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Power calculations for linear mixed-effects models

Abstract

Background: Power analysis and sample size estimation are very important in designing

clinical studies. The two phenomena go hand-in-hand in which the former is often referred

to as the process of determining the sample size for a given research. The number of subject

participants required in a particular clinical experiment is difficult to determine and is often

dependent on the cost at hand to conduct the study. The economic cost is mostly trade-off

with meaningful sample size to detect a treatment difference at a certain power. However, the

research ethics committees always solicit for justification of the study based on the sample size

estimation and statistical power. The main quantities for the direct computation of these two

phenomena can be estimated from a pilot study or historical data, otherwise, a reasonable guess

is plausible. In this study, we simulate power analysis and sample size estimation for linear

mixed-effects models for a continuous response with repeated measures within each subject.

Objective: Investigate power and sample size calculations for longitudinal designs analyzed

using linear mixed-effects model with random intercepts, and random intercepts and slopes.

Methods: The analysis involved comparison between the theoretical approach and simulation

approach for power and sample size calculations. The theoretical approach include the use of

Diggle et al. (2002), Liu and Liang (1997) methods and specific softwares such as longpower.

In the simulation approach, for each dataset, we simulate the response, the random effects and

the random error and fit both random intercept models and random intercept and slope models

to the dataset for estimation of statistical power and sample size. The estimated power is the

proportion of the sum of the significant p-values at 0.05 alpha-level per simulation.

Results: Sample size estimates are smaller in random intercept models than in random

intercept and slope models. The estimated powers are closer to the nominal power in both

models and the unbalanced designs have minimal impact on the estimation of sample size.

Conclusion: Estimating sample size through simulation is greatly important since most

specialized software packages have hidden features not explicitly clear to the users on how

the methods of computation are performed.

Keywords: Linear mixed-effects, repeated measures, sample size, statistical power, simulation.
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1 Introduction

1.1 Background Information

Power and sample size calculations are important phenomena in the design stage of clinical

research or trials. The term power analysis is often referred to as the process of determining the

sample size for a given research, and is defined as the probability of detecting a “true or relevant”

effect when it exists. However, there exist many derived formulae and/or software programs for

determining sample size for particular research situations depending on the primary endpoint.

And each of these formulae or programs would require the specification of some factors such

as; Type I error rates (α), Type II error rates (β), effect size (δ) and measurement variability

(σ2), which are fundamental in determining statistical power and sample size calculations.

However, statistical power analysis and sample size estimation cannot be overemphasized

for numerous ethical research consideration issues. The research ethics committees usually

request for justifications of a study based on sample size estimation and statistical power. It is

ethically unacceptable to conduct a study that is unable to detect a true effect due to a lack

of statistical power and/or recruiting as many subjects as possible when only few subjects are

adequate to detect the relevant treatment difference [18]. The trade-off between sample size

and cost is important for numerous reasons, as an undersized study can be wasteful for not

producing useful results, while an oversized study uses more resources than are necessary [11].

Unfortunately, there is no straightforward answer on how large a sample size should be in

order to detect a true effect at a given statistical power, despite larger sample sizes have more

statistical power [18]. But the consequences of ignoring sample size and power estimation,

especially in an oversized experiment, would lead to unnecessary exposure of participants to a

potentially toxic treatment, or denying them a potentially beneficial treatment [11]. However,

to avoid under- or over-estimating sample size, it is pivotal to conduct pilot or similar studies in

order to obtain estimates of the factors required for power and sample size computations [20].

There is no need for the pilot study or historical data to follow the same design as the planned

study [11], but careful consideration is important to obtain estimates for these factors. In

the absence of a pilot study or historical data, a plausible reasonable guess to obtain these

estimates is necessary [5]. Moreover, it is always essential to conduct pilot studies to estimate

the quantities mentioned earlier for sample size calculation. Since the effect size is usually the

1
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’true effect’, it is often important to be determined through a scientific knowledge or judgment,

otherwise could be estimated from the pilot study. For example, in a hypertensive study, the

relevant parameters for measuring diastolic blood pressure (DBP) few years ago might not be

the same in recent times or years, therefore, obtaining an estimate for the treatment difference

in DPB from such pilot studies may under- or over-estimate the sample size and power analysis.

Furthermore, in this study, we estimate the statistical power and sample size required for

linear mixed-effects models by comparing the results obtained from the theoretical approach

(such as the longpower function in R, Diggle et al. (2002), Liu and Liang (1997) formulae) [7]

with the simulation approach. However, in the simulation approach, we simulate datasets and

fit linear mixed-effects models to the simulated response data using the ”lme” function in the

R software using maximum likelihood (ML) method, and retain the p-values for the covariate

of interest per simulation to estimate the statistical power [12]. The estimated power is the

proportion of the sum of the significant p-values per simulation in which the null hypothesis

would be rejected at a one-tailed significance level (α) of 0.05 (5%).

Finally, for each dataset, we simulate the response, the random effects and the random error

and fit both the random intercept model and the random intercept and slope model for the

estimation of the statistical power and sample size.

1.2 Objectives

1.2.1 General objective

To investigate power and sample size calculation approaches for longitudinal designs which are

analyzed using linear mixed-effects models.

1.2.2 Specific objectives

• Estimate power and sample size for random intercept model and random intercept and

slope model using both theoretical and simulation approaches.

• Examine the effect of balanced and unbalanced longitudinal study designs on sample size

estimation.

• Evaluate the impact of number of repeated measurements per subject on power analysis

through sensitivity analysis by varying the number of repeated measurements.

2
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2 Literature Review

There are several studies that have been conducted to estimate sample size and power analysis

in clinical study designs. The main goal is to have an insight of the number of subjects required

in a given study trial to achieve a certain power with consideration of various research protocols

and ethical principles. Power and sample size calculations mainly depends on several factors

or quantities such as Type I and II error probabilities, effect size and measurement variability.

However, effect size is one of the key factors in determining the number of subjects required in

a given study, as small or large effect sizes would lead to large or small sample sizes respectively.

Button et al. [2] studied the relationship between power failure and small sample size,

and how the latter undermines the reliability of neuroscience. They showed that the average

statistical power of studies in the neurosciences is very low, which could be the consequence of

overestimates of effect size and low reproducibility of results. They also argued the importance

of appreciating the wastage associated with an underpowered study and claimed even a study

achieving only 80% power still presents a 20% possibility that the animals have been sacrificed

without the study detecting the underlying true effect. Cohen [3] has determined standardized

effect sizes described as “small”, “medium” and “large”, and these varies for different study

designs, depending on the test (e.g. difference between two means or many means, etc).

Sample size estimation and power analysis are paramount but often misunderstood by most

researchers. Cunningham and McCrum-Gardner [4] used a simple and freely available statistical

software called GPower to address concerns related to sample size and power calculations.

This software tool is also user-friendly irrespective of your statistical background and several

statistical tests like t-tests, analysis of variance (ANOVA) and chi-square tests can be performed.

However, the software program is not applicable to longitudinal data analysis or used for

analyzing linear mixed-effects models. Donohue et al. [6] discussed power and sample size

estimation for randomized placebo controlled studies for interaction between treatment and

time in a linear mixed-effects model. They also demonstrated the relationship between random

intercept model and marginal model with exchangeable correlation, and further illustrated on

how to derive the correlation and variance-covariance matrix for the random intercept model,

and the random intercept and slope model. In another study [7], they introduced the longpower

function in R and used the formulae in [5] and [13] to estimate sample size and power.

3
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The importance of conducting a pilot study as discussed by Lenth [11] and Teare et al. [20],

emphasized on obtaining an estimate of one or more error variances and specifying the smallest

meaningful treatment difference of importance for sample size determination. Moreover, the

consequences of undersized or oversized study was also discussed and outlined strategies or

methods of overcoming such situations. Leon and Hoe [12] in their paper, calculated sample

size to detect various standardized main effects and interaction between two binary fixed effects

in a mixed-effects linear regression model with a random intercept using the formula proposed

by Diggle et al. (2002) and a simulation approach. In their analysis, the sample size needed

to detect an interaction effect is four times that for detecting a main effect of the identical

magnitude because the sample size is a linear function of the variance of an effect estimate.

Moreover, since sample size also depends on the number of post-baseline measurements, with

smaller sample sizes needed when there are more measurements, Naiji et al. [16] have discussed

that longitudinal studies always provide more statistical power than cross-sectional studies,

especially when the within-subject measurements are correlated. They further illustrated that

the required sample size to detect desired effect size increases as ρ approaches 1 and decreases

as ρ approaches 0. This is because repeated measurements are more (as ρ ∼ 1) or less (as ρ ∼ 0)

similar to each other and provide additional information on the subjects. They also discussed

the difference between hypothesis testing and power analysis, of which in the former, it involved

testing whether there is evidence against the H0 based on a specified significance level, while in

the latter, both null and alternative hypotheses are fully considered when estimating the power.

Finally, Liu and Liang [13] computed sample size and statistical power for correlated

observations through multivariate extension of the work by Self and Mauritsen [19]. They

discussed sample size calculation for special case of continuous and binary responses with

repeated measurements, and showed that the empirical power estimates and the nominal power

were very much similar. Liu and Wu [14] have shown sample size calculation and power

analysis for time-averaged difference for unequal sample sizes between two groups for both

continuous and binary measures. They also explored the relative importance of number of

unique subjects and number of repeated measurements within each subject on statistical power

through simulation. Furthermore, they discussed the importance of unbalanced designs for

allocating smaller number of subjects to group that is either more expensive, hard to recruit

or with limited number of available subjects.

4
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3 Methodology

The analysis involved comparison between the theoretical approach and the simulation approach

for power and sample size calculations. The theoretical approach include the use of Diggle et al.

(2002), and Liu and Liang (1997) formulae and its implementation in the longpower function in

R. In the simulation approach, statistical powers were estimated through testing the significance

of the parameter of interest by summing all the significant p-values and divide by simulations.

3.1 The Linear Mixed-Effects Models

Linear mixed-effects models (LMMs) are very useful in modelling datasets with complex,

hierarchical structures [10]. The term mixed-effects referred to both the fixed effects and the

random effects [21]. The linear mixed-effects model used in this analysis is specified as follows:

Yij = β0 + β1 ∗ treatmenti + β2 ∗ timeij + β3 ∗ treatmenti ∗ timeij + b0i + b1i ∗ timeij + εij (1)

Hence, Yij is the continuous response of interest, for the i th subject, measured at time tij,

where (i = 1, ..., m and j = 1, ..., n), β0 is the intercept, β1, β2 and β3 are the fixed effect

parameters,

b0i
b1i

 ∼ N

0

0

 , D

 and D =

 σ2
b ρσbσs

ρσbσs σ2
s

 is the variance-covariance

matrix, b0i and b1i are the random effects representing random intercepts and random slopes

respectively, whereas εij ∼ N(0, σ2
e) and denote the random error terms. The random effects

and random errors are assumed to be independently and identically normally distributed (iid).

Additional covariates such as gender and age would be added to model (1), which is fitted in

R using the lme function. Assuming that we have two treatment groups (A = experiment and

B = control), therefore, a model for each group can be constructed as follows:

Yij =



β0A + β1A ∗ treatmenti + β2A ∗ timeij + β3A ∗ treatmenti ∗ timeij + b0i+

b1i ∗ timeij + εij

β0B + β1B ∗ treatmenti + β2B ∗ timeij + β3B ∗ treatmenti ∗ timeij + b0i+

b1i ∗ timeij + εij

(2)

Thus, the parameter of interest is β3 which is interpreted as the change in the response Yij ,

compared to subject i’s own average Ȳi , due to treatment A, and is tested using the following

hypotheses: the null hypothesis, H0 : β3A ≤ 0, against the alternative hypothesis, H1 : β3A > 0.

The random effects are also interpreted as the additional change in Yij due to subject i itself,

despite of any change due to either treatment effect.

5
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3.2 Power and Sample Size Calculations

The number of subjects (samples) required to achieve a certain power is one of the challenges

encountered in most clinical trials. Sample size calculation is based on the nature of the primary

endpoint (normal, binary, survival, etc.) and on the planned method of analysis. The trade-off

between meaningful sample size and cost is very important to consider, as too large trials are

expensive and subjects could be exposed to unknown risk factors, whereas too small trials may

miss a biological relevant difference or treatment effect. However, sample size and statistical

power calculations go hand-in-hand and the essential factors or quantities that have direct

impact on their computations are α, β, δ and σ2. Additional quantities such as n and ρ are

needed for longitudinal studies. Further description of these factors or quantities are as follows:

3.2.1 Type I Error Rate (α)

The probability that the study will reject the null hypothesis (H0) when it is true. This

corresponds to reporting a significant difference in treatment between two groups when in fact

there is none. This is typically fixed as significance level and the choice of α often used is 0.05.

In general, the control of α, i.e. false-positive, is of primary importance to the agencies. The

smaller the alpha, the smaller the probability of rejecting the null hypothesis [17]. Moreover,

as α increases the sample size decreases, whereas decreasing α would increase the sample size.

3.2.2 Type II Error Rate (β)

The probability that the study will not reject the null hypothesis when it is false, which

corresponds to wrong conclusion of a lack of benefit when in truth one exists. The control

of β, i.e. false-negative, is very important for the sponsor. The power of a statistical test

(1 - β), is the probability that the test rejects the null hypothesis if the alternative is true.

Statistical power is dependent on a number of factors, and is conventionally or often set at 0.80

(80%) to detect the difference in treatment between groups. The smaller the β, the larger the

power of the statistical test to detect the true effect, that is, as beta decreases, alpha increases,

and power increases, or as beta increases, alpha decreases, and power decreases [17].

3.2.3 Smallest Meaningful Difference (δ)

This is sometimes called effect size or treatment difference which is a measure of the effectiveness

of treatment between two comparative groups. However, effect size is always context dependent

and should be determined based on scientific knowledge. The null hypothesis is rejected with

6
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high probability when the test is significant [5]. The conventional or standardized measures of

effect size δ used in this analysis are categorized as small = 0.2 , medium = 0.5 and large =

0.8 by Cohen (1988) [3]. It is recommended not to set the effect size too high, as this decreases

the sample size estimate and so increases the probability of a Type II error [4]. And for a small

effect size, the sample size needed to detect this would be larger than that for a moderate or

large effect size. The combination of α, β, and a standardized δ completely determines the

sample size for any study design. Thus, choosing a small, medium, or large standardized effect

size is just a fancy way of seeking for a large, medium, or small sample size, respectively [11].

3.2.4 Measurement Variation (σ2)

This can be reasonably approximated or derived from pilot studies or previous similar studies,

otherwise, a plausible guess would be necessary. The estimates used in this study for random

intercept variance σ2
b is 55 and random slope variance σ2

s is 24, which were used by Donohue,

et al. (2016) when computing sample size for the Alzheimer’s disease trial [6] and the residual

variance σ2
e is estimated using each within-subject correlation coefficient. For example, in the

random intercept model, the total variance var(Yij) = var(εij) = σ2 = σ2
b + σ2

e , and for a

given value of the intraclass correlation (ICC), the residual variance σ2
e = σ2

b (1 - ICC)/ICC,

while for the random intercept and slope model, total var(Yij) = var(εij) = σ2 = σ2
b + t2ijσ

2
s +

2tijcov(b0i, b1i) + σ2
e [6], where tij is the time points (t = 0, 2, 5 and 8) and σ2 measures the

unexplained variability in the response (Yij). If the variability is small, it will lead to a greater

power than if it’s large [17], hence, small variability will result in fewer sample sizes to achieve

the same power as a large variability.

3.2.5 Number of Repeated Observations per Subject (n)

This may be constrained by practical considerations, or perhaps balanced against the sample

size [5]. The investigator could be free to determine the value of n depending on the cost

available while considering ethical research issues. Repeated measures data has two dimensions

of sample sizes, namely: the number of different subjects m and the number of repeated

measurements n from each subject [14], and the relationship between these two entities is worth

consideration. However, increasing m by one, means increasing the number of measurements by

n, because the new subject gets n repeated measurements as the others [14]. Also, increasing

the number of repeated measurements by one, means to increase the number of observations

by m, since each subject increases one repeated measurement.

7
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3.2.6 Correlation among Repeated Observations (ρ)

Similar to measurement variation, the pattern of correlation can be estimated from pilot studies

or previous studies, otherwise, can reasonably be hypothesized. The correlation values used in

this study are 0.2, 0.3, 0.5 and 0.8, as previously used by Diggle, et al. (2002) and Liu and

Liang (1997) in their respective studies [5, 13]. The correlation between measurements on the

same subject for the random intercept model is the intraclass correlation (ICC) computed using

σ2
b/(σ

2
b + σ2

e) [12], while the correlation between random intercept (b0) and random slope (b1)

for the random intercept and slope model is ρ = cov(b0,b1)/(σb ∗ σs) [1, 6].

3.3 Theoretical Approach: Random Intercept Models

A marginal model with an exchangeable correlation structure is equivalent to a random effects

model which includes a random intercept for each cluster of correlated observations [6]. However,

in the random intercept model, ICC is the correlation between repeated measurements on

the same subject, which is equivalent to the marginal model with exchangeable correlation.

Consider model (2) without b1i in both treatment groups, assuming an exchangeable correlation,

thus, var(Yij) = var(εij) = σ2 = σ2
b +σ2

e and corr(Yij,Yik) = E[(b0i + eij)(b0i + eij)]/σ
2 = σ2

b/σ
2.

3.3.1 Longpower Function in R

This function computes sample size for linear mixed-effects models based on the formula in

[5, 13], which are expressed in terms of marginal model or generalized estimating equations

(GEE) parameters. The function translate pilot mixed-effect model parameters like random

intercept, and/or slope, fixed effects, into marginal model parameters so that either formula is

applicable to calculate sample size for two-sample longitudinal designs [7]. Besides the usual

quantities needed for sample size calculation, a previously fitted model returned by ”lme or

lmer” function can also be included in the function when determining the sample size required.

Moreover, we can also specify the method to use such as, ”diggle” or ”liuliang” when estimating

the sample size.

3.3.2 Diggle et al. (2002) Method

The method is used to compute the sample size for difference in slopes between two groups

for the random intercept model [7]. Assuming an exchangeable correlation structure (equal

correlation for repeated measurements on the same subject) [6], var(Yij) = var(εij) = σ2 and

corr(Yij, Yik) = corr(εij, εik) = ρ for all subjects where j 6= k. The number of subjects required

8
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in each treatment group to obtain a specific nominal power is determined using the following

formula:

m =
2(z1−α

2
+ z1−β)2(σ2

b + σ2
e)

2(1− σ2
b/σ

2)

ns2xδ
2

(3)

where α and β are the Type I and Type II error rates respectively, δ is the treatment difference,

σ2
b is variance of the random intercept, σ2

e is variance of the random error, σ2 = σ2
b + σ2

e is the

total residual variance, s2x =
∑

j(tj − x̄)2/n is variance of the covariate of interest and n is the

number of repeated measurements per subject [5,6]. This method is available in the longpower

function in the R software.

3.3.3 Liu and Liang (1997) Method

This method is also used to perform sample size calculation for random intercept model [7].

Considering a special case and an exchangeable correlation structure [6, 13], let π1 denote the

proportion in the experimental group and π0 = 1 - π1, the number of subjects required in each

treatment group to obtain a certain nominal power is determined as follows:

m =
2(z1−α

2
+ z1−β)2σ2(1 + (n− 1)ρ)

nπ0π1δ2
(4)

with notations similar to formula (3), ρ is the correlation between the repeated measurements.

In comparison with the sample size formula for independent observations, the formula in (4) is

inflated by a factor of (1 + (n - 1)ρ), which is commonly known as the design effect [13], and

this method is also available in the longpower function.

3.4 Theoretical Approach: Random Intercept and Slope Models

3.4.1 Longpower Function in R

The longpower function can also be used to calculate sample size for random intercept and

slope model. In the ’lmmpower’ function, it is important to specify the appropriate method to

make sure that sample size is computed for the random intercept and slope model.

3.4.2 Liu and Liang (1997) Method

The method is also used to compute sample size for the random intercept and slope model. For

the special case, the formula is similar to the one in (4) but the variance and correlation are

expressed as a function of time as discussed previously.

9
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3.5 Simulation Approach

Although there is no real dataset involved in this study, but the dataset used was obtained

through simulation, which contains the covariates specified in model (1), namely: treatment

(0 = control and 1 = experiment), time = 0, 2, 5, 8 used by Donohue et al. (2016) [6], and

additional covariates such as, gender (0 = female and 1 = male) and age. The theoretical

approach (formulae) discussed in the previous section may underestimate or overestimate the

power or sample size, because in most cases, a closed-form expression for power is rarely

available. However, the adequacy of the formulae would be assessed through simulations by

determining the closeness between the empirical power and the nominal power [13]. The power

and sample size calculations for both the random intercept models, and the random intercept

and slope models will be determined using 1000 simulations due to computational involvement.

The mean response (Yij) in model (1) with additional variables gender and age is calculated

for both random intercept models and random intercept and slope models. Initially, values for

the fixed effects parameters were arbitrarily selected except for the parameter of interest β3,

which is equal to the value of the effect size. The chosen values for the parameters are β0 = 5,

β1 = 2, β2 = 9, β3 = δ, β4 = 7 and β5 = 3, where δ = 0.2, 0.5, 0.8, and 1.0. Furthermore, the

random intercepts were simulated from a normal distribution i.e. rnorm(2*m,mean=0,sd=σb)

for the random intercept models, while the random effects (intercepts and slopes) were simulated

from a multivariate normal distribution i.e. mvrnorm(n=2*m, mu=c(0,0), Sigma=matrix(c(σ2
b ,

cov(b0,b1), cov(b0,b1), σ
2
s),2,2)) for the random intercept and slope models, and the random

measurement errors also simulated from a normal distribution i.e. rnorm(2*m*n,mean=0,sd=σe)

for both models, where m is the sample size per group and n is number of repeated measures.

Finally, all these simulated random values together with the fixed effects were included in

the specified model to compute the mean response. For example, in the random intercept and

slope models, when δ = 0.2, then yij = 5 + 2 ∗ treatment+ 9 ∗ time+ 0.2 ∗ treatment ∗ time+

7∗gender+3∗age+b0 +b1 ∗ time+e. Hence, we calculate the mean for each value of the effect

size, and fit the model using lme function with ML estimation method to test the significance

of β3 per simulations in order to estimate powers. The estimated powers are calculated by

extracting and averaging all the significant p-values of β3 per 1000 simulations.

10
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4 Results

4.1 Theoretical Approach: Random Intercept Models

The correlation in this model is the intraclass correlation (ICC), which is computed using

σ2
b/(σ

2
b + σ2

e). Assuming ICC = 0.2, 0.3, 0.5 and 0.8, and random intercept variance (σ2
b ) = 55,

the estimates for the random error variance (σ2
e) were calculated using the formula mentioned

above, thus, σ2
e = 14, 55, 128, and 220. Total variance (σ2) = σ2

b + σ2
e = 69, 110, 183, and 275.

4.1.1 Longpower Function in R

Tables (1 - 4) presents the sample size required in each treatment group for detecting the

various selected effect sizes δ with a power of 80% at 0.05 significance level. It is observed

that, as δ increases, the number of subjects required decreases. Also for each value of σ2, the

sample size decreases as ICC increases. According to Naiji et al. [16], the decrease in sample

size could be because repeated measurements are less similar to each other and their respective

error variances decreases as well. Conversely, for each value of ICC, sample size increases as σ2

increases. Thus, smaller/larger variability produces smaller/larger sample size estimates [17].

Moreover, value of σ2
b changes with ICC and σ2, and sample size estimation is driven by σ2

e .

Table 1: Longpower function for random

intercept model with δ = 0.2

ICC σ2 = 69 σ2 = 110 σ2 = 183 σ2 = 275

0.2 465 741 1232 1851

0.3 407 648 1078 1620

0.5 291 463 770 1157

0.8 117 186 308 463

Table 2: Longpower function for random

intercept model with δ = 0.5

ICC σ2 = 69 σ2 = 110 σ2 = 183 σ2 = 275

0.2 75 119 198 297

0.3 66 104 173 260

0.5 47 75 124 186

0.8 19 30 50 75

Table 3: Longpower function for random

intercept model with δ = 0.8

ICC σ2 = 69 σ2 = 110 σ2 = 183 σ2 = 275

0.2 30 47 77 116

0.3 26 41 68 102

0.5 19 29 49 73

0.8 8 12 20 29

Table 4: Longpower function for random

intercept model with δ = 1.0

ICC σ2 = 69 σ2 = 110 σ2 = 183 σ2 = 275

0.2 19 30 50 75

0.3 17 26 44 65

0.5 12 19 31 47

0.8 5 8 13 19
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4.1.2 Diggle et al. (2002) Method

Table 5 gives the number of subjects required in each treatment group for some selected values

of ICC and total variance σ2 to detect the various smallest meaningful difference δ with a power

of 80% at 0.05 significance level. The sample size estimates are similar to the ones obtained

using the Longpower function. Also, the number of subjects required increases with increasing

variance and decreasing correlation, while for the smallest variance and highest correlation

among repeated measurements, the least sample size is adequate to detect δ.

Table 5: Diggle et al (2002) method for random intercept models

δ ICC σ2 = 69 σ2 = 110 σ2 = 183 σ2 = 275

0.2 0.2 465 741 1232 1851

0.3 407 648 1078 1620

0.5 291 463 770 1157

0.8 117 186 308 463

0.5 0.2 75 119 198 297

0.3 66 104 173 260

0.5 47 75 124 186

0.8 19 30 50 75

0.8 0.2 30 47 77 116

0.3 26 41 68 102

0.5 19 29 49 73

0.8 8 12 20 29

1.0 0.2 19 30 50 75

0.3 17 26 44 65

0.5 12 19 31 47

0.8 5 8 13 19

4.1.3 Liu and Liang (1997) Method

The results obtained in Table 6 are also similar to those produced using the Longpower function

and Diggle et al. (2002) method. Hence, the number of subjects required decreases when the

residual variance decreases and the correlation coefficient increases, thus, for the largest residual

variance and the smallest correlation among repeated measurements, the largest sample size

estimate is much more required for detecting the relevant treatment difference.

12
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Table 6: Liu and Liang (1997) method for random intercept models

δ ICC σ2 = 69 σ2 = 110 σ2 = 183 σ2 = 275

0.2 0.2 465 741 1232 1851

0.3 407 648 1078 1620

0.5 291 463 770 1157

0.8 117 186 308 463

0.5 0.2 75 119 198 297

0.3 66 104 173 260

0.5 47 75 124 186

0.8 19 30 50 75

0.8 0.2 30 47 77 116

0.3 26 41 68 102

0.5 19 29 49 73

0.8 8 12 20 29

1.0 0.2 19 30 50 75

0.3 17 26 44 65

0.5 12 19 31 47

0.8 5 8 13 19

4.2 Theoretical Approach: Random Intercept and Slope Models

The total residual variance (σ2) for random intercept and slope models is expressed with time

using var(Yij) = var(εij) = σ2 = σ2
b + t2ijσ

2
s + 2tijcov(b0i,b1i) + σ2

e [1, 6], assuming that the

correlation between random intercepts and random slopes ρ is 0.8, random intercept variance

σ2
b is 55, and random slope variance σ2

s is 24, the formula ρ = cov(b0,b1)/(σb ∗ σs) is relevant

for computing the correlation and covariance between random intercepts and random slopes.

The estimates for the random error variance σ2
e are similar to those computed in the random

intercept models.

4.2.1 Longpower Function in R

Table 7 provides the sample size required for detecting the various treatment differences δ with

a power of 0.80. The required sample size has a positive or negative relationship with the

residual variability, that is, increasing/decreasing the residual variance will increase/decrease
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the required sample size to achieve the specified nominal power. Hence, more subjects are

needed in this model compared to the sample size estimates for the random intercept models,

because the random intercept model does not capture variations in the rate of change from

subject to subject [6]. As a result, the random slope term can be used to model the rate of

improvement or decline within the treatment group, regardless of treatment.

Table 7: Longpower function for

random intercept and slope models

δ σ2
e = 14 σ2

e = 55 σ2
e = 128 σ2

e = 220

0.2 7537 7882 8496 9270

0.5 1206 1262 1360 1484

0.8 472 493 531 580

1.0 302 316 340 371

4.2.2 Liu and Liang (1997) Method

Table 8 results are also similar to those produced using the Longpower function. As illustrated

in the previous methods, the relationship between sample size and residual variance is positive,

which usually increases with increasing σ2. Also, it has an inverse relationship with ρ, thereby

decreases with increasing correlation of repeated measurements. Intuitively, the sample size

increases in the correlation in the first case but decreases in the second case. The reason being

the parameter of interest β3, is the rate of the change in the response variable whose variance

is increasing in the correlation in the first case [5]. And in the second case, β3 is the expected

average of the responses for individuals in a group and the variance of the corresponding

estimate is decreasing in the correlation.

Table 8: Liu and Liang (1997) method for

random intercept and slope models

δ σ2
e = 14 σ2

e = 55 σ2
e = 128 σ2

e = 220

0.2 7537 7882 8496 9270

0.5 1206 1262 1360 1484

0.8 472 493 531 580

1.0 302 316 340 371
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4.3 Unbalanced Designs

In all the previous sections, the results for a balanced study design were presented, that is, equal

allocation of number of subjects in both treatment groups. In order to assess the performance of

sample size estimation method, we used the method proposed by Liu and Liang (1997) and vary

the proportion of treatment allocations. Tables (9 and 10) provides total sample size estimates

for unbalanced treatment allocations for random intercept models and random intercept and

slope models respectively when σ2 = 1. The impact of unbalanced allocations in the estimation

of sample size is very minimal [13], but unbalanced design is very important in clinical studies

in case a certain treatment group is expensive and/or recruitment of subjects is very difficult or

limited number of subjects available for that particular treatment group [14]. Another reason is

to put more subjects in the treatment arm than in the control arm because the control is already

known [17]. It is further observed that, for each δ, increasing the proportion of allocation would

increase the required sample size estimates.

Table 9: Unbalanced treatment allocation for

random intercept models

δ ICC π1 = 0.6 π1 = 0.4 π1 = 0.8 π1 = 0.2

0.2 0.2 258 258 387 387

0.3 306 306 459 459

0.5 403 403 604 604

0.8 548 548 822 822

0.5 0.2 42 42 62 62

0.3 49 49 74 74

0.5 65 65 97 97

0.8 88 88 132 132

0.8 0.2 17 17 25 25

0.3 20 20 29 29

0.5 26 26 38 38

0.8 35 35 52 52

1.0 0.2 11 11 16 16

0.3 13 13 19 19

0.5 17 17 25 25

0.8 22 22 33 33

Table 10: Unbalanced treatment allocation for

random intercept and slope models

δ ρ π1 = 0.6 π1 = 0.4 π1 = 0.8 π1 = 0.2

0.2 0.2 653 653 980 980

0.3 775 775 1163 1163

0.5 1020 1020 1531 1531

0.8 1388 1388 2082 2082

0.5 0.2 104 104 156 156

0.3 124 124 186 186

0.5 163 163 245 245

0.8 222 222 333 333

0.8 0.2 40 40 61 61

0.3 48 48 72 72

0.5 63 63 95 95

0.8 86 86 130 130

1.0 0.2 26 26 39 39

0.3 31 31 46 46

0.5 40 40 61 61

0.8 55 55 83 83
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4.4 Simulation Approach

Tables (11 and 12) provides the sample sizes m and estimated powers for random intercept

models, and random intercept and slope models for σ2 = 69 and σ2
e = 14 respectively through

1000 simulations. The estimated powers are much closer to the nominal power of 0.80 in both

models. Furthermore, we vary the number of repeated measurements n per subject to see how

the power and sample size are affected. Thus, the sample size decreases as n increases.

Table 11: Power analysis for random intercept

models through simulation

n = 4 n = 6 n = 8

ICC δ m Power m Power m Power

0.2 0.2 465 0.807 157 0.786 63 0.808

0.5 75 0.786 26 0.799 10 0.769

0.8 30 0.812 10 0.795 4 0.751

1.0 19 0.787 7 0.810 3 0.863

0.3 0.2 407 0.807 138 0.806 55 0.822

0.5 66 0.792 22 0.787 9 0.811

0.8 26 0.800 9 0.790 4 0.802

1.0 17 0.803 6 0.810 3 0.898

0.5 0.2 291 0.794 98 0.811 39 0.780

0.5 47 0.794 16 0.779 7 0.817

0.8 19 0.797 7 0.823 3 0.863

1.0 12 0.796 4 0.755 2 0.850

0.8 0.2 117 0.801 40 0.807 16 0.789

0.5 19 0.783 7 0.811 3 0.857

0.8 8 0.815 3 0.835 2 0.949

1.0 5 0.770 2 0.833 2 0.989

Table 12: Power analysis for random intercept

and slope models through simulation

n = 4 n = 6 n = 8

δ m Power m Power m Power

0.2 7537 0.790 7459 0.796 7435 0.830

0.5 1206 0.800 1194 0.791 1190 0.802

0.8 472 0.797 467 0.807 465 0.810

1.0 302 0.790 299 0.786 298 0.805
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5 Discussion and Conclusion

The simulation study examined the required sample sizes for detecting the interaction between

treatment and time fixed effects in a linear mixed-effects model with both random intercepts and

random slopes. The results of this study were obtained through the theoretical and simulation

approaches, of which the former involved using the methods or formulae proposed by Diggle et

al. (2002) and Liu and Liang (1997), and its implementation in Longpower function in R [5,13].

The simulation approach is specifically carried out in order to determine the adequacy of the

theoretical approach in power and sample size estimation.

In the theoretical approach, the sample size estimates for the linear mixed-effects models

with only random intercepts were less than those obtained in the models with both random

intercepts and random slopes for the same conventional effect size estimates. This difference

could be influenced by the different methods used in estimating the correlation and variability.

In the random intercept models, the correlation is the intraclass correlation, while in the random

intercept and slope models, correlation and variability are expressed as a function of time. Thus,

the estimated sample sizes are similar in all the different methods used for each class of model.

Moreover, in the simulation approach, the estimated powers were at least closer to the

nominal power in both models, as a result, both the theoretical and simulation approaches

yield similar results. Furthermore, varying the number of repeated measurements per subject

have great impact on sample size estimates and power analysis in the random intercept models

and minimal impact on power and sample size in the models with both random intercepts and

random slopes. Liu and Wu [14], investigated the relative impact of M and n on power when

0 < ρ < 1. Thus, increasing n by the amount equivalent to n(1 − ρ + nρ)/[M − (M + n)ρ]

is similar to increasing M by 1, and such increment depends on M, n and ρ in estimating or

analyzing power. The choice of increasing the number of individual subjects or the number of

repeated measurements per subject are driven by several factors depending on the nature of

the clinical studies, such as cost and availability of subjects to participate in the study.

Finally, we explored sample size estimation for unbalanced treatment allocations using both

models, and the results shows that unbalanced allocations have minimal impact on sample

size estimation when π1 > 0.5 or less, which is similar to the findings obtained in study [13].

The results suggest that the sample size estimates may not necessarily be overestimated or
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underestimated when the proportion of allocation π1 is greater or less than 0.5. However, the

importance of unbalanced designs in clinical trials cannot be overemphasized, especially when

recruitment of study participants in a particular treatment group is very difficult or expensive,

and also when testing a new drug against a standard drug, whose effect is already known.

In conclusion, power and sample size calculations through simulation is greatly important

since most specialized software packages may have some hidden features that are not explicitly

clear to the users, especially on the techniques involved in computation and analysis. Simulation

is the solution and is possible in any setting, especially useful in complex situations. But it is

never exact, only approximation, and can be quite computational intensive. Although, several

commercial softwares have programmed procedures to handle complicated or complex cases,

but most of them are very expensive to purchase and maintain. There are free software packages

available which can be used with great care and attention.
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Appendix

GPower 3

GPower version three is an excellent free statistical software program that permits high-precision

power and sample size analyses [4]. It is capable of computing five (5) different types of power

analyses: a priori, post-hoc, compromise, criterion and sensitivity power analysis. An a priori

power analysis is the most relevant to sample size estimation, given 1 - β, α and δ [18]. In

contrast, a post-hoc analysis is less ideal than a priori analysis and is typically useful for

assessing statistical power after the main study while controlling for only α. Its main provision

is for a critical evaluation of β, associated with a false decision in favour of the H0 [8, 9, 15].

Since we have repeated measures within each subject, the repeated measures ANOVA test is

ideal to estimate sample size taking into account the within-subject (dependent) factors and

between-subject (independent) factors. However, the sample size is computed for all factors

and interaction and the largest is selected for the study [18]. But, this may not always be the

best option as some studies could have complex interactions uninterested to the investigators,

hence, they can specify which factor or interaction is necessary for estimating the sample size.

Table A.1: Repeated measures within factors

n = 4 n = 6 n = 8

ρ δ m Power m Power m Power

0.3 0.2 50 0.8087 40 0.8171 34 0.8225

0.5 10 0.8442 8 0.8473 8 0.9192

0.8 6 0.9286 4 0.8044 4 0.9004

1.0 4 0.8278 4 0.9508 4 0.9871

0.5 0.2 36 0.8073 28 0.8020 24 0.8107

0.5 8 0.8660 6 0.8307 6 0.9099

0.8 6 0.9840 4 0.9250 4 0.9760

1.0 4 0.9328 4 0.9914 4 0.9990

0.8 0.2 16 0.8285 12 0.8029 12 0.8822

0.5 6 0.9819 4 0.9185 4 0.9728

0.8 4 0.9924 4 0.9999 4 0.9999

1.0 4 0.9998 4 0.9999 4 0.9999

Table A.2: Repeated measures between factors

n = 4 n = 6 n = 8

ρ δ m Power m Power m Power

0.3 0.2 96 0.8035 84 0.8013 80 0.8101

0.5 18 0.8235 16 0.8213 16 0.8476

0.8 10 0.8936 8 0.8299 8 0.8550

1.0 8 0.9243 6 0.8065 6 0.8322

0.5 0.2 126 0.8045 118 0.8054 114 0.8059

0.5 22 0.8055 22 0.8316 20 0.8049

0.8 12 0.8838 10 0.8258 10 0.8389

1.0 8 0.8442 8 0.8672 8 0.8786

0.8 0.2 170 0.8030 166 0.8013 164 0.8004

0.5 30 0.8179 30 0.8253 28 0.8006

0.8 14 0.8458 14 0.8527 14 0.8561

1.0 10 0.8506 10 0.8573 8 0.8606
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Table A.3: Repeated measures within-between interaction

n = 4 n = 6 n = 8

ρ δ m Power m Power m Power

0.3 0.2 50 0.8087 40 0.8171 34 0.8225

0.5 10 0.8442 8 0.8473 8 0.9192

0.8 6 0.9286 4 0.8044 4 0.9004

1.0 4 0.8278 4 0.9508 4 0.9871

0.5 0.2 36 0.8073 28 0.8020 24 0.8107

0.5 8 0.8660 6 0.8307 6 0.9099

0.8 6 0.9840 4 0.9250 4 0.9760

1.0 4 0.9328 4 0.9914 4 0.9990

0.8 0.2 16 0.8285 12 0.8029 12 0.8822

0.5 6 0.9819 4 0.9185 4 0.9728

0.8 4 0.9924 4 0.9999 4 0.9999

1.0 4 0.9998 4 0.9999 4 0.9999

Tables (A.1 - A.3) presents the total sample size and the actual power estimates for both

groups using ANOVA repeated measures within-factors, between-factors and within-between

factor interactions respectively. In all the tables, the sample size estimates decreases with

increasing effect size for each specific correlation coefficient. The actual power estimates are

also observed to be very similar to the nominal power or at least slightly larger. The sample

size estimates in Table A.2 increases with increase in correlation coefficient and are much larger

compared to other two tables. Hence, the investigator can make decision on which interesting

factors or interactions are useful for estimating sample size and whether to increase the number

of individual subjects or increase the number of repeated measures within each subject to

achieve a certain power, depending on the resources or time available for conducting the study.

Table A.4 gives the sample size estimates for unbalanced designs using the formula proposed

by Liu and Wu [14]. The proportion of sample size in the treatment group is 0.6 and in the

control group is 0.4, and as a result, the treatment group has more subjects than the control

group. This method is ideal in situations we are interested in testing the effect of a new drug

against a standard drug having already known the effect of the standard drug. Because sample

size and statistical power are positively related, therefore, more subjects are required in the

treatment arm than the control arm to achieve the desired statistical power.
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Table A.4: Sample size estimates for

unbalanced treatment allocations

δ ρ π1 = 0.6 π2 = 0.4

0.2 0.2 1176 784

0.3 1396 931

0.5 1387 1225

0.8 2499 1666

0.5 0.2 188 125

0.3 223 148

0.5 294 196

0.8 399 267

0.8 0.2 73 49

0.3 87 58

0.5 114 77

0.8 156 104

1.0 0.2 47 31

0.3 55 38

0.5 73 49

0.8 99 67

Figure A.1: Sample size and correlation
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R Program Codes

## Required packages

library(longpower)

library(lme4)

library(Matrix)

library(nlme)

library(MASS)

#------------------------------------

## Time points

t = c(0, 2, 5, 8)

n = length(t)

## Treatment difference

effectsize = c(0.2, 0.5, 0.8, 1.0)

#-----------------------------------

## THEORETICAL APPROACH

## RANDOM INTERCEPT MODELS:

## Random intercept variance

sigma2.b = c(55, 55, 55, 55)

## Random slope variance

sigma2.s = c(0, 0, 0, 0)

## Random error variance

sigma2.e = c(14, 55, 128, 220)

## Total residual variance

sigma2 = sigma2.b + sigma2.e

## Within-subject Correlation

rho = sigma2.b/(sigma2.b + sigma2.e)

rho = c(0.2, 0.3, 0.5, 0.8)
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#-------------------------------------

## LONGPOWER

## Random intercept models

# NB: The value of var.b changes with icc and var

# Thus, sample size estimation depends on var.e

icc = 0.2 # (0.2,0.3,0.5,0.8)

var = 69 # (69,110,183,275)

var.b = icc*var

var.e = var - var.b

lmmpower(delta = 0.2, t = t, sig2.e = var.e, sig2.i = var.b, sig2.s = 0,

cov.s.i = icc*sqrt(0)*sqrt(55), alternative = "one.sided", power = 0.80)

## DIGGLE ET AL. (2002)

## Random intercept models

diggle.int <- outer(rho, sigma2,

Vectorize(function(rho, sigma2){

ceiling(diggle.linear.power(

delta = 0.2,

t = t,

sigma2 = sigma2,

R = rho, sig.level = 0.05,

alternative = "one.sided",

power = 0.80)$n)}))

colnames(diggle.int) <- paste("sigma2 =", sigma2)

rownames(diggle.int) <- paste("rho =", rho)

## LIU AND LANG (1997)

## Random intercept models

u = list(u1 = t, u2 = rep(0,n))

v = list(v1 = cbind(1,1,t),

v2 = cbind(1,0,t))

liuliang.int = outer(rho, sigma2,
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Vectorize(function(rho, sigma2){

ceiling(liu.liang.linear.power(

delta = 0.2, u = u, v = v,

sigma2 = sigma2, sig.level = 0.05,

R = rho, alternative = "one.sided",

power = 0.80)$N/2)}))

colnames(liuliang.int) = paste("sigma2 =", sigma2)

rownames(liuliang.int) = paste("rho =", rho)

#----------------------------------------------------------

#----------------------------------------------------------

## RANDOM INTERCEPT AND SLOPE MODELS:

## Random intercept variance

var.intercept = 55

## Random slope variance

var.slope = 24

## Random error variance

var.error = 14 #c(14, 55, 128, 220)

## Treatment difference

effect.size = 0.2

## Correlation of random effects

rho.slope.intercept = 0.8

## Covariance of intercept and slope

cova.slope.intercept = rho.slope.intercept*sqrt(var.intercept)*sqrt(var.slope)

#------------------------------------------------------------

## LONGPOWER

## Random intercept and slope models

lmmpower(delta = effect.size, t = t, sig2.e = var.error, sig2.i = var.intercept,

sig2.s=var.slope, cov.s.i=cova.slope.intercept, alternative = "one.sided",power=0.80)
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## LIU AND LANG (1997)

## Random intercept and slope models

cov.s.i <- rho.slope.intercept*sqrt(var.intercept)*sqrt(var.slope)

cov.t <- function(t1, t2, var.intercept, var.slope, cov.s.i){

var.intercept + t1*t2*var.slope + (t1+t2)*cov.s.i

}

R = outer(t, t, function(x,y){cov.t(x,y, var.intercept, var.slope, cov.s.i)})

R = R + diag(var.error, n, n)

u = list(u1 = t, u2 = rep(0,n))

v = list(v1 = cbind(1,1,t), v2 = cbind(1,0,t))

liu.liang.linear.power(d = effect.size, u=u, v=v, R=R, sig.level = 0.05,

power = 0.80, alternative = "one.sided")

#------------------------------------------------------------------

#------------------------------------------------------------------

## SAMPLE SIZE FOR UNBALANCED DESIGNS:

## Liu and Liang (1997) method

## delta = c(0.2, 0.5, 0.8, 1.0)

## rho = c(0.2, 0.3, 0.5, 0.8)

unbalDesign <- data.frame(cbind(

rho = rep(c(0.2,0.3,0.5,0.8), 2),

pi1 = c(rep(0.6, 4), rep(0.4, 4))))

m <- c()

for(i in 1:nrow(unbalDesign)){

R <- matrix(unbalDesign$rho[i], nrow = 4, ncol = 4)

diag(R) <- 1

m <- c(m, ceiling(liu.liang.linear.power(

delta = 0.2,

u = list(u1 = rep(1, 4), # treatment

u2 = rep(0, 4)), # control

v = list(v1 = rep(1, 4), v2 = rep(1, 4)), # intercept
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sigma2 = 1,

Pi = c(unbalDesign$pi1[i], 1-unbalDesign$pi1[i]),

R = R, alternative = "one.sided",

power = 0.80)$N))

}

cbind(unbalDesign, m)

#----------------------------------------

## Unbalanced treatment allocations

## Honghu Liu and Tongtong Wu (2005) formula

n = 4

var = 1

pi = 0.6

d = 0.2

rho = 0.2

numerator = (1.96 + 0.84)^2*var*(1 + (n - 1)*rho)

denominator = n*(1 - pi - pi^2)*d^2

M = numerator/denominator

# sample size in treatment group

m1 = pi*M

# sample size in control group

m2 = (1 - pi)*M

#----------------------------------------------------

#----------------------------------------------------

## SIMULATION APPROACH (1):

## Random intercept models

## number of subjects per group

m = 465

## time points (n=4, n=6 and n=8)

tp = c(0, 2, 5, 8)
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tp = c(0, 2, 5, 8, 10, 12)

tp = c(0, 2, 5, 8, 10, 12, 15, 18)

## number of repeated measures per subject

n = length(tp)

## treatment difference

effectSize = 0.2

## correlation

rho = 0.2

## total variance

sigma2 = 69

## random intercept variance

sigma2.int = sigma2*rho

## random error variance

sigma2.esp = sigma2 - sigma2.int

## number of simulations

Nsimulations = 1000

## Predictor variables:

subject = rep(1:(2*m), each = n)

treatment = rep(c(0,1), each = n)

time = rep(c(0, 2, 5, 8))

trt_time = treatment*time

gender = rep(c(0,1), each = m*n)

set.seed(1234)

age = sample(seq(15,50, by = 1), size = m*n*2, replace = TRUE)

data.frame(subject = subject, treatment = treatment, time = time, trt_time = trt_time,

gender = gender, age = age)

## Response variable:

beta0 = 5; beta1 = 2; beta2 = 9; beta3 = effectSize; beta4 = 7; beta5 = 3

meanResponse = (beta0 + beta1*treatment + beta2*time + beta3*trt_time +

beta4*gender + beta5*age)

## View structure of the simulated data

mysimdata = data.frame(subject = subject, treatment = treatment, time = time,

trt_time = trt_time, gender = gender, age = age, meanResponse = meanResponse)
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set.seed(1234)

pval_ri_model = numeric(Nsimulations)

for(i in 1:Nsimulations){

random.intercepts = rnorm(2*m, mean=0, sd=sqrt(sigma2.int))

response1 = meanResponse + random.intercepts[mysimdata$subject] +

rnorm(nrow(mysimdata), mean=0, sd=sqrt(sigma2.esp))

simulatedDataset = data.frame(subject = subject, treatment = treatment, time = time,

trt_time = trt_time, gender = gender, age = age, response1 = response1)

myfit_rim <- lme(response1 ~ treatment + time + trt_time + gender + age,

random = list(~ 1|subject), method = "ML", data = simulatedDataset)

pval_ri_model[i] <- summary(myfit_rim)$tTable["trt_time",5]

print(i)

}

## Estimate power

sum(pval_ri_model < 0.10)/Nsimulations

#-------------------------------------------------------------

## SIMULATION APPROACH (2):

## Random intercept and slope models

m = 7537 #number of subjects per group

Nsim = 1000 #number of simulations

effectSize = 0.2 #treatment difference

rho.slope.intercept = 0.8 #correlation of random intercept and slope

tp = c(0, 2, 5, 8) # 4 time points

tp = c(0, 2, 5, 8, 10, 12) # 6 time points

tp = c(0, 2, 5, 8, 10, 12, 15, 18) # 8 time points

n = length(tp) #number of repeated measurements per subject

sigma2.b0 = 55 #random intercept variance
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sigma2.b1 = 24 #random slope variance

sigma2.ei = 14 #random error variance

#covariance of random intercept and slope

cova.b0b1 = rho.slope.intercept*sqrt(sigma2.b0)*sqrt(sigma2.b1)

set.seed(2017)

pvalues = vector()

for(s in 1:Nsim){

subject = rep(1:(2*m), each = n)

treatment = rep(c(0,1), each = n)

time = rep(c(0, 2, 5, 8))

trt_time = treatment*time

gender = rep(c(0,1), each = m*n)

age = sample(seq(15,50, by = 1), size = m*n*2, replace = TRUE)

beta0 = 5; beta1 = 2; beta2 = 9; beta3 = effectSize; beta4 = 7; beta5 = 3

meanResponse = (beta0 + beta1*treatment + beta2*time + beta3*trt_time +

beta4*gender + beta5*age)

simdat = data.frame(subject = subject, treatment = treatment, time = time,

trt_time = trt_time, gender = gender, age = age, meanResponse = meanResponse)

random.effects = mvrnorm(n=2*m, mu=c(0,0),

Sigma=matrix(c(sigma2.b0,cova.b0b1,cova.b0b1,sigma2.b1),2,2))

random.intercepts = rnorm(2*m, mean=0, sd=sqrt(sigma2.b0))

random.slopes = rnorm(2*m, mean=0, sd=sqrt(sigma2.b1))

response2 = meanResponse + random.effects[simdat$subject,1] +

random.effects[simdat$subject,2]*simdat$time +

rnorm(nrow(simdat), mean=0, sd=sqrt(sigma2.ei))

simDataset = data.frame(subject = subject, treatment = treatment, time = time,

trt_time = trt_time, gender = gender, age = age, response2 = response2)
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fit_rism <- lme(response2 ~ treatment + time + trt_time + gender + age,

random = list(~ time|subject), method = "ML", data = simDataset,

control=lmeControl(returnObject=TRUE, opt=’optim’))

pvalues[s] <- coef(summary(fit_rism))[4,5]

print(s)

}

## Estimate power

sum(pvalues < 0.10)/Nsim

32



Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Power calculations for linear mixed effects models

Richting: Master of Statistics-Biostatistics
Jaar: 2018

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de 
Universiteit Hasselt. 

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt 
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, 
vrij te reproduceren, (her)publiceren of  distribueren zonder de toelating te moeten 
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de 
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat 
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt 
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de 
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de 
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen 
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze 
overeenkomst.

Voor akkoord,

Ndow, Manjally  

Datum: 22/01/2018


