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Abstract

Human papillomavirus (HPV) is the most common sexually transmitted infection. HPV

is not a sufficient cause, but it is a component cause of cervical cancer and genital warts

(Lacy et al ., 2006). HPV can be detected in humans using samples from cervix or urine.

The purpose of this studies is to evaluate the efficiency of a proptotype first-void urine

collection device (Colli-Pee) against the standard collection cup and to assess the effect

of time of collection on the detection of human and HPV DNA in women. The effect of

human DNA on the detection of HPV DNA was also investigated. The dependency of the

likelihood of positive HPV and the amount of HPV DNA was also investigated.

The HPV response has excess zeros and is positively skewed. A two-part generalized lin-

ear model (GLM) via GEE and random effects model was used to model the excess zeros.

For the GLM, a logistic model with logit link was used to model the odds of positive HPV.

A log-normal and gamma distribution were considered for the positive response and fitted

via GEE using an exchangeable working correlation structure. For the two-part random

effects model, a log-normal distribution was assumed for the positive response. This was

later extended to generalized gamma distribution and log-skew-normal distribution. For

the random effects model, a generalized linear model was used to fit the likelihood of pos-

itive HPV and a linear mixed model was used to model the amount of HPV DNA. The

human DNA response is positively skewed. A lognormal and gamma model were fitted

via GEE using an exchangeable working correlation structure.

The models used actually addressed the objectives of this study. In all models used, Colli-

Pee device was significantly correlated with higher amount of human and HPV DNA but

there was no significant effect of the period of the day in the detection of of both the amount

of human and HPV DNA. Also the random effects model was used to model the ’cross-

part’ correlation which was not significant though for all models. In this study, a two-par

random effects model with a generalized gamma distribution for the positive values was

selected as the most parsimonious model for HPV DNA because of it’s low AIC and likeli-

hood value. The lognormal model was considered the most parsimonious for human DNA

response because of its low QIC value.

Keywords:Two-part model, Log-normal distribution, Gamma distribution, Log-skew-normal

distribution, GEE, random effects.
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1 INTRODUCTION

1 Introduction

Human papillomavirus (HPV) is one of the most common sexually transmitted infection among

females (Dunne et al ., 20017). HPV is not a sufficient cause, but it is a component cause of

cervical cancer and genital warts (Lacy et al ., 2006). The prevalence of HPV is notably high

among young females within the first few years after sexual intercourse with a prevalence rate

as high as 40-80%. In most infected persons, the infection clears spontaneously without any

clinical signs or symptoms. In a few persons, the infection may become persistent leading to

cervical cancer and other genital related cancers (Bosch et al. ,2012).

There are over 170 known HPV types and 40 of these infect the anus and genitals. HPV types

are classified based on their ability to cause cervical cancer. "Low risk" HPV (LR-HPV) types

are known to cause benign or precancerous lesions in the cervix and genital warts. "High risk"

HPV (HR-HPV) types can cause cervical, anal, and other genital cancers.There are about 13

types of HR-HPV that can cause abnormal cells to form on the cervix. These abnormal cells

may gradually develop into cervical cancer if not removed. The 13 types of high-risk HPV that

are of most concern are 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68. About 99% of

cervical cancers is attributed to HR-HPV types. Approximately 70% of cervical cancers are

due to HPV 16 and 18. (Bosch et al., 2012)

HPV can be detected in humans using either cervical or urine sample. Cervical sampling is

more sensitive but invasive. The decreased sensitivity of HPV testing in urine samples com-

pared with that of cervical samples may be associated with the low HPV DNA amount in urine.

Urine sampling has several advantages over cervical sampling in that it is noninvasive and does

not interfere with the natural process of the infection. In contrast to urine sampling, cerivi-

cal sampling may lead to increased infection as samples obtained by scraping the epithelium

usually create micro-lesions may induce an inflammatory reaction in the presence of viral par-

ticles. Urine is easy to collect and can be done by the patient (self-sampling) at home and

sent by mail to the laboratory for analysis. Therefore, urine sampling can be performed more

frequently. The reasoning behind urine sampling is that debris from exfoliated cells from the

cervix can accumulate around the uterus exit and contaminate the first-voided (initial stream)

urine. This could contain HPV fragments which could be detected using molecular techniques.

The amount of HPV DNA is known to be associated with the amount of human DNA, which is

influenced by the amount of debris from exfoliated cells that contaminates the first-void urine

(Vorsters et al.,2012).

The purpose of this study is to assess the efficiency of a prototype first-void urine collection

device (Colli-Pee) against the standard collection cup and to assess the effect of time of col-

lection on the detection of human and HPV DNA in women. Also we want to know if there

is a dependence on the likelihood of positive HPV on HPV viral load. Furthermore, it is a

1
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sub-objective to assess the effect of human DNA on HPV DNA.
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2 METHODOLOGY

2 Methodology

2.1 Data

The dataset consists of 33 participants with self reported HPV infection. They were asked to

provide eight first-void (FV) urine samples (four in the morning and four in the evening) over a

period of four days. Two FV urine collection methods were alternated ,.ie. the Colli-Pee (TM)

device and a collection set with standard urine cup. Human DNA and HPV DNA quantification

and detection was performed by real time PCR. The variables used in the study were:

Table 1: Variables used in the study

Variable Type Description

NewHPVDNA semi-continuous The concentration of HPV DNA

con(hDNA) semi-continuous The concentration of human DNA (Response)

ID continuous The Subject’s ID

Day continuous The number of days the subject was followed

Period Categorical Period of the day (M=Morning orE =Evening) urine was collected

Device Categorical The type of urine collection device (Colli-Pee or Cup)

Type Categorical High risk(HR) and Low risk(LR)

2.2 Exploratory Data Analysis

Exploratory analysis was done using box plots and histograms. Also tables were used for

summary statistics.

2.3 Statistical Models

The HPV samples are continuous but with a point mass at zero. Several models have been

proposed to deal with such response. Firstly, generalized linear model with a gaussian distri-

bution on the transformed outcome after adding a small constant to the zero values . However

assuming a parametric distribution such as gaussian cannot account for the excess zeros in the

outcome and will inevitably lead to biased inference. Also, performing a log transformation

of the outcome in an attempt to normalize the data usually leads to erroneous inference due to

the fact that it is heavily skewed and will more often than not result in an asymmetric distribu-

tion. Tobin in 1958 and Heckman in 1979 proposed a Tobit and selection model respectively.

3



2.3 Statistical Models 2 METHODOLOGY

These models assume that the dependent outcome follows a censored normal distribution and

all zeros are artificial zeros i.e values below detection limit. But in our case, the response is a

semicontinuous variable which is different from left-censored or truncated variables in that the

zeros are bonafide valid data .

A two-part model for semi-continuous response was proposed by Gragg to model the proba-

bility of the zero response and the amount of positive response. An interesting feature of a

two-part model as opposed to the Tobit model is that the zeros are assumed to be valid true

response and this makes sense for skewed data with a zero point mass which is the case of HPV

DNA . (Gragg JG .1971 ).

Correlated Observations

For each subject, measurements of HPV concentrations were recorded for each urine sample.

Since measurements were done on all eight urine samples from the same subject, we expect

that the measurements should be correlated within subjects. Treating these measurements as

independent samples may lead to biased inference. Two methods were used in this paper to

tackle the clustered measurements. These are the two-part generalized linear model (GLM) via

Generalized Estimating Equations (GEE) and two-part random effects model.

2.3.1 Two-Part GLM via GEE

Two-part GLMs via GEE is a natural extension of two-part models for cross-sectional data.

Two different models were used to describe the ”binary part” and the ”continuous part” of the

semicontinuous HPV data, and each part separately accounts for correlation among repeated

measures. These two independent models are fitted via GEE.

Generalized Estimating Equation (GEE) was introduced by Liang and Zeger (1986) as a method

of parameter estimation for correlated (clustered and repeated) data. It is a common choice for

marginal modeling of response if one is interested in the marginal mean parameters (population

average) rather than subject-specific estimations. One advantage of GEE is that the estimates

of the regression coefficients are consistent even with the misspecification of the variance-

covariance structure (Molenberghs and Verbeke, 2005). The correlation between the vector of

repeated measurements taken from a given subject Yi is captured by specifying an association

within the subject through a so called working correlation structure.(Molenberghs and Verbeke

2005). The marginal expectation E(Yij) = µij can be directly modeled through known covari-

ates.

If we consider a random sample of n subjects, Yij is the response of the ith subject at jth mea-

4
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surement. Xij is a vector of p covariates. The observations within a subject are correlated and

observations of different subjects are assumed to be independent. The marginal expectation is

estimated by solving the score equation

n∑
i

DT
i Vi−1(Yi − µi) = 0

with µi = g−1(βTXij); Di = Di(β) = ψµi(β)
ψβ

; Vi = U
1/2W (α)
i the working covariance matrix;

W (α) is the working correlation matrix, parameterized by parameter vector α, Ui is a diagonal

matrix with diagonal elements V ar(Yij|Xij).

Different working correlation structures can be assumed when using GEE such as independent,

exchangeable, autoregressive and unstructured. For instance the exchangeable, independent

and unstructured working assumptions were used in this study and the empirical based and

model based standard errors were compared to validate the choice of the variance-covariance

structure. Though the empirical standard errors are roburst to misspecification of the asso-

ciation structure, correctly specifying it might improve efficiency (Molenberghs and Verbeke

2005). In this analysis, the exchangeable working correlation structure was assumed as the

empirical and model based estimates were closest compared to the other association structures.

Two-part GLM specification

Let Yij be a semi-continuous response for subject (cluster) i where i=1,...,n with jth measure-

ments where j=1,...,N. The response variable is represented as Zij , where ;

Zij =

0, ifYij = 0

1, ifYij > 0

The probability that Yij > 0 was assumed to follow a binomial distribution ;

logit(Prob(Zij = 1)) = α0 + α1xi1 + α2xi2 + α3xi3 + α4xi4

where xi1 = 1 if subject i provided morning urine sample and zero otherwise, xi2 = 1 if subject

i used Colli-Pee device and 0 otherwise, xi3 = 1 if subject i was analyzed for HR HPV type

and 0 otherwise, xi4 is the concentration of human DNA and α1 to α4 is the matrix of the model

parameters.

Given that Yij > 0, the model assumes that log(Yij) follows a normal distribution with a con-

stant variance i.e Yij follows log-normal distribution with constant variance.

E[log(Yij|Yij > 0)] = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4

5
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where xi1 = 1 if subject i provided morning urine sample and zero otherwise,xi2 = 1 if subject

i used Colli-Pee device and 0 otherwise,xi3 = 1 if subject i was analyzed for HR HPV type and

0 otherwise, xi4 is the concentration of human DNA, and β1 to β4 is the matrix of the model

parameters.

2.3.2 Gamma Model

In the previous model, the log transformation of the positive values is used part II leading to

an assumption that the positive values follow a log-normal distribution with constant variance.

However, making such an assumption might be misleading especially in the presence of strong

skewness and heteroscedasticity. A gamma distribution was assumed as a variation to this

assumption. We assume that the positive values follow a gamma distribution. The gamma

model relates the E(Yij) = µij to the covariates through a log link function;

log(E[Yij]) = β′0 + β′1xi1 + β′2xi2 + β′3xi3 + β′4xi4

where xi1 = 1 if subject i provided morning urine sample and zero otherwise, xi2 = 1 if subject

i used Colli-Pee device and 0 otherwise, xi3 = 1 if subject i was analyzed for HR HPV type

and 0 otherwise, xi4 is the concentration of human DNA, and β′1 to β′4 is the matrix of the model

parameters

2.3.3 Two-part random effects model

2.3.4 Log-normal model

Two-part random effects model proposed by Oslen and Schafer (2001) and Tooze et al (2002),

incorporates a random effects in the two-part model to capture the correlation in the response.

In part I, the odds of Yij > 0 defined by

πij = P (Yij > 0|Xij, ai, bi)

is

logit(πij) = α′0 + α′1xi1 + α′2xi2 + α′3xi3 + α′4xi4 + ai

The odds is modeled using a generalized linear mixed model with logit link. This is a subject

specific model, thus parameters are conditional upon the random effects. For part II of the

model, given that Yij > 0, conditional on the random effects bi, the model assumes that Yij
follows a log-normal distribution with constant variance.

log(Yij|Yij > 0, X∗ij) = β′′0 + β′′1xi1 + β′′2xi2 + β′′3xi3 + β′′4xi4 + bi + εij

6
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where xi1 = 1 if subject i provided morning urine sample and zero otherwise, xi2 = 1 if subject

i used Colli-Pee device and 0 otherwise, xi3 = 1 if subject i was analyzed for HR HPV type

and 0 otherwise, and xi4 is the concentration of human DNA. α′1 to α′4 and β′′1 toβ′′4 are the fixed

effects while ai and bi denote the random effects for part I and II respectively. In this two-part

random effects model, a generalized linear mixed model was used to model the binary response

in Part I and a linear mixed model for the natural log of the positive continuous response in part

II. The random effects ai and bi are assumed to be normal and correlated

vi = (ai, bi)
T ∼ N(0,

∑
)

where ∑
=

(∑
aa

∑
ab∑

ba

∑
bb

)
The random effects are incorporated to capture the within correlation due to repeated mea-

surements on the same subject, and the "cross-part" correlation between the frequency and the

amount of HPV detected. This "cross-part" correlation is of importance and could lead to bi-

ased results if ignored. For instance subjects who are more likely to be HPV positive may or

may not have a high amount of HPV viral load.

The likelihood contribution of part I model is

ll1 =

ni∑
j=1

[I(Yij>0)logit(πij) + log(1− πij)]

The likelihood contribution of part II model assuming eij ∼ N(0, σ2
e) is

ll1 =

ni∑
j=1

I(Yij>0[−0.5logσ2
e − logYij − 0.5(

logYij − µij
σe

)2])

where µij = β′′0 + β′′1xi1 + β′′2xi2 + β′′3xi3 + β′′4xi4 + bi + εij

The model above assumes that the log of the positive response follows a normal distribution

with constant variance as noted above, such assumption might not be entirely true in the pres-

ence of strong skewness. Liu et al (2012) generalized this two-part random effects model by

proposing other distributional assumption to tackle the skewed nature of the continuous part of

the model. They proposed the generalized gamma and log-skew distribution.

2.3.5 Generalized Gamma Distribution

This model assumes that the positive values follow a generalized gamma distribution with pa-

rameters k, µij and σij , where

µij = XT
ijβ + bi

7
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,

σ2
ij = exp(XT

ijδ)

where β and δ are regression coefficients for the fixed effects and heteroscedacity.The depen-

dence of σij on Xij permits for heteroscedacity.The likelihood is written thus

LL2 =
∑
j=1

niI(Yij > 0)[(η−0.5)log(η)− logσij− logyij− logΓ(η)+µij
√
η−ηexp(|k|µij)]

where µij = sign(k)(logyij − µij)/σij
The exponential link function ensures that the estimated scale parameter is positive.

2.3.6 Log-Skew-Normal Distribution

The customary statistical approach of applying a log transformation in setting of right skewness

is ad hoc, and may or may not optimally account for distributional characteristics of the data

under study. Usually, the log transformation may over-transform the data making the distribu-

tion skewed in the opposite direction. In an attempt to remedy this problem (Lui et al.,2010)

extended the conventional two-part random effects model by suggesting a log-skew-normal dis-

tribution for the positive values. This model assumes that the log of the positive values follows

a log-skew-normal distribution with parameters λ, µij and σij ,where

µij = XT
ijβ + bi

,

σ2
ij = exp(XT

ijδ)

The likelihood is written thus

LL2 =
∑
j=1

niI(Yij > 0)[−0.5log(σ2
ij+λ

2
ij)+log

2

yij
+logφ(

logyij − µij√
σ2
ij + λ2ij

)+logΦ(
λ

σij

logyij − µij√
σ2
ij + λ2ij

)]

The skew-normal distribution accommodates asymmetry in a more flexible manner, and can

model both positively or negatively skewed data (depending on the sign of the skewness pa-

rameter) reducing to the normal distribution when the skewness parameter is zero.

8



2.4 Estimation Procedure 2 METHODOLOGY

2.4 Estimation Procedure

Parameter estimation was performed with GEE using GENMOD for the two-part generalized

linear model. For two-part random effects model, estimation was done via maximum-likelihood

estimation using PROC NLMIXED in SAS. It is very necessary that this likelihood be approx-

imated in order to yield accurate results. For example, Olsen and Schafer used a sixth-order

Laplace approximation, (Olsen and Schafer 2001) whereas (Tooze et al.,2002) made use of the

adaptive Gaussian quadrature. Both methods actually yield accurate estimates. In this study,

however, adaptive Gaussian quadrature was used as it is much easier to implement.

2.5 Software

SAS 9.4 version was used for statistical analysis. In addition, all statistical tests were done at

5% significance level.

9
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3 Results

3.1 Exploratory Data Analysis (EDA)

3.1.1 Summary statistics

Table 2: Summary statistics the semi-continuous variables by Period and Device

Device Period Variable Mean S.E Lower C.L Upper C.L

Colli-Pee E NewHPVDNA 6620985.49 88364732.47 1463314.08 11778656.91

con_hDNA 15.5066372 19.7205155 14.3555904 16.6576839

M NewHPVDNA 15153909.48 48.364950116 -6242583.00 36550401.95

con_hDNA 15.2631786 23.3964084 13.8914813 16.6348758

Cup E NewHPVDNA 1594584.74 24781893.23 162023.29 3027146.18

con_hDNA 8.9604791 11.4039433 8.2852029 9.6357552

M NewHPVDNA 1594584.74 24781893.23 162023.29 3027146.18

con_hDNA 8.3348750 14.8632364 7.4756792 9.1940708

Summary statistics were used to describe the data set. A histogram was used to explore the

distribution of the HPV and human DNA concentration. Table 2 is a summary of the response

variables (NewHPVDNA) and con(hDNA) by device and period. The standard deviation of

the NewHPVDNA is very high compared to its mean and Colli-Pee seems to be better in the

morning than the cup in detecting NewHPVDNA .

Variable Min 1st Quartile Median 3rd Quartile Max

NewHPVDNA 0.000 0.000 0.000 0.000 1.19243E+10

conc(hDNA) 0.000 2.310 5.720 13.240 142.600

Table 3: More than 75% of the HPV responses are zeros, thus it is appropriate to model the

zero separately from the positive values. While less than 1% of human DNA was actually zero.

The large proportion of zero HPV responses is due to the fact that when a sample has zero HPV,

the rest of the 7 samples are also zero for HPV.

Figure 1 and 2 shows a histogram of the distribution of the concentration of human and HPV

DNA. It can be seen from the plots that the mass of the values is around zero for HPV DNA

concentration and the nonzero values are positively skewed. This motivated the use of a two

part model for such a distribution. Figure 2 shows the responses for human DNA are positively

skewed.

11
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Figure 1: Histogram of the concen-

tration human DNA

Figure 2: Histogram of the concentra-

tion of HPV DNA.

Figure 3: Boxplot of the concentra-

tion HPV DNA by device type

Figure 4: Boxplot of the concentra-

tion of HPV DNA by period type

Figure 3 is a boxplot of the concentration of HPV by the device used. It can be seen that

Colli-Pee seems to be a better device as compared to the standard cup but there seems to be

no difference in the collection period in the detection of HPV. Also there seems to be an inlier

(outlier within the subgroup). This was investigated by analyzing the data with and without the

outlier but the result was the same.
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3.2 Results for GLM via GEE

The results of the logistic, log-normal and gamma model are shown in table 4 below.

Logistic GEE (S.E) log-normal (S.E) Gamma GEE(S.E)
Variable with logit link with identity link with log link

Intercept -2.922(0.282)*** 12.298(0.791)*** 15.300(0.302)***

Period=(’E’) -0.060(0.066) 0.078(0.269) -0.283(0.278)

Device=(’Colli-Pee’) -0.024(0.078) 1.100(0.331)*** 1.507(0.517)***

Type=(’HR’) 0.296(0.350)*** 0.672(0.640) 1.807(0.340)***

conc(hDNA) 0.012(0.003)*** 0.006(0.013) 0.044(0.004)***

Table 4: GEE Parameter Estimates for the human DNA : where *=significant effect.

Assuming that the log transformed positive values follow a normal distribution, we confirm

that Colli-Pee urine collection device is associated with lower odds of positive HPV though

the effect wasn’t significant but significantly correlated with higher amount of HPV DNA with

a mean estimate of exp(0.088)=1.092 and a p-value of 0.0009. HR-HPV was significantly

associated with higher odds of positive HPV and was correlated with higher amount of HPV

DNA though the effect was not significant. The concentration of human DNA was significantly

associated with higher odds of positive HPV p=0.003, but was correlated with higher amount

of HPV DNA though the effect was not significant (p=0.658).

Assuming that the positive values follow a gamma distribution, we again confirm that Colli-Pee

is significantly correlated with higher amount of HPV DNA with an estimated value of 1.507

with p = 0.003. Also there was no significant effect of the period of the day in the detection

of HPV. The concentration of human DNA was significantly correlated with higher amount of

HPV DNA (p<.0001). The log-normal model had a lower QIC (322) than the gamma model

(968) and the residual plot in figure 8 in the appendix shows that the log-normal model seems

a better fit to the data compared to the gamma. Thus the log-normal model was preferred to the

gamma model.
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3.3 Results of two-part random effects model

Log-skewed (S.E) log -Normal(S.E) Generalized Gamma (S.E)
Variable -Normal model Model Model
Part I (binary outcome α)
Intercept -3.582(0.311)** -3.586(0.213)** -3.591(0.314)**

Period=(’E’) -0.057(0.124) -0.057(0.124) -0.056(0.124)

Device=(’Colli-Pee’) -0.040(0.129) -0.040(0.129) -0.045(0.129)

Type=(’HR’) 0.313(0.124)** 0.313(0.124)** 0.313(0.124)**

conc(hDNA) 0.014(0.004) 0.014(0.004) 0.015(0.004)***

Part II (continuous outcome β)
Intercept 12.077(0.932)** 11.998(0.992)** 13.419(0.927)**

Period=(’E’) 0.059(0.292) 0.073(0.291) 0.075(0.215)

Device=(’Colli-Pee’) 1.104(0.309)** 1.080(0.307)** 0.976(0.230)**

Type=(’HR’) 0.690(0.421) 0.677(0.411) 0.326(0.349)

conc(hDNA) 0.008(0.011) 0.012(0.009)

Heteroscedacity (δ)
Intercept 1.842(0.191)** 1.029(0.306)**

Period=(’E’) 0.050(0.182) -0.112(0.214)

Device=(’Colli-Pee’) -0.071(0.196) 0.123(0.235)

Type=(’HR’) -0.069(0.190) -0.016(0.219)

conc(hDNA) 0.0008(0.003) -0.003(0.004)

Variance ( σ2)
σ2
1 2.014(0.772)** 2.034(0.784)** 2.050(0.790)**

σ2
2 10.104(3.207) ** 1(3.113)** 8.889(3.203)**

σ12 0.347(1.828) 0.239(1.910) 1.228(1.728)

λ -4.014(0.211)***

k 1.467(0.260)**

AIC 11518 11509 11466

-2Loglikelihood 11480 11481 11428

Table 5: Random effects model for all three distributional assumptions where **=significant

effects, σ2
1 and σ2

2 are the variance of part I and II random intercept. λ is the skew parameter.

The estimates for all three models are very similar except for the heteroscedacity estimates.

The result of all three models is shown in table 5 above. The most appropriate model was se-

lected base on loglikelihood and AIC . The model with the smallest loglikelihood or AIC value

was considered the most parsimoniuous model.
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3.3.1 Generalized Gamma Distribution

Assuming that the positive values in part II follow a generalized gamma distribution, the Colli-

Pee device is significantly correlated with higher amount HPV DNA and thus significantly

better than the standard cup (p=0.0002) but was associated with lower odds of positive HPV

though the effect was not significant (p=0.749). We also found out that morning samples were

associated with lower odds of positive HPV though the effect was not significant (p=0.651) but

contain higher amount of HPV than evening samples though the effect still was not significant

(p=0.730). The concentration of human DNA was associated with higher odds of positive

HPV DNA (p=0.0008) and was correlated with higher amount of HPV DNA though the effect

was not significant (p=0.196). There is a positive cross-part correlation but the effect is not

significant. This implies there is no significant dependence of the odds of positive HPV on the

amount of HPV.

The shape parameter was significant (p < 0.0001) against all nested models of the generalized

family such as log-normal, weibul, and gamma confirming that none provides a good fit to the

data as generalized gamma distribution.

3.3.2 Log-skew normal Distribution

Assuming that the log-transformed values follow a log-skew normal distribution, we confirmed

that the log-transformed values are left-skewed, indicating an overcorrection of the skewness

by log transformation as the parameter estimate is -4.014, with a significant skewness (p <

0.0001). The results are identical to the generalized gamma model.

3.3.3 Log-normal model

Given that the positive HPV values follow a log-normal distribution, the concentration of hu-

man DNA was associated with higher odds positive HPV DNA (0.0009) but was not signifi-

cantly associated with the amount . We also find that Colli-Pee was associated with lower odds

of positive HPV though the effect was insignificant but it was correlated with higher amounts

of HPV (p=0.001). There was no significant association of the period of day with the odds

of positive HPV and the amount of HPV detected. The random intercept was significant in

both parts suggesting that a random intercept model is required. There was also a positive
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cross part correlation (0.239) though it was not significant (p=0.761). This means there was no

dependence between the frequency of HPV testing and the amount of HPV detected.
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3.4 Model Comparison

The models were compared using the loglikelihood and AIC. It can be seen that the generalized

gamma model has the lowest -2loglikelihood value (11428) and AIC (11466) suggesting that

it somewhat has a comparative better fit to the data than the other models. Also the model

assumes that the bivariate random effects are normally distributed with a constant variance.

A quantile-quantile normal plot shows the random effects are jointly normally distributed as

shown in figure 5 in appendix.

A generalized gamma model was refitted with only the significant covariates.We find that hu-

man DNA is associated with higher odds of positive HPV (p=0.0007). Colli-Pee was signifi-

cantly better in predicting positive HPV than the standard cup p < .0001. The shape parameter

is significant against all nested models. This means the generalized gamma distribution is

significantly better compared to all nested models (gamma, lognormal and weibull which are

special cases of generalized gamma model).

Variable Parameter Estimate(S.E) Pr> |t|

Part I (binary outcome α)
Intercept α0 -3.443(0.301) <.0001

Type=(’HR’) α1 0.311(0.124) 0.017

conc(hDNA) α2 0.014(0.004) 0.0007

Part II (continuous outcome β)
Intercept β0 13.997(0.901) <.0001

Device=(’Colli-Pee’) β1 1.130(0.211) <.0001

Heteroscedacity (δ)
Intercept δ0 0.987(0.188) <.0001

Variance ( σ2)
variance a σ2

1 2.109(0.815) 0.015

variance b σ2
2 8.279(2.758) 0.005

Shape parameter k 1.477(0.253) <.0001

Table 6: Parameter estimates for generalized gamma model σ2
1 and σ2

2 are the variance of part

I and part II random intercept.

3.5 Results for Human DNA

The distribution of human DNA is skewed positively. In this study, we use a one-part general-

ized linear model via generalized estimating equations. A one-part GLM fit via GEE actually
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treats the observed human DNA as realization of a single process. The GLM makes use of a

link function and therefore avoids the need to transform the data before modeling:

g(E(Yij)) = β0 + β1xi1 + β2xi2

where Yij is the concentration of human DNA for individual i for j measurement,g(.) is the

link function relating the outcome to the linear predictor and xi1=1 if period is morning and o

otherwise,xi2=1 if device is Colli-Pee and 0 otherwise. In this study a lognormal model with a

log link was fitted to render the response normally distributed with a constant variance. Also

a conventional alternative to the log-normal distribution i.e the gamma distribution with a log

link was fitted. The QIC of both models were compared. Both models produced similar results

log-normal (S.E) P > |t| Gamma GEE(S.E) P > |t|
Variable with logit link with log link

Intercept 2.158(0.210) <.0001 2.133(0.225) <.0001

Period=(’E’) 0.015(0.085) 0.856 0.039(0.073) 0.856

Device=(’Colli-Pee’) 0.577(0.145) <.0001 0.582(0.155) 0.0002

QIC 4669.0 14266.5

Table 7: GEE Parameter Estimates for the human DNA.

but the log-normal model had a better fit QIC=4669.0. Assuming that the concentration of

human DNA follows a log-normal distribution, we find Colli-Pee significantly correlated with

higher amount of human DNA with a mean estimate of exp(0.577)=1.78 and (p<.0001). There

was no significant difference between morning and evening period in the detection of human

DNA (p=0.856).
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4 Discussion and Conclusion

In this study, several models were used to assess the efficiency of Colli-Pee against the standard

cup in the detection of HPV virus. We started by considering two marginal models to account

for the clustered semi-continuous data. Firstly a log-normal model was fitted and then a gamma

model was considered to tackle the issue of non-constant variance. Both models were fitted via

GEE. These marginal models offered us the possibility of performing marginal inference on the

data. A drawback of this model is that it fits the models separately and there is no connection

between both parts. Therefore a two-part random effects model was considered were the pos-

itive HPV responses were assumed to follow a log-normal distribution with constant variance

and the random effects of both parts were assumed to be jointly normal and correlated. The ad-

vantage of this model is that it captures the ’cross part correlation’ between both models which

is very important in health studies such as this. The two-part random effects model was then

extended to other distribution forms so as to account for the skewness and non-constant vari-

ance. The generalized gamma distribution and log-skew-normal distribution were considered.

All three models yielded similar results but the generalized gamma model had an even better

fit to the data as it had lower loglikelihood and AIC value.

Another area of interest is in relaxing the normality assumption of the random effects. (Liu and

Yu,. 2008) proposed the use of Clayton copula to handle bivariate normal distribution. Also, a

probability integral transformation method was proposed by (Nelson et al.,2006) for estimation

in models with non-normal random effects.

Using the generalized gamma model, we estimated that Colli-Pee device was more efficient in

HPV detection than the standard cup. Also, the period of the day was not significant i.e there

was no significant difference between morning and evening urine sample in the detection of

HPV. The concentration of human DNA was associated with higher odds of positive HPV but

was not correlated with the amount of HPV. The study also confirms no dependency of the like-

lihood of HPV detection on the amount of HPV detected. A lognormal distribution and gamma

distribution were assumed for the concentration of human DNA. The lognormal model had a

lower QIC and therefore has a better fit compared to the gamma model. The Colli-Pee device

was significantly associated with higher amount of human DNA compared to the standard cup.

The period of the day was not associated with the concentration of human DNA.

The generalized gamma model is most appropriate for HPV response because it accounts for

clustering, heteroscedacity which results from unstabilized variance after log transformation

and also models cross-part correlation. The log-normal GLM via GEE was most appropriate

for the skewed positive human DNA.
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6 Appendix

Figure 5: The qqplot of random effects suggest that the random effects are normally dis-

tributed. The kolmorogorov-Smirnov confirms the distribution is normally with a (p > 0.15)

Figure 6: The normal quantile-quantile plot of the log-transformed positve values shows that

the transformed values are not normally distributed but rather left skewed.The kolmorogorov-

Smirnov test (p < 0.001) confirms the transformed values are not normally distributed
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Figure 7: The plots the log transformed human DNA concentrations looks approximately nor-

mal with a heavy left tail.There is no pattern in the residual plot which shows a good fit

Figure 8: Pearson reesiduals of log-

normal model

Figure 9: Pearson residuals of

Gamma model
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