FPGA-based Active Pointing Correction of Optical Instruments on Small Satellites

CUBESPEC

• 6U CubeSat mission concept

Tom Mladenov

Mini-satellite standard

Master of Electronics and ICT Engineering Technology

CubeSats

20

Figure 5. Star

movement on

(Smith et al.)

detector with active

correction enabled

- Bandwidth: 0 45 Hz (+3 dB)

-20

-10

0

X Position [arcsec]

10

First eigenfrequency above 100 Hz

ADCS Disturbance Rejection OPEN-LOOP CLOSED-LOOP positior 9 Centroid 6 Centroid setpoint System response 400 600 1000 Frame

Error X: -1.012 arcsec

Error Y: -0.154 arcsec

C. Target star and control setpoint

Results

D. Control error in arcseconds

A. Control error in pixels

B. Loop status

- ADCS disturbance of 100 arcsec (22 pix p-p) and f = 0.05 Hz introduced via translating piezo (8)
- Loop samplerate: 30 Hz
- Resulting error: within -1.8 and +1.8 arcseconds for 82% of the time, meeting the requirement
- **Loop Disturbance Rejection** Attenuation -25 -30 Frequency [Hz] 10⁰ 10⁻¹
 - Disturbances with lower frequencies experience a higher attenuation
 - Steady state errors are eliminated since DC attenuation is infinite

- 2. Collimator and lens
- 3. Fine Steering Mirror (FSM)
- Fine Guidance Sensor (FGS)
- Piezo amplifier
- **Digital-to-analog converters**
- 7. Zynq-7000 FPGA
- 8. Translating piezo
- 9. E-861 LPS24 Controller

Left: Control-loop interface Right: Test-setup on the optical bench **Top:** CUBESPEC pointing platform (Raskin et al.)

Problem Statement

Attitude Determination

Conclusion

- Universal testbed for active pointing correction on small satellites
- Live monitoring and control parameter adjustment
- Measurement of step/frequency response
- Analysis of control loop disturbance rejection
- With the current control loop parameters: CUBESPEC pointing requirement is met if main frequency component in ADCS drift is less than 0.05 Hz

G. Raskin et al., "CUBESPEC: Low-cost astronomical spectroscopy from a nano-satellite," SPIE, 2018.

M. W. Smith et al., "The ExoplanetSat Mission to Detect Transiting Exoplanets with a CubeSat Space Telescope," Proc. 25th Annu. Small Satell. Conf., pp. 1–9, 2011.

Supervisors / Cosupervisors:

Prof. dr. ir. Claesen Luc (UHasselt)

Mr. Vandoren Bram (KU Leuven Institute of Astronomy)

