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Abstract

Background: Tablets and capsules are the most widely used form of drug delivery. As

such, pharmaceutical manufacturing of powdered ingredients prior to tablet/capsule man-

ufacturing requires analysis of the data with several levels of hierarchy. Next to different

batches of the product, different bags of resulting material are available and samples are

taken within multiple locations across the bags. The evaluation of the quality of manufactur-

ing process requires the characterization of the mean structure, but also careful evaluation

of the sources of variability.

Objectives: To investigate effect of location in the bag from where a sample of the prod-

uct is obtained and to characterize the total variability distribution across possible variance

components. In addition, to predict behaviour of future batches.

Methodology: A Bayesian linear mixed effects model was fitted. This model was fitted

using R2jags and Brms packages in R. A frequentist equivalent was also fit for comparison.

Results: Exploratory analysis showed that samples obtained at the beginning of the bag

had the least percentage of Active Pharmaceutical Ingredient (API). Location was in general

found to have an effect on the percentage of API. Several sources of variation were distin-

guished; variation across batches, variation across bags (within batches), variation across

analytical runs and residual variability. Of these, variation across batches explained much

of the total variability. In terms of prediction, new samples taken from existing batches and

measured using existing analytical runs would almost always pass the acceptance criteria.

Future batches would also almost always pass the acceptance criteria unless produced with

low quality raw materials.

Conclusion: R2jags was shown to provide a more flexible approach as compared to the

Brms. Compared to frequentist, Brms was shown to be a better approach for a balanced

design dataset.

Key words: Bayesian modeling; Hierarchical model; Prediction; Brms; R2jags; Variation

partition.
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1 Introduction

Tablets and capsules are the most widely used form of drug delivery and therefore drug pow-

der production needs to be monitored in all ways. Every pharmaceutical company’s aim is

to produce drugs that are stable with excellent dose uniformity, have an increased shelf-life

and that are well-accepted by users. Other than increasing the shelf-life and stability, an-

other main aim of powder drug manufacturing is to reduce the weight and to develop an

easier mode of drug delivery. This development is challenging since every step to simplicity

of a drug is less than straightforward. Pharmacologically active substances used in drug

production include natural products and synthetic drugs with emphasis on the latter due

to advancement in chemical and computer technologies [1]. In the manufacturing process,

the active ingredients are mixed with other pharmaceutical excipients that have limited or

no pharmaceutical value to provide the pharmacological properties needed to form the final

drug. The actual drug production involves fermentation, chemical synthesis and biological

extraction which can be done as a discrete batch and/or a continuous process [2]. In drug

production, manufacturing occurs by first manufacturing the active pharmaceutical ingre-

dient (API) and then by mixing the API with excipients from where the final drugs are

prepared. API is the active part of the drug containing the medicinal part. This part of the

production is the most involving and consequently the most expensive part of production

[3]. High quality API are therefore expected to shield end-users from harm.

After the production, the next stage involves converting the product to an administrative-

friendly form, for example to a powder [2]. The process of producing dry powder from liquid

suspensions is called spray-drying [4]. This process works by using high temperature gas

to evaporate out the liquid to form particles. The process starts with a feed preparation of

the suspension or paste that is free of impurities and contains the Active Pharmaceutical

Ingredient (API) and other excipients. The next process turns this paste into droplets in a

process called atomization. The droplets are then passed through a nozzle into a chamber

where hot gas is being blown into. As a result, the droplets lose their moisture content and

becomes powder. Powder characteristics that can be influenced by the spray-drying pro-

cess include density, particle size distribution, retention of volatile components, mechanical

stability as well as storage stability [5].

Another characteristic that can be affected by spray-drying is the purity of the active ingre-

dient. Spray drying can increase stability of the API which in turn improves its solubility

and bioavailability [6]. This, however, will only be achieved if the spray-drying is regulated

at appropriate parameters. The European Agency for the Evaluation of Medicinal Prod-

ucts, Human Medicines Evaluation (EMEA) Unit puts weight on establishing guidelines

on activities that may affect the active pharmaceutical ingredient. Therefore, spray-drying

characteristics such as temperature, drying time, drying system among others should be

keenly monitored and the appropriate values should be established to ensure homogeneous

results. A study by [7] revealed that the amount of API in a sample was related to the

spray drying of the feed concentration.
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Some pharmaceutical companies operate in international markets subjecting their activities,

especially in drug development, to strict regulations [8]. Quality issues in the pharmaceuti-

cal industry are regulated by several organizations, including the International Conference

on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Hu-

man Use (ICH), Food and Drug Administration (FDA) and EMEA. This is done primarily

to protect the end users of the products by ensuring the pharmaceutical industry upholds

good ethics [9]. Evaluating the manufacturing process, therefore, enables detection of any

possible issues that may be occurring.

Variation in a manufacturing process influences the quality of manufactured products, thus

the evaluation of the variability is vital [10]. This may require analysis of the data on several

levels of hierarchy. In the case considered in this report, several sources of variability were

distinguished; variability across batches, variability across bags in the batches, variability

across measurements and variability across analytical runs. Of the various sources of vari-

ability, batch to batch variability is usually the highest and cannot be ignored since by so

doing, the process quality may be compromised. Being able to quantify and model this

kind of variation is vital in ensuring that the process does not fall short of manufacturing

qualifications [11]. Interest of this study was to determine the percentage of total variabil-

ity attributed to the above sources of variation and to investigate whether there was an

effect of location. Further, predicting behaviour of future batches on whether they would

be acceptable.
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2 Data

2.1 Structure

There were two datasets used both of which were simulated; a complete design dataset and

an incomplete design dataset. The response is the percentage of the Active Pharmaceutical

Ingredient (API) in a sample. Table 1 below lists the variables in the data sets.

Table 1: Variables description

Variable Type Description

Assay Continous (Response)
Indicates the % of amount

of API in the sample

Location

Categorical (4 levels:

Beginning, Middle, End

and Composite)

Indicates location in the bag from

where the sample was obtained. A

composite sample was taken as the

equal mixture of samples from

the other three locations.

Bag Categorical
Indicates the bag in the batch where

the assay was obtained

Batch Categorical
Indicates the batch from which the

assay was obtained

Analytical run Categorical

Indicates the measurement system

that was used to measure the assay

after the sample was obtained

There is a hierarchy feature to this data such that there are several measurements ob-

tained in bags which are nested within batch. The model therefore differentiates several

sources of variability in the response as due to; variation across batches, variation across

bags (within batches), and variation across the measurements (within bags nested within

batches). Another source of variation in the response, that does not fall in the above hier-

archy, is attributed to the analytical run that was used to measure the assay with several

samples per run measured together. These samples are considered as clustered, because

same analytical run is prepared by same analyst and same preparation of samples is done.

Figure 1 shows the hierarchical structure of the data.
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Figure 1: Data hierarchy structure

The complete design implies that 4 samples were obtained from each of the 10 bags in each

of the 17 batches and 10 samples per run were measured. In total, 680 assay measurements

were obtained for the complete design. The incomplete design implies that for some bags,

not all 4 samples were obtained and not all 10 bags were evaluated in each of the 17 batches.

The structure of the analytical run is also different with less than 10 samples measured for

some runs. In total, 182 assay measurements were obtained for the incomplete design.

The two datasets are used to provide more insights on the parameters change in presence

of a balanced and unbalanced design. For the rest of this report these datasets will, for

simplicity, be referred to as the complete and incomplete data set.

2.2 Exploratory analysis

The most important exploratory analysis was to visually evaluate whether there was a time

trend in the production of the batches. Figure 2 shows this evaluation for the complete and

the incomplete data set. The batches were produced such that Batch 1 was the first to be

produced while Batch 17 was the last. There, however, does not seem to be any definite

time trend. For both data sets, Assay obtained from the Beginning of the bag tends to

have the lowest percentage of the active pharmaceutical ingredient. From Figure 2, Batch

4 seems to have the lowest percentage of API on average.
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(a) Complete dataset (b) Incomplete dataset

Figure 2: Exploratory plots

Table 2 displays the minimum and maximum assay for each of the datasets.

Table 2: Descriptive statistics

Min Assay Max Assay

Complete data 96.30 102.77

Incomplete data 97.25 101.91

The minimum and maximum assay for the complete dataset is 96.29% and 102.77%, re-

spectively. For the incomplete dataset, the minimum and maximum assay are 97.25% and

101.91%, respectively.
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3 Methodology

3.1 The model

A linear mixed model was fitted to the data with the model described as;

Yijkm = α0 + β1Locationijkm + b0k + b0j(k) + b0m + εijkm,

i = 1, ..., 680; j = 1, ..., 10; k = 1, ..., 17; m = 1, ..., 68 for the balanced design.

and:

Yijkm =the ith measurement of assay of the jth bag in the kth batch and obtained in

the mth analytical run.

α0 = process mean

Locationijkm=location in the bag where the sample was obtained: beginning, medium, end

or composite.

b0k=random effect of the kth batch: b0k ∼ N(0, σ2b0k)

b0j(k)=random effect of jth bag of kth batch: b0j(k) ∼ N(0, σ2b0j(k))

b0m=random effect of the mth analytical run: b0m ∼ N(0, σ2b0m)

εijkm= residual error: εijkm ∼ N(0, σ2ε ) for sample obtained at the beginning, middle, end

and εijkm ∼ N(0, σ
2
ε
3 ) for sample obtained as composite.

Non-informative priors were applied to all the model parameters.

Priors for α0 and βi:

α0 ∼ N(0, σ2α)

βi ∼ N(0, σ2β)

Priors for b0k, b0j(k), b0m:

b0k ∼ N(0, σ2b0k)

b0j(k) ∼ N(0, σ2b0j(k))

b0m ∼ N(0, σ2b0m)

Priors for the variance components:

σ2res ∼ IG(ε, ε)

σb′s ∼ U(0, c)

In fitting the model, a frequentist as well as a Bayesian approach were considered.

3.2 Implementation of the model

In a hierarchical model, there are parameters that describe the individual’s behaviour with

the distribution of individual parameters within a group described by higher-level distribu-

tion. The data from different individuals within a group are usually dependent and therefore

the estimation of the group-level parameters is done better by the joint individual-level pa-

rameters [12]. The Bayesian framework allows use of prior knowledge in estimation of

parameters. This prior knowledge is combined with the current data to yield the posterior
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distribution where summary measures for the model parameters are obtained [13]. Usually

analytical approach in estimating the posterior distribution for model parameters is not

available. To sample from such posterior distributions, the so-called Markov Chain Monte-

Carlo (MCMC) is used.

MCMC is a method that aids sampling from a probability distribution combining the prop-

erty of Monte-Carlo that allows evaluating the properties of a distribution by investigating

random samples from the distribution and Markov chain which indicates that the random

samples are generated in a sequential process. The Markov chain, however, imply that

given θ a vector of parameters and k iterations and given θk, θk+1 does not depend on

θk−1, θk−2 and so on [14]. Common MCMC procedures include Gibbs sampling and the

so-called Metropolis(-Hastings)[15]. The Gibbs sampling operates on the property that a

multivariate distribution is determined by its conditional distributions called the full con-

ditionals. In other words, for parameters θ1, θ2, ..., θd, the full conditional distributions are

given by p(θj |θk1 , θk2 , ..., θk(j−1), θ
k
(j+1), ..., θ

k
d ,y) implying that θj is conditioned on all other

parameters. More on MCMC can be found in [14].

In fitting the model, several computational considerations are made. An example is to

include a burn-in portion. A burn-in portion is included for convenience to help in reducing

the influence of initial values on the posterior inference. This is required since there is no

guarantee that the initial samples are drawn from the target distribution. To prevent an

increase in the Monte Carlo error and to ensure sufficient approximation of the distribu-

tion, the remaining part is usually made longer. Usually, using better starting values can

eliminate this problem but good initial values may be difficult to find [14].

Thinning can also be performed whereby instead of saving all iterations, we only save the

nth iteration, with n>1. Thinning works by recognizing that the many iterations are highly

correlated and there is no benefit in saving all the iterations. Instead, we save only the nth

iteration. Starting values for the model parameters were obtained by random generation

from respective random distributions. Using random distributions to select the initial val-

ues from, ascertains that different chains start at different points which helps in attaining

convergence.

3.3 Bayesian Regression Models using Stan (BRMS)

MCMC has been the main algorithm in sampling from the posterior distribution imple-

mented in the Jags/BUGS family. The development of such a method has contributed to

the increased use of Bayesian inference. Nonetheless, some models take longer to converge.

To aid in this, an algorithm that increases efficiency and leads to faster convergence has

been proposed [16]. This is the so-called Hamiltonian Monte Carlo (HMC). The original

HMC requires experts to implement which explains why the algorithm has not been popu-

lar. To remedy this, an automatic HMC algorithm called a no-U-turn sampler (NUTS) has

been created and packaged into what is now known as Stan software [17]. Bayesian Regres-

8



sion Models using Stan (BRMS) is, therefore, a package that connects R software to Stan

programming. Our interest was to also investigate the benefits of Brms to other Bayesian

packages and to provide guidance to the pharmaceutical industry in terms of options in

Bayesian inference.

3.4 Model diagnostics

3.4.1 Checking convergence

Unlike in an analytical approach where convergence is never a problem, in a numerical ap-

proach convergence could be a big problem and therefore it has to be monitored. For an

MCMC algorithm, the aim is to investigate how close we are to the true posterior distri-

bution. Two features in checking convergence include; checking stationarity of the chain

by evaluating the burn-in part of the Markov chain and determining the accuracy of the

posterior summary measures. Common graphical approaches to checking convergence, mix-

ing rate and stability include the trace plot, autocorrelation plot and running-mean plot,

respectively. A trace plot is produced for each parameter as well as for the parameter vector

to monitor the Markov chain in a joint form. To monitor the Markov chain jointly, a trace

plot of the log of the likelihood or of the posterior density is used. The autocorrelation plot

is used to check the mixing rate of a chain while a running-mean plot is used to explore

stability of the mean of the sampled values [14].

The above graphical checks are important but they may be subjective, implying that formal

diagnostics should also be used. A more formal diagnostic is the Geweke diagnostic that

evaluates the size of the burn-in part for a single chain. The diagnostic makes use of a

frequentist significance test by comparing the means of an early (E) and a late part (L) of

the chain. The posterior means of the two parts, indicated as θ̄E and θ̄L are then compared

with a Z-test given by; θE−θL√
s2E/nE+s

2
L/nL

. A significant Z-test implies that the burn-in part was

not taken enough or the total chain was not long enough or both [14].

Another quantity used to assess convergence is the effective number of simulation draws.

The effective number of simulation draws is smaller since the Markov chain simulations are

autocorrelated. A converged model should have this quantity to be at least 100 for each

of the parameters. Brooks-Gelman-Rubin (BGR) diagnostic is another formal diagnostic

tool for detecting non-stationarity that, unlike the above diagnostics, evaluates differences

between multiple Markov chains having different starting positions. This approach is based

on the so-called potential scale reduction factor (R̂). The ratio is the square root of the

mixture variance obtained for the chains mixed together divided by the average within-chain

variance obtained from averaging the variance of each of the parameters in each chain. With

the chains well mixed, convergence would be achieved and the ratio above would equal 1,

indicating equivalence of the distribution of simulations between and within chains. Using

multiple chains can also be used to check problems with convergence where, similarly to

the above mentioned, differences in the distribution of samples from different chains may

indicate convergence problems [18].
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3.4.2 Posterior predictive checks

To check the fit of the model, we check for differences between the sampled data from the

model and the observed data which can be done through posterior predictive checks in a

Bayesian context. Considering the data, y, some test statistics include Tmin = min(y) and

Tmax = max(y), from which a posterior predictive p-value can be determined by;

pT =
∫
pC(y, θ)p(θ|y)dθ

where pC(y, θ) is the sampling distribution of the test statistic, T(y), θ is a vector of pa-

rameters and p(θ|y) is the posterior distribution. In a nutshell, let T (y) be a test statistic

based on the data and T (yrep) be a test statistic based on replicated data from the fitted

model. The Bayesian p-value is then given by pr[T (yrep, θ) ≥ T (y, θ|y)] and denotes the

proportion of replicated values for the test statistic that are equal or more than the values

of the test statistic based on the observed data [19]. Values of this p-value that are small

(≤ 0.05) indicate possible lack of fit.

The posterior predictive check can also be used to check distributional assumptions based on

the discrepancy measure, D(y, θ), which extends the above classical test statistics allowing it

to depend on the parameters as well. A posterior predictive p-value based on this approach

is then computed with small values indicating issues with normality. These discrepancy

measures can be based on skewness and kurtosis. For hierarchical models, the several levels

of hierarchy call for the use of additional discrepancy measures that are more inclined to

their structure. An example is the Kolmogorov-Smirnov discrepancy measure suggested by

[20], defined as; DKS(y, θ) = maxiε(1,....,n)[φ(yi|µ, σ)− (i− 1)/n, i/n− φ(yi|µ, σ)]. Another

approach was suggested by [21] to check for distributional assumptions of the random effects

in a normal hierarchical model and is defined as; DSS(y, θ, ψ) = |θmax−θmed|−|θmin−θmed.

3.4.3 Predictive approach to outlier detection

It is also important to check for outlying observations, which can be done in a Bayesian

context using Bayesian residual analysis, predictive approaches and using DIC diagnostics.

Here, predictive approach to outlier detection is adopted which uses the so-called posterior

predictive ordinate (PPOi), defined as;

PPOi = p(yi|y) =
∫
p(yi|θ)p(θ|y)dθ

It is the value of the posterior predictive distribution (PPD) evaluated at yi. A very low

value of the PPO for the ith observation could imply that this observation is outlying. This

approach, however, uses the observed data, y, twice and a better approach would be one

that evaluates the PPD in yi using the posterior density based on a sample without yi. Such

an approach that uses cross-validation is the so-called conditional posterior ordinate (CPO)

and is defined as;

CPOi = p(yi|y(i)) =
∫
p(yi|θ)p(θ|y(i))dθ

In other words, CPOi represents the posterior probability of observing yi when the model

is fit to all data except yi. More details on outlier detection can be found in [14].
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3.5 Posterior prediction

In pharmaceutical drug production, it is of interest to predict whether batches produced in

the future will be acceptable depending on what we know now. This prediction can therefore

be done taking into account the location in the bag where assay sample are taken, the bag,

the batch as well as the analytical run that was used to measure the assay. The Bayesian

framework is applied to obtain individual predictions while considering the uncertainty

within the parameter estimates. This was also another reason why a Bayesian approach

was adopted since classical approaches to prediction may fail to take all uncertainty about

model parameters into account. In the prediction, some terms in the model can be examined

at conditional or marginal values. First, prediction for new samples was done conditional

on all the random effects taking the process mean to be equal to 100%. 100% being the

ideal percentage of API in the sample. Second, prediction was done for a given value of the

batch mean to evaluate behavior of new samples when the batch mean is shifted.

3.6 Software

The models were implemented in R, specifically libraries connecting Bayesian modeling to R.

The frequentist approach was implemented in lme4, the Bayesian approach was implemented

in both R2jags, and Brms. Brms connects R with Stan programming while R2jags connects

R to Jags programming.
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4 Results

4.1 Primary Results

4.1.1 Results from R2jags

The composite sample was taken as an equal mixture of samples from the other three lo-

cations. This implies that a sample obtained from a composite location had inherently

different residual variability, being the average of the three other samples. The Bayesian

approach in jags provided a flexible approach to incorporate this information. Thus, in

the model specification in the R2jags, we define the residual variability for each response

depending on where in the bag that response was taken. The jags model was fit with a

N(0,10E-4) prior for the ”fixed effects” parameters (which are random in Bayesian frame-

work) and U(0,100) for the variance parameters. The results using these priors are displayed

in Table 3 for the complete dataset.

Table 3: Parameter estimates-Complete data

mean sd 2.50% 97.5% Rhat n.eff

α 99.26 0.20 98.86 99.66 1.00 5400

β1 0.53 0.04 0.44 0.61 1.00 5400

β2 0.71 0.05 0.61 0.80 1.00 3100

β3 0.72 0.05 0.63 0.82 1.00 5400

deviance 589.85 25.84 540.50 641.14 1.00 5400

Sources of variability

σres 0.43 0.01 0.40 0.46 1.00 5400

σbatch 0.78 0.16 0.54 1.17 1.00 4200

σbags(batch) 0.40 0.03 0.35 0.46 1.00 5400

σA.run 0.07 0.04 0.006 0.14 1.02 400

Using the same prior on the incomplete dataset had the results displayed in Table 4.

Table 4: Parameter estimates-Incomplete data

mean sd 2.50% 97.5% Rhat n.eff

α 99.33 0.21 98.90 99.74 1.00 5400

β1 0.50 0.15 0.24 0.81 1.00 2000

β2 0.73 0.11 0.52 0.96 1.00 5400

β3 0.54 0.12 0.30 0.77 1.00 5400

deviance 160.42 22.36 119.56 205.80 1.00 2900

Sources of variability

σres 0.45 0.04 0.38 0.53 1.00 5400

σbatch 0.70 0.19 0.38 1.15 1.01 5300

σbags(batch) 0.48 0.05 0.39 0.59 1.00 5400

σA.run 0.16 0.10 0.01 0.39 1.02 550
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From these results, there was a significant effect of location on the assay for both datasets.

The jags model fitted to the incomplete data was the primary model of choice and inter-

pretation is done with respect to this model. This model was chosen mainly due to its

flexibility and was fitted to the incomplete design dataset that reflects more of what is to

be expected in practice. From Table 4 above, β1 is the parameter estimate corresponding

to samples obtained as composite, β2 is the parameter estimate corresponding to samples

obtained at the middle while β3 corresponds to samples obtained at the end of the bag.

The reference category was beginning category. The 95% credible interval (CI) does not

include zero, implying a significant effect of location on the assay. Samples obtained from

other locations in the bag were found to have higher percentage of API as compared to

samples obtained at the beginning of the bag, with middle location having the highest. The

proportion of variability attributed to each source of variation is shown in Table 9 (section

4.3).

4.2 Model diagnostics-R2jags

4.2.1 Sensitivity to priors

The posterior distribution might be influenced by the prior, making the choice of prior vital.

Several priors were therefore explored. In choosing the priors, only the complete data set

was used to take advantage of the benefit of a complete design. Sensitivity of the ”fixed

effects” parameters to changes in the prior was evaluated. This was done by changing the

prior from N(0,10E-4) to N(0,10E-5) and to N(0,10E-6). The low precision (high variance)

defines a wide range for the coefficients implying that the prior information is contributing

very little information to the inference about these coefficients [22]. The results are shown

in Table 5, posterior mean (posterior std. dev.). From this table, varying the prior had no

relevant impact on the parameters.

Table 5: Different prior for the ”fixed effects”

Parameter N(0,10E-4) N(0,10E-5) N(0,10E-6)

α 99.26 (0.20) 99.25 (0.20) 99.25 (0.20)

β1 0.53 (0.04) 0.53 (0.04) 0.53 (0.04)

β2 0.71 (0.05) 0.71 (0.05) 0.70 (0.05)

β3 0.72 (0.05) 0.72 (0.05) 0.72 (0.05)

Several priors were suggested for the variance of the random effects; U(0,100), U(0,1000) and

IG(ε, ε), with ε = 0.001, 0.0001 for the residual variance. A choice was made between U(0, c)

with c=100, 1000 for σb′s and the inverse-gamma prior for σ2res, IG(ε, ε), with ε chosen to

be very small. For the inverse gamma prior on the higher level variances for a hierarchical

model, the choice of ε has an impact on the posterior distribution making it very dependent

on the prior parameter values [23]. As a result, only the uniform prior was considered for the

higher level variances while both uniform and inverse gamma were considered for the level-1

variance. To make a choice on these priors, parameters for the random components were

all explored through posterior summary measures. Table 6 below shows the comparison of
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these priors. For each prior, three chains were initiated with 100,000 iterations, a thin of 50

and a burn-in of 10,000. Convergence for all was achieved almost immediately. Sensitivity

of the parameters to the change in priors was explored.

Table 6: Different priors for the variance components

U(0,100) U(0,1000) IG(0.001,0.001) IG(0.0001,0.0001)

σres 0.43 0.43 0.43 0.43

σbatch 0.78 0.78 - -

σbag(batch) 0.40 0.40 - -

σA.run 0.07 0.07 - -

”-” means that the prior was not used for that parameter

The results obtained for the variance parameters remained consistent over the range of the

priors indicating that the choice of prior had little impact on the posterior estimates.

4.2.2 Convergence of the R2jags models

When using the MCMC approach, convergence has to be monitored keenly. Trace plots of

the parameters are shown in Figure 3 giving an indication of achieved stationarity.

(a) Trace plots-complete data (b) Trace plots-incomplete data

Figure 3: Trace plots

Autocorrelation plots were also obtained as shown in Figure 4. Though this plot is not
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a convergence diagnostic check, it revealed that the initial values were easily forgotten in

estimating the posterior. Running-mean plots for the various parameters of interest are

shown in Figure 5 and indicate that stability was obtained almost immediately for all the

parameters in all the three chains and in both datasets.

(a) Autocorrelation plot-complete data (b) Autocorrelation plot-incomplete data

Figure 4: Autocorrelation plots

(a) Running-mean plot-complete data (b) Running-mean plot-incomplete data

Figure 5: Running-mean plot

Formal convergence diagnostics included Geweke Z-test shown in Table 7 for each of the

three chains. Approximately all the Z-values are within [-1.96, 1.96], except for a few,
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implying that the burn-in and the total chain were sufficient for both datasets.

Table 7: Geweke Z-values

Complete data Incomplete data

Chain 1 Chain 2 Chain 3 Chain 1 Chain 2 Chain 3

α -0.39 -2.22 -1.01 0.48 -1.94 0.07

β1 2.10 1.96 0.51 1.59 0.19 1.62

β2 0.42 0.95 1.11 0.26 1.02 1.52

β3 2.45 1.83 1.91 -0.56 -0.096 1.28

deviance 1.65 0.12 -0.31 -0.42 -0.48 -0.02

σres 1.03 -0.65 0.23 -0.37 0.79 -0.19

σbatch -1.29 1.44 -0.22 0.11 1.36 2.21

σbag(batch) -0.24 -0.86 2.16 1.36 -1.83 0.01

σA.run -1.19 -0.19 -0.06 0.12 -0.33 0.42

The efficiency of the MCMC was also evaluated looking at the Monte-Carlo (MC) error

which should be less than 5% of the respective standard deviations for good accuracy of the

estimates. The MC error is shown in the Table 8 below. The MC error is lower than 5% of

the standard deviation for all the parameters.

Table 8: MC error estimated via a time-series approach

Incomplete data Complete data

SD MC error 5% of the SD SD MC error 5% of the SD

α 0.21 0.003 0.01 0.20 0.002 0.01

β1 0.15 0.002 0.007 0.04 0.001 0.002

β2 0.11 0.002 0.006 0.05 0.0001 0.002

β3 0.12 0.002 0.006 0.046 0.001 0.002

deviance 22.36 0.33 1.12 25.84 0.42 1.29

σres 0.04 0.001 0.002 0.014 0.0002 0.001

σbatch 0.19 0.003 0.01 0.16 0.002 0.008

σbag(batch) 0.05 0.001 0.003 0.028 0.0004 0.00140

σA.run 0.10 0.002 0.01 0.04 0.001 0.002

4.2.3 Posterior predictive checks

Posterior predictive checks were used to assess normality of the random intercepts and of

residuals. Discrepancy measures based on kurtosis and skewness were then obtained. In

a hierarchical model, assumptions are made at each of the levels of hierarchy and poste-

rior predictive checks based on Kolmogorov-Smirnov and Sinharay and Stern discrepancy

measures were also applied. In checking normality of residuals, a PPP-value of 0.76 was ob-

tained which is not small, say ≥ 0.05. The PPP-values for the above discrepancy measures

were obtained as follows for the three random intercepts:
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Table 9: Assessing normality of random effects

Complete data Incomplete data

Random effect D skew D kurt D KS D SS D skew D kurt D KS D SS

batch 0.66 0.46 0.49 0.85 0.48 0.54 0.52 0.48

bag(batch) 0.23 0.32 0.35 0.32 0.52 0.44 0.45 0.53

analytical run 0.51 0.51 0.50 0.52 0.47 0.52 0.47 0.44

None of the p-values is ≤ 0.05, indicating normality of the random effects in the two

datasets. Another model checking included check for outliers in the data which was done

using posterior predictive ordinate (PPO). PPO plots for the two datasets are shown in

Figure 6. A relatively small value for PPO may imply a possible outlying observation.

Plots of inverse-CPO are also shown in Figure 8 (see Figure in appendix) with extreme

values of the same flagged as possible outliers.

(a) PPO plot-complete data (b) PPO plot-incomplete data

Figure 6: Posterior Predictive Ordinate plots

For the complete data, there was one outlying observation. A further look revealed that the

observation was from batch 4 which, as was shown earlier, had the least assay on average

compared to other batches. The assay for this observation was 96.75 which was indeed

outlying for that batch. Nonetheless, it was still in acceptable range and was kept in the

dataset. In the incomplete dataset, a few observations were outlying. These had assay below

98% but still above 95% and were also kept in the dataset. Recommendation, however,

would be to ensure that there was perfect mixing in the process and correct recording of

the assays obtained.

4.3 Variance Partition Coefficient

The total variation was split into several components. The table below shows the posterior

median representing the proportion assigned to each of the components for the two datasets.
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Table 10: Variance Partition Coefficient

Variance partition coefficient (VPC)

Complete dataset Incomplete dataset

Posterior median[95% CI] Posterior median[95% CI]

VPC (batch) 0.46 [0.37, 0.57 ] 0.39 [0.24, 0.53]

VPC (bag in batch) 0.24 [0.19, 0.29 ] 0.27 [0.20, 0.35 ]

VPC (analytical run) 0.04 [0.004,0.08] 0.09 [0.006,0.21]

VPC (residual) 0.26 [0.20,0.30] 0.25 [0.19, 0.32 ]

From the results, the within-batch variability is lower than the between-batch variability.

This is to be expected since assays in the same batch are produced much more together

and have similar processing history. The assays within a batch are therefore more similar

and the lower variation can be an indication of a good quality batch. The lowest source

of variation was across analytical runs which indicates that even assays measured under

different runs are not very different. Thus from the analytical run perspective, the process

is good and not modeling this variation would not be very alarming.

4.4 Prediction of future batches

As aforementioned, there was interest to predict whether future batches of the product will

pass a criteria imposed. This criteria was to declare a batch as acceptable if its mean assay

was between 95% and 105%. The primary model was the R2jags model and prediction was

done based on this model. Prediction was done conditional on all the random effects as

well on a marginal batch level. The first case continued as follows; given a process mean of

100% (the ideal value), interest was to predict that a new composite sample taken from an

existing batch, existing bag and analytical run would be acceptable by taking into account

the random effect for the batch, bag in batch and the random effect for analytical run in

the computation. The second case proceeded as follows; given a value for the batch mean,

prediction was done for a future batch with 3 bags and assay measured with an existing

analytical run. Several values for batch mean were used; 90, 95, 100, to evaluate behavior

of future batches when there is a shift in the process mean. The batch was then assessed

for acceptability. This was repeated for each of the MCMC iterations and the proportion of

times the criteria was passed calculated. The table below shows these proportions for the

complete as well as the incomplete data set.

Table 11: Proportion that passed acceptance criteria

Complete data Incomplete data

Conditional on all random effects 1 1

Given batch mean =100 1 1

Given batch mean =95 0.12 0.13

Given batch mean =90 0 0
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The results indicate that conditional on all the random effects, a new composite sample

would always pass the acceptance criteria for the incomplete and complete data. For a future

batch with mean 95, there was a probability of 12% for future batches to be acceptable in

the complete data and 13% for the incomplete data. In addition, if the batch mean was

90, such that the assay was produced with low quality raw materials, future batches would

always never be acceptable. From these results, future batches can therefore be predicted

on whether or not they would pass the acceptance criteria.

4.5 Secondary results

4.5.1 Results from frequentist and Brms on complete data

The jags model discussed above was the primary model of interest. In addition, there was an

interest to explore the Brms package as an alternative to Bayesian model implementation.

The formulation of the Brms package, however, does not provide a way to define a user-

specified residual variability for the composite sample. The model was therefore fit without

taking the design of the residual variability into account making it not directly comparable

to the R2jags model. Nonetheless, to compare with the Brms model, a frequentist equiva-

lent was fit also ignoring the design of the residual variability. It should be emphasized that

while they both do not consider how the composite samples were obtained, they were used

here for illustrative purposes to provide guidance on which is a better modeling approach

and to yield more insight into the Brms package. Only the complete data was used in this

comparison since Brms got stuck sampling for the incomplete data probably due to the

incomplete design.

The results from these two approaches are shown in Table 12. The frequentist model

was fit using maximum likelihood method. From this approach, the total variability was

0.38+0.38+0.72+0.09=1.57, with the higher percentage (45.95%) attributed to the vari-

ance between batches. Effect of location on the assay was evaluated using a likelihood ratio

test comparing a model with and without location as a covariate. A p-value < 0.0001 was

obtained indicating that indeed location has an influence on the assay obtained with the

lowest being for a sample taken at the beginning of the bag.

The results using Brms package are also shown in Table 12. Half-Cauchy (0,5) was used

as an non-informative prior for the variance parameters in the model while for the ”fixed

effects” parameters, N(0, 1002) was used as a non-informative prior. The Half-Cauchy prior

belongs to the half-t family of prior distributions that has more flexibility than the inverse-

gamma family [23]. Convergence was achieved with 10000 iterations of three chains with

a warm-up of 1000. Trace plots for the various parameters of interest are shown in Figure

8 (see Figure in Appendix). The full table of results from Brms is shown in Table 13 (see

Table in Appendix).
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Table 12: Frequentist and Brms for the complete data

Frequentist approach Brms approach

Estimate (s.e) Estimate [95% CI]

α 99.26 (0.18) 99.26 [98.86, 99.66]

β1 0.52 (0.05) 0.52 [0.43, 0.62]

β2 0.72 (0.04) 0.72 [0.64, 0.80]

β3 0.70 (0.04) 0.70 [0.62, 0.79]

Sources of variability

σBatch 0.70 0.78 [0.54, 1.17]

σbag 0.38 0.38 [0.33, 0.44]

σAnalyticalrun 0.09 0.08 [0.01, 0.17]

σRes 0.38 0.38 [0.36, 0.41]

The results from the two approaches are very similar. In both models, there was a significant

effect of location with the beginning sample having the lowest percentage of API. Similarly,

in both models, higher percentage of variation was attributed to the variance between

batches while the lowest was between analytical runs.
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5 Discussion

The evaluation of the sources of variability helps in evaluating the quality of the manu-

facturing process which ensures that end-users of the products are protected. In this case,

variability was due to batches, bags within batches, analytical run as well as measurement

error. Two datasets were considered to assess the parameters change when there is a com-

plete and incomplete design. In practice, however, the incomplete design dataset reflects

reality. The response was the percentage of active pharmaceutical ingredient in a sample

(assay). Assay obtained as composite was an equal mixture of assay obtained from the be-

ginning, middle and end indicating inherently different variability for the composite assays.

The model was implemented in R using packages; R2jags, brms and lme4. Flexibility of the

jags model allowed taking the actual structure of the data into account in a less complex way.

The final model chosen was the jags model fitted to the incomplete data. The flexibil-

ity of this model allowed easier definition of the different variability for samples taken from

composite location. Results of the jags model indicated an effect of location on the assay

since the 95% CI did not include zero. There was also larger between-batch variability than

within-batch. The smaller within-batch variability is a good indication that the product is

more similar within batches. The larger between batch variability implies that the batches

are not consistent and they can be very different from each other. Halting of production

between batches combined with machine restructuring contribute to the high variation be-

tween batches. This variability has to be taken into account especially in predicting whether

future batches will be acceptable. The high variability across batches can cause huge in-

consistencies in the efficacy of drugs that can have serious negative impacts on end users.

The results are consistent with [11] who showed that variation across batches is usually the

most prevalent.

To reduce this, pharmaceutical companies should try and make the production of batches

to be as similar as possible, in terms of the machines involved etc. While there did not

show to be any definite time trend across the batches, it may be important to produce the

batches within short periods of time from each other and to ensure reconfiguration of the

machines between batches is done with care. Another option would be to switch from batch

production to continuous production. This can reduce quality variations as well as save

on resources. The continuous batch production is, however, more complex in drug powder

production due to the various steps required and remains less used in this industry. With

the batch production method still highly used, it is then important to take the variability

across batches into account in modeling. Failure to do so could lead to gross underestima-

tion of process variation. The least contributor to the total variation was between analytical

runs. This is a good indication since the analytical run variation is not very alarming. In

general, consistency in every step of the manufacturing process should be upheld to reduce

variations in the end product.

Further interest in the pharmaceutical industry is to ensure that future batches meet accep-
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tance criteria set. The ideal assay is 100% but the batch is acceptable if its mean is between

95% and 105%. Prediction can therefore be done conditional on all random effects and

also marginal on the batch level for future batches. It was revealed that a new composite

sample, taken from an existing batch and measured by an existing analytical run, would

always be acceptable for both complete and incomplete data. On the other hand, a future

batch with mean equal to 90 such that it was produced with low quality raw materials

and with composite samples measured by an existing analytical run, would always never be

acceptable.

Secondary results were based on gaining more insight into the Brms package. The Brms

got stuck fitting to the incomplete data which could be as a result of the incomplete design.

Thus, only the complete dataset was used in this case. From the results there was a signifi-

cant effect of location which was also concluded from the results of the frequentist evaluated

using a likelihood ratio test with p-value < .0001. From both models, variation between

batches explained much of the total variation. The between batch variability obtained under

the Brms was, however, slightly higher than that obtained from frequentist. Nonetheless,

with a balanced design and a non-complex model, the Brms is more advantageous as com-

pared to the frequentist. Brms uses a Bayesian approach which offers better interpretability

in terms of probability and represents parameter estimates with a distribution rather than

just point estimates as in the frequentist. Brms is based on Hamiltonian Monte Carlo

(HMC) which as aforementioned converges faster than MCMC. This was ascertained by the

fact that it took only 10,000 iterations to achieve stability for the parameter estimates.

A Bayesian approach allows taking into account all the uncertainty about the model param-

eters. Each parameter, therefore, has a distribution defined by the prior distribution that

captures uncertainty about that parameter [24]. Conventional methods may fail completely

when it comes to complex models and the flexibility of Bayesian approach becomes even

more appealing. As shown, the jags model formulation offers more flexibility as compared

to Brms and frequentist approaches. In terms of the complete and incomplete design of the

datasets, jags family has more flexibility as compared to Brms since as shown, Brms did not

work for the incomplete design. There was an aim to explore the parameter changes when

dealing with an incomplete and complete design. With respect to this, same qualitative

results were obtained with slight quantitative changes in the parameter values. In terms of

prediction, similar conclusions were made using both data sets.

In general, location was found to have an effect on the percentage of API. This means

that it actually does matter where in the bag the assay was obtained. Based on the esti-

mates for the parameters representing location, higher assay was obtained from the middle

location as compared to the beginning of the bag. Of all the locations, sample obtained

at the beginning had the least assay. This was also ascertained by the exploratory analy-

sis. Perfect mixing of the powdered ingredients should be enhanced to ensure that there is

uniformity in the contents of the powder.
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6 Limitation

The model fitted under Brms package did not work for an unbalanced design dataset. This

is unfortunate since most of the datasets in practice tend to have such designs. Further,

the model formulation in Brms is somewhat rigid and it is not clear how to include a user-

specified residual variance for different groups. From a practical point of view, Bayesian

implementations take more computational time but due to advancement in efficient com-

puter processors, this limitation is now almost not an issue.
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7 Conclusion and recommendation

This study provided insights into the importance of modeling variation for quality manu-

facturing as well as on Bayesian approaches in different packages. Bayesian modeling has

revolutionized how we approach complex models. As a recommendation, the pharmaceu-

tical industry should consider applying such approaches as they could have huge positive

impact on research. In addition, with a balanced or unbalanced design, jags model offers

more flexibility compared to other models considered here. With a non-complex model and

a balanced design, Brms offers an alternative to Bayesian modeling especially because it

is not programming-intensive. Future developments should, however, seek to explore why

Brms does not work for an unbalanced design.
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Appendix

Table 13: Parameter estimates for BRMS for the complete dataset

Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat

Intercept 99.26 0.20 98.86 99.66 2255 1.00

SampleComposite 0.52 0.05 0.43 0.62 12853 1.00

SampleEnd 0.72 0.04 0.64 0.80 17061 1.00

SampleMiddle 0.70 0.04 0.62 0.79 15512 1.00

σres 0.38 0.013 0.36 0.41 12790 1.00

σBatch 0.78 0.16 0.54 1.17 5239 1.00

σbag(batch) 0.38 0.028 0.33 0.44 7436 1.00

σA.run 0.09 0.04 0.01 0.17 3035 1.00

(a) Inverse-CPO plot-complete data (b) Inverse-CPO plot-incomplete data

Figure 7: Index plot of 1/CPO
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Figure 8: Trace plot for the BRMS parameters
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R codes

##############################################################

# Reading data #

##############################################################

# complete data

powder=read.csv("C:\\Users\\VIVIENN\\Desktop\\HASSELT UNIVERSITY\\

2nd year\\thesis

\\dataSetFull.csv",header=TRUE)

# incomplete data

powder_incomp=read.csv("C:\\Users\\VIVIENN\\Desktop\\HASSELT UNIVERSITY\\

2nd year

\\thesis\\dataSet.csv",header=TRUE)

##############################################################

# R2jags for the complete data-for the incomplete data, its just changing the data

#

##############################################################

powder$Composite1=ifelse(Sample=="Composite",1,0)

powder$Bag1=Batch:Bag

powder$Bag1=as.numeric(as.factor(powder$Bag1))

powder$AnalyticalRun=as.numeric(as.factor(powder$AnalyticalRun))

powder$Batch=as.numeric(as.factor(powder$Batch))

model_jags=function(){

for (i in 1:N){

Assay[i]~dnorm(mu[i],tau1[i])

mu[i]=alpha+ beta1*Sample1[i]+beta2*Sample2[i]+beta3*Sample3[i]+a[Batch[i]]+

b[Bag1[i]]

+c[AnalyticalRun[i]]

Assay.rep[i]~dnorm(mu[i],tau1[i])

tau1[i]=(3*tau*Composite1[i] + tau*(1-Composite1[i]))

#ordinary residual

r[i]=Assay[i]-mu[i]

r.rep[i]=Assay.rep[i]-mu[i]

# standardized residual

rs[i]=r[i]/(1/sqrt(tau))

rs.rep[i]=r.rep[i]/(1/sqrt(tau))

# checking skewness and kurtosis of the residuals

m3[i]=pow(rs[i],3)

m4[i]=pow(rs[i],4)

m3.rep[i]=pow(rs.rep[i],3)
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m4.rep[i]=pow(rs.rep[i],4)

}

m3s=sum(m3[])/N

m4s=sum(m4[])/N-3

m3s.rep=sum(m3.rep[])/N

m4s.rep=sum(m4.rep[])/N-3

skewness.test=step(m3s.rep-m3s)

kurtosis.test=step(m4s.rep-m4s)

#priors

alpha~dnorm(0,0.0001)

for (j in 1:Nbatch){

a[j]~dnorm(0,tau_a)

a.rep[j]~dnorm(0.0,tau_a)

m3.a[j]= pow((a[j])/sigma_a,3)

m4.a[j]=pow((a[j])/sigma_a,4)

m3.a.rep[j]= pow((a.rep[j])/sigma_a,3)

m4.a.rep[j]=pow((a.rep[j])/sigma_a,4)

}

#normality of random batches effect

tmin = min(a)

tmax=max(a)

tmin.rep= min(a.rep)

tmax.rep =max(a.rep)

tmin.test = step(tmin.rep-tmin)

tmax.test= step(tmax.rep-tmax)

m3a=sum(m3.a[])/Nbatch

m4a=sum(m4.a[])/Nbatch-3

m3a.rep=sum(m3.a.rep[])/Nbatch

m4a.rep= sum(m4.a.rep[])/Nbatch-3

skewness.a.test=step(m3a.rep - m3a)

kurtosis.a.test=step(m4a.rep-m4a)

#ksmethod

sorta <- sort(a[])

sorta_new <- sort(a.rep[])

for (j in 1:Nbatch) {

pa[j] <- phi(sorta[j])

panew[j] <- phi(sorta_new[j])

maxpa[j] <- max(pa[j] - ((j-1)/Nbatch) , (j/Nbatch) - pa[j])

maxpanew[j] <- max(panew[j] - ((j-1)/Nbatch) , (j/Nbatch) - panew[j])

}

ks_a <- max(maxpa)
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ks_anew <- max(maxpanew)

test5 <- step(ks_anew - ks_a)

#sinharay and stern

absa <- abs(tmax - sorta[50]) - abs(tmin - sorta[50]) #50 the median

absa_new <- abs(tmax.rep - sorta_new[50]) - abs(tmin.rep - sorta_new[50])

test6 <- step(absa_new - absa)

# Between batches variance

sigma_a~ dunif (0, 100)

var_a<- pow(sigma_a,2)

tau_a<- pow(sigma_a, -2)

for (k in 1:(Nbags)){

b[k]~dnorm(0,tau_b)

b.rep[k]~dnorm(0,tau_b)

m3.b[k]= pow((b[k])/sigma_b,3)

m4.b[k]=pow((b[k])/sigma_b,4)

m3.b.rep[k]= pow((b.rep[k])/sigma_b,3)

m4.b.rep[k]=pow((b.rep[k])/sigma_b,4)

}

#normality of random bags effect

tmin1 = min(b)

tmax1=max(b)

tmin.rep1= min(b.rep)

tmax.rep1 =max(b.rep)

tmin.test1 = step(tmin.rep1-tmin1)

tmax.test1= step(tmax.rep1-tmax1)

m3b=sum(m3.b[])/(Nbags)

m4b=sum(m4.b[])/(Nbags)-3

m3b.rep=sum(m3.b.rep[])/(Nbags)

m4b.rep= sum(m4.b.rep[])/(Nbags)-3

skewness.b.test=step(m3b.rep-m3b)

kurtosis.b.test=step(m4b.rep-m4b)

#ksmethod

sortb <- sort(b[])

sortb_new <- sort(b.rep[])

for (k in 1:(Nbags)) {

pb[k] <- phi(sortb[k])

pbnew[k] <- phi(sortb_new[k])

maxpb[k] <- max(pb[k] - ((k-1)/(Nbags)) , (k/(Nbags)) - pb[k])

maxpbnew[k] <- max(pbnew[k] - ((k-1)/(Nbags)) , (k/(Nbags)) - pbnew[k])
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}

ks_b <- max(maxpb)

ks_bnew <- max(maxpbnew)

test7 <- step(ks_bnew - ks_b)

#sinharay and stern

absb <- abs(tmax1 - sortb[50]) - abs(tmin1 - sortb[50]) #50 the median

absb_new <- abs(tmax.rep1 - sortb_new[50]) - abs(tmin.rep1 - sortb_new[50])

test8 <- step(absb_new - absb)

# Between bags variance

sigma_b~ dunif (0, 100)

var_b<- pow(sigma_b,2)

tau_b<-pow(sigma_b, -2)

for (l in 1:NRun){

c[l]~dnorm(0,tau_c)

c.rep[l]~dnorm(0.0,tau_c)

m3.c[l]= pow((c[l])/sigma_c,3)

m4.c[l]=pow((c[l])/sigma_c,4)

m3.c.rep[l]= pow((c.rep[l])/sigma_c,3)

m4.c.rep[l]=pow((c.rep[l])/sigma_c,4)

}

#normality of random runs effect

tmin2=min(c)

tmax2=max(c)

tmin.rep2=min(c.rep)

tmax.rep2=max(c.rep)

tmin.test2=step(tmin.rep2-tmin2)

tmax.test2=step(tmax.rep2-tmax2)

m3c=sum(m3.c[])/NRun

m4c=sum(m4.c[])/NRun-3

m3c.rep=sum(m3.c.rep[])/NRun

m4c.rep= sum(m4.c.rep[])/NRun-3

skewness.c.test=step(m3c.rep - m3c)

kurtosis.c.test=step(m4c.rep-m4c)

#ksmethod

sortc <- sort(c[])

sortc_new <- sort(c.rep[])

for (l in 1:NRun) {

pc[l] <- phi(sortc[l])

pcnew[l] <- phi(sortc_new[l])

maxpc[l] <- max(pc[l] - ((l-1)/NRun) , (l/NRun) - pc[l])

maxpcnew[l] <- max(pcnew[l] - ((l-1)/NRun) , (l/NRun) - pcnew[l])
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}

ks_c <- max(maxpc)

ks_cnew <- max(maxpcnew)

test9 <- step(ks_cnew - ks_c)

#sinharay and stern

absc <- abs(tmax2 - sortc[50]) - abs(tmin2 - sortc[50]) #50 the median

absc_new <- abs(tmax.rep2 - sortc_new[50]) - abs(tmin.rep2 -

sortc_new[50])

test10 <- step(absc_new - absc)

# Between analytical run variance

sigma_c~ dunif (0, 100)

var_c<- pow(sigma_c,2)

tau_c<- pow(sigma_c, -2)

beta1~dnorm(0,0.0001)

beta2~dnorm(0,0.0001)

beta3~dnorm(0,0.0001)

sigma~dunif(0,100)

tau=1/(sigma*sigma)

var1=1/(tau)

########CALCULATION OF PPO

for (i in 1:N){

log.ppo[i] <- -0.5 * log( 2*3.14 ) + 0.5*log(tau)-0.5*tau*(Assay[i]-mu[i])*

(Assay[i]-mu[i])

ppo[i]<- exp(log.ppo[i])

icpo[i]<- 1/ppo[i]

}

#tests

test[1]=skewness.test

test[2]=kurtosis.test

test[3]=skewness.b.test

test[4]=kurtosis.b.test

test[5]=tmin.test

test[6]=tmax.test

test[7]=skewness.a.test

test[8]=kurtosis.a.test

test[9]=skewness.c.test

test[10]=kurtosis.c.test

test[11]=tmin.test1

test[12]=tmax.test1

test[13]=tmin.test2

test[14]=tmax.test2
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test[15]=test5

test[16]=test6

test[17]=test7

test[18]=test8

test[19]=test9

test[20]=test10

#Variance partition

vp=sigma/(sigma_a+sigma_b+sigma_c+sigma)

vpc=sigma_a/(sigma_a+sigma_b+sigma_c+sigma)

vpc1=sigma_b/(sigma_a+sigma_b+sigma_c+sigma)

vpc2=sigma_c/(sigma_a+sigma_b+sigma_c+sigma)

}

###initial values#

init_values=function(){

list(alpha=rnorm(1),sigma_a=runif(1),beta1=rnorm(1),beta2=rnorm(1),

beta3=rnorm(1),sigma=runif(1),sigma_b=runif(1),sigma_c=runif(1))

}

params= c("alpha", "beta1","beta2","beta3","sigma","sigma_a","sigma_b",

"sigma_c","test","vp","vpc","vpc1","vpc2")

library(R2jags)

set.seed(123)

#The implementation

jagsdata_s31st <- with(powder, list(Assay=Assay,Sample1=Sample1,

Sample2=Sample2,Sample3=Sample3, Batch = Batch ,Bag1=Bag1,

AnalyticalRun=AnalyticalRun,

N=N,Composite1=Composite1, Nbatch = Nbatch, Nbags=Nbags, NRun=NRun))

finalmodel <- jags(data =jagsdata_s31st, inits = init_values,

parameters.to.save = params, model.file = model_jags1st,n.chains = 3, n.thin=50,

n.iter = 100000, n.burnin = 10000)

finalmodel$BUGSoutput$summary

##############################################################

# Model diagnostics #

##############################################################

library(coda)

finalmodel_fit=as.mcmc(finalmodel)

summary(finalmodel_fit)

library(ggmcmc)

myjags_ggs <- ggs(finalmodel_fit)

ggs_autocorrelation(myjags_ggs)

ggs_traceplot(myjags_ggs)

ggs_running(myjags_ggs)

ggs_geweke.plot(myjags_ggs)
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##############################################################

# prediction #

##############################################################

jagsmatrix=as.matrix(finalmodel$BUGSoutput$sims.matrix)

bet1=data.frame(jagsmatrix[,2]) #dataframe containing beta corresponding

#to composite

bet2=data.frame(jagsmatrix[,6]) #dataframe containing sigma

bet3=data.frame(jagsmatrix[,7] )#dataframe containing sigma_batch

bet4=data.frame(jagsmatrix[,8] )#dataframe containing sigma_bag

bet5=data.frame(jagsmatrix[,9]) #dataframe containing sigma_analyticalrun

y3=matrix(ncol=3,nrow=5400)

for(i in 1:5400){

y3[i,]<-100+bet1[i,]+rnorm(1,0,bet3[i,])+rnorm(3,0,bet2[i,])+

rnorm(3,0,bet4[i,])+

rnorm(1,0,bet5[i,])

}

pass3=ifelse((y3[,]>=95 & y3[,]<=105),"yes","no")

pass4=as.data.frame(pass3)

pass4[pass4[,c(1,2,3)]=="yes",]

library(dplyr)

filter(pass4,V1=="yes",V2=="yes",V3=="yes")

5400/5400 # this is 95-105

##############################################################

### for a specified batch mean #

##############################################################

y4=matrix(ncol=3,nrow=5400)

for(i in 1:5400){

y4[i,]<-90+rnorm(3,0,bet2[i,])+rnorm(3,0,bet4[i,])+

rnorm(1,0,bet5[i,])

}

pass5=ifelse((y4[,]>=95 & y4[,]<=105),"yes","no")

pass6=as.data.frame(pass5)

library(dplyr)

filter(pass6,V1=="yes",V2=="yes",V3=="yes")

##############################################################

### BRMS #

##############################################################

library(brms)

prior<-c(set_prior("normal(0,100)", class="b"),#prior for the beta’s

set_prior("cauchy(0,5)", class="sigma"),#prior for the residual std. deviation

set_prior("cauchy(0,5)", class="sd"))

model_stan=brm(Assay~Sample+(1|Batch/Bag)+(1|AnalyticalRun)
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,prior=prior,data=powder,family=gaussian(),warmup=1000,iter=10000,chains=3)

print(model_stan,digits=4)

summary(model_stan)

autocorr.plot(stan_model)

traceplot(stan_model)

##############################################################

# Frequentist #

##############################################################

library(lme4)

fm11=lmer(Assay~Sample+(1|Batch1/Bag)+(1|AnalyticalRun),powder, REML=FALSE)

summary(fm11)
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