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Abstract

Multiple Sclerosis (MS) is an auto-immune disease of the brain and the spinal cord in
which the immune system of an individual attack the protective sheath covering their neu-
rons. MS is characterized by weakness, numbness, blurred vision, bladder dysfunction and
lack of muscle coordination. Various forms of the disease exist and are categorized by how
they progress from the onset. However, various test and examinations are available to mon-
itor the course of the MS. The most widely used score by the neurologist is the expanded
disability status scale. Also, evoked potentials such as visual evoked potentials(VEPs), so-
matosensory evoked potentials(SEPs) and motor evoked potentials(MEPs) have been used.
It is of interest here to predict the course of MS by studying the EDSS score as a function of
MEPs and some other clinical variables such as age, gender, and type of multiple sclerosis.
The MEPs are projected firstly into the wavelet domain to produce a sparse representation
of the data. Then a penalized regression model, wavelet-based logistic LASSO regression is
fitted to these variables to predict the course of MS. It was observed that the MEPs predicted
the EDSS score with 72% accuracy. Adding other patient characteristics improved the accu-
racy of the prediction by about 6%. Moreover, the results also show that only early stages of
the disease were well predicted by the MEPs.

Keywords: EDSS score, Evoked potentials, Wavelet, LASSO .
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1 INTRODUCTION

1.1 Background

Multiple Sclerosis is an auto-immune disorder of the central nervous system (brain and spinal
cord), which is preceded by the degeneration of the myelin sheath. The protective sheath that
covers the nerve fibers in an individual is attacked by own immune system thereby causing dis-
ruption in communication between the brain and the rest of the body. Hence, lack of muscle
coordination, muscle weakness, slurry speech, decreased memory, decreased spontaneity, pares-
thesia, bladder dysfunction and visual impairment (Goldenberg, 2012). Although the cause of
Multiple Sclerosis is unknown, it is widely believed to occur as a result of the synergistic effect
of non-genetic and genetic factors. Some triggers such as viruses, bacteria, stress, smoking and
other environmental factors in combination with genetic susceptibility have been implicated in
the cause and progression of MS (Koriem, 2016).

Young people between 20 to 50 years of age are more likely to suffer from MS. This present great
economic challenges as most of the people affected loose ability to keep working after about 10
years of the attack thereby resulting in total economic dependency. According to Atlas of MS
2013 , the estimated number of people with MS has increased from 2.1 million in 2008 to 2.3
million in 2013 and the incidence of MS in females approximately double that of males. The
prevalence of MS varies across regions of the world but the large population of Nothern Euro-
pean Countries, Canada, New Zealand, and some other countries in the temperate regions are
believed to suffer more from the disease than others (Milo and Kahana, 2010). Although, this
has not been fully established since the disease is caused by both hereditary and non-hereditary
factors but lack of vitamin D has been implicated these areas (Koriem, 2017).

Multiple sclerosis has been categorized into types based on the disease course; Relapsing – Re-
mitting MS, Secondary Progressive MS, Primary Progressive MS, and Progressive-Relapsing MS
(Goldenberg, 2012; Hauser and Goodin, 2005; Loma and Heyman, 2011). Relapsing-Remitting
MS (RRMS) is the most common form of the disease characterized by periods of sudden worsen-
ing of symptoms(relapse or exacerbation) and immediate improvement or total absence of symp-
toms. The progression of RRMS with or without periods of relapsing or remitting is known as
Secondary Progressive MS(SPMS) whereas, in Primary Progressive MS (PPMS), the symptoms
of the disease worsen from onset without periods of relapsing or remission. The Progressive-
relapsing MS (PRMS) is the least common form of the disease with the progression of the disease
from the onset and intermittent worsening of the disease over the years. Patients who only expe-
rience a single episode with clinical symptoms are reported to have clinically Isolated Syndrome
(CIS).
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However, it is quite difficult to diagnose MS and available methods are not specific for detecting
the disease alone but other diseases that could present the same symptoms. Therefore, a num-
ber of tests are employed to rule out other types of diseases and confirm MS especially after
two or more episodes of MS-related symptoms. Both clinical and para-clinical tests are used
to diagnose MS. Blood tests, Lumbar puncture, magnetic resonance imaging (MRI) and Evoked
potential tests are jointly used. MRI scans are basically used to detect lesions or scarring of the
myelin sheath in the brain or spinal cords while Evoked potential tests capture how long it takes
messages from the eyes, hands, and legs to reach the brain and vice versa through an electrode
because scaring of the myelin sheath obstruct the rapid passage of signals. Although the use of
evoked potential tests have been a subject for debates, it is believed to be more useful for monitor-
ing the course of multiple sclerosis than the subjective Expanded disability status scale (EDSS)
introduced by Kurtzke (1983)

The Expanded Disability Status Scale (EDSS) is a 20-point scale (ranging from 0 = normal to
10 = death due to MS, marked by 0.5 increments) and is currently the most widely used mea-
surement scale by neurologist to quantify disability due to MS (Kurtzke, 1983; McKay et al.,
2016). MS patients who are able to walk without aid are categorized within the range 1 to 4.5
while patients that fall within the scale of 5 to 9.5 are defined by the inability to walk properly
(see section 6.1). The EDSS classification is made from scoring impairment on the scale of 0

to 5 or 6 in eight functional systems (FSS), which are pyramidal(weakness), cerebellar(tremor),
brain-stem (speech problems), sensory(numbness), bowel and bladder function, visual function,
mental function and others. Apart from the fact that EDSS is subjective, it is largely dependent on
walking abilities and the fact that increment of one at a lower scale does not translate to the same
effect at a higher scale. But, it is the most popularly used score for monitoring MS progression,
especially in clinical trials. However, to further assess the cognitive abilities and abilities to carry
out daily activities, new outcome measures such as MS functional composites (MSFC) and pa-
tients reported outcome measures (PROM) have been proposed. See Van Munster and Uitdehaag
(2017) for details.

Various forms of evoked potential tests are widely in use. They are; visual evoked potentials
(VEPs), and somatosensory evoked potentials (SEPs), motor evoked potential (MEP). MEP test
which was employed in this study is carried out by single or repeated pulse stimulation of the
brain which causes the spinal cord and the peripheral muscles to produce neuro-electrical sig-
nals. These signals are recorded by intramuscular needle electrodes from hands or legs. The
amplitude, latency, threshold and time taken by the signal to reach the peripheral muscles are
important in the prognosis of MS disease. A decrease in amplitude of the signal over time can
be indicative of an injury or lesion on the signal path (see section 2.1 for details). Also, due to

2
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the fact that the transcranial stimulation on the head is varied from spot to spot around a segment
of the brain and these spots might vary from neurologist to neurologist thereby inducing a lot of
variation.

Therefore, the objectives of this study are to develop a generic method to analyze raw signals
(time series data) instead of the average of amplitude and latency that has been used in literature.
The raw signals are represented in another domain using wavelets method and thresholding is
applied before a functional lasso regression model is fitted to select a number of features both
clinical and non-clinical (MEP) which predict the outcome measure of MS diseases, the EDSS
of each patient. Section two of this reports described the methodology employed to achieve
study objectives, the results obtained are given in section three and section four contains further
discussion and conclusion from the study.

2 METHODOLOGY

2.1 Data Description

The data used in this study contains evoked potential measurements of 447 patients at their first
visit to the clinic. A repeated transcranial stimulation of a preselected region of the brain is car-
ried out and an electrode is attached to either the left or right limbs to record the amplitude of
the signal as it travels from the brain to the limbs. The region of the brain to be used is divided
into two; left and right part and stimulation of these parts of the brain are done repeatedly to find
a spot that induces activation of evoked potential in the neuronal tract of the patients. From the
series of these stimulations on each patient, the MEP signal with the highest peak to valley is
selected as the most representative signal to be used in the prediction of MS.

The interest of this study lies in analyzing a single evoked potential for individual patients from
the different repeated measurements recorded over time, a visual method was used to select the
signal with the highest peak to valley amplitude over time(Milliseconds). Peak selection is done
visually by plotting a graph of repeated signals of an individual and the signal with the highest
peak to valley is selected. However, since a lot of patients are involved, an ad-hoc method was
implemented for computational ease by selecting the signal with the maximum absolute ampli-
tude (millivolt). Other clinical measures such as age, gender, EDSS score, amplitude, latency,
FSS score were also recorded. The EDSS score which is the clinical outcome measure is catego-
rized into two levels. Patients within the range of 1 to 4.5 are classified as fully ambulatory while
patients within the range of 5 to 9.5 are categorized as impaired according to the EDSS scale by
Kurtzke (1983).

3
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2.2 Wavelet Methods

2.2.1 Wavelets Decomposition

One of the greatest challenges of using the direct time series MEP in a statistical model is the
high dimensional nature of the data. Since the data are sampled at discrete time points, it results
in a lot of variables which most times are far more than the number of observations. However,
a method to compress the information contained in the signal so that a few parameters will be
estimated while retaining the properties of the whole signal is desired. Various data compression
and de-noising methods exist in literature such as Fourier transform, wavelet transform, adap-
tive filtering, Savitzky-Golay filtering, etcetera (AlMahamdy and Riley, 2014). But, the discrete
wavelet transform would be used in this setting.
Wavelets are families of functions commonly used in signal processing, data compression, and
noise reduction. They are basis functions usually employed to approximate other functions re-
sulting in few non-zero coefficients. Wavelets have some very important properties which make
them very useful in statistics. Properties such as sparsity, localization, and efficiency. Wavelet
analysis results in a few often large coefficients which are representative of the original signal, a
property known as sparsity. Also, wavelets do not exist forever but rapidly decay to zero. Hence,
the ability to analyze signals that are with abrupt transient regions. Only coefficients that overlap
the discontinuity region are influenced unlike the Fourier transform where all bases regardless of
location will interact with the discontinuity (Nason, 2010a).

In statistics methods involving wavelet transform have been applied to solve dimensionality prob-
lems and give a useful prediction of a scalar outcome variable as a function of functional predic-
tors. since such predictors most often contain parameters that are much larger than the number of
observations (p >> n). Many of such methods abound in literature. For example, Amato et al.
(2006) performed dimension reduction of functional data through minimum average variance es-
timation (MAVE) and functional sliced inverse regression (FSIR) methods. Further, Morris and
Carroll (2006) described a wavelet-based functional mixed model using Bayesian approach. Zhao
et al. (2012) discussed a wavelet-based LASSO regression to select important coefficients from a
set of signals that are already projected into the wavelet domain. Zhao et al. (2015) extended the
wavelet-based LASSO regression by applying different weighting and screening approaches to
the coefficients obtained by wavelets transform method. In this analysis, we adopt the methodol-
ogy of Zhao et al. (2012) to find the regions and characteristics of the evoked potential that are
predictive of EDSS.

Two bases functions of wavelets, the scale(Φ) and mother wavelet(Ψ) are very important in the
construction of wavelets coefficients. To fix ideas, for a set of curves sampled n times, and
n = 2J , the discrete wavelet transform produces a vector of coefficients (dj,k) consisting differ-
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ent levels of finesse or coarseness for j = 0, · · · , J − 1 and k = 0, · · · , 2j − 1. j and k are level
and location parameters respectively. The wavelet coefficients and smoothed data are produced
through a pyramidal algorithm proposed by Mallat (1989). The Mallat algorithm makes use of
two filters; high pass and low pass filter for the multi-resolution analysis of the signal. Coarser
levels of the scale(Φ) and mother wavelet(Ψ) are obtained from the data (the finest coefficients).

For a function L2(R), an orthonormal basis is obtained by dilating and translating the scale (Φ)
and mother wavelet (Ψ ) as:

Φjk(t) = 2j/2Φ(2jt− k) ,Ψjk(t) = 2j/2Ψ(2jt− k). (1)

These functions are referred to as orthonormal because they satisfy the Parseval’s relation which
shows that the transpose of the matrix of scale function multiplied by the matrix of mother wavelet
function or the matrix of scale function multiplied by the transpose of the matrix of mother
wavelet function is equal to an identity matrix. Also, the relation explains that the wavelet coef-
ficients have the same energy as the input data.

Then a function Γ(t) can be represented by wavelet series which is the sum of the products of
coefficients and the basis.

Γ(t) =
∑
j,k∈R

βj,kΨj,k(t), Γ(t) =
∑
j,k∈R

β′j,kΦj,k(t). (2)

In the pyramid algorithm, the scale and wavelet coefficients are dilated by dilation coefficients gn
and hn respectively at different resolution in space (Figure 8). The scale and wavelet coefficients
at level j0 are obtained by :

βj0,k =
∑
n

hn−2kβj, n, β′j0,k =
∑
n

gn−2kβ′j, n (3)

The low pass filters produce the scaling coefficients while the high pass filters produce the mother
wavelet coefficients. The output has N/2 coefficients at the next coarser level and N/4 at the
subsequent one as indicated by (↓ 2) on figure 8. However, given an initial decomposition level
j0, function Γ(t) in the wavelet domain L2[0, 1] is :

Γ(t) =
2j0−1∑
k=0

β′j0,kΦj0,k(t) +
∞∑
j=j0

2j−1∑
k=0

βj0,kΨj0,k(t) (4)

thus, the β′j,k and βj,k which are the scale and the mother wavelet coefficient for level j0, are
computed by :

β′j0,k =

∫
Γ(t)Φj0,k(t)dt, βj0,k =

∫
Γ(t)Ψj0,k(t)dt (5)

5
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Different families of wavelet exist and appropriate family to use for specific analysis problem
depends on how compactly the bases function are localized in space and how smooth they are
(Graps). Further, wavelets are also classified within a family based on the number of vanishing
moments which however have a direct relationship with the coefficients. The vanishing moments
describe the degree of polynomials the scaling function can generate. In this setting, Daubechies
compactly supported wavelets are used with the vanishing moment of 4 with a periodic boundary
option which restricts the previously defined function, L2(R) to L2[0, 1], that is, a finite interval
of R is of interest. The coefficients of the finer levels of the transform represent the local structure
of the data while those at coarser level describe global properties of the data.

2.2.2 Thresholding

Based on the properties of wavelet coefficients discussed in the previous section, such as spar-
sity of the resulting coefficients, the concentration of energy of the original sequence in a few
coefficients through Parseval’s relation and orthogonality of the wavelet function used, it is then
expected that small values(close to zero) of the coefficients contain very little or no energy while
the large coefficients contain the most of the energy in the data. Thresholding entails setting or
shrinking some of the wavelet coefficients below a defined value (δ) to zero. Two major types of
thresholding exist, namely hard and soft. The hard thresholding methods (Equation (6)) sets all
the coefficient less or equal the threshold value to zero while the soft thresholding (Equation (7))
shrinks coefficients both positive and negative (Figure 9) .

DH(d \ δ) =

{
0, Otherwise

d, for |d| ≥ δ
(6)

DS(d \ δ) =


0, for |d| < δ

d− δ, for d ≥ δ

d+ δ, for d ≤ −δ
(7)

In this study, a range of increasing threshold values are selected and shrinkage is manually car-
ried out using the hard thresholding technique. The residuals, which are the difference between
the reconstructed and the original data, are checked visually using quantile-quantile plots and
through two formal tests for normality; Shapiro Wick test and Anderson-Darling normality test.
Thresholding is done at each value and stopped at the highest value where the assumption of nor-
mality on the residual is no longer met. This highest value at which normality assumption is still
valid is considered optimum and used in thresholding the data producing a very sparse matrix

6
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with many Zeroes. At lower decomposition level, most or all the wavelet coefficients shrinks to
zero because this level contain the finest detail in the data. But, at higher levels the coefficients
are summarised into coarser details.

2.2.3 Signal Reconstruction

The inverse of the pyramid algorithm described in section 2.2.1 is applied to reconstruct the data.
This algorithm is known as inverse discrete wavelet transform. Although the LASSO model
will be fitted in the wavelet domain, reconstruction is carried out to assess the magnitude of the
difference (residuals) in the data after wavelet methods are applied. The reconstructed data also
give a clear picture of how wavelet decomposition and thresholding can systematically produce
a sparse matrix without discarding data. The wavelet coefficients, as well as other information
from the thresholding, are used to reconstruct the original signal. The inversion equation for the
reconstruction is:

β′j,n =
∑
k

gn−2kβ′j−1,k +
∑
k

hn−2kβj−1,k, (8)

as shown on Figure 8b, where (↑ 2) represent the scaling up of the coefficients by putting Zeros
between two subsequent coefficient and apply in equation (8) at the different resolution until the
data is obtained.

Figure 1: Wavelets transform steps

2.3 Regression Modeling

2.3.1 LASSO Regression

Lasso regression is a variable selection and shrinkage method used in solving regression problem,
especially in high dimensional data. Lasso solution has the property that the coefficients can
shrink to zero hence useful in variables selection (Friedman et al., 2001). The coefficients of
lasso regression β̂ are estimated such that its value minimizes the expression below:

7
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β̂λ = argminβ
1

2
(Y − Zβ)T (Y − Zβ) + λ

N∑
j=1

|βj| (9)

where λ is the complexity parameter(tunning parameter) that controls the amount of shrinkage.
Therefore, the value of λ that will yield the most accurate prediction must be appropriately cho-
sen, since selecting a high lambda value shrinks almost all the coefficients to zero while a value
of lambda close to zero results in an over-parameterized ordinary least square regression (Zhao
et al., 2012).

2.4 Functional Regression Model

Wavelet-based lasso regression method can be used to describe the relationship between a scalar
response variable (Yi) and functional regressors (curves).

logit(yi) = α +

∫
Xi(t)Γ(t)dt, i = 1, · · ·n, (10)

where the intercept β0 is a scalar parameter, Γ(t) is a square integrable function described in
equation 4 and it describes the relationship between X and Y. Regions with large |Γ(t)| are in-
dicative of better prediction of Y by changes inX(t). For ease of representation α can be dropped
from (10) as explained by Zhao et al. (2012), and estimated as α̂ = ȳ−

∫ ¯x(t)Γ(t)dt where ȳ and
¯x(t) are sample means of the response and predictors respectively. Xi sampled at N equal spaced

points can be projected into wavelet domain and represented with N wavelet coefficients as :

Xi =
2j0−1∑
k=0

d′i,j0,kΦi,j0,k(t) +
∞∑
j=j0

2j−1∑
k=0

di,j0,kΨi,j0,k(t) = W THi, (11)

where,

d′j0,k =

∫
xi(t)Φj0,k(t)dt, dj0,k =

∫
xi(t)Ψj0,k(t)dt (12)

where W is an N × N orthogonal matrix associated with the scale and mother wavelet, Di is a
N ×1 vector of wavelets coefficients of DWT of Xi. Also the Γ(t) are represented in the wavelet
domain as shown in equations (4) and (5). Then, due to the orthonormality characteristics of
wavelet as shown by Zhao et al. (2015), the model in (10) can then be re-written as,

8
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logit(yi) =
2j0−1∑
k=0

d′i,j0,kβ′j0,k(t) +

j∑
j=j0

2j−1∑
k=0

di,j0,kβj0,k(t), i = 1 · · · , n, (13)

simply put in matrix form as:

logit(Y ) = Zβ

where β is a N×1 vector of coefficients, Z is a ntimesN design matrix with ith rows containing
di,j,k values in the same order as β and Y = (y1, y2, · · · , yn)T . The β coefficients are estimated
as describes in (9) can be reconstructed to the data scale using inverse discrete wavelet transform.
However other scalar variables can also be added to the regression model. A logit link is used to
linearly relate the systematic part of the model to the outcome.

The fact that a variable is selected and has non-zero estimate does not imply significance. There-
fore, a post-selection inference method as proposed by Taylor and Tibshirani (2016) is applied to
the results from the LASSO regression to compute P-values of the selected variables at a fixed
lambda value.

2.5 Software

Package Wavetheresh (Nason, 2010b), glmnet (Friedman et al.) and selectInference were used in
R statistical programming software version 1.0.153.

3 RESULTS

3.1 Exploratory

The data set contains both clinical and MEP measurements of 447 patients. The observed dis-
tribution of the clinical variables in the data is shown in figure 3. Patient’s age varies between
20 and 80 years and it could be observed that the count of patients within the age bracket 30 -
60 years are higher compared to those below or above which might be due to the fact these are
the active onset ages of the disease. Also, the gender distribution (figure 3b) shows that there are
more female compared to male in the data set and more patients fall into the fully ambulatory
category compared to the impaired category. There are 325 females and 122 males in the data
set as reflected by the width of the boxes. Further, the distribution of the EDSS score (figure 3c),
also indicates that many patients in the data set are below 4.5. 352 patients are in category 0, that
is fully ambulatory while 132 are the category 1, impaired.

9
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However, looking at the MEP curves for a patient (figure 2a), the initial fluctuation at the begin-
ning (0ms) indicate the effect of the descending Transcranial stimulation (TMS) of the brain to
activate the motor neurons on the spinal cord, followed by an initial period of latency before the
onset of MEP which is in turn followed by a silent period. Since our interest lies in analyzing
the MEP, the TMS effect and initial latency period are removed from the signal. The signal to be
analyzed then begins from 377ms to 1400ms. Also, from the repeated test recorded for a single
patient, a single MEP with the highest peak to valley amplitude is selected, which is test 5 on
(figure 2b). This is done for all the patients and figure 2c shows the MEPs of all the 447 patients
in the study.

(a) (b) (c)

Figure 2: MEP signals:(a)-patient 700, (b)- patient 700 without latency period (c) - All patients
curves

(a) (b) (c)

Figure 3: Distributions:(a)- Age, (b)- Gender , (c) - EDSS Score

3.2 Wavelet Methods Result

The decimated discrete wavelet transform of the Daubechies compactly supported wavelet family
was applied to the MEPs. The least asymmetric type was used. It is so called because real-valued
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compact orthonormal wavelets cannot be symmetric or antisymmetric according to Daubechies
(1992). The MEPs are decomposed based on Mallat algorithm as discussed in section 2.2.1. Fig-
ure 4b and 4c displays the wavelet coefficient (hn) of the wavelet family used for the fast wavelet
transform. It is always twice the length of the vanishing moment of the wavelet family used,
which in this project is 4. This implies that the scaling function can not generate polynomial
greater than four. Since the length of the each patient MEP is 1024, then the number of levels
(J) expected is N = 2J . Coefficients dj,k are fewer and larger at coarser resolution levels and
finer as the level increases. Applying the wavelet transform to the data yielded coefficients at 10
different resolution levels at different locations (translate k) as shown in figure 4a for one MEP.
Ticker vertical marks show that the coefficients are large as opposed to dot at the higher revolu-
tion levels. Only 6 resolution level are displayed on the plot because the scale of the remaining
levels are small. If the coefficient at each level are scaled up as in figure 10, then all the levels
can be seen but the size of the coefficients cannot be compared anymore.

The coefficients at each level for a single MEP is arranged into a vector and these vectors are
put together into a matrix (see Table 4 and 5). However, decomposition of the MEP resulted
in many small coefficients that are approximately zero, hence, producing a matrix of dimension
447×1023. Since Parseval’s relation proved that the most energy in the data is concentrated in the
large coefficient in the wavelet domain, manual thresholding is applied to the decomposed data
to shrink the small coefficients to Zero and further produce a more sparse matrix. To manually
select the value at which thresholding is done(δ), a sweep of various value is done and δ = 0.25

was selected based on normality checks on the residuals . The value of the residuals are obtained
by subtracting the original data from the reconstructed data after thresholding. The assumption
of normality seems good by mere looking at the quantile-quantile plot of the residuals of each
MEP but, both Shapiro Wick test and Anderson-Darling test rejected the null hypothesis that the
residuals are normally distributed. However at higher threshold value, both the visual and formal
test perform woefully. Therefore a decision was taken to stick to the δ = 0.25 for the threshold-
ing.

Further, reconstructing the data from the threshold data matrix confirms that the wavelet trans-
form conserves the energy in the data as the reconstructed data is approximately the same as the
original data (Figure 5c). Most of the wavelet coefficients become zeroes after thresholding and
just about 45 columns out of 1023 columns of the thresholded data matrix have more than 10% of
it data to be non-zero. Figure 5b shows a the percentage of zero in both threshold data matrix and
decomposition data matrix from column 900 to 1023. It could be observed that the percentage of
zeroes were almost 100% from column 900 to 962, that is, all the coefficients in these columns
are already shrunk to zero while the decomposition matrix has 0% of zero values for all the ma-
trix columns plotted but contains many coefficients close to zero (see Table 4 and 5). Therefore,
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the LASSO regression model is fitted on the thresholded data dimension of 447 × 45 instead of
447× 1024 of the original data.

(a) (b) (c)

Figure 4: Wavelet decomposition: (a) - coefficients, (b) - wavelet function , (c) - scale function

(a) (b) (c)

Figure 5: (a) -qqplots of residuals, (b) - percentage zeroes in both decomposition and threshold
matrix, (c) - Original and reconstructed data

3.3 Wavelet-based Logistic LASSO Models Results

Lasso regression model in the wavelet domain is fitted on the thresholded coefficients. Three-
quarter of the data is used to train the model and the complexity parameter lambda is selected
over a grid of 100 values cross-validated 10 times. The optimal lambda that minimizes the miss-
classification error with the smallest number of the coefficient is 0.123 but lambda value at one
standard deviation from the minimum lambda value is often used in that the miss-classification
error is comparable and it yields a less complex model a number of times. Based on this lambda
value at one standard deviation from the minimum, 0.093, prediction of the response is done with
the remaining one-quarter of the data set (the validation set). Figure 6a shows the coefficients of
all the predictors selected and the vertical blue line indicated that at one standard deviation above
the minimum, only one coefficient has a non-zero value. Also, figure 6b displays the various log
of lambda values with their misclassification errors. The minimum log-lambda value and its one
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standard error counterpart are indicated with vertical dotted lines.

The number of variables selected is also displayed horizontally on top of the plot. Three forms of
the logistic LASSO models were fitted through the process already described. Model 1 contains
just the wavelet coefficients as predictors, model 2 contains the predictors in Model1 and patients
characteristics such as age and gender while model 3 contains the predictors in Model 2 and one
additional clinical variable, type of multiple sclerosis. About 25% data contained in the type of
MS variable is missing, hence, a complete case analysis is carried out using only from data 243
patients. In model 1, 29 variables were selected but only one has a non zero coefficient at log-
lambda value −2.6, which is the log-lambda value at one standard deviation from the minimum.

All the regression coefficient are shrunk to zero except coefficient at location 1017 in the wavelet
domain (Figure 7b and 7c). This coefficient belongs to resolution level 2 with the longest tick
mark as shown on figure 4a and represent the amplitude of patients at 441ms in the original
sequence. All the functional coefficients selected belong to the coarser levels of decomposition 0
to 5 while all the finer levels are already shrunk to zeroes (Figure 7a and Table 6). The predictive
accuracy of model 1 which contain only the wavelet coefficients on the EDSS score is 72%. The
selected coefficient has a negative significant effect on the course of MS. Furthermore, Model
2 was also fitted by adding patients characteristics such as age and gender. Model 2 yielded
an accuracy of 74% and age and gender has a negative significant effect on the response. A
predictive accuracy of 78.6% was recorded for model 3 when the type of multiple sclerosis is
added to model 2 and type of multiple sclerosis if RRMS is not significant. It is interesting to
note that wavelet coefficient at location 1017, has a negative significant effect on the probability
progression of MS.

(b) (c)

Figure 6: Cross-validation (a) -Regression Coefficients , (b) -Complexity parameter selection
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(a) (b) (c)

Figure 7: (a) -Thresholded data plot (b)-Estimated coefficients and position of Variables selected
in model 1 and model 3 (c)- Estimated coefficients and position of Variables selected in model 3

Observed
Model 1 Model 2 Model 3

Predicted ambulatory impaired ambulatory impaired ambulatory impaired
Ambulatory 81 31 81 29 45 11

Impared 0 0 0 2 2 3
Accuracy 72% 74% 78.6

Table 1: Confusion matrices

Model 1 Model 2 Model 3
Variables coefficient(se) pvalue coefficient(se) p-value coefficient(se) p-value
intercept 0.689 2.13 1.79 .

age -0.032(0.01) 8.93× 10−7 -0.0166(0.0135) 0.0207
gender(M) .

1017 -0.065 2.94× 10−5 -0.079(0.035) 5.41× 10−5 -0.0016(0.403) 0.0003
type MS(RRMS) -1.004(0.044) 0.915

se - standard error

Table 2: Regression Coefficients
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4 DISCUSSION AND CONCLUSION

Estimating MEPs directly in a regression model will yield an over-parameterized model with a
lot of redundant parameters and very high variance. This is due to the fact that time series data of
this format are high dimensional in nature. Wavelet transform has been employed in literature to
tackle these problems by concentrating the important information of the data in a few coefficient
thereby producing a sparse matrix. As it has been demonstrated in this study a 437×1024 dataset
was represented by 437× 45 coefficient in the wavelet domain. The reconstruction of these raw
signals from the few wavelet coefficients indicated that the information loss is very small.

However, choice of the wavelet basis has a great influence on the outcome of the transform. Since
the interest of the research is not to select the most optimal wavelet basis or investigate various
forms of basis, a pragmatic choice of wavelet basis belonging to Daubechies family is made. This
has been shown to perform well for localized data in time, frequency and has compact support. A
supervised approach to select features that are important in predicting the EDSS score employed
is logistic LASSO regression in the wavelet domain. logistic LASSO regression select important
variables and shrink others to zero. However, this regression approach only performs well if the
regularization parameter(λ) is carefully and accurately selected. Hence, the need for selecting
it over a grid of values through cross-validation. In this study, the optimal lambda value for the
three models lie between the range of −2.3 to −2.7.

In the three models fitted, variable 1017 was selected from the functional data and predicted
EDSS with an accuracy of 72 to 78% in conjunction with other variables. This variable (1017)
is the first element of level 2 of wavelet decomposition out of the 4 and approximately located
at 441ms in the original time domain. All coefficient at finer scale within resolution level 6 to
9 turned to Zero after thresholding since they are small but reconstruction of the data confirmed
the Parseval’s relation that the total energy in the data are stored in large wavelet coefficients.

MEPs are quite largely related to the EDSS score in that both measures the functioning of the
limbs. However, EDSS score is based on the physical ability of the patient to walk while the
MEPs relies on the functioning of the motor neurons and how fast information sent from the
brain could reach the hand or legs. It is not clear from the results if MEP measured from the
hand neurons are better than those from the leg or if the side of the brain where the transcranial
stimulation occurs has an effect on the predictive ability of the disease. But, age and the type
of MS have an effect on the disease as shown in table 2. From the result of the predictions
on table 1, It could be noted that fully ambulatory patients were much well predicted than the
impaired ones, using the MEPs. This might be indicative of MEPs being of better diagnostic
values at the initial stage of MS disease than at later stages. It might also be necessary to use
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a less subjective scale of measuring the outcome of MS disease and build a better scale based
on the characteristics of MEPs and other evoked potential tests in order to fully estimate the
predictive abilities of MEPs on MS disease. Further, MEPs predictive abilities could also be
improved if neurologist develops a better measure for part of the brain to be stimulated, rather
than the random stimulations currently being carried out.
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6 Appendices

6.1 Expanded Disability Status Scale(EDSS)

Score Description
1.0 No disability, minimal signs in one FS
1.5 No disability, minimal signs in more than one FS
2.0 Minimal disability in one FS
2.5 Mild disability in one FS or minimal disability in two FS
3.0 Moderate disability in one FS, or mild disability in three or four FS. No impairment to walking
3.5 Moderate disability in one FS and more than minimal disability in several others. No impairment to walking
4.0 Significant disability but self-sufficient and up and about some 12 hours a day. Able to walk without aid or rest for 500m
4.5 Significant disability but up and about much of the day, able to work a full day, may otherwise have some limitation of full activity or require minimal assistance. Able to walk without aid or rest for 300m
5.0 Disability severe enough to impair full daily activities and ability to work a full day without special provisions. Able to walk without aid or rest for 200m
5.5 Disability severe enough to preclude full daily activities. Able to walk without aid or rest for 100m
6.0 Requires a walking aid – cane, crutch, etc. – to walk about 100m with or without resting
6.5 Requires two walking aids – pair of canes, crutches, etc. – to walk about 20m without resting
7.0 Unable to walk beyond approximately 5m even with aid. Essentially restricted to wheelchair; though wheels self in standard wheelchair and transfers alone. Up and about in wheelchair some 12 hours a day
7.5 Unable to take more than a few steps. Restricted to wheelchair and may need aid in transfering. Can wheel self but cannot carry on in standard wheelchair for a full day and may require a motorised wheelchair
8.0 Essentially restricted to bed or chair or pushed in wheelchair. May be out of bed itself much of the day. Retains many self-care functions. Generally has effective use of arms
8.5 Essentially restricted to bed much of day. Has some effective use of arms retains some self-care functions
9.0 Confined to bed. Can still communicate and eat
9.5 Confined to bed and totally dependent. Unable to communicate effectively or eat/swallow
10.0 Death due to MS

Table 3: EDSS Score

6.2 Further Results

Figure 8: Source: Souani et al. (2000), (a): DWT ,(b):IDWT
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Figure 9: Hard and soft threshold

Figure 10: Scaled decomposition coefficient

20



Mathematical Model to Predict the Disease Course of Multiple Sclerosis (MS)

6.3 Data in Wavelet Domain

V1 V2 V3 V4 V5 . . . V1010 V1011 V1012 V1013 V1014 V1015 V1016 V1017 V1018 V1019 V1020 V1021 V1022 V1023
1 -0.0002 -0.0013 0.0001 -0.0000 0.0001 . . . 0.5792 -2.5624 0.2913 0.0936 -0.0041 -0.0250 -0.3298 -6.6306 -2.3377 0.2380 0.2144 3.2699 0.6969 0.4804
2 -0.0005 -0.0038 0.0002 -0.0002 -0.0002 . . . -2.6985 2.1928 0.0204 0.1497 0.6022 -0.0095 -0.1836 -4.9529 0.6108 -0.0070 0.0682 2.1136 0.3558 0.6940
3 -0.0002 -0.0016 0.0002 -0.0001 0.0001 . . . -6.8913 -0.4155 -0.0670 0.0646 -0.0228 -0.0070 -0.0065 -2.8368 -1.0363 0.0863 0.1321 1.2428 0.3472 0.2223
4 -0.0001 -0.0004 -0.0000 -0.0000 -0.0000 . . . 0.1456 0.5182 -0.0319 0.0011 0.0009 0.0006 0.0004 0.0498 0.2881 -0.0352 0.0031 -0.0444 -0.0494 0.0437
5 0.0013 0.0113 -0.0015 -0.0001 -0.0001 . . . 0.0565 -4.2314 1.3570 -0.0640 0.1005 0.0024 -0.0872 -1.0776 1.1400 -0.5532 0.4810 0.1010 -0.3439 0.6393
6 0.0071 0.0739 -0.0092 0.0000 0.0001 . . . -0.0132 -0.0180 0.0051 -0.0061 0.0048 -0.1691 0.2716 0.1387 -0.0195 -0.0100 0.3092 0.0724 0.1170 0.1636
7 0.0096 0.0295 -0.0067 -0.0028 -0.0040 . . . 0.0918 -0.2506 -1.0886 0.4453 0.6073 -0.7449 0.3289 0.2801 0.2712 -0.1133 0.3454 0.1204 0.2362 0.1297
8 -0.0000 -0.0003 0.0001 -0.0000 -0.0001 . . . 0.9125 -2.1252 0.0450 -0.0159 -0.0087 0.0023 -0.2059 -3.7004 -1.6852 0.1101 0.1334 1.8506 0.4353 0.3440
9 0.0002 0.0022 -0.0003 -0.0001 -0.0000 . . . -0.0146 -0.0066 0.0738 -0.0347 0.0903 -1.0897 -0.6578 0.0416 0.0407 0.1925 0.6022 -0.0120 -0.0244 -0.0722

10 -0.0006 -0.0052 0.0008 0.0001 -0.0002 . . . -8.3877 2.3866 -0.2557 0.2372 -0.0006 -0.0050 -0.0672 -5.5938 0.2795 0.0924 0.3416 2.5472 0.4423 0.8249
...

Table 4: Decomposition coefficient matrix for the first 10 patients

V1 V2 V3 V4 V5 . . . V1010 V1011 V1012 V1013 V1014 V1015 V1016 V1017 V1018 V1019 V1020 V1021 V1022 V1023
1 0.00 0.00 0.00 0.00 0.00 . . . 0.58 -2.56 0.29 0.00 0.00 0.00 -0.33 -6.63 -2.34 0.00 0.00 3.27 0.70 0.48
2 0.00 0.00 0.00 0.00 0.00 . . . -2.70 2.19 0.00 0.00 0.60 0.00 0.00 -4.95 0.61 0.00 0.00 2.11 0.36 0.69
3 0.00 0.00 0.00 0.00 0.00 . . . -6.89 -0.42 0.00 0.00 0.00 0.00 0.00 -2.84 -1.04 0.00 0.00 1.24 0.35 0.00
4 0.00 0.00 0.00 0.00 0.00 . . . 0.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 . . . 0.00 -4.23 1.36 0.00 0.00 0.00 0.00 -1.08 1.14 -0.55 0.48 0.00 -0.34 0.64
6 0.00 0.00 0.00 0.00 0.00 . . . 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.31 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 . . . 0.00 -0.25 -1.09 0.45 0.61 -0.74 0.33 0.28 0.27 0.00 0.35 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 . . . 0.91 -2.13 0.00 0.00 0.00 0.00 0.00 -3.70 -1.69 0.00 0.00 1.85 0.44 0.34
9 0.00 0.00 0.00 0.00 0.00 . . . 0.00 0.00 0.00 0.00 0.00 -1.09 -0.66 0.00 0.00 0.00 0.60 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 . . . -8.39 2.39 -0.26 0.00 0.00 0.00 0.00 -5.59 0.28 0.00 0.34 2.55 0.44 0.82
...

Table 5: Threshold coefficient matrix for the first 10 patients
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Coefficients Model1 Model2 model3
Intercept 0.68816417 2.13 1.7986

age - -0.0317 -0.0166
anatomy(APB) - - 0

gender(Male) - 0 0
type ms(PPMS) - - 0
type ms(RRMS) - - -1.0004

963 0 0 -
964 0 0 0
965 0 0 0
966 0 0 0
967 0 0 0
968 0 0 0
969 0 0 0
970 0 0 0
971 0 0 0
972 0 0 -
973 0 0 -
974 0 0 -
975 0 0 -
981 0 0 -
993 0 0 0
994 0 0 0
995 0 0 0
996 0 0 0
997 0 0 0
998 0 0 0
999 0 0 0

1000 0 0 0
1001 0 0 0
1002 0 0 0
1003 0 0 0
1004 0 0 0
1005 0 0 0
1006 0 0 0
1007 0 0 0
1008 0 0 0
1009 0 0 0
1010 0 0 0
1011 0 0 0
1012 0 0 0
1013 0 0 0
1014 0 0 0
1015 0 0 -
1016 0 0 0
1017 -0.0580 -0.079 -0.00158
1018 0 0 0
1019 0 0 0
1020 0 0 0
1021 0 0 0
1022 0 0 0
1023 0 0 0

- means not selected

Table 6: Selected coefficients in the models and their values
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6.4 R Codes

#write a function for decomposing

decomp1d<-function(x,family="DaubLeAsymm",

filter.number=4, bc="periodic",

min.scale=0,type=’wavelet’){

wds<-apply(x,1,wd,

filter.number=filter.number,

min.scale=min.scale,

family=family, bc=bc,type=type)

}

#decompose the data

mm<-decomp1d(seriesmat)

#extract C matrix

mmc<-sapply(mm, "[",1,simplify = ’array’)

#extract D matrix

mmd<-sapply(mm, "[",2,simplify = ’array’)

thresh1<-function(x, type = "hard",

levels=0:9,policy = "manual",

boundary = FALSE, verbose = T,

return.threshold = FALSE,

value=0.25,dev=madmad){

tds<-lapply(x,threshold,

type=type, policy = policy,

levels=levels,

boundary =boundary,

verbose = verbose,

return.threshold = return.threshold,

value=value,

dev=dev)

}

#threshold the coefficients

cc<-thresh1(mm)
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#extract the D matrix

ccc<-sapply(cc, "[",2,simplify = ’array’)

ccd<-sapply(cc, "[",1,simplify = ’array’)

#reconstruct the coefficicient

recomp1d<-function(x, verbose = FALSE,

bc = ’periodic’, return.object = F,

filter.number=4,family = ’DaubLeAsymm’){

wrs<-lapply(x,wr,

filter.number=filter.number,

family=family, bc=bc,

return.object=return.object)

}

rr<-recomp1d(ccd)

#lasso

grid <-10ˆseq(10,-2,length=100)

#selecting lambda

set.seed(123456)

cv.outlog <- cv.glmnet(x1log,ytrainlog,

alpha=1,lambda=grid,

type.measure = ’class’,family=’binomial’)

plot(cv.outlog)

#one standard deviation

bestlambdalog=cv.outlog$lambda.1se

#-2.37236

log(bestlambdalog)
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