EEC	(stage	I	and	grade	1)	were	based	on	tumor	stage	and	grade	only.	In	addition	

to	the	short	follow-up,	the	TCGA	cohort	has	a	retrospective	design,	and	prospective	cohorts	are	

preferred	for	prognostic	biomarker	evaluation.	

Future	research	

The	present	study	applied	the	LASSO	method	to	generate	a	methylation	signature,	and	did	not	

consider	other	supervised	statistical	learning	procedures	(e.g.,	random	forests	[31]),	which	will	

generate	different	signatures	from	the	methylation	data	with	a	potentially	different	classification	

performance.	Further	studies	are	needed	to	determine	if	these	alternative	methods	produce	a	

methylation	 signature	 with	 an	 even	 better	 classification	 performance	 than	 the	 LASSO-based	

methylation	signature	in	the	present	rapport.	

Because	of	the	short	follow-up	time	in	TCGA,	it	is	important	to	further	examine	the	association	

of	 the	methylation	 signature	with	 recurrence	 in	 additional	 independent	 patient	 cohorts	with	

long-term	and	complete	follow-up	on	cancer	recurrence	(at	least	5	years).	Further,	the	ultimate	

goal	 of	 any	 biomarker	 is	 to	 classify	 patients	 into	 distinct	 risk	 categories.	 In	 this	 study,	 the	

signature	was	used	as	a	continuous	parameter	to	predict	recurrence.	Further	research	on	the	
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prognostic	signature	should	therefore	also	include	finding	the	best	cut-point	for	classification;	

i.e.,	 the	cut-point	 that	provides	 the	highest	biomarker	sensitivity	and	specificity	 (e.g.,	Youden	

Index	[32]).	

General	conclusion	

The	tumor	methylation	signature	has	potential	as	a	prognostic	biomarker	for	EEC	patients	with	

intermediate	 stage/grade	 tumors,	 which	 represent	 a	 large	 subset	 of	 all	 patients.	 Accurately	

predicting	the	prognosis	of	EEC	patients	is	important	to	help	guide	clinical	decision	making	and	

identify	the	best	post-operative	disease	management	strategy	for	each	patient.	

	 	



	 22	

	 	



	 23	

REFERENCES	

1.	 Morice	P,	Leary	A,	Creutzberg	C,	Abu-Rustum	N,	Darai	E:	Endometrial	cancer.	Lancet	
2016,	387(10023):1094-1108.	

2.	 Siegel	RL,	Miller	KD,	Jemal	A:	Cancer	Statistics,	2017.	CA	Cancer	J	Clin	2017,	67(1):7-30.	
3.	 Cancer	Genome	Atlas	Research	N,	Kandoth	C,	Schultz	N,	Cherniack	AD,	Akbani	R,	Liu	Y,	

Shen	H,	Robertson	AG,	Pashtan	I,	Shen	R	et	al:	Integrated	genomic	characterization	of	
endometrial	carcinoma.	Nature	2013,	497(7447):67-73.	

4.	 Kurra	V,	Krajewski	KM,	Jagannathan	J,	Giardino	A,	Berlin	S,	Ramaiya	N:	Typical	and	
atypical	metastatic	sites	of	recurrent	endometrial	carcinoma.	Cancer	Imaging	2013,	
13:113-122.	

5.	 Piulats	JM,	Guerra	E,	Gil-Martin	M,	Roman-Canal	B,	Gatius	S,	Sanz-Pamplona	R,	Velasco	
A,	Vidal	A,	Matias-Guiu	X:	Molecular	approaches	for	classifying	endometrial	carcinoma.	
Gynecol	Oncol	2017,	145(1):200-207.	

6.	 Gupta	V,	McGunigal	M,	Prasad-Hayes	M,	Kalir	T,	Liu	J:	Adjuvant	radiation	therapy	is	
associated	with	improved	overall	survival	in	high-intermediate	risk	stage	I	endometrial	
cancer:	A	national	cancer	data	base	analysis.	Gynecol	Oncol	2017,	144(1):119-124.	

7.	 Winham	WM,	Lin	D,	Stone	PJ,	Nucci	MR,	Quick	CM:	Architectural	versus	nuclear	atypia-
defined	FIGO	grade	2	endometrial	endometrioid	adenocarcinoma	(EEC):	a	
clinicopathologic	comparison	of	154	cases	with	clinical	follow-up.	Int	J	Gynecol	Pathol	
2014,	33(2):120-126.	

8.	 Farkas	SA,	Sorbe	BG,	Nilsson	TK:	Epigenetic	changes	as	prognostic	predictors	in	
endometrial	carcinomas.	Epigenetics	2017,	12(1):19-26.	

9.	 Schubeler	D:	Function	and	information	content	of	DNA	methylation.	Nature	2015,	
517(7534):321-326.	

10.	 Jones	PA,	Issa	JP,	Baylin	S:	Targeting	the	cancer	epigenome	for	therapy.	Nat	Rev	Genet	
2016,	17(10):630-641.	

11.	 Aran	D,	Sirota	M,	Butte	AJ:	Systematic	pan-cancer	analysis	of	tumour	purity.	Nat	
Commun	2015,	6:8971.	

12.	 Ritchie	ME,	Phipson	B,	Wu	D,	Hu	Y,	Law	CW,	Shi	W,	Smyth	GK:	limma	powers	
differential	expression	analyses	for	RNA-sequencing	and	microarray	studies.	Nucleic	
Acids	Res	2015,	43(7):e47.	

13.	 Bourgon	R,	Gentleman	R,	Huber	W:	Independent	filtering	increases	detection	power	
for	high-throughput	experiments.	Proc	Natl	Acad	Sci	U	S	A	2010,	107(21):9546-9551.	

14.	 Storey	JD,	Tibshirani	R:	Statistical	significance	for	genomewide	studies.	Proc	Natl	Acad	
Sci	U	S	A	2003,	100(16):9440-9445.	

15.	 Tibshirani	R:	Regression	shrinkage	and	selection	via	the	Lasso.	J	Roy	Stat	Soc	B	Met	
1996,	58(1):267-288.	

16.	 Wu	D,	Smyth	GK:	Camera:	a	competitive	gene	set	test	accounting	for	inter-gene	
correlation.	Nucleic	Acids	Res	2012,	40(17):e133.	

17.	 Liberzon	A,	Birger	C,	Thorvaldsdottir	H,	Ghandi	M,	Mesirov	JP,	Tamayo	P:	The	Molecular	
Signatures	Database	(MSigDB)	hallmark	gene	set	collection.	Cell	Syst	2015,	1(6):417-
425.	



	 24	

18.	 Di	Costanzo	GG,	Tortora	R:	Intermediate	hepatocellular	carcinoma:	How	to	choose	the	
best	treatment	modality?	World	J	Hepatol	2015,	7(9):1184-1191.	

19.	 Kamat	AM,	Witjes	JA,	Brausi	M,	Soloway	M,	Lamm	D,	Persad	R,	Buckley	R,	Bohle	A,	
Colombel	M,	Palou	J:	Defining	and	treating	the	spectrum	of	intermediate	risk	
nonmuscle	invasive	bladder	cancer.	J	Urol	2014,	192(2):305-315.	

20.	 Kane	CJ,	Eggener	SE,	Shindel	AW,	Andriole	GL:	Variability	in	Outcomes	for	Patients	with	
Intermediate-risk	Prostate	Cancer	(Gleason	Score	7,	International	Society	of	Urological	
Pathology	Gleason	Group	2-3)	and	Implications	for	Risk	Stratification:	A	Systematic	
Review.	Eur	Urol	Focus	2017.	

21.	 Brennan	K,	Holsinger	C,	Dosiou	C,	Sunwoo	JB,	Akatsu	H,	Haile	R,	Gevaert	O:	
Development	of	prognostic	signatures	for	intermediate-risk	papillary	thyroid	cancer.	
BMC	Cancer	2016,	16(1):736.	

22.	 Chretien	AS,	Fauriat	C,	Orlanducci	F,	Rey	J,	Borg	GB,	Gautherot	E,	Granjeaud	S,	Demerle	
C,	Hamel	JF,	Cerwenka	A	et	al:	NKp30	expression	is	a	prognostic	immune	biomarker	for	
stratification	of	patients	with	intermediate-risk	acute	myeloid	leukemia.	Oncotarget	
2017,	8(30):49548-49563.	

23.	 Ignatov	T,	Eggemann	H,	Burger	E,	Fettke	F,	Costa	SD,	Ignatov	A:	Moderate	level	of	HER2	
expression	and	its	prognostic	significance	in	breast	cancer	with	intermediate	grade.	
Breast	Cancer	Res	Treat	2015,	151(2):357-364.	

24.	 Ghamrasni	SE,	Cardoso	R,	Li	L,	Guturi	KK,	Bjerregaard	VA,	Liu	Y,	Venkatesan	S,	Hande	
MP,	Henderson	JT,	Sanchez	O	et	al:	Rad54	and	Mus81	cooperation	promotes	DNA	
damage	repair	and	restrains	chromosome	missegregation.	Oncogene	2016,	
35(37):4836-4845.	

25.	 Katzav	S:	Vav1:	A	Dr.	Jekyll	and	Mr.	Hyde	protein--good	for	the	hematopoietic	system,	
bad	for	cancer.	Oncotarget	2015,	6(30):28731-28742.	

26.	 Olsen	J,	Espersen	ML,	Jess	P,	Kirkeby	LT,	Troelsen	JT:	The	clinical	perspectives	of	CDX2	
expression	in	colorectal	cancer:	a	qualitative	systematic	review.	Surg	Oncol	2014,	
23(3):167-176.	

27.	 Grabsch	H,	Takeno	S,	Parsons	WJ,	Pomjanski	N,	Boecking	A,	Gabbert	HE,	Mueller	W:	
Overexpression	of	the	mitotic	checkpoint	genes	BUB1,	BUBR1,	and	BUB3	in	gastric	
cancer--association	with	tumour	cell	proliferation.	J	Pathol	2003,	200(1):16-22.	

28.	 Hart	PE,	Glantz	JN,	Orth	JD,	Poynter	GM,	Salisbury	JL:	Testis-specific	murine	centrin,	
Cetn1:	genomic	characterization	and	evidence	for	retroposition	of	a	gene	encoding	a	
centrosome	protein.	Genomics	1999,	60(2):111-120.	

29.	 Evan	GI,	Vousden	KH:	Proliferation,	cell	cycle	and	apoptosis	in	cancer.	Nature	2001,	
411(6835):342-348.	

30.	 Nuyten	DS,	Hastie	T,	Chi	JT,	Chang	HY,	van	de	Vijver	MJ:	Combining	biological	gene	
expression	signatures	in	predicting	outcome	in	breast	cancer:	An	alternative	to	
supervised	classification.	Eur	J	Cancer	2008,	44(15):2319-2329.	

31.	 Ho	TK:	Random	Decision	Forests.	Proceedings	of	the	3rd	International	Conference	on	
Document	Analysis	and	Recognition,	Montreal,	QC	1995:278-282.	

32.	 Ruopp	MD,	Perkins	NJ,	Whitcomb	BW,	Schisterman	EF:	Youden	Index	and	optimal	cut-
point	estimated	from	observations	affected	by	a	lower	limit	of	detection.	Biom	J	2008,	
50(3):419-430.	 	



	 25	

ABBREVIATIONS	

AUC,	area	under	the	curve	
CI,	confidence	interval	
CV,	cross-validation	
EEC,	endometrioid	endometrial	cancer	
FDR,	false	discovery	rate	
FIGO,	International	Federation	of	Gynaecology	and	Obstetrics	
IQR,	interquartile	range	
LASSO,	least	absolute	shrinkage	and	selection	operator	
LR,	likelihood-ratio	
ROC,	receiver	operating	characteristic	
SD,	standard	deviation	
TCGA,	The	Cancer	Genome	Atlas	
TSS,	transcription	start	site	
TSS1500,	the	region	from	200	to	1,500	nucleotides	upstream	of	the	TSS	
TSS200,	the	region	from	200	nucleotides	upstream	to	the	TSS	itself	
UCEC,	uterine	corpus	endometrial	carcinoma	
UCSC,	University	of	California,	Santa	Cruz	
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TABLES	

Table	1	

Selected	baseline	characteristics	of	study	participants	(n	=	312)	by	risk	category	

	 	 Low-risk	(stage	I	and	grade	1)	 Intermediate-riska	 High-risk	(stage	IV	or	grade	3)	

	 	 n	=	50	 n	=	100	 n	=	162	

Mean	age,	years	(SD)	 62.64	(11.40)	 61.53	(11.00)	 63.43	(12.19)	

Stage	I	tumors	 50	 64	 101	

Stage	II	tumors	 	 12	 17	

Stage	III	tumors	 	 24	 33	

Stage	IV	tumors	 	 	 11	

Grade	1	tumors	 50	 12	 	

Grade	2	tumors	 	 88	 1	

Grade	3	tumors	 	 	 161	

Recurrence	eventsb	 	 	 	

	 No	 46	 84	 111	

	 Yes	 3	 11	 30	

	 Missing	 1	 5	 21	

a	This	included	all	patients	not	in	the	low	or	high-risk	group.	
b	Median	follow-up	time	for	recurrence	was	2.0	years	(IQR:	1.2,	3.8).	Note	that	data	on	cancer	recurrence	was	not	
used	to	define	risk	groups.	 	
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Table	2	

Fifteen	top-ranked	differentially	methylated	CpG	sites	in	high	versus	low-risk	EEC	with	a	
methylation	β-value	difference	of	at	least	20	percenta	

CpG	ID	 Chr.	 Gene	
Location		
in	gene	

Epigenomic		
location	 FDR	q-value	

cg08374799	 12	 ITGB7	 TSS200	 Open	Sea	 1.03E-07	

cg11964613	 X	 ARSE	 5'UTR;1stExon	 Open	Sea	 1.03E-07	

cg07911673	 17	 SLC25A35	 1stExon	 N_Shore	 2.60E-07	

cg12259256	 17	 TMEM101	 TSS200	 Island	 8.97E-07	

cg16148454	 16	 TMED6	 1stExon	 Open	Sea	 1.69E-06	

cg07014174	 21	 KRTAP11-1b	 1stExon	 Open	Sea	 1.59E-05	

cg24240626	 2	 REG3Ab	 5'UTR;1stExon	 Open	Sea	 1.78E-05	

cg22376897	 X	 ARSE	 5'UTR	 Open	Sea	 3.13E-05	

cg18368125	 16	 TMED6	 TSS200	 Open	Sea	 4.35E-05	

cg07525077	 14	 RNASE3b	 Body	 Open	Sea	 6.56E-05	

cg04576021	 6	 HLA-DOB	 Body	 Open	Sea	 8.42E-05	

cg25259754	 1	 FCRL3b	 Body	 Open	Sea	 1.15E-04	

cg25438963	 6	 HIST1H3C	 1stExon	 Island	 1.99E-04	

cg07636178	 6	 HIST1H3C	 TSS200	 N_Shore	 2.52E-04	

cg21250296	 6	 HIST1H2BB;HIST1H3C	 TSS1500	 Island	 4.24E-04	

a	Table	is	sorted	by	FDR	q-value.		
b	These	four	CpGs	had	a	lower	mean	methylation	level	in	high	compared	to	low-risk	tumors	(i.e.,	hypomethylation).	
All	other	CpGs	had	a	higher	mean	methylation	level	in	high	compared	to	low-risk	tumors	(i.e.,	hypermethylation).	 	
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Table	3	

Fifty-six	CpG	sites	included	in	the	methylation	signature	of	high-risk	EECa	

CpG	ID	 Chr.	 Gene	
Location	
in	gene	

Epigenomic		
location	

Mean	β	
low-risk	

Mean	β	
high-risk	

LASSO		
coefficient	

cg02055963	 13	 CDX2	 TSS1500	 Island	 0.16	 0.32	 3.31	

cg26581729	 9	 NPDC1	 Body	 Island	 0.31	 0.51	 2.86	

cg27270684	 7	 FKBP9L	 TSS200;TSS1500;Body	 Open	Sea	 0.23	 0.38	 2.60	

cg06415153	 12	 PITPNM2	 5'UTR	 Open	Sea	 0.39	 0.52	 2.35	

cg08374799	 12	 ITGB7	 TSS200	 Open	Sea	 0.16	 0.37	 1.48	

cg14244577	 16	 DDX19B	 TSS200	 Open	Sea	 0.29	 0.39	 1.41	

cg26323655	 8	 RAD54B	 Body	 Open	Sea	 0.72	 0.81	 1.24	

cg11964613	 X	 ARSE	 5'UTR;1stExon	 Open	Sea	 0.36	 0.60	 0.76	

cg08090640	 17	 IFI35	 Body	 Open	Sea	 0.21	 0.40	 0.73	

cg26571739	 19	 VAV1	 TSS200	 Open	Sea	 0.14	 0.23	 0.71	

cg00930194	 5	 PROP1	 TSS1500	 Open	Sea	 0.56	 0.66	 0.64	

cg11981631	 11	 ABCC8	 Body	 Island	 0.08	 0.13	 0.57	

cg25021247	 3	 AMT;NICN1	 TSS200;3'UTR	 Open	Sea	 0.55	 0.71	 0.54	

cg14597908	 20	 GNASAS;GNAS	 Body;1stExon;5'UTR	 N_Shore	 0.43	 0.50	 0.47	

cg16175725	 12	 HNF1A	 1stExon	 Island	 0.48	 0.66	 0.42	

cg02620769	 12	 CCDC65	 1stExon;5'UTR	 Open	Sea	 0.12	 0.23	 0.40	

cg07251857	 15	 ALPK3	 1stExon	 Island	 0.67	 0.75	 0.32	

cg05155595	 2	 ANXA4	 5'UTR	 Open	Sea	 0.47	 0.64	 0.28	

cg13878010	 3	 ADCY5	 1stExon	 Island	 0.18	 0.31	 0.28	

cg15572745	 14	 NRXN3	 5'UTR	 Open	Sea	 0.31	 0.35	 0.27	

cg24471894	 9	 KIAA0020	 5'UTR	 Open	Sea	 0.19	 0.37	 0.27	

cg15021292	 5	 PIK3R1	 TSS1500	 Open	Sea	 0.67	 0.74	 0.27	

cg25438963	 6	 HIST1H3C	 1stExon	 Island	 0.27	 0.52	 0.26	

cg16516400	 1	 FAM89A	 TSS1500	 S_Shore	 0.25	 0.40	 0.25	

cg13323752	 12	 SLC2A14	 TSS200	 Island	 0.29	 0.34	 0.19	

cg21870884	 1	 GPR25	 1stExon	 Island	 0.18	 0.28	 0.14	

cg19246110	 19	 ZNF671	 1stExon;5'UTR	 Island	 0.12	 0.28	 0.13	

cg23152772	 9	 FIBCD1	 Body	 Island	 0.34	 0.44	 0.11	

cg20483374	 11	 C1QTNF5;MFRP	 5'UTR;3'UTR	 Island	 0.18	 0.36	 0.10	

cg11319389	 20	 TOX2	 TSS200;Body	 Island	 0.30	 0.44	 0.07	

cg20770175	 2	 COL3A1	 Body	 Open	Sea	 0.63	 0.76	 0.06	

cg08203715	 11	 ST3GAL4	 1stExon;5'UTR	 S_Shore	 0.49	 0.40	 -0.09	

cg12529228	 1	 NHLH1	 1stExon;5'UTR	 N_Shelf	 0.85	 0.77	 -0.13	

cg14467840	 1	 S100A13;S100A1	 TSS1500;5'UTR	 Open	Sea	 0.79	 0.68	 -0.13	

cg26530341	 8	 TNFRSF10A	 TSS1500	 S_Shore	 0.72	 0.55	 -0.21	
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cg22035229	 1	 MSH4	 1stExon;5'UTR	 Island	 0.90	 0.82	 -0.24	

cg23765993	 20	 SPINLW1	 TSS200;TSS1500	 Open	Sea	 0.85	 0.71	 -0.25	

cg26065841	 15	 CHAC1	 TSS1500	 N_Shore	 0.73	 0.62	 -0.26	

cg09324116	 X	 GEMIN8	 TSS1500	 Island	 0.31	 0.21	 -0.28	

cg16612699	 11	 OR8B8	 TSS1500	 Open	Sea	 0.55	 0.46	 -0.30	

cg04058169	 10	 BUB3	 TSS1500	 N_Shore	 0.82	 0.72	 -0.37	

cg03264209	 16	 	  S_Shore	 0.61	 0.52	 -0.37	

cg23101680	 13	 SPERT	 Body	 Open	Sea	 0.68	 0.53	 -0.42	

cg25119415	 1	 MNDA	 TSS1500	 Open	Sea	 0.54	 0.38	 -0.45	

cg08085267	 17	 C17orf57	 5'UTR	 S_Shore	 0.19	 0.15	 -0.46	

cg26757722	 22	 CACNG2	 1stExon;5'UTR	 N_Shore	 0.68	 0.63	 -0.47	

cg21229055	 X	 GPM6B	 TSS1500	 S_Shore	 0.36	 0.28	 -0.52	

cg23264413	 19	 PSG4	 TSS1500	 Open	Sea	 0.76	 0.69	 -0.65	

cg14704941	 11	 CSRP3	 TSS1500	 Open	Sea	 0.89	 0.83	 -0.87	

cg03022541	 3	 DNAJB8	 TSS1500	 Open	Sea	 0.72	 0.60	 -0.92	

cg12288726	 7	 ARF5	 TSS1500	 Island	 0.78	 0.68	 -0.97	

cg18129786	 3	 ZNF445	 TSS1500	 S_Shore	 0.88	 0.83	 -1.03	

cg03020597	 X	 SLITRK2	 TSS1500	 N_Shore	 0.34	 0.23	 -1.26	

cg05111110	 11	 PC;LRFN4	 Body;1stExon	 Island	 0.85	 0.76	 -1.33	

cg26738010	 18	 CETN1	 TSS200	 Island	 0.67	 0.58	 -1.49	

cg10305797	 19	 KRTDAP	 TSS1500	 Open	Sea	 0.61	 0.48	 -1.90	

a	Table	is	sorted	by	LASSO	coefficient.	 	
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Table	4	

Gene	set	analysis	of	the	methylation	signature	in	intermediate-risk	patients:	top-10	enriched	
HALLMARK	gene	setsa,b	

Gene	set	
No.	genes		
in	set	 Direction	 P-value	 FDR	q-value	

HALLMARK	E2F	TARGETS	 188	 Up	 5.19E-39	 2.60E-37	

HALLMARK	G2M	CHECKPOINT	 189	 Up	 1.71E-29	 4.27E-28	

HALLMARK	MYC	TARGETS	V1	 192	 Up	 5.01E-14	 8.34E-13	

HALLMARK	MTORC1	SIGNALING	 196	 Up	 3.70E-11	 4.62E-10	

HALLMARK	MYC	TARGETS	V2	 58	 Up	 1.08E-08	 1.08E-07	

HALLMARK	MITOTIC	SPINDLE	 198	 Up	 2.02E-07	 1.68E-06	

HALLMARK	ALLOGRAFT	REJECTION	 200	 Down	 4.77E-06	 3.41E-05	

HALLMARK	OXIDATIVE	PHOSPHORYLATION	 197	 Up	 2.42E-05	 1.51E-04	

HALLMARK	EPITHELIAL	MESENCHYMAL	TRANSITION	 196	 Down	 2.09E-04	 1.16E-03	

HALLMARK	DNA	REPAIR	 141	 Up	 4.45E-04	 2.23E-03	

a	Barcodeplots	for	the	top-3	enriched	gene	sets	are	shown	in	Figure	4	(G-I).	
b	The	total	number	of	HALLMARK	gene	sets	is	50	[17].	 	
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Table	5	

Correlations	methylation	and	expression	levels	of	the	CpG/genes	included	in	the	methylation	
signaturea	

CpG	ID	 Gene	name	
Pearson		
correlation	 P-value	 FDR	q-value	

cg07251857	 ALPK3	 -0.85	 1.97E-59	 1.16E-57	

cg16175725	 HNF1A	 -0.79	 1.60E-46	 4.71E-45	

cg19246110	 ZNF671	 -0.78	 5.69E-44	 1.12E-42	

cg11964613	 ARSE	 -0.75	 1.32E-38	 1.95E-37	

cg25021247	 AMT	 -0.74	 5.62E-37	 6.63E-36	

cg14467840	 S100A1	 -0.61	 5.49E-23	 5.40E-22	

cg25438963	 HIST1H3C	 -0.60	 6.37E-22	 5.37E-21	

cg02620769	 CCDC65	 -0.52	 9.97E-16	 7.35E-15	

cg08090640	 IFI35	 -0.49	 3.12E-14	 2.05E-13	

cg26581729	 NPDC1	 -0.49	 5.94E-14	 3.51E-13	

cg05155595	 ANXA4	 -0.47	 6.46E-13	 3.18E-12	

cg08203715	 ST3GAL4	 -0.46	 2.37E-12	 1.08E-11	

cg05111110	 LRFN4	 -0.43	 7.13E-11	 3.00E-10	

cg14467840	 S100A13	 -0.38	 2.05E-08	 8.07E-08	

cg20483374	 MFRP	 -0.36	 7.98E-08	 2.94E-07	

cg03020597	 SLITRK2	 -0.35	 2.27E-07	 7.88E-07	

cg02055963	 CDX2	 -0.33	 1.37E-06	 4.48E-06	

cg25021247	 NICN1	 -0.31	 5.86E-06	 1.82E-05	

cg26323655	 RAD54B	 -0.25	 2.11E-04	 5.93E-04	

cg20770175	 COL3A1	 -0.24	 5.87E-04	 1.57E-03	

cg15572745	 NRXN3	 -0.21	 2.07E-03	 5.32E-03	

cg08374799	 ITGB7	 -0.20	 3.47E-03	 8.54E-03	

cg08085267	 C17orf57	 -0.18	 8.61E-03	 2.03E-02	

cg18129786	 ZNF445	 -0.17	 1.55E-02	 3.51E-02	

cg26530341	 TNFRSF10A	 -0.13	 5.40E-02	 1.14E-01	

cg26065841	 CHAC1	 -0.13	 6.47E-02	 1.32E-01	

cg11319389	 TOX2	 -0.12	 7.70E-02	 1.51E-01	

cg14597908	 GNAS	 -0.12	 8.23E-02	 1.57E-01	

cg05111110	 PC	 -0.12	 8.83E-02	 1.63E-01	

cg12288726	 ARF5	 -0.09	 1.93E-01	 3.17E-01	

cg23264413	 PSG4	 -0.09	 2.13E-01	 3.39E-01	

cg15021292	 PIK3R1	 -0.08	 2.24E-01	 3.48E-01	

cg09324116	 GEMIN8	 -0.08	 2.47E-01	 3.74E-01	

cg04058169	 BUB3	 -0.08	 2.74E-01	 4.04E-01	
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cg00930194	 PROP1	 -0.06	 3.71E-01	 5.08E-01	

cg16516400	 FAM89A	 -0.06	 3.80E-01	 5.09E-01	

cg22035229	 MSH4	 -0.05	 4.34E-01	 5.69E-01	

cg27270684	 FKBP9L	 -0.05	 4.47E-01	 5.74E-01	

cg13323752	 SLC2A14	 -0.04	 6.02E-01	 7.27E-01	

cg26757722	 CACNG2	 -0.04	 6.04E-01	 7.27E-01	

cg11981631	 ABCC8	 -0.03	 6.33E-01	 7.47E-01	

cg14597908	 GNASAS	 -0.02	 7.22E-01	 8.19E-01	

cg03022541	 DNAJB8	 -0.02	 7.83E-01	 8.58E-01	

cg16612699	 OR8B8	 -0.02	 8.10E-01	 8.69E-01	

cg26571739	 VAV1	 0.00	 9.85E-01	 9.85E-01	

cg21229055	 GPM6B	 0.01	 8.93E-01	 9.08E-01	

cg26738010	 CETN1	 0.01	 8.60E-01	 8.90E-01	

cg23101680	 SPERT	 0.02	 8.27E-01	 8.72E-01	

cg14244577	 DDX19B	 0.02	 7.85E-01	 8.58E-01	

cg23152772	 FIBCD1	 0.03	 7.00E-01	 8.09E-01	

cg06415153	 PITPNM2	 0.05	 4.83E-01	 6.06E-01	

cg13878010	 ADCY5	 0.07	 3.04E-01	 4.27E-01	

cg21870884	 GPR25	 0.07	 2.82E-01	 4.06E-01	

cg12529228	 NHLH1	 0.10	 1.72E-01	 2.89E-01	

cg14704941	 CSRP3	 0.10	 1.38E-01	 2.40E-01	

cg25119415	 MNDA	 0.11	 1.03E-01	 1.83E-01	

cg24471894	 KIAA0020	 0.14	 4.45E-02	 9.73E-02	

cg10305797	 KRTDAP	 0.31	 7.47E-06	 2.20E-05	

cg23765993	 SPINLW1	 0.49	 8.78E-14	 4.71E-13	

a	Table	is	sorted	by	Pearson	correlation	of	CpG	methylation	and	gene	expression	levels	(lowest	to	highest).	 	
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Table	6	

Selected	baseline	characteristics	of	patients	in	the	validation	data	set	(n	=	99)	by	risk	category	

	 	 Low-risk	(stage	I	and	grade	1)	 Intermediate-riska	 High-risk	(stage	IV	or	grade	3)	

	 	 n	=	31	 n	=	36	 n	=	32	

Mean	age,	years	(SD)	 61.06	(9.58)	 62	(12.57)	 62.97	(10.98)	

Stage	I	tumors	 31	 24	 20	

Stage	II	tumors	 	 5	 2	

Stage	III	tumors	 	 7	 7	

Stage	IV	tumors	 	 	 3	

Grade	1	tumors	 31	 5	 	

Grade	2	tumors	 	 31	 	

Grade	3	tumors	 	 	 52	

Recurrence	eventsb	 	 	 	

	 No	 24	 33	 19	

	 Yes	 1	 1	 2	

	 Missing	 6	 2	 11	

a	This	included	all	patients	not	in	the	low	or	high-risk	group.	
b	Median	follow-up	time	for	recurrence	was	4.9	years	(IQR:	2.4,	6.3).	Note	that	data	on	cancer	recurrence	was	not	
used	to	define	risk	groups.	 	
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FIGURES	

Figure	1	

Unsupervised	hierarchical	clustering	of	the	tumor	samples	based	on	DNA	methylation	levels.	
(A)	Dendrogram	of	hierarchical	clustering	of	the	tumor	samples.	The	orange	boxes	highlight	four	
main	methylation	clusters	or	phenotypes.	(B)	Heatmap	of	methylation	levels.	The	rows	are	the	
5%	most	variable	CpGs	 (largest	SD),	which	were	used	as	 input	 for	hierarchical	 clustering.	The	
columns	 are	 the	 samples	 grouped	 by	 methylation	 cluster.	 Information	 on	 selected	 patient	
variables	(i.e.,	age	at	diagnosis,	risk	group)	was	added	at	the	top	of	the	heatmap	by	means	of	
colored	bars.	(C)	Proportion	of	samples	by	risk	category	in	each	methylation	cluster	or	phenotype.	
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Figure	2	

Testing	 for	differential	DNA	methylation	at	 single	CpG	sites	 in	high	versus	 low-risk	EEC.	 (A)	
Volcano	plot	showing	the	results	from	statistical	testing.	Each	dot	represents	a	CpG.	The	CpGs	
shown	in	blue/orange	have	an	FDR	q-value	less	than	0.01	(n	=	5,132).	Further,	the	CpGs	shown	
in	dark	blue	and	orange	have	a	significant	q-value	and	a	mean	methylation	β-value	difference	of	
at	 least	 0.05	 (n	 =	 1,503).	 The	 CpGs	 shown	 in	 orange	 have	 a	 significant	 q-value	 and	 a	mean	
methylation	difference	of	at	least	0.2	(n	=	15).	(B)	Proportion	of	samples	by	epigenomic	location	
in	the	group	of	non-significant	(n	=	20,940)	and	significant	CpGs	(FDR	q-level	<	0.01	and	mean	β-
value	difference	≥	0.05;	n	=	1,503).	
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Figure	3	

Building	a	DNA	methylation	signature	of	high	versus	 low-risk	EEC.	 (A)	Coefficient	path	 from	
LASSO	 regularization	 for	 classifying	 high	 versus	 low-risk	 EEC.	 The	 colored	 lines	 represent	
individual	CpGs,	and	the	y-axis	shows	the	value	of	the	coefficient	associated	with	each	CpG,	which	
is	a	function	of	log	𝜆	(x-axis).	The	optimal	value	for	log	𝜆	for	classification	and	feature	selection	
was	identified	using	five-fold	CV.	This	procedure	was	repeated	500	times,	each	time	randomly	
selecting	a	different	CV	split,	which	resulted	in	500	DNA	methylation	models.	(B)	Distribution	of	
the	CV	misclassification	error	rate	from	repeated	LASSO.	The	vertical	dashed	line	represents	the	
average	 misclassification	 error.	 (C)	 The	 final	 methylation	 signature	 was	 built	 using	 the	 CpG	
markers	 that	 were	 selected	 (i.e.,	 coefficient	 different	 from	 zero)	 in	 at	 least	 half	 of	 the	 500	
repetitions.	 This	 resulted	 in	 the	 selection	of	 56	markers	 (shown	 in	 red).	 The	 total	 number	of	
unique	CpG	markers	in	any	of	the	500	LASSO	models	was	110.	The	median	number	of	CpGs	with	
non-zero	model	coefficients	across	all	500	models	was	58	(range:	24,	88).	(D)	Shrinkage	of	the	
LASSO	model	coefficients	of	the	56	signature	CpGs.	The	x-axis	shows	the	LASSO	coefficients.	The	
y-axis	shows	the	coefficients	from	logistic	regression	models	including	single	CpG	markers,	and	
high	versus	low-risk	EEC	as	the	response.	(E)	Heatmap	of	DNA	methylation	levels	of	the	56	CpG	
sites	included	in	the	signature	(rows).	The	samples	are	grouped	by	risk	category	(columns).	The	
CpGs	were	clustered	based	on	Euclidean	distance	and	the	complete	linkage	method.	(F)	Boxplots	
of	the	methylation	signature	by	risk	group.	The	signature	was	calculated	for	each	patient	using	
the	 methylation	 β-values	 of	 the	 56	 CpGs	 and	 their	 LASSO	 coefficients	 as	 explained	 in	 the	
Methods.	
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Figure	4	

Applying	the	methylation	signature	of	high	versus	low-risk	EEC	in	the	remaining	intermediate-
risk	patients.	 (A-B)	Boxplots	of	 the	methylation	 signature	by	 stage	and	grade.	 (C)	Number	of	
intermediate-risk	patients	by	stage	and	grade.	(D)	Boxplots	of	the	signature	by	disease	recurrence	
status.	(E)	ROC	analysis	of	different	predictive	models	for	recurrence	(yes	vs.	no).	The	black	curve	
represents	the	clinical	model	based	on	tumor	stage	and	grade.	The	blue	curve	is	the	model	based	
on	the	methylation	signature	only.	The	red	curve	represents	the	combined	model	that	includes	
the	clinical	variables	and	the	signature.	The	AUC	for	each	model	and	associated	95%	CI	are	shown	
in	the	figure.	The	P-value	from	the	LR-test	comparing	the	clinical	model	versus	the	model	based	
on	both	the	clinical	variables	and	the	signature	is	shown	as	well.	(F)	ROC	analysis	of	the	signature	
in	relation	to	recurrence	in	patients	with	stage	I	and	grade	2	tumors	only	(n	=	64).	(G-I)	Higher	
levels	 of	 the	methylation	 signature	 correlated	with	 increased	 expression	 of	 cell	 proliferation	
genes	(E2F	targets,	G2M	checkpoint,	and	MYC	targets).	Barcodeplots	for	the	top-3	HALLMARK	
gene	sets	are	shown.	
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Figure	5	

Validation	 of	 the	 methylation	 signature	 in	 an	 independent	 data	 set.	 (A)	 Boxplots	 of	 the	
signature	by	risk	group.	(B)	Confusion	matrix	based	on	classifying	high	and	low-risk	EEC	tumors	
using	the	methylation	signature.	The	misclassification	error	rate	was	0.159.	(C)	Boxplots	of	the	
signature	 by	 recurrence	 status	 in	 all	 patients	 (nyes	 =	 4;	 nno	 =	 76).	 (D)	 ROC	 analysis	 of	 the	
methylation	signature	for	predicting	recurrence	(yes	vs.	no).	The	AUC	and	its	95%	CI	are	shown.	
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