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Abstract

Introduction: Osteoarthritis is a chronic progressive disease which is a lead-

ing source of pain and disability among elderly population. No medication

can reverse or stop the progression of this disease. Over the decades, the so-

called continuous radiofrequency (CRF) has been added as an option for the

management of different pain syndrome, including osteoarthritis. Along with

the broadening of the application of CRF, a modified technique was developed

and labelled as the pulsed radiofrequency (PRF). This new procedure aimed

to achieve pain relief without creating permanent damage as seen in CRF.

Objective: The objective of this study is to compare the efficacy of CRF

and PRF in alleviating pain and functional impairment in patients with ad-

vanced osteoarthritis, as evaluated using Visual Analogue Scale (VAS), West-

ern Ontario and McMaster Universities (WOMAC) index of osteoarthritis,

and 12-item short form health survey (SF-12).

Methodology: A full multivariate normal model with group-by-time inter-

action for the fixed effects and unstructured variance-covariance matrix was

applied for the analysis of each outcome in this study. This likelihood-based

analysis is considered valid under the assumption of missing data mechanism

missing at random (MAR). Since the possibility of missing not at random

(MNAR) cannot be ruled out, sensitivity analysis under the construction of

pattern-mixture model with identifying restrictions strategy combined with

the concept of multiple imputation was also conducted in the study.

Results: By taking the missingness in the data into account, the mean

changes of VAS and WOMAC from baseline differ statistically significant for

patients receiving CRF versus PRF treatment at each evaluation time-point

(month 1, 6, and 12 after treatment). There is also statistically significant

difference in the PCS outcome at month 6 and 12 after treatment. In general

the patients receiving CRF showed better results compared to those receiving

PRF. In contrast, patients in both groups did not show any significant differ-

ence for the outcome of MCS.

Keywords: Continuous radiofrequency, pulsed radiofrequency, missing at

random, missing not at random, multivariate, pattern-mixture model, com-

plete case missing values, neighboring case missing values, multiple imputa-

tion.
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1 Introduction

Osteoarthritis (OA) is a chronic progressive disease involving the thinning of carti-

lage in joints and a leading source of pain and disability among elderly population

throughout the world. Nowadays an approximated 15% of adults over 60 years

around the world have some degree of OA and it is predicted that by 2050 there will

be 130 million people who will suffer from the disease. It is suggested that recent

environmental changes have played a significant role in doubling the prevalence of

OA since the mid-20th century. Because of its function-impairing nature, the burden

of this disease on society, both in terms of its epidemiology and economic impact, is

quite substantial [1,2].

Since there are no medicines that can reverse or stop the progression of the disease,

the objectives of OA management are mainly to mitigate pain, reduce inflamma-

tion, slow cartilage degradation, improve function, reduce disability, and improve

the quality of life. The treatment of OA consists of non-pharmacological treatment,

pharmacological treatment, and surgery. The long-term efficacy of the pharmaco-

logical treatments is often variable or is yet to be determined. In addition, the

trade-offs between the risks and benefits must be assessed because side effects are

common [1]. While often being considered as the last source of intervention, the

surgical management are still associated with increased morbidity and mortality.

Moreover, although the procedure is successful at providing pain relief for many pa-

tients, there is a proportion of patients who experience a poor outcome after surgery

[3].

Radiofrequency (RF) has been introduced for treating various chronic pain, which

procedure is based on the theory that cutting the nerve responsible to a painful

structure may alleviate pain and restore function [4]. The conventional or continu-

ous radiofrequency (CRF) procedure increases the temperature sufficiently to create

permanent damage to the nerve cells responsible for the pain impulses. Recently,

the modified technique labelled the pulsed radiofrequency (PRF) was introduced.

This procedure avoids thermal lesioning in order to achieve pain relief without cre-

ating permanent damage to the tissues [5]. Because of this non-destructive feature,

PRF may mitigate concern regarding possible complications. Regardless of several

studies comparing the efficacy of CRF versus PRF [6,7,8], there is a lack of study

in osteoarthritis case, which underlay the current study.
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2 Objective

The objective of this study is to compare the efficacy of CRF and PRF in alleviating

pain and functional impairment in patients with advanced osteoarthritis. The pain

was evaluated using a 0-10 Visual Analogue Scale (VAS) and the functional impair-

ment was assessed using Western Ontario and McMaster Universities (WOMAC)

index of osteoarthritis as well as 12-item short form health survey (SF-12). It is of

interest to study whether the mean changes of the pain and functional impairment

from baseline differ for patients receiving CRF versus PRF treatment, by taking

info consideration the missingness in the data.
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3 Data

The data used in this study are from a randomized and controlled clinical trial in

patients with grade 3-4 gonarthrosis suffering from intractable knee pain with VAS

score of at least 5 during the period of more than 6 months. A total of 188 patients

were enrolled into the study, out of which 93 patients were randomly allocated to re-

ceive CRF and 95 patients receive PRF treatment. The outcomes of VAS, WOMAC,

and SF-12 were measured at baseline, 1 month, 6 months, and 12 months after the

treatment. The characteristics of patients at baseline can be viewed in Appendix.

It was observed that the outcome variables contain missing values with different

patterns, as displayed in Table 1. There was no information about the reason for

each missingness, but it was likely that most of the missing data, particularly for the

dropout pattern, can be explained by the therapeutic effect that decreased over time.

Table 1: Missingness pattern

Outcome Time Group

Baseline 1 month 6 months 12 months CRF PRF

VAS Complete Pattern

WOMAC O O O O 57 (61.29%) 36 (37.89%)

Dropout pattern

O O O M 31 (33.33%) 42 (44.21%)

O O M M 5 (5.38%) 17 (17.89%)

SF-12 Complete Pattern

O O O O 56 (60.22%) 34 (35.79%)

Dropout pattern

O O O M 29 (31.18%) 39 (41.05%)

O O M M 6 (6.45%) 17 (17.89%)

O M M M - 1 (1.05%)

M M M M - 1 (1.05%)

Non-monotone pattern

O O M O 1 (1.08%) -

O M O M - 1 (1.05%)

M O O O - 1 (1.05%)

M O O M 1 (1.08%) 1 (1.05%)

O = observed, M = missing
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4 Methodology

4.1 Exploratory Data Analysis

Mean profiles within each treatment group for each outcome variable of interest

were plotted against each time-point. However, more patients dropped out as time

evolved with different rate in both groups, resulting in fewer observations for latter

visits. Due to this fact, the plots might not give an appropriate impression and

should be interpreted with caution.

4.2 Baseline Response Handling

A constrained full likelihood approach in which the baseline value and the post-

randomization values are modeled as dependent variables was adopted in this study

[9]. The constraint refers to the equality of the baseline mean responses for the

treatment groups, which is reasonable due to randomization. In other words, the

assumption of equal baseline means is true by design. The parameter estimates and

statistical inference under this approach are asymptotically unbiased when there

are missing data, assuming missing at random (MAR) mechanism [10]. In addition,

unlike another approach which use the baseline as a covariate in the analysis, the

interpretation of the treatment effect would be free from conditional interpretation,

which prevent the restriction for generalizing the results to replicated trials. When

the baseline value is used as part of the inclusion criteria, treating baseline as part

of the outcome vector may generate a mixture of normal and truncated normal

distributions for the residuals. However, with data in a reasonable range and an

adequate sample size, the normality assumption can often be reasonable [11].

4.3 Missing Data Handling

According to Mallinckrodt et al [12], the potential impact of missing data is best

understood by considering the mechanism leading to the missingness. The term

missing completely at random (MCAR) refers to the missing data mechanism when

missingness does not depend on either the observed or unobserved outcomes; data

are missing at random (MAR) if the missingness depends on the observed outcomes,

but not the unobserved outcomes; and the mechanism of missing not at random

(MNAR) is operating when the missingness also depends on the unobserved out-

comes [13,14].

In many settings, the MAR assumption is more reasonable than the MCAR as-

sumption and under this less restrictive assumption, a likelihood-based analysis

(also termed ignorable or direct likelihood analysis) provides valid inference. Not

only enjoy much wider validity than the simple methods, the ignorable analysis is

also simple to conduct without any additional data manipulation and may provide
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reasonably stable results. An MAR analysis can be specified a priori without ad-

ditional work relative to a situation with complete data and does not depend on

untestable and often implicit assumption regarding the distribution of the unob-

served measurements.

However, one cannot rule out the possibility of MNAR data and the bias that

can result from it. To explore the impact of deviations from the MAR assumption,

a sensitivity analysis can be conducted, within which MNAR models and pattern-

mixture models can play a major role [13,14].

Both MAR and MNAR mechanisms are most naturally expressed based on the

second factor of the selection modelling framework which is indicated below:

f(yi, ri | Xi,Wi,θ,ψ) = f(yi | Xi,θ)f(ri | yi,Wi,ψ) (1)

where yi is the vector of outcome, ri is the missing data indicators, Xi and Wi

denote design matrices for the measurement and missingness mechanism, with θ

and ψ are their corresponding parameters vectors, respectively. Under MAR and

MNAR mechanism, the density of the missingness process can be formulated as in

(2) and (3), respectively.

f(ri | yi,Wi,ψ) = f(ri | yo
i ,Wi,ψ) (2)

f(ri | yi,Wi,ψ) = f(ri | yo
i ,y

m
i ,Wi,ψ) (3)

where yo
i and ym

i are the observed and unobserved (missing) measurement, respec-

tively.

4.4 Multivariate Normal Model (MAR Assumption)

Although the outcome of VAS is naturally an ordinal scale, it can intrinsically be

treated as continuous scale, considering the score which ranges from 0 to 10. As

argued by Knapp [15], the sample size and distribution are more important than the

level of measurement to treat ordinal scale as continuous scale. Treating the ordinal

variable as continuous also has advantage in providing more flexibility in the choice

of analysis while still preserving the information in the ordering. As for WOMAC,

the sum of the separated-index of WOMAC A, WOMAC B, and WOMAC C was

taken to create an approximately continuous variable. The outcome of SF-12 was

translated into mental component summary (MCS) and physical component sum-

mary (PCS) using a devoted algorithm [16], which results can also be considered as

continuous variables.

The repeated measures were balanced in this study, in the sense that a common

and limited or fixed set of measurement times was considered for all subjects. This

12
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design allows the a priori specification of a full multivariate normal model with

group-by-time interaction for the fixed effects and unstructured variance-covariance

matrix. The randomization allows to draw casual conclusion that the difference can

only be due to the variable of interest, which is treatment in this study, assuming the

other characteristics at baseline are similar in both treatment groups. Variable time

was treated as categorical variable. By doing this, no assumption about the shape

of the mean response profile over time is needed [17]. The unstructured covariance

was employed since we did not want to make any assumption a priori about the

correlation for every pair of measurement.

It is worthwhile to note that the term multivariate refers to the fact that the indi-

vidual measurements at different time-point can be treated as a vector of random

variables. Although there are multiple outcomes measured repeatedly within a set of

study participants, a joint model for all outcomes simultaneously is not necessarily

needed. In this study, the univariate model for each outcome separately may answer

the research questions.

Let Yij be the outcome variable (VAS, WOMAC, MCS, or PCS) of patient i at

time j (j = month 0, 1, 6, and 12), xi be the treatment (0 for CRF and 1 for PRF),

β0,j and β1,j be fixed effects parameters, the parameterization of the model can be

written as follow:

Yij = β0,j(1− xi) + β1,jxi + εij (4)

εij ∼ N(0,Σ)

The normality assumption of residual should be checked to assure the validity of the

statistical test. Graphical methods (Q-Q plot and density plot) were used to check

the distributional assumption since they are considered as powerful and effective

diagnostic tools for checking normality of the data. The Q-Q plot is constructed by

plotting the empirical quantiles of the data against the corresponding quantiles of

the normal distribution, while the kernel density plot portrays the distribution of

the data directly. Large or systematic departures from the line and the bell-shaped

curve of normal distribution in the Q-Q plot and kernel density plot, respectively,

indicate the abnormality of the data [18].

4.5 Pattern-Mixture Model (MNAR Assumption)

Pattern-mixture models (PMM) can be constructed as a way of exploring the im-

pact of a model and/or selected observations on the inferences made when data

are incomplete, or simply as sensitivity analysis [19]. It is a framework that can be

considered when the missingness mechanism is MNAR. In PMM, the outcome distri-

bution is modelled conditional on the observed response pattern. PMM decomposes

13
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the joint probability of data and missingness as follow:

f(yi, ri | Xi,Wi,θ,ψ) = f(yi | ri, Xi,θ)f(ri | Wi,ψ) (5)

where the first factor is the density of the measurement process conditional on the

missingness process and the second one is the marginal density of the missingness

process [13,20,21].

An important issue regarding PMM is that, by definition, it is under-identified

because patterns with missing data typically have some parameters that cannot be

estimated from the data due to incomplete data within that pattern. One way to

overcome this issue is the use of identifying restrictions, which simply indicate from

which patterns missing information is borrowed. The complete case missing values

(CCMV) specifies that missing information is borrowed from completers (subjects

with complete outcome profile); in neighboring case missing values (NCMV), missing

information at a time point is borrowed from the nearby pattern for which outcome

values are observed at that time point, but unobserved later; and the available case

missing value (ACMV) suggests that missing information is borrowed from all avail-

able patterns weighted by occurence of each pattern.

The strategy of using identifying restrictions is implemented as one approach for

the sensitivity analysis in this study. The approach is combined with the concept of

multiple imputation (MI), in which the identification method is used to determine

the conditional distributions of the unobserved outcomes from where the multiple

imputations are then drawn. The CCMV (6) and NCMV (7) identifying restrictions

which describe MNAR mechanisms were selected to investigate the sensitivity of

inferences to departures from MAR.

ft(ys | y1, ..., ys−1) = fT (ys | y1, ..., ys−1), s = t+ 1, ..., T (6)

ft(ys | y1, ..., ys−1) = fs(ys | y1, ..., ys−1), s = t+ 1, ..., T (7)

The concept of MI refers to replacing each missing value with a set of M plausi-

ble values. The multiply imputed data sets are then analyzed by using standard

procedures for complete data and combining the results from these analyses [13,20].

Twenty five imputations were used in this study. This larger number of imputa-

tions than the classic recommendation of three to five imputations is suggested to

accomodate the adequacy for other inferential goals such as confidence intervals and

p-values, in addition to the point estimates [22,23]. Denote by β̂m and V m, respec-

tively, the estimate of parameter vector β and its covariance matrix from the mth

completed data set (m = 1,...,M). The MI estimate of β and the measure of its

precision are formulated as follows:

β̂∗ =
1

M

M∑
m=1

β̂m (8)

14
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W =
1

M

M∑
m=1

V m (9)

B =
1

M − 1

M∑
m=1

(β̂m − β̂∗)(β̂m − β̂∗)′ (10)

V = W + (
M + 1

M
)B (11)

Equation (8), (9), (10), and (11) are the equations for MI estimate of β, within-

imputation covariance matrix, between-imputation covariance matrix, and the esti-

mate of the covariance matrix of β̂∗, respectively. To test the null hypothesis that a

parameter is equal to a specific value (β = β0), the following statistics can be used:

tv =
β̂∗ − β0√

V
(12)

The statistics has a t-distribution with the adjusted v degrees of freedom, as formu-

lated below:

v = (M − 1)[1 +
W

(1 + 1
M

)B
]2 (13)

However, equation (13) can create a clearly inappropriate situation where the values

produced are larger than the degrees of freedom in the complete data. Therefore,

the adjusted degrees of freedom as formulated below were used in the analysis:

v∗ = [
1

v
+

1

vobs
]−1 (14)

vobs =
(1− γ)vcom(vcom + 1)

(vcom + 3)
(15)

γ =
(1 + 1

M
)B

V
(16)

where vcom is the degrees of freedom of β̂∗ in the hypothetically complete data and

γ is the proportion of the variation attributable to the missing data. In models that

fit k parameters on data with a sample size of n, vcom = n − k. When there is no

missing information about one parameter, γ is equal to 0 and v = vcom [24].

4.6 Software

The data analysis for this master’s thesis was generated using SAS software, Version

9.4 of the SAS System for Windows. Copyright©2017 SAS Institute Inc. SAS and

all other SAS Institute Inc. product or service names are registered trademarks

or trademarks of SAS Institute Inc., Cary NC, USA. All statistical analysis were

performed at significance level of 0.05.
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5 Results

5.1 Exploratory Data

The plots of mean profile against each time-point, together with their corresponding

95% confidence intervals, for each outcome variable of interest are displayed in Figure

1.

(a) VAS (b) WOMAC

(c) MCS (d) PCS

Figure 1: Mean profile

As mentioned earlier, these plots should be interpreted with caution due to many

missing values in both treatment groups as time evolved. From the plots, we merely

see the trend of each outcome variable over time of the patients who were still in

the study as time progressed and we cannot get the idea about what would be

happening had nobody dropout. The VAS and WOMAC score tended to decrease

in the first month after treatment for both groups and increased again after 6 and

12 months, respectively. The MCS showed slightly increasing trend and the curve

for both groups almost coincided. In contrast to VAS and WOMAC, the PCS score

increased in the first month after treatment and declined afterwards. The 95%

confidence intervals for the point estimates tended to be wider at the latter time-

point due to the dropouts. In addition, the wider intervals were observed in the

PRF group because there were more dropouts in that group compared to the CRF

group.

17
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5.2 VAS

Table 2 summarizes the parameter estimates and their corresponding standard er-

rors for the outcome VAS from the multivariate normal model and pattern-mixture

models using identifyting restrictions CCMV and NCMV.

Table 2: VAS: Parameter estimates (standard errors) resulting from the multivari-

ate normal model (MVN) and pattern-mixture model using identifying restrictions

CCMV and NCMV

Effect Parameter MVN CCMV NCMV

Parameter estimate (SE)

CRF0 β0,0 8.3548 (0.0729) 8.3548 (0.0729) 8.3548 (0.0729)

CRF1 β0,1 2.6022 (0.2007) 2.6022 (0.2007) 2.6022 (0.2007)

CRF6 β0,6 4.8449 (0.3044) 4.4847 (0.2248) 4.6942 (0.2288)

CRF12 β0,12 7.2404 (0.4287) 5.6890 (0.2654) 5.7656 (0.2591)

PRF0 β1,0 8.4526 (0.0721) 8.4526 (0.0721) 8.4526 (0.0721)

PRF1 β1,1 3.3684 (0.1986) 3.3684 (0.1986) 3.3684 (0.1986)

PRF6 β1,6 6.2985 (0.3096) 5.0021 (0.2398) 5.5857 (0.2292)

PRF12 β1,12 9.5189 (0.4605) 6.6131 (0.2668) 6.7663 (0.3210)

Mean difference between CRF and PRF group

time 0 β0,0 − β1,0 -0.0978 (0.1025) -0.0978 (0.1025) -0.0978 (0.1025)

time 1 β0,1 − β1,1 -0.7663 (0.2824) -0.7663 (0.2824) -0.7663 (0.2824)

time 6 β0,6 − β1,6 -1.4536 (0.4342) -0.5174 (0.3243) -0.8915 (0.3233)

time 12 β0,12 − β1,12 -2.2786 (0.6292) -0.9240 (0.3430) -1.0007 (0.3726)

p-value for the mean difference between CRF and PRF group

time 0 0.3413 0.3413 0.3413

time 1 0.0073 0.0073 0.0073

time 6 0.0012 0.1126 0.0064

time 12 0.0007 0.0082 0.0089

The mean plots of VAS at each time-point by treatment, after multiple imputation

using the CCMV and NCMV strategy, are displayed in Figure 2, together with the

result from the multivariate normal model. From the plots it seems that there was

no difference in the average of VAS between two treatment groups at baseline. At

the first month, the average of VAS decreased in both groups, but it seems that the

decrease in CRF group was greater than PRF group. The average of VAS increased

again at month 6 and 12 after treatment, respectively, in the two groups. Remark-

able contrast at the end of evaluation between both groups was observed in the plot

of the multivariate normal model. The CCMV and NCMV identifying restrictions

demonstrated similar difference between the two treatment groups at month 12, but

small discrepancy at the sixth month.
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(a) MVN (b) CCMV (c) NCMV

Figure 2: VAS sensitivity analysis

5.3 WOMAC

The parameter estimates and their corresponding standard errors for the outcome

WOMAC are presented in Table 3. The parameter estimates from the sensitivity

analysis using identifying restrictions CCMV and NCMV are also presented to com-

pare the results.

Table 3: WOMAC: Parameter estimates (standard errors) resulting from the multi-

variate normal model (MVN) and pattern-mixture model using identifying restric-

tions CCMV and NCMV

Effect Parameter MVN CCMV NCMV

Parameter estimate (SE)

CRF0 β0,0 62.5699 (0.9922) 62.5699 (0.9922) 62.5699 (0.9922)

CRF1 β0,1 35.9355 (1.4595) 35.9355 (1.4595) 35.9355 (1.4595)

CRF6 β0,6 43.7442 (1.7399) 43.1045 (1.5000) 43.4490 (1.5991)

CRF12 β0,12 52.2667 (2.0676) 51.2280 (2.0618) 51.5178 (2.0343)

PRF0 β1,0 65.7789 (0.9817) 65.7789 (0.9817) 65.7789 (0.9817)

PRF1 β1,1 40.8316 (1.4441) 40.8316 (1.4441) 40.8316 (1.4441)

PRF6 β1,6 50.7709 (1.7543) 48.1175 (1.5611) 49.6349 (1.6327)

PRF12 β1,12 61.8409 (2.2227) 59.0480 (2.3627) 59.7074 (2.1622)

Mean difference between CRF and PRF group

time 0 β0,0 − β1,0 -3.2091 (1.3957) -3.2091 (1.3957) -3.2091 (1.3957)

time 1 β0,1 − β1,1 -4.8961 (2.0532) -4.8961 (2.0532) -4.8961 (2.0532)

time 6 β0,6 − β1,6 -7.0267 (2.4708) -5.0130 (2.1456) -6.1859 (2.2578)

time 12 β0,12 − β1,12 -9.5742 (3.0357) -7.8200 (2.6629) -8.1895 (2.6044)

p-value for the mean difference between CRF and PRF group

time 0 0.0226 0.0226 0.0226

time 1 0.0181 0.0181 0.0181

time 6 0.0051 0.0207 0.0068

time 12 0.0021 0.0039 0.0020

Figure 3 shows the mean profile of WOMAC against each time-point by treat-
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ment group after multiple imputation using the CCMV and NCMV strategy, re-

spectively, was conducted. The profile after fitting the multivariate normal model is

also displayed. The plots indicate that there was a little difference in the average of

WOMAC at baseline between CRF and PRF groups. The average of the score de-

creased at the first month after treatment and the difference between groups seemed

to be larger. At month 6 and 12, the WOMAC score was higher than the first month

and the difference between two groups was slightly larger when multivariate normal

model was fitted.

(a) MVN (b) CCMV (c) NCMV

Figure 3: WOMAC sensitivity analysis

5.4 SF-12 MCS and PCS

Table 4 and 5 display the parameter estimates along with their corresponding stan-

dard errors as well as the treatment differences for the SF-12 mental and physical

health summary scales, respectively. The results from the primary analysis and

sensitivity analysis are tabulated altogether. In addition, the mean profile of MCS

and PCS against each time-point by treatment group after being extrapolated using

CCMV and NCMV strategy can be seen in Figure 4 and 5, respectively. The profile

after fitting the multivariate normal model is also displayed. From the MCS plots,

it seems that the curves of both treatment groups almost coincided, indicating that

there was no difference between them at each time-point. Meanwhile, in the PCS

plots, there was slightly difference between the curves of CRF and PRF at each

time-point, but at baseline.
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Table 4: MCS from SF-12: Parameter estimates (standard errors) resulting from

the multivariate normal model (MVN) and pattern-mixture model using identifying

restrictions CCMV and NCMV

Effect Parameter MVN CCMV NCMV

Parameter estimate (SE)

CRF0 β0,0 33.0342 (0.7223) 33.0413 (0.7225) 33.0413 (0.7225)

CRF1 β0,1 34.4256 (0.5416) 34.4256 (0.5421) 34.4256 (0.5421)

CRF6 β0,6 35.8633 (0.5740) 35.8606 (0.5687) 35.8921 (0.5784)

CRF12 β0,12 36.9215 (0.6156) 36.8674 (0.5963) 36.8785 (0.5973)

PRF0 β1,0 33.6876 (0.7207) 33.7018 (0.7186) 33.7018 (0.7186)

PRF1 β1,1 34.1937 (0.5416) 34.1770 (0.5407) 34.1770 (0.5407)

PRF6 β1,6 35.3636 (0.5863) 35.2848 (0.5722) 35.2982 (0.5888)

PRF12 β1,12 36.6943 (0.7008) 36.6722 (0.6095) 36.6769 (0.6116)

Mean difference between CRF and PRF group

time 0 β0,0 − β1,0 -0.6533 (1.0204) -0.6605 (1.0187) -0.6605 (1.0187)

time 1 β0,1 − β1,1 0.2319 (0.7659) 0.2486 (0.7656) 0.2486 (0.7656)

time 6 β0,6 − β1,6 0.4997 (0.8206) 0.5758 (0.8085) 0.5939 (0.8283)

time 12 β0,12 − β1,12 0.2273 (0.9328) 0.1952 (0.8484) 0.2015 (0.8518)

p-value for the mean difference between CRF and PRF group

time 0 0.5228 0.5176 0.5176

time 1 0.7624 0.7458 0.7458

time 6 0.5433 0.4774 0.4744

time 12 0.8079 0.8184 0.8133

(a) MVN (b) CCMV (c) NCMV

Figure 4: MCS sensitivity analysis
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Table 5: PCS from SF-12: Parameter estimates (standard errors) resulting from

the multivariate normal model (MVN) and pattern-mixture model using identifying

restrictions CCMV and NCMV

Effect Parameter MVN CCMV NCMV

Parameter estimate (SE)

CRF0 β0,0 25.8039 (0.3303) 25.8099 (0.3306) 25.8099 (0.3306)

CRF1 β0,1 39.6063 (0.7055) 39.6063 (0.7049) 39.6063 (0.7049)

CRF6 β0,6 34.3099 (0.8739) 34.6510 (0.7770) 34.3769 (0.8176)

CRF12 β0,12 31.9050 (0.8652) 32.0001 (0.8020) 31.9065 (0.8137)

PRF0 β1,0 25.3563 (0.3298) 25.3666 (0.3290) 25.3666 (0.3290)

PRF1 β1,1 37.8952 (0.7061) 37.8706 (0.7036) 37.8706 (0.7036)

PRF6 β1,6 31.7637 (0.8950) 33.0541 (0.7828) 31.9646 (0.8161)

PRF12 β1,12 28.8679 (1.0235) 29.4289 (0.8322) 29.0570 (0.8431)

Mean difference between CRF and PRF group

time 0 β0,0 − β1,0 0.4476 (0.4668) 0.4433 (0.4664) 0.4433 (0.4664)

time 1 β0,1 − β1,1 1.7111 (0.9981) 1.7358 (0.9960) 1.7358 (0.9960)

time 6 β0,6 − β1,6 2.5463 (1.2510) 1.5969 (1.1069) 2.4123 (1.1580)

time 12 β0,12 − β1,12 3.0371 (1.3402) 2.5712 (1.1495) 2.8495 (1.1663)

p-value for the mean difference between CRF and PRF group

time 0 0.3389 0.3432 0.3432

time 1 0.0881 0.0831 0.0831

time 6 0.0436 0.1510 0.0387

time 12 0.0258 0.0274 0.0161

(a) MVN (b) CCMV (c) NCMV

Figure 5: PCS sensitivity analysis
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6 Discussion

6.1 VAS

VAS is a unidimensional measure of pain intensity, generally considered as a con-

tinuous scale comprised of a horizontal or vertical 10-cm line, anchored by 2 verbal

descriptors: ”no pain” (score of 0) and ”worst imaginable pain” (score of 10) [25].

As previously stated, in this study the outcome VAS was scored in an ordinal man-

ner rather than in continuous form. This practice may explain the appearance of

the Q-Q plot which trended to be linear and yet it was wiggly due to lot of residuals

with the same values. Nevertheless, the histogram showing the distribution of the

residuals is reasonably symmetric, supporting the decision to treat VAS as continu-

ous variable in the analysis.

From the multivariate model, it was observed that there was no significant dif-

ference of VAS score between patients in CRF and PRF group, while statistically

significant differences were noticed at 1 month, 6 months, and 12 months after the

treatment. The VAS score declined noticeably at the first month for both treatment

groups, then gradually increased again at month 6 and 12, respectively. It is worth-

while to mention that the score change is still clinically important up to the sixth

month for both treatment groups [26].

Since there was no dropout at baseline and at the first month of the measure-

ment, the parameter estimates from the multivariate model and pattern-mixture

models showed identical results. At month 6 there were less dropouts in the CRF

group compared to PRF group, which explains similar parameter estimates of the

mean in this group (β0,6) obtained from fitting the multivariate model as well as

after multiple imputation using the identifying restrictions CCMV and NCMV were

conducted. On the other hand, the parameter estimates in the PRF group (β1,6)

obtained after extrapolation using CCMV were lower than the estimates from the

multivariate model. This situation leads to the underestimation and non-significance

of the mean difference between the CRF and PRF groups.

As mentioned earlier, the dropouts might be explained by the decreasing treatment

effect over time, thus it seems unlikely to expect better score in the VAS outcome

for the patients who dropped out. Hence, the CCMV approach might be less ap-

propriate since this strategy always refers to the best group, i.e. the one with the

best prognosis.

The NCMV extrapolation might be more plausible since the information was bor-

rowed from the nearest pattern, which referred to the patients who had measurement

at month 6 and dropped out at month 12. This hypothesis was supported by the

higher treatment difference between CRF and PRF compared to the one obtained
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using CCMV. The treatment difference was now also significant at month 6, in

agreement with the conclusion obtained from the multivariate model.

Since more patients dropped out in both groups at 12 months after treatment, the

parameter estimates (β0,12 and β1,12) were now underestimated in the two treatment

groups when CCMV as well as NCMV strategy were applied. Despite the same

conclusion with the result from multivariate model regarding the significance mean

difference between the two groups, the point estimates were slightly different. This

result suggests caution concerning the conclusion obtained under the multivariate

model. It is implied that higher difference between treatment groups was obtained

should the MAR assumption hold.

6.2 WOMAC

WOMAC is a self-report questionnaire to assess pain, stiffness, and physical function

in patients with hip and/or knee osteoarthritis. It consists of 24 items divided into

3 subscales: 5 items of pain, 2 items of stiffness, and 17 items of physical function.

In this study, the Likert scale version corresponds to an ordinal scale of 0-4 was

used to score each subscales, resulting in possible sum which ranges between 0 to

96. The higher scores on the WOMAC indicate worse pain, stiffness, and functional

limitations [27].

As mentioned earlier, the sum of the subscales of WOMAC was taken to create an

approximately continuous variable, rather than treating the ordinal scale for each

subscales. Indeed, the normality assumption checking as shown in the Appendix

(Figure 7) seems realistic for this outcome. Despite the randomization process,

there was significant difference between groups at baseline, where the patients in

CRF treatment group had lower scores compared to those in PRF treatment group.

The WOMAC scores significantly decreased in the first month after treatment for

both groups and the mean changes of the scores from baseline at this time-point

differed significantly for patients in both groups. The WOMAC scores tended to

increase again at 6 months and 12 months after treatment in both groups, though

they were still significantly lower than the corresponding scores at baseline. The

mean changes of the scores at these time-points also differed significantly for pa-

tients in both treatment groups. Following the suggestion from White et al [28],

the decreasing score of WOMAC in this study also showed clinically important im-

provement until 6 months after treatment for both groups.

Since there was no missing value at baseline and at the first month of the evaluation,

the parameter estimates from the multivariate model and pattern-mixture models

showed identical results. Since it was assumed that patients in the study dropped

out mainly because of the decreasing therapeutic effect over time, the strategy of
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CCMV referred to the one with better prognosis. Considering that more patients

in PRF group dropped out at month 6 compared to the patients in CRF group, the

CCMV extrapolated rather towards a decline in PRF group, producing less treat-

ment difference at month 6. In this sense, the NCMV approach was likely to be

better since the information was borrowed from the nearest pattern and the esti-

mations seemed to be more similar to the multivariate model obtained under MAR

assumption, which used all the available data to compensate for the data missing on

a particular patient. Nevertheless, the conclusion of significance between the three

models were the same, in which there were significant differences of mean change

of WOMAC score between patients receiving CRF and PRF at each time-point of

evaluation.

6.3 SF-12 MCS and PCS

The SF-12 is a shorter, yet valid, alternative to the SF-36, a popular generic health

status measure in a wide variety of patient groups and social surveys. It contains

the measurement of eight concepts commonly represented in widely used surveys:

physical functioning, role limitations due to physical health problems, bodily pain,

general health, vitality, social functioning, role limitations due to emotional prob-

lems, and mental health. From this instrument, a mental component summary scale

score (MCS) and physical component summary scale score (PCS) can be generated.

General health and vitality are domains shared by MCS and PCS. In addition,

MCS encompasses social functioning, role limitations due to emotional problems,

and mental health; whereas the remaining items are incorporated in the PCS. The

SF-12 MCS and PCS range from 0 to 100, with higher scores indicating better self-

reported health condition [16,29].

Both MCS and PCS were treated as continuous variables and the graphical methods

presented in the Appendix (Figure 8 and 9) show that the residuals for both out-

comes were appoximately normal. The analysis showed that there was no significant

difference between CRF and PRF treatment in the mean changes of MCS at each

time-point of evaluation. The result was also confirmed in the sensitivity analysis,

using both CCMV and NCMV identifying restrictions.

Notwithstanding the result of MCS, there were significant treatment difference of

PCS at 6 and 12 months after treatment, respectively. However, the sensitivity

analysis using CCMV showed different conclusion at the sixth month. The average

of PCS in the PRF group at this time-point was extrapolated towards a higher value

since CCMV referred to the patients with better prognosis, leading to smaller differ-

ence between the two treatment groups. The NCMV identifying restrictions seemed

to be more realistic and provided similar conclusion with the primary analysis under

MAR assumption.
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It is also important to note that there were several non-monotone missingness pat-

terns for the measurement of SF-12. For these cases, partial imputation step under

MAR assumption was performed before the pattern-mixture based imputation. It

can be argued as a reasonable assumption that patients tend to miss the interme-

diate visits due to reasons unrelated to their medical condition under study, even if

the rest of the missing data (monotone patterns) will then be imputed based on dif-

ferent assumptions. Moreover, very small proportion of non-monotone missing data

will typically have a small effect on the results of analysis and imputing these values

under the MAR assumption should not compromise the validity of the sensitivity

analysis [30].
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7 Concluding Remarks

The objective of this study is to compare the efficacy of CRF and PRF treatment in

alleviating pain and functional impairment in patients with advanced osteoarthritis,

as measured using VAS, WOMAC, and SF-12. By taking the missingness in the data

into account, the mean changes of VAS and WOMAC from baseline differ statisti-

cally significant for patients receiving CRF versus PRF treatment at each evaluation

time-point (month 1, 6, and 12 after treatment). There is also statistically signifi-

cant difference in the PCS outcome at month 6 and 12 after treatment. In general

the patients receiving CRF showed better results compared to those receiving PRF.

In contrast, patients in both groups did not show any significant difference for the

outcome of MCS.

It was seen from the result of sensitivity analysis that the CCMV approach might

produce result that can be optimistic and misleading for the general study popula-

tion due to the natural assumption that the completers, from where the information

was borrowed, were more likely to achieve better prognosis. The sensitivity analysis

using NCMV extrapolation seemed to be more plausible, which was also shown by

the same conclusions for the analysis of all outcomes.

The analysis method used in this report might have limitation. As mentioned in

the previous section, the response variable VAS can be considered as in between

category and continuous type. Although the analysis method for continuous data

seemed reasonable, proper normal distribution may not be expected. The method for

ordinal outcome, such as proportional odds model, can be considered as an alterna-

tive. However, this model may create a misleading impression about the relationship

between the outcome and explanatory variables if the underlying assumptions are

violated. Meanwhile, switching to other model that has far more parameters than

is necessary is not ideal solution either. It is recommended for future study that

uses the same pain measurement tool to adopt the original idea of the assessment,

in which the continuous instead of discrete values used in the scoring process.

It can be argued that analysis from an adequate randomized trial need not be

adjusted because the analysis will result in a valid estimate of the treatment effect.

Another important reason not to include the covariates at baseline in this analysis

was due to the absence of any specific prognostic variables considered or known to

influence the result. It may be advised for further study to take important prognos-

tic factors into consideration before starting the trial as well as to assess and adjust

those factors in order to obtain more precise estimate of the effect [31].
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Appendix–Table and Figures

Table 6: Characteristics of patients at baseline

Characteristics CRF treatment PRF treatment

Age (years) (mean ± SD) 73.05 ± 9.89 74.12 ± 9.23

Sex:

Male (n) 12 16

Female (n) 81 79

BMI (kg/m2) (mean ± SD) 30.10 ± 3.17 30.86 ± 4.02

VAS (mean ± SD) 8.35 ± 0.62 8.45 ± 0.78

WOMAC total (mean ± SD) 62.57 ± 9.08 65.78 ± 10.12

SF-12 mental score (mean ± SD) 33.14 ± 6.69 33.81 ± 7.18

SF-12 physical score (mean ± SD) 25.82 ± 3.26 25.36 ± 3.12

(a) QQ plot (b) Kernel density plot

Figure 6: Normality assumption test for VAS

(a) QQ plot (b) Kernel density plot

Figure 7: Normality assumption test for WOMAC
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(a) QQ plot (b) Kernel density plot

Figure 8: Normality assumption test for MCS

(a) QQ plot (b) Kernel density plot

Figure 9: Normality assumption test for PCS

Appendix–SAS code

VAS

proc mixed data=vas.vas method=ml; class therapy id_no time;

model vas = therapy*time / noint s residual cl ddfm=sat outpm=vas.predict;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1; run;

proc mi data=vas.vas_wide seed=123 out=vas.vas_ccmv simple maximum=2.3;

class therapy; var therapy log_vas0 log_vas1 log_vas6 log_vas12;

monotone reg; mnar model(log_vas6 log_vas12 / modelobs=ccmv); run;

proc mixed data=vas.vas_ccmv_long method=ml asycov;

class therapy id_no time; by _imputation_;

model vas = therapy*time / noint s residual cl covb ddfm=sat;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1;

ods output SolutionF=vas.solution_ccmv; ods output CovB=vas.covb_ccmv;

ods output covparms=vas.covparm_ccmv; ods output estimates=vas.estimate_ccmv;
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ods output asycov=vas.asycov_ccmv; run;

proc mianalyze parms=vas.solution_ccmv edf=180 covb(effectvar=rowcol)=vas.covb_ccmv;

class therapy time; modeleffects therapy*time; run;

data vas.estimate_ccmv; set vas.estimate_ccmv;

if Label=’time 0’ then effect=’t1’; if Label=’time 1’ then effect=’t2’;

if Label=’time 6’ then effect=’t3’; if Label=’time 12’ then effect=’t4’;

proc mianalyze parms=vas.estimate_ccmv edf=180; modeleffects t1 t2 t3 t4; run;

proc mi data=vas.vas_wide seed=123 out=vas.vas_ncmv simple maximum=2.3;

class therapy; var therapy log_vas0 log_vas1 log_vas6 log_vas12;

monotone reg; mnar model(log_vas6 log_vas12 / modelobs=ncmv); run;

proc mixed data=vas.vas_ncmv_long method=ml asycov;

class therapy id_no time; by _imputation_;

model vas = therapy*time / noint s residual cl covb ddfm=sat;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1;

ods output SolutionF=vas.solution_ncmv; ods output CovB=vas.covb_ncmv;

ods output covparms=vas.covparm_ncmv; ods output estimates=vas.estimate_ncmv;

ods output asycov=vas.asycov_ncmv; run;

proc mianalyze parms=vas.solution_ncmv edf=180 covb(effectvar=rowcol)=vas.covb_ncmv;

class therapy time; modeleffects therapy*time; run;

data vas.estimate_ncmv; set vas.estimate_ncmv;

if Label=’time 0’ then effect=’t1’; if Label=’time 1’ then effect=’t2’;

if Label=’time 6’ then effect=’t3’; if Label=’time 12’ then effect=’t4’;

proc mianalyze parms=vas.estimate_ncmv edf=180; modeleffects t1 t2 t3 t4; run;

WOMAC

proc mixed data=womac.womac method=ml; class therapy id_no time;

model womac = therapy*time / noint s residual cl ddfm=sat outpm=womac.predict;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1; run;

proc mi data=womac.womac_wide seed=123 out=womac.womac_ccmv simple maximum=96;

class therapy; var therapy womac0 womac1 womac6 womac12;

monotone reg; mnar model(womac6 womac12 / modelobs=ccmv); run;

proc mixed data=womac.womac_ccmv_long method=ml asycov;

class therapy id_no time; by _imputation_;

model womac = therapy*time / noint s residual cl covb ddfm=sat;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1;

ods output SolutionF=womac.solution_ccmv; ods output CovB=womac.covb_ccmv;

ods output covparms=womac.covparm_ccmv; ods output estimates=womac.estimate_ccmv;

ods output asycov=womac.asycov_ccmv; run;

proc mianalyze parms=womac.solution_ccmv edf=180 covb(effectvar=rowcol)=womac.covb_ccmv;

class therapy time; modeleffects therapy*time; run;

data womac.estimate_ccmv; set womac.estimate_ccmv;

33



Master’s thesis

if Label=’time 0’ then effect=’t1’; if Label=’time 1’ then effect=’t2’;

if Label=’time 6’ then effect=’t3’; if Label=’time 12’ then effect=’t4’;

proc mianalyze parms=womac.estimate_ccmv edf=180; modeleffects t1 t2 t3 t4; run;

proc mi data=womac.womac_wide seed=123 out=womac.womac_ncmv simple maximum=96;

class therapy; var therapy womac0 womac1 womac6 womac12;

monotone reg; mnar model(womac6 womac12 / modelobs=ncmv); run;

proc mixed data=womac.womac_ncmv_long method=ml asycov;

class therapy id_no time; by _imputation_;

model womac = therapy*time / noint s residual cl covb ddfm=sat;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1;

ods output SolutionF=womac.solution_ncmv; ods output CovB=womac.covb_ncmv;

ods output covparms=womac.covparm_ncmv; ods output estimates=womac.estimate_ncmv;

ods output asycov=womac.asycov_ncmv; run;

proc mianalyze parms=womac.solution_ncmv edf=180 covb(effectvar=rowcol)=womac.covb_ncmv;

class therapy time; modeleffects therapy*time; run;

data womac.estimate_ncmv; set womac.estimate_ncmv;

if Label=’time 0’ then effect=’t1’; if Label=’time 1’ then effect=’t2’;

if Label=’time 6’ then effect=’t3’; if Label=’time 12’ then effect=’t4’;

proc mianalyze parms=womac.estimate_ncmv edf=180; modeleffects t1 t2 t3 t4; run;

MCS score from SF-12

proc mixed data=sfm.sf_mental method=ml; class therapy id_no time;

model sf12_mental = therapy*time / noint s residual cl ddfm=sat outpm=sfm.predict;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1; run;

proc mi data=sfm.sfm_wide seed=123 out=sfm.sfm_mono simple maximum=100;

var therapy sfm0 sfm1 sfm6 sfm12; mcmc impute=monotone; run;

proc mi data=sfm.sfm_mono seed=123 out=sfm.sfm_ccmv simple nimpute=1 maximum=100;

class therapy; var therapy sfm0 sfm1 sfm6 sfm12;

monotone reg; mnar model(sfm6 sfm12 / modelobs=ccmv); run;

proc mixed data=sfm.sfm_ccmv_long method=ml asycov;

class therapy id_no time; by _imputation_;

model sfm = therapy*time / noint s residual cl covb ddfm=sat;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1;

ods output SolutionF=sfm.solution_ccmv; ods output CovB=sfm.covb_ccmv;

ods output covparms=sfm.covparm_ccmv; ods output estimates=sfm.estimate_ccmv;

ods output asycov=sfm.asycov_ccmv; run;

proc mianalyze parms=sfm.solution_ccmv edf=180 covb(effectvar=rowcol)=sfm.covb_ccmv;

class therapy time; modeleffects therapy*time; run;

data sfm.estimate_ccmv; set sfm.estimate_ccmv;

if Label=’time 0’ then effect=’t1’; if Label=’time 1’ then effect=’t2’;

if Label=’time 6’ then effect=’t3’; if Label=’time 12’ then effect=’t4’;

proc mianalyze parms=sfm.estimate_ccmv edf=180; modeleffects t1 t2 t3 t4; run;
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proc mi data=sfm.sfm_mono seed=123 out=sfm.sfm_ncmv simple nimpute=1 maximum=100;

class therapy; var therapy sfm0 sfm1 sfm6 sfm12;

monotone reg; mnar model(sfm6 sfm12 / modelobs=ncmv); run;

proc mixed data=sfm.sfm_ncmv_long method=ml asycov;

class therapy id_no time; by _imputation_;

model sfm = therapy*time / noint s residual cl covb ddfm=sat;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1;

ods output SolutionF=sfm.solution_ncmv; ods output CovB=sfm.covb_ncmv;

ods output covparms=sfm.covparm_ncmv; ods output estimates=sfm.estimate_ncmv;

ods output asycov=sfm.asycov_ncmv; run;

proc mianalyze parms=sfm.solution_ncmv edf=180 covb(effectvar=rowcol)=sfm.covb_ncmv;

class therapy time; modeleffects therapy*time; run;

data sfm.estimate_ncmv; set sfm.estimate_ncmv;

if Label=’time 0’ then effect=’t1’; if Label=’time 1’ then effect=’t2’;

if Label=’time 6’ then effect=’t3’; if Label=’time 12’ then effect=’t4’;

proc mianalyze parms=sfm.estimate_ncmv edf=180; modeleffects t1 t2 t3 t4; run;

PCS score from SF-12

proc mixed data=sfp.sf_phy method=ml; class therapy id_no time;

model sf12_physical = therapy*time / noint s residual cl ddfm=sat outpm=sfp.predict;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1; run;

proc mi data=sfp.sfp_wide seed=123 out=sfp.sfp_mono simple maximum=100;

var therapy sfp0 sfp1 sfp6 sfp12; mcmc impute=monotone; run;

proc mi data=sfp.sfp_mono seed=123 out=sfp.sfp_ccmv simple nimpute=1 maximum=100;

class therapy; var therapy sfp0 sfp1 sfp6 sfp12;

monotone reg; mnar model(sfp6 sfp12 / modelobs=ccmv); run;

proc mixed data=sfp.sfp_ccmv_long method=ml asycov;

class therapy id_no time; by _imputation_;

model sfp = therapy*time / noint s residual cl covb ddfm=sat;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1;

ods output SolutionF=sfp.solution_ccmv; ods output CovB=sfp.covb_ccmv;

ods output covparms=sfp.covparm_ccmv; ods output estimates=sfp.estimate_ccmv;

ods output asycov=sfp.asycov_ccmv; run;

proc mianalyze parms=sfp.solution_ccmv edf=180 covb(effectvar=rowcol)=sfp.covb_ccmv;

class therapy time; modeleffects therapy*time; run;

data sfp.estimate_ccmv; set sfp.estimate_ccmv;

if Label=’time 0’ then effect=’t1’; if Label=’time 1’ then effect=’t2’;

if Label=’time 6’ then effect=’t3’; if Label=’time 12’ then effect=’t4’;

proc mianalyze parms=sfp.estimate_ccmv edf=180; modeleffects t1 t2 t3 t4; run;

proc mi data=sfp.sfp_mono seed=123 out=sfp.sfp_ncmv simple nimpute=1 maximum=100;

class therapy; var therapy sfp0 sfp1 sfp6 sfp12;
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monotone reg; mnar model(sfp6 sfp12 / modelobs=ncmv); run;

proc mixed data=sfp.sfp_ncmv_long method=ml asycov;

class therapy id_no time; by _imputation_;

model sfp = therapy*time / noint s residual cl covb ddfm=sat;

repeated time / subject=id_no type=un r rcorr;

estimate ’time 0’ therapy*time 1 0 0 0 -1 0 0 0;

estimate ’time 1’ therapy*time 0 1 0 0 0 -1 0 0;

estimate ’time 6’ therapy*time 0 0 1 0 0 0 -1 0;

estimate ’time 12’ therapy*time 0 0 0 1 0 0 0 -1;

ods output SolutionF=sfp.solution_ncmv; ods output CovB=sfp.covb_ncmv;

ods output covparms=sfp.covparm_ncmv; ods output estimates=sfp.estimate_ncmv;

ods output asycov=sfp.asycov_ncmv; run;

proc mianalyze parms=sfp.solution_ncmv edf=180 covb(effectvar=rowcol)=sfp.covb_ncmv;

class therapy time; modeleffects therapy*time; run;

data sfp.estimate_ncmv; set sfp.estimate_ncmv;

if Label=’time 0’ then effect=’t1’; if Label=’time 1’ then effect=’t2’;

if Label=’time 6’ then effect=’t3’; if Label=’time 12’ then effect=’t4’;

proc mianalyze parms=sfp.estimate_ncmv edf=180; modeleffects t1 t2 t3 t4; run;
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