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Abstract

Background: The global burden of cancer remains an important concern in worldwide, and prostate can-

cer is the most common cancer for the men population. The age-standardized incidence rates of prostate

cancer have increased dramatically because of the increased availability of screening for prostate-specific

antigen (PSA) in men without symptoms of the disease. Environmental exposures might be a cause too.

In disease mapping, association in nearby areas is common and the assumption of independence to do

the analysis using classical likelihood principle may not be efficient. In addition, in the case of a small-

area specific study, we usually faced to scarce data, and the classical fixed effects model with maximum

likelihood estimation technique often leads to unsatisfactory results in each area. These problems can be

overcome by using a Bayesian hierarchical modeling approach which models the spatial and/or temporal

effects as random effects, through a prior distribution.

Objectives: The main objective of this study was to assess the evolution of prostate cancer disease

risk taking into account both space and time simultaneously and to investigate whether the spatial and

temporal effects are separable. It was also aimed at predictions of the true relative risk of the disease

across each municipality.

Methods: The data analyzed include yearly incidence counts from prostate cancer, which was sub-

divided according to 18 age groups in the male population as observed in each of these municipalities

during the years 1996-2005 in Limburg. Bayesian hierarchical models to the spatio-temporal disease

mapping were implemented in two basic approaches, namely parametric linear time trend and smooth

temporal evolution models to account for the evolution of prostate cancer risk in both space and time

simultaneously.

Results: From the exploratory analysis, we found an evidence of overdispersion of the incidence counts

as well as heterogeneity indicating dependence between the relative risks in neighboring municipalities.

The Bayesian hierarchical models were able to remove substantial variability due to small observed as

well as expected counts from the raw SIR. The smoothed temporal evolution models showed better fit

than a parametric linear trend model to provide a substantial shrinkage of the raw relative risk estimates

for each municipality. The results showed inseparable space-time variation in the prostate cancer disease

risk in Limburg for the years 1996-2005, hence, it was shown stable patterns for the first four years, and

evolving differently for the remaining subsequent years. In conclusion, the results suggested that the

time trends for every municipality do not rely on a parametric shape, but flexible to describe the variety

of time trends that arise in the data. Moreover, the spatial dependence was very important to describe

the behavior of the risk, indeed higher than the temporal one.

Keywords: Overdispersion, Standardization, Relative Risk, Disease Mapping, Bayesian Hi-

erarchical Models.
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1 Background of the study

1.1 Introduction

According to the Global Burden of Disease Cancer result explored in 2015, cancer was the second leading

cause of death globally, 8 million deaths, whereas cardiovascular diseases being the first [37,38]. Their finding

also showed that, between 2005 and 2015, cancer cases increased by 33%, with population aging contributing

16%, population growth 13%, and changes in age-specific rates contributing 4%. For men, the most common

cancer globally was prostate cancer (1.6 million cases). Prostate cancer is cancer that begins in tissues of

the prostate gland. Located just below the bladder and in front of the rectum, the prostate is the male

sex gland responsible for the production of semen. According to [42], the size of the prostate also changes

with age. The age-standardized incidence rates of prostate cancer have increased dramatically because of

the increased availability of screening for prostate-specific antigen (PSA) in men without symptoms of the

disease. Environmental exposures might be a cause too. This motivates public health researchers and great

attention is invested to describe the patterns of cancer disease in both geographical and temporal dimensions

to provide accurate results for healthcare policymakers.

Disease mapping studies aim to summarize spatial variation in disease risk, in order to assess and quan-

tify the amount of true spatial heterogeneity and the associated patterns, to highlight areas of elevated

or lowered risk and to obtain clues as to the disease aetiology [39]. The identification and quantification

of patterns in disease occurrence and mortality are recently considered as the primary stages for public

health studies to increase the understanding and control of that particular disease [1]. Different sources in

literature are using the terms “geographical epidemiology”, “spatial epidemiology”, and “medical geogra-

phy” interchangeably to describe analytic methods in the study of spatial distribution of disease incidence

and mortality. In spatial epidemiology, maps are mostly useful tools for enlightening the potential causes

of disease such as monitoring air pollution [33], besides describing the patterns for incidence or prevalence

of disease. In addition to disease mapping, the application of spatial models is also increasing in different

areas such as crime [32], and ecology [34]. Statistical methods are highly important to analyze public health

data starting from the concept of the probability of each person contracting a disease. Spatial statistical

methods are used to evaluate differences in observed disease risk rates from different geographic locations,

more specifically to separate pattern from noise and identify disease clusters, and to assess the significance

of potential exposures for the response of interest [1]. In disease mapping, association in nearby areas is

common and the assumption of independence to do the analysis using classical likelihood principle may not

be efficient. In addition, in the case of a small-area specific study we usually faced to a scarce data, and

the classical fixed effects model with maximum likelihood estimation technique often leads to unsatisfactory

results in each area. These problems can be overcome by using a Bayesian hierarchical modeling approach

which models the spatial and/or temporal effects as random effects, through a prior distribution based on

our prior belief [1, 14, 24]. In this perspective, a random effect is an extra quantity of variation (or variance

component) which is estimable within the map and can be ascribed a defined probabilistic structure [28].
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This study focuses on modeling prostate cancer incidence data in the years 1996-2005 in Limburg, found in

the north-east of Belgium. Previously the data have been analyzed and published by [6] and [36]. In [6], they

used Bayesian hierarchical models taken into account spatially structured and unstructured random main

effects to show the spatial distribution of the risk. The number of new cases occurring between 1996 and 2005

years was summed over all years and the temporal effect was not considered in the disease mapping process.

On the other hand, the work by [36] has been done on the spatio-temporal data structures to investigate

whether regional spatial patterns change over time. Here a parametric linear model was used as proposed

by Bernadinelli et al [16], and temporally independent model proposed by Waller et al [17]. Although there

is sharing of information in space and time in the popularized parametric linear model, it is restricted to

have a predefined linear shape. On the contrary, temporally independent models estimate the risks for each

period independently of those from the previous periods, therefore, there is no sharing of information in

time [24]. This study was aimed at the spatio-temporal disease mapping by extending the parametric linear

trend models to smooth temporal evolution models and hence information can be shared in space and time

simultaneously, and to smooth the underlying risk estimates because the data are typically sparse. Several

models have been fitted, and comparisons between parametric linear model and smooth temporal evolution

models were employed. On one hand, it is important from the epidemiological and public health point of

view to provide accurate relative risk patterns mostly characterized by a spatial and/ or temporal structure,

which needs to be taken into account simultaneously in the inferential process. On the other hand, more

elaborated models are now accessible to estimate the relative risk-free of background noise, and comparing

them with respect to goodness-of-fit and predictive ability has its own statistical advantage.

The paper is structured as follows: first, in section 2 we described the methodology part starting from

the exploratory data analysis to the statistical models used in the analyses. Bayesian hierarchical models

are described in both the spatial only and spatio-temporal data analyses. In this section, detailed about

the McMC estimation technique with model diagnostics and information covering sensitivity analysis is also

included. In section 3, the data are analyzed and several models are compared with detail descriptions.

Section 4 discusses the main results, and finally, we draw conclusions.
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1.2 Objectives

The main objective of this study was to assess the evolution of prostate cancer disease risk between 1996 and

2005 years in Limburg taking into account both space and time simultaneously and to investigate whether

the spatial and temporal effects are separable. It was also aimed at predictions of the true relative risk of

the disease across each municipality.

1.3 Data description

The data in this study was obtained from the Limburg Cancer Registry (LIKAR) [36]. The Limburg Cancer

Registry (LIKAR) is designed to register all cancers in the province of Limburg, Belgium. The LIKAR

database contains the number of new, histologically or cytologically proven invasive and non-invasive cancers

within male or female inhabitants of Limburg between the years 1996 and 2005. The region, Limburg is

situated in the north-east of Belgium and divided into 44 contiguous but non-overlapping municipalities

or counties. The largest populations in the region found in the middle of the province, in Hasselt. The

data analyzed include yearly incidence counts from prostate cancer in the male population as observed in

each of these municipalities during the 1996-2005 period. The aggregate of incidence, the population at

risk subdivided according to 18 age groups with 5 years gap, and geographic area was registered for each

municipality. Incidence, in this case, is the number of new cases contracting prostate cancer in the specified

municipality in a given time period.

Table 1.1: Male populations at risk and incidence counts of prostate cancer in Limburg for the years 1996-
2005.

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Population 389,655 391,601 393,331 394,797 396,405 398,163 400,193 401,812 403,363 405,465
Incidence 459 504 514 517 604 585 514 677 634 726

In 1996 the population at risk consisted of 775,302 inhabitants, of which 389,655 men and, while in 2005 the

population totaled 814,658, of which 405,465 men. Table 1.1 shows in total 5,734 inhabitants of the Belgian

province of Limburg were new cases contracting with prostate cancer, of which 5,638 were invasive, and 96

non-invasive tumors during the years 1996-2005. Detailed information about the populations at risk with

the incidence of different cancer types for the province of Limburg can be found in [36]. The number of new

cases have been increased except for the years 2001 and 2002.
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2 Methodology

2.1 Exploratory analysis

The aim of disease mapping in this study was to provide a representation of the spatial distribution of the risk

of a prostate cancer disease in male’s population of Limburg region. The below construction of standardized

relative risk (SIR), the test of overdispersion and spatial autocorrelation were used as preliminary analyses for

background measures for disease mapping. This form of mapping is useful for highlighting areas of incidence

needing further consideration. For instance, contour plots or surface views of such mapped data can be

derived, however, inspection of maps of simple background rates cannot provide the accurate assessment of

the statistical significance of disease risk in the given area. The risk in this study reflects the number of

people who suffer from the prostate cancer disease (morbidity) in the years 1996-2005 for the population at

risk. As a result, considering the incidence data in different groups the importance of age can be explored

and potential known confounding factor has been removed before doing any further analysis of the data [11].

2.1.1 Standardization

There is an increasing incidence of cancer with age, with marked increases for ages greater than 40 years,

see Figure 2.1. Since incidence proportions reflect estimated average risks for a study areas, municipalities

having more people in higher age ranges will have higher values of incidence rates than those of younger

populations. As a result, the incidence proportion for two municipalities may appear different, but this

difference may be due entirely to the different age distributions within the municipalities, rather than to

a difference in the underlying age-specific risk of disease [1, 42]. Rate standardization can be used as a

mechanism to adjust summary rates to remove the effect of known risk factors (such as age, gender) and

make comparable rates from different populations [1]. The number of persons at risk and the number of

incidences counts for prostate cancer across age groups are displayed in Figure 2.1. The number of disease

counts observed in a county is clearly a function of the age distribution of the population at risk. As a

result, rate standardization has been used to compare observed rates from municipalities with different age

distributions. In the perspective of statistics, rate standardization amounts to taking a weighted average of

observed age group-specific rates where the weights relate the age distribution in the study population to

that in the standard population [1].

Inskip et al. [4] reviewed different standardization methods. According to their conclusion, direct and

indirect standardization are the most commonly used techniques for summarizing rates and comparing pop-

ulations. Direct age standardization is used to adjust observed rates to reflect rates and counts that we

would observe by applying the observed age-specific rates directly to the standard population, while indirect

standardization use age-specific rates from the standard population to estimate indirectly the numbers of

cases expected in each age group in the observed study population. To compare the number of study pop-

ulations, each standardized against the same standard population, the direct method is advocated because

it preserves consistency between the populations. The indirect method requires age-specific rates for the
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standard population, the number of people at risk in the study population, and the total number of cases

observed in the study population, and so can be used when the direct method cannot be applied [4]. An

indirect standardization can be used to seeks to answer the question: what would be the number of cases

expected in the study population if people in the study population contracted the disease at the same rate

as people in the standard population? [3]. Moreover, in this perspective, age-specific rates for the standard

population is unknown, hence internal, which is an aggregate (marginal) standards are used in indirect

standardization. Breslow and Day [5] also suggested that an internal standard population (super-population

containing the regions of interest) is preferred as compared to an external standard population (entirely

separate population), for comparability of the regions. Furthermore, the advantage of using the indirect

method is that it has a low standard error [4].

Figure 2.1: Number of incidence counts and populations at risk across age groups.

In this study, we will use the term area throughout to refer to the enumeration districts partitioning the

study region, and the term region to refer to the entire study area or a collection of municipalities (Limburg).

So that area, municipality, and county would be used interchangeably. For the spatial data, assume that the

study region A is divided into N contiguous but non-overlapping areas such that A = (A1, A2, ..., AN ), and

a response Yi is observed in each area, thus providing a set of the number of people with prostate cancer

disease which is a count data, Y = (Y1, Y2, ..., YN ). Furthermore, let G denote the number of age groups,

Yig is the number of incidences or new cases in age group g for the study population i, nig denote the

number of people at risk in age group g and for study population i. One simple measure of disease risk is

the standardized incidence ratio (SIRi) for area i computed with standardized expected disease counts and

can be expressed as

SIRi =
Yi
Ei

=

∑G
g=1 Yig∑G
g=1Eig

, (2.1)

where Yi and Ei denotes the overall observed and expected number of cases of prostate cancer disease for the

ith study population, respectively, whereas Eig is the expected number of cases of prostate cancer disease in
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age group g for the study population i, and can be obtained by Eig =

(∑N
i=1 Yig∑N
i=1 nig

)
nig involving the principle

of internal standardization. Note that the Yi are assumed to be random variables, while the Ei are as fixed

known as a function of ni, the number of persons at risk for the disease in county i. An incidence ratio value

larger than one indicates an area that has a higher observed disease risk than the expected, while a county

with an incidence ratio less than one implies a lower observed than the expected disease risk.

The indirect age standardisation for the spatial data given in (2.1) can easily be extended to the spatio-

temporal data which adjusts the observed rates by taking into account both space and time dimensions. Let

SIRij denote the standardized incidence rate for the ith area at the jth time (j = 1, 2, ..., J), and can be

estimated by

SIRij =
Yij
Eij

=

∑G
g=1 Yijg∑G
g=1Eijg

, (2.2)

where Yij and Eij are now denotes the observed and expected number of cases for the ith area at the jth

time, respectively, whereas Eijg is the expected number of cases in age group g for the study population

i and time j, and hence it will be simply: Eijg =

(∑N
i=1

∑J
j=1 Yijg∑N

i=1

∑J
j=1 nijg

)
nijg, and then Eij =

∑G
g=1Eijg. In

general, standardization seeks to remove variations in summary measures (rates or proportions) due solely

to those known risk factors, so any remaining differences suggest the presence of risk differences other

than those adjusted for [1, 6]. Although the SIR gives a useful exploratory information about the spatial

distribution of the disease risk but has some major disadvantages that it considers each area in the given

region independently and does not account any pattern of spatial structure that will appear in the data.

Furthermore, some areas may have a very low or rare expected value mostly for those with a small population

such as Herstappe, and the SIR value, in this case, would be susceptible to small random changes in the

observed incidence counts [1].

2.1.2 Tests for overdispersion

Before conducting any analysis of the presence of spatially structured correlation or unstructured variation,

it is more advisable to assess the heterogeneity of the relative risks. We have the observed and standardized

expected number of cases, significant differences between these two quantities was carried out using a chi-

square test defined by the following test statistic:

χ2 =

N∑
i=1

(
Yi − Ei

)2
Ei

(2.3)

where Yi and Ei are the observed and expected number of cases in the ith municipality, and this test statistic,

asymptotically follows a chi-square distribution with N − 1 degrees of freedom. Another method we carried

out to assess the presence of over-dispersion in the count data and in turn heterogeneity in the relative

risks is that was proposed by Potthoff and Whittinghill’s [27]. In this approach, the alternative hypothesis

assumed that the observed incidence counts are distributed from a Negative Binomial distribution, and the
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relative risks are drawn from a gamma distribution with mean λ and variance σ2. This can be stated as

H0 : θ1 = θ2 = ... = λ

H1 : θi ∼ Gamma(λ2/σ2, λ/σ2).

Then the test statistic is given by

PW = E+

N∑
i=1

Yi
(
Yi − 1

)
Ei

. (2.4)

The asymptotic distribution of this statistic is Gaussian with mean Y+(Y+−1) and variance 2N ∗Y+(Y+−1)

[29]. Where Y+ and E+ are used to denote the global observed and expected number of cases, respectively.

2.1.3 Spatial autocorrelation

We now move from test of heterogeneity that may be related to unknown factors, which can be geographically

structured or unstructured variables, to methods that summarize the extent of observed spatial similarity

between nearby areas. A crucial aspect in many applications of the spatial and spatio-temporal data is

that the presence of dependence, thus correlation, will exist between spatial units. The main objective for

correlation is to measure how strong the tendency is for observations from nearby areas to be more (or less)

alike than observations from areas farther apart. Following the Griffith [7] definition, the term spatial au-

tocorrelation implies correlation among the same type of measurement (incidence of prostate cancer disease

in this study) taken at different locations, and expresses the amount of spatial dependence. Most global

indices of spatial autocorrelation are based on the similarity/dissimilarity of the data values and the spatial

proximity between locations such as areas, counties or municipalities. Let Sij denote measure of how similar

or dissimilar the data values are at locations i and j, and let W = {wij} denote a spatial proximity matrix

(also called spatial connectivity or spatial weight matrix). The (i, j)th element of W , denoted wij , describe

the spatial proximity between locations i and j, for i and j = 1, ..., N. In other words, wij can be viewed as

weights quantifying the spatial dependence between neighborhood areas i and j. In this setting the measure

of similarity Sij depends on random variables defining observations, while the wij are fixed quantities or

weights based on the underlying geography of the regions [1, 8]. Furthermore, the spatial weights matrix is

often row-standardized which makes each row sum in the matrix is equal to one, the individual values wij

are proportionally represented. Row-standardization of W is desirable so that each neighbor of an area is

given equal weight and the sum of all wij (over j) is equal to one [1, 8].

The neighborhood structure or the spatial proximity matrix can be defined in different ways, such as based

on sharing boundaries, the distance between spatial locations, and nearest neighbors. Since we have irregular

areal data, sharing boundaries as proximity measures has been used which is the simplest method and nec-

essarily results in a symmetric spatial proximity matrix. Based on sharing boundaries, the (i, j)th elements

of W can be defined as a binary connectivity matrix, that is, wij = 1 if municipalities i and j share some

common boundary, and wij = 0, otherwise [1]. In this case the symmetric properties of W are established
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because of that wij = wji and its diagonal elements equal to zero, being the similarity of the ith region with

itself wii = 0.

In general, spatial autocorrelation measures deal with covariation or correlation between neighboring ob-

servations of a variable. And thus, it gives us two types of information: similarity of observations and

similarity among locations. Two standard statistics that are used mostly to measure strength of spatial

association for the case of areal units and interval variables are Moran’s I and Geary’s C. Moran’s I [9] is

widely used, and variations of it relate to likelihood ratio tests and best invariant tests for particular models

of correlation for normally distributed random variables [7, 8, 10]. The term global shows the fact that all

association measures were included in the computation of spatial autocorrelation. Therefore, based on the

information described above, Moran’s I as a measure of global indexes of spatial autocorrelation with spatial

proximity and similarity between areas i and j given as follows:

I =

(
1

S2

)∑N
i=1

∑N
j=1 wijSij∑N

i=1

∑N
j=1 wij

, (2.5)

where ȳ =
∑N

i=1 yi
N is the overall average for regional count, S2 =

∑N
i=1(yi−ȳ)2

N and Sij = (yi − ȳ)(yj − ȳ)

measures similarity of incidences between municipalities i and j.

The null hypothesis in the spatial autocorrelation tests states that the near-by regions do not affect one

another implies that there is independence and spatial randomness in the data. The alternative hypothesis

in contrast to the null implies that there is spatial association or dependence among the areas. To be spe-

cific to our study, the research hypothesis states that the near-by municipalities in Limburg region have an

association or dependence on the disease risk of prostate cancer. Spatial autocorrelation in the near-by areas

is considered to be present when the test statistic such as I computed for a particular pattern takes on a

larger value, compared to what would be expected under the null hypothesis of no spatial association [1, 8].

Moreover, spatial autocorrelation testing can be conducted based on randomization or the normal approxi-

mation. Randomization distribution can be obtained by reassign data values among the N fixed areas. As

a result if I lies in the tails of this distribution, we can reject the assumption of independence. Assuming

that the yi’s are observations on random variables Yi whose distribution is normal, then I has a sampling

distribution that is asymptotically normal under the null hypothesis with mean E(I) = −1/(N − 1) and

variance is given by

V ar(I) =
N2W1 −NW2 + 3W 2

0

(N − 1)(N + 1)W 2
0

−
(

1

N − 1

)2

,

with W0 =
∑N
i=1

∑N
j=1 wij ,W1 = 1/2

∑N
i=1

∑N
j=1(wij + wji)

2, and W2 =
∑N
i=1(wi+ + w+j)

2, with wi+ =∑N
j=1 and w+j =

∑N
i=1 wji. Applying the normality assumption under independence with large N , we

compare Z− score = I−E(I)√
V ar(I)

to a standard normal distribution. When the observed value of Moran’s I is

greater than the expected value E(I) points to a positive spatial autocorrelation (clustered pattern), while

a value of Moran’s I that is below the expected value indicates a negative spatial autocorrelation (regular
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pattern). Note that extremely small numbers in the lower range of cases are observed in a very small town,

such as Herstappe and high values partly attributed to highly populated municipalities, such as Hasselt or

Genk. This may reveal that the observed spatial similarity in regional deviations from the average regional

count may simply be due to variations in the regional at-risk population size. To overcome such problem

partly, we replaced counts with incidence proportions, to remove the impact of population heterogeneity in

some amounts [1].

2.2 Bayesian spatial modeling

In the conventional likelihood analysis, the individual contribution to the likelihoods is assumed to be in-

dependent, and this likelihood can be derived as a product of probabilities [2]. The presence of spatial

correlation (or autocorrelation) may have an impact on the structure and form of likelihood models that are

assumed for spatial or spatio-temporal data in general. Hence, the independence criterion may not be met

in the spatial, and in turn other different approaches would be needed to make an inference.

A traditional Poisson distribution is a popular frequentist approach for modeling count data. However,

it is constrained by equidispersion assumption which will not appropriate to model the real data which

exhibit overdispersion (underdispersion), and also do not account for the correlation structure. In particular

to disease mapping, the maximum likelihood estimator for the first and second moment in the traditional

Poisson model is SIR and SIR×1/Ei, respectively [1,2,12]. Note that this approach can yield large changes

in estimate with relatively small changes in expected value since they are inversely proportional. For in-

stance, when a (close to) zero expectation is found, the standardized incidence ratio will be very large for

any positive count, and also the zero SIRs do not distinguish variation in the expected count. In conclusion,

SIR is a saturated estimate of relative risk, and hence not parsimonious. Thus, simple generalized regression

models such as traditional Poisson model and Binomial model often do not capture the extent of variation

present in count data. Overdispersion due to unobserved confounders or spatial correlation will usually not

be captured by simple covariate models, and often it is appropriate to include some additional term or terms

in a model, which can capture such effects [1,2]. By considering different assumptions for the nature of spa-

tial data, common hierarchical Bayesian spatial modeling has been applied in this paper to produce a map of

smoothed standardized incidence rates. Initially, overdispersion or extra-variation can be accommodated by

either inclusion of a prior distribution for the relative risk (such as a Poisson-gamma model) or by extension

of the linear or non-linear predictor term to include an extra random effect (log-normal model). To consider

both structured and unstructured spatial autocorrelation it is often important to include a variety of random

effects in a model, this has been discussed using a conditional autoregressive (CAR) convolution model [13].

2.2.1 Poisson-gamma model

Let θi denote the true relative risk in the ith area and assumed as random effects, to allow borrowing of

strength across neighborhood areas. Assume that the number of cases of prostate cancer disease in each

area follow a Poisson distribution (likelihood), i.e., yi|θi ∼ Poisson(λi) with λi = Eiθi. In the disease
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mapping context a commonly assumed prior distribution for the θi in a Poisson likelihood model is a gamma

distribution and the resulting model is the Poisson-gamma model [2, 12]. The posterior distribution is

proportional to the product of the likelihood model and the prior distribution for θi:

P (θ|y) ∝ L(y|θ)g(θ), (2.6)

where g(θ) is a gamma distribution with parameters α, β, that is G(α, β), and L(y|θ) =
∏N
i=1{(λi)yi exp(λi)}

is the likelihood assumed dependent on the data. The expectation (µ) and variance (σ2) for the prior

distribution would be respectively α/β and α/β2, and could allow for extra variation or overdispersion

which do not assumed in the traditional Poisson model. In this case assuming that the two parameters in

the prior distribution are fixed and known, the relative risk θi follows a gamma distribution G(α+yi, β+Ei)

considered as posterior distribution which emerges in closed form to the conjugacy of the gamma prior with

the Poisson likelihood. Thus, a suitable point estimate of the relative risk θi might be the posterior mean,

E(θi|yi) =
α+ yi
β + Ei

=
yi + µ2

σ2

Ei + µ
σ2

=
Ei(

yi
Ei

)

Ei + µ
σ2

+
( µσ2 )µ

Ei + µ
σ2

= wiSIRi + (1− wi)µ, (2.7)

where wi = Ei/{Ei + (µ/σ2)}, which is found between zero and one inclusively. In (2.7), we realized that

the Bayesian point estimate is a weighted average of the data based SIRi for area i, and the prior mean µ.

Additionally, the upper and lower values of this wi in (2.7) will be used in providing the informative/non

informative behaviors of likelihood and prior distribution in the estimation of posterior mean. On one hand,

the Bayesian point estimate is approximately equal to SIRi when wi is close to 1, that is when the expected

cases (Ei) is big, so the data are strongly informative, or when the prior variance σ2 is big, so the prior is

weakly informative. On the other hand, it will be approximately equal to µ when wi is close to 0 (i.e., when

Ei is small, so the data are sparse, or when σ2 is small, so that the prior is highly informative [12]. Note

that a Poisson-gamma model accounts only spatially-unstructured heterogeneity (UH), and hence have its

own drawbacks due to difficulty to include covariates under the gamma prior. It also fails to capture the

spatially structured correlated heterogeneity (CH) that will be found between the near-by areas.

2.2.2 Poisson-lognormal model

Another common popular method in disease mapping to account for the uncorrelated heterogeneity is a

Poisson-lognormal model, by assuming a direct linkage between relative risk θi and linear or non-linear

predictors. A broad discussion can be found in [2, 12]. In this case the number of cases found in each area

is still assumed to follow a Poisson distribution with parameter λi. Now the parameter of interest θi is

formulated by the function of random effect νi and a vector of fixed covariates (xi) common to all counties

or areas. This can be expressed in a form of hierarchical model for relative risk as

θi = exp(α0 + x′
iβ + νi).

11



The Spatio-temporal Modeling of Prostate Cancer in Limburg

This implies that

log(θi) = α0 + x′
iβ + νi, (2.8)

where νi is a normal distributed random variable with mean 0 and variance σ2
ν representing the heterogene-

ity random effect (i.e, it has a zero mean Gaussian prior distribution N(0, σ2
ν)), capturing extra-Poisson

variability in the log-relative risks. Whereas xi are explanatory spatial covariates at region-level, having

parameter coefficients β. However, in this specific study we do not have known confounders or possible fixed

covariates, and hence the formulation in (2.8) has been applied to incorporate unmeasured confounders via

the use of random effects only (i.e., log(θi) = α0 +νi). Therefore, the random effect νi represents the residual

or unexplained variability after adjusting the overall mean risk α0 in the log-relative risks for the ith area,

which captures unmeasured areal level covariates. To formulate the full Bayesian hierarchical model, we as-

signed a vague prior distribution for the intercept α0 and hyperprior distribution on the precision parameter,

1/σ2
ν = τν ∼ Gamma(α, β). Note that the expected count Ei is considered as an offset term in all the fitted

models on the natural log scale.

2.2.3 CAR convolution model

In the case of Poisson-lognormal model, the random effect term was incorporated to take into account the

unstructured heterogeneity (UH) or overdispertion due to non-geographical variables. There are also other

possibilities to include both structured spatial correlation (CH) and UH at the same time. The fully Bayesian

convolution model can incorporate both unstructured heterogeneity and spatially structured correlation by

including two random effect terms in the model. This was proposed by Besag et al. [14] also known as

Besag-York-Mollie (BYM) model and widely used in disease mapping. Thus, the logged relative risk θi in

convolution model becomes:

log(θi) = α0 + νi + ui, (2.9)

where νi and ui represent UH and CH terms for the ith area, respectively. As we already mentioned in

section 2.2.2, the UH terms are assumed to follow normal distribution νi ∼ (0, σ2
ν). On the other hand,

the structured correlated heterogeneity terms are assumed to follow an intrinsic conditional autoregressive

(CAR) model [13]. The purpose of using an intrinsic CAR prior in the disease mapping is to borrow strength

of information between neighbours, yielding a smoothed map for the risk. This is an example of a Markov

random field (MRF) prior distribution is assumed, and would be used where the conditional mean of the

area effect is based only on its neighborhood areas [15]:

ui|uj,i 6=j ∼ N(ūδi , σ
2
u,i),

ūδi =

∑
j∈δi uj

nδi
=

∑N
j 6=i wijδj∑N
j 6=i wij

,

σ2
u,i =

τ−1
u

nδi
,

12
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where δi is a neighborhood of the ith area, and nδi is the number of neighborhood for the ith area, i.e.,∑N
j 6=i wij (see section 2.1.3), ūδi is the mean of the neighboring uj values (where j ∈ δi) and τu is a precision

parameter which controls the degree of smoothing that is the variability of the random effect (for CH)

conditional upon the random effects in the neighboring areas [15, 16]. The conditional expectation is the

average of the random effects in neighboring areas, while the conditional variance is inversely proportional

to the number of neighbors. In this case we can realized that a county with many neighbors has smaller

variance. In other words, if the random effects are spatially correlated, then the more neighbors an area

has the more information there is from its neighbors about the value of its random effect. Furthermore,

adjacency-based weights are used, hence, wij = 1 if area j is adjacent to area i, and 0 otherwise. The full

Bayesian hierarchical specification for the convolution model with an intrinsic CAR would be summarized

by

yi|Ei, θi ∼ Poisson(Eiθi) (2.10)

log(θi) = α0 + νi + ui,

α0 ∼ N(0, σ2
0)

νi ∼ N(0, σ2
ν)

ui|uj,i 6=j ∼ N(ūδi , σ
2
u,i).

The above expression (2.10) reflects that prior distribution would be assigned for all parameters in the model

including hyper-priors to the hyper-parameters σ2
u, σ

2
ν , α0; and posterior sampling of these parameters via

Markov chain Monte Carlo (McMC) algorithms [15].

Although, the area-specific random effects in (2.9) can be decomposed into clustering or correlated het-

erogeneity and uncorrelated heterogeneity components, however, these random effects are not identified, but

we are usually interested in the total unobserved confounding, the sum of the two effects is considered as

the important component.

2.3 Bayesian spatio-temporal modeling

Up to this point, the focus has been based upon considering the spatial data as being only cross-sections. In

this case, a temporal dimension has been added to the spatial dimension. Thus, we are shifting now from

spatial disease mapping to spatio-temporal modeling to describe the pattern of the disease risks in space and

time simultaneously. Several models are developed based on the concept of hierarchical Bayesian models.

Mostly the methods for count data can be extended from the common spatial models by adding linear as well

as a nonlinear time dimension. Usually, in Bayesian spatio-temporal disease mapping, three random effects

are involved; the spatial random main effect, temporal random main effect, and the interaction between the

two main effects or spatio-temporal interaction random effect. Furthermore, the two random main effects

can be classified into a structured component and unstructured component to represent the dependence and
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heterogeneity variations of disease risks in space and time, respectively [23]. In this study, some basic models

starting from simple linear parametric model to more complex or advanced models through the concept of

hierarchical Bayesian approaches have been discussed.

2.3.1 Parametric linear trend model

In disease mapping the problems found such as in generalized linear model has been solved by using a

Bayesian approach which accounts random effects through a prior distribution. One of the earliest spatio-

temporal models for areal data was investigated by Bernardinelli et al [16]. This model is appropriate to

estimate which areas are exhibiting increasing or decreasing (linear) trends in the response over time. The

linear trend model with the area effects (φi and δi) considered as random effects, through a prior distribution

based on prior belief on the relative risk can be expressed as

log (θij) = α0 + φi + (β + δi) ∗ tj , (2.11)

where α0 is an intercept to denote overall rate, φi is a spatial random effect, β is a linear trend for time tj ,

and δi is a spatio-temporal interaction random effect. There is no spatial trend and temporal random effect,

but it only has a simple linear time trend and spatial random effects. The area effects here can be used

to formulate a spatially unstructured extra-Poisson variation (heterogeneity), or to a spatially structured

variation (clustering), the model may even contain both types of variations such as φi = ui+ νi [16,17]. The

sign of δi has its own meaning that a value of δi < 0 implies that the county-specific trend is less steep than

the mean trend, whilst a value of δi > 0 indicates the county-specific trend is steeper than the mean trend

β [16].

We used the same prior distributions, an intrinsic conditional autoregressive (CAR) for both random ef-

fects, structured random main effect ui and the interaction effect δi in the clustering model. On one hand,

the heterogeneity of the trend, δi is assumed to be sampled priorly from a normal distribution with mean 0

and variance σ2, that is,

(δi|δj , j 6= i, σ2
δ ) ∼ N(0, σ2

δ ). (2.12)

The hyper-parameter σ2
δ was used to control the amount of variability in the linear time trends [16]. On the

other hand, δi were assumed to be sampled from normal distribution with mean µi and variance σ2
i , which

allows that the mean can depend on the neighboring δis. That is,

(δi|δj , j 6= i, σ2
δ ) ∼ N(µi, σ

2
i ), (2.13)

where

µi =

∑N
j 6=i wijδj∑N
j 6=i wij

,

σ2
i =

σ2
δ∑N

j 6=i wij
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where wij as defined in section (2.1.3) hence equal to 1 if i and j counties are geographically adjacent and

0 otherwise. In this case the amount of variation of the δis can be controlled by the variance parameter σ2
i .

Although the parameter σ2
δ is included in both models (2.12 and 2.13), it has rather different interpretation.

In the unstructured heterogeneity model, it represents the overall or marginal variability of the area random

effects, whilst in the clustering model, it controls the variability of the random effect conditional upon the

random effects in the neighboring areas. Thus, the variability in the structured model depends upon the

number of neighboring areas as well [16]. Finally, a conjugate Inverse-Gamma, Gaussian and a flat hyper-

prior distributions have been specified for the random effect variances (σ2
u, σ

2
ν , σ

2
δ ), the overall slope parameter

(β), and the overall intercept term (α0), respectively. Although information is shared in both space and

time in this parametric form of model, it is too restrictive to be a linear function of time, and seems to be

inappropriate for a long period [24].

2.3.2 Smooth temporal evolution models

In the model specified above, a linearity constraint is imposed on the differential temporal trend δi. However,

it is also possible to reflect it using a dynamic formulation for the linear predictor, such as using models

proposed by Knorr-Held [23], and Martíınez et al [25], to allow for time trends without restricting to any

predefined shape. In the case of smooth temporal evolution models, the evolution of the estimated risk in

each area is a smooth function of time. Since temporal evolution is not restricted to any predefined shape,

therefore information can be shared in time [24]. In the case of Knorr-Held models, the structured correlated

and unstructured heterogeneity spatial and temporal main effects, and the interaction between space and

time main effects are accounted. The Knorr-Held model used to express space and time interaction to the

log-relative risk for the ith area in the jth time is given by

log(θij) = α0 + ui + νi + γj + φj + δij (2.14)

where α0 is an overall risk level, ui and νi, respectively, represent spatially correlated and independent het-

erogeneity random main effects. In similar manner, γj and φj denote temporally structured and unstructured

main effects, respectively, whereas the parameters δij are included to represent the interaction for the ith

space and jth time, and capture the variation that cannot be explained by the four main effects. A flat

prior for an overall risk level α0, an intrinsic CAR prior for ui, random walk with independent Gaussian

increment for γj , and a Gaussian prior distributions for νi and φj were assumed. Mathematically the prior

for the correlated random spatial effects is expressed as,

p(u|τu) ∝ exp

(
− τu

2

∑
i∼l

(ui − ul)2

)
,

and for the correlated temporal effect as

p(γ|τγ) ∝ exp

(
− τγ

2

T∑
j=2

(γj − γj−1)2

)
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where τu and τγ are the precision matrix and assumed to follow gamma hyper-prior distribution to consider

full Bayesian formulation.

Figure 2.2: Symbolic representation for Type I (left panel) and Type II (right panel) interactions. Circles
represent prior independence, rectangles represent prior dependence.

Note that in model (2.14), if δij = 0 for all i and j, then separable space and time effects can be reflected,

otherwise four types of spatio-temporal interaction can be obtained [23, 26]. Type I interaction is raised

when the two unstructured main effects ν and φ are assumed to interact, and resulting a priori independent

interaction parameters δij . Similarly, a Type II interaction was formulated between spatially unstructured

heterogeneity and structured temporal main effects; Type III interaction, a combination of structured spa-

tial and unstructured temporal main effects; and lastly Type IV can be obtained by interacting the two

structured random main effects (ui and γj). Further detailed explanation can be found from the author [23].

Symbolic representation for Type I and Type II interactions is given in Figure 2.2.

We also employed the method that was proposed by Mart́ınez et al [25] illustrated as an autoregressive

approach to the spatio-temporal disease mapping. The log-relative risk for the first time period is given by

the sum of an intercept and the two random effects, that is

log(θi1) = α0 + γ1 + (1− ρ2)−1/2.(ui1 + νi1), i = 1, 2, ..., N.

νi1 ∼ N(0, σ2
ν), γ1 ∼ CAR.normal(σ2

γ), (2.15)

u1 = (u11, ..., uN1) ∼ CAR.normal(σ2
u)

where α0 denotes the overall risk level, γ1 represents the mean deviation of the risks in the first period

from the overall mean level, and ui1 and νi1 are used to express, respectively, the spatially structured and

unstructured random effects in the first period. For the subsequent time periods the log-relative risk at the

jth time point was formulated as a function of their estimates in previous periods.
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log(θij) = α0 + γj + ρ ∗
[

log(θi(j−1))− α0 − γj−1

]
+ (uij + νij)

νij ∼ N(0, σ2
ν), i = 1, 2, ..., N j = 2, 3, ..., T (2.16)

uj = (u1j , ..., uNj) ∼ CAR.normal(σ2
u)

γ = (α1, α2, ..., γT ) ∼ CAR.normal(σ2
γ)

where ρ is used to define the temporal correlation structure, uij and νij are defined as the structured and

unstructured spatio-temporal interactions, respectively. A flat prior for the intercept (α0), uniform prior

distribution for ρ, and Inverse-Gamma(a, b) for the variance parameters were used as prior distributions,

hence the full Bayesian formulation is kept as well. Finally, the log-relative risk evolution over time and

every area in (2.16) has been defined as a linear combination of such a value in the previous period instead

of predefined parametric form such as linear or quadratic trend, and hence smoothed temporal evolutions of

disease risk can be described.

2.4 Estimation and computation

Once the posterior distribution has been formulated using the product of likelihood and prior distributions,

it is expected to evaluate the posterior distributions, which is usually done via posterior sampling. For some

simple hierarchical models such as in the Poisson-gamma model, posterior distributions can be simulated

directly or by analytical computation from the given formula. For example, an estimate of posterior mean

and variance can be directly estimated for the Poisson-gamma posterior distribution (see in section 2.2.1).

However, since in most of the Bayesian hierarchical models in disease mapping have two or more levels

(hierarchy), and hence the complexity nature of the posterior distributions of the parameters need sampling

algorithm [2, 18, 19]. That is when the posterior distribution is not in a closed form, different simulation

techniques can be used to approximate them. Let gi(θi) defined as the prior distributions for the p components

of θ for i = 1, 2, ..., p, and L(y|θ) denotes the likelihood distributions for the data y. The posterior

distributions of θ and y can be defined as

P (θ|y) ∝ L(y|θ)
∏
i

gi(θi). (2.17)

Therefore, the objective is to generate a sample from the posterior distribution P (θ|y) using Markov chain

Monte Carlo (McMC) methods. The default Gibbs sampler algorithm has been used in WinBUGS with

blocking mode on. Markov chain provides a sample from posterior distribution and that the summary

measures calculated from the chain consistently estimate the required true posterior summary measures [18].

Such summary measures include such as posterior mean, posterior median, and credible intervals. This

can be done by applying Markov chain Law of Large numbers (McLLN) and Markov chain Central Limit

Theorem (McCLT) [18,19].
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2.5 Assessing convergence of a Markov chain

One possible critical issue in McMC algorithm is convergence for Markov chain which need to check how

close to the true posterior distribution. This diagnostic involves convergence to the stationary distribution

p(θ|y) and verifying the accuracy of the posterior summary measures. This is explained more formally by

Lesaffre & Lawson [18] and Robert [19], as convergence in a McMC context is an asymptotic property which

implies for a Markov chain that pt(θ), the distribution of θt, grows to the target distribution p(θ|y) when t

tends to infinity. In verifying the posterior summary measures in regular Monte Carlo setting, for instance,

we are concerned with convergence of the empirical average ˆ̄θ = 1
T

∑T
t=1 θ

t to posterior mean (θ̄), where ˆ̄θ

is used to denote the posterior mean obtained from a McMC chain. Different graphical approaches such

as trace plot, autocorrelation plot, and running mean plot, that are readily available software were used

for stationarity checking, and the Gelman and Rubin (GR) ANOVA diagnostic as a formal test. When the

Markov chain is stationary, θt1 and θt2 have the same marginal distribution for arbitrary times or iterations

t1 and t2. Amongst formal convergence diagnostics in McMC chain, we have used the one proposed by

Gelman and Rubin (GR, 1992) which is recommended based on multiple chains with overdispersed starting

positions, and used as quantitative and graphical measures as well [18–20]. Suppose that M parallel chains

are run for 2T iterations, which means that we are taking M dispersed starting points θ0
m(m = 1, 2, ...,M).

The first T iterations are discarded and considered as burn-in. Then the M chains (θtm) of length with the

remaining T iterations produce means ˆ̄θm = 1
T

∑T
t=1 θ

t
m for m = 1, 2, ...,M , and the overall McMC mean

can be computed by ˆ̄θ = 1
M

∑M
m=1

ˆ̄θm. The within- and between- chain variability can be obtained as

W =
1

M

M∑
m=1

s2
m B =

T

M − 1

M∑
m=1

(ˆ̄θm − ˆ̄θ)2,

with s2
m = 1

T

∑T
t=1(θtm − ˆ̄θm)2. When there is stationarity in the Markov chain that is when all ˆ̄θm are

unbiased estimates of the true posterior mean, an unbiased estimate of the posterior variance of θt in the

target distribution can be computed by

V̂ ≡ V̂ ar(θt|y) =
T − 1

T
W +

1

T
B.

However, as noted by Gelman, V̂ overestimates the variance of ˆ̄θtm because of the large dispersion of the

initial distribution, whereas W underestimates this variance, as long as the different sequences (ˆ̄θtm) remain

concentrated around their starting values [21]. Therefore, GR recommended the ratio R̂ = V̂
W as a conver-

gence diagnostic, which is called the estimated potential scale reduction factor (PSRF). If R̂ is substantially

greater than 1, further iterations are needed either to increase WT or to reduce V̂ [18]. In the case of

GR-diagnostic, a Gaussian behavior of the sampled parameter values is assumed, and a log-transformation

is required for the variance of a normal distribution prior to the application. A nonparametric version of the

GR-diagnostic is recommended and computed as the interval-based R̂I :

R̂I =
length of total-chain interval

average length of the within-chain intervals
≡ V̂I
WI

.
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The GR-diagnostic was implemented in the R packages CODA and BOA, while a dynamic version of BGR

interval diagnostics R̂I has been done in WinBUGS.

2.6 Model comparison and goodness-of-fit

Until this point, several commonly used models are discussed in both spatial and spatio-temporal analyses.

As it has already been mentioned in section 1.2, one of the objectives is making prediction of relative

risk of the disease. However, before making any prediction we need to select one best model amongst

the fitted Bayesian hierarchical models. Within a likelihood modeling approach, some of the methods

that are commonly used as a model choice criterion include Bayesian information criterion (BIC), Akaike

information criterion (AIC) and deviance (D). These methods are also widely used in Bayesian hierarchical

models. Both AIC and BIC penalize model by incorporating the number of parameters as a penalty for over

parametrization. Nevertheless, AIC and BIC have a disadvantage in models with random effects since it is

difficult to decide how many parameters are included in the given model. On the other hand, a disadvantage

of using the deviance directly is that it does not allow for the degree of parameterization in the model [2,18].

However, the deviance information criterion (DIC) was proposed by Spiegelhalter et al [22], and is widely

used as an important measure of goodness-of-fit in Bayesian modeling. This is defined as

DIC = 2Eθ|y(D)−D[Eθ|y(θ)] = Eθ|y(D) + pD,

where D(.) is the deviance of the model, pD = Eθ|y(D) −D[Eθ|y(θ)] is the estimated effective number of

parameters, and y is the vector of observed data. Thus, the DIC is formulated based on the average deviance

and the deviance of the posterior expected parameter estimates [2, 18]. The complexity of each model has

been assessed using the effective number of parameters, pD, which is defined as the expected deviance minus

the deviance evaluated at the posterior expectations.

Note that the predictive response p(ypri |y) can be obtained from a converged posterior sample given the

current parameters at iteration j (θ(j)).

p(ypri |y) =

∫
p(ypri |θ

(j))p(θ(j)|y)dθ(j). (2.18)

The resulting predictive values has marginal distribution p(ypri |y). Thus, for a Poisson distribution, this can

easily generate counts as yprij ← Pois(Eiθ
(j)
i ) at the jth iteration. As a model selection criterion, we also

used the mean squared predictive error (MSPE), which is an average of the item-wise squared error loss

given by

MSPEj =

N∑
i

(yi − yprij )2/N ⇒MSPE =

G∑
j=1

MSPEj/G,

where N and G are the number of observations and the sampler sample size, respectively.
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2.7 Sensitivity to hyper-prior distributions

One of the key issues in fully Bayesian hierarchical models to disease mapping is the choice of the hyper-prior

distributions of the parameters, specifically for the variance components. Most often, the data dominates

the prior if the data are large enough and hence it will matter less which values of the hyper-parameters

are chosen [28]. However, if we have a scarce data, it is an important consideration to choose a suitable

combination of hyper-parameters. Thus, sensitivity analysis has been carried out to different choices of priors

or parameters to investigate the influence of the choice of hyper-prior on the estimates of relative risk.
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3 Results

3.1 Exploratory data analysis

As we already explained in section 2, the expected incidence counts have been estimated using internal

standardization to remove the effect of age on the standardized incidence ratio (SIR). Summary values for

observed and expected counts and SIR of prostate cancer in Limburg for spatial only data are shown in Table

3.1. The number of cases of prostate cancer disease in Limburg was 130 on average and ranges from 1 to 596

in the 10 years period 1996-2005. In general, extremely small number of cases have occurred in a very small

municipality, such as Herstappe and high values that will be attributed to highly populated cities, such as

Hasselt. The average of SIR was 0.997 and ranging from 0.118 to 1.450 for spatial only data. The variance

is quite larger than the mean value of observed as well as expected counts which shows the existence of a

large amount of overdispersion in the data.

Table 3.1: Summary statistics for the spatial only data.

Variable Minimum Mean Maximum Variance
Observed 1.000 130.318 596.000 11904.97
Expected 0.823 130.318 527.596 10322.98
SIR 0.118 0.997 1.450 0.056

The distributions of observed and standardized expected counts are shown in Figure 3.1. Although stan-

dardization has been done to minimize partly the problem of overdispersion, extra-Poisson variation is still

present in the expected counts.

Figure 3.1: Histogram of prostate cancer incidence with empirical density, observed counts(left panel) and
expected counts(right panel).

Since standardization only involves known possible factors, age in this case, hence extra-Poisson variation

can occur in structured or unstructured ways. The remaining extra-variation would also be explained by

correlation through space, called structured variation, and spatially unstructured overdispersion, due to

unobserved factors. In summary, we realized that, although standardization can be used to adjust the effect

of age, no account is taken of spatial variations and unknown factors on the estimation of disease risk.

21



The Spatio-temporal Modeling of Prostate Cancer in Limburg

Figure 3.2: Individual trajectories and average evolution of observed incidence counts (left), and standardized
incidence ratio (SIR) (right).

It is a good place to look at some simple plots of the incidence count and standardized incidence ratio

(SIR) for each county. Figure 3.2 displays the individual municipality trajectories and average evolution of

incidence counts and standardized incidence ratio for the period of 1996-2005 years. The individual profile

plot clearly shows lots of spatial variation in incidence counts and in turn SIR of prostate cancer in Limburg.

These plots also give us some indications about the variability within measurements of the same municipality

over time. The average evolution (black line) outlined in the center of each plot depicts slightly an increased

rate over time.

The standardized incidence ratio (SIR) estimates of prostate cancer for each municipality at each and com-

bined time points are displayed in the form of maps in Figure 3.3. In the maps, the first row and column

show the SIR estimates for only spatial data, called SIR: only Spatial. There were extremely low (0) to

high (13.34) values of relative risk in the Limburg municipalities. Although the county in question had a

low expected count (0.075) and observed count (1), there are several outlying large SMRs with the largest

observed SIR equaling 13.34, and it is well known and mentioned that counties with low expected counts

tend to be more variable in terms of their SIRs. For instance, an extremely high value of SIR(13.34) is found

for Herstappe that has only one case within 10 years measurement. The maps also show a worthwhile spatial

as well as temporal heterogeneity. Generally, no immediately obvious patterns emerge. When we compute

the standardized expected number of incidence counts for each area to estimate the SIR in section 2.1.1, we

have assumed the hypothesis that the risks remain constant in space and time. This shows that the raw

estimate of relative risk (SIR) don’t have a possibility to reflect the spatial pattern as well as the time trend

of relative risks. Thus, SIR is used as an exploratory (noisy) measure of disease risk.
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Figure 3.3: Standardized incidence relative risk estimates of prostate cancer in Limburg for the spatial and
spatio-temporal data.

Measures of overdispersion and spatial autocorrelation for the spatial data are shown in Table 3.2. Both

the chi-square and Potthoff-Whittinghill’s test of overdispersion agree with the presence of overdispersion in

the incidence counts, and in turn heterogeneity in the relative risk of prostate cancer in Limburg. Moran’s I

and Geary’s C are also shown, used as global indicators of spatial autocorrelation. The estimated Moran’s

I statistic is 0.2371 with p-value values 0.0027 and 0.0037 under randomization and normality assumptions,

respectively. The p-values are found to be less than 0.05 in both assumptions suggesting significant evidence

of unexplained spatial autocorrelation in the incidence of prostate cancer after accounting for the effect of

age. Similar conclusions can be obtained using Geary’s C global indicator showing the presence of spatial

association or dependence among the areas.

Table 3.2: Test of overdispersion and global indicators of spatial autocorrelation.

Overdispersion Spatial autocorrelation

Test Statistic P-value Indicator Statistic
P-value

randomization normality
χ2 232.0479 <0.0001 Moran’s I 0.2371 0.0027 0.0037
PW 33957687 <0.0001 Geary’s C 0.4469 <0.0001 <0.0001

The histogram in Figure 3.4 shows the distribution of Moran’s I values under randomization, where we

reassign SIR at random among the 44 municipalities (which makes sense with a spatial association, as noted

above). In addition, the observed value of Moran’s I =0.2371 is greater than its expected value E(I) =

−0.0232, showing a positive spatial autocorrelation or clustered pattern, which means that observations

from nearby areas tend to be more alike than observations from areas farther apart.
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Figure 3.4: Histogram of 9999 simulated values of Moran’s I under random permutations of the data, the
observed value of Moran’s I is marked by a vertical broken line.

In the case of spatio-temporal data, we also checked the spatial autocorrelation of SIR at each time point

using Moran’s I. These values with corresponding p-values are shown graphically in Figure 3.5. We only

found a significant evidence of autocorrelation for the years 1997-1999, 2001 and 2003-2004, that shows the

presence of dependence of relative risks in neighborhood areas. In general, testing spatial autocorrelation

using Moran’s I or Gear’s C is usually taken as an exploratory measure, and it is recommended to use the

model-based approach as a test of spatial significance.

Figure 3.5: Moran’s I under random permutations (left), and p-values of Moran’s I test (right) for the
spatio-temporal data.
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3.2 Spatial analysis

As we explained in the methodology part of the study, we applied Poisson-gamma(PG), Poisson-lognormal(PL),

CAR (CH), and CAR convolution models for the prostate cancer data summed over all years between 1996

and 2005. We have taken vague prior distributions for all parameters, namely, exp(0.01) for the gamma

parameters in PG model, Gamma(0.01, 0.01) to σ−2
ν for fitting PL, and Gamma(0.5, 0.005) was taken for

σ−2
u and σ−2

ν in CAR (CH+UH) and CAR(CH) modeling. The MCMC convergence for each model was

checked in both graphical plots and formal diagnostic tests. To increase the reliability of the estimates we

used a large number of iterations (90,000) with burn-in of 45,000, and only one of 10 them was saved to lower

the autocorrelation. A multivariate trace and autocorrelation plots to show the mixing rate, running-mean

and density plots to show the stability of the posterior distribution also investigated for the deviance of each

model and displayed in Figures B.10 - B.13 in the appendices. The estimated value to the potential scale

reduction factor R̂I for the fitted spatial models are presented in Table 3.4. It has been seen that the values

of R̂I for all parameters were approximately equal to 1 and revealed well converged, and reliable results can

be obtained from the fitted models.

Once we have assessed the convergence of a Markov chain for the fitted models, the deviance informa-

tion criteria (DIC) and the estimated effective number of parameters (pD), the mean absolute predictive

error (MAPE), and mean-squared predictive error (MSPE) were used to select the best outperform model.

The posterior estimates of these relative measures of goodness of fit for fitting each of the spatial and aspatial

models are shown in Table 3.3.

Table 3.3: Posterior estimates of goodness-of-fit statistics for the fitted spatial models.

Type Model D̄ D̂ pD DIC MAPE MSPE

aspatial
PG 335.013 300.792 34.220 369.233 12.099 260.489
PL 336.627 301.214 35.412 372.039 12.142 262.925

Spatial
CH 325.672 293.892 31.780 357.452 11.827 252.259

CH+UH 324.693 292.479 32.214 356.906 11.829 252.454

One can see that there is no strong clear preference among the fitted models in terms of MAPE values.

Looking at models that only accounts for the unstructured variation the Poisson-gamma model showed less

decisive preference than the Poisson-lognormal model. On the other hand, the spatial pattern models the

CAR convolution model seems favored to CAR (CH) in terms of DIC and pD value. Generally to investigate

the structured and/or unstructured heterogeneity random effect the goodness-of-fit results revealed that the

CAR models outperform the other aspatial fitted models since spatially structured and unstructured hetero-

geneity can be accounted in the estimation of relative risk.

The posterior estimated value for the intercept, the variance of spatially-unstructured random effect (σ2
ν) and

the variance of spatially-structured random effect (σ2
u) with corresponding credible intervals are displayed

in Table 3.4. When we compute the ratio of the two random effects for the CAR convolution model results

in Table 3.4, σ2
u/σ

2
ν = 0.0106/0.0000418 = 1345.63, indicates that a spatially structured variation highly
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dominates the unstructured over-dispersion. Which implies that the residual disease risk due to spatially

structured variation is larger than unstructured overdispersion. Moreover, the variance of structured random

effect in CAR convolution is approximately equal to that of CAR (CH). This can be expected because of

that the random effects were assumed to have a lognormal prior distribution in both models.

Table 3.4: Posterior estimates, standard deviation, credible interval, and R̂I for the spatial models.

Model Parameter estimates sd 2.50% 97.50% R̂I

PG
a 26.2943 8.1763 14.0597 46.4505 1.0023
b 26.4386 8.2476 14.0500 46.7300 1.0023
σ2
ν 0.0413 0.0130 0.0212 0.0718 1.0022

PL
Intercept 0.9759 0.0363 0.9061 1.0500 1.0009

σ2
ν 0.0025 0.0018 0.0006 0.0072 1.0018

CH
Intercept 0.9618 0.0169 0.9288 0.9953 1.0009

σ2
u 0.0117 0.0077 0.0031 0.0312 1.0009

CH+UH

Intercept 0.9628 0.0187 0.9264 1.0010 1.0010
σ2
u 0.0106 0.0080 0.0021 0.0317 1.0012
σ2
ν 4.18E-05 0.0001 1.59E-06 0.0002 1.0011

The posterior estimated value for the relative risk for each municipality obtained from the fitted models are

visualized in Figure 3.6. We can see from the map that the disease risk levels are fairly constant across

the fitted models with the exception of some municipalities such as Voeren and Wellen. Although the CAR

models are considered as the best to fit the data in terms of DIC as well as MSPE values, the spatial patterns

of the relative risks were very similar in all the fitted models. Nevertheless, as it has shown in Figure 3.7,

the credibility intervals containing the relative risk for the aspatial models are a little bit wider than the

spatial models (CAR models) in most of the estimates.

Figure 3.6: Relative risk estimates obtained from the fitted spatial models

The credible intervals of the relative risk obtained from the Poisson-gamma model coincide with Poisson-

lognormal model, while the two spatial models also showed similar credible intervals. In the north-east,
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south-west and some center of the region, such as Lummen, Heusden-Zolder, Sint-Truiden, Hasselt, Gingelom,

Beringen, Wellen, and Maaseik shows elevated prostate cancer rate relative to the other municipalities. In

general, the range of the relative risk value in the fitted models was within 0.321 and 1.370, which implies

comparing with the SIR, we have obtained a smoother map with fewer extremes in the relative risk estimates

in all the fitted models.

Figure 3.7: Credible interval difference for the posterior estimates of relative risk obtained from the fitted
spatial models.

3.3 Spatio-temporal analysis

Since the main objective of this study was to assess the evolution of prostate cancer risk in space and time at

the same time, hence more emphasis was given to the spatio-temporal disease mapping. As it has illustrated

in section 2.3, we were fitted several models to the spatio-temporal data which can be classified as para-

metric linear trend type model, and smooth temporal evolution models that reflects inseparable space-time

interaction. We considered an intrinsic CAR normal distribution for the spatially correlated random effect,

ui, while first-order random walk for the structured temporal effect, and normal distribution with mean 0

and variance σ2
ν and σ2

φ, respectively for the unstructured spatial and temporal random effects. We have

also used an intrinsic CAR prior distribution for the Type II interaction, while it comes from a normal dis-

tribution in the case of Type I interaction. Furthermore, we considered vague hyper-priors for all precision

hyper-parameters (σ−2
u , σ−2

ν , σ−2
γ , σ−2

φ , σ−2
δ ), and a flat prior for the overall risk level (α0).

We also used similar techniques as spatial analysis to assess the convergence of McMC algorithm. For

many of the spatio-temporal models described in Table 3.5, we initiated two chains with 100,000 total itera-

tions and 50,000 burn-in for each chain, and 10 thinning value to accelerate the convergence time. However,

it has been taken a total sample of 160,000 with burn-in of 80,000 iterations to get convergence results for the

Knorr-Held models. Convergence was checked by visual examination of time series plots of samples for each

chain, running mean plot and BGR plots. Following the BGR formal diagnostic procedures the estimated

values of potential scale reduction factor R̂I for all parameters in the fitted models are displayed in Table

A.2 in the appendices. The estimated value of R̂I revolves around 1, which indicates an acceptable degree

of convergence of the Markov chain. The fitted models with corresponding relative goodness-of-fit statistics
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such as DIC and MSPE are also shown in Table 3.5. The first model B0 was fitted with the only overall tem-

poral trend and spatially unstructured heterogeneity random effect and has large DIC score (DIC= 270.550)

showing that it is far from the best model compared to all the others.

Table 3.5: Posterior estimates of goodness-of-fit statistics for the fitted spatio-temporal models.

Model type Model pD DIC MAPE MSPE
Linear trend models

Linear
B0: α0 + νi + βtj 36.300 2370.550 4.001 29.906
B1: α0 + ui + νi + (β + δi)tj 35.558 2355.200 3.988 29.760
B2: α0 + ui + (β + δi)tj 35.876 2355.980 3.985 29.710
B3: α0 + νi + (β + δi)tj 38.597 2370.300 3.992 29.621
B4: B3, but δi ∼ N(0, σ2

δ ) 40.162 2369.660 4.001 29.823
Smooth temporal evolution models

Main effect K0: α0 + ui + νi + γj + φj 39.278 2344.380 3.938 28.643

Type I
K1: α0 + ui + νi + γj + φj + δij 80.268 2336.200 3.783 26.130
K2: α0 + ui + νi + φj + δij 90.395 2337.050 3.820 26.800

Interaction K3: α0 + νi + γj + φj + δij 85.180 2351.360 3.833 26.830

Type II
K4: α0 + ui + νi + γj + φj + δij 57.373 2337.760 3.879 27.630
K5: α0 + ui + νi + γj + δij 50.695 2342.440 3.845 26.991

Interaction K6: α0 + νi + γj + δij 65.827 2355.720 3.888 27.680

Autoregressive
AR(1): Model (2.16) 128.508 2343.520 3.725 25.396
AR(2): Extension of AR(1) 120.269 2344.580 3.747 25.687
AR(3): AR(1), but without νij 78.845 2336.110 3.817 26.701

The parametric models B1, B2, B3 and B4 have been fitted to account both space and time with restricting

to linear trend, which was proposed by Bernardinelli et al [16]. Specifically, model B1 found in the first row

and second column of Table 3.5 was fitted by accounting both the spatially structured, ui and unstructured

random main effects, νi along with the interaction, δi between space and linear temporal effect. The other

three models B2 and B3 were fitted to make a more parsimonious model by removing the two random main

effects one at a time. Similarly, model B4 is model B3 but the spatio-temporal interaction term δi comes

from Gaussian distribution with mean 0 and variance σ2
δ . We made the analysis with centering time to

reduce the correlation between area specific intercept and trend. We have taken a flat prior for the overall

risk level, α0 and Gamma(0.5, 0.0005) for the precision hyper-parameters, σ−2
u , σ−2

ν and σ−2
δ . Models B1 and

B2 are virtually indistinguishable in terms of pD, MAPE and MSPE values. However, model B2 was fitted

without νi, which shows that adding the unstructured heterogeneity effect doesn’t give an improvement on

the model fitting.

On the other hand, models B3 and B4, respectively, with CAR and Gaussian prior to δi were fitted ne-

glecting ui, and the DIC value increases in both cases, hence the spatially structured random main effect has

a tangible significant effect on the estimation of relative risk. In general, models B1 and B2 showed better fit

than the others, however, model without spatially unstructured random main effect (B2) is more parsimo-

nious than the full model. The posterior estimated values with corresponding 95% credibility intervals for

the variance components and trend are shown in Table A.2. For instance for model B2, we found a signifi-

cant time trend with an increased prostate cancer incidence over time between 1996 and 2005 (β = 0.1506;
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CI=[0.0569, 0.2432]). As exp(β) = exp(0.1506) = 1.1625 is the rate ratio between two consecutive years, the

risk was multiplied by approximately 1.1625 every year. This finding then shows that there is an increasing

trend in the incidence rate from prostate cancer in Limburg.

(a) (b)

Figure 3.8: Posterior expected values for differential trend(δi) (a), and temporal trend (exp(β+δi)) obtained
by linear trend model B2 (b).

We also mapped the differential trend δi to investigate the geographical variation of the area-specific trend.

An interesting point displayed in Figure 3.8a is that, a value of δi < 0 (white) implies that the area-specific

trend is less steep than the mean trend, whilst a value of δi > 0 (highlighted areas) implies that the area-

specific trend is steeper than the mean trend. However, there is not an extreme value of differential trend

that would show the area-specific trend grossly deviates from the mean trend. Figure 3.8b also shows the

temporal trend estimates in the counties of Limburg for the period 1996-2005. This is computed as exp(β+δi)

from the temporal model B2 terms. In general, the incidence relative risk increases in the north, north-east

and some part of south-west of the region.

The first four smooth temporal evolution models shown in Table 3.5 are Knorr-Held models and fitted

to account spatially and temporally structured and unstructured main effects (K0) at the same time, and

inseparable space-time interactions (K1,K2,K3). As we can see from the mathematical expression, the main

effect model K0 represents separable spatial and temporal variation at the same time in the estimation of

relative risks. Whereas the other three models, K1,K2 and K3 were formulated to represent inseparable

Type I space-time variation. More specifically, model K1 was fitted including all random main effects and

the interaction between unstructured spatial and temporal effects (νi × φj = δij), hence reflecting Type I

inseparable variation proposed by Knorr-Held. In a similar manner, the remaining two models (K2 and K3)

are simply the reduced form of K1 and fitted by removing the structured main effects in order to get a more

parsimonious model description. The hyper-prior distributions for all precision parameters were Gamma(0.5,

0.0005) in all Knorr-Held models [41]. Comparing the main effects model, K0 (DIC= 2344.38) with the other

Type I interaction models, K1(DIC= 2336.20) and K2(DIC= 2337.050), and Type II interaction models,
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K4(DIC= 2337.760) and K5 (DIC= 2342.440), we can observe that the interaction models can ruled out

the main effect model. This shows that there is a considerable evidence to include the interaction effect. In

addition, the DIC value for K1 is the smallest in Type I interaction models, with slight evidence to be ruled

out the other nested models. In terms of model complexity, not surprisingly, the main effects model has the

smallest effective number of parameters (pD=39.278).

In Table 3.5, models listed under Type II interaction were fitted to investigate the interaction between

correlated temporal effect and spatially unstructured random effect (νi × γj = δij). Namely, model K4 was

fitted including all random main effects with an interaction effect. Similarly, model K5 and model K6 are

model K4 but by removing temporally heterogeneous and spatially structured main effects, respectively. As

we can see in Table 3.5, there is a considerable difference in the posterior summary values of DIC, suggesting

that model K4 shows best fit; adding the spatial correlated random main effect and heterogeneous temporal

main effects show substantial improvement on the fitted model.

Lastly, the three models AR(1), AR(2), and AR(3) found in the last three rows of Table 3.5 have been

fitted to describe an autoregressive approach to the spatio-temporal disease mapping. Model AR(1) was

fitted that already defined in (2.16), and model AR(3) is model AR(1) but it only has the structured term

uij for every time period. Thus, we have three precision parameters in model AR(1), namely, σ−2
γ , σ−2

u and

σ−2
ν , while only σ−2

γ and σ−2
u in model AR(3). On the other hand, the mathematical formulation for model

AR(2) is the same as AR(1), however, we extended that the precision parameters for the first period assumed

to be different from those described in the following periods. That is, we have two precision parameters, σ−2
u1

and σ−2
ν1 in the first period, and the other two different precision parameters, σ−2

u and σ−2
ν for the subsequent

periods in addition to the common σ−2
γ that captures an intercept random temporal effect. We have used

Gamma(0.5, 0.0005) as a hyper-prior distribution for all precision parameters with U(−1, 1) prior for the

correlation parameter ρ. The DIC value for AR(1), AR(2) and AR(3) are, respectively, 2343.52, 2344.58,

and 2336.11, showing that model AR(3) has better performance than the other two. Model AR(1) fits also

slightly better than model AR(2) in terms of DIC value but with a cost of complexity. In this approach, there

is no any improvement that can be gained by including the unstructured spatio-temporal interaction term νij .

Due to the large number of models fitted here we considered one model to make sensitivity analysis, to

include the interpretations of estimates and to do predictions. Once we made several nested model compar-

isons, the next step is to select one model from each nested model shown in Table 3.5. The predictions of

relative risk, and further interpretation about the posterior estimated values were illustrated based on the

best fitted model. From the posterior summary values of DIC, 2355.200(B2), 2336.20(K1), 2337.760(K4),

and 2336.11(AR(3)) are the lowest DIC values from the linear, Type I interaction, Type II interaction, and

autoregressive type models, respectively. Among these model, the difference in DIC is less marked between

K1,K4 and AR(3). Based on this results, it appears clear that models K1, K4 and AR(3) represent the

three most promising approaches for our data. In this case, we need to make a comparison considering model
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complexity, which can be measured by the effective number of parameters found in each model. The model

containing Type II spatio-temporal interaction effect (K4) has around 57 effective parameters, whereas the

model with Type I interaction effects (K1) and AR(3), respectively, has about 23 and 21 additional effective

parameters. Models K1 and AR(3) has the best DIC score, but it requires substantial undertaking in terms

of model complexity and therefore may not be an efficient choice in the statistical world, hence model K4 was

selected for further analyses. In other words, a model with Type II spatio-temporal interaction and spatial

and temporal CH and UH random main effect, which is inseparable, appears to be the best choice overall.

On the other hand, the least favorable models that have been fitted in our dataset in the spatio-temporal

analysis are the linear parametric trend models. Therefore, it seems to be advisable to include the interaction

between the spatially unstructured and temporal correlated random effects in the process of relative risk

estimation. This can be thought of as unobserved spatial covariates for each pixel (i, j), that do not have

any structure in space but in time. We now describe detailed analyses with Type II interaction, model K4

as this model being less complex in terms of pD.

As a diagnostics analysis, we have also used the posterior distribution of the deviance residual for each

space and time point, which can be estimated as

Dij = sign(yij − Eijθij) ∗
√

2 ∗
{
yij log

( yij
Eijθij

)
− (yij − Eijθij)

}
where θij and Eij , respectively, defined as the true relative risk and the expected incidence count for the ith

municipality at the jth time. Figure 3.9 gives the deviance residual versus predicted diagnostics plot and the

posterior distribution of the deviance for the final fitted model. The posterior mean of the deviance residual

is plotted against the posterior mean of the predicted incidence counts, which doesn’t show strong outliers

in terms of deviance residuals.

Figure 3.9: The deviance residual versus predicted diagnostics plot (left panel) and the posterior distribution
of the deviance (right panel) for the final fitted model.

The histogram in the right panel of Figure 3.9 represents the empirical distribution of residual deviance based

on 4,000 samples. Once more again, some of the convergence graphical plots for the final fitted model can

31



The Spatio-temporal Modeling of Prostate Cancer in Limburg

be found in the appendices, such as the running mean plot in Figure B.6, the autocorrelation plot in Figure

B.7, the Geweke and the BGR diagnostic plots in Figure B.8 for each variance parameter and deviance. All

these plots showed acceptable convergence in the Gibbs sampler.

3.3.1 Sensitivity analysis to priors

At the third stage of the fitted models in hierarchical Bayesian analysis, we required specifications of prior

distributions for the second stage parameters (precision components) σ−2
l s. As it has been described in sec-

tion 3.3, the hyper-prior distributions of the variance components are generally set to be vaguely specified as

a Gamma(a, b) distribution with scale and shape parameters a and b, respectively, which gives mean a/b, and

variance a/b2. In order to investigate the influence of hyper-prior distribution specifications on the results, a

sensitivity analysis has been done for the spatial and temporal precision parameters, σ−2
u , σ−2

ν , σ−2
γ , σ−2

φ , and

σ−2
δ . Three hyper-prior distributions, Gamma(0.01, 0.001), Gamma(0.001, 0.001), and Gamma(0.5, 0.0005)

were used for all the precision parameters, to avoid problems with improper hyper-priors [16,23,41], and one

uniform distribution, U(0,100) for the standard deviations, σls [2]. The hyper-priors are arranged in increas-

ing order of their dispersion, that is Gamma(0.001, 0.001) are more dispersed than Gamma(0.01, 0.001), and

the latter have high dispersion than Gamma(0.5, 0.0005).

Table 3.6: Posterior means for the variances, DIC and pD estimated from model K4 under each prior.

Hyper-priors
Parameter Gamma(0.001,0.001) U(0,100) Gamma(0.01,0.001) Gamma(0.5,0.0005)
σ2
u 0.0118 0.10679 0.01145 0.01136
σ2
ν 3.83E-05 0.00262 4.22E-05 1.26E-05
σ2
γ 6.65E-05 0.00323 5.37E-05 1.91E-05
σ2
φ 5.66E-05 0.00467 6.07E-05 2.38E-05

σ2
δ 6.64E-06 0.00172 7.79E-06 4.23E-06

DIC 2338.47 2339.76 2339.64 2337.76
pD 56.66 56.294 52.393 57.373

The posterior summary measures of variance components and model-fit statistics obtained with those hyper-

prior distributions used as sensitivity analyses are shown in Table 3.6. The Gamma(0.5, 0.0005) prior to

the precision components gives the smallest posterior estimates of DIC value (2337.76) relative to the others

with a similar estimate for variances. The spatial distributions of the posterior mean of relative risks for

the years 1996-2005 obtained from model K4 under each prior distribution are displayed in Figures B.1

-B.4 in the appendices. All these maps showed that stable estimates for the relative risks can be obtained

from each hyper-prior distributions, which indicates that results are robust against the specification of the

prior distribution doesn’t have an influence on the results in this specific study. In all cases, the spatially

structured random main effect accounts larger posterior estimates of variance relative to the other effects.

For instance, with Gamma(0.5, 0.0005) prior, the variability of the relative risk is attributed more to the

spatially structured effects (σ2
u = 0.01136) than to the uncorrelated heterogeneity (σ2

ν = 0.0000191). An

interesting point to mention here is that the computational time of McMC under Uniform prior distribution

was twice of the Gamma prior distributions.
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3.3.2 Risk prediction

Once we have selected one best-fitted model which can give fairly stable estimates with different priors, the

next step goes to the prediction of the risk of prostate cancer in Limburg. The predicted relative risk of

prostate cancer using model K4 was displayed in the form of a map in Figure B.4. There are clear and fairly

stable spatial patterns in the first four years, and it highlights the geographical distribution of risks; the

western, and north-eastern parts of Limburg appear at higher risk. As it can be seen in the map, the spatial

pattern shows some changes for some counties such as Nieuwerkerken, Hamont Achel and Lummen in the

years 1996-1999, but does not change much more within 2000-2001. The maps also show substantial increas-

ing disease risk starting from 1999 with an exception for the year 2002. As indicated by a gradual darkening

of the municipalities, prostate cancer incidence rates in Limburg are increasing differently over time with

the exception of the year 2002. Note that the cut-off points in the maps were chosen for convenience, based

on the distribution of the estimated posterior mean of relative risks, and that the lowest category includes

values ranging from 0.26 to 0.99, and the highest category includes values ranging from 1.001 to 1.54 with

the overall average of 0.99. Some lower and upper extreme SIR estimates have disappeared and much of the

map has been smoothed.

Up to this point, we have been discussing mapping the posterior mean of the relative risk, but it does

not make full use of the output of the analysis that provides, for each municipality, samples from the whole

posterior distribution of the relative risk [2, 40]. As a further illustration, we need to deal with the maps

for the posterior probability of estimated relative risk that exceed one for each municipality. We call it

exceedance probability that can be used in the detection of municipalities that have an unusual risk or to

assess elevated(reduced) areas. These probabilities were estimated from P̂ (θ̂ij > 1) =
∑G
g=1 I(θ̂gij > 1)/G,

where θ̂gij is the sampled value of θ̂ij from a posterior sample of size G, and I(a) = 1 if a true and 0

otherwise. The threshold for the probability that used to detect the elevated areas was 0.975, and 0.025

for the reduced risks [2]. Which means that any municipality with exceedance probability >= 0.975, has

been clustered as elevated area, while exceedance probability <= 0.025 detected as an area with reduced risk.

The posterior probability that the relative risk (RR) of each area higher than one is displayed in the form

of a map in Figure 3.10. The municipalities of the region that are linked to elevated and reduced risks were

highlighted by green and orange colors, respectively. It was shown that only the two municipalities were

consistently detected as elevated areas (Lummen and Heusden Zolder) between 1997 and 1999, while a clear

pattern with reduced risk found in the south-eastern parts of the region. For the remaining subsequent years,

the number of elevated areas has been increased differently, and the number of detected areas with reduced

risk slightly decreased with an exception for the year 2002. This could be explained due to the fact that,

the model includes the spatio-temporal interaction effect to estimate the relative risk. In other words, this

suggests that the spatial distribution of the risk of prostate cancer in Limburg shows a flexible pattern at

each time point.
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Similar results were obtained from the maps of a 95% credibility intervals shown in Figure B.5 in the

appendices. Mapping the credibility intervals for the relative risk has an interesting importance to reflect

significantly elevated (reduced) areas. In this aspect, a 95% credibility interval that includes 1 corresponds

to insignificant relative risk, otherwise, it shows significant risk.

Figure 3.10: Exceedance probabilities for the relative risk obtained from the final fitted model (K4).

To investigate how the Bayesian hierarchical models provide adequate smoothing of the background rates

or SIR, we presented the evolution of the background SIR and posterior mean of relative risk for some

randomly selected municipalities in Figure 3.11, and average evolution in Figure 3.12. By convenience, the

legend included in the average evolution plot (Figure 3.12) can also use for the individual trajectories. In

Figure 3.11, neighbouring areas are plotted in the same row, for instance, Hamont Achel, Neerpelt and

Bocholt are neighbours. It has been seen that neighbouring municipalities have similar with a flexible shape

to describe the variety of time trends that arise in the data, while those areas which are not neighbours evolve

in a different manner. Moreover, the prediction plots showed neighbours municipalities which have relative

risks that are consistently above or below even coincides with one. This reflects that risks are smoothed,

accounting for sharing information in both spatial and temporal neighbours.
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Figure 3.11: Standardized incidence and predicted risk estimates profiles for randomly selected municipalities.
B2= model B2, K1=model K1, K2=model K2, AR3=model AR(3).
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Figure 3.12: Average evolution of SIR and posterior mean of relative risk estimates.

The average evolution of raw SMRs showed unstable variability over time, which could be strongly influenced

by the size of the population at risk, leads to a noisy of the true unobserved risks, whereas the Bayesian

hierarchical models give posterior mean relative risk that evolving around 1. Also, these average evolution

and individual trajectories showed additional implication, which illustrated that the smooth temporal evo-

lution models (models K1,K2 and AR(3)) revealed better-smoothed estimates than the parametric linear

trend model (B2). Almost similar estimates for the relative risk has been obtained from the three smooth

temporal evolution models. In general, the results suggested that the time trends for every municipality do

not rely on a parametric shape, but flexible to describe the variety of time trends that arise in the data.

Note that in general, the lowest estimated relative risk was 0.26 (95% CI: 0.17–0.43) and the highest 1.54

(95% CI: 1.22–1.89) obtained from the final spatio-temporal model. Thus, we removed from the data random

variability due to the small observed as well as expected counts. We are now dealing with a smoother map

with less extremes in the relative risk estimates. This is an important illustration to understand that how

the statistical model can able to smooth the risk estimates to eliminate random noise while at the same time

avoiding over smoothing that might flatten any true variations in risk [40].
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4 Discussion and conclusion

The main aim of this study was to assess the evolution of prostate cancer disease risk taking into account

both space and time simultaneously and to investigate whether the spatial and temporal effects are separable,

and finally to predict the relative risk for each area of the region. To address these main objectives, the data

were analysed using several Bayesian hierarchical models, which accounts for the spatial and temporal effects

as random effects, through prior distributions. In general, we examined four models for the spatial only data,

and thirteen inseparable space-time interactions with two separable models, for the spatio-temporal dataset.

In all cases for the precision parameters, we used Gamma priors which are conditionally conjugate for the

given parameters, and hence computationally convenient to perform a Gibbs sampler draw of σ−2
l in the

posterior distribution [23]. We have also used Gibbs sampling techniques in McMC estimation, and infer-

ence for all models have been carried out using R2WinBUGS package for running WinBUGS from R [31].

Before conducting any analysis, we carried out internal rate standardization to remove the effect of age

that makes comparable rates from different populations. The overall standardized rate ratio for the counties

of Limburg in the years 1996-2005 was 1.001, while 0.997 for the spatial only data. We also assessed the

presence of overdispersion, and found a significant indication for an extra variation in the incidence counts

in turn heterogeneity in relative risks, which describes the presence of unadjusted geographically structured

or unstructured unknown confounding variables. In addition, the exploratory test of spatial autocorrelation

provides a substantial dependence among standardized incidence ratio taken at different locations.

First, for the spatial only data overdispersion or extra-variation was accommodated by some common

Bayesian hierarchical models, such as Poisson-gamma and Poisson-lognormal models used to account spa-

tially unstructured heterogeneity, a CAR model to include spatially structured variation, and finally CAR

convolution model to employ both spatially structured and unstructured heterogeneity effects in the es-

timation of relative risk. Based on the relative measure of goodness-of-test, an intrinsic CAR and CAR

convolution models provide the best fit for our dataset. This would be an indication that geographically

structured variables dominate amongst the unobserved confounding variables that will affect the risk of

prostate cancer in Limburg. This was in line with what we have observed strong spatial dependence in the

spatial autocorrelation test under the exploratory data analysis. Although the spatial distribution for the

posterior mean of relative risk showed almost similar patterns in all spatial models and a smoother map with

fewer extremes in the relative risk estimates has been obtained, the aspatial models provide slight wider

credible intervals for the relative risk in most parts of the region.

Bayesian hierarchical models to the spatio-temporal disease mapping were implemented in two basic ap-

proaches, namely parametric linear time trend and smooth temporal evolution models to account for the

evolution of prostate cancer risk in both space and time simultaneously. The parametric linear trend models

were conducted to describe which areas are showing increasing or decreasing trends in the prostate cancer

risk over time. To extend this predefined linear restriction, a dynamic formulation for the spatial and tem-
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poral random effects were assessed through inseparable space-time variation and autoregressive approach to

spatio-temporal disease mapping. To ensure that contiguous areas are likely to be similar, we used spatially

structured random effects through an intrinsic conditional autoregressive normal prior, while for contiguous

periods temporally structured random effect with a first-order random walk prior was assumed, which allows

flexible shapes in the evolution curves [24].

Based on our results, it appears that Knorr-Held models having Type I and Type II interactions, and

an autoregressive approach investigated by Mart́ınez with structured spatio-temporal interaction effect rep-

resent the three most promising approaches for our data. In terms of model complexity, model with Type II

inseparable space-time interaction was found to be the best to describe the distribution of prostate cancer

risk in Limburg. This result agreed with that was fitted by Knorr-Held to the respiratory cancer dataset [23],

and the Type II interaction model was favored to Type I in his findings and also offered a lower deviance

than Type III and IV interactions. Comparing to smoothed temporal evolution models, it was clearly shown

that linear trend models, while parsimonious, are far from the best model. A variety of space-time models

were fitted to very low birth weight count data for the counties of Georgia by Lawson [2], and he saw that

the Knorr-Held models favored to the parametric linear trend model. On the other hand, a comparison of

spatio-temporal disease mapping models conducted by [30] to Ischaemic heart disease count data showed

that model AR(3) as the best fits in terms of DIC score, besides substantial undertaking in terms of compu-

tational time. In their finding, the Knorr-Held model with Type I interaction also showed better fit relative

to the parametric linear trend model.

Regarding model performance in this specific study, Table 3.5 shows that those models which are fitted

without including the spatial correlated random effects have the least performance. Indeed, the DIC score

for Type I interaction model K3 increases from 2336.20 to 2351.360, while that DIC value increases 0.85

units in model K2 (model without temporally correlated random main effect). This has also been seen for

Type II interaction model K6 increases from 2337.760 to 2355.720, while the DIC value increases by 4.68

units in model K5. This revealed that sharing information among municipalities has been shown to improve

the model more than sharing information among periods. Overall, the posterior estimated value for the

intercepts term along with its corresponding credible interval showed that the overall risk is approximately

equal to one for all the fitted models. This could be due to the fact that we have used the marginalized total

population as a standard population for each municipality to estimate the standardized expected counts.

Note that in general, the maps in spatio-temporal models agreed with findings from spatial models, which

adds to our confidence that this cluster is real, rather than simply a product of random variation.

The results of the Bayesian hierarchical models have typically been presented in the form of maps dis-

playing the mean of the posterior distribution of the relative risk for each municipality. The smoothed

temporal evolution models showed better fit than a parametric linear trend model to provide a substantial

shrinkage of the raw relative risk estimates for each municipality. Based on the Bayesian hierarchical models,
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a substantial random variability due to the small observed as well as expected counts has been removed from

the data. Although the parametric linear trend models do not provide a good fit to our data, the global

overall trend suggested an increasing risk of prostate cancer in Limburg. In this particular study, the results

suggested that the time trends for every municipality do not rely on a parametric shape, but flexible to de-

scribe the variety of time trends that arise in the data. In conclusion, we have seen that sharing information

among municipalities has been shown to improve the model more than sharing information among periods.

This suggested in general that the spatial dependence is very important to describe the behavior of the risk

in this specific data, indeed higher than the temporal one.

Some municipalities of the south-western parts of the region were detected as elevated risk in terms of

the posterior probability that exceeds a threshold of one, whilst a clear pattern with reduced risk found in

the south-eastern parts of the region. Therefore, we recommended to the epidemiologist to conduct further

investigation on these specific areas. Finally, the area-specific random effects and the random time effects

were assumed to be independent in this study. Thus, we recommended to extend this assumption for further

studies by allowing a prior correlation between them.
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Appendices

Appendix A: Tables

Table A.1: Summary statistics for the spatio-temporal data

Observed Expected SIR
Year mean variance mean variance mean variance
1996 10.432 107.274 11.405 85.314 0.868 0.150
1997 11.455 103.835 11.747 89.831 0.942 0.153
1998 11.682 90.455 12.118 94.952 0.965 0.180
1999 11.750 109.401 12.478 100.082 0.916 0.225
2000 13.727 152.389 12.840 105.039 1.339 3.615
2001 13.295 150.771 13.199 110.054 0.965 0.184
2002 11.682 78.780 13.564 115.078 0.859 0.122
2003 15.386 175.731 13.930 120.280 1.112 0.260
2004 14.409 188.759 14.312 126.464 0.956 0.214
2005 16.500 199.093 14.724 132.854 1.089 0.189
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Table A.2: Posterior estimated values with credibility intervals for the variance components and the potential
scale reduction factor R̂I for the spatio-temporal models.

parameter mean sd 2.50% 97.50% Rhat mean sd 2.50% 97.50% R̂I

B1 B2

Intercept 0.9578 0.0176 0.9226 0.9927 1.0010 0.9573 0.0169 0.9242 0.9908 1.0011
β 0.1503 0.0468 0.0598 0.2405 1.0010 0.1506 0.0472 0.0569 0.2432 1.0009
σ2
ν 0.00001 3.94E-05 2.98E-08 0.0001 1.0009 / / / / /
σ2
u 0.0139 0.0096 0.0032 0.0396 1.0011 0.0145 0.0095 0.0039 0.0392 1.0010
σ2
δ 0.0013 0.006 4.21E-08 0.0123 1.0031 0.0015 0.0073 4.33E-08 0.0139 1.0012

B3 B4

Intercept 0.9750 0.0358 0.9043 1.0460 1.0010 0.9750 0.0358 0.9043 1.046 1.0010
β 0.1511 0.0499 0.0529 0.2514 1.0010 0.1511 0.0499 0.0529 0.2514 1.0010
σ2
ν 0.0026 0.0019 0.0006 0.0073 1.0009 0.0026 0.0019 0.0006 0.0073 1.0009
σ2
δ 0.0003 0.001 4.88E-08 0.0027 1.0015 0.0003 0.0010 4.88E-08 0.0027 1.0015

K0 K1

Intercept 0.9951 0.0103 0.9801 1.0200 1.0011 0.9900 0.0010 0.9980 1.0020 1.0010
σ2
u 0.0145 0.0105 0.0032 0.0421 1.0010 0.0141 0.0106 0.0029 0.0415 1.0009
σ2
ν 3.63E-05 9.44E-05 2.11E-07 0.0003 1.0013 3.86E-05 9.59E-05 2.09E-07 0.0003 1.0009
σ2
γ 5.95E-05 0.00033 1.86E-07 0.0004 1.0011 5.79E-05 0.0006 1.85E-07 0.0004 1.0010
σ2
φ 5.53E-05 0.00019 4.11E-07 0.0003 1.0026 5.23E-05 0.0002 3.25E-07 0.0003 1.0009

σ2
δ / / / / / 0.0002 0.0002 2.43E-06 0.0007 1.0010

K2 K3

Intercept 0.9904 0.0106 0.9700 1.0110 1.0009 0.9850 0.0010 0.9980 1.002 1.0009
σ2
u 0.0142 0.0109 0.0029 0.0426 1.0012 / / / / /
σ2
ν 6.04E-05 0.00012 3.54E-07 0.0004 1.0013 0.0024 0.0018 0.0006 0.0071 1.0012
σ2
γ / / / / / 1.43E-05 0.0001 3.40E-08 0.0001 1.001
σ2
φ 6.47E-05 0.0002 1.45E-06 0.0004 1.0014 2.18E-05 7.39E-05 6.45E-08 0.0001 1.0011

σ2
δ 0.0002 0.0002 2.89E-06 0.0007 1.0034 0.0002 0.0002 1.91E-07 0.0007 1.0041

K4 K5

Intercept 0.9900 0.00101 0.9981 1.0020 1.0009 0.99 9.98E-04 0.998 1.002 1.0011
σ2
u 0.0114 0.00971 0.0016 0.0364 1.0010 0.0115 0.0092 0.0020 0.0359 1.0009
σ2
ν 4.22E-05 0.00013 2.06E-07 0.0003 1.0009 1.15E-05 5.08E-05 2.78E-08 9.37E-05 1.0011
σ2
γ 5.37E-05 0.00026 2.03E-07 0.0004 1.0011 7.54E-05 2.78E-04 2.10E-07 5.06E-04 1.0010
σ2
φ 6.07E-05 0.00030 4.03E-07 0.0004 1.0012 / / / / /

σ2
δ 7.79E-06 1.10E-05 2.79E-07 3.77E-05 1.0011 3.72E-06 6.04E-06 5.32E-08 2.12E-05 1.0049

K6 AR(3)
Intercept 0.9999 0.0003 0.9994 1.0010 1.0010 0.9512 0.0271 0.8989 1.0050 1.0009

σ2
ν 0.0012 0.0014 4.65E-07 0.0047 1.0303 / / / / /
σ2
u / / / / / 0.0009 0.0011 4.08E-05 0.0041 1.0084
σ2
γ 6.69E-05 0.0002 1.47E-07 0.0005 1.0012 0.0002 0.0004 4.52E-06 0.0009 1.0010
σ2
δ 2.78E-05 3.84E-05 2.68E-07 0.0001 1.0225 / / / / /

AR(1) AR(2)
Intercept 0.9561 0.0382 0.8819 1.0320 1.0009 0.9566 0.0388 0.8817975 1.0340 1.0012

σ2
γ 0.0001 0.0004 3.37E-06 0.0008 1.0010 0.0001 0.0004 3.32E-06 0.0008 1.0014

σ2
ν1 0.0002 0.0002 3.85E-05 0.0008 1.0061 0.0005 0.0010 7.52E-06 0.0027 1.0012
σ2
u1

0.0017 0.0016 0.0001 0.0058 1.0109 0.0090 0.0162 1.56E-05 0.0496 1.0026
σ2
ν2 / / / / / 0.0002 0.0002 2.59E-05 0.0007 1.0015
σ2
u2

/ / / / / 0.0012 0.0015 2.11E-05 0.0052 1.0061
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Appendix B: Figures

Figure B.1: Posterior estimated values of relative risks obtained from model K4 under Gamma(0.001, 0.001)
prior.

Figure B.2: Posterior estimated values of relative risks obtained from model K4 under U(0, 100) prior.
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Figure B.3: Posterior estimated values of relative risks obtained from model K4 under Gamma(0.01, 0.001)
prior.

Figure B.4: Posterior estimated values of relative risks obtained from model K4 under Gamma(0.5, 0.0005)
prior.
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Figure B.5: Credible intervals for the relative risk of prostate cancer obtained from model K4 for the years
1999-2005 in Limburg.
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Convergence Diagnostics for a spatio-temporal model

Figure B.6: Running mean plot for the final spatio-temporal fitted model
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Figure B.7: Autocorrelation plot for the spatio-temporal fitted model k4.

51



The Spatio-temporal Modeling of Prostate Cancer in Limburg

Figure B.8: Geweke diagnostics and potential reduction factors for model K4.

Figure B.9: Adjacency matrix for the Limburg: rows and columns identify areas; squares identify neighbors.
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Diagnostics plots for the spatial models

Figure B.10: Diagnostics plots for the Poisson-gamma model

Figure B.11: Diagnostics plots for the Poisson-lognormal model
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Figure B.12: Diagnostics plots for the CAR (CH) model

Figure B.13: Diagnostics plots for the CAR convolution model
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Basic WinBUGS codes to run from R in the data analyses

#====================================================================================#

# spatial analysis

#====================================================================================#

setwd("E:\\Hasselt University\\2nd Year\\Spatio-Temporal\\Data")

s_sir<-read.csv("sir_spatial.csv", sep= ",", header = T)

O<-s_sir$Y## observed incidence counts

E<-s_sir$E## standardized expected counts

library(R2WinBUGS)

#===================================================================

#Poisson-gamma model

#===================================================================

sink("Pgamma_model.bug")

cat("model {

for (i in 1 : N)

{ # Poisson likelihood for observed counts

O[i] ~ dpois(mu[i])

mu[i] <- E[i]*theta[i]

# Relative Risks

theta[i] ~ dgamma(a, b)

## Goodness of fit

Opred[i]~dpois(mu[i])

pres[i]<-O[i] - Opred[i]

SPE[i]<-pow(pres[i],2)

APE[i]<-abs(pres[i])}

# Vague prior distributions

a ~ dexp(0.01)

b ~ dexp(0.01)

# Additional estimates

m <- a/b

var <- a/pow(b,2)

## Overall MSPE and MAPE

MSPE<-mean(SPE[])

MAPE<-mean(APE[])

}", fill=TRUE)

sink()

model_PG = bugs(data= data_PG, inits= inits_PG,parameters_PG,

model.file="Pgamma_model.bug", n.chains=2,

n.iter=90000,n.burnin=45000, n.thin=10,

working.directory = "E:\\Hasselt University\\2nd Year

\\Spatio-Temporal\\Data",

bugs.directory="C:\\Users\\user\\WinBUGS14",

debug=T, DIC=TRUE, digits=5, bugs.seed = 1234,

program="WinBUGS",codaPkg=F)

#=======================================================================

# Poisson-lognormal model

#=======================================================================

sink("Plognormal_model.bug")

cat("model {

for (i in 1:N){

# Poisson-likelihood for observed counts

O[i]~dpois(mu[i])

log(mu[i])<-log(E[i])+a0+v[i]

#heterogeneity random effects

v[i]~dnorm(0.0, tau.v)
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# relative risks

theta[i]<-exp(a0+v[i])

## Goodness of fit

Opred[i]~dpois(mu[i])

pres[i]<-O[i] - Opred[i]

SPE[i]<-pow(pres[i],2)

APE[i]<-abs(pres[i])}

# Vague prior distribution for intercept

a0~dnorm(0.0, 1.0E-05)

mean<-exp(a0)

# Hyperprior distibutions on inverse variance parameter

tau.v~dgamma(0.01, 0.01)

sd.v<-1/pow(tau.v,2)

## Overall MSPE and MAPE

MSPE<-mean(SPE[])

MAPE<-mean(APE[])

}", fill=TRUE)

sink()

model_plog = bugs(data= data_plog,inits_plog, parameters_plog,

model.file="Plognormal_model.bug", n.chains=2,

n.iter=90000,n.burnin=45000, n.thin=10,

working.directory = "E:\\Hasselt University\\2nd Year

\\Spatio-Temporal\\Data",

bugs.directory="C:\\Users\\user\\WinBUGS14",

debug=T, DIC=TRUE, digits=5,

program="WinBUGS", bugs.seed = 1234,codaPkg=F)

#=========================================================================

# CAR model (CH)

#=========================================================================

# Convolution model: CH

sink("CH_model.bug")

cat("model

## Poisson likelihood{

for (i in 1:N){

O[i]~dpois(mu[i])

log(mu[i])<-log(E[i])+a0+u[i]

theta[i]<-exp(a0+ u[i])

## Goodness of fit

Opred[i]~dpois(mu[i])

pres[i]<-O[i]-Opred[i]

SPE[i]<-pow(pres[i],2)

APE[i]<-abs(pres[i])

#Moran’s I

eres[i]<-(O[i]-mu[i])/sqrt(mu[i]) ## estimate of residuals

estar[i]<-sum(we[cum[i]+1:cum[i+1]])

de[i]<-eres[i]-mean(eres[])

d.estar[i]<-estar[i]-mean(estar[])

dt[i]<-de[i]*d.estar[i]

db[i]<-pow(d.estar[i], 2)}

# CAR prior distribution for random effects:

u[1:N]~car.normal(adj[], weights[], num[], tau.u)

for(k in 1:sumNumNeigh) {

weights[k]<-1

we[k]<-eres[adj[k]] }

## Other hyperprior distributions

a0~dflat()
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mean<-exp(a0)

tau.u~dgamma(0.5,0.0005)

sd.u<-1/pow(tau.u,2)

## Overall MSPE and MAPE

MSPE<-mean(SPE[])

MAPE<-mean(APE[])

rho<-sum(dt[])/sum(db[])

}", fill=TRUE)

sink()

model_CH = bugs(data= data_CH,inits_CH,parameters_CH,

model.file="CH_model.bug", n.chains=2,

n.iter=90000,n.burnin=45000, n.thin=10,

working.directory = "E:\\Hasselt University\\2nd Year

\\Spatio-Temporal\\Data",

bugs.directory="C:\\Users\\user\\WinBUGS14",

debug=T, DIC=TRUE, digits=5, bugs.seed = 1234,

program="WinBUGS",codaPkg=F)

#=============================================================================

# CAR convolution model (CH+ UH)

#=============================================================================

sink("Convlution_model.bug")

cat("model {

# Likelihood

for (i in 1:N) {

O[i]~dpois(mu[i])

log(mu[i])<-log(E[i]) + a0 + u[i]+ v[i]

theta[i]<-exp(a0+ u[i] + v[i])

v[i]~dnorm(0.0, tau.v)

## Goodness of fit

Opred[i]~dpois(mu[i])

pres[i]<-O[i] - Opred[i]

SPE[i]<-pow(pres[i],2)

APE[i]<-abs(pres[i])

# CAR prior distribution for random effects:

u[1:N]~car.normal(adj[], weights[], num[], tau.u)

for(k in 1:sumNumNeigh){

weights[k]<-1

we[k]<-eres[adj[k]]}

# Other priors

a0~dflat()

mean<-exp(a0)

tau.v~dgamma(0.5, 0.005)

tau.u~dgamma(0.5, 0.005)

sd.v<-1/pow(tau.v,2)

sd.u<-1/pow(tau.u,2)

ratio<-sd.u/sd.v

intraclass<-sd.u/(sd.u+sd.v)

## Overall MSPE and MAPE

MSPE<-mean(SPE[])

MAPE<-mean(APE[])

}",fill=TRUE)

sink()

model_conv = bugs(data= data_conv,inits_conv,

parameters_conv,

model.file="Convlution_model.bug", n.chains=2,
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n.iter=90000,n.burnin=45000, n.thin=10,

working.directory = "E:\\Hasselt University\\2nd Year

\\Spatio-Temporal\\Data",

bugs.directory="C:\\Users\\user\\WinBUGS14",

debug=T, DIC=TRUE, digits=5, bugs.seed = 1234,

program="WinBUGS",codaPkg=F)

#=================================================================================

# Mapping for all spatial models

#=================================================================================

## load the libraries

library(maps)

library(maptools)

library(spdep)

library(rgdal)

library("sp")

##===============================================================================

## posterior mean of relative risk estimates

##===============================================================================

shap<-rgdal::readOGR ("Limburg2.shp")

## RR for PG

RR.PG<-model_PG$mean$theta

RR.PG <- as.data.frame(RR.PG)

colnames(RR.PG) <- c("RR.PG")

## RR for PL

RR.PL<-model_plog$mean$theta

RR.PL <- as.data.frame(RR.PL)

colnames(RR.PL) <- c("RR.PL")

## RR for CH

RR.CH<-model_CH$mean$theta

RR.CH <- as.data.frame(RR.CH)

colnames(RR.CH) <- c("RR.CH")

## RR for convoultion

RR.con<-model_conv$mean$theta

RR.con <- as.data.frame(RR.con)

colnames(RR.con) <- c("RR.Con")

shap@data <- data.frame(shap@data,RR.PG, RR.PL,RR.CH, RR.con)

library(RColorBrewer)

## mapping

spplot(shap, c("RR.PG","RR.PL", "RR.CH","RR.Con"),

names.attr = c("PG","PL", "CH", "CH+UH"),

at=c(0, 0.25,0.5, 0.75, 1.0, 1.25, 1.5), as.table=T,

col.regions=brewer.pal(9, "Oranges"),

par.settings = list(fontsize = list(text = 16)))

#======================================================================================#

# Spatio-temporal analysis

#======================================================================================#

setwd("E:\\Hasselt University\\2nd Year\\Spatio-Temporal\\Data")

library(R2WinBUGS)

st_sir<-read.csv("SIR_spatio-temporal.csv", sep= ",", header = T)

O<-matrix(st_sir$observed,nrow = 44, ncol = 10, byrow = T)

E<-matrix(st_sir$expected,nrow = 44, ncol = 10, byrow = T)

SIR<-matrix(st_sir$SIR,nrow = 44, ncol = 10, byrow = T)

#=================================================================================

# Bernardinell et al (1995): UH + CAR for structured main and interaction effects

#=================================================================================
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sink("Bernardinell_1.bug")

cat("model{

for (i in 1:N){

for (j in 1:T){

# Poisson likelihood for observed counts

O[i,j]~dpois(mu[i,j])

log(mu[i,j])<-log(E[i,j])+a0+u[i]+v[i]+beta*t[j]+delta[i]*t[j]

# Relative Risk in each area and period of time

theta[i,j]<-exp(a0+u[i]+v[i]+beta*t[j]+delta[i]*t[j])

## Goodness of fit

Opred[i,j]~dpois(mu[i,j])

diff[i,j]<-O[i,j]-Opred[i,j]

SPE[i,j]<-pow(diff[i,j],2)

APE[i,j]<-abs(diff[i,j])

# deviance

D[i,j]<-2*(mu[i,j]-O[i,j] +

O[i,j]*(log(O[i,j]/mu[i,j])))

Dres[i,j]<-pow(D[i,j],0.5)*((O[i,j]-mu[i,j])/abs(O[i,j]-mu[i,j]))}

## the posterior mean of the trend effect

Trend[i]<-exp(beta+delta[i])}

# CAR prior distribution for spatial correlated heterogeneity

u[1:N]~car.normal(adj[],weights[],num[],tau.u)

delta[1:N]~car.normal(adj[],weights[],num[],tau.delta)

# Prior distributions for the Uncorrelated Heterogeneity

for(i in 1:N){

v[i]~dnorm(0,tau.v)}

# Weights

for(k in 1:sumNumNeigh){

weights[k]<-1}

a0~dflat()

mean<-exp(a0)

# Hyperprior distributions on inverse variance parameter of random effects

beta~dnorm(0,1.0E-5)

tau.v~dgamma(0.5,0.0005)

sd.v<-1/pow(tau.v,2)

tau.u~dgamma(0.5,0.0005)

sd.u<-1/pow(tau.u,2)

tau.delta~dgamma(0.5,0.0005)

sd.delta<-1/pow(tau.delta,2)

## Overall MSPE and MAPE

MSPE<-mean(SPE[,])

MAPE<-mean(APE[,])

}", fill=TRUE)

sink()

model_Bernar_1 = bugs(data= data_bernard,inits1_B1 ,

parameters.to.save = parameters1_B1,

model.file="Bernardinell_1.bug", n.chains=2,

n.iter=100000,n.burnin=50000, n.thin=10,

working.directory = "E:\\Hasselt University\\2nd Year

\\Spatio-Temporal\\Data",

bugs.directory="C:\\Users\\user\\WinBUGS14",

debug=T, DIC=TRUE, digits=5, bugs.seed = 1234,

program="WinBUGS",codaPkg=F)

#============================================================================

# Knorr-Held Type I interaction model (model K1)

#============================================================================
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sink("Knorr_model_1.bug")

cat("model {

for (i in 1:N){

for (j in 1: T){

# Poisson likelihood for observed counts

O[i,j]~dpois(mu[i,j])

log(mu[i,j])<-log(E[i,j]) + a0 + u[i] + v[i] + g[j] + psi[j]+ d[i,j]

# Relative Risk in each area and period of time

theta[i,j]<-exp( a0 + u[i] +v[i]+ g[j] + psi[j]+ d[i,j])

theta_exced[i,j]<-step(theta[i,j]-1)

## Goodness of fit

Opred[i,j]~dpois(mu[i,j])

diff[i,j]<-O[i,j]-Opred[i,j]

SPE[i,j]<-pow(diff[i,j],2)

APE[i,j]<-abs(diff[i,j])

d[i,j]~dnorm(0,tau.d)

# deviance

D[i,j]<-2*(mu[i,j]-O[i,j] +

O[i,j]*(log(O[i,j]/mu[i,j])))

Dres[i,j]<-pow(D[i,j],0.5)*((O[i,j]-mu[i,j])/abs(O[i,j]-mu[i,j]))

## PPO for outlier detection

PPO[i,j] <- exp(-mu[i,j]+O[i,j]*log(mu[i,j])-logfact(O[i,j]))

CPO[i,j]<- 1/PPO[i,j] }

## spatial uncorrelated heterogeneity main effects

v[i]~dnorm(0,tau.v)

#deviance residual

resdev[i]<-sum(D[i,1:T])}

for (j in 1:T){

psi[j]~dnorm(0, tau.psi)}

# Hyperprior distributions on inverse variance parameter of random effects

# CAR prior distribution for spatial correlated heterogeneity

u[1:N]~car.normal(adj[], weights[], num[], tau.u)

for(k in 1:sumNumNeigh) {

weights[k] <- 1 }

# prior for temporal correlated effects

g[1]~dnorm(0,0.0001)

time1[1]<-time[1]-1995

for (j in 2: T){

g[j]~dnorm(g[j-1],tau.g)

time1[j]<-time[j]-1995}

# other priors

a0~dnorm(0,1.0E06)

mean<-exp(a0)

tau.u~dgamma(0.5,0.0005)

sd.u<-1/pow(tau.u,2)

tau.v~dgamma(0.5,0.0005)

sd.v<-1/pow(tau.v,2)

tau.psi~dgamma(0.5,0.0005)

sd.psi<-1/pow(tau.psi,2)

tau.g~dgamma(0.5,0.0005)

sd.g<-1/pow(tau.g,2)

tau.d~dgamma(0.5,0.0005)

sd.d<-1/pow(tau.d, 2)

## Overall MSPE and MAPE

MSPE<-mean(SPE[,])

MAPE<-mean(APE[,])

#total residual deviance
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totresdev<-sum(resdev[])

}", fill=TRUE)

sink()

model_knorr_1 = bugs(data_knorr_1,inits_knorr_1,parameters_knorr_1,

model.file="Knorr_model_1.bug", n.chains=2,

n.iter=120000,n.burnin=60000, n.thin=10,

working.directory = "E:\\Hasselt University\\2nd Year

\\Spatio-Temporal\\Data",

bugs.directory="C:\\Users\\user\\WinBUGS14",

debug=T, DIC=TRUE, digits=5, bugs.seed = 1234,

program="WinBUGS",codaPkg=F)

#=============================================================================

# Knorr-Held Type II interaction model (model k4)

#=============================================================================

sink("Knorr_model_2.bug")

cat("model {

for (i in 1:N){

for (j in 1: T){

# Poisson likelihood for observed counts

O[i,j]~dpois(mu[i,j])

log(mu[i,j])<-log(E[i,j]) + a0+ v[i]+ u[i]+ g[j]+ psi[j]+ d[i,j]

# Relative Risk in each area and period of time

theta[i,j]<-exp(a0+ v[i]+ u[i]+ g[j]+ psi[j] + d[i,j])

## RR for interaction only

theta.int[i,j]<-exp(d[i,j])

## relative risks exceeding 1

theta.ex[i,j]<-step(theta[i,j]-1)

## Goodness of fit

Opred[i,j]~dpois(mu[i,j])

diff[i,j]<-O[i,j]-Opred[i,j]

SPE[i,j]<-pow(diff[i,j],2)

APE[i,j]<-abs(diff[i,j])

# deviance

D[i,j]<-2*(mu[i,j]-O[i,j] +

O[i,j]*(log(O[i,j]/mu[i,j])))

Dres[i,j]<-pow(D[i,j],0.5)*((O[i,j]-mu[i,j])/abs(O[i,j]-mu[i,j]))

## PPO for outlier detection

PPO[i,j] <- exp(-mu[i,j]+O[i,j]*log(mu[i,j])-logfact(O[i,j]))

CPO[i,j]<- 1/PPO[i,j]}

## spatio-temporal effect for the first period

d[i,1]~dnorm(0,tau.d)

#Spatio-temporal effect for the subsequent periods

for (j in 2:T){

d[i,j]~dnorm(d[i,j-1],tau.d)}

## spatial heterogeniety effect

v[i]~dnorm(0,tau.v)

#deviance residual

resdev[i]<-sum(D[i,1:T])}

# CAR prior distribution for spatial correlated heterogeneity

u[1:N]~car.normal(adj[], weights[], num[], tau.u)

for(k in 1:sumNumNeigh) {

weights[k] <-1}

## prior for temporal random walk 1

g[1]~dnorm(0,0.0001)

time1[1]<-time[1]-1995

for (j in 2: T){
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g[j]~dnorm(g[j-1],tau.g)

time1[j]<-time[j]-1995}

# temporal independent effect

for (j in 1: T){

psi[j]~dnorm(0, tau.psi)}

a0~dnorm(0, 1.0E06)

mean<-exp(a0)

# Hyperprior distributions on inverse variance parameter of random effects

tau.u~dgamma(0.5,0.0005)

sd.u<-1/pow(tau.u,2)

tau.v~dgamma(0.5,0.0005)

sd.v<-1/pow(tau.v,2)

tau.psi~dgamma(0.5,0.0005)

sd.psi<-1/pow(tau.psi,2)

tau.g~dgamma(0.5,0.0005)

sd.g<-1/pow(tau.g,2)

tau.d~dgamma(0.5,0.0005)

sd.d<-1/pow(tau.d, 2)

## Overall MSPE and MAPE

MSPE<-mean(SPE[,])

MAPE<-mean(APE[,])

#total residual deviance

totresdev<-sum(resdev[])

}", fill=TRUE)

sink()

model_knorr_2 = bugs(data_knorr_2,inits_knorr_2,parameters_knorr_2,

model.file="Knorr_model_2.bug", n.chains=2,

n.iter=120000,n.burnin=60000, n.thin=10,

working.directory = "E:\\Hasselt University\\2nd Year

\\Spatio-Temporal\\Data",

bugs.directory="C:\\Users\\user\\WinBUGS14",

debug=T, DIC=TRUE, digits=5, bugs.seed = 1234,

program="WinBUGS",codaPkg=F)

#==============================================================================

# Martinez Autoregressive model (model AR(3))

#==============================================================================

st_sir<-read.csv("SIR_spatio-temporal.csv", sep= ",", header = T)

Obs<-matrix(st_sir$observed,nrow = 10, ncol = 44, byrow = FALSE)

Exp<-matrix(st_sir$expected,nrow = 10, ncol = 44, byrow = FALSE)

#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

sink("Mart_AR3.bug")

cat("model{

for(i in 1:nmuni){

for(j in 1:nperiods){

Obs[j,i]~dpois(mu[j,i])

#Modelling of the mean for every municipality and period

log(mu[j,i])<-log(Exp[j,i])+mediainter+inter[j]+theta.ST[j,i]

#SIR for every municipality and period

theta[j,i]<-exp(mediainter+inter[j]+theta.ST[j,i])

# Goodness of fit

Opred[j,i]~dpois(mu[j,i])

diff[j,i]<-Obs[j,i]-Opred[j,i]

SPE[j,i]<-pow(diff[j,i],2)

APE[j,i]<-abs(diff[j,i])

# deviance

D[j,i]<-2*(mu[j,i]-Obs[j,i] +
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Obs[j,i]*(log(Obs[j,i]/mu[j,i])))

Dres[j,i]<-pow(D[j,i],0.5)*((Obs[j,i]-mu[j,i])/abs(Obs[j,i]-mu[j,i]))}}

#Spatio-temporal effect for the first period

theta.S[1,1:nmuni]~car.normal(adj[],weights[],num[],prec.spat)

for(i in 1:nmuni){theta.ST[1,i]<-pow(1-ro*ro,-0.5)*theta.S[1,i]}

#Spatio-temporal effect for the subsequent periods

for(j in 2:nperiods){

for(i in 1:nmuni){

theta.ST[j,i]<-ro*theta.ST[j-1,i]+theta.S[j,i]}

theta.S[j,1:nmuni]~car.normal(adj[],weights[],num[],prec.spat)}

for(k in 1:sumNumNeigh) {

weights[k] <- 1 }

#Prior distribution for the mean risk for every municipality and period

mediainter~dnorm(0,0.01)

mean<-exp(mediainter)

#Prior distribution for the global time trend

inter[1:nperiods]~car.normal(adjT[],weightsT[],numT[],prec.inter)

# Specify weight matrix and adjacency matrix corresponding to RW(1) prior

# (Note - this could be given in the data file instead)

for(j in 1:1) {

weightsT[j] <- 1; adjT[j] <- j+1; numT[j] <- 1}

for(j in 2:(nperiods-1)) {

weightsT[2+(j-2)*2] <- 1; adjT[2+(j-2)*2] <- j-1

weightsT[3+(j-2)*2] <- 1; adjT[3+(j-2)*2] <- j+1; numT[j] <- 2}

for(j in nperiods:nperiods) {

weightsT[(nperiods-2)*2 + 2] <- 1; adjT[(nperiods-2)*2 + 2] <- j-1;

numT[j] <- 1}

#Prior distribution for the precision parameters in the model

prec.inter~dgamma(0.5,0.005)

sd.inter<-1/pow(prec.inter,2)

prec.spat~dgamma(0.5,0.005)

sd.spat<-1/pow(prec.spat,2)

#Prior distribution for the temporal dependence parameter

ro~dunif(-1,1)

#Overall MSPE and MAPE

MSPE<-mean(SPE[,])

MAPE<-mean(APE[,])

}", fill=TRUE)

sink()

model_mart3 = bugs(data= data_mart,inits_mart3 ,

parameters.to.save = parameters1_mart3,

model.file="Mart_AR3.bug", n.chains=2,

n.iter=100000,n.burnin=50000, n.thin=10,

working.directory = "E:\\Hasselt University\\2nd Year

\\Spatio-Temporal\\Data",

bugs.directory="C:\\Users\\user\\WinBUGS14",

debug=T, DIC=TRUE, digits=5, bugs.seed = 1234,

program="WinBUGS",codaPkg=F)

#=====================================================================================#

#=====================================================================================#
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