
Faculty of Sciences
School for Information Technology

Master of Statistics
Masterthesis

Prior specification of spatio-temporal models.

Marie Aimee Uwineza
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics, specialization Biostatistics

2017
2018

SUPERVISOR :

dr. Chellafe ENSOY-MUSORO

Transnational University Limburg is a unique collaboration of two universities in two
countries: the University of Hasselt and Maastricht University.



Faculty of Sciences
School for Information Technology

Master of Statistics
Masterthesis

Prior specification of spatio-temporal models.

Marie Aimee Uwineza
Thesis presented in fulfillment of the requirements for the degree of Master of Statistics, specialization Biostatistics

SUPERVISOR :

dr. Chellafe ENSOY-MUSORO





Acknowledgements

I would like to deeply express my appreciativeness to Almighty God in heaven, who has

bestowed upon me this opportunity and ability of completing this research task to fulfil

the Master of Sciences degree.

It is my grand chance of expressing my truthful thankfulness to my supervisors Dr. Chel-

lafe Ensoy Musoro, for her continual encouragement and precious personal supervision for

carrying out my thesis. Her unique assistance and guidance not only in this research but

also in this master program studies have been influential contribution in enhancing my

knowledge and skills.

It is my honor of utilizing this occasion to sincerely express my gratitude to Vlaamse In-

teruniversitaire Raad (VLIR) for the ultimate financial support to fulfil this program at

Hasselt University and all of my appreciated teachers and staffs of Center for Statistics at

Hasselt University, their hard work and commitment to the excellent education are foun-

dation of my current achievements.

I am also thankful to all my family members especially my husband Munezero and daughter

Umwiza Munezero for their wellbeing and endless encouragement based on understanding

that have been the great motive behind the recent completion of this program.

I also owe my heartfelt gratefulness to my classmates, groupmates, friends and landlords

for their assistance during my study at Hasselt University.

Finally, my deepest thanks are given to the University for its’ constant inimitable excellent

education, that made me a dynamic competent person.

Marie Aimée UWINEZA

Diepenbeek, Belgium, January 22, 2018

i





Abstract

Introduction: The population sample estimated parameters are key statistical point to

make the population inference, predicting and forecasting the response of future subjects.

In Bayesian Statistics, prior knowledge have a big impact in estimating parameters and

predicting future values. The interest of this study was to investigate how the choice of

prior affect the parameters’estimation for the spatio-temporal model which is constructed

under the Bayesian Framework. The objective of this study is to investigate the effect of

different prior specifications in a spatio-temporal model after simulating data of aborted

cattle in different areas of Flanders.

Methodology: A spatio-temporal model which assumed a space-time variation was used

to conduct a simulation for 100 different datasets on 306 areas of Flanders for a period of

36 Months. Each dataset has 11016 observations, the response variable was the number

of aborted cattle and there were four covariate variables. The same model was then fitted

11 times on these datasets by applying different priors each time, different criterion have

been used to propose a better prior among the used priors. All the analysis was done in

Bayesian framework using Integrated Nested Laplace Approximation (INLA) package.

Results: Different combinations of priors have been used for hyperparameters compo-

nents including the structured and unstructured spatial effect, first order autoregressive

(AR1) precision and correlation and time space interaction. A model4 fitted using pe-

nalised Complexity prior for both spatial effects in combination with default prior for other

terms was proposed among 8 (Model1-Model8) models as good in terms of minimum mean

bias, minimum mean squared error and a good coverage probability. Additional 3 models

(Model9-Model11) were fitted, where PC priors were used for other components of the

model. Likewise model4 still being preferable than others. Averaged DIC for all models

were compared, the DIC of model4 was smaller than anyone else with a difference larger 10.

Conclusion: It was concluded that Penalised Complexity (PC) prior in combination with

default prior can be used while fitting a spatio-temporal model as they provided stability in

hyperparameter estimates, and they can be used in real-world applied statistics as they are

constructed by the user to avoid ”cut and paste” prior from other related research articles.

Key words: Spatio-temporal model, Prior specification, INLA
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1 Introduction

This chapter gives the general introduction of the study and the motivation for carrying

out this specific study.

1.1 General Introduction

The population sample estimated parameters are key statistical point to make the popula-

tion inference. Inference helps not only in estimating parameters, but also in predicting and

forecasting the response of future subjects, however the estimation methods vary depending

on the data type as well as model type. Statistical methods for parameter estimation can

be broadly classified into the frequentist, likelihood and Bayesian method. In this study,

Bayesian method is used, specifically focusing in the prior specification of spatio-temporal

model.

Spatio-temporal models are models used to analyze data collected over multiple regions re-

peatedly and over several periods of time. These models describe space and time variation

of disease risk by considering the pattern of disease counts and highlight regions having

unusual incidence levels, time trends or both [1]. In order to account for the various sources

of variation and often hierarchical or clustered nature of the data, many spatio-temporal

models are constructed under the Bayesian framework [2].

Bayesian Statistics is a field of statistics where inference about the true parameters of

interest and hypothesis testing are performed by combining data at hand and the beliefs

accepted before observing the data. These beliefs are what we call the prior knowledge

which is an important component in Bayesian statistics inference. These prior knowledge

are obtained from previous studies or from experts’ opinions, and should be specified in-

dependent of the collected data. These are then combined with the likelihood or observed

data to update information on the parameter and come up with a revised probability as-

sociated with the parameter, called the posterior probability [3].
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These priors can be classified into:

• Conjugate priors: If, given any likelihood, the posterior and prior distributions

belong to the same family, then we say that the prior and posterior distributions

are conjugate to each other. This type of prior is then called a conjugate prior.

For example combining a binomial likelihood with a beta prior results into a beta

posterior. Then we conclude that our beta prior is a conjugate prior [4].

• Non informative priors: These are priors that provide no specific information

about the variable of interest. They are some times called vague or flat priors [4].

Ancient studies used the Bayes postulate to construct non informative priors. This

postulate states that: “when nothing is known about θ in advance, let the prior π(θ)

be a uniform distribution” [5]. Since minimum information is given by these priors,

the variance becomes large, leading to a small precision, hence less contribution to

the posterior distribution. This means the likelihood dominates the prior in this case.

• Informative priors: These are priors based on either historical data or expert

knowledge. These priors give precise information about the variables of interest.

Because of the value of information given by these priors, they end up dominating

the likelihood.

The priors chosen while fitting a model affect significantly the posterior distribution [6],

specification of priors of unknown parameters in the model has to be done carefully and at

an appropriate scale, to avoid any source of wrong posterior distribution [7].

Priors knowledge have a big impact in estimating parameters and predicting future values,

they can be used to solve a problem of multicollinearity, convergence issues, parameter con-

straints as well as contribute in variables selection [3]. It was shown that prior specification

is most suitable and important in cases where data are sparse [8]. Prior specification has

been used to specify the variance component related to random effects of a spatio-temporal

model like the Besag-York-Mollié model [6].

When fitting Bayesian models or spatio-temporal model, researchers randomly choose or

assume different priors distribution of parameter estimation without knowing which can

lead to incorrect posterior distribution of estimated parameters, and affect future predic-

tion.
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This study is intended to come up with a good proposal priors which can be used when

fitting spatio-temporal model and guarantee the researchers to get a correct posterior dis-

tribution and hence accuracy prediction for the future values.The interest of this study is

to investigate how the choice of priors affect the parameter’s estimates in a spatio-temporal

model.

1.2 Objectives of the study

This section contains the objectives to fulfill in this study

General objective

The general objective of this study is to investigate the effect of different prior specifications

in a spatio-temporal model.

Specific objectives

• To simulate 100 different datasets of aborted cattle in different areas of Flanders.

• To fit a spatio-temporal model using different priors on those simulated data.

• To identify effects of different priors on spatio-temporal model.

This thesis is organized as follows: chapter 2 gives a brief overview of the used methodology.

Here we also introduce the nature of the simulated data. In chapter 3, we illustrate the

application of the methodology to the simulated data, we give the interpretation of our

results from the models and data they are applied to. Lastly in chapter 4, we end up with

discussion and conclusion and some recommendations.
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2 Methodology

This chapter provides a brief description of the study region, data used in the study, theories

about methods of analysis, and other technical aspects of the study.

2.1 Important Concepts

This section covers statistical theories about all methods applied in the analysis to fulfill

the objectives of the study.

2.1.1 Poisson model for count data

A Poisson model is the most popular model for count data, especially for small area studies.

It is applicable when there is a relatively low count of a disease (disease is rare) and the

population is relatively large in each small area [4].

Suppose we have a study region T in disease mapping study, and we split it into n non-

intersecting areas, and denote the set of observed disease counts as y = (y1, ..., yn) from the

events of disease occur (m1, ...,mn). These can be assumed as independent realizations of

a random sample or realizations of the disease process and observed disease count in each

m event is considered as a spatial unit.

Assume a variable y follows a Poisson distribution with mean µ and independent realiza-

tions; yi ∼ Poisson(µi), then the Probability Density Function (pdf) of y is given by;

f(yi|µi) =
µyii exp(−µi)

yi!
. (1)

The likelihood function of Equation (1) is given by;

L(Y |µ) =

m∏
i=1

µyii exp(−µi)

yi!
. (2)

In Equation (2), µi represents the average number of disease cases occurring in region i.

Since a Poisson distribution has mean = variance = µ [9], the only parameter needed to

determine the probability of disease counts in this case is µ.
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2.1.2 Bayesian method

Bayesian method is an estimation method that uses Bayes’ theorem. The pdf of a Bayesian

distribution is given by;

p(B|A) =
p(A|B)p(B)

p(A)
. (3)

In Equation (3), p(B) is the prior probability which does not depend on the observed

data. It indicates belief about the presence of the disease before any observation is made.

Event p(B|A) is the posterior probability, obtained from joining the prior information with

observed data [3]. Lastly are p(A|B) and p(A) which represent the likelihood functions

obtained from the observed data. In cases where a parameter belonging to the prior distri-

bution is not fixed, it is allocated a random distribution. This type of parameter is called

a hyperparameter and the prior to which the parameter belongs is called a hyperprior [4].

As shown in Equation (3), the posterior distribution is proportional to the likelihood func-

tions, multiplied by the prior. This is expressed as;

p(θ|y) ∝ p(y|θ)p(θ),

and can be calculated using

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

(4)

2.1.3 Hierarchical models

A Bayesian hierarchical model is a Bayesian Statistical model used to model data that ex-

hibit a hierarchical structure. These types of data are some times considered as clusters. It

is shown that the hierarchical structure in the data allows to account for similarities based

on the neighbourhood for area-level data or on distance for point-reference data [10]. For

any two areas to be considered as neighbours, they need to share a common boundary with

each other. This means that geographically close areas (say, municipalities) have similar

incidence rates of the disease. Likewise, they can be considered as clusters where measure-

ments are taken repeatedly over time on the same subject. In this case, we take the area

to be the subject, meaning that correlation between measurements should be taken into

account [3].
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According to [11], this hierarchical structure can be described by two levels. Firstly, we

consider the individual level to show the disease status, then the area level to specify the

number of cases in one selected area. For the second level, all units in the first level are

nested within the second level representing a cluster that contains cases belonging to dif-

ferent areas within the same region.

a hierarchical Bayes model the priors are allocated a given distribution. The distribution

of the posteriors in this type of models is written as:

p(θ,φ|y) ∝ p(y|θ,φ)p(θ|φ)p(φ). (5)

joint posterior distribution is calculated by evaluating double integration of Equation (5)

with respect to both parameters and hyperparameters of the model:

p(θ,φ|y) =
p(y|θ,φ)p(θ|φ)p(φ)∫∫
p(y|θ,φ)p(θ|φ)p(φ)dθdφ

. (6)

In Equation (6), p(θ,φ|y) is a posterior distribution, p(y|θ,φ)p(θ|φ) is the likelihood and

p(φ) is the hyperprior.

There are two methods commonly used to approximate the posterior distribution; Markov

Chain Monte Carlo (MCMC) sampling method and the Integrated Nested Laplace Approx-

imation (INLA). The process of MCMC approximation is described as one that involves

choosing a parameter as the starting point, say x0, and generating a series of other param-

eters which should converge to give an estimate of the posterior distribution [12]. However,

in this study, we focus on the INLA approach to compute the posterior distribution of

parameters and hyperparameters.
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2.1.4 Integrated Nested Laplace Approximation

The work covered in this section follows studies from Rue et al.(2009) [13].

INLA is a computationally efficient method used as an alternative to MCMC. It is used

to compute the posterior marginals of all parameters of interest. It is commonly applied

when dealing with latent Gaussian models. The advantages of INLA include but are not

limited to the fact that it is easy to use and provides precise parameter p(θ|y) and hyper-

paramenter p(φ|y) estimates in short computational time periods.

The posterior marginal densities for subject i in relation to parameters and hyperparameters

can be written respectively as:

p(θi|y) =

∫
p(θi|φ,y)p(φ|y)dφ, (7)

p(φj|y) =

∫
p(φ|y)dφ−j . (8)

Incorporation of these two densities in INLA has been done to compute their nested ap-

proximations [13].

To approximate p(φj |y) in Equation (8), posterior marginals for φj can be obtained directly

from p̃(φ|y) using numerical integration. It also suggested that the approximate marginal

posterior density for hyperparameter φ can be obtained using Laplace approximation [14],

given by:

p̃(φ|y) ∝ p(θ,φ,y)

p̃G(θ|φ,y)
|θ=θ∗(φ) (9)

In Equation (9), p̃G(θ|φ,y) is the Gaussian approximation for the parameter θ, while θ∗(φ)

is the mode for a given hyperparameter φ. The approximation p̃(φ|y) of the marginal

posterior for φ can also be computed in three steps:

• Using Quasi-Newton method, we find the mode φ∗ of p̃(φ|y) by optimizing log p̃(φ|y)

with respect to θ. This Quasi-Newton method works by generating an approxima-

tion to the second derivative of log p̃(φ|y). This is done by calculating the difference

between successive gradient vectors, which can be approximated using definite differ-
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ences.

• When configuring the mode φ∗, we compute the negative Hessian matrix H > 0,

using differences.

• Lastly, we explore log p̃(φ|y) using the z− parameterization.

To approximate p(θi|φ,y) in Equation (7), we use three approaches;

• Gaussian approximation: This is the easiest method used to approximate p(θi|φ,y).

The Gaussian (often called the normal) approximation of the distribution of param-

eter θ is given by:

pG(θi|φ,y) = N (θi ;µi(φ), σ2
i (φ)) (10)

In Equation(10), µi(φ) is the mean and σ2
i (φ) is marginal variance. With the as-

sumption of normality, both mean and marginal variance can be computed efficiently

using recursions as expressed in Section 2.1 of [13]. Results from the Gaussian ap-

proximation method are often considered correct, however, some errors arise due to

different factors, mainly, location and lack of skewness [13]. As an improvement to

the Gaussian approximation, we can compute the Laplace approximation.

• Laplace approximation is given by

p̃LA(θi|φ,y) ∝ p(θ,φ,y)

p̃GG(θ−i|θi,φ,y)
|θ−i=θ

∗
−i

(θi,φ) (11)

In Equation (11), the denominator p̃GG is the Gaussian approximation to θ−i|θi,φ,y.

The precision matrix needed to calculate p̃GG depends on both θi and φ. This means

that p̃GG has to be computed for every value of θi and φ, which becomes both cum-

bersome and time consuming since we need to factorize the precision matrix n times.

Two main approaches are employed to solve this problem which change the Laplance

approximation into:

p̃SLA(θi|φ,y) ∝ N (θi ;µi(φ), σ2
i (φ))exp(cubic spline(θi)). (12)
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While using the modification in Equation (12), we fit the cubic spline to the difference

of the log-density of p̃SLA(θi|φ,y and p̃G(θi,φ,y) at selected points.

• We can also use the Simplified Laplace Approximation, which was derived through

a series expansion of the Laplace approximation p̃LA(θi|φ,y) around θi = µi(φ).

This method helps solve the Gaussian problems of location and skewness, and is

sufficient enough to give correct posterior marginals when dealing with models related

to observations, like, Poisson and Binomial.

The approximation of the marginal posterior for parameter θi can also be calculated using

a finite sum as;

p̃(θi|y) =
∑
k

p̃(θi|φk,y)p̃(φk|y)∆k (13)

In Equation (13), the finite sum is calculated over values of hyperparameters φ, using

numerical integration and applying suitable area weights ∆k.

2.2 Simulation Model

Let yit represent the number of cattle aborted in area i (i = 1, ..., I) at months t (t = 1, .., T ),

and let mi denote the cattle population per area i. Since we are dealing with count data,

a Poisson model for yit is assumed.

In this study, a spatio-temporal model which assumed a Poisson distribution has been used.

It was formulated in hierarchical manner, by specifying data model p(yit|θ), the parameter

model p(θ|τ) as well as the hyperparameter model p(τ) [15].

Hence the Poisson model is then given by

yit ∼ Poi(mi, µit), i = 1, ..., I, t = 1, ...T.

where µit is the expected value of cattle abortion.

In the simulation model, the log-link has been used and the expectation µit has been broken

down into; a fixed intercept β0, a temporal term βt, a spatial term ci and a spatio-temporal

interaction term dit.
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The simulated model is then specified as:

log(µit) = ηit = β0 + βt + ci + dit, i = 1, ..., I, t = 1, ...T. (14)

2.2.1 Parameter specification for simulation model

The simulation of model (14) was done by specifying the distributions of some terms in the

model.

The temporal term (βt) is decomposed into a linear and seasonal term given below, a

parametric model was assumed for this temporal term.

βt = β1t+ β2 sin

(
2πt

12

)
+ β3cos

(
2πt

12

)
.

Spatial component (ci) is decomposed into two components namely, the structured spatial

effect indicating spatial autocorrelation and the unstructured spatial effect indicating resid-

ual heterogeneity. This spatial component assumes the Besag York Mollié model (BYM)

[16].

ci = ξi + ζi.

Data for the structured spatial effect ξi are given while the unstructured spatial effect ζi

is assumed to be an independent mean-zero normally distributed variable with unknown

variance; τ−1
ζ , i.e ζi ∼ N(0, τ−1

ζ ).

The space-time interaction term dit is decomposed into two components:

dit = δ1t + δ2it.

The first term δ1t is a random time process which assumed to follow a first order autoregres-

sive model (AR1), meaning that the current value is based on the immediately preceding

value. In simulation model, its normal distribution was specified as follows:

δ1t|δ1, s < t ∼ N(ρδδ1,t−1, τ
−1
δ1

),

11



The second term δ2it is the unstructured space-time interaction which assumed to follow

an independently and identically distributed model (IID), In simulation model, its normal

distribution was specified as follows δ2it ∼ N(0, τ−1
δ2

).

In this model, a sum-to-zero constraint was postulated to ensure identifiability of the pa-

rameters [1].

2.2.2 Simulation set-up

This section briefly describes datasets and variables used in this thesis. We conduct a

simulation, where 100 different datasets of aborted cattle are simulated for each of the 306

areas of Flanders, Belgium ( Figure 1), over a period of 36 months (3 years).

Flanders is situated in north of Belgium, it is a Dutch-speaking region. Its area is 13,522

km2 representing 44.3 % of Belgium. Flanders is composed by 5 provinces namely: West

Flanders, East Flanders, Antwerp, Limburg and Flemish Branbant, these 5 provinces are

split into 306 municipalities.

Figure 1: Map showing regions of Flanders Belgium
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We took the response variable to be the number of aborted cattle, and covariate variables

as: ID (indicating the structured and unstructured effects of each area), time (representing

36 Months), time2 (indicating that the number of aborted cattle are correlated over time),

and ID2 ( representing the unstructured space and time interaction).

Table 1 shows the true (hyper)parameters used for simulation.

Table 1: True (hyper)parameters for the simulation model

Description Parameter Estimate
Intercept -7.9310

Time effect
Linear -0.0090
Sine -0.0572
Cosine -0.0805

Spatial Effect
Structured effect Precision 1.3828
Unstructured effect Precision 27.9474

Space*time Effect
AR1 Correlation 0.7857
AR1 Precision 5.2799
Unstructured effect Precision 6.0696

2.3 Hyper-prior specification

Choosing prior distributions is very important because the choice of the prior distributions

of parameters can affect the posterior significantly [4]. Hence, different prior specifications

of the model hyper parameters are specified for the spatial term, autocorrelation term and

spatio-temporal interaction term with the assumption of a Poisson distribution.

2.3.1 Default prior (Gamma prior)

A gamma prior on log scale is used as a default prior for INLA [10]. The pdf of a gamma

distribution is given by;

π(τ) =
ba

Γ(a)
τa−1 exp(−bτ),

where τ>0, is the parameter of interest, a is the slope parameter and b is the inverse-scale

parameter. Both a and b must be positive definite. The mean value of τ is given by a
b

and

its variance is a
b2

. These are characteristics of a Gamma(a, b) distribution. Furthermore,

Gamma(a, b) is the distribution of variance θ, if θ = log(τ) and τ follows a Gamma(a, b)

distribution.
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In model fitting, for both the structured (ξi) and the unstructured (ζi) spatial effect preci-

sions, default Gamma(1, 0.0005) was used. The same default Gamma(1, 0.0005) was used

for both random time process δ1t and unstructured space-time interaction δ2it in fitting the

first model [10].

2.3.2 Equivalent gamma prior

For both the structured (ξ) and the unstructured spatial effect precision (ζi), Equivalent

gamma prior Gamma(0.001, 0.001) on log scale was used.

2.3.3 Halfnormal prior

For both random time process δ1t and unstructured space and time interaction δ2it, halfnor-

mal on log scale for standard deviation instead of the precision was used, it is given by

log tnormal(0, 0.001).

2.3.4 Prior according to Bernardinelli

The precisions of the structured (τξ) and the unstructured spatial effect (τζ) have been

chosen as Gamma(1, 0.023) and Gamma(1, 0.01) respectively. This is prior(B) according to

Bernardinelli. Prior(A) was given as Gamma(1, 0.00025) and Gamma(1, 0.0006) for preci-

sion of the structured (τξ) and the unstructured spatial effect (τζ) respectively. Likewise,

Prior(C) was given as Gamma(1, 0.125) and Gamma(1, 0.286) for precision of the struc-

tured (τξ) and the unstructured spatial effect (τζ) respectively [8].

A comparison of these three priors, shows that prior(A) has the largest coefficient of vari-

ation, and the greater part of its mass, favouring less extreme geographical variation.

Prior(C) is a strong prior, however it is quite concentrated and favours marked geograph-

ical variation. Prior(B) is the most appropriate, compared to prior(A) and prior(C). It is

considered as better prior in terms of providing marginal and condition posterior distribu-

tions of τξ and τζ [8] .

2.3.5 Penalised Complexity (PC) Prior

These are informative priors with a single parameter used to control the amount of flexibil-

ity allowed in the model. In this case, the user has the freedom to define their own priors.
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These priors were developed to be use when dealing with realistically complex Bayesian

models, for example, hierarchical models [17].

Penalised priors allow for the use of parsimonious models, where a simple model, called

the base model is preferred. In cases where there is enough information, a more complex

model can be applied but, the prior plays a role of penalizing deviations from the simple

model. The prior is used to choose a simple model by measuring the increase in complexity

between the base model (g) and a more flexible one (f). The measure of the increase in

complexity between densities f and g is given by

KLD(f ‖ g) =

∫
f(x)log

(f(x)

g(x)

)
dx,

KLD (Kullback-Leibler Divergence) is a measure of the information lost when the base

model g is used to approximate a more flexible model f .

To fit a model with PC priors, a type 2- Gumbel distribution was used as PC prior for

spatial effect. The density of this distribution is given by:

π(τ) =
λ

2
τ

−3
2 exp(−λτ

−1
2 ), τ > 0

where, τ is the precision parameter and λ is the magnitude of the penalty for deviating

from the base model and higher values increase this penality.

The parameters of this distribution are specified as follows: a scaling parameter α =

0.01 was used and the spatial component U is set to be 0.2
0.31

. By plotting this PC priors

distribution, it is found that the PC prior puts 2
3

probability on mixing parameter φ<1
2
,

this is to set up that a set (U, α) ensures that Prob(φ<U) = α. This probability determines

the degree of penalisation. Those values were also used in model fitting to get the posterior

concentrate around 1 [17].

The mixing parameter of the precision of spatial effect controls the marginal precision,

the distance above can be rewritten as d(φ) =
√

2KLD(φ).

2.4 Prior selection criteria

Different theoretical methods can be used to determine which model best suits the interest

of the study at hand. Some of these methods are;
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2.4.1 Unbiased estimator criteria

An estimator is said to be unbiased if the mean of its distribution is equal to the true

parameter being estimated. Bias is defined as the difference between the expectation of

an estimator and the true parameter. If the difference tends to 0 as n → ∞, then the

estimator is said to be an asymptotically unbiased estimator for the true parameter. Let

Tn = t(X1, X2, ..., Xn) represent an estimator. Tn is called an unbiased estimator for θ if

Eθ(Tn) = θ, and the quantity bias(Tn) = Eθ(Tn)− θ is the bias of Tn. Among all unbiased

estimators, one could choose an unbiased estimator with the smallest mean squared error

[18].

2.4.2 Mean squared Error criteria

This is the measure of goodness or closeness of an estimator Tn of θ. To support this

property of goodness measure of mean squared error, we could consider mean squared

error as a measure of the spread of Tn values about θ. Mean squared error of an estimator

Tn for the true parameter is given by

MSEθ(Tn) = Eθ[(Tn − θ)2].

It is estimated by computing:

MSEθ(Tn) = V arθ(Tn) + (biasθ(Tn))2.

If MSEθ(Tn) → 0 for all θ, then Tn estimates θ correctly. This means that from the

sample, one must be able to identify the true parameter value. While comparing estimators

by looking at their respective mean squared error, we prefer one with the smallest mean

squared error [18].

2.4.3 Ratio of Variance criteria

The variance of a random variable is a measure of its spread about its mean. The ratio of

variances was computed as follows

varest(Eθ(Tn))

varsim(Eθ(Tn))
.
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The ratio closer to 1 is an indication of the goodness of the estimator Tn of θ.

The variance on numerator is the variance computed based on the 100 simulation results

for each parameter.

varest(Eθ(Tn)) =
1

n− 1

100∑
i=1

((Eθ(Tni
)− Eθ(Tn))2

The variance on denominator is the averaged variances from the model

varsim(Eθ(Tn) =
100∑
i=1

var(Eθ(Tni
)

100

2.4.4 Coverage criteria

Coverage probability can be define as the probability that a process for constructing random

regions will produce an interval containing or covering the true parameter [19]. Coverage

probabilities have been calculated for each model and each parameter estimate. The cal-

culation was done in three steps below:

• Each model has been fitted for 100 simulated samples

• 2.5% Lower confidence bound and 97.5% upper confidence bound have been obtained

from step 1 for each model, each parameter and each sample

• Proportion of samples or simulation for which the true known population parameter

is contained in the confidence interval has been computed for each model and each

parameter. Hence that proportion is an estimate for coverage probability for the

confidence interval [20].

2.4.5 Deviance information criterion

In Bayesian framework, the deviance information criterior is used as a tool to select the

best fitted model among all candidate models. It is computed as follows:

DIC = D(θ) + 2pD = D(θ) + pD

and,

pD = D(θ)−D(θ).
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where, pD is Bayesian measure of complexity, D(θ) is the posterior mean of bayesian de-

viance, D(θ) is the posterior mean of −2 logL.

The rule of thumb for using DIC in model selection is that a difference in DIC of more

than 10 takes out the model with the higher DIC, and a difference of less than 5 implies

no conclusion among compared models [3].

2.5 Software

All analyses (models fitting and plots) carried out in this thesis are done in R software with

emphasis on the INLA package.
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3 Results

This chapter contains the main analysis carried out on the simulated data and the re-

sults obtained by applying the methodology discussed in Chapter 2 on the 100 simulated

datasets.

3.1 Simulated Data

In this section, we present initial graphical representations of the data. This fundamental

step is carried out in order to gain a better understanding of the data and its nature.

Preliminary graphical representation are used to study the association between the response

variable and the set of explanatory variables.

Figure 2: Map of cattle livestock in Flanders

Figure 2 represents the distribution of cattle livestock in Flanders. It can be observed

that areas in the West and North East of Flanders have a high number of cattle livestock

compared to Central and South East regions.

Figures 3 and 4 show the distribution of aborted cattle in all 306 municipalities of Flanders,

by considering different simulated datasets and different time points.

Both figures show that there are many areas with very low numbers of cattle abortions. In

addition, they show that there is evidence of clustering across municipalities, this means
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Figure 3: Map showing cattle abortions in Flanders for the first simulation.

Figure 4: Map showing cattle abortions in Flanders for the last simulations.
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that municipalities with high numbers of cattle abortion are surrounded by others with

high numbers of cattle abortion. Generally, it can be seen that cattle abortion is spread in

the entire Flanders region.

Figure 5: Evolution of cattle abortion over time for 2 randomly selected areas

Figure 5 shows individual profiles for two randomly selected areas, Y axis is number of

aborted cattle while X axis represents the Months. It represents evolution over time of

aborted cattle during three years of study. It can be seen that within the same area, the

number of aborted cattle varies depending on years. For instance, in the first area, the

evolution of the third year is the lowest compared to the first and second year. Likewise

there is a slight change between year 2 and first year. However, the minimum and maxi-

mum values are observed in November and May of the second year, respectively.

Between areas, it is clear that the number of aborted cattle is higher in area 2 compared

to area 1. Likewise by comparing each year in area 1 with corresponding year in area 2,

for all cases area 2 has the highest number of aborted cattle.
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3.2 Hyperpriors

To fulfill the objectives of study, different types of priors discussed in section 2.4 have

been applied. Default prior, equivalent gamma prior and prior(B) of Bernardinelli follow a

gamma distribution, as it is known that in disease mapping context, the most assumed dis-

tribution for the parameters in a Poisson model is the gamma distribution [4]. Likewise, a

halfnormal prior follows a halfnormal distribution and penalized complexity prior assumes

a type-2 Gumbel distribution. These priors have been used to see how they are differently

affecting hyperparameter estimates. Some of them are informative priors while others are

non informative. Informative priors are halfnormal and penalized complexity prior, while

non informative priors are default prior, equivalent prior and prior(B) of Bernardinelli.

3.3 Results from different fitted models

During the analysis, 8 models were fitted on 100 simulated datasets by considering different

priors. This means that for each model, one type of prior is used for the structured and

unstructured spatial effects. Another type of prior is used for random time process and the

unstructured space-time interaction.
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Table 2: Comparison of estimated hyperparameters with true hyperparameters by Bias,
MSE, coverage and ratio of variance Criterion

D+D E+D B+D PC+D D+HN E+HN B+HN PC+HN
Bias

Unstructure effect 99.6795 -10.7768 -16.1114 -27.5878 43.1853 -13.0710 -0.0225* -27.5853
Structure effect -1.1400 -1.1385 -1.1416 -0.7245* -1.1387 -1.1377 -1.1397 -0.7309
AR1 Precision -1.7360 -1.7367 -1.7445 -1.6906* 1.2E+76 1.4E+21 4.2E+35 -3.3779
AR1 Correlation -0.1144 -0.1127 -0.1102 -0.1138 0.0221 0.0176* 0.0200 0.0253
Unstr.time space interaction 0.1743 0.1667 0.1241 -0.1138* 0.1686 0.1807 0.1774 0.1622

MSE
Unstructure effect 455894.93 12803.05 1.6E+16 761.09 247142.38 4.0E+33 1379.42 760.95*
Structure effect 1.3083 1.3032 1.3117 0.5393* 1.3047 1.3011 1.3071 0.5493
AR1 Precision 7.8558 8.0147 7.9349 7.8367* 6.5E+183 3.1E+74 9.8E+101 102724985.8
AR1 Correlation 0.0499 0.0487 0.0473 0.0496 0.0405 0.0395* 0.0406 0.0411
Unstr.time space interaction 0.2389 0.2217* 0.5673 0.2389 0.2256 0.2471 0.2309 0.2387

Coverage
Unstructure effect 0% 0% 4% * 0% 0% 0% 3% 0%
Structure effect 0% 0% 0% 0% 0% 0% 0% 0%
AR1 Precision 64% 65% 60% 66%* 36% 35% 37% 33%
AR1 Correlation 84%* 83% 82% 83% 68% 70% 70% 67%
Unstr.time space interaction 84% 86% 86% 90%* 82% 80% 77% 85%

Ratio of variance
Unstructure effect 0.9192* 1.8922 1.1E-13 0.3271 0.9120 3.3E-30 2.7768 0.3673
Structure effect 1.0155 0.7326 1.0065* 0.3974 0.9027 0.7121 0.9080 0.4265
AR1 Precision 1.5593* 1.5715 1.5695 1.5798 2.1E-30 6.0E-31 1.8E-29 3.0E-08
AR1 Correlation 1.5467 1.5567 1.5336* 1.6148 1.9684 2.0172 2.0395 2.2024
Unstr.time space interaction 1.2693* 1.3260 7.1E-29 1.3382 1.5928 1.3690 1.6494 1.2721

* means the smallest value through the row

In table 2, the meaning of abbreviated priors are the following:

• D+D: Default prior is used for the structured and unstructured spatial effect, in

combination with Default prior for the random time process and the unstructured

space-time interaction (Model1).

• E+D: Equivalent prior is used for the structured and unstructured spatial effect, in

combination with Default prior for the random time process and the unstructured

space-time interaction (Model2).

• B+D: Prior(B) of Bernardinelli is used for the structured and unstructured spatial

effect, in combination with Default prior for the random time process and the un-

structured space-time interaction (Model3).

• PC+D: Penalised Complexity prior is used for the structured and unstructured spa-

tial effect, in combination with Default prior for the random time process and the

unstructured space-time interaction (Model4).
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• D+HN: Default prior is used for the structured and unstructured spatial effect, in

combination with halfnormal prior for the random time process and the unstructured

space-time interaction (Model5).

• E+HN: Equivalent prior is used for the structured and unstructured spatial effect, in

combination with halfnormal prior for the random time process and the unstructured

space-time interaction (Model6).

• B+HN: Prior(B) of Bernardinelli is used for the structured and unstructured spatial

effect, in combination with halfnormal prior for the random time process and the

unstructured space-time interaction (Model7).

• PC+HN: Penalised Complexity prior is used for the structured and unstructured

spatial effect, in combination with halfnormal prior for the random time process and

the unstructured space-time interaction (Model8).

First panel of table 2 shows the mean bias values calculated across all 8 fitted models. For

each model and each hyperparameter estimate, the mean bias is calculated by averaging

all biases across 100 simulated datasets. The values were rounded off to the nearest four

decimals. By checking all mean biases for all hyperparameters accross 8 models, it can

be seen that model4 (PC+D), has smaller values of mean bias for three hyperparameters

among 5 hyperparameters. These three hyperparameters are the structured spatial effect,

AR1 precision and the unstructured space time interaction. This is an indication that

priors used in fitting model4 is a good proposal prior for spatio temporal model in term of

providing estimates with minimum bias.

Second panel of table 2 shows the mean squared error values calculated across all 8 fitted

models. For each model and each hyperparameter estimate, the mean of mean squared

error is calculated by averaging all mean squared errors across 100 simulated datasets.

Among 8 models, still model4 provides estimates with minimum mean squared error for 2

hyperparameters( structured spatial effect and AR1 precision). Hence priors used in fitting

model4 proposed in first panel, for the best unbiased estimator, still being proposed in

Second panel, by considering unbiasedness estimator with minimum squared Error.

Third panel of table 2 represents the coverage probability for 95% confidence intervals for

each hyperparameter estimate accross 8 models. It can be seen that model4 has higher
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coverage compared to other 7 models, as it has highest coverage for both AR1 precision

and unstructured time space interaction. Still priors used to fit model4 are preferable in

terms of coverage probability.

Fourth panel of table 2 represents the ratio of variances between variance of hyperparam-

eters estimates and average variance from the model fitting. In this panel, model1 can be

chosen as a good prior, since it provides three hyperparameter estimates among 5 with

ratio closure to 1.

After obtaining PC prior as a good proposal prior for spatio-temporal model, three addi-

tional models have been fitted to see the effect of this PC prior, when they are used for

other components of the model. However these results are equally compared with previous

ones.

• PC+PC+PC: Penalised Complexity prior is used for the structured and unstruc-

tured spatial effect, random time process and the unstructured space-time interaction

(Model9).

• PC+PC+D: Penalised Complexity prior is used for the structured and unstructured

spatial effect, random time process, in combination with Default prior for the un-

structured space-time interaction (Model10).

• PC+D+PC: Penalised Complexity prior is used for the structured and unstructured

spatial effect, for the unstructured space-time interaction in combination with De-

fault prior for the random time process (Model11).

In table 3 below, comparison of results from model4, model9, model10 and model11, shows

that still model4 performs better in terms of mean bias, however for the remaining criterion,

values are much more closure for model4 and model10.
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Table 3: Comparison of estimated hyperparameters with true hyperparameters by Bias,
MSE, coverage and ratio of variance Criterion

PC+D PC+PC+PC PC+PC+D PC+D+PC
Bias

Unstructure effect -27.5878 -27.5875 -27.5869* -27.5900
Structure effect -0.7245* -0.7263 -0.7264 -0.7268
AR1 Precision -1.6906 -1.4361 -1.3950* -1.7275
AR1 Correlation -0.1138* -0.1398 -0.1422 -0.1144
Unstr.time space interaction -0.1138* 0.1662 0.1760 0.1158

MSE
Unstructure effect 761.0879 761.0707 761.0397* 761.2145
Structure effect 0.5393* 0.5417 0.5431 0.5429
AR1 Precision 7.8367 6.2636 6.2386* 8.0034
AR1 Correlation 0.0496* 0.0519 0.0535 0.0510
Unstr.time space interaction 0.2389 0.2342 0.2420 1.2083*

Coverage
Unstructure effect 0% 0% 0% 0%
Structure effect 0% 0% 0% 0%
AR1 Precision 66% 70% 71%* 66%
AR1 Correlation 83% 77% 88%* 81%
Unstr.time space interaction 90%* 90%* 87% 86%

Ratio of variance
Unstructure effect 0.3271* 0.3034 0.3106 0.2630
Structure effect 0.3974* 0.3891 0.3778 0.3970
AR1 Precision 1.5798 1.2783* 1.3060 0.3898
AR1 Correlation 1.6148 1.3720* 1.4068 1.6712
Unstr.time space interaction 1.3382 1.4017 1.2419* 0.4832

* shows the smallest value through the row

By comparing the mean bias, mean squared error, coverage probability and ratio of vari-

ance for each hyperparameter for 4 respective models, it can be seen that the variabilities

are very low. This is different from what we can observe from table 2, where the variabili-

ties in mean bias, mean squared error, coverage probability and ratio of variance are highly

depending on priors used. From this, we can suggest that hyperparameters estimated using

PC prior are more stable as compared to those estimated using other given priors.
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Further comparisons have been done in terms of DIC. Table below contains the averaged

DIC for all fitted models.

Table 4: Deviance Information Criterion values for all fitted model

Model DIC
Model1 (D+D) 30760.7338
Model2 (E+D) 30769.8777
Model3 (B+D) 30770.0757
Model4(PC+D) 30701.0643
Model5 (D+HN) 30765.9278
Model6 (E+HN) 30769.1848
Model7 (B+HN) 30715.6009
Model8 (PC+HN) 30771.2679
Mod9 (PC+PC+PC) 30771.8755
Model10 (PC+PC+D) 30722.7086
Model11 (PC+D+PC) 30771.6479

In table 4, comparison of the DIC values indicates that seven deviance information cri-

terion(model2, model3, model5, model6, model8, model9 and model11) are nearly equal,

the difference in DIC for each 2 models is less than 5, meaning no clear conclusion can be

obtained from them.

On the other hand, by comparing DIC of all models, the smallest DIC is observed on

model4, and the difference in DIC between each model and model4 is greater than 10, this

indicated that model4 is selected as it has the smallest DIC. This is an other indication

that priors used in fitting mode4 (PC+D) are good prior specification in spatio-temporal

model.
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4 Discussion and Conclusion

The main objective of this study was to investigate the effect of different prior specifications

in a spatio-temporal model. Data simulation was done in R software by using true known

parameters and hyperparameters given in table 1, then the parameters and hyperparame-

ters were estimated by fitting simulation model (spatio-temporal model) to 100 simulated

data in R. By specifying different priors, 11 models have been fitted by using INLA package

which is alternative to MCMC.

Different priors specified are the following: Default prior, equivalent prior, prior(B) of

Bernardinelli, halfnormal prior and Penalized Complexity prior. Default prior on log scale

was chosen as INLA default prior given by Gamma(1, 0.0005), it provided minimum in-

formation, hence it was considered as minimally informative prior [10]. Equivalent prior

on log scale was equally considered, where the mean and precision are given equal value

Gamma(0.001, 0.001). Prior(B) of Bernardinelli which is a vague (noninformative) prior

based on a chi-square distribution was used. It was chosen as Gamma(1, 0.023) for the

structured spatial effect and Gamma(1, 0.01) for the unstructured spatial effect [8]. Halfnor-

mal on log scale for standard deviation instead of the precision was used, it is given by

log tnormal(0, 0.001), this type of prior is informative prior [3]. Lastly, Penalized Com-

plexity prior was used, this prior is given by a type-2 Gumbel distribution with scaling

parameter given by 0.01 and a location(spatial component ) parameter given by 0.2
0.31

. This

PC prior can be vague, weakly informative or strongly informative prior, depending on the

way user adjusts a scaling parameter. In this study, it was used as informative priors [17].

The difference between PC prior and other used priors is that the PC prior are defined on

individual components, while for non informative priors, priors depend on the structure of

global model. In addition, PC prior assumed a heavy dependence between the structured

and unstructured spatial effect which is different from other priors assumption [17].

Model1 fitted using default INLA prior for all components of the model does not provide

good fit to the data, its DIC value is among the largest values, however it provides good

fit in terms of ratio of variance. This result is in contrast with the following study, where

a spatio-temporal model was fitted on counts of low birth weight using INLA default pri-

ors. Counts of low birth weight was defined if weight is less than 2500g, data are for 159

countries in the US state of Georgia during 2000-2010. In term of DIC a model containing
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temporal effect, both the structured and unstructured spatial effect, the random time pro-

cess and the unstructured space time interaction was found to provide more suitable fit to

the data regardless of the added complexity [10].

In table 2, PC prior provides good fit in terms of minimum mean bias, minimum mean

squared error as well as coverage probability. This is similar with study conducted on

Larynx data in Germany with the interest to find spatial effect and the effect of an eco-

logical covariate by applying PC priors. It was found that only spatial component has a

contribution to the marginal variance and the effect of the ecological covariate appears to

decrease towards the straight line(base model) [17].

Similarly, it was found that hyperparameters estimated using PC prior are more stable as

compared to those estimated using other given priors as the variabilities in hyperparame-

ters estimates are very low.

In terms of Deviance information criterion, the obtained DIC values for 11 models were

compared, the DIC of model4 was found to be the smallest, indicating that model4 provides

good fit to the data. In other words, as we fitted the same model by specifying different

priors, this smallest DIC indicated that priors used in model4 are good choice priors for

spatio-temporal model. This confirm the interpretation of other models using prior(B) of

Bernardinelli, equivalent prior and halfnormal prior which did not provide good fit in terms

of all criterion. That interpretation about model4 makes sense even if default prior alone

did not provide a good fit in this analysis, we have seen an example where it performed well,

[10], it is not surprising to obtained a combination of PC prior with default prior provid-

ing good fit than PC alone used to all model components or any other combination of priors.

From these, it can be concluded that PC in combination with default prior can be used as

priors specification for spatio-temporal model. PC prior used is a type-2 Gumbel distribu-

tion with scaling parameter given by 0.01 and a location (spatial component ) parameter

given by 0.2
0.31

and default prior used is Gamma(0.001, 0.001), it was used for both the ran-

dom time process and the unstructured space time interaction. This conclusion is similar

to the conclusion obtained from the analysis of Larynx data in Germany [17], it was rec-

ommended to construct PC prior not as the best prior, rather avoiding ” cut and paste”

prior choices from other similar research articles, and as alternative it was proposed to
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use obtained tools to specify weakly informative or informative priors with a well defined

shrinkage to get PC Prior which is believed to provide good fit as tool for real world applied

statistics. Likewise, the researchers may know a better prior and applied it for their stud-

ies, however knowing a better default proposal for how to construct priors is a considerable

advantage.

To strengthen the current evolution of Bayesian analysis, depending on few available prior

specifications related researches conducted, further study should focus on other type of

Bayesian hierarchical models for instance Spatial Survival Analysis and Spatial Longitudi-

nal Analysis to scrutinize the deep awareness of their multi-application.
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Appendix

Tables

Table 5: Comparison of estimated parameters with true parameters by Bias,MSE, coverage
and ratio of variance Criterion

D+D E+D B+D PC+D D+HN E+HN B+HN PC+HN
Bias

Intercept 7.7335 7.7325 7.7335 7.7383 7.7581 7.7509 7.7623 7.7611
time -0.0030 -0.0030 -0.0030 -0.0030 -0.0039 -0.0038 -0.0044 -0.0039
sin1 0.0207 0.0208 0.0206 0.0209 0.0229 0.0189 0.0149 0.0184
cos1 -0.0224 -0.0225 -0.0225 -0.0225 -0.0227 -0.0226 -0.0241 -0.0225

MSE
Intercept 60.2777 60.2307 60.2442 60.3223 63.4231 63.2861 63.1777 62.8701
time 0.0010 0.0010 0.0010 0.0005 0.0017 0.0017 0.0017 0.0016
sin1 0.0749 0.0744 0.0746 0.0742 0.0793 0.0807 0.0805 0.0806
cos1 0.0639 0.0636 0.0637 0.0636 0.0699 0.0700 0.0700 0.0698

Coverage
Intercept 0% 0% 0% 0% 0% 0% 0% 0%
time 90% 92% 93% 90% 98% 97% 98% 98%
sin1 88% 88% 89% 90% 91% 90% 91% 92%
cos1 88% 88% 89% 91% 93% 91% 91% 93%

Ratio of variance
Intercept 0.6026 0.6704 0.6719 0.6508 0.0419 0.0433 0.0476 0.0539
time 1.0809 1.0674 1.0667 1.0505 0.3610 0.3716 0.3592 0.3948
sin1 1.3655 1.3866 1.3830 1.3831 1.1047 1.1405 1.1526 1.1515
cos1 1.2635 1.2705 1.2634 1.2716 1.0360 1.0310 1.0405 1.0338
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Table 6: Comparison of estimated parameters with true parameters by Bias,MSE, coverage
and ratio of variance Criterion

PC+D PC+PC+PC PC+PC+D PC+D+PC
Bias

Intercept 7.7383 7.7340 7.7343 7.7382
time 0.0051 0.0053 0.0052 0.0051
sin1 0.0209 0.0212 0.0210 0.0208
cos1 -0.0225 -0.0225 -0.0201 -0.0225

MSE
Intercept 60.3223 60.1799 60.1838 60.3222
time 0.0010 0.0009 0.0009 0.0010
sin1 0.0742 0.0732 0.0730 0.0744
cos1 0.0636 0.0624 0.0620 0.0641

Coverage
Intercept 0% 0% 0% 0%
time 90% 90% 87% 91%
sin1 90% 90% 88% 89%
cos1 91% 89% 87% 88%

Ratio of variance
Intercept 0.6508 1.0260 1.0290 0.6462
time 1.0505 1.4348 1.4469 1.0430
sin1 1.3831 1.4466 1.4518 1.3809
cos1 1.2716 1.3298 1.3301 1.2498
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Figure 6: PC prior density for the mixing parameter φ
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R codes

setwd("E:/TEST")

library(Matrix)

library(maptools)

library(sp)

library(spdep)

library(INLA)

library(Matrix)

loc.map = "E:\\TEST\\FlandersMap\\"

flanders = readShapePoly(paste(loc.map,’vlaanderen.shp’,sep=’’))

plot(flanders)

####SIMULATION###

sIM<- function(i){

set.seed(i)

nTime = 36 # Number of time points

nArea = 306 #Number of areas/locations

N = nArea*nTime

#fixed effect

beta0=-7.9310 # Intercept

##Temporal effect

beta1=-0.0090 # Linear

beta2=-0.0572 # Sine

beta3=-0.0805 # Cosine

timeT = c(1:nTime)

time = rep(timeT,nArea)

bt=beta1*time+beta2*sin(2*pi*time/12)+beta3*cos(2*pi*time/12)

length(bt)

###Spatial effect

load("StructuredSpatialEffect.RData")

xi_i

xi=1.3828 # Structured effect Precision

zeta=27.947 # Unstructured effect Precision

ci= xi_i+rnorm(nArea,0,zeta^(-0.05))
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#xi_i is known , no need of its distribution

ci=rep(ci,each=nTime)#306*36

####Space-time

rho_d=0.7857 # AR1 Correlation

tau_d=5.2799 # AR1 Precision

delta=6.0696 # Unstructured effect Precision

d1t =c(1:nTime)*0 #set the first values to 0

for(t in 2:nTime){

d1t[t]=rnorm(1,rho_d*d1t[t-1],tau_d^(-0.5)) #rho_d is the correlation,

#tau_d is the precision

}

dit=rep(d1t,nArea)+rnorm(N,0,delta^(-0.5))

###MEAN FUNCTION###

log_mu_it = beta0 +bt +ci+dit

lambda_simnew = exp(log_mu_it)*rep(flanders$CATTLE,each=nTime)

length(lambda_simnew)

###SIMULATED DATA###

y_simnew = rpois(n=N, lambda=lambda_simnew)

data_simnew = data.frame("ID"=rep(c(1:306),each=nTime),

"time"=rep(timeT,nArea),"y_simnew"=y_simnew)

##NEW VARIABLES ##

ID2=1:nrow(data_simnew)

time2=time

sin1=sin(2*pi*time/12)

cos1=cos(2*pi*time/12)

data_new=cbind(data_simnew, ID2,time2,sin1,cos1)

return(data_new)

}

Nsim<-100

seedi<-1:Nsim

datasets<-sapply(seedi, function(x){sIM(x)}, simplify = F)

#Creating datasets containing 100 simulated data

SIM_i=rep(NA,Nsim)

for (i in 1: length(SIM_i)) {
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SIM_i[i]=paste("SIM",i,sep = ’’)

names(datasets)=SIM_i

# Saving datasets

data1<-datasets[[i]]

save(data1,file=paste("E:\\TEST\\SIMULATION\\datasets\\data",i,

’.RData’,sep=""))

}

################################################

##NEIGHBOUR = SHARING BOUNDARIES##

neighmat_sb1 <- nb2mat(neighbours,style="B",zero.policy=TRUE)

neighb.graph <- mat2listw(neighmat_sb1)

neighb.adj <- "E:/TEST/adjacencyFlanders.adj" #location

nb2INLA(neighb.adj, neighb.graph$neighbours)

##PLOT CATTLE OF POPULATION ON MAP

plotclr <-c(rev(bpy.colors(n = 99, cutoff.tails = 0.1, alpha = 1.0)))

spplot(flanders, "CATTLE", col.regions=plotclr,

names.attr ="CATTLE",

colorkey=list(space="right",cex=0.4,height=1,width=0.8),

scales = list(draw = F), col="red",as.table = TRUE)

##PLOT 2 SIMULATED DATA ON MAP

plotclr <-c(rev(bpy.colors(n = 99, cutoff.tails = 0.1, alpha = 1.0)))

spplot(flanders, c("SIM1_time1", "SIM1_time2","SIM1_time15","SIM1_time36" ),

col.regions=plotclr,

names.attr = c("Simulation 1_time 1","Simulation 1_time 2",

"Simulation 1_time 15","Simulation 1_time 36"),

colorkey=list(space="right",cex=0.4,height=1,width=0.8),

scales = list(draw = F),col="red",as.table = TRUE)

##

plotclr <-c(rev(bpy.colors(n = 99, cutoff.tails = 0.1, alpha = 1.0)))
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spplot(flanders,c("SIM100_time12", "SIM100_time14","SIM100_time25",

"SIM100_time31"), col.regions=plotclr,

names.attr = c("Simulation 100_time 12","Simulation 100_time 14 ",

"Simulation 100_time 25 ","Simulation 100_time 31"),

colorkey=list(space="right",cex=0.4,height=1,width=0.8),

scales = list(draw = F),col="red",as.table = TRUE)

##Linear trend plot for 2 selected simulate data##

library(timeDate)

library(timeSeries)

library(graphics)

library(zoo)

library(xts)

library(PerformanceAnalytics)

pcp <- read.csv("regions.csv", header = T) #import the new created dataset

#containing total cattle abortion in 2 areas for 3 years per month.

pcp

PCP <- ts(pcp, frequency = 12) #change it to a timeseries format

PCP

PCP1 <- ts(PCP[ ,-1], frequency = 12) #remove the first column

PCP1

plot(as.xts(PCP1), xlab ="Months", ylab="Catlle abortions",

major.format = "%Y-%m", gpars=list(lty=c(1:6)),

main = ’Simulated cattle abortions in 2 Areas of

Flanders for 3 years (per month)’,cex.main = 0.6, ylim = c(0, 26),

cex=1.1, yaxis.right = F, grid.ticks.lwd = 0.1, xaxt=’n’)

addLegend("topright", on=1, legend.names = c("Year1.Area1", "Year2.Area1",

"Year3.Area1", "Year1.Area2", "Year2.Area2", "Year3.Area2"),

lty=c(1, 1,1,1,1,1), lwd=c(1,1,1,1,1, 1), cex = 0.65)

#############################################
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### model 1 : Default prior+Dafault prior ###

formula1=y_simnew~1+time+sin1+cos1+f(ID,model="bym",graph=neighb.adj,

hyper=list(prec.unstruct= list(prior=

"loggamma", param=c(1,0.0005)),prec.spatial=list(prior=

"loggamma", param=c(1,0.0005))))+f(time2,model="ar1",

hyper=list(prec= list(prior= "loggamma", param=c(1,0.0005))))+

f(ID2,model="iid",hyper=list(prec= list(prior=

"loggamma", param=c(1,0.0005))))

#for (i in 1: length(Nsim)){

for (i in 1:100 ){

mod1<- inla(formula1,family="poisson",data=datasets[[i]],

control.compute = list(dic=T))

# saving output

save(mod1,file=paste("E:\\TEST\\SIMULATION\\default\\default",i,

’.RData’,sep=""))

}

### model 2 : Equivalent prior+Default prior###

formula2=y_simnew~1+time+sin1+cos1+f(ID,model="bym",graph=neighb.adj,

hyper=list(prec.unstruct= list(prior=

"loggamma", param=c(0.001,0.001)),prec.spatial=list(prior=

"loggamma", param=c(0.001,0.001))))+f(time2,model="ar1",

hyper=list(prec= list(prior=

"loggamma", param=c(1,0.0005))))+f(ID2,model="iid",

hyper=list(prec= list(prior="loggamma", param=c(1,0.0005))))

for (i in 1: 100){

mod2<- inla(formula2,family="poisson",data=datasets[[i]],

control.compute = list(dic=T),control.predictor=list(compute=TRUE))

save(mod2,file=paste("E:\\TEST\\SIMULATION\\equivalent\\equivalent",i,

’.RData’, sep=""))

}
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### model 3 : Prior according to Bernardinelli+default prior##

formula3=y_simnew~1+time+sin1+cos1+f(ID,model="bym",graph=neighb.adj,

hyper=list(prec.unstruct= list(prior=

"loggamma", param=c(1,0.01)),prec.spatial=list(prior=

"loggamma", param=c(1,0.023))))+f(time2,model="ar1",

hyper=list(prec= list(prior="loggamma", param=c(1,0.0005))))+

f(ID2,model="iid",hyper=list(prec= list(prior=

"loggamma", param=c(1,0.0005))))

for (i in 1: 100){

mod3<- inla(formula3,family="poisson",data=datasets[[i]],

control.compute = list(dic=T),control.predictor=list(compute=TRUE))

save(mod3,file=paste("E:\\TEST\\SIMULATION\\bernar\\bernar",i,

’.RData’,sep=""))

}

###model4: pc prior+ default prior##

g = neighb.adj

Q = INLA:::inla.pc.bym.Q(g)

Q = INLA:::inla.scale.model(Q, constr=list(A=matrix(1, 1, n), e=0))

u = 0.2/0.31

alpha = 0.01

phi.u = 0.5

phi.alpha = 2/3 ## prob(phi < phi.u) = phi.alpha

formula4 = y_simnew ~ 1 +time+sin1+cos1+f(ID,

model = "bym2",

graph=g,

scale.model = TRUE,

constr = TRUE,

hyper=list(

phi = list(
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prior = "pc",

param = c(phi.u, phi.alpha),

initial = -3),

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))+

f(time2,model="ar1",hyper=list(prec= list(prior=

"loggamma", param=c(1,0.0005))))+f(ID2,model="iid",

hyper=list(prec= list(prior=

"loggamma", param=c(1,0.0005))))

for (i in 1: 100){

mod4 = inla(formula4, data =datasets[[i]], family = "poisson",

control.compute = list(dic=T),

control.predictor = list(compute=TRUE))

save(mod4,file=paste("E:\\TEST\\SIMULATION\\pct\\pc",i,’.RData’,sep=""))

}

#####model5: Default prior+halfnormal prior##

formula5=y_simnew~1+time+sin1+cos1+f(ID,model="bym",graph=neighb.adj,

hyper=list(prec.unstruct= list(prior=

"loggamma", param=c(1,0.0005)),prec.spatial=list(prior=

"loggamma", param=c(1,0.0005))))+f(time2,model="ar1",

hyper=list(prec= list(prior="logtnormal", param=c(0,0.001))))+

f(ID2,model="iid",hyper=list(prec= list(prior=

"logtnormal", param=c(0,0.001))))

for (i in 1: 100){

mod5<- inla(formula5,family="poisson",data=datasets[[i]],

control.compute = list(dic=T),

control.predictor=list(compute=TRUE))

save(mod5,file=paste("E:\\TEST\\SIMULATION\\halfnormal\\default\\default",i,

’.RData’,sep=""))

}
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##model6: Equivalent prior+half normal prior##

formula6=y_simnew~1+time+sin1+cos1+f(ID,model="bym",graph=neighb.adj,

hyper=list(prec.unstruct= list(prior=

"loggamma", param=c(0.001,0.001)),prec.spatial=list(prior=

"loggamma", param=c(0.001,0.001))))+f(time2,model="ar1",

hyper=list(prec= list(prior= "logtnormal", param=c(0,0.001))))+

f(ID2,model="iid",hyper=list(prec= list(prior=

"logtnormal", param=c(0,0.001))))

for (i in 1: 100){

#for (i in 1: length(Nsim)){

mod6<- inla(formula6,family="poisson",data=datasets[[i]],

control.compute = list(dic=T),control.predictor=list(compute=TRUE))

save(mod6,file=paste("E:\\TEST\\SIMULATION\\halfnormal\\equivalent

\\equivalent",i,’.RData’,sep=""))

}

####model7: Prior according to Bernardinelli+half normal prior##

formula7=y_simnew~1+time+sin1+cos1+f(ID,model="bym",graph=neighb.adj,

hyper=list(prec.unstruct= list(prior=

"loggamma", param=c(1,0.01)),prec.spatial=list(prior=

"loggamma", param=c(1,0.023))))+f(time2,model="ar1",

hyper=list(prec= list(prior= "logtnormal", param=c(0,0.001))))+

f(ID2,model="iid",hyper=list(prec= list(prior=

"logtnormal", param=c(0,0.001))))

for (i in 1: 100){

mod7<- inla(formula7,family="poisson",data=datasets[[i]],

control.compute = list(dic=T),control.predictor=list(compute=TRUE))
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save(mod7,file=paste("E:\\TEST\\SIMULATION\\halfnormal\\bernar\\bernar",i,

’.RData’,sep=""))

}

###model8: pc prior+ half normal prior##

g = neighb.adj

Q = INLA:::inla.pc.bym.Q(g)

Q = INLA:::inla.scale.model(Q, constr=list(A=matrix(1, 1, n), e=0))

u = 0.2/0.31

alpha = 0.01

phi.u = 0.5

phi.alpha = 2/3 ## prob(phi < phi.u) = phi.alpha

formula8 = y_simnew ~ 1 +time+sin1+cos1+f(ID,

model = "bym2",

graph=g,

scale.model = TRUE,

constr = TRUE,

hyper=list(

phi = list(

prior = "pc",

param = c(phi.u, phi.alpha),

initial = -3),

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))+f(time2,model="ar1",hyper=list(prec= list(prior=

"logtnormal", param=c(0,0.001))))+f(ID2,model="iid",

hyper=list(prec= list(prior= "logtnormal", param=c(0,0.001))))

for (i in 1: 100){

mod8 = inla(formula8, family = "poisson",data =datasets[[i]],

control.compute = list(dic=T),control.predictor = list(compute=TRUE))

save(mod8,file=paste("E:\\TEST\\SIMULATION\\halfnormal\\pc\\pc",i,’

.RData’,sep=""))

}
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###model9: pc for everything##

formula9 = y_simnew ~ 1 +time+sin1+cos1+f(ID,

model = "bym2",

graph=g,

scale.model = TRUE,

constr = TRUE,

hyper=list(

phi = list(

prior = "pc",

param = c(phi.u, phi.alpha),

initial = -3),

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))+f(time2,model="ar1",

hyper=list(

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))+f(ID2,model="iid",

hyper=list(

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))

for (i in 1:100){

mod9 = inla(formula9, family = "poisson",data =datasets[[i]],

control.compute = list(dic=T),

control.predictor = list(compute=TRUE))

save(mod9,file=paste("E:\\TEST\\SIMULATION\\B\\pcpcpc\\pc",i,

’.RData’,sep=""))

}
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###model10: pc+pc+d##

formula10 = y_simnew ~ 1 +time+sin1+cos1+f(ID,

model = "bym2",graph=g,scale.model = TRUE,

constr = TRUE, hyper=list(phi = list(prior = "pc",

param = c(phi.u, phi.alpha),

initial = -3),

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))+f(time2,model="ar1",

hyper=list(

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))+f(ID2,model="iid",hyper=list(prec= list(prior=

"loggamma", param=c(1,0.0005))))

for (i in 1:100){

mod10 = inla(formula10, family = "poisson",data =datasets[[i]],

control.compute = list(dic=T),

control.predictor = list(compute=TRUE))

save(mod10,file=paste("E:\\TEST\\SIMULATION\\B\\pcpcd\\pc",i,

’.RData’,sep=""))

}

###model11: pc+d+pc##

formula11 = y_simnew ~ 1 +time+sin1+cos1+f(ID,

model = "bym2",

graph=g,

scale.model = TRUE,

constr = TRUE,

hyper=list(

phi = list(
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prior = "pc",

param = c(phi.u, phi.alpha),

initial = -3),

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))+f(time2,model="ar1",hyper=list(prec= list(prior=

"loggamma", param=c(1,0.0005))))+f(ID2,model="iid",

hyper=list(

prec = list(

prior = "pc.prec",

param = c(u, alpha),

initial = 5)))

for (i in 1:100){

mod11 = inla(formula11, family = "poisson",data =datasets[[i]],

control.compute = list(dic=T),

control.predictor = list(compute=TRUE))

save(mod11,file=paste("E:\\TEST\\SIMULATION\\B\\pcdpc\\pc",i,

’.RData’,sep=""))

}

###Plotting PC prior###

neighmat_sb1 <- nb2mat(neighbours,style="B",zero.policy=TRUE)

neighb.graph <- mat2listw(neighmat_sb1)

neighb.adj <- "E:/TEST/adjacencyFlanders.adj" #location

nb2INLA(neighb.adj, neighb.graph$neighbours)

write.new.figures = TRUE

inla.dev.new.hook = function()

{

cex.lab = 1.4
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cex.axis = 1.4

par(cex.lab=cex.lab, cex.axis=cex.axis)

}

inla.dev.new()

g = neighb.adj

Q = INLA:::inla.pc.bym.Q(g)

Q = INLA:::inla.scale.model(Q, constr=list(A=matrix(1, 1, n), e=0))

u = 0.2/0.31

alpha = 0.01

phi.u = 0.5

phi.alpha = 2/3 ## prob(phi < phi.u) = phi.alpha

if (FALSE) {

## make figures of the priors

for (g in "neighb.adj") {

log.prior = INLA:::inla.pc.bym.phi(Q=Q, rankdef=1, u=phi.u,

alpha = phi.alpha)

phis = 1/(1+exp(-seq(-10, 10, len=10000)))

inla.dev.new()

plot(phis, exp(log.prior(phis)), type="l",#plotting a prior knowledge

lwd = 2, bty = "l",

xlab = expression(phi),

ylab = "Density")

if (length(grep("^sar", g)) > 0) {

fnm = "datasets[[1]]-prior.ps"

} else {

fnm = "neighb-prior.ps"

}

if (write.new.figures)

dev.print(postscript, file=fnm)

}

if (write.new.figures)

system("which psfix && psfix *-prior.ps")

}
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