
Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Using SVM and Deep Learning to facilitate orthognathic surgery
planning

2017•2018

PROMOTOR :

Prof. dr. ir. Luc CLAESEN

PROMOTOR :

dr. ing. Yi SUN

ing. Wout SWINKELS

Danilo Peeters
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Using SVM and Deep Learning to facilitate orthognathic surgery
planning

2017•2018

PROMOTOR :

Prof. dr. ir. Luc CLAESEN

PROMOTOR :

dr. ing. Yi SUN

ing. Wout SWINKELS

Danilo Peeters
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Acknowledgements

This Master’s Thesis was performed during the entire academic year of 2017-2018. Even
though the journey has been full of ups and downs, the experience and knowledge I have
attained during this period have been invaluable. I have discovered my interest and pas-
sion for machine learning, which opened up new perspectives regarding my future career.
During this time I have learned how to put my engineering skills to practice but, more
importantly, I have had the pleasure to work with amazing people whom are experts in
their field.

First and foremost, I would like to thank dr. ing. Yi Sun for allowing me to work on
this interesting project and for providing his insightful advice. He taught me a lot about
orthognathic surgery planning and how to interpret results from a medical standpoint.

Secondly, I would like to thank prof. dr. ir. Luc Claesen for allowing me to take this
opportunity and for always believing in the good outcome of this project. I believe the
results of this Master Thesis might have differed greatly without his counseling.

Thirdly I would like to extend my gratitude to ing. Wout Swinkels for his guidance during
the project and for his company when meeting in Leuven.

Finally I would like to thank my friends and family. I firmly believe this thesis would
have looked very differently were it not for their support.

II

Abstract

Using machine learning, surgeons can be aided in performing pre-surgical planning for
orthognathic surgery. Before every surgery, a clinical study is performed to gather in-
sight into the patient’s situation. This clinical study consists of clinical measurements
and a cephalometrical analysis which account for a total of 120 parameters per patient.
This amount of data complicates decision-making for young, inexperienced surgeons. An
attempt has been made to use machine learning to predict multiple surgical decisions,
including predictions with regard to the patient’s maxilla, mandible and chin. These
models have been built within a local Python environment, and have been deployed af-
terwards on a web server to be used in conjunction with a user-friendly web interface.
For the analogue values, multiple neural networks are constructed using ReLU activations
and a linear output activation. These networks are constructed for each surgery decision
separately using 4 hidden layers with each 20 nodes. Each network uses the 20 most cor-
related input features as input nodes. The discrete values are determined using two SVM
implementations using a linear and RBF kernel, each determined by a personalized grid
search. The regression output values are lowly correlated with the input data, and should
be improved upon by acquiring more data (R2

test ≈ 0.5). The classification SVMs both
predict their output values with an accuracies of 83% and 86% and similar F1-scores.

IV

Abstract (Dutch)

Machine learning kan de pre-operatieve planning binnen de mond-, kaak- en aangezichts-
chirurgie vergemakkelijken. Vóór elke operatie wordt een klinische studie uitgevoerd om
inzicht te verkrijgen in de situatie van de patiënt. Deze klinische studie bestaat uit
klinische metingen en een cefalometrische analyse welke instaan voor een totaal van 120
parameters per patiënt. Deze hoeveelheid informatie compliceert de besluitvorming voor
jonge, onervaren chirurgen. Er werd een poging ondernomen om machine learning te in-
tegreren om meerdere operatieve ingrepen te voorspellen met betrekking tot bovenkaak-
been, onderkaakbeen en kin. Deze modellen werden eerst gebouwd in een lokale Python-
omgeving, en werden later gëımplementeerd op een webserver om gebruikt te worden met
een gebruiksvriendelijke interface. Voor de analoge waarden werden meerdere neurale
netwerken gebouwd gebruik makende van ReLU activeringen en een lineaire outputac-
tivatie. Deze netwerken werden apart gebouwd voor elke operatieve beslissing gebruik
makende van 4 verborgen lagen met elk 20 eenheden. Elk netwerk gebruikt de 20 meest
gecorreleerde ingangskenmerken als ingangsknopen. De discrete waarden werden bepaald
door twee SVM implementaties met een lineaire en RBF kern, elk bepaald door een geper-
sonaliseerde grid search. De uitgangswaarden voor regressie zijn slecht gecorreleerd met
de uitgangsresultaten, en zouden verbeterd kunnen worden door meer gegevens te verza-
melen (R2

test ≈ 0.5). De classificatie SVMs voorspellen beiden uitgangsgegevens met een
nauwkeurigheid van 83% en 86% en gelijkaardige F1-scores.

VI

Contents

Glossary IX

Acronyms XI

List of Figures XIII

List of Tables XV

1 Introduction 1

1.1 Problem statement . 1

2 Literature study 3

2.1 The concepts of machine learning . 3

2.2 Supervised learning algorithms . 4

2.2.1 Linear regression . 4

2.2.2 Logistic Regression . 6

2.2.3 Neural networks . 8

2.2.4 Support Vector Machines (SVM) 10

2.3 Performance metrics . 11

2.3.1 Regression based algorithms . 11

2.3.2 Classification based algorithms . 12

2.4 The problem of under- and overfitting . 13

2.4.1 Dividing the data set . 13

2.4.2 Bias-variance trade-off . 14

2.5 Finding the optimal model . 14

2.6 Project background . 15

3 Method 17

3.1 Importing data . 17

3.2 Algorithm Types and Experimentation . 18

3.2.1 Experimentation in MATLAB . 18

3.2.2 Types of tested algorithms . 19

3.2.3 Optimal model selection . 20

3.3 Python Implementation . 20

3.3.1 Usage . 20

3.3.2 Project structure . 21

VIII CONTENTS

4 Results 23
4.1 Regression based algorithms . 23
4.2 Classification based algorithms . 24
4.3 Script output . 25

4.3.1 Evaluating a patient . 25
4.3.2 Retraining the algorithms . 26

5 Discussion 27
5.1 Regression based algorithms . 27

5.1.1 Poorly performing algorithms . 27
5.1.2 Moderately performing algorithms 28

5.2 Classification based algorithms . 28

6 Conclusion & Future research 29
6.1 Conclusion . 29
6.2 Future research . 29

A Script output for retraining 31

Bibliography 33

Glossary

activation function Function which is applied to the hidden units in a neural network.
9, 10, 23

backpropagation The act of calculating the error of each node with regard to the actual
output values, starting from the output layer. 10

bias unit Nodes containing the value +1 which are only connected to the nodes in the
next layer. They are used for implementing the constant value in the cost function
for neural networks. 9

Bimax Surgery where both the maxilla and mandible are operated on. 16

BSSO Surgery where only the mandible is operated on. 16

classification based algorithm Supervised learning algorithm which outputs the prob-
ability of the combination of one or several input features x

(i)
n being in a discrete

class y
(i)
k . 4, 12, 15, 20, 24, 29

confusion matrix Schematic overview of (in)correctly classified examples in classifica-
tion problems. 12

cost function Function which describes the error between the hypothesis and the actual
values. 5, 6, 9, 10, 14, 20

feature A feature of a dataset is a type of data that is used in a machine learning
algorithm. 4, 8, 11, 14, 15, 17–19, 21, 23, 29

forward propagation The act of calculating the values of all the nodes in the neural
network, starting from the input layer. 9

gradient descent Algorithm for determining the minimum value of a function. 5, 8

grid search Act of defining the best hyperparameters for machine learning algorithms
by iterating through different combinations of these parameters. 14, 15, 19, 20, 24,
26

hidden layer The layers of a neural network which are situated between input and out-
put layer. 8, 19, 29

hyperparameter Parameters used to optimize machine learning algorithms. 14, 15, 20,
24, 29

X Glossary

input layer One layer which contains all the input features x
(i)
n from one or multiple

training example(s). 8

kernel A kernel function provides a measure of the distance between feature x(i) and
landmark l(i). 11, 14, 19, 20, 24, 29

Le Fort I Surgery where only the maxilla is operated on. 16

node Calculation unit which takes inputs from all nodes in the previous layer and acti-
vates this value. 8, 9, 14, 19, 23

output layer One layer with one or more nodes representing the output class(es) of the
neural network. The output of these nodes is the probability of input features xn(i)
belonging to the class that node represents. 8–10, 19

regression based algorithm Supervised learning algorithm which outputs an analogue
value y(i) based on one or several input features x

(i)
n . 4, 11, 15, 20, 27

supervised learning algorithm Algorithm with one or several input features x(i) with
a descriptive output y(i). 3, 4, 29

training example One row of values from the dataset, containing all the input fea-
tures and output value(s) used for training the algorithm and determining the cost
function. 4–6, 9, 10, 13, 14, 28

unsupervised learning algorithm Algorithm with one or several input features x(i)

without a descriptive output y(i). 3

Acronyms

FN False Negative. 12

FP False Positive. 12

MAE Mean Absolute Error. 12, 23

MSE Mean Squared Error. 12, 20, 23

RBF Radial Basis Function. 11, 14, 19

RCCE Ratio of Correctly Classified Examples. 13, 18, 20, 25, 28

ReLU Rectified Linear Unit. 23

SVM Support Vector Machine. 10, 11, 19–21, 24, 27–29

SVR Support Vector Regression. 19

TN True Negative. 12

TP True Positive. 12

XII Acronyms

List of Figures

1.1 CBCT imaging of patient’s head and 3D representation [1, p. 22] 2

2.1 Gradient descent for 400 iterations [2] . 5
2.2 Logistic regression: cost(hθ) for y = 1 [2] 7
2.3 Logistic regression: cost(hθ) for y = 0 [2] 7
2.4 Logistic regression: Original dataset [2] 7
2.5 Logistic regression: Original dataset with decision boundary [2] 7
2.6 Neural network representation (one hidden layer, three layers in total) . . . 8
2.7 Logistic regression activated cost function function vs SVM activated cost

function for y = 1 (black) and y = 0 (blue) 11
2.8 High bias (underfitting), good fit and high variance (overfitting) [3] 14
2.9 Grid search example for SVM with RBF kernel 15

3.1 Directory tree of the Python project . 17
3.2 Flowchart for importing patient data from Excel files 18

4.1 Percentage of testing examples within a certain range of deviation 24

XIV LIST OF FIGURES

List of Tables

2.1 Example of a small data set with 5 training examples and 2 features. . . . 4
2.2 Optimal values for theta after 400 iterations 6
2.3 Optimal values for θ for logistic regression (values rounded to 2 decimals) . 8
2.4 Confusion matrix . 12
2.5 Surgical decision output per type. (C = classification, R = regression) . . . 16

4.1 Performance metrics for constant amount of layers (N=4) 23
4.2 Mean values for percentage of testing examples with deviation ranges . . . 23
4.3 Hyperparameters for both SVMs . 25
4.4 Performance measures for one/more maxilla pieces SVM 25
4.5 Performance measures for mandible advancement / setback SVM 25

6.1 Classifying values for maxilla advancement 30

XVI LIST OF TABLES

Chapter 1
Introduction

Due to the significant increase in computing power over the past decade, machine learning
has become more prevalent in a variety of sectors. Within the dentistry sector, attempts
have already been made to predict the necessity of extracting teeth during orthodontic
treatments [4]. This research focuses on pre-operative orthognathic surgery decisions and
is performed in cooperation with the Computation Sensor Systems (CoSenS) research
group of Hasselt University and the University Hospitals Leuven. The University Hospitals
Leuven is a reputable hospital with four campuses located in Leuven. Campus Sint-
Rafaël, which is one of the four campuses, has a department that is specialized in oral
and maxillofacial surgery.

1.1 Problem statement

Before performing orthognathic surgery, clinical data has to be collected in order to make
surgical decisions. The acquisition of this data is done through clinical studies. These
studies include acquiring images of the patient in order to virtually reconstruct their coun-
tenance. This part is necessary in order to gain perspective on the patient’s situation and
to perform pre-surgical planning. Images are taken using Cone-Beam CT (CBCT) (figure
1.1), but often additional image acquisition is required in order to accurately represent
the patient’s head. Computer programs can then derive the distances and angles between
certain points on the patient’s head. This data is mostly saved as numerical data, both
as absolute value and as deviation from the clinical norm [1].

The clinical studies present a substantial amount of data to the surgeons. Based on
these data, surgeons make decisions on which kind of surgeries to perform and on how
to perform them. It seems evident that surgeon’s experience pertains a vital role in the
difficulty and success of the surgery, which unexperienced surgeons usually do not possess.
It is therefore useful to create a system which helps unexperienced surgeons with their
decisions. Currently, no such system exists within the department which translates this
significant amount of data into an effective decision pattern. This thesis proposes several
methods of machine learning which aid the surgeon in this process.

2 Problem statement

Figure 1.1: CBCT imaging of patient’s head and 3D representation [1, p. 22]

Chapter 2
Literature study

This chapter covers the fundamentals of machine learning which are necessary to under-
stand the concepts behind the algorithms used in this thesis. This chapter will first explain
the different concepts of machine learning. Secondly, it will cover the basics of the used
algorithms from a mathematical perspective. It will then explain different performance
metrics which are used to evaluate algorithms. These performance metrics will usually
highlight certain issues with regard to under- and overfitting, which will be addressed
afterwards. This information can then be used to find the optimal model as discussed in
section 2.5. Finally, the data used in this project will be explained more in detail.

2.1 The concepts of machine learning

According to [5], Machine Learning is defined as follows:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E [5, p. 14].

For example, a robot trained to play a game of checkers would become better at playing
checkers (task T) by measuring the amount of wins (performance P). The amount of wins
should increase over time as the robot plays more games and learns to distinguish good
moves from bad moves (experience E).

Task T refers to a problem which is too difficult or time-consuming for humans. This
becomes evident when the amount of input data increases. Due to the amount of moves
available in checkers at any point in time, it becomes nearly impossible for the human
brain to predict which move would result in the best outcome.

The performance measure P heavily depends on the desired outcome of the algorithm. For
the example explained above, the performance measure could be a value which correlates
to the amount of games won. More iterations of the algorithm should result in a higher
value for P.

The experience E depends heavily on the type of data set. Generally, it suffices to classify
machine learning algorithms into two categories:

• Unsupervised learning algorithms;

• Supervised learning algorithms.

4 Supervised learning algorithms

Unsupervised learning consists of an unstructured data set. Most often, this means that
there are several input features x(i) without a descriptive output y(i) which corresponds
to these inputs. The unsupervised learning algorithm attempts to classify these data
into groups. This is not the case for supervised learning algorithms. Supervised learning
algorithms contain one or several input features x(i) which are directly linked to an output
y(i) [6].

2.2 Supervised learning algorithms

Due to the nature of the problem presented in this thesis, it suffices to explain supervised
learning algorithms only. Supervised learning algorithms are classified into two main
categories:

• Regression based algorithms;

• Classification based algorithms.

This thesis will make use of both types of algorithms, and so both types will be explained
more in detail.

2.2.1 Linear regression

Regression based supervised learning algorithms work on data sets which plot an output
value y(i) as a function of several input features x

(i)
1 , x

(i)
2 , . . . , x

(i)
n . In this notation, n

stands for the index of the features and i represents the ith training example. An example
of a (small) data set is represented in table 2.1.

Table 2.1: Example of a small data set with 5 training examples and 2 features.

i x
(i)
1 x

(i)
2 y(i)

1 10 10 100
2 10 50 200
3 50 10 120
4 50 50 250
5 30 50 225

In this data set, every set of input features corresponds to one output value. In other
words, y(i) = f(x

(i)
1 , x

(i)
2). From this data set, however, it is impossible to determine the

output value for say f(10, 40) as there is no data point with these values in the dataset.
To determine this value, it is necessary to form a hypothesis which best describes the
behaviour of this data set. For the sake of simplicity, multivariate linear regression is
chosen as a candidate. This hypothesis is described in equation 2.1 and outputs real,
continuous values.

hθ(x
(i)) = θ0 + θ1x

(i)
1 + θ2x

(i)
2 (2.1)

If θ and x are described as column vectors it is possible to rewrite the hypothesis as shown
in equation 2.2.

hθ(x) = θTX (2.2)

Given that x1 and x2 are known, it is necessary to find the optimal values for θ in order
for the hypothesis to best describe the original data set. The error of the hypothesis
is defined as the squared distance between the values of the hypothesis and the original

Supervised learning algorithms 5

Figure 2.1: Gradient descent for 400 iterations [2]

output values. This error is divided by the amount of training examples multiplied by
two. This function is known as the cost function and is described in equation 2.3. It

is then further broken down in equation 2.4. The meaning of the term λ
2m

n∑
j=1

θ2
j will be

explained in section 2.4.

J(θ) =
1

2m

m∑
i=1

(
hθ(x

(i))− y(i)
)2

+
λ

2m

n∑
j=1

θ2
j (2.3)

J(θ) =
1

2m

m∑
i=1

(
(θ0 + θ1x

(i)
1 + θ2x

(i)
2)− y(i)

)2

+
λ

2m

n∑
j=1

θ2
j (2.4)

Given that this function represents the error of the hypothesis, it seems evident that
the best possible values for θ are determined by minimizing this function. One possible
method is to use gradient descent, in which an iteration can be formulated as in equation
2.5

θn = θn−1 − γ ×∇J(θ) (2.5)

The value of γ has to be chosen so that the algorithm does not diverge or take a con-
siderable time to compute. When implementing equation 2.5, it is important to update
every value of θ simultaneously as to make sure that the same original function is used for
gradient descent. In this example, a value of γ = 0.00001 is chosen. For this dataset, the
cost function is plotted as a function of the number of gradient descent iterations, which
is shown in figure 2.1. The optimal values for θn are shown in table 2.2. Equation 2.1 can
now be applied with these values of θ. For x1 = 10 and x2 = 40, this prediction is shown
in equation 2.6.

6 Supervised learning algorithms

Table 2.2: Optimal values for theta after 400 iterations

θ0 θ1 θ2

0.101682 1.835737 3.410662

hθ(x
(i)) = 0.10 + 1.84× 10 + 3.41× 40 = 154.9 (2.6)

2.2.2 Logistic Regression

The hypothesis of a linear regression function always outputs a real and continuous value.
Logistic regression instead classifies input data into discrete output classes. One example
includes the classification of spam e-mail, where an algorithm is trained on pre-determined
data to classify new e-mails. The precedent for this algorithm is shown in equation 2.7
and is summarized in equation 2.8

hθ(x) =

{
1, if hθ(x) > k |k ∈ [0, 1]

0, otherwise.
(2.7)

hθ(x) = P (y = 1|x; θ) (2.8)

The hypothesis hθ(x) now outputs the probability of the training example belonging to
discrete class 1 or discrete class 0. Threshold value k determines the minimum probability
of a new training example in order to be classified as a discrete 1. For a proportional
distribution, a value of k = 0.5 is used.

In this hypothesis, linear regression from section 2.2.1 cannot be used as doing so would
result in values outside the range of [0, 1]. Instead, the new hypothesis is defined as in
equation 2.9.

hθ(x) = g(θTX) (2.9)

The function g(x) is the sigmoid function defined in equation 2.10. Applying the sigmoid
function to the hypothesis converts all the values of the hypothesis to values in the range
of [0, 1]. This allows the binary classification represented in equation 2.7.

g(x) =
1

1 + exp (−z)
(2.10)

The cost function for logistic regression looks similar to the cost function in section 2.2.1
with the exception of new logarithmic terms surrounding the hypothesis (2.11).

cost(hθ(x
(i), y)) =

{
− log (hθ(x)), if y = 1

− log (1− hθ(x)), otherwise.
(2.11)

The reason for the addition of the logarithmic terms can be explained by examining
figures 2.2 and 2.3. For y = 1, the cost function from figure 2.2 will be used. The cost
for the input value x decreases as the hypothesis approaches value 1. For y = 0, the cost
function shown in figure 2.3 will be used instead. An erroneously predicted value results
in a high cost, whereas correctly predicted values result in a low cost. This behaviour can
be summarized by equation 2.12.

J(θ) = − 1

m
×

m∑
i=1

(
y(i) × log (hθ(x

(i))) + (1− y(i))× log (1− hθ(x(i)))
)

(2.12)

Supervised learning algorithms 7

Figure 2.2: Logistic regression: cost(hθ)
for y = 1 [2]

Figure 2.3: Logistic regression: cost(hθ)
for y = 0 [2]

Figure 2.4: Logistic regression: Original
dataset [2]

Figure 2.5: Logistic regression: Original
dataset with decision bound-
ary [2]

8 Supervised learning algorithms

Table 2.3: Optimal values for θ for logistic regression (values rounded to 2 decimals)

θ0 θ1 θ2

-24.93 0.20 0.20

The values for hθ(x) can also be interpreted as the parameters for the decision boundary
of the dataset. Given that the dataset only contains two features, the decision boundary
can be calculated using the same hypothesis as in equation 2.9 but without applying the
sigmoid function. The values which lie on this line are the values for which P (y = 1|x; θ) =
0.5, which signifies the boundary. For the dataset from figure 2.4, the θ values from table
2.3 were found using gradient descent. This equation can be verified by examining figure
2.5 (Note the interval of the axes).

ydecision : x1, x2 7→ −24.93 + 0.20× x1 + 0.20× x2 (2.13)

x2 = −x1 + 124.65 (2.14)

2.2.3 Neural networks

Neural networks mimic the operation of the human brain. In machine learning, they are
mostly used to classify data sets which contain many features. It is possible, however, to
also use neural networks for regression problems. Neural networks are an extension of the
logistic regression algorithm described in section 2.2.2.

Model Representation

Input #1

Input #2

Input #3

Output

Hidden
layer z

(2)
n

Input
layer x

(1)
n

Output
layer
hΘ(x)

Figure 2.6: Neural network representation (one hidden layer, three layers in total)

Figure 2.6 depicts a neural network. It generally consists of one input layer, one output
layer and N hidden layers (in total L layers). Each circle represents a unit which is
connected to the previous and next layer. In case of the input layer, the units are initialized
with the values of the chosen features. Each connection between the units represents a
calculation where the result is passed on to the next layer. In the following example, the
calculation used is the multiplication of the node’s value with θ. Given that the units
of the input layer represent the features x1, x2, x3, and the units of the hidden layer are
represented by z1, z2, z3, equation 2.15 applies.

z
(2)
1 = Θ

(1)
1,1 × x1 + Θ

(1)
1,2 × x2 + Θ

(1)
1,3 × x3

z
(2)
2 = Θ

(1)
2,1 × x1 + Θ

(1)
2,2 × x2 + Θ

(1)
2,3 × x3

z
(2)
3 = Θ

(1)
3,1 × x1 + Θ

(1)
3,2 × x2 + Θ

(1)
3,3 × x3

(2.15)

Supervised learning algorithms 9

Θk
i,j represents the value of θ applied to unit j in layer k, which results in a new value for

unit i in layer k + 1. It is important to note that in equation 2.15 and in figure 2.6 the
constant value x0 = 1 to account for θ0 is not represented yet. To correctly account for
this term, 2.15 is replaced by equation 2.16.

z
(2)
1 = Θ1,0 × x0 + Θ

(1)
1,1 × x1 + Θ

(1)
1,2 × x2 + Θ

(1)
1,3 × x3

z
(2)
2 = Θ2,0 × x0 + Θ

(1)
2,1 × x1 + Θ

(1)
2,2 × x2 + Θ

(1)
2,3 × x3

z
(2)
3 = Θ3,0 × x0 + Θ

(1)
3,1 × x1 + Θ

(1)
3,2 × x2 + Θ

(1)
3,3 × x3

(2.16)

It is important to mention that these values are still continuous values. To convert them
to values in the range of [0, 1], the sigmoid function from 2.10 is applied. It is possible to
use other so-called activation functions as well.

a
(2)
1 = g(z

(2)
1)

a
(2)
2 = g(z

(2)
2)

a
(2)
3 = g(z

(2)
3)

(2.17)

The values for x0, a2
0, . . . , a

L−1
0 are not drawn by convention. They are called bias units

and are equal to the value +1. They require no inputs from previous layers and are only
used to calculate the constant value of the linear expression in the next layer. The output
of this neural network can then be calculated according to equation 2.18.

output = hΘ(x(i)) = Θ
(2)
1,0 × a0 + Θ

(2)
1,1 × a1 + Θ

(2)
1,2 × a2 + Θ

(2)
1,3 × a3 (2.18)

For neural networks with one output, hΘ(x) represents the probability of the ith training

example belonging to class 1. Calculating the values for a
(i)
n and finally for hΘ(x) is called

forward propagation.

The cost function for a neural network is similar to logistic regression, with the exception
of a new summation term to cover the output layer with multiple nodes.

J(Θ) = − 1

m

m∑
i=1

K∑
K=1

(
y

(i)
K log (hΘ(x(i))K) + (1− y(i)

K) log (1− (hΘ(x(i))K)
)

(2.19)

To minimize this cost function, it is necessary to provide all the current values for Θ
that were used to calculate J(Θ). These values, in addition to the cost function, are
used in optimized minimization functions provided by MATLAB or by other relevant
programming languages.

Backpropagation algorithm

To calculate the derived values for Θ, all current values for a
(2)
n , . . . , a

(N+1)
n are calculated

in addition to the output hΘ(x) for every training example. Next, the error between all
the current values for a(L) and y(i) are calculated.

δ(L) = a(L) − y(i) = hΘ(x)(i) − y(i) (2.20)

These error values are then backwards propagated through the network. If the values for
Θ and a are represented by matrices, equation 2.21 applies. The operator .∗ stands for
the element-wise multiplication between matrices.

δ(l) = ((Θ(l))T × δ(l+1)). ∗ (a(l). ∗ (1− a(l))) (2.21)

10 Supervised learning algorithms

It is unnecessary to calculate the error value for a
(l)
0 , as the partial derivative of a constant

value is zero. The error value for the inputs is not calculated either because these values
are fixed. It can then be proven that the partial derivative is equal to equation 2.22.

∂J(Θ)

∂Θ
(l)
i,j

=
1

m
× a(l)

j × δ
(l+1)
(i) (2.22)

Linear regression

It is possible for a neural network to output continuous values. This is possible by simply
removing the activation function from the output layer. This does, however, require the
construction of a new cost function and backpropagation algorithm.

2.2.4 Support Vector Machines (SVM)

Support Vector Machines (SVMs) are based on the idea of logistic regression. They do,
however, perform better computationally and implement new classification options which
may be useful in some classification problems.

SVM and Logistic Regression

The cost function for SVMs is given by equation 2.23.

J(θ) = C
m∑
i=1

y(i)cost1(θTx(i)) + (1− y(i))cost0(θTx(i)) +
n∑
j=1

θ2
j (2.23)

As opposed to logarithmic terms, cost1 and cost0 are defined by equation 2.24. The
values for the slope and intersection can be chosen freely, as long as the curve approaches
the original logarithmic function (see figure 2.7). This approximation results in faster
calculations due to the need for calculating a linear term instead of a logarithmic term.

The parameters C and
n∑
j=1

θ2
j will be explained in section 2.4

cost1 =

{
− 4

11
x+ 4

11
, if θTX < 1

0, otherwise.

cost0 =

{
4
11
x+ 4

11
, if θTX > −1

0, otherwise.

(2.24)

Given a proportional distribution (k = 0.5), equation 2.7 from logistic regression shows
that the output class of a training example is defined by hθ(x) = g(θTX). Given the
behaviour of the sigmoid function, this equation can be transformed into equation 2.25.

hθ(x) =

{
1, if θTX ≥ 0

0, if θTX < 0
(2.25)

Support Vector Machines implement a margin between the decision boundary and the
training examples. This generally allows for better classification. The output of a training
example is now given by equation 2.26.

hθ(x) =

{
1, if θTX ≥ 1

0, if θTX < −1
(2.26)

Performance metrics 11

Kernels

SVM implement a different type of feature vector for training the algorithm. Whereas lo-
gistic regression uses a linear combination between the input features and their respective
weights, SVM replaces the input features with specific functions (equation 2.27). One
possible kernel function is the Radial Basis Function (RBF) kernel [7].

y = 1 if θ0 + θ1f1 + · · ·+ θnfn ≥ 1 (2.27)

The RBF kernel defines f as the similarity between an input feature x(i) and a certain
landmark l(i). This is represented by equation 2.28. The value of γ has to be tuned
according to the dataset. The landmarks are simply defined as the location of the actual
input features.

f = exp(−γ‖x− l(i)‖) (2.28)

Figure 2.7: Logistic regression activated cost function function vs SVM activated cost function
for y = 1 (black) and y = 0 (blue)

2.3 Performance metrics

Different types of algorithms can be evaluated on their performance by checking a com-
bination of different parameters. These performance metrics are based on the type of
algorithm. An algorithm should always be checked based on how well it reflects its data,
and how well it predicts new values. A low value for either of these criteria will result in
bad predictions, which will be addressed in section 2.4.

2.3.1 Regression based algorithms

For regression based algorithms, this thesis uses the coefficient of determination and mean
squared error for measuring its accuracy.

12 Performance metrics

Coefficient of determination

The coefficient of determination is a value which represents the ability of a model to
predict a new example accurately [8]. The value for R2 is given by equation 2.29 [9].

R2 = 1− RSS

TSS
= 1−

∑
m

ytrue − ypred∑
m

ytrue − ȳ
(2.29)

This formula normally outputs a value between 0.0 and 1.0. It is possible, however, that
exceptionally bad models output a negative value [10].

Mean Squared Error

The Mean Squared Error (MSE) is given by equation 2.30. It is a value which represents
the deviation of the predicted samples with respect to their real values. A higher deviation
results in a higher value for the MSE due to the squared term. The Mean Absolute Error
(MAE) is also included in the performance metrics for the used algorithms. It is, however,
not used to calculate its performance. The MAE is given by equation 2.31.

MSE =
1

m

∑
m

(ytrue − ypred)2 (2.30)

MAE =
1

m

∑
m

| ytrue − ypred | (2.31)

2.3.2 Classification based algorithms

Classification based algorithms can be evaluated based on how many examples are pre-
dicted correctly. This thesis proposes the use of the F1-score and the sum of correctly
classified examples to evaluate a classification model.

F1-score

Given a multiclass classification problem with three classes, table 2.4 represents the confu-
sion matrix. The confusion matrix describes the performance of an algorithm by measur-
ing how many examples are (in)correctly classified. For multiclass classification problems,
samples can either be a True Positive (TP), False Positive (FP), False Negative (FN) or
True Negative (TN). A wrongly identified example can either be a FP, FN depending on
which class is used as reference.

Table 2.4: Confusion matrix

Predicted Class

Real Class

0 1 2
0 TP FP/FN FP/FN
1 FP/FN TP FP/FN
2 FP/FN FP/FN TP

The F1 score is calculated by implementing equation 2.32. Precision is a metric which
explains the ratio between true positive examples with respect to the total positive pre-
dicted examples. Recall explains the ratio between true positive examples with respect to

The problem of under- and overfitting 13

the total number of examples in the actual class. The F1-score is a combination of both
precision and recall.

F1 = 2× precision× recall

precision + recall
(2.32)

precision =
TP

TP + FP
(2.33)

recall =
TP

TP + FN
(2.34)

For a certain class x, the amount of true positives is the value of the diagonal position
(x, x). The amount of false positives and false negatives can be calculated by taking the
sum of the column and row of x respectively, with the exception of the amount of true
positives.

Ratio of Correctly Classified Examples (RCCE)

The algorithm’s accuracy can be measured by simply implementing equation 2.35. This
equation outputs the ratio of correctly classified training examples.

RCCE =
1

m

∑
m

ytrue == ypred (2.35)

2.4 The problem of under- and overfitting

The performance metrics discussed in section 2.3 give a good view of how well an algorithm
performs on its training data. However, it does not necessarily evaluate how well the
algorithm would perform on new samples. For example, a dataset which is solely used for
training might accurately predict similar training examples, but might provide a random
result for new samples. To account for this issue, these performance metrics are evaluated
on a different data set.

2.4.1 Dividing the data set

Every data set is subdivided into three smaller data sets (percentages depend on the data
set):

• Training set (60%);

• Testing set (20%);

• Cross-validation set (20%).

The training set is solely used for training the algorithm and is not used for calculating
the performance metrics from section 2.3. During training, the most optimal model is
found by calculating the performance metrics using the cross-validation set. This will
be explained more in detail in section 2.5. When an optimal model is found, the final
performance result will be calculated using the testing set.

14 Finding the optimal model

2.4.2 Bias-variance trade-off

It is possible that after training, the model seems to perform poorly on the testing set, but
very well on the training set. In this case the model is most likely overfitting or suffering
from high variance. There are three main ways of solving high variance:

• Increase the amount of training examples;

• Decrease the amount of features;

• Increase the regularization parameter.

Regularization can be added to a cost function to decrease the importance of the features

with respect to the cost. For linear and logistic regression, the parameter λ
n∑
j=1

θ2
j can

be added to the cost function. An increasing value of λ will lower the importance of
the selected features, and thus reduces the chance of overfitting the model. For Support

Vector Machines, the parameter
n∑
j=1

θ2
j is added to the cost function as well as a parameter

C as multiplication term for the first term. The parameter C is effectively the inverse
of parameter λ, as increasing its value will increase the importance of the selected features.

For neural networks, a similar implementation can be used for preventing high variance.
When testing different models of the neural network during this thesis, however, a differ-
ent implementation of regularization is used. A technique called dropout removes some
nodes and connections from a deep neural network at random during training, stopping
nodes from co-adapting too much. This technique seems to perform better than other,
more standard regularization techniques [11].

Figure 2.8: High bias (underfitting), good fit and high variance (overfitting) [3]

When an algorithm performs poorly both on the training and test set, the model may be
suffering from high bias. This is solved by inverting the solutions provided above. It is
important to find a balance between high bias and high variance.

2.5 Finding the optimal model

The choice of regularization parameter λ depends on the data set. Most often though,
more parameters have to be chosen to optimize the model. Recall equation 2.28, which
represents the RBF kernel. This kernel implements a parameter γ which directly influences
the cost function. A good balance between λ and γ has to be chosen to make sure that
the model does not under- or overfit. The values for these so-called hyperparameters can
be found by performing a grid search.

Project background 15

Grid search

When performing a grid search, an interval of values for the hyperparameters is chosen.
For example, the grid search performed in figure 2.9 uses an interval of [0, 1000] for C
and [0, 1] for γ. The chosen step width for each interval is 0.025×maxvalue for a total of
1600 values. For every possible combination of these values, an algorithm is trained for
a set number of iterations and is evaluated based on its performance. In figure 2.9, the
F1-score is used as evaluation metric on the z-axis. This performance evaluation is based
on the cross-validation set instead of the testing set. It is important to use a different
data set, as using the testing set would introduce a certain unwanted dependency between
the testing set and the model.

Figure 2.9: Grid search example for SVM with RBF kernel

2.6 Project background

The final goal of this thesis is to produce and implement one or more machine learning
algorithms to predict certain surgical decisions. To achieve this goal, data from 344 pa-
tients (of which 320 have been selected as valid) has been received in two separate Excel
files. One file contains clinical measurements with general information about the patient
and consists of 40 features per patient. The other file contains cephalometrical data based
on a 3D image from the patient using a Cone-Beam CT scan and consists of 80 features.
A patient’s data is declared invalid when either the cephalometrical data is not provided,
or one of the two files misses crucial information.

The clinical measurements include information that has been measured by the surgeons.
Apart from general information (eg. gender, age) and the measurements, the surgeon’s
decision is included per patient. Table 2.5 shows the different output types which were
included in the file. Outputs followed by (C) are discrete values which require a classifica-
tion based algorithm. Likewise, outputs followed by (R) are analogue values which require
a regression based algorithm. For each of these values it is possible that the patient does
not need to undergo that kind of operation. In that case, the output value is either zero
or ’no’.

16 Project background

Each surgery type operates a certain body part. Le Fort I operates only on the max-
illa. BSSO operates only on the mandible. Bimax is a combination of an operation on
the maxilla and mandible. After this surgery is performed, it is up to the surgeons and
the patient to decide whether they would like to operate on the chin. The data contains
a relatively low amount of chin operations, as this operation has a long recovery time for
the patient.

Table 2.5: Surgical decision output per type. (C = classification, R = regression)

Surgery type Maxilla Mandible Chin

Le Fort I (C) Advancement (R) Advancement / Setback (C) Advancement (R)
Le Fort I & Chin (C) 1 / 3 pieces (C) Intrusion / Extrusion (R)

BSSO (C) Anterior (R)
BSSO & Chin (C) Posterior (R)

Bimax (C) Midline Rotation (R)
Bimax & Chin (C)

Chapter 3
Method

This chapter will discuss all necessary steps which have been performed in order to con-
struct and implement the chosen algorithms. It will first discuss how data is obtained
and transformed into usable, numerical data. It will then discuss the different types of
algorithms used during the research including their architectures. Lastly, it will discuss
the project structure of the final Python script.

3.1 Importing data

The first goal of this thesis has been to import the data from the patient into arrays
readable by MATLAB and Python. The directory structure is shown in figure 3.1. Gen-
eral information of all patients is contained within clinical measurements.xlsx. The
cephalometrical data is given per patient in the ceph tracing directory and is sorted
by name (eg. Peeters Danilo.xlsx). It is necessary for the script to construct a ma-
trix containing all patient features per patient, as well as a matrix containing all output
decisions per patient.

Script

data

ceph tracing

patient one.xlsx

patient two.xlsx

· · ·

clinical measurements.xlsx

bin

script data

algorithm models & cached data

orthoplanner.py

dataparser.py

LearningModule.py

databasehandler.py

Figure 3.1: Directory tree of the Python project

18 Algorithm Types and Experimentation

Figure 3.2: Flowchart for importing patient data from Excel files

Figure 3.2 shows a flowchart representing the function responsible for importing data.
First, the data from clinical measurements.xlsx is stored into a matrix and is scanned
for patient names. The patient names are stored in a vector through which an iteration
process starts. Secondly, every name in the vector is transformed to fit the relative direc-
tory of the Excel file containing cephalometrical data. If the Excel file is not found, the
same name is checked for common human entry errors such as leading or trailing spaces,
swapping first and last name etc. If the Excel file is found, its contents are scanned to make
sure every feature is present. If the Excel file is not present or lacks important information,
the patient’s data is discarded. Finally, the data from clinical measurements.xlsx and
the data from the cephalometrical tracing files are concatenated to construct one input
feature matrix. The output decisions are stored in a separate matrix.

The feature matrix is constructed by transforming the Excel file data into usable, numer-
ical data. This is done by checking certain keywords in each cell and by transforming the
data accordingly. For example, if one of the Excel file cells contains the value "intrusion
2mm", it is transformed to the numerical value -2. Discrete values were given a value of
either 0 or 1 for binary values, ’-1, 0, 1’ for ’setback, nothing, advancement’, ’0,
1, 2’ for ’no, one piece, multiple pieces’ and custom chosen classes for surgery
decisions.

3.2 Algorithm Types and Experimentation

3.2.1 Experimentation in MATLAB

In the second stage of the research, several algorithms have been experimented with in
MATLAB. MATLAB is chosen because it is also the language used in the machine learning
course and due to its fast prototyping abilities [2]. Different approaches have been taken
to find the most optimal algorithm and learning structure. For the first three algorithms,
the best model is chosen based primarily on F1-score, and secondarily based on RCCE.

Algorithm Types and Experimentation 19

3.2.2 Types of tested algorithms

Classification (surgery type)

The first algorithm prototype classifies patients per surgery type. An SVM with both
linear and RBF kernel are used and optimized using grid search.

Classification (surgery type) based on gender

The second algorithm tries to find a relation by dividing the original dataset based on
gender. Again, an SVM with both linear and RBF kernel are used.

Classification (divided surgery types)

The third algorithm groups and divides the output data. Operations including and ex-
cluding the chin are grouped, resulting in only three output classes instead of six. For
each of these classes, an SVM with RBF kernel is trained and optimized.

The following structures have been experimented with when it was clear that the pre-
vious algorithms did not accurately reflect the surgeon’s decision-making pattern. The
surgery decision is now based on the algorithm’s output for maxilla, mandible and chin
adjustments.

Regression (Maxilla and Chin combined)

The first regression algorithm is based on Support Vector Regression (SVR) with RBF
kernel. The chosen features were determined in consultation with the external supervisor.
The output layer consists of six nodes, one for every necessary output value.

Regression (Maxilla and Chin combined) based on malocclusion category

The second regression algorithm first divides the data set into class 2 or 3 malocclusion
patients. Class 2 patients are defined as having a positive overjet and overbite, whereas
class 3 patients have a negative overjet and overbite. The regression is performed using a
neural network with four hidden layers, including 120 nodes per layer. The output layer
consists of six nodes, one for every necessary output value.

Regression (Maxilla and Chin combined) based on 20 best features

The third regression algorithm uses all the patients and choses the 20 best features based
on the correlation between input and output values [12]. The used algorithm is also a
neural network with four hidden layers, including 20 nodes per layer. The output layer
consists of six nodes, one for every necessary output value.

Regression (One algorithm per output feature) based on 20 best features

The final regression algorithms uses all the patients and choses the 20 best features per
output type based on the correlation between input and output values [12]. The regressors
for chin predictions also take the predicted values of the maxilla into account. This results
in six neural networks with each four hidden layers, including 20 nodes per layer. The
output layer consists of one node.

20 Python Implementation

Regression (Maxilla Advancement) based on 20 best features and allowed error
margin

Due to the importance of the maxilla advancement, a different approach has been taken to
improve the performance. Instead of using the MSE as cost function, a self-implemented
cost function has been developed to allow for some deviation. The pseudo-code for this
cost function is given in listing 3.1.

Listing 3.1: Pseudo code for MSE with error margin

i f y pred >= y true − 1 and y pred <= y true + 1 :
return 0

else :
return MSE(y true , y pred)

Classification (discrete maxilla & mandible values) based on 20 best features

The final classification algorithms for the two discrete output values use an SVM with
linear kernel. The input features consist of the 20 best features per output based on the
correlation between input and output values [12]. In addition to all patient features, the
mandible classification algorithm also adds the output values from the maxilla classifiers
and regressors to its input. Each discrete output value has one responsible SVM.

3.2.3 Optimal model selection

For the final algorithms, the most optimal kernel and hyperparameters are chosen auto-
matically by performing a grid search based on the relevant performance metrics for that
type of algorithm. For classification based algorithms, grid search finds the best combi-
nation of kernel and hyperparameters primarily based on the F1-score and secondarily on
the highest RCCE. For regression based algorithms, the hyperparameters are primarily
based on the coefficient of determination and secondarily on the lowest MSE.

3.3 Python Implementation

The final stage consists of implementing the algorithms discussed above into a user-
friendly script. Python is chosen as programming language due to its versatility and easy
implementation server-side. Due to a Bachelor’s Thesis developing a front-end interface,
an implementation without a Graphical User Interface (GUI) is chosen. The command-
line script is called by the web interface and the output is stored in a database (see section
3.3.2).

3.3.1 Usage

Listing 3.2 shows the script’s output when supplying -h or --help as arguments. The
default and required argument for the script is -e EAD which evaluates a patient using the
already trained algorithms. The parameter EAD is a patient-specific identification string.
To prevent compatibility or library issues, the script should be run using the provided
virtual environment. This is easily done by calling orthoplanner.py using the python

script within /venv/Scripts/.

Python Implementation 21

The algorithm can be retrained by calling the script with argument -r. This will gather
data from the database and import them into usable arrays. It is possible to also use the
local data in the /data directory by supplying the extra argument --USE LOCAL DATA.
Whenever any of these functions are called, the script automatically saves these arrays
into a file with an easily readable data format (.npy). When rerun using extra argument
--USE CACHED DATA, the script will automatically load these saved files instead. This
allows the user to bypass the Excel file or database importing stage and save time when
adjusting the algorithm’s parameters.

3.3.2 Project structure

The project’s directory structure is shown in figure 3.1. This section will briefly explain
the task of every script file.

orthoplanner.py

This is the file that should be called from the virtual environment. This script parses the
provided arguments and acts accordingly.

dataparser.py

Dataparser either searches for Excel files, or queries the database to import the data into
usable arrays. When reading a string value, the data is transformed into numerical data
(eg. "intrusion 2mm" -> -2). Data is sanitized by removing invalid patient examples
and is ultimately divided into a feature matrix and decision matrix.

LearningModule.py

LearningModule implements all the final versions of the algorithms. It makes use of the
’sklearn’ and ’keras’ libraries to implement the SVM and deep neural networks respec-
tively. When retrained, all algorithm models are saved in /bin/script data using .h5 for
sklearn models or .pkl for keras models as data format. This allows the user to evaluate
the patient relatively quickly.

databasehandler.py

Databasehandler secures a connection between the application and a MySQL database
containing patient data and algorithm predictions. For evaluation, several SELECT state-
ments are issued to retrieve both clinical measurements and cephalometrical data. When
inserting predictions into the database, a check is first performed to see if the patient
already has a prediction. In the current implementation, any previous predictions are
overwritten. It is also possible to gather all patient information for retraining the algo-
rithms.

22 Python Implementation

Listing 3.2: Script output when calling with arguments -h or –help

C:\ Users \Danilo \Desktop\MASTERPROEF\CONF\venv64\ S c r i p t s \python . exe
C: / Users / Danilo /Desktop/MASTERPROEF/CONF/ Scr ipt−Python/ bin / orthop lanner . py
−help

Using TensorFlow backend .
usage : or thop lanner . py −e EAD [−v]

Using SVM and Deep Learning to f a c i l i t a t e or thognath i c surgery planning − A
Master ’ s Thes i s p r o j e c t by Danilo Peete r s . In cooperat i on with CoSenS and
Un ive r s i ty Hosp i t a l s Leuven .

op t i on a l arguments :
−h , −−help show t h i s help message and exit
−e PATIENT EAD eva luate us ing the cur rent algorithm ’ s parameters .

Required argument : Pat ient EAD s t r i n g (eg . 123456V789)
−r r e t r a i n the a lgor i thm us ing data from the database
−v , −−verbose i n c r e a s e output v e r b o s i t y
−−USE CACHED DATA reuse cached data when r e t r a i n i n g the a lgor i thm
−−USE LOCAL DATA use the data found in . / data to r e t r a i n the a lgor i thms

(NOT RECOMMENDED)

Chapter 4
Results

This chapter will discuss the performance of the previously discussed algorithms. Due to
the wide range of the algorithms used, only results from the latest iterations are given and
discussed. These algorithms proved to be an improvement on their previous iterations
which was either due to better performance measures or due to changing requirements.

4.1 Regression based algorithms

For every analogue output value a neural network has been implemented using the 20 best
input features. For each network, the amount of layers and neurons are computationally
defined by training and evaluating each network based on the coefficient of determination.
Table 4.1 shows the performance metrics for each neural network by varying the amount
of neurons between 1 and 25. The output for one such test is shown in listing 4.1. Each
neural network has a total of 6 layers (N=4) and uses a linear rectifier (Rectified Linear
Unit (ReLU)) as activation function for the hidden nodes. Results may vary when redoing
these tests due to the randomization of the initial value of Θ for neural networks.

Table 4.1: Performance metrics for constant amount of layers (N=4)

Maxilla Maxilla Maxilla Maxilla Maxilla Chin Chin
Advancement Advancement (margin) Anterior Posterior Midline Rotation Advancement Intrusion/Extrusion

neurons 6 6 14 4 1 9 1
R2
train 0.606 0.580 0.745 0.168 -0.006 0.524 -0.050
R2
test 0.425 0.438 0.499 0.100 -0.066 0.045 -0.050

MSE 5.055 4.009 4.381 2.897 0.658 4.987 0.065
MAE 1.635 1.615 1.501 1.197 0.241 1.408 0.068

For maxilla advancement, figure 4.1 shows the amount of testing examples within a certain
range of deviation. Table 4.2 shows these amounts for deviation ranges within 1 and 2
millimeters. These values are averaged over five trained models and have been gathered
from a testing set consisting of 61 patients.

Table 4.2: Mean values for percentage of testing examples with deviation ranges

Deviation Percentage of testing examples

±1 mm 37.37%
±2 mm 65.57%

24 Classification based algorithms

Figure 4.1: Percentage of testing examples within a certain range of deviation

Listing 4.1: Test output for determining amount of nodes for maxilla advancement regression

Best : 0 .425258 us ing { ’ neurons ’ : 6}
Train : −0.435154 (0 . 033008) // Test : −0.451080 (0 . 141512) with : { ’ neurons ’ : 1}
Train : −0.236605 (0 . 377447) // Test : −0.307745 (0 . 382349) with : { ’ neurons ’ : 2}
Train : 0 .481554 (0 . 090270) // Test : 0 .344272 (0 . 135833) with : { ’ neurons ’ : 3}
Train : 0 .147526 (0 . 474924) // Test : −0.024030 (0 . 407038) with : { ’ neurons ’ : 4}
Train : 0 .521925 (0 . 082398) // Test : 0 .346980 (0 . 137241) with : { ’ neurons ’ : 5}
Train : 0 .606069 (0 . 043646) // Test : 0 .425258 (0 . 107502) with : { ’ neurons ’ : 6}
. . .
Train : 0 .875921 (0 . 014413) // Test : 0 .289328 (0 . 141174) with : { ’ neurons ’ : 19}
Train : 0 .852235 (0 . 055685) // Test : 0 .251638 (0 . 246964) with : { ’ neurons ’ : 20}
Train : 0 .876141 (0 . 028955) // Test : 0 .331270 (0 . 167496) with : { ’ neurons ’ : 21}
Train : 0 .857931 (0 . 052627) // Test : 0 .338754 (0 . 063567) with : { ’ neurons ’ : 22}
Train : 0 .874847 (0 . 023300) // Test : 0 .376806 (0 . 141168) with : { ’ neurons ’ : 23}
Train : 0 .880406 (0 . 031549) // Test : 0 .338291 (0 . 085950) with : { ’ neurons ’ : 24}
Train : 0 .901908 (0 . 029407) // Test : 0 .322130 (0 . 266266) with : { ’ neurons ’ : 25}

4.2 Classification based algorithms

The classification based algorithms are constructed for parameters Maxilla one/more

pieces and Mandible Advancement/Setback. Table 4.3 shows the kernel and hyperpa-
rameters which have been found by grid search (example output, see listing 4.2). These
results are based on a cross-validation set with an amount of 20% of the training set
examples. Given that the training contains 80% of all data samples, the cross-validation
set globally consists of 16% of all samples. Table 4.4 and table 4.5 show the performance
measures for the Maxilla one/more pieces and Mandible advancement/setback SVM
respectively.

Script output 25

Table 4.3: Hyperparameters for both SVMs

Maxilla one/more pieces Mandible advancement/setback

Kernel Linear RBF
C 1.000 2.184
γ - 1.207×10−3

Table 4.4: Performance measures for one/more maxilla pieces SVM

Class Precision Recall F1-score RCCE # Testing examples

Nothing 0.78 1.00 0.88 28
One piece 0.96 0.80 0.87 30

More pieces 1.00 0.50 0.67 6

average / total 0.88 0.86 0.85 0.86 64

Table 4.5: Performance measures for mandible advancement / setback SVM

Class Precision Recall F1-score RCCE # Testing examples

Nothing - - - 6
Setback 0.68 0.93 0.79 14

Advancement 0.89 0.91 0.90 44

average / total 0.76 0.83 0.79 0.83 64

Listing 4.2: Grid search for determining best hyperparameters and kernel based on F1-score

0 .774 (+/−0.056) for { ’ kerne l ’ : ’ l i n e a r ’ , ’C ’ : 1 .0}
0 .778 (+/−0.055) for { ’ kerne l ’ : ’ l i n e a r ’ , ’C ’ : 1 .5918367346938775}
0 .778 (+/−0.055) for { ’ kerne l ’ : ’ l i n e a r ’ , ’C ’ : 2 .183673469387755}
0 .778 (+/−0.055) for { ’ kerne l ’ : ’ l i n e a r ’ , ’C ’ : 2 .7755102040816326}
0 .774 (+/−0.066) for { ’ kerne l ’ : ’ l i n e a r ’ , ’C ’ : 3 .36734693877551}
. . .
0 .762 (+/−0.076) for { ’ kerne l ’ : ’ l i n e a r ’ , ’C ’ : 28.816326530612244}
0 .762 (+/−0.076) for { ’ kerne l ’ : ’ l i n e a r ’ , ’C ’ : 29.408163265306122}
0 .762 (+/−0.076) for { ’ kerne l ’ : ’ l i n e a r ’ , ’C ’ : 30 .0}
0 .786 (+/−0.070) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 . 001 , ’C ’ : 1 .0}
0 .786 (+/−0.070) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 .0010689655172413793 , ’C ’ : 1 .0}
0 .790 (+/−0.061) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 .0011379310344827587 , ’C ’ : 1 .0}
0 .795 (+/−0.061) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 .001206896551724138 , ’C ’ : 1 .0}
. . .
0 .778 (+/−0.069) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 .0028620689655172414 , ’C ’ : 1 .0}
0 .778 (+/−0.069) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 .0029310344827586207 , ’C ’ : 1 .0}
0 .778 (+/−0.069) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 . 003 , ’C ’ : 1 .0}
0 .794 (+/−0.057) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 . 001 , ’C ’ : 1 .5918367346938775}
0 .794 (+/−0.057) for { ’ kerne l ’ : ’ rbf ’ , ’gamma ’ : 0 .0010689655172413793 ,
’C ’ : 1 .5918367346938775}
. . .

4.3 Script output

4.3.1 Evaluating a patient

Patient evaluation is performed by calling the script with argument -e EAD. Listing 4.3
shows the script’s output when evaluating a patient. The data is exported to the database
in numeric values.

26 Script output

Listing 4.3: Evaluation output for a patient

C:\ Users \Danilo \Desktop\MASTERPROEF\CONF\venv64\ S c r i p t s \python . exe
C: / Users / Danilo /Desktop/MASTERPROEF/CONF/ Scr ipt−Python/bin/ orthop lanner . py −e 60360414
Using TensorFlow backend .
========================STEP 1 : IMPORTING DATA========================
Querying database . . .
. . . done !

======================STEP 2 : EVALUATING PATIENT======================
Evaluat ing pa t i en t . . .
. . . done !

========================STEP 3 : EXPORTING DATA========================
Maxi l la Advancement : 1.8724944591522217mm
Maxi l la P i ece s : More p i e c e s
Maxi l la Anter io r : Extrus ion 2.328683376312256mm
Maxi l la P o s t e r i o r : Extrus ion 0.9665279984474182mm
Maxi l la Midl ine Rotation : Rotate l e f t 0.04467182233929634mm
Mandible Advancement/ Setback : Advancement
Chin Advancement : Advancement 0.4156898558139801mm
Chin I n t r u s i o n / Extrus ion : I n t r u s i o n 0.03682597726583481mm

Exporting data to database . . .
We a l ready pred i c t ed some data for pat i en t 60360414. Overwrit ing prev ious r e s u l t . . .
Data exported s u c c e s s f u l l y
Goodbye

4.3.2 Retraining the algorithms

Due to the length of the script’s output for retraining, this section has been moved to
appendix A. This non-verbose output shows a summary of the results for each algorithm
including the performed gridsearches.

Chapter 5
Discussion

This chapter will discuss the results from chapter 4 for both types of algorithms. It will
primarily focus on the regression based algorithms as they are the most difficult to predict.
Secondly, it will briefly discuss the results of both SVM implementations for the discrete
value predictions.

5.1 Regression based algorithms

5.1.1 Poorly performing algorithms

Table 4.1 generally shows poor results for every regression algorithm in terms of R2-values.
More specifically, Maxilla Posterior, Maxilla Midline Rotation, Chin Advancement

and Chin Intrusion/Extrusion seem to be predicting random values. After multiple
tests this is believed to be caused by the reasons below.

Relative low amount of data

A total of 320 valid samples are used as dataset, of which 80% are used to train both
classification and regression algorithms (including cross-validation set). From these 320
patients, only a fraction undergo certain surgeries and provide relevant data. For example,
only 51 patients (of all patients, including invalid examples) underwent chin surgery where
their chin received an advancement. The algorithm for predicting the value for chin
intrusion / extrusion only consists of six patients who underwent this type of surgery.

Statistical inconsistencies and non-exact data

Due to the nature of surgery, one patient might receive a different surgery based on
several factors. These factors include surgeon experience, patient wishes and geographical
location. This results in statistical inconsistencies which has diminishing results on the
algorithm’s performance.

Human error

The clinical measurements are based on surgeon’s hand-made measurements and were
afterwards recollected into one Excel file. This process may produce typographical errors.

28 Classification based algorithms

5.1.2 Moderately performing algorithms

The results for Maxilla Advancement with(out) margin and Maxilla Anterior seem
to have a higher correlation with the training and test data than the examples discussed
above. These values, however, are still relatively low. This is most likely also caused
by the issues discussed above. As said before, the model’s correlation factor is based on
how well the model represents the training & test sets. Given that multiple surgeries are
possible per patient, it might have been more interesting to use a different performance
metric as the coefficient of determination does not provide enough information.

The model has acceptable scores concerning the deviation in millimeters. Due to sur-
gical limitations it has been decided that a deviation of 1mm in either direction was
allowed. Currently, table 4.2 suggests that 37% of all patients fall within this category.
Figure 4.1 also shows a rapidly increasing ratio of training examples with an increasing
deviation.

5.2 Classification based algorithms

As shown in tables 4.4 and 4.5, both SVM implementations show promising results regard-
ing RCCE and F1-score. It is to be expected that these models perform better than the
regression models as classifying examples allows greater error ranges (eg. both predicted
values 0.6 and 0.8 are classified as the same class for k = 0.5). The one/more pieces SVM
reports a RCCE value of 0.86 with average F1-score of 0.85. These values are acceptable,
but could be improved upon. Most patients only need their maxilla to be cut into one
piece instead of more pieces.

The mandible advancement classifier reports no scores for nothing as there were too
few training examples to produce a meaningful model. It generally provides a good pre-
diction for the advancement or setback of the mandible. This is most likely due to its
location-based dependence on the maxilla.

Chapter 6
Conclusion & Future research

6.1 Conclusion

This thesis proposes two promising types of machine learning algorithms to facilitate or-
thognathic surgery planning. Using clinical measurements and cephalometrical data of
patients, multiple supervised learning algorithms have been constructed to predict surgery
decisions.

For a total of seven analog output parameters, several neural networks with 4 hidden
layers have been constructed for each of the output parameter separately. The 20 inputs
of these neural networks consist of the best correlated input features including previ-
ously predicted values. Although some models fail to find a good correlation, others show
promising results with regard to the allowed deviation. It would be beneficial for these
models to gather additional data to accurately reflect the complex decision-making.

Two discrete output parameters have been predicted using two separate SVM models.
The inputs for these models also consist of the 20 best correlated input features, whereas
the kernel type and hyperparameters are determined computationally by performing grid
search. Both models have a correct classification rate of over 83%.

6.2 Future research

Even though the classification based algorithms shows promising results, it should be
noted that the regression based models still require work in order to more accurately
reflect the surgeon’s decision. On top of solving the issues mentioned in 5.1.1, a different
method is proposed that may improve the accuracy of these models.

Classifying regression parameters

Due to the relative high amount of allowed deviation and low value for the regression
parameters, it could be beneficial to create custom classes. The model instead predicts
which class the patient belongs to instead of calculating an analogue value. Table 6.1
shows an example which could be used to classify maxilla advancement parameters.

30 Future research

Table 6.1: Classifying values for maxilla advancement

Class range Class number

no advancement 0
[0, 2[1
[2, 4[2
[4, 6[3

[6,+∞[4

Appendix A
Script output for retraining

Listing A.1: Retraining output

C:\ Users \Danilo \Desktop\MASTERPROEF\CONF\venv64\ S c r i p t s \python . exe
C: / Users / Danilo /Desktop/MASTERPROEF/CONF/ Scr ipt−Python/bin/ orthop lanner . py −r
Using TensorFlow backend .
========================STEP 1 : IMPORTING DATA========================
Okay ! We are re import ing a l l the data . . .
Querying database . . .
. . . done !

=====================STEP 2 : TRAINING ALGORITHMS======================
−−−−−−−−−−−−−−−−−−Train ing Maxi l la Regres s ion (1/4)−−−−−−−−−−−−−−−−−−−

61/61 [==============================] − 0 s 0us/ step

61/61 [==============================] − 0 s 0us/ step

61/61 [==============================] − 0 s 0us/ step

61/61 [==============================] − 0 s 16 us/ step
−−−−−−−−−−−−−−−−Train ing Maxi l la C l a s s i f i c a t i o n (2/4)−−−−−−−−−−−−−−−−−
Tuning hyper−parameters f o r f1

Best parameters set found on development set :

{ ’ k e rne l ’ : ’ l i n e a r ’ , ’C ’ : 1 .0}

−−−−−−−−−−−−−−−−Train ing Mandible C l a s s i f i c a t i o n (3/4)−−−−−−−−−−−−−−−−
Tuning hyper−parameters f o r f1

C:\ Users \Danilo \Desktop\MASTERPROEF\CONF\venv64\ l i b \ s i t e−packages \ s k l e a r n \m o d e l s e l e c t i o n \
s p l i t . py : 6 0 5 : Warning : The l e a s t populated class in y has only 2 members , which i s too

few . The minimum number o f members in any class cannot be l e s s than n s p l i t s =3.
\% (min groups , s e l f . n s p l i t s)) , Warning)
Best parameters set found on development set :

{ ’ k e rne l ’ : ’ r b f ’ , ’C ’ : 2 .183673469387755 , ’gamma ’ : 0.001206896551724138}

−−−−−−−−−−−−−−−−−−−−Train ing Chin Regres s ion (4/4)−−−−−−−−−−−−−−−−−−−−

61/61 [==============================] − 0 s 801 us/ step

61/61 [==============================] − 0 s 965 us/ step
=======================STEP 3 : REPORTING STAGE========================
−−−−−−−−−−−−−−−−−−−−−−−−Maxi l la C l a s s i f i c a t i o n −−−−−−−−−−−−−−−−−−−−−−−−
Model accuracy : 85.9375%
−−−−−−−−−−−−−−−−−−−−−−−−−−Maxi l la Regress ion−−−−−−−−−−−−−−−−−−−−−−−−−−
Maxi l la Advancement
Model parameters : l o s s : 3 .925313949584961 . mean abso lu te e r ro r : 1 .6489484310150146 .
mean squared error : 4 .328970432281494 .
Maxi l la Anter io r
Model parameters : l o s s : 5 .531023979187012 . mean abso lu te e r ro r : 1 .7098286151885986 .
mean squared error : 5 .531023979187012 .
Maxi l la P o s t e r i o r
Model parameters : l o s s : 2 .532546261591051 e−07. mean abso lu te e r ro r : 0 .0005029244930483401.
mean squared error : 2 .532546261591051 e−07.
Maxi l la Midl ine Rotation

32

Model parameters : l o s s : 0 .25399526953697205. mean abso lu te e r ro r : 0 .14487725496292114 .
mean squared error : 0 .25399526953697205.
−−−−−−−−−−−−−−−−−−−−−−−Mandible C l a s s i f i c a t i o n −−−−−−−−−−−−−−−−−−−−−−−−
Model accuracy : 82.8125%
−−−−−−−−−−−−−−−−−−−−−−−−−−−Chin Regress ion−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Chin Advancement
Model parameters : l o s s : 3 .7077255249023438 . mean abso lu te e r ro r : 1 .0736597776412964 .
mean squared error : 3 .7077255249023438 .
Chin I n t r u s i o n / Extrus ion
Model parameters : l o s s : 0 .2004764974117279 . mean abso lu te e r ro r : 0 .0962613970041275 .
mean squared error : 0 .2004764974117279 .
Goodbye

Bibliography

[1] G. R. Swennen, 3D Virtual Treatment Planning of Orthognathic Surgery. Springer
Berlin, 2016.

[2] A. Ng, “Machine learning,” https://www.coursera.org/learn/machine-learning/
home/welcome, [Online; accessed September 2017].

[3] A. Bhande, “What is underfitting and overfitting in machine learn-
ing and how to deal with it.” https://medium.com/greyatom/
what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76,
March, [Online, accessed 11 May 2018].

[4] K. Takada, “Artificial intelligence expert systems with neural network machine
learning may assist decision-making for extractions in orthodontic treatment
planning,” Journal of Evidence Based Dental Practice, vol. 16, no. 3, pp. 190 –
192, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1532338216300951

[5] T. M. Mitchell, Machine Learning. WCB McGraw-Hill, 1997.

[6] K. Phil, MATLAB Deep Learning. Berkeley, California: Apress Media LLC, 2017.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[8] E. B. Britannica Academic, “Coefficient of determination,” academic-eb-com.
kuleuven.ezproxy.kuleuven.be/levels/collegiate/article/coefficient-of-determination/
605386, December 2013, [Online; accessed 10 May 2018].

[9] sci-kit learn developers, “sklearn.metrics - file:regression.py,” https://github.com/
scikit-learn/scikit-learn/blob/a24c8b46/sklearn/metrics/regression.py#L444, [On-
line, accessed 11 May 2018].

[10] ——, “sklearn.metrics.r2 score,” http://scikit-learn.org/stable/modules/generated/
sklearn.metrics.r2 score.html, [Online, accessed 11 May 2018].

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” 2014.

[12] sci-kit learn developers, “sklearn.feature selection.f regression,” http://scikit-learn.
org/stable/modules/generated/sklearn.feature selection.f regression.html, [Online,
accessed 16 May 2018].

https://www.coursera.org/learn/machine-learning/home/welcome
https://www.coursera.org/learn/machine-learning/home/welcome
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
http://www.sciencedirect.com/science/article/pii/S1532338216300951
http://www.sciencedirect.com/science/article/pii/S1532338216300951
http://www.deeplearningbook.org
academic-eb-com.kuleuven.ezproxy.kuleuven.be/levels/collegiate/article/coefficient-of-determination/605386
academic-eb-com.kuleuven.ezproxy.kuleuven.be/levels/collegiate/article/coefficient-of-determination/605386
academic-eb-com.kuleuven.ezproxy.kuleuven.be/levels/collegiate/article/coefficient-of-determination/605386
https://github.com/scikit-learn/scikit-learn/blob/a24c8b46/sklearn/metrics/regression.py#L444
https://github.com/scikit-learn/scikit-learn/blob/a24c8b46/sklearn/metrics/regression.py#L444
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Using SVM and Deep Learning to facilitate orthognathic surgery planning

Richting: master in de industriële wetenschappen: elektronica-ICT
Jaar: 2018

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Peeters, Danilo

Datum: 4/06/2018

