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Abstract

The aim of this study is to investigate the spatial distribution of breast and ovary cancer in
Limburg and the correlation between these spatial distributions.
The data used for this study is the incidence data of breast and ovary cancer between the years
1996 and 2005 for the female population in the 44 municipalities of Limburg.
To describe the spatial distribution of the cancers, a number of methods have been suggested
to model relative risks within municipalities. Typically, Bayesian hierarchical models are used,
which account for spatially correlated and uncorrelated heterogeneity present in the data by
including random effects. In the univariate setting, the conditional autoregressive (CAR) con-
volution model and alternative combined model account for the spatially correlated and uncor-
related heterogeneity. Extending the univariate convolution and combined model with bivariate
distributions for the random effects, makes it possible to model the relative risks of two diseases
and investigate the correlation between the spatial distributions.
In the univariate analysis for breast cancer, the CAR convolution model performed the best
based on DIC and showed a pattern of increased risk in southern Limburg. For ovary cancer,
the CAR model performed the best based on DIC and also shows a pattern of increased risk in
southern Limburg. In the bivariate analysis, the bivariate combined model with disease specific
CAR distribution for the spatial random effects performed the best based on DIC and MSPE.
The relative risks show a significant correlation of 0.599 and this correlation is a result of the
spatially uncorrelated heterogeneity.

Keywords
Bivariate Modeling; Disease Mapping; Overdispersion; Multivariate Condition Autoregressive
Model; Bivariate combined Model
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1 Introduction

Breast cancer is the most common cancer in the female population. Important risk factors of
breast cancer are : age, family history of cancer, reproductive factors, age at menarche and
menopause. McPherson et al. (2000) suggested that environmental factors are of greater im-
portance in the risk of breast cancer than genetic factors.[16]

Ovary cancer is less common in the female population than breast cancer. An important
risk factor for ovary cancer is a family history of breast or ovary cancer. Other important risk
factors are: age at menarche and menopause, increasing age.[12]

The genes BRCA1 and BRCA2 are associated with risk of breast and ovary cancer, a mu-
tation in one of these genes increases the risk strongly for both cancers. [11]
Both types of cancer show common risk factors, which suggests that they are related but they
are not equally present in the population suggesting that they don’t behave the same.

Disease mapping investigates the risk of a disease in the regions of an area, it can also de-
tect if the disease has a spatial trend in the area.
In the early-stages of disease mapping, methods for spatial modeling were mainly developed in
the univariate setting. But in the recent years more investigation is done in methods to model
multiple diseases. [14]

In this study, an area is subdivided into fixed spatial units, in which cancer counts are ob-
served. This type of data show more variability than would be expected from the underlying
distributions, which results from different possible causes. This extra variability is also known
as overdispersion.[20] Uncorrelated heterogeneity is specified as the extra variability caused by
unknown factors and correlated heterogeneity is specified as the extra variability caused by
known spatial structure of the data. Hierarchical Bayesian models are used to account for
overdispersion.[14]

For the univariate setting, the Poisson-gamma and Poisson-lognormal models account for overdis-
persion by including a random effects term. The Conditional Autoregressive (CAR) convolution
model has been very popular to account for correlated heterogeneity.[6] Alternatively, Molen-
berghs et al. (2007) developed the combined model by combining the CAR convolution model
with the Poisson-gamma model.
For the bivariate setting, methods based on the extension of the convolution model were pro-
posed by including a multivariate CAR distribution and a multivariate normal distribution to
account for correlated and uncorrelated heterogeneity respectively.[4,6] Alternatively, Neyens
et al. (2016) proposed an extension of the combined model by including a multivariate CAR
distribution and a bivariate gamma distribution to account for correlated and uncorrelated
heterogeneity respectively.
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In section 2, the data used in this study is described. Section 3 reviews the methods used for
the spatial analysis, and section 4 the results of spatial the analysis. In section 5, the results
are discussed and in section 6 the conclusion is provided.

The aim of this study is to investigate the spatial distribution of breast and ovary cancer
in Limburg and the correlation between these spatial distributions. The occurrence of a spatial
trend of breast and ovary cancer in Limburg will be investigated in the univariate analysis. The
bivariate analysis, which is of interest in this study, will investigate the spatial distribution of
breast and ovary cancer and the correlation between these distributions.

2 Data

The dataset used in this study is part of the Limburgs Cancer Registry (LIKAR). LIKAR
registers all cancers present in the province of Limburg (Belgium) between the years 1996
and 2005, with additional information about each cancer type per region, age and gender
(http://likas.edm.uhasselt.be/).
The province of Limburg is situated in the northeast of Belgium. Limburg consists of 44 mu-
nicipalities with a wide range of population densities.

The data used for this study is the incidence data of breast and ovary cancer between the
years 1996 and 2005 for the female population, which is the number of new cancer cases occur-
ring in cancer-free females. The data was distributed in 18 age-groups ranging from age 0 to
age 85+.
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3 Methods

3.1 Exploratory Analysis

An indirect age standardisation was conducted on the data to adjust observed rates to reflect
rates that would be observed if the population standard’s age-specific rates (rSg ) applied to the
study population. These adjusted rates were used to estimate indirectly the number of cases
expected in each age group in the observed study population (Egi). The number of expected
cases were summed over the different age groups for each municipality, which is represented by
the following equation[25]:

Ei =
∑
g

Egi =
∑
g

rSg ngi =
∑
g

ySg
nSg
ngi, (1)

with g representing the number of age-groups, i specifies the municipality, ngi specifies the
number of people at risk in age-group g for municipality i, nSg specifies the number of people

at risk in age-group g for the standard population with ySg specifying the number of observed
cancer counts in the standard population.
The standardized incidence ratio (SIR) defined by the following equation was calculated by
taking the ratio of the observed counts for each municipality and the expected counts for
each municipality. If the SIR has a value larger than 1 it indicates that there are more cases
observed than what was expected, if the value is smaller than 1 it indicates that there are less
cases observed than what was expected.[14,25]

SIRi =
yi
Ei

(2)

The Error factor method was used to calculate the 95% confidence interval(CI) of SIR, these
CI were used to investigate the significance of the increased or decreased risk[5]:[

SIRi/exp

(
−1.96 ∗

√
1

Yi

)
;SIRi/exp

(
1.96 ∗

√
1

Yi

)]
. (3)

A test for spatial autocorrelation was used to measure the tendency of observations from nearby
municipalities to be more or less alike than observations from municipalities farther apart. This
was done because most statistics are based on the assumption that the values of observations
are independent.[7] If there is any systematic pattern in the spatial distribution, it’s spatially
autocorrelated: positive spatial autocorrelation is a result of nearby observations being more
alike than distant ones and negative spatial autocorrelation is a result of nearby observations
being more different from nearby areas than area’s further away. A random spatial pattern
results in no spatial autocorrelation.[26]
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Moran (1950) proposed a spatial autocorrelation indicator, which is described by the following
equation:

I =
n
∑

i

∑
jWij(Yi − Ȳ )(Yj − Ȳ )

(
∑

i

∑
jWij)

∑
i(Yi − Ȳ )2

, (4)

where Wij denotes the elements of the row-standardized weights matrix W. The weights matrix
was based on sharing common boundaries and thus defined which municipalities are adjacent.
This statistic compares the value of a variable at any municipality with the value of all other
municipalities. [19]
When spatial independence is assumed, Moran’s spatial autocorrelation indicator is as asymp-
totically normally distributed with mean and variance[26]:

E[I] = − 1

n− 1
, (5)

V ar(I) =
n2
∑

ijW
2
ij + 3(

∑
ijWij)

2 − n
∑

i(
∑

jWij)
2

(n2 − 1)(
∑

ijWij)2
. (6)

Moran’s I indicates the presence of positive autocorrelation when Moran’s I is larger than the
expected value under independence, greater values of a Morans I indicate stronger positive
clustering pattern. Moran’s I indicates the presence of negative autocorrelation when Moran’s
I is smaller than the expected value under independence, smaller values of a Morans I indicate
a regular pattern.[26]

Geary (1954) proposed an alternative indicator for spatial autocorrelation, which is defined
by the following equation:

C =
(n− 1)

∑
i

∑
jWij(Yi − Yj)2

2(
∑

i

∑
jWij)

∑
i(Y − Ȳ )2

. (7)

Under the spatial independence assumption, the expected value of Geary’s C statistic is equal
to 1. Geary’s C statistic indicates a perfect positive spatial autocorrelation when the statistic
is zero and a perfect negative spatial autocorrelation when the statistic has a value 2. [8]

This statistic differs from Moran’s I statistic: Moran’s I is a cross product based on the devia-
tions from the overall mean and Geary’s C cross product is based on the deviation of the actual
values of each observation location with one another. [26]

To test the significance of Moran’s I and Geary’s C statistics, randomization and Normal
approximation was used. Randomization is done by producing a randomization distribution
where the data values are reassigned among the fixed location. If the statistic lies in the tails
of this distribution, the assumption of independence is rejected. The normal approximation
compares the observed Z-score to the standard normal distribution.[22]
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3.2 Univariate Analysis

The models used in the univariate analysis will be based on the Poisson model. This model
was chosen because the data contained a relatively low count of cancer cases and a relatively
large population size in each small area (municipality).
A basic Poisson model assumes that the counts yi are independently Poisson distributed for
each municipality in Limburg (i = 1...44)[14]:

yi ∼ Poisson(eiθi), (8)

with ei defined as the expected number of cancer cases for each municipality and θi represents
the relative risk for each municipality. The SIR is the maximum likelihood estimator for the

relative risk, with standard deviation
√
yi
ei

.[14]

The drawback of using a traditional Poisson model is that it often doesn’t capture all of the
variability that can be present in count data caused by unknown factors, this is called overdis-
persion. Another drawback is the assumption of independence between the municipalities,
which is not valid with diseases that are environmental related.[20]
These drawbacks are solved by extending the Poisson model to include a prior distribution
for the relative risk or to include an extra random effect to the model.[20] These models are
described in the following sections.

3.2.1 Poisson-Gamma model

The Poisson-gamma model is an extension of the basic Poisson model that takes overdispersion
into account, but it doesn’t take spatial correlation into account and including covariates is
difficult.[20] This was done by including a gamma prior distribution for the relative risk θi for
each municipality

θi ∼ Gamma(a, b), (9)

with scale parameter a, rate parameter b,prior mean a
b and prior variance a

b2
.[20]

The Poisson and gamma distribution are conjugate distributions, this makes it mathemati-
cal convenient to analytically derive the posterior distribution.[18] When the scale and rate
parameter are fixed and known, the relative risk has the following posterior distribution for
each municipality[14]:

θi ∼ Gamma(a+ yi, b+ ei), (10)

with a posterior mean and variance equal to a+yi
b+ei

and a+yi
(b+ei)2

respectively. As a consequence

the relative risks are no longer estimated based on the data alone but the assumed prior has
also an impact.[14]
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In this setting, the scale and rate parameter are unknown and prior distributions for these
parameters were specified to express the ignorance or prior knowledge. These prior distributions
are more specifically called hyperprior distributions. The hyperprior distibutions were chosen
to be on the positive real line with parameters chosen such that a large variance is underlying
these parameters (∼ Exp(0.01)).[1]

3.2.2 Poisson-Lognormal model

As in the previous model, the Poisson-lognormal model is an extension of the basic Poisson
model to take overdispersion into account.[14] This is done by incorporating a normal uncorre-
lated random effect in the linear predictor of the relative risk for each municipality

log(θi) = α+ νi, (11)

νi ∼ N(0, σ2ν), (12)

with α defining the overall mean risk and νi is defined as an uncorrelated random effect with a
normal prior distribution (5).[1]
The random effects (νi) take the overdispersion into account and represent the residual relative
risk in each municipality after adjusting for the overall mean. The variance of the random
effects (σ2ν) reflects the amount of overdispersion in the data.[1]

The Poisson-lognormal model adjusts for covariates much easier in contrast with the Poisson-
gamma model but is mathematical less convenient, both models do not account for possible
spatial correlation.[20]

The fixed effect (α) was assigned a vague prior and the variance parameter (σ2ν) was assigned
a vague hyperprior.

3.2.3 Conditional Autoregressive model

In contrast with the previous models, the intrinsic conditional autoregressive (CAR) model
extends the basic Poisson model to take spatial correlation into account (correlated heterogene-
ity). The linear predictor of the relative risk for each municipality includes the overall mean
risk (α), which was defined by an uninformative prior and the spatial random effects term (υi)
for each municipality[14]

log(θi) = α+ υi. (13)
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The spatial random effects term was assigned a spatially structured prior distribution to allow
for spatial correlation[3]:

υi|υj 6=i ∼ N(

∑
j 6=i cijυj∑
j 6=i cij

,
σ2υ∑
j 6=i cij

), (14)

with cij representing weights that define the influence of region uj on the prior mean of ui. The
weights were based on the Queen’s case proximity matrix, which is based on sharing common
boundaries and thus defines which regions j are adjacent to region i. These weights can take the
value 1 if regions i and j are adjacent and 0 otherwise, which leads to the following reformulation
of the CAR prior distribution:

υi|υj 6=i ∼ N(ῡi, σ
2
i ), (15)

with the conditional mean ῡi equal to

∑
j∈δi

υj

nδi
where δi is the of neighbors of region i and nδi

is the number of neighbors n this set. The conditional variance σ2i equals σ2
υ

nδi
and was defined

with an uninformative hyperprior.[3]

3.2.4 Convolution model

The convolution model is an extension of the basic Poisson model, the Poisson-lognormal model
and the CAR model. This model takes both the correlated heterogeneity and uncorrelated het-
erogeneity random effects into account, and thus taking spatial correlation and overdispersion
into account.[14]
The relative risk for each municipality is defined by the following equation

log(θi) = α+ υi + νi, (16)

with α defined as the overall mean risk, υi is the correlated heterogeneity (spatial random effect)
and νi is the uncorrelated heterogeneity (non-spatial random effect).[14]
The spatial random effects term is assumed to follow an intrinsic CAR prior distribution as
defined in (15), the non-spatial random effects term is assumed to follow a lognormal prior
distribution with zero mean and variance σ2v as in (11).[15]
By looking at the ratio between the random effect terms it’s possible to investigate if the residual
relative risk is due to correlated or uncorrelated heterogeneity.

3.2.5 Combined model

Molenberghs et al. (2007) proposed the combined model as an alternative to the convolution
model, in terms of the way they model the uncorrelated heterogeneity. The combined model
uses a gamma distribution in stead of a lognormal distribution. Therefore, this model can also
be seen as an extension of the Poisson-gamma model.[17]
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The relative risk for each municipality is defined by

θi = giexp(α+ υi), (17)

with α defined as the overall mean risk, defined by an uninformative prior distribution. The
spatial random effects term (υi) was assumed to follow a CAR prior distribution as defined in
(15). The non-spatial random effects term (gi) was defined by a gamma prior distribution as
defined in (8).[20]

Adjusting to a gamma distribution in this model gains the advantage of the strong conju-
gacy of the Poisson and gamma distribution, which makes it easy to analytically define the
posterior mean of yi conditional on the correlated heterogeneity random effect as a+yi

b+κiei
with κi

equal to α + xiβ + υi. In contrast with the Poisson-gamma model, the smoothing is spatially
structured.[18]

3.3 Bivariate Analysis

To investigate the spatial distribution of both cancer types as well as the correlation between the
spatial distributions, an extension of the univariate setting to the bivariate setting was required.

There are three possible approaches to define the relationship between the random effects;
models with common random effects, models with shared random effects and models with cor-
related random effects.[14] The first approach uses the same random effects for both cancer
types,

θ1i = exp(α1 +W1i),

θ2i = exp(α2 +W1i),
(18)

with W1i being the common random effects component between the models.[14] This approach
cannot be used when the cancer types are not equally common.
Alternatively, the shared random effects approach uses the same random effects for both cancer
types but adjusts this with a scaling component[13]:

θ1i = exp(α1 + δW1i),

θ2i = exp(α2 +W1i/δ),

log(δ) ∼ N(0, 0.17),

(19)

with W1i being the shared random effects component between the models. The scaling compo-
nent is represented by δ, which is defined by a prior distribution.[13]
The random effects for both approaches can be spatial random effects or non-spatial random
effects and both models may also have cancer-specific terms.
These models have common or shared random effect terms, which are too restrictive in this
study because breast and ovary cancer act alike but not the same.
The third approach uses correlated random effects by extending the univariate convolution and
combined model with bivariate distributions for the random effects.[21]
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The multivariate CAR distribution was used for the spatial random effects and for the non-
spatial random effects a multivariate normal distribution or alternative a bivariate gamma
distribution were used. By using these bivariate distributions for the random effects it’s possi-
ble to investigate the correlation between the spatial distributions of breast and ovary cancer.

The empirically based Pearson correlations were calculated using rx1,x2 = cov(x1,x2)
sd(x1)sd(x2)

, where
x1 and x2 were the relative risks, the spatial random effects and the non-spatial random effects.

3.3.1 Bivariate Convolution model

The bivariate convolution model is an extension of the previously described univariate convo-
lution model. The relative risks for each municipality for the bivariate convolution model are
described by the following model[14]:

θli = exp(αl + υli + νli), (20)

with αl defining the overall cancer-specific risk. The non-spatial random effects term (νli) can
be defined univariately as in (11) or by a multivariate normal distribution ∼ MVN(0,Σν)
(Table 1).[2] The covariance matrix was defined by a vague Wishart hyperprior distribution.
The spatial random effects term (υli) can be defined univariately with a intrinsic CAR prior,
or it can be defined by a multivariate CAR prior (Table 1). The multivariate CAR prior
distribution is defined by[6]:

υl ∼ N(0,Συ), (21)

where υl contains the cancer-specific spatial random effects for all municipalities. The covariance
matrix (Συ) is valid as long as it is symmetric and positive definite, which was defined by a
vague Wishart hyperprior distribution.[10]
The marginal distribution of the spatial random effects of breast cancer (υ1) and the conditional
distribution the spatial random effects of ovary cancer (υ2) is described by[24]:

υ1 ∼ N(0, (D− γ1C)−1σ21)),

υ2|υ1 ∼ N(Aυ1, (D− γ2C)−1σ22)),
(22)

with D representing a matrix with the number of neighbors of the municipalities on the diag-
onal, C represents the adjacency matrix with values that take the value 1 if the municipalities
are adjacent and zero otherwise. The smoothing parameter and variance for the marginal dis-
tribution of υ1 is represented by γ1 and σ21 respectively. The smoothing parameter and variance
for the conditional distribution of υ2|υ1 is represented by γ2 and σ22 respectively.[24] The matrix
A determines the relationship between the spatial random effects of breast and ovary cancer,

A = ξ0I + ξ1C, (23)

with I representing an identity matrix (n x n), ξ0 and ξ1 are defined as the bridging parameters.
The bridging parameter ξ0 defines the relationship between υ2i and υ1i if the municipalities
are the same. The bridging parameter ξ1 determines the relationship between υ2j and υ1i if
municipality i and j are adjacent.[10]
The models fitted based on the bivariate convolution model are described in table 1.
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3.3.2 Bivariate Combined model

As in the univariate setting, the bivariate combined model is an alternative to the bivariate con-
volution model. Neyens et al. (2016) proposed to model the relative risks for each municipality
using the bivariate combined model,

θil = gilexp(αl + υil), (24)

with αl describing the overall cancer-specific risk. The spatial random effects term (υil) can be
defined univariately with an intrinsic CAR prior, or it can be defined by a multivariate CAR
prior (Table 1).
The non-spatial random effects term (gil) can be defined univariately or by a bivariate gamma
distribution (Table 1), with the bivariate specification defined as follows:

gil =
1

k0 + k1
(k0γi0 + klγil), (25)

where k0 and kl are real positive variables, γi0 and γil are assumed gamma distributed ran-
dom variables ∼ Γ(1, 1). This bivariate specification produces correlated non-spatial random
effects.[21]
The models fitted based on the bivariate combined model are described in table 1.

Table 1: Overview fitted models with models 1,2,3 based on the bivariate convolution model
and models 4,5,6 based on the bivariate combined model.

Model RR Spatial random effects Non-spatial random effects

1
θli = exp(αl + υli + νli)

υli ∼ CAR(τυl)
∗ νli ∼MVN(0,Ω)

2 υli ∼MCAR(1,Ω) νli ∼ N(0, τνl)
∗

3 υli ∼MCAR(1,Ω) νli ∼MVN(0,Ω)

4
θil = gilexp(αl + υil)

υli ∼ CAR(τυl)
∗ gil = 1

k0+k1
(k0γi0 + klγil)

5 υil ∼MCAR(1,Ω) gil ∼ Gamma(a, b)∗

6 υil ∼MCAR(1,Ω) gil = 1
k0+k1

(k0γi0 + klγil)
∗ cancer specific random effects
τ represents the precision
Ω represents the precision matrix
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3.4 Model Comparison

To compare the different models separately in the univariate and bivariate setting the goodness-
of-fit for each model was tested.
Spiegelhalter et al. (2002) proposed the use of a deviance information criteria as a measure for
goodness-of-fit for Bayesian hierarchical models, which is defined in the following equation,

DIC = Eθ|y(D) + pD,

pD = Eθ|y(D)−D(Eθ|y(θ)).
(26)

The DIC is calculated based on the posterior mean deviance (Eθ|y(D)) and the estimated ef-
fective number of parameters (pD). The estimated effective number of parameters is defined
as the difference between the posterior mean deviance and the deviance of posterior expected
parameter estimates (D(Eθ|y)(θ)). The estimated effective number of parameters penalizes the
deviance for complexity.[23]
If there are models with very similar DIC values, less complex models having lower effective
number of parameters were chosen as ’the best’ model.

The mean squared predictive error (MSPE) was used as a second goodness-of-fit measure and
is defined by the following equation. The mean squared predictive error (MSPE) was used to
asses the information loss in the data by investigating the predictive ability of the model, which
is the ability to produce replicated data similar to the data that was observed.[9]

MSPE =
∑
i

∑
j

(yi − ypredij )2

m ∗G
, (27)

with ypredij defining the predicted response at MCMC iteration j, the number of observations m
and the sampler sample size G.

In contrast with DIC who penalizes more complex models, MSPE will prefer more complex
models because they tend to predict more precise. However, the prediction will become less
precise if the complexity is too high due to more variability in the replicated data and a less
complex model will perform better.[4]

3.5 Model fitting on WinBUGS

A burn-in of 50 000 iterations was used to achieve convergence and an additional 50 000 itera-
tions were conducted for inference.
All models were visually investigated for MCMC convergence issues by looking at the history
plots in WinBUGS. There were no convergence issues for the selected models.
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4 Results

4.1 Exploratory Analysis

Table 2 gives the summary statistics for the observed counts in breast and ovary cancer, it
shows that breast cancer is more present in the population than ovary cancer. The distribution
of the observed counts in Limburg are shown in figure 1, it also indicates that breast cancer is
more present in the population than ovary cancer but shows no clear pattern in the distribution.

Table 2: Summary Statistics observed counts for breast and ovary cancer

Breast Ovary

Mean 130.430 9.409
Standard devation 118.810 8.379
Minimum 1 0
Maximum 653 41

Figure 1: Left: Observed breast cancer counts in Limburg. Right: Observed ovary cancer counts
in Limburg.

After conducting the indirect standardisation the SIR values were calculated, confidence inter-
vals were calculated using the error factor method. In the breast cancer setting the following
municipalities show an significant decreased risk: Bilzen, Ham, Maasmechelen, Riemst and
Tessenderlo. Gingelom, Hasselt and Sint-Truiden show a significant increased risk of breast
cancer. In the ovary cancer setting there were no municipalities with a significant increased
or decreased risk. The SIR estimates with 95% credible interval can be found in the appendix
table 11 for breast cancer and table 12 for ovary cancer. Figure 2 shows the spatial distribution
of SIR in Limburg, there seems to be a pattern in the south of Limburg for both cancers.
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Figure 2: Left: SIR values for breast cancer in Limburg. Right: SIR values for ovary cancer in
Limburg.

Table 3 summarizes the spatial autocorrelation estimators, p-values of Moran’s I and Geary’s C
under the normality and randomization assumption based on a Queen’s case proximity matrix
(sharing boundaries). The expected value under independence is for the Moran’s I statistic is
equal to -0.023, and for Geary’s C statistic, this is equal to 1.

In the breast cancer setting, the Moran’s I statistic is bigger than the expected value, which
indicates that there seems to be a positive spatial autocorrelation. The p-values show that
there seems to be a deviation from the independence assumption. The Geary’s C statistic is
smaller than the expected value under independence which indicates that there seems to be a
negative spatial autocorrelation, this is supported by the significant p-values.
In the ovary cancer setting, the Moran’s I statistic is bigger than the expected value which
indicates that there seems to be a positive spatial autocorrelation. The p-values are borderline
not significant which tells that there seems to be no deviation of the dependence assumption.
The Geary’s C statistic is smaller than the expected value under independence which indicates
that there seems to be a negative spatial autocorrelation, this is supported by the significant
p-values.
Both statistics give different results but give an indication of possible positive spatial autocor-
relation.

Table 3: Spatial autocorrelation statistics for breast and ovary cancer in Limburg.

Breast Ovary

Statistic
P-value
Rand.

P-value
Norm.

Statistic
P-value
Rand.

P-value
Norm.

Moran’s I 0.368 2.639e-05 0.001 0.134 0.053 0.066
Geary’s C 0.026 1.628e-05 0.001 0.037 0.02022 0.025
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4.2 Univariate Analysis

4.2.1 Breast cancer

Table 4 summarizes the goodness-of-fit statistics for all the univariate models for breast cancer
in Limburg. Goodness-of-fit based on the DIC criterion shows that the convolution model and
the CAR model performs the best of all models. The convolution model was chosen as ’best’
model because it has a lower value for the MSPE than the CAR model.

Table 4: Model Fits in the univariate setting for breast cancer.

Model
Model Fit

DIC pD MSPE

Poisson-gamma 353.768 25.469 266.100
Poisson-lognormal 353.793 26.801 262.000

CAR 351.218 22.506 269.700
Convolution 350.517 23.154 267.600
Combined 358.797 37.804 254.500

The parameter estimates obtained from the convolution model are summarized in table 5,
parameter estimate α represents the global mean (e−0.019). The global mean suggests that the
distribution of the relative risks lies around a value of 1. The ratio of the variance of the spatial
random effects (σ2u) and the non-spatial random effects (σ2v) is large which reflects that the
variability of the relative risks is more attributed to the spatially structured heterogeneity. The
variance of the spatial random effects(σ2u) is small, this indicates stronger spatial dependence
between neighboring municipalities.

Table 5: Posterior parameter estimates for the convolution model

Parameter Estimate sd MC error Lower limit Upper limit

α -0.019 0.018 1.326E-4 -0.056 0.015
Global Mean 0.982 0.018 1.29E-4 0.946 1.016

σ2u 0.026 0.015 3.196E-4 0.001 0.061
σ2v 0.004 0.004 1.096E-4 2.1E-4 0.015

σ2u/σ
2
v 31.120 52.380 1.038 0.099 179.300

Figure 3 shows the relative risk distribution of breast cancer in Limburg (left) and the excee-
dence probability of the relative risks being greater than 1 (right). The maps seem to show
a pattern in the south of Limburg with an increased risk and probability of the relative risks.
Gingelom, Hasselt and Sint-Truiden show a significant increased relative risk. The follow-
ing municipalities show a significant decreased relative risk: Bilzen, Ham, Maasmechelen and
Tessenderlo. The relative risk estimates with 95% credible interval can be found in the appendix
(Table 13).
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Figure 3: Left: Relative risk estimates yielded by the Convolution model for breast cancer in
Limburg. Right: The posterior expected exceedence probability based on the convolution model
for breast cancer in Limburg.

4.2.2 Ovary cancer

Table 6 summarizes the goodness-of-fit statistics for all the univariate models for ovary cancer
in Limburg.Goodness-of-fit based on the DIC criterion shows that the CAR model performs the
best of all models. The Combined model has the lowest MSPE value but performs the worst
based on DIC.

Table 6: Model Fits in the univariate setting for ovary cancer.

Model
Model Fit

DIC pD MSPE

Poisson-gamma 210.682 6.885 19.530
Poisson-lognormal 211.468 9.527 18.830

CAR 208.555 8.405 18.490
Convolution 210.471 5.931 20.190
Combined 219.984 22.797 17.020

The parameter estimates obtained from the CAR model are summarized in table 7, parameter
estimate α represents the global mean (e−0.011). The global mean suggests that the distribution
of the relative risks lies around a value of 1. The variance of the spatial random effects(σ2u) is
small, this indicates stronger spatial dependence between neighboring municipalities.
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Table 7: Posterior parameter estimates for the CAR model

Parameter Estimate sd MC error Lower limit Upper limit

α -0.011 0.052 2.10E-04 -0.113 0.089
Global Mean 0.991 0.051 2.07E-04 0.893 1.093

σ2u 0.085 0.067 0.001 0.010 0.258

Figure 4 shows the relative risk distribution of ovary cancer in Limburg (left) and the exceedence
probability of the relative risks being greater than 1 (right). The maps seem to show a pattern
in the south of Limburg with an increased risk and probability of the relative risks of ovary
cancer in Limburg. There are no municipalities with a significant increased or decreased risk of
ovary cancer in Limburg. The relative risk estimates with 95% credible interval can be found
in the appendix (Table 14).

Figure 4: Left: Relative risk estimates based on the CAR model for ovary cancer in Limburg.
Right: The posterior expected exceedence probability based on the car model for ovary cancer
in Limburg.
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4.3 Bivariate Analysis

In the bivariate analysis 6 different models were fitted which are summarized in table 8. The
first three models are based on the bivariate convolution model and the next three models are
based on the bivariate combined model with different combinations of the random effects.
The model with the smallest DIC value is the bivariate gamma model with spatial random
effects based on the multivariate CAR distribution (model 6). The bivariate gamma model
with spatial random effects based on the univariate CAR distribution (model 4) has a similar
DIC value but also has a predictive ability which is much better than model 6 and is thus
chosen as ’best’ model.

Table 8: Overview of the fitted models in the bivariate setting and model fits.

Model Family
Random Effects Model Fit

Spatial Non-Spatial DIC pD MSPE

1 Bivariate Convolution UCARa bivariate normal 584.766 65.152 276.300
2 Bivariate Convolution MCAR univariate normala 584.634 57.726 289.300
3 Bivariate Convolution MCAR bivariate normal 595.124 72.158 289.400
4 Bivariate Combined UCARa bivariate gamma 576.408 58.656 274.200
5 Bivariate Combined MCAR univariate gammaa 589.138 67.835 286.500
6 Bivariate Combined MCAR bivariate gamma 575.723 56.632 284.800

a disease-specific univariate random effects

The following table describes the parameter estimates of the bivariate gamma model with spatial
random effects based on the univariate CAR distribution. The global means of both cancers
are described by αl and results in values 0.971 (exp(−0.029)) and 0.977 (exp(−0.023)) for the
global mean of breast and ovary cancer respectively. The amount of non-spatial variability
that is common for both cancers in specified by k0 and the non-spatial variability specific
for the cancer is specified by k1 for breast cancer and k2 for ovary cancer. The variance of
the non-spatial random effects for breast (var1) and ovary (var2) cancer are equal to 0.599
and 0.676 respectively. The variance of the univariate spatial random effects based on the CAR
distribution (σul) has small values for both cancers, this indicates that there is not much spatial
variability and there could be some spatial dependency.

Table 9: Parameter estimates, standard deviations, MC error and 95% CI.

Parameter Estimate sd MC error Lower limit Upper limit

α1 -0.029 0.126 0.004 -0.263 0.227
α2 -0.023 0.145 0.004 -0.295 0.275
k0 1.860 1.170 0.035 0.345 4.809
k1 0.678 0.468 0.014 0.118 1.894
k2 0.394 0.352 0.008 0.020 1.312
var1 0.599 0.521 0.018 0.157 2.026
var2 0.676 0.603 0.020 0.178 2.276
σ2u1 0.004 0.008 0.001 0.001 0.024
σ2u2 0.005 0.012 0.001 0.001 0.035
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The correlation estimates are summarized in table 10. The correlation between the relative
risks of both cancers is significant with a value of 0.599. The correlation estimate between the
spatial random effects has a small value of 0.007 and is not significant. The correlation between
non-spatial random effects is significant with a value of 0.606.

Table 10: Empirically-based correlation estimates between random effects and relative risks
with standard deviations, MC errors and 95% CI.

EB Correlation Estimate sd MC error Lower limit Upper limit

Relative Risks 0.599 0.146 0.002 0.283 0.856
Spatial random effects 0.007 0.240 0.002 -0.458 0.469
Non-spatial random effects 0.606 0.149 0.002 0.286 0.867

The high correlation in the non-spatial random effects is visible in figure 5. Both maps show the
correlation pattern in southern Limburg. The maps of the non-spatial variability terms (γ0,1,2)
are shown in the appendix (Table 9), the common UH term (γ0) again shows the correlation of
the relative risks in the southern of Limburg. The maps of the CH for breast and ovary cancer
can be found in the appendix (Table 8), these maps show no common pattern which is in line
with the low value of the correlation of the spatial random effects.

Figure 5: Left: Map of UH (gi1) for breast cancer in Limburg. Right:Map of UH (gi2) for ovary
cancer in Limburg.

The relative risk of breast cancer is shown on the left map of figure 6 and the probability of
risk exceedence is shown on the right map. The map of the relative risks show a pattern in
southern Limburg and the map of the exceedence probability indicates the significance of this
pattern. The relative risks of breast cancer show a significant decreased risk of breast cancer
for the following municipalities: Bilzen, Ham, Hoeselt, Maasmechelen, Riemst, Tessenderlo and
Tongeren. The relative risk of breast cancer show significant increased risk of breast cancer
for the following municipalities: Gingelom, Hasselt, Heers and Sint-Truiden. The relative risk
estimates with 95% credible intervals can be found in the appendix (Table 15).
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Figure 6: Left:Relative risk map for breast cancer in Limburg. Right: Probability of exceedence
with threshold 1 for breast cancer in Limburg.

The relative risk of ovary cancer is shown on the left map of figure 7 and the probability of
risk exceedence is shown on the right map. The map of the relative risks show again a pattern
in southern Limburg and the map of the exceedence probability indicates the significance of
this pattern. Sint-Truiden shows a significant increased risk of ovary cancer, there were no
municipalities with a decreased risk of ovary cancer. The relative risk estimates with 95%
credible intervals can be found in the appendix (Table 16).

Figure 7: Left:Relative risk map for ovary cancer in Limburg. Right: Probability of exceedence
with threshold 1 for ovary cancer in Limburg.
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5 Discussion

When investigating the spatial autocorrelation with Moran’s I and Geary’s C statistics, it re-
sulted in spatial trends for both cancer types. These trends are more apparent in breast cancer
than ovary cancer. By modeling the relative risk this spatial correlation is accounted for.

Model comparison based on DIC for breast cancer in Limburg shows that models including
a spatial term in the model performs better than models without spatial term (Poisson-gamma,
Poisson-lognormal) in contrast with MSPE where these models without spatial term performs
better. But extending the model to the combined model makes the model not perform well
based on DIC but has the best predictive ability.
Model comparison based on DIC for ovary cancer in Limburg shows that only considering the
spatial random effects performs the best, but extending the model to the combined model makes
the model perform the worst based on DIC but has the best predictive ability.
Model comparison based on DIC for the bivariate distribution of breast and ovary cancer in
Limburg shows that models based on bivariate distributions for the non-spatial random effects
perform better than if these models were based on a univariate distribution. The bivariate
gamma distribution for the non-spatial random effects performs better based on DIC in com-
parison with the bivariate normal distribution. The combination of non-spatial random effects
based on the bivariate normal distribution with spatial random effects based on the univari-
ate CAR distribution performs better based on DIC than when the spatial random effects are
based on the multivariate CAR distribution, this also holds for the MSPE. The combination
of non-spatial random effects based on the bivariate gamma distribution with spatial random
effects based on the univariate CAR distribution performs better based on MSPE than when
the spatial random effects are based on the multivariate CAR distribution.

The empirically-based correlation between the relative risks is significant which indicates that
the bivariate model is needed to understand the association between the cancers which cannot
be done with univariate models. Investigation of the empirically-based correlations between the
random effects help to understand the association between the cancers. The empirically-based
correlation of the spatial random effects is not significant and the correlation of the non-spatial
random effects is significant. The maps in figure 5 and 8 confirm these results and show that
the non-spatial random effects are the source of the correlation in the relative risks, which leads
to the conclusion there is no environmental cause of the correlation between the cancers.

Based on the bivariate results, the municipalities with an increased risk in breast cancer are:
Gingelom, Hasselt, Heers and Sint-Truiden. The municipalities with a decreased risk in breast
cancer are: Bilzen, Ham, Hoeselt, Maasmechelen, Riemst, Tessenderlo and Tongeren. Sint-
Truiden has an increased risk in ovary cancer are, there were no municipalities with a decreased
risk in ovary cancer.
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Comparing these results with the results of the univariate analysis of breast and ovary cancer,
it shows that the results of the univariate analysis doesn’t include all the municipalities defined
by the bivariate analysis. This shows that there is a correlation in risk between breast and
ovary cancer and the need of the bivariate analysis to discover this correlation.

A drawback in this study is the possible effect of the choice of the prior and hyperprior distri-
butions on the model. To see if there is an effect a sensitivity analysis could be executed with
different prior distributions.
Another drawback is that the bivariate combined model only functions in the case of two dis-
eases not more which is not a problem for the multivariate convolution model.
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6 Conclusion

In effort to investigate the spatial distribution of breast and ovary cancer in Limburg and the
correlation between these spatial distributions, different bivariate models were fitted. The bi-
variate combined model with spatial random effects defined by the univariate CAR distribution
and non-spatial effects defined by the bivariate gamma distribution performed the best based
on DIC and MSPE. The relative risks show a significant correlation of 0.599 and this correlation
is a result of the spatially uncorrelated heterogeneity. The spatial effects were not correlated
which tells us that there is no environmental cause of the correlation.
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Appendix

Figure 8: Left: Map of CH (υi1) for breast cancer in Limburg. Right:Map of CH (υi2) for ovary
cancer in Limburg.

Figure 9: Left: Map of common UH term (γ0). Middle: Map of breast cancer specific UH
term(γ1). Right: Map of ovary cancer specific UH term (γ2).

Code Bivariate combined model

## UCAR BIGAM ##

model

{for (i in 1:N)

{

Y1[i] ~dpois(mu1[i])

log(mu1[i]) <- log(E1[i]) + alpha1 + u[1,i]+ log(g1[i])

Y2[i] ~dpois(mu2[i])

log(mu2[i]) <- log(E2[i]) + alpha2 + u[2,i]+ log(g2[i])

RR1[i]<-exp(alpha1+u[1,i]+log(g1[i]))

RR2[i]<-exp(alpha2+u[2,i]+log(g2[i]))
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## Goodness of fit

Opred1[i] ~ dpois(mu1[i])

pres1[i] <- Y1[i] - Opred1[i]

SPE1[i] <- pow(pres1[i],2)

Opred2[i] ~ dpois(mu2[i])

pres2[i] <- Y2[i] - Opred2[i]

SPE2[i] <- pow(pres2[i],2)

#Bivariate Gamma specification

g1[i] <-var1*(k0*gamma0[i] + k1*gamma1[i])

g2[i] <-var2*(k0*gamma0[i] + k2*gamma2[i])

U1[i]<-u[1,i]

U2[i]<-u[2,i]

gamma0[i]~dgamma(1,1)

gamma1[i]~dgamma(1,1)

gamma2[i]~dgamma(1,1)}

# CAR for the prior distrbution of the random effects

u[1,1:N] ~ car.normal(adj[ ], weights1[ ], num[ ], tau.u1)

for (k in 1:sumNumNeigh)

{weights1[k]<-1}

u[2,1:N] ~ car.normal(adj[ ], weights2[ ], num[ ], tau.u2)

for (k in 1:sumNumNeigh)

{weights2[k]<-1}

# CAR - Prior Specification

tau.u1 ~ dgamma(0.5, 0.0005) # prior on precision

tau.u2 ~ dgamma(0.5, 0.0005)

sigma.u1 <- 1/tau.u1

sigma.u2<-1/tau.u2

# Empirically based Correlations

##RR- correlation

mu.1<-mean(RR1[])

mu.2<-mean(RR2[])

sd1<-sd(RR1[])

sd2<-sd(RR2[])

mu12<-inprod(RR1[],RR2[])/N

CRR12<-(mu12-mu.1*mu.2)/(sd1*sd2)

##Spatial random effects corr

Spmu.1<-mean(u[1,])

Spmu.2<-mean(u[2,])

SPsd1<-sd(u[1,])

SPsd2<-sd(u[2,])

SPmu12<-inprod(u[1,],u[2,])/N

SPC12<-(SPmu12-Spmu.1*Spmu.2)/(SPsd1*SPsd2)

##Non-spatial Random effects

nsmu.1<-mean(g1[])
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nsmu.2<-mean(g2[])

nssd1<-sd(g1[])

nssd2<-sd(g2[])

NSPmu12<-inprod(g1[],g2[])/N

NSPC12<-(NSPmu12-nsmu.1*nsmu.2)/(nssd1*nssd2)

# other priors

alpha1 ~ dflat()

alpha2 ~ dflat()

var1<-1/(k0+k1)

var2<-1/(k0+k2)

k0~dexp(1)

k1~dexp(1)

k2~dexp(1)

MSPE1 <- mean(SPE1[])

MSPE2 <- mean(SPE2[])

MSPE<-MSPE1+MSPE2}
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Table 11: The observed counts, the expected counts and SIR with 95% CI based on the error
factor method for breast cancer in Limburg.

Municipality Observed Expected SIR Lower CI Upper CI

ALKEN 92 77.480 1.187 0.968 1.457
AS 51 50.955 1.001 0.761 1.317
BERINGEN 286 272.691 1.049 0.934 1.178
BILZEN 174 210.891 0.825 0.711 0.957
BOCHOLT 83 82.965 1.000 0.807 1.241
BORGLOON 76 78.659 0.966 0.772 1.210
BREE 102 103.127 0.989 0.815 1.201
DIEPENBEEK 127 121.719 1.043 0.877 1.242
DILSEN-STOKKEM 134 129.269 1.037 0.875 1.228
GENK 427 434.294 0.983 0.894 1.081
GINGELOM 78 58.744 1.328 1.064 1.658
HALEN 58 63.634 0.911 0.705 1.179
HAM 46 67.041 0.686 0.514 0.916
HAMONT-ACHEL 106 99.545 1.065 0.880 1.288
HASSELT 653 537.144 1.216 1.126 1.313
HECHTEL-EKSEL 69 77.070 0.895 0.707 1.134
HEERS 68 51.054 1.332 1.050 1.689
HERK-DE-STAD 96 84.426 1.137 0.931 1.389
HERSTAPPE 1 0.699 1.430 0.201 10.149
HEUSDEN-ZOLDER 209 205.192 1.019 0.889 1.166
HOESELT 51 65.931 0.774 0.588 1.018
HOUTHALEN-HELCHTEREN 175 192.333 0.910 0.785 1.055
KINROOI 82 80.008 1.025 0.825 1.273
KORTESSEM 42 56.051 0.749 0.554 1.014
LANAKEN 172 178.801 0.962 0.828 1.117
LEOPOLDSBURG 90 101.809 0.884 0.719 1.087
LOMMEL 215 221.050 0.973 0.851 1.112
LUMMEN 94 97.219 0.967 0.790 1.184
MAASEIK 184 167.433 1.099 0.951 1.270
MAASMECHELEN 200 248.382 0.805 0.701 0.925
MEEUWEN-GRUITRODE 72 81.947 0.879 0.697 1.107
NEERPELT 113 112.195 1.007 0.838 1.211
NIEUWERKERKEN 63 48.656 1.295 1.011 1.657
OPGLABBEEK 61 61.729 0.988 0.769 1.270
OVERPELT 85 92.652 0.917 0.742 1.135
PEER 87 100.362 0.867 0.703 1.070
RIEMST 90 116.756 0.771 0.627 0.948
SINT-TRUIDEN 384 297.840 1.289 1.167 1.425
TESSENDERLO 96 116.337 0.825 0.676 1.008
TONGEREN 217 232.355 0.934 0.818 1.067
VOEREN 14 30.315 0.462 0.274 0.780
WELLEN 45 47.939 0.939 0.701 1.257
ZONHOVEN 130 136.397 0.953 0.803 1.132
ZUTENDAAL 41 47.905 0.856 0.630 1.162

30



Table 12: The observed counts, the expected counts and SIR with 95% CI based on the error
factor method for ovary cancer in Limburg.

Municipality Observed Expected SIR Lower CI Upper CI

ALKEN 11 5.552 1.981 1.097 3.578
AS 2 3.657 0.547 0.137 2.187
BERINGEN 23 19.738 1.165 0.774 1.754
BILZEN 20 15.205 1.315 0.849 2.039
BOCHOLT 6 5.939 1.010 0.454 2.249
BORGLOON 7 5.624 1.245 0.593 2.611
BREE 10 7.518 1.330 0.716 2.472
DIEPENBEEK 6 8.767 0.684 0.307 1.523
DILSEN-STOKKEM 7 9.226 0.759 0.362 1.591
GENK 20 31.833 0.628 0.405 0.974
GINGELOM 6 4.267 1.406 0.632 3.130
HALEN 6 4.605 1.303 0.585 2.900
HAM 2 4.875 0.410 0.103 1.640
HAMONT-ACHEL 7 7.188 0.974 0.464 2.043
HASSELT 41 38.997 1.051 0.774 1.428
HECHTEL-EKSEL 4 5.534 0.723 0.271 1.926
HEERS 7 3.688 1.898 0.905 3.982
HERK-DE-STAD 10 6.015 1.662 0.894 3.090
HERSTAPPE 0 0.046 0.000 0.000 NaN
HEUSDEN-ZOLDER 22 14.919 1.475 0.971 2.239
HOESELT 3 4.731 0.634 0.205 1.966
HOUTHALEN-HELCHTEREN 12 13.842 0.867 0.492 1.526
KINROOI 3 5.619 0.534 0.172 1.656
KORTESSEM 4 3.945 1.014 0.381 2.702
LANAKEN 14 12.788 1.095 0.648 1.849
LEOPOLDSBURG 9 7.468 1.205 0.627 2.316
LOMMEL 16 15.900 1.006 0.616 1.643
LUMMEN 5 6.951 0.719 0.299 1.728
MAASEIK 8 12.110 0.661 0.330 1.321
MAASMECHELEN 13 17.933 0.725 0.421 1.248
MEEUWEN-GRUITRODE 4 5.865 0.682 0.256 1.817
NEERPELT 8 8.035 0.996 0.498 1.991
NIEUWERKERKEN 3 3.468 0.865 0.279 2.682
OPGLABBEEK 6 4.455 1.347 0.605 2.998
OVERPELT 4 6.748 0.593 0.222 1.579
PEER 9 7.229 1.245 0.648 2.393
RIEMST 7 8.426 0.831 0.396 1.743
SINT-TRUIDEN 34 21.416 1.588 1.134 2.222
TESSENDERLO 6 8.407 0.714 0.321 1.589
TONGEREN 15 16.766 0.895 0.539 1.484
VOEREN 2 2.156 0.928 0.232 3.709
WELLEN 3 3.430 0.875 0.282 2.712
ZONHOVEN 8 9.720 0.823 0.412 1.646
ZUTENDAAL 1 3.397 0.294 0.041 2.090
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Table 13: The estimated relative risks and standard deviations with 95% CI based on the
convolution model for breast cancer in Limburg.

Municipality Mean sd Lower CI Upper CI

ALKEN 1.128 0.084 0.971 1.299
AS 0.969 0.077 0.825 1.128
BERINGEN 1.004 0.052 0.906 1.112
BILZEN 0.871 0.051 0.772 0.974
BOCHOLT 0.985 0.071 0.851 1.132
BORGLOON 1.018 0.077 0.871 1.174
BREE 0.987 0.072 0.853 1.134
DIEPENBEEK 1.004 0.067 0.880 1.141
DILSEN-STOKKEM 1.003 0.071 0.871 1.148
GENK 0.975 0.041 0.897 1.058
GINGELOM 1.243 0.117 1.029 1.488
HALEN 0.975 0.091 0.804 1.161
HAM 0.823 0.077 0.676 0.976
HAMONT-ACHEL 1.030 0.083 0.877 1.201
HASSELT 1.169 0.045 1.084 1.260
HECHTEL-EKSEL 0.926 0.069 0.797 1.065
HEERS 1.176 0.100 0.994 1.388
HERK-DE-STAD 1.093 0.083 0.939 1.263
HERSTAPPE 0.978 0.174 0.674 1.365
HEUSDEN-ZOLDER 1.011 0.057 0.902 1.126
HOESELT 0.882 0.072 0.743 1.027
HOUTHALEN-HELCHTEREN 0.935 0.053 0.832 1.041
KINROOI 1.008 0.081 0.857 1.176
KORTESSEM 0.942 0.076 0.789 1.088
LANAKEN 0.936 0.060 0.824 1.058
LEOPOLDSBURG 0.899 0.070 0.767 1.043
LOMMEL 0.965 0.057 0.856 1.081
LUMMEN 0.999 0.071 0.864 1.142
MAASEIK 1.044 0.063 0.927 1.172
MAASMECHELEN 0.856 0.050 0.760 0.956
MEEUWEN-GRUITRODE 0.937 0.068 0.806 1.074
NEERPELT 0.986 0.068 0.858 1.126
NIEUWERKERKEN 1.176 0.102 0.989 1.390
OPGLABBEEK 0.976 0.076 0.834 1.133
OVERPELT 0.936 0.071 0.802 1.080
PEER 0.918 0.064 0.796 1.048
RIEMST 0.847 0.064 0.723 0.975
SINT-TRUIDEN 1.238 0.059 1.127 1.358
TESSENDERLO 0.858 0.070 0.725 0.999
TONGEREN 0.946 0.052 0.847 1.050
VOEREN 0.937 0.068 0.767 1.037
WELLEN 1.033 0.087 0.865 1.207
ZONHOVEN 0.974 0.065 0.851 1.105
ZUTENDAAL 0.910 0.076 0.767 1.065

32



Table 14: The estimated relative risks and standard deviations with 95% CI based on the CAR
model for ovary cancer in Limburg.

Municipality Mean sd Lower CI Upper CI

ALKEN 1.216 0.198 0.920 1.690
AS 0.870 0.130 0.608 1.119
BERINGEN 1.009 0.122 0.790 1.274
BILZEN 1.006 0.122 0.784 1.272
BOCHOLT 0.942 0.138 0.688 1.239
BORGLOON 1.153 0.177 0.864 1.562
BREE 0.958 0.155 0.685 1.305
DIEPENBEEK 0.962 0.133 0.698 1.232
DILSEN-STOKKEM 0.858 0.149 0.569 1.154
GENK 0.881 0.102 0.671 1.070
GINGELOM 1.284 0.282 0.858 1.961
HALEN 1.144 0.244 0.754 1.725
HAM 0.915 0.173 0.584 1.274
HAMONT-ACHEL 0.959 0.189 0.627 1.378
HASSELT 1.055 0.102 0.870 1.272
HECHTEL-EKSEL 0.950 0.132 0.701 1.229
HEERS 1.241 0.229 0.898 1.785
HERK-DE-STAD 1.165 0.198 0.858 1.634
HERSTAPPE 1.067 0.350 0.531 1.893
HEUSDEN-ZOLDER 1.096 0.150 0.854 1.448
HOESELT 0.984 0.144 0.704 1.285
HOUTHALEN-HELCHTEREN 0.950 0.108 0.740 1.169
KINROOI 0.883 0.160 0.577 1.211
KORTESSEM 1.068 0.140 0.818 1.377
LANAKEN 0.966 0.139 0.710 1.265
LEOPOLDSBURG 0.999 0.171 0.701 1.384
LOMMEL 0.960 0.148 0.691 1.280
LUMMEN 1.048 0.148 0.779 1.376
MAASEIK 0.872 0.123 0.627 1.112
MAASMECHELEN 0.864 0.122 0.620 1.096
MEEUWEN-GRUITRODE 0.918 0.127 0.673 1.180
NEERPELT 0.952 0.142 0.691 1.260
NIEUWERKERKEN 1.153 0.190 0.846 1.593
OPGLABBEEK 0.929 0.133 0.677 1.208
OVERPELT 0.918 0.148 0.635 1.226
PEER 0.964 0.132 0.726 1.252
RIEMST 0.976 0.147 0.698 1.285
SINT-TRUIDEN 1.280 0.184 0.983 1.696
TESSENDERLO 0.911 0.178 0.574 1.284
TONGEREN 1.030 0.125 0.795 1.295
VOEREN 0.991 0.051 0.893 1.093
WELLEN 1.134 0.171 0.849 1.530
ZONHOVEN 0.968 0.136 0.708 1.254
ZUTENDAAL 0.889 0.136 0.616 1.151
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Table 15: The estimated relative risks and standard deviations with 95% CI based on the bi-
variate gamma model with univariate CAR spatial random effects for breast cancer in Limburg.

Municipality Mean sd Lower CI Upper CI

ALKEN 1.218 0.121 0.992 1.467
AS 0.979 0.134 0.734 1.258
BERINGEN 1.050 0.061 0.935 1.174
BILZEN 0.842 0.063 0.723 0.970
BOCHOLT 1.000 0.106 0.803 1.219
BORGLOON 0.977 0.108 0.776 1.200
BREE 01.003 0.096 0.825 1.199
DIEPENBEEK 1.029 0.090 0.860 1.213
DILSEN-STOKKEM 1.025 0.087 0.862 1.202
GENK 0.977 0.048 0.886 1.072
GINGELOM 1.321 0.145 1.050 1.619
HALEN 0.930 0.117 0.716 1.172
HAM 0.681 0.097 0.505 0.884
HAMONT-ACHEL 1.059 0.100 0.871 1.263
HASSELT 1.210 0.048 1.119 1.306
HECHTEL-EKSEL 0.889 0.104 0.697 1.104
HEERS 1.348 0.156 1.059 1.672
HERK-DE-STAD 1.155 0.114 0.943 1.388
HERSTAPPE 1.070 0.677 0.199 2.773
HEUSDEN-ZOLDER 1.033 0.070 0.901 1.173
HOESELT 0.771 0.104 0.581 0.990
HOUTHALEN-HELCHTEREN 0.909 0.067 0.781 1.045
KINROOI 1.004 0.108 0.802 1.227
KORTESSEM 0.766 0.113 0.561 1.002
LANAKEN 0.966 0.072 0.830 1.112
LEOPOLDSBURG 0.899 0.091 0.728 1.086
LOMMEL 0.973 0.065 0.849 1.104
LUMMEN 0.956 0.096 0.777 1.155
MAASEIK 1.083 0.079 0.934 1.244
MAASMECHELEN 0.803 0.056 0.698 0.916
MEEUWEN-GRUITRODE 0.872 0.100 0.686 1.079
NEERPELT 1.005 0.092 0.834 1.193
NIEUWERKERKEN 1.261 0.155 0.977 1.583
OPGLABBEEK 1.005 0.123 0.778 1.261
OVERPELT 0.905 0.096 0.726 1.105
PEER 0.884 0.091 0.713 1.071
RIEMST 0.775 0.079 0.627 0.937
SINT-TRUIDEN 1.295 0.065 1.171 1.424
TESSENDERLO 0.822 0.082 0.670 0.989
TONGEREN 0.932 0.062 0.814 1.057
VOEREN 0.509 0.123 0.296 0.778
WELLEN 0.935 0.134 0.693 1.217
ZONHOVEN 0.948 0.082 0.795 1.114
ZUTENDAAL 0.833 0.127 0.604 1.096
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Table 16: The estimated relative risks and standard deviations with 95% CI based on the
bivariate gamma model with univariate CAR spatial random effects for ovary cancer in Limburg.

Municipality Mean sd Lower CI Upper CI

ALKEN 1.460 0.296 0.954 2.132
AS 0.842 0.302 0.269 1.443
BERINGEN 1.141 0.181 0.801 1.514
BILZEN 1.087 0.205 0.751 1.559
BOCHOLT 1.015 0.253 0.533 1.534
BORGLOON 1.086 0.258 0.613 1.645
BREE 1.133 0.241 0.701 1.660
DIEPENBEEK 0.876 0.250 0.404 1.369
DILSEN-STOKKEM 0.909 0.238 0.454 1.379
GENK 0.710 0.151 0.440 1.023
GINGELOM 1.378 0.329 0.746 2.056
HALEN 1.059 0.271 0.580 1.661
HAM 0.597 0.229 0.190 1.074
HAMONT-ACHEL 1.039 0.252 0.557 1.551
HASSELT 1.115 0.158 0.814 1.431
HECHTEL-EKSEL 0.843 0.248 0.370 1.342
HEERS 1.506 0.335 0.892 2.227
HERK-DE-STAD 1.339 0.276 0.843 1.945
HERSTAPPE 1.064 0.779 0.113 3.036
HEUSDEN-ZOLDER 1.262 0.212 0.899 1.742
HOESELT 0.737 0.242 0.292 1.238
HOUTHALEN-HELCHTEREN 0.908 0.189 0.545 1.291
KINROOI 0.807 0.281 0.282 1.357
KORTESSEM 0.850 0.253 0.406 1.411
LANAKEN 1.052 0.201 0.680 1.476
LEOPOLDSBURG 1.026 0.232 0.614 1.541
LOMMEL 1.011 0.187 0.658 1.397
LUMMEN 0.874 0.250 0.394 1.366
MAASEIK 0.847 0.236 0.410 1.312
MAASMECHELEN 0.777 0.164 0.465 1.109
MEEUWEN-GRUITRODE 0.811 0.241 0.352 1.295
NEERPELT 1.016 0.233 0.569 1.492
NIEUWERKERKEN 1.162 0.355 0.462 1.856
OPGLABBEEK 1.105 0.274 0.611 1.699
OVERPELT 0.780 0.246 0.317 1.270
PEER 1.023 0.233 0.619 1.552
RIEMST 0.818 0.205 0.439 1.255
SINT-TRUIDEN 1.489 0.201 1.119 1.914
TESSENDERLO 0.793 0.214 0.390 1.229
TONGEREN 0.938 0.182 0.590 1.304
VOEREN 0.610 0.256 0.216 1.225
WELLEN 0.932 0.289 0.383 1.530
ZONHOVEN 0.908 0.220 0.483 1.350
ZUTENDAAL 0.655 0.285 0.150 1.229
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