
Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Design of a fully balanced ASIC coprocessor implementing complete
addition formulas on Weierstrass elliptic curves

2017•2018

PROMOTOR :

De heer Jo VLIEGEN

Prof. dr. ir. Nele MENTENS

PROMOTOR :

Prof. Batina LEJLA

Niels Pirotte
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Design of a fully balanced ASIC coprocessor implementing complete
addition formulas on Weierstrass elliptic curves

2017•2018

PROMOTOR :

De heer Jo VLIEGEN

Prof. dr. ir. Nele MENTENS

PROMOTOR :

Prof. Batina LEJLA

Niels Pirotte
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

PREFACE

With this thesis, I finally conclude my journey as an engineer in training and before

cutting to the chase, I would like to take this opportunity to thank everybody

involved in the process of writing this text. Infinitely important, was the support

of my family, who motivated me not only during this quest, but long before. To

my dear friends, thank you for your significant part in this achievement and in my

life, because without your positive influence and sometimes distractions, none of

this was possible. Also, I want to thank my fellow students, with whom I shared

the joy and challenge of the process of learning. Of course, my gratitude goes to

all mentors, teachers and professors I had the pleasure of working with during this

Bachelor’s and Master’s program. They did an excellent job of providing my fellow

students and me with the necessary knowledge and skills to reach our professional

goals. Last but not least, special thanks goes to my supervisors: Nele Mentens, Jo

Vliegen and Lejla Batina. Who guided and counseled me into the right direction.

Who always made time for my questions and who substantially elevated the quality

of this work.

I also was incredibly thankful to receive a topic within the field of cryptography,

because of my shared interest in IT, security and mathematics. For me, this setting

presented the perfect opportunity to combine all my newly acquired skills into one

challenging project and I am very delighted about the things I learned during the

previous year. Therefore, I hope you enjoy reading my findings as much as I enjoyed

writing them down.

Hasselt, 05.06.2018

Niels Pirotte

I

II

CONTENTS

1. Introduction . 1

1.1 Contribution . 2

1.2 Related Work . 2

1.3 Collaboration . 3

1.4 Organization . 3

2. Preliminaries . 5

2.1 Cryptography . 5

2.1.1 Public Key Cryptography . 6

2.2 Elliptic Curve Cryptography (ECC) 8

2.2.1 Field Arithmetic . 9

2.2.2 Point Addition & Point Doubling 11

2.2.3 Point Multiplication . 11

2.2.4 ECC Applications . 12

3. Design . 15

3.1 Design Parameters of the MMM . 15

3.2 Montgomery Modular ALU . 18

3.2.1 Full-Word MMALU . 18

3.2.2 Scalable MMALU . 21

3.3 Point Addition . 24

3.4 Point Multiplication . 25

4. Results . 27

5. Conclusion . 29

APPENDIX A. Mathematical Background . 35

APPENDIX B. Register Lifetime of Algorithm 7 37

APPENDIX C. Open Source VHDL . 41

APPENDIX D. Magma Validation Script . 45

III

IV

LIST OF TABLES

3.1 Influence of the boundaries of the MMM design parameters on register

sizes . 17

3.2 Necessary recourses of the MMALU, with corresponding upper bounds

for R > 16p . 18

3.3 Bounds of the inputs and outputs of the MMALU 22

4.1 Results generated using Design Compiler 2016 with the NANGATE45

library without randomization of operations in the Montgomery ladder 28

4.2 Results generated using Design Compiler 2016 with the NANGATE45

library with randomization of operations in the Montgomery ladder . 28

V

VI

LIST OF FIGURES

2.1 General model for studying the security of a channel 5

2.2 Situation of ECC in the domain of cryptography 6

2.3 DHKE as originally proposed by Whitfield Diffie and Martin Hellman

in [1] . 7

2.4 Example of an elliptic curve (y2 = x3 + 1) 8

2.5 Abstraction levels in the design of an ECC coprocessor 9

2.6 The ECDH protocol . 14

3.1 Interface of the MMALU functional block 19

3.2 Architecture of MMALU when cmd = 0 20

3.3 Architecture of MMALU when cmd = 1 21

3.4 Architecture of the scaled MMALU when cmd = 0 23

3.5 Architecture of the scaled MMALU when cmd = 1 24

3.6 Architecture of the point addition module 26

4.1 Comparison in silicon area between the full-word MMALU and the

scalable MMALU with 1-bit word size 28

VII

VIII

LIST OF ABBREVIATIONS AND SYMBOLS

AMont Montgomery representation of field element A

Fp Finite field with p elements

(G, ◦) Group with corresponding group operation ◦
GF (p) Galois field with p elements

mP Point multiplication on an Elliptic Curve

O Unity element for Elliptic Curve groups

P + Q Point addition of two points of an Elliptic Curve

R Montgomery parameter

R The set of real numbers

Z∗
p Multiplicative group with p− 1 elements

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

CDHP Computational Diffie-Hellman Problem

COSIC Computer Security and Industrial Cryptography group

CSA Carry Save Adder

DHKE Diffie-Hellman Key Exchange

DPA Differential Power analysis

DSA Digital Signature Algorithm

DSG Digital Security Group

DSS Digital Signature Standard

EC Elliptic Curve

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman scheme

ECDLP Elliptic Curve Discrete Logarithm Problem

ES&S Embedded Systems & Security group

FPGA Field-programmable gate array

FSM Finite State Machine

GE Gate Equivalents

LSB Least Significant Bit

MM Montgomery Multiplication

MMM Montgomery Modular Multiplication algorithm

MALU Modular ALU

MMALU Montgomery Multiplier ALU

MSB Most Significant Bit

MWR2MM Multiple Word Radix-2 Montgomery Multiplication

NIST National Institute of Standards and Technology

PKC Public Key Cryptography

RCA Ripple Carry Adder

RSA Rivest-Shamir-Adleman

SCA Side-channel analysis

SPA Simple Power analysis

IX

TLS Transport Layer Security

VHDL (Very High Speed Integrated Circuit) Hardware Description Lan-

guage

X

ABSTRACT

This thesis discusses the first design of an ASIC coprocessor for Elliptic Curve Cryp-

tography (ECC) using the complete addition law of Renes et al. The main reason

for using the complete addition law is the reduced vulnerability to side-channel anal-

ysis (SCA) attacks, since point addition and point doubling can be performed with

the same addition formulas and all inputs are valid, so there is no need for condi-

tional statements handling special cases such as the point at infinity. The proposed

hardware architecture is optimized for area efficiency, targeting applications such as

smart cards and RFID tags. A bottom-up design approach is used, minimizing the

total implementation area by optimizations in each abstraction layer. The design

implements a Montgomery Multiplier ALU (MMALU) with built-in adder function-

ality and is developed in both a full-word version and a scalable version. The two

approaches are compared in size and speed. Additionally, an exploration is done on

the design parameters of the MMALU and the scheduling of the modular operations

in order to minimize the size of the register file. For point multiplication, a Mont-

gomery ladder is implemented with the option of randomizing the execution order of

the point operations as a countermeasure against SCA attacks. The post-synthesis

implementation results are generated using the open source NanGate 45nm library.

XI

XII

ABSTRACT

Deze masterthesis bespreekt een eerste implementatie van een ASIC coprocessor

voor Elliptische Kromme Cryptografie (ECC), welke gebruikmaakt van de complete

formules voor puntoptelling van Renes et al. Het belangrijkste voordeel van deze

formules is de verhoogde resistentie tegen nevenkanaal aanvallen, omdat er geen

onderscheid moet worden gemaakt tussen een puntoptelling en puntverdubbeling.

Dit is niet mogelijk met de traditionele aanpak, waar bijvoorbeeld een optelling met

het punt op oneindig apart moet worden afgehandeld. De voorgestelde architectuur

is geoptimaliseerd naar oppervlakte en richt zich op applicaties zoals RFID tags

en smartcards. Een bottom-up design methode is gebruikt, waarbij de oppervlakte

van elke abstractielaag is geminimaliseerd. Het ontwerp implementeert een Mont-

gomery Multiplier ALU (MMALU) met ingebouwde opteller functionaliteit. Er is

zowel een full-word als een schaalbare versie van deze MMALU ontwikkeld en beide

methodes worden met elkaar vergeleken in grootte en snelheid. Ook is er onderzoek

gedaan naar de ontwerpparameters van de MMALU en de planning van de modulaire

bewerkingen, zodat de register file grootte kon worden geminimaliseerd. Voor punt-

vermenigvuldiging is een Montgomery ladder gëımplementeerd met de optie voor

randomisatie van de volgorde van puntbewerkingen. De post-synthese resultaten

zijn bekomen m.b.v. de open source NanGate 45nm bibliotheek.

XIII

XIV

1. INTRODUCTION

The amount of embedded systems used in everyday life grows rapidly in devices

like mobile cell phones, RFID tags and IoT devices. These applications introduce

new challenges concerning the protection of data and communication. First of all,

they have design constraints due to the very limited implementation surface and

energy budget. The second challenge is the physical accessibility of the devices

to potential malicious users, which makes the devices vulnerable to side-channel

analysis attacks (SCA) [2]. The goal of a SCA attack is not to break the cryp-

tographic algorithms mathematically, but to extract secret information from the

physical implementation of the algorithms. For example, the processed information

leaks through the power consumption, the timing behavior and the electromagnetic

radiation of the device.

When embedded devices need public-key cryptography, Elliptic Curve Cryptography

(ECC) [3] [4] is preferred, because of smaller key sizes compared to e.g. RSA [5].

This leads to a reduction of the power consumption and the computational resources.

ECC was introduced in 1985 and 1987 independently by Victor Miller [3] and Neal

Koblitz [4], respectively. They proposed the use of a group of points on an elliptic

curve (EC) to create discrete-log based cryptosystems and defined the addition law

for the resulting group structure. This addition law results in a different set of

equations for a pair of identical points and for a pair of different points in the

group. These equations are called point doubling and point addition, respectively.

The most straightforward way of implementing an EC point multiplication, i.e.

the basic operation in an EC-based cryptosystem, is through iterative conditional

branching of point doublings and point additions. This is disadvantageous for SCA

resistance, because the conditional branching reveals information on the executed

operation through side channels, as shown by Örs et al. on an Field-Programmable

Gate Array (FPGA) implementation [6].

In [7], Bernstein and Lange show the benefits of complete addition formulas, which

use the same set of equations for point doubling and point addition. This leads to

constant-time and exception-free implementations, mitigating the behavioral effects

of branching. While the authors of [7] present their formulas for specific types of

curves over binary extension fields, namely Edwards curves, Renes et al. are the

first to propose complete addition formulas for the broadly used Weierstrass curves

over prime fields. The authors of [8] also notice that in some cases, performance loss

will be unnoticeable in comparison to traditional incomplete formulas.

1

1.1 Contribution

A first ASIC implementation of the complete formulas introduced in [8] is realized.

In combination with the implementation of the Montgomery ladder algorithm for

point multiplication, this results in an inherently balanced implementation (with-

out dummy operations) of ECC over Weierstrass curves. The design is optimized

for area in the interest of lightweight embedded applications in three ways. (1) A

full-word and a scalable Montgomery multiplier (MM) with integrated adder func-

tionality are designed, eliminating the need for separate modular addition hardware.

Both approaches are compared in speed and implementation surface. (2) A careful

exploration of the design parameters and bounds of the Montgomery multiplier is

done, in order to minimize the operation count in the point addition formula. (3)

The size of the register file is minimized by optimizing the number of registers, by

reducing the number of writable registers (through the intelligent use of shift regis-

ters), and by optimizing the size of the input multiplexers (by limiting left-operand

and right-operand accessibility). Important to note is that a completely balanced

operation of the coprocessor mainly protects against simple power analysis (SPA)

attacks. Therefore, the randomization of the point operations is integrated as well

as a countermeasure against differential power analysis (DPA) attacks.

1.2 Related Work

The first work to introduce a fully balanced ECC implementation was by Batina

et al. [9]. The authors modified the non-complete addition formulas over binary

extension fields in order to make them balanced. For point multiplication, the

Montgomery ladder algorithm was used. The implementation was implemented on

an FPGA and the resistance against an SPA attack was evaluated. Examples of

elliptic curves with complete addition laws are Edwards curves [7], twisted Edwards

curves [10] and twisted Hessian curves [11]. They all operate over binary extension

fields. The work of Renes et al. [8] was the first to propose complete addition

formulas on Weierstrass curves over prime fields.

In [12], Massolino et al. present the first FPGA implementation of the formulas in [8].

The result is a competitive design emphasizing parallelization possibilities. The de-

sign executes a number of field operations simultaneously by using two up to six

processors, which increases throughput, but also silicon area. In [13], Chmielewski

et al. implement and evaluate three FPGA implementations of the formulas in [8]: a

non-protected architecture and two architectures protected by randomization coun-

termeasures for DPA protection. The design develloped in this thesis realizes the

first ASIC implementation of the complete formulas of Renes et al., optimized to-

wards minimal silicon area.

2

1.3 Collaboration

This research is conducted in cooperation with the Digital Security Group (DSG),

the Embedded Systems & Security (ES&S) group, and the Computer Security and

Industrial Cryptography (COSIC) group. DSG is a research group at Radboud Uni-

versity, specialized in a broad range of topics in computer security and therefore also

cryptography. Research topics include applied security protocols, secure hardware

implementations for smartcards and RFID, and the security and correctness of soft-

ware [14]. ES&S is a research group at KU Leuven campus Diepenbeek, working

on embedded security, with a focus on configurable hardware and security in con-

strained environments. Furthermore, COSIC is a research group of the department

of electrical engineering (ESAT) at KU Leuven, focusing on a variety of applica-

tions concerning cryptography, including the development of security architectures

for communication systems and the building of security mechanisms for embedded

systems [15].

1.4 Organization

Chapter 2 provides the necessary preliminaries and is divided into two sections.

First, Sect. 2.1 will introduce the reader into the world of cryptography. Next,

Sect. 2.2 will conclude this chapter with an introduction to ECC and an overview

of commonly used design techniques for ECC hardware architectures. In Chapter 3,

the design choices and the experimental setup are discussed. Sect. 3.1 will start with

an elaboration on the design parameters of the MMM algorithm. Next, the MM

design, i.e. for both the full-word as the scalable approach, is discussed in Sect. 3.2.

The next sections examine point addition and point multiplication, in that order.

Finally, Chapter 4 and Chapter 5 will elaborate on the results and formulate a

conclusion respectively.

3

4

2. PRELIMINARIES

2.1 Cryptography

A significant part of digital communication takes place via open networks, e.g., the

Internet. In an open communication network not only the source and destination

have access to a message, but also other users can access data sent over a chan-

nel. However, applications handling sensitive information (e.g. transactions and

commercial activities) require accessibility of data for only a select group of users.

Cryptography provides methods for protecting such applications as it studies secure

communication.

Figure 2.1 represents a generalized model to study the security of a communication

channel. Herein, a message is sent over a channel from a source to a destination,

while a malicious user tries to extract data from the message. To aid comprehen-

sion, the source and destination will be personified by Alice and Bob respectively,

throughout the remainder of this text. At the same time, the eavesdropper will be

represented by Mal.

Figure 2.1 General model for studying the security of a channel

It is assumed that Mal is always monitoring the data on the channel. Additionally, he

can use three different tools to try to extract data. (1) He is a legitimate user of the

network and can therefore communicate with any other user in the network. (2) He

can intercept messages and optionally prevent them from reaching their destination.

(3) He can impersonate any other user in the network and send or receive messages

in their name. The model described above is also known as the Dolev-Yao threat

model [16, sect. 2.3].

Securing a communication channel considering the Dolev-Yao threat is not an easy

task. Also, it is important to note that complete protection of all aspects of the

5

channel is often unnecessary and would go at the expense of software and hard-

ware resources. Therefore, it is usually preferred to only protect certain features of

the system’s communication process, which is a simpler approach than the defend-

everything approach. The required security features are called security objectives

and the most commonly required security objectives are listed below [17, sect. 10.1]:

Confidentiality shields information for all but authorized parties.

Data integrity ensures the messages are not altered during transmission.

Data-origin authentication ensures the receiver that the message is sent by the

intended sender.

Data authentication encompasses both data integrity and data-origin authenti-

cation.

Non-repudiation ensures that the sender cannot deny the creation of the message.

Security schemes, i.e. key exchange, encryption, digital signatures, etc., provide

protection to one or more security objectives mentioned above. Furthermore, all

techniques used to build these security systems can be divided in three categories:

hash functions, private key cryptography and public key cryptography. This thesis

examines ECC, which is a subdomain of public key cryptography, as shown in Figure

2.2. A further elaboration on public key cryptography is given in Sect. 2.1.1 and

Chapter 2.2 gives an introduction to ECC.

Public key Private key

Cryptography

Hash funtions

ECC RSA

Figure 2.2 Situation of ECC in the domain of cryptography

2.1.1 Public Key Cryptography

Public key cryptography (PKC) was introduced in 1976 by Whitfield Diffie and

Martin Hellman in [1]. They proposed a key exchange protocol for establishing a

secret key over an insecure channel, called Diffie-Hellman Key Exchange (DHKE).

The key feature of DHKE is the computational Diffie-Hellman problem (CDHP),

6

stating that it is hard to obtain gab in a large prime field GF (p) given the prime

p and g, ga, gb ∈ Z∗
p
(1) [16, sect. 8.3]. For this reason, gab becomes a shared secret

between Alice and Bob when both exchange ga and gb respectively, while keeping a

and b secret. In other words, Diffie and Hellman accomplished secure sharing of the

secret field element gab, without using a prearranged secret. This ability to provide

security without prearranged covert communication is the reason for existence of

PKC. The DHKE protocol is summarized in Figure 2.3 for clarification.

Figure 2.3 DHKE as originally proposed by Whitfield Diffie and Martin Hellman in [1]

What distinguishes private key cryptography from public key cryptography is the

fact that the former only uses a single key, while the latter uses a pair of keys. The

two keys for PKC are called the public key and the private key. In DHKE, a and b are

the private keys for Alice and Bob respectively. ga and gb are their corresponding

public keys. It is important to note that Mal also has access to the public keys,

but because of the CDHP he cannot reconstruct the secret gab. In general, The

public and private keys are a unique set of numerics solving a difficult mathematical

equation. As a result, when inserting the public key in the equation, only the

corresponding private key can solve the equation, and vice versa. Therefore, the

effectiveness of the PKC algorithm is dependent on the difficulty of the underlying

mathematical problem, such as the CDHP for DHKE, to protect information.

The difficulty of this mathematical problem is expressed with the level of security

of the PKC algorithm, defined as the integer n such that the best known attack on

the algorithm requires 2n steps and is expressed in bits. Proportional with n are the

number of bits of the private key, i.e. the key that remains hidden from the public,

which determines the key space. The key space is the set of all valid private keys.

In [17, chap. 6] an estimation of the level of security of different PKC schemes is

given for different key lengths. For long term security(2) a level of security of 128

bits is required. This corresponds to a key size of 3072 bits for DHKE and RSA(3).

(1)Multiplicative group of order p− 1. See Appendix A for more information on group theory.
(2)Several decades in absence of quantum computers.
(3)Dependent on the integer factorization problem.

7

2.2 Elliptic Curve Cryptography (ECC)

ECC is based on an algebraic group structure(4) on an EC. An EC is a set of points

(x, y), which are solutions of a polynomial equation defined over a Galois field of

the following form(5):

y2 = x3 + ax + b (2.1)

Prime fields, i.e. GF (p), and binary extension fields, i.e. GF (2n), are the most

commonly used finite fields in the context of ECC. In this thesis, only prime fields

are considered and therefore a and b in Eq. (2.1) are constants in GF (p) and p is a

large prime. To illustrate, Figure 2.4(a) depicts an example of an EC when plotted

over R2. However the actual points in F2
23 included in the corresponding EC group

structure are shown in Figure 2.4(b).

2 4 6 8

-25

-20

-15

-10

-5

5

10

15

20

25

y

(a) Plotted over R
0 2 4 6 8 10 12 14 16 18 20 22 24 25

x

0

2

4

6

8

10

12

14

16

18

20

22

24

25
y

(b) Plotted over F23

Figure 2.4 Example of an elliptic curve (y2 = x3 + 1)

Next, an additive Abelian group can be obtained by defining an addition law (+)

on an EC that is nonsingular, requiring 4a3 + 27b2 ̸= 0 mod p. The elements in the

group are the points on the EC, along with an additional point called the point at

infinity. The point at infinity is denoted by O and can be expressed as O = (x,∞).

The obtained Abelian group can be represented as follows:(
{(x, y) | x, y ∈ GF (p) satisfying Eq. (2.1)} ∪ O,+

)
(2.2)

The addition law can be implemented using the following operations modulo p:

addition, subtraction, multiplication and inversion. In hardware, inversions modulo

p are very costly operations. Nevertheless, they can be avoided when embedding

(4)See Appendix A for more information on group structures.
(5)This holds for short Weierstrass elliptic curves, which are isomorphic with every possible

elliptic curve.

8

the elliptic curve in the projective plane, i.e. P2(GF (p)). In order to do so, every

point (x, y) is mapped to (x : y : 1) and the point at infinity is mapped to (0 : 1 : 0).

The projections (x : y : z) and (λx : λy : λz) are equal, and thus (x
z

: y
z

: 1) equals

(x : y : z). When embedding the EC in the projective space, Eq. (2.1) becomes

y2z = x3 + axz2 + bz3. (2.3)

A series of point additions is called a point multiplication or scalar multiplication

and is defined as follows:

mP = P + P · · ·+ P︸ ︷︷ ︸
m times

, (2.4)

with P an element of an EC group structure and m a positive integer. For negative

m, Eq. (2.4) becomes m(−P). Point multiplication is used in ECC schemes, because

the security relies on the elliptic curve discrete logarithm problem (ECDLP). The

ECDLP states that it is unfeasible to calculate m, such that Q = mP , when the

points P and Q are known. Only a 256-bit private key is required for a 128 bits

level of security, which is significantly smaller than the 3072 bits necessary in the

case of DH or RSA.

A commonly used technique to design implementations of ECC schemes, is a bottom-

up design approach, wherein each abstraction level uses the operations of the ab-

straction level below. Figure 2.5 depicts the different abstraction levels for ECC

applications. The remainder of this section discusses these different abstraction lev-

els up to the point multiplication and introduces the algorithms that are used in the

design.

Figure 2.5 Abstraction levels in the design of an ECC coprocessor

2.2.1 Field Arithmetic

At the lowest level are the field arithmetic operations. When using the projective

representation of the EC, only modular addition, modular subtraction and modu-

lar multiplication suffice to implement the addition laws. Modular multiplication

9

modulo p is significantly more complex than modular addition and subtraction, due

to the required trial divisions. Therefore, a variety of techniques were designed

to speed up or scale down this operation in hardware. For modular multiplica-

tion, Montgomery multiplication is a popular technique with a small chip area, a

low power consumption and a high throughput in mind. The Montgomery Modular

Multiplication (MMM) algorithm was introduced by Peter Montgomery in 1985 [18].

In 1999, Colin Walter suggested an improvement, which made the final reduction at

the end of the original algorithm unnecessary by introducing modified input bounds

as well as a lower bound for the Montgomery parameter [19]. This improvement is

advantageous for SCA resistance since it leads to a time-constant implementation.

The Montgomery multiplication algorithm, which is used to design the full-word

MMALU, is given in Algorithm 1.

Algorithm 1: Montgomery Modular Multiplication [19]

Input : A = (an−1, . . . , a0)r, B = (bn−1, . . . , b0)r, p =
(pn−1, . . . , p0)r, R (with RR−1 = 1 mod p)

Output: S = MMM(A,B) = ABR−1 mod p

1 S := 0;
2 for i← 0 to n− 1 do
3 qi := (s0 + aib0)(−p−1

0) mod r;
4 S := (S + aiB + qip) >> r;

5 end
6 Return S;

In Algorithm 1, ai stands for the i-th digit of the word A. When A is an n-digit num-

ber expressed in base r, A can be written as A =
n−1∑
i=0

air
i. B and p are represented

in a similar way.

The power of the Montgomery algorithm is the ability to calculate a modular op-

eration by replacing costly trial divisions by a prime with divisions by a power of

2. The latter comes for free in hardware, by implementing logical shift operations.

MMM, working on the input operands A and B, computes ABR−1 mod p, where p

is the modulus and R−1 is an element of the finite field satisfying RR−1− pp′ = 1 or

identically RR−1 = 1 mod p(6)(7). R is a power of two, i.e. rn, such that R = rn > p;

R is also called the Montgomery parameter. The algorithm becomes useful when

the operands are first transformed to Montgomery representation, mapping A and

B to respectively AMont = AR mod p and BMont = BR mod p. This way, Mont-

gomery multiplication can be used to calculate modular multiplications, because

the algorithm ensures SMont = SR mod p = MMM(AMont, BMont), with S = AB

mod p. At the end of the calculations in the Montgomery domain, the result needs

to be converted back. As a consequence, Montgomery multiplication requires two

additional steps. However, this overhead becomes negligible when a large series

(6)Bézout’s identity ensures the existence of R−1 [18] [19].
(7)R−1 and p′ can be calculated using the extended Euclidean algorithm.

10

of consecutive operations is performed, which is the case in the context of scalar

multiplication.

2.2.2 Point Addition & Point Doubling

The next abstraction layer involves the point operations, namely point addition and

point doubling. As mentioned in Chapter 1, point doubling and point addition use a

different set of equations in most addition laws. When implemented in hardware or

software, this leads to different execution times and power traces for both, inevitably

leaking information on the scalar m in the computation of the point multiplication

mP . Evidently, this side-channel leakage needs to be avoided to avert weakening

the implemented ECC scheme.

For this reason, the design realized in Chapter 3 implements the complete addition

law proposed in [8], which utilizes the same addition formulas for point addition

and point doubling. More specifically, Algorithm 7 in [8] is used, since it has a

minimal number of operations and no input restrictions. This algorithm targets

short Weierstrass curves with a = 0, i.e. j-invariant 0 curves. These curves are also

used in practice, such as the secp256k1 curve used in the Bitcoin Protocol [20].

The concerned formulas of Algorithm 7 in [8], giving new point coordinates (X3 :

Y3 : Z3) dependent on input points (X1 : Y1 : Z1) and (X2 : Y2 : Z2), are

X3 =(X1Y2 + X2Y1)(Y1Y2 − 3bZ1Z2)

− 3b(Y1Z2 + Y2Z1)(X1Z2 + X2Z1),

Y3 =(Y1Y2 + 3bZ1Z2)(Y1Y2 − 3bZ1Z2)

+ 9bX1X2(X1Z2 + X2Z1),

Z3 =(Y1Z2 + Y2Z1)(Y1Y2 + 3bZ1Z2)

+ 3X1X2(X1Y2 + X2Y1).

(2.5)

2.2.3 Point Multiplication

The most straightforward algorithm for point multiplication is the double-and-add

algorithm as shown in Algorithm 2. This method uses a left-to-right bit scan of

the multiplier while performing consecutive point additions and point doublings.

To overcome the side-channel leakage caused by the conditional branches in the

algorithm, a better solution is to use the Montgomery ladder algorithm for point

multiplication. The Montgomery ladder, as presented by Peter Montgomery in [21],

is shown in Algorithm 3. In contrast with the double-and-add method, each iteration

executes the same operations, namely one point addition and one point doubling.

11

Algorithm 2: Double-and-add algorithm for point multiplication

Input : P ,
m = (mt−1,mt−2, . . . ,m0)2 with mt−1 = 1

Output: R = mP

1 R := P ;
2 for i← t− 2 to 0 do
3 R := double(R);
4 if mi = 1 then
5 R := add(R,P);
6 end

7 end
8 Return R;

Algorithm 3: Montgomery ladder [21] for point multiplication

Input : P , m = (mt−1, . . . ,m0)2 with mt−1 = 1
Output: R = mP

1 R0 := P ;
2 R1 := 2P ;
3 for i← t− 2 to 0 do
4 if mi = 1 then
5 R0 := R0 + R1;
6 R1 := 2R1;

7 else
8 R1 := R0 + R1;
9 R0 := 2R0;

10 end
11 {R1 −R0 remains invariant}
12 end
13 R := R0;
14 Return R;

When using the Montgomery ladder in Algorithm 3, first a point addition and then

a point doubling is performed, independent of mi. In [22], the authors introduce

additional randomization by using a random bit which decides on the execution order

of both operations. This order introduces an additional uncertainty independent of

the key, further complicating SCA attacks. The resulting Montgomery ladder is

shown in Algorithm 4. With a minor improvement (explained in Sect. 3.4), this

algorithm is applied in the ASIC design realized in Chapter 3.

2.2.4 ECC Applications

The uppermost abstraction layer in Figure 2.5 implements protocols that use the EC

point multiplication to construct secure communication services. To show an exam-

ple of how ECC can be used, this section sums up the ECC schemes implemented

12

Algorithm 4: Montgomery ladder for point multiplication with random order ex-
ecution [22]

Input : P , m = (mt−1, . . . ,m0)2 with mt−1 = 1, random bits rt−2, . . . , r0
Output: R = mP

1 R0 := P ;
2 R1 := 2P ;
3 for i← t− 2 to 0 do
4 if mi = 1 then
5 if ri = 0 then
6 T0 := R0 + R1 ; T1 := 2R1;
7 R0 := T0 ; R1 := T1;

8 else
9 T1 := 2R1 ; T0 := R0 + R1;

10 R0 := T0 ; R1 := T1;

11 end

12 else
13 if ri = 0 then
14 T1 := R0 + R1 ; T0 := 2R0;
15 R0 := T0 ; R1 := T1;

16 else
17 T0 := 2R0 ; T1 := R0 + R1;
18 R0 := T0 ; R1 := T1;

19 end

20 end
21 {R1 −R0 remains invariant}
22 end
23 R := R0;
24 Return R;

in OpenSSL, i.e. an open-source cryptographic library for Transport Layer Secu-

rity (TLS). ECC is most commonly used for key exchange and for creating digital

signatures. However, other usages include encryption and pseudorandom number

generators.

The first ECC based scheme implemented in OpenSSL is Elliptic Curve Diffie-

Hellman (ECDH) key exchange. ECDH is the elliptic curve variant of the DHKE

protocol and Figure 2.6 gives an overview of the functional principle. Alice and Bob

can obtain a shared secret key, namely the EC point (kl)G. Note that in ECDH,

exponentiation in F ∗
p is swapped for point multiplication in the EC group.

Next, OpenSSL includes the Elliptic Curve Digital Signature Algorithm (ECDSA).

A digital signature provides for three security objectives as discussed in Sect. 2.1,

i.e. message authentication, integrity and non-repudiation. They are used as proof

that a sender saw and/or created the signed data and were given legal binding in

the United Nations International Trade Law in July 2001. This means a digital

13

Figure 2.6 The ECDH protocol

signature has as much legal value as a written signature. The ECDSA scheme is a

variant of the digital signature algorithm (DSA) as proposed in 1991 by the National

Institute of Standards and Technology (NIST). A more thorough description of the

ECDSA can be found in the Digital Signature Standard (DSS) [23].

14

3. DESIGN

This chapter elaborates on the functionality and design choices of the ASIC imple-

mentation in a bottom-up way, following the abstraction layers in Figure 2.5. After

giving an overview of the design parameters of full-word Montgomery multipliers,

the Montgomery Modular ALU (MMALU) is discussed, which enables modular mul-

tiplication, addition and subtraction. This includes both a full-word as a scalable

implementation of the MMALU. Hereafter, the design choices for the control logic,

implementing the complete point addition formulas in Eq. (2.5), are explained. Fi-

nally, the Montgomery ladder implementation for point multiplication is discussed.

3.1 Design Parameters of the MMM

This paragraph discusses the influence of certain design parameters on the function

of Algorithm 1, inspired by the doctoral thesis of Lejla Batina [24]. Especially

important is the relation between the input bounds and the Montgomery parameter

R. This relationship influences speed and area, because it is directly linked to the

required number of iterations of the algorithm and the size of the input and output

registers. To understand the influence of these parameters, the operation of the

algorithm is explained below. For simplicity, it is assumed that all data is expressed

in binary form and therefore the base r is 2.

Working principle

The correctness of the MMM algorithm depends on two statements, both easily

verified via induction. The first statement,

0 ≤ S < p + B, (3.1)

holds during each operation of the for loop in Algorithm 1 and ensures the output

remains bounded. After n iterations, S = ABR−1 mod p with R = rn. This is

verifiable with the help of the second statement, in which Q = (qn−1, . . . , q0):

RS = AB + Qp⇒ S = ABR−1 mod p (3.2)

Divisibility by 2

In Algorithm 1, addition with qip always ensures an outcome divisible by 2 in the last

step of the for loop. In other words, the least significant bit (LSB) of the outcome

15

on line 4 is 0. This is easily validated by replacing qi with the expression on line 3

in Algorithm 1. As a result, the LSB of S becomes:

s0 + aib0 + qip0

= s0 + aib0 +
(
(s0 + aib0)(−p−1

0)
)
p0

= s0 + aib0 + (s0 + aib0)(−1)

= 0

Upper Bound on Q

Q cannot be bigger than R − 1, because Q has maximum n bits and therefore has

a maximum value of rn − 1 = R− 1.

Lower Bound on the Inputs

A design parameter with significant influence on the implementation is the bound

on the inputs; it directly determines the size of the inputs, the output and the

intermediate registers in the implementation. Let us assume that the inputs are

bounded by a multiple k of the modulus p:

A,B < kp
Eq. 3.1⇒ S < p + kp = (k + 1)p

Thus, when the inputs are smaller than k times the modulus p, the input registers

need to store ⌈logr(k)⌉ more bits than the number of bits needed to represent p.

Further, the intermediate result needs ⌈logr(k + 1)⌉ bits more than p.

Lower Bound on the Montgomery Parameter

The Montgomery parameter (R = rn) determines the number of iterations (n) to

obtain the result. It is assumed that the lower bound on the Montgomery parameter

is a multiple l of p.

Lower Bound on the Output

The relation between the Montgomery parameter and the input bound has an im-

portant effect on the output of the MMM. When assuming that both the inputs and

the Montgomery parameter are bounded by a multiple (< kp and > lp, respectively)

16

Parameter Bound # bits

Prime (p) - x

Montgomery parameter
(R = rn)

> lp n + 1

Inputs < kp x + ⌈log2(k)⌉
iterations = n ⌈log2(n)⌉
Intermediate result
(after shift)

< (k + 1)p x + ⌈log2(k + 1)⌉

Intermediate result
(before shift)

< 2(k + 1)p x + ⌈log2(k + 1)⌉+ 1

Output <
(
k2

l
+ 1

)
p x + ⌈log2

(
k2

l
+ 1

)
⌉

Table 3.1 Influence of the boundaries of the MMM design parameters on register sizes

of p, S becomes bounded by:

A,B < kp and R > lp

Eq. 3.2⇒ S =
AB

R
+

Qp

R

⇒ S <
k2p2

R
+

(R− 1)p

R

⇒ S <
k2p2

lp
+

(R− 1)p

R

⇒ S <
k2

l
p + p− p

R

⇒ S <
(k2

l
+ 1

)
p

As an example, assume that the input bounds are A,B < 2p and the Montgomery

parameter is larger than 4p. Then the output remains smaller than 2p, in accor-

dance with the original result in the paper of Walter, enabling MMM without final

subtraction [19].

Summary

Table 3.1 gives an overview of the design parameters of the MMM for a prime of x

bits. By carefully selecting the lower bound of the Montgomery parameter (lp) and

the upper bound of the inputs (kp), the number of iterations (n) and the bound on

the output and the intermediate values can be determined. These bounds determine

the register sizes in the design and are therefore important design parameters.

17

Upper limit Number of bits

Prime p k

Montgomery parameter 2(k+4)(> 16p) k + 5

Inputs 4p k + 2

iterations k + 4 ⌈log2(k + 4)⌉
Intermediate result
(after shift)

5p k + 3

Intermediate result
(before shift)

10p k + 4

Output 2p k + 1

Table 3.2 Necessary recourses of the MMALU, with corresponding upper bounds for
R > 16p

3.2 Montgomery Modular ALU

Most literature on Montgomery multipliers in hardware is focused on fast implemen-

tations of the MMM algorithm, often at the expense of area efficiency. For these

fast implementations, systolic arrays (e.g. [25]), pipelining (e.g. [26]) and high-radix

approaches (e.g. [27]) are very popular. However, this paper focuses on low silicon

area implementations. As a result, a full-word implementation of the Montgomery

multiplication algorithm without final subtraction [19], inspired by the Modular

ALU (MALU) design of Sakiyama et al. [28], was chosen.

3.2.1 Full-Word MMALU

As discussed in Sect. 3.1, the MMM has a bounded output dependent on the upper

bound of the inputs and the lower bound of the Montgomery parameter R. When

the inputs of the MMM are limited to numbers smaller than 4p, the intermediate

results of Algorithm 1 are numbers smaller than 5p (after the shift operation). If

the Montgomery parameter is chosen to be larger than 16p, the output is bounded

by 2p. Table 3.2 summarizes the previous reasoning.

The functionality of the MMALU can be selected using two control signals, cmd

and sub. This can also be seen in Figure 3.1. When cmd is set to 0, a MMM is

performed on the input operands. When operating in MMM mode, the sub control

signal selects either the MMM of the two input operands, i.e. when sub equals 0,

or otherwise the MMM of one input operand with the second input operand equal

to 1. The second feature can be used to scale down the input operand to ensure an

18

outcome smaller than or equal to p, because

A < 4p and B = 1 and R > 16p

Eq. 3.2⇒ RS = AB + Qp

⇒ RS < 4p · 1 + (R− 1)p

⇒ RS < (R + 3)p

⇒ S < p +
3p

16p

⇒ S ≤ p

Normally, the MMM of an input operand and 1 transforms the input from the

Montgomery representation back to the original domain. However, when performed

on all coordinates of a point on the EC, this operation only results in a scaling.

Remember that the complete formulas to be implemented have inputs and an output

in the projective space. Consequently, The formulas yield the same output for scalar

multiples of either of the input points, i.e. the output remains unaffected when

loading a set of inputs (X,Y, Z) or (λX, λY, λZ) for either input point. It should

also be noted that this attribute renders transformation of the input coordinates,

i.e. {X1, Y1, Z1, X2, Y2, Z2}, to their Montgomery representation and transformation

of the output coordinates back to the original domain unnecessary. This follows

directly from (X : Y : Z) = (RX : RY : RZ).

Figure 3.2 gives a conceptual view of the MMALU when cmd = 0. This is a

straightforward implementation of Algorithm 1 with two ripple carry adders (RCA).

MMALU
cmd
sub

log2p+2

A B

log2p+2

log2p+2

en

S

Figure 3.1 Interface of the MMALU functional block

Figure 3.3 shows the functionality of the MMALU when cmd = 1. In this mode,

the integrated adder functionality is selected. As a result, two field element inputs

can be added or subtracted depending on the value of sub. When sub equals 0, the

adder adds two 2p inputs to an output of maximum 4p. Additionally, subtraction

is implemented when sub equals 1. The same output range is available, due to the

addition of 2p with use of the second RCA, after subtracting with the first RCA.

Without this extra addition of 2p, the output would be larger than −2p and smaller

than 2p.

19

RCA

RCA

BA >> ai b0

S s0

 aiB

 qi p

qi p

>>
log2p+4

s0 qi
ai
b0

log2p+3

Figure 3.2 Architecture of MMALU when cmd = 0

In summary, the MMALU can perform addition and subtraction without dedicated

modular addition hardware, which ensures outputs between 0 and 4p when handling

inputs smaller than 2p. Therefore, an output of the MMALU in MMM mode, which

takes 4p inputs and returns a 2p output, can be used as input of a subsequent

addition. More generally, a series of additions, subtractions and multiplications

becomes possible, when the input bounds of each operation are respected. This

also means that a series of subsequent additions is not always possible without

intermediate scaling or MMM, which can increase the number of operations of the

respective algorithm. Nevertheless, other properties of the MMM are useful for

performing such a series of operations. For example, three outputs of Montgomery

multiplications of values smaller than 2p can be added resulting in an output smaller

than 4p. This is because an MMM with two 2p input values results in the following

output bound:

20

RCA

RCA

log2p+3

BA

S

sub

log2p+3

2psub

Figure 3.3 Architecture of MMALU when cmd = 1

A,B < 2p and R > 16p

Eq. 3.2⇒ S =
AB

R
+

Qp

R

⇒ S <
4 · p2

R
+

(R− 1)p

R

⇒ S <
4 · p2

16 · p
+

(R− 1)p

R

⇒ S <
(1

4
+ 1

)
p− p

R

⇒ S <
5

4
p

Table 3.3 specifies all functions of the MMALU. All calculations must respect these

upper bounds on the input, otherwise a correct operation of the MMALU is not

guaranteed. As a consequence of the optimizations made, not all algorithms will be

directly compatible with this design, i.e. without appending scaling operations.

3.2.2 Scalable MMALU

When using the previous full-word design, the data path size and thus the implemen-

tation surface, increases with increasing key size. In 1999, Tenca and Koç proposed

a scalable hardware architecture in [29], which can generate multi-precision results

independent of the data path precision. They proposed to split the multiplicand into

21

Functionality Input Output
add/subtract 2× 2p 1× 4p
add/subtract 3× 5

4
p 1× 4p

add 2× p 1× 2p
multiply 2× 4p 1× 2p
multiply 2× 2p 1× 5

4
p

scale 1× 4p 1× p

Table 3.3 Bounds of the inputs and outputs of the MMALU

words in order to reduce the data path size. This resulted in the algorithm called the

Multiple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM), shown

in Algorithm 5 below. To study the influence of the scalability in Algorithm 5, a

second MMALU design inspired by the MWR2MM algorithm was designed.

Algorithm 5: MWR2MM(A,B)

Input : A , B
Output: S

1 S := 0;
2 for i← 0 to n− 1 do

3 qi := (S
(0)
0 + aiB

(0)
0)(−p−1)

(0)
0 mod r;

4 (C, S(0)) := ai ×B(0) + S(0) + qi × p(0);
5 for j ← 1 to e− 1 do
6 (C, S(j)) := C + ai ×B(j) + S(j) + qi × p(j);

7 S(j−1) :=
(
S
(j)
0 , S

(j−1)
w−1...1

)
;

8 end

9 S(e−1) :=
(
C, S

(e−1)
w−1...1

)
;

10 end
11 Return S;

It is important to note that the observations made in Sect. 3.1 are still applicable.

Also, the MWR2MM algorithm can be parallelized by implementing pipelines, al-

though these pipelines, while speeding up calculations, are not preferable for designs

requiring minimal silicon space.

The main principle of Algorithm 5 is the same as in Algorithm 1, with exception

of the inner loop to enable word by word scanning of the multiplicand, comprised

of e words of w bits, i.e. e = ⌈m
w
⌉ with m the number of bits of the intermediate

result S. A subscript is used to distinguish between the different bits of a word and

a superscript to indicate different words of a number. For example, B
(j)
k represents

the k-th bit of the j-th word of a number. The carry register in the inner loop needs

to be at least two bits, to ensure containment during the entire iteration. This is a

result of the following inequality:

22

3(2w − 1) + Cmax ≤ Cmax2w + 2w − 1

⇒ Cmax ≥ 2

This inequality states that during the next iterations, the sum of three maximum

words plus the maximum carry needs to be contained in the vector of the maximum

carry concatenated with a one digit word.

The scalable MMALU is implemented with the same interface as in Figure 3.1.

However, carry save adders (CSA) are used to successfully pass on the carry to

subsequent iterations, while scanning the inner loop. A 2-bit register is used to

store the carry for the next iteration. Additionally, the adders for Montgomery

multiplication are reused for addition and subtraction as was the case for the full-

word design. For simplicity, a data path size of a single bit is chosen. The resulting

architecture is shown in Figure 3.4 for Montgomery multiplication and scaling, i.e.

when cmd = 0, and in Figure 3.5 for addition and subtraction, i.e. when cmd = 1.

CSA

B >>A >> ai bj

... S >> s0

 aibj

CSA

qipi shift

Figure 3.4 Architecture of the scaled MMALU when cmd = 0

Notice that for register B and S rotating registers were used, i.e. instead of shifting

out the LSB, it becomes the MSB during the next iteration. During the innerloop

in the MWR2MM algorithm, the rotating registers keep shifting, while register A

only shifts during the next iteration in the outerloop, i.e. when shift = 1. As a

consequence, the control logic becomes more extensive. Also, the signal qi, which

23

sub

CSA

B >>A >> aj bj

S >> s0

CSA

'1'

Figure 3.5 Architecture of the scaled MMALU when cmd = 1

needs to remain constant while iterating over the innerloop, is stored in a flip flop

and updated only on a shift pulse. Finally, it should be noted that when subtracting,

the output register S is initialized to 2p to ensure an output in the range between 0

and 4p.

3.3 Point Addition

Moving one abstraction level up in Figure 2.5, the next step is to implement the

complete point addition using Algorithm 7 in [8], given in Eq. (2.5), using the pre-

viously designed MMALU. An overview of common architectures for ECC processor

designs is given in [30]. A finite state machine (FSM) is implemented to integrate the

rules for point addition in combination with a register file to store the intermediate

results.

In [8], the authors already present an implementation algorithm for the proposed

addition law in the form of consecutive field operations. Algorithm 4 is a modified

version of this sequence of operations. These optimizations were performed with use

of the register lifetime graphs presented in Appendix B. First, the register lifetime

of the original algorithm is given. Next, the second graph rearranges the opera-

tions, taking into account the restrictions given in Table 3.3 and the optimizations

explained in the previous paragraph. This results in a minimization of the number

of registers and the size of the multiplexers.

(1)Register data of t1 is shifted into t0 (t0 ← t1).

24

Algorithm 4: Complete, projective point addition for prime order
j-invariant 0 short Weierstrass curves E/Fp : y2 = x3 + b
Require: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : Z2) on E : Y 2Z = X3+bZ3

and b3 = 3 · b
Ensure: (X3 : Y3 : Z3) = P + Q

1. t1 ← X1 ·X2 2. t1 ← Y1 · Y2
(1) 3. t2 ← Z1 · Z2

4. t3 ← X1 + Y1 5. t4 ← X2 + Y2 6. t3 ← t3 · t4
7. t4 ← t0 + t1 8. t3 ← t3 − t4 9. t4 ← Y1 + Z1

10. Y2 ← Y2 + Z2 11. Y1 ← t4 · Y2 12. Y2 ← t1 + t2
13. t4 ← Y1 − Y2 14. Y2 ← X1 + Z1 15. Z1 ← X2 + Z2

16. Z1 ← Y2 · Z1 17. Y1 ← t0 + t2 18. Y1 ← Z1 − Y1

19. X1 ← t0 + t0 20. t1 ← X1 + t0
(1) 21. Y2 ← b3 · t2

22. Z1 ← t0 + Y2 23. t1 ← t0 − Y2
(1) 24. Y1 ← b3 · Y1

25. X1 ← t4 · Y1 26. Y2 ← t3 · t1 27. X1 ← Y2 −X1

28. Y1 ← Y1 · t0 29. Y2 ← t1 · Z1 30. Y1 ← Y2 + Y1

31. t1 ← t0 · t3(1) 32. Z1 ← Z1 · t4 33. Z1 ← Z1 + t1
34. X1 ← scale(X1) 35. Y1 ← scale(Y1) 36. Z1 ← scale(Z1)

Originally, algorithm 7 in [8] presumes 14 registers, i.e. 6 input, 3 output and 5

temporary registers. The attained design utilizes only 11 registers, reusing 3 input

registers (X1, Y1 and Z1) as output registers. In addition, the algorithm ensures only

3 address bits to select the left and right operand for the MMALU and to select

the write address. This is accomplished by organizing the formulas in Algorithm 4

such that maximum 8 registers need to be accessible as left or right operand. In

order to reduce the number of writable registers, register t0 is not directly writable;

instead, when writing to t1, the value of t1 is shifted to t0. This is incorporated in

Algorithm 4, which writes to t0 and t1 alternately. Figure 3.6 gives the resulting

architecture implementing the point addition.

3.4 Point Multiplication

The next design stage is implementing point multiplication with a Montgomery

ladder as described in Algorithm 3. Important to note is that this algorithm assumes

the MSB of m is not 0, therefore cutting the key space in half and making brute force

attacks more feasible. This assumption was made to avoid addition with the point at

infinity, which was not possible while using the typical addition formulas. However,

this is not the case for their complete counterparts. Therefore, the algorithm can

be altered, restoring all possibilities in the key space. In order to do so, R0 and R1

are initialized to O and P respectively and the loop must iterate through all bits of

m, i.e. from t− 1 to 0.

It should be noted that by using the Montgomery ladder instead of the double-

and-add method, a possible speedup and reduction of resources is not feasible. The

25

LO (log2P + 2)

RO (log2P + 2)

Register file

OUTPUT MMALU (log2P + 2)

MMALU

CMD SUB

DIN

WE

Address

LO(3bits) RO(3bits) Address(3 bits)

FSM

DONE WE

LOAD
(X3:Y3:Z3)

(X1:Y1:Z1)

(X2:Y2:Z2)

3 X (log2P + 2)

DONE

OPCODE

LORO

Figure 3.6 Architecture of the point addition module

reason is that the output of a point addition is directly written in the input registers.

In other words, the output of a point addition will automatically be the input for

the next point addition without the need for additional loading. In the double-and-

add method, one input remains unmodified. Consequently, only one input should

be reloaded during the next iteration. However, the benefits of a balanced ladder

method outweigh the lost speed gain and resource reduction, in spite of the missed

opportunity.

26

4. RESULTS

All blocks in the design were implemented in VHDL and simulated with ModelSim

PE(1). The ASIC area, expressed in gate equivalents (GE), and the maximum clock

frequency are calculated by Synopsis Design Compiler 2016 using the open source

NANGATE45 library. For testing the correctness of operation, test vectors are

constructed in Magma(2) [31]. The testbench also implements the secp160k1 and

secp256k1 curves used in the Bitcoin protocol.

For the implementation without randomization in the Montgomery ladder, Table 4.1

shows the utilized silicon area in kilo gate equivalents and the maximum clock fre-

quency of the design with respect to the size of the prime. For an easy comparison in

future designs, the silicon area is given with and without the inclusion of the register

file. Also, for the secp160k1 and the secp256k1 curves, which are described in [32],

the duration of a single scalar multiplication is simulated at maximum frequency.

The results show that the size of the prime and the area of the implementation are

linearly correlated. Each increase of 32 bits for the prime, results in an increase

in implementation size of approximately 6.5 kGE. In contrast, the maximum clock

frequency decreases with an increasing prime size. This decline is slower than lin-

ear decrease. For completeness, Table 4.2 gives the results for an implementation

with the randomization of the order of the point operations. Note that the speed is

unaffected. However, the area increases due to the extra temporary registers in the

Montgomery ladder.

Finally, Figure 4.1 shows a comparison between the full-word MMALU and the scal-

able MMALU. The scalable MMALU with a data path size of 1 bit is significantly

smaller than the full-word approach and the gain in implementation surface increases

with increasing key length. However, also the duration of a single point multiplica-

tion increases. The scalable approach reaches a speed of 188.60 ms and 760.83 ms

per multiplication for the secp160k1 and the secp256k1 respectively. This is signifi-

cantly slower than the previously obtained 5.52 ms and 23.06 ms per multiplication

for the full-word MMALU.

(1)Appendix C explains how to reconstruct the test results.
(2)Appendix D contains the Magma script used for validation.

27

bits Area (kGE) Area w/ reg. file
(kGE)

max. Freq.
(MHz)

Scalar mult.
(ms)

64 17.77 10.03 333.33 -
96 26.30 14.77 250.00 -
128 34.12 18.64 166.67 -
160 42.48 23.22 166.67 5.52 (secp160k1)
192 51.02 27.96 142.86 -
224 59.12 32.45 111.11 -
256 66.51 36.06 100.00 23.06 (secp256k1)

Table 4.1 Results generated using Design Compiler 2016 with the NANGATE45 library
without randomization of operations in the Montgomery ladder

bits Area (kGE) Area w/ reg. file
(kGE)

max. Freq.
(MHz)

Scalar mult.
(ms)

64 21.58 13.84 333.33 -
96 31.91 20.38 250.00 -
128 41.51 26.03 166.67 -
160 51.08 31.81 166.67 5.52 (secp160k1)
192 61.35 38.29 142.86 -
224 71.59 44.92 111.11 -
256 81.89 51.45 100.00 23.06 (secp256k1)

Table 4.2 Results generated using Design Compiler 2016 with the NANGATE45 library
with randomization of operations in the Montgomery ladder

Figure 4.1 Comparison in silicon area between the full-word MMALU and the scalable
MMALU with 1-bit word size

28

5. CONCLUSION

This work presents the first ASIC coprocessor design implementing ECC with com-

plete formulas in GF (p). The design consists of a fully balanced implementation,

targeting protection against SPA attacks. As a first step towards DPA protection,

the randomization of the execution order of the point operations was incorporated in

the Montgomery ladder. Additionally, the design was optimized for minimal silicon

area by (1) using complete formulas for short Weierstrass curves with a = 0, i.e. j-

invariant 0 curves; (2) performing data path optimizations in the Montgomery Mod-

ular ALU with integrated adder functionality; (3) minimizing the size of the register

file by exploring the design parameters of the MMALU and intelligent scheduling

of the modular operations. Additionally, the design is compatible with both a full-

word as scalable MMALU with 1-bit data path. Scalable approaches use less silicon

area at the expense of speed. The silicon area, the maximum operating frequency

and the scalar multiplication execution time are evaluated using Synopsys Design

Compiler 2016.

Future work includes a side-channel analysis of the proposed architecture. It is ex-

pected that the design will be resistant against SPA attacks and some DPA attacks.

More countermeasures need to implemented, however, to provide a fully protected

implementation.

29

30

BIBLIOGRAPHY

[1] W. Diffie and M. Hellman, “New directions in cryptography,” Information The-

ory, IEEE Transactions on, vol. 22, no. 6, pp. 644–654, November 1976.

[2] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in

Cryptology – Proceedings of CRYPTO, ser. Lecture Notes in Computer Science,

M. Wiener, Ed., no. 1666. Springer-Verlag, 1999, pp. 388–397.

[3] V. Miller, “Uses of elliptic curves in cryptography,” in Advances in Cryptology

– Proceedings of CRYPTO, ser. Lecture Notes in Computer Science, H. C.

Williams, Ed., no. 218. Springer-Verlag, 1985, pp. 417–426.

[4] N. Koblitz, “Elliptic curve cryptosystem,” Mathematics of Computation,

vol. 48, pp. 203–209, 1987.

[5] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining dig-

ital signatures and public-key cryptosystems,” Communications of the ACM,

vol. 21, no. 2, pp. 120–126, 1978.

[6] S. B. Örs, E. Oswald, and B. Preneel, “Power-analysis attacks on an FPGA –

first experimental results,” in International Workshop on Cryptographic Hard-

ware and Embedded Systems (CHES), ser. Lecture Notes in Computer Science,

C. D. Walter, Ç. K. Koç, and C. Paar, Eds., no. 2779. Springer, 2003, pp.

35–50.

[7] D. J. Bernstein and T. Lange, “Faster addition and doubling on elliptic curves,”

in International Conference on the Theory and Application of Cryptology and

Information Security (ASIACRYPT), ser. Lecture Notes in Computer Science,

K. Kurosawa, Ed., no. 4833. Springer, 2007, pp. 29–50.

[8] J. Renes, C. Costello, and L. Batina, “Complete addition formulas for prime or-

der elliptic curves,” in 35th Annual International Conference on the Theory and

Applications of Cryptographic Techniques (EUROCRYPT), ser. Lecture Notes

in Computer Science, M. Fischlin and J.-S. Coron, Eds., no. 9665. Springer,

2016, pp. 403–428.

[9] L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede, “Balanced point

operations for side-channel protection of elliptic curve cryptography,” IEE

Proceedings-Information Security, vol. 152, no. 1, pp. 57–65, 2005.

[10] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted

Edwards curves,” in International Conference on Cryptology in Africa

(AFRICACRYPT), ser. Lecture Notes in Computer Science, S. Vaudenay, Ed.,

no. 5023. Springer, 2008, pp. 389–405.

31

[11] D. J. Bernstein, C. Chuengsatiansup, D. Kohel, and T. Lange, “Twisted hessian

curves,” in International Conference on Cryptology and Information Security

in Latin America (LATINCRYPT), ser. Lecture Notes in Computer Science,

K. Lauter and F. Rodŕıguez-Henŕıquez, Eds., no. 9230. Springer, 2015, pp.

269–294.

[12] P. M. C. Massolino, J. Renes, and L. Batina, “Implementing complete formulas

on Weierstrass curves in hardware,” in International Conference on Security,

Privacy, and Applied Cryptography Engineering (SPACE), ser. Lecture Notes in

Computer Science, C. Carlet, M. A. Hasan, and V. Saraswat, Eds., no. 10076.

Springer, 2016, pp. 89–108.

[13] L. Chmielewski, P. M. C. Massolino, J. Vliegen, L. Batina, and N. Mentens,

“Completing the complete ECC formulae with countermeasures,” Journal of

Low Power Electronics and Applications, vol. 7, no. 1, 2017.

[14] (2017) Faculty of science, digital security. [Online]. Available: http:

//www.ru.nl/ds/

[15] (2016) Research group COSIC, KU LEUVEN. [Online]. Available: https:

//www.esat.kuleuven.be/cosic/

[16] W. Mao, Modern cryptography : theory and practice, 2nd ed., ser. Hewlett-

Packard professional books. Upper Saddle River: Prentice Hall, 2004.

[17] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Students

and Practitioners. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[18] P. Montgomery, “Modular multiplication without trial division,” Mathematics

of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[19] C. Walter, “Montgomery exponentiation needs no final subtractions,” Electron-

ics Letters, vol. 35, no. 21, pp. 1831–1832, 1999.

[20] “Bitcoin,” https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1,

2017.

[21] P. L. Montgomery, “Speeding the pollard and elliptic curve methods of factor-

ization,” Mathematics of computation, vol. 48, no. 177, pp. 243–264, 1987.

[22] L. Batina, J. Hogenboom, N. Mentens, J. Moelans, and J. Vliegen, “Side-

channel evaluation of FPGA implementations of binary Edwards curves,” in

17th IEEE International Conference on Electronics, Circuits, and Systems

(ICECS). IEEE Publishing, 2010, pp. 1248–1251.

[23] NIST, “FIPS PUB 186-3 : Digital signature standard (DSS),” 2009. [Online].

Available: https://csrc.nist.gov/csrc/media/publications/fips/186/3/archive/

2009-06-25/documents/fips 186-3.pdf

32

Bibliography 33

[24] L. Batina, “Arithmetic and architectures for secure hardware implementations

of public-key cryptography,” PhD thesis, 2005.

[25] S. B. Örs, L. Batina, B. Preneel, and J. Vandewalle, “Hardware implementa-

tion of a Montgomery modular multiplier in a systolic array,” in International

Parallel and Distributed Processing Symposium. IEEE, 2003.

[26] N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede, “Efficient pipelining

for modular multiplication architectures in prime fields,” in 17th ACM Great

Lakes symposium on VLSI. ACM, 2007, pp. 534–539.

[27] F. Bernard, “Scalable hardware implementing high-radix Montgomery multipli-

cation algorithm,” Journal of Systems Architecture, vol. 53, no. 2, pp. 117–126,

2007.

[28] K. Sakiyama, L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede, “Small-

footprint ALU for public-key processors for pervasive security,” in Workshop

on RFID Security, vol. 12, 2006.

[29] A. Tenca and C. Koc, “A scalable architecture for montgomery multiplication,”

Cryptographic Hardware And Embedded Systems, vol. 1717, pp. 94–108, 1999.

[30] H. Marzouqi, M. Al-Qutayri, and K. Salah, “Review of elliptic curve cryptog-

raphy processor designs,” Microprocessors and Microsystems, vol. 39, no. 2, pp.

97–112, 2015.

[31] “Magma computational algebra system,” 2018. [Online]. Available: http:

//magma.maths.usyd.edu.au/magma/

[32] Certicom Corp., “SEC 2: Recommended elliptic curve domain parameters,”

2000. [Online]. Available: http://www.secg.org/SEC2-Ver-1.0.pdf

34 Bibliography

APPENDIX A. MATHEMATICAL BACKGROUND

A set is a collection of elements and the field of Algebra studies the underlying

relations between elements in a set. In the process of doing so, it defines structures

in sets and studies the underlying properties of these structures. When a set can be

abstracted as a certain structure, all properties of this structure are applicable to

the set. The remainder of this appendix elaborates on groups and fields.

Group

Definition. (G, ◦) is called a group, when G is a non-empty set and ◦ : G×G 7→ G

is an operation defined on the set with the following properties:

1. ∀a, b ∈ G : a ◦ b ∈ G (Closure Axiom)

2. ∀a, b, c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c) (Associativity Axiom)

3. ∃!e ∈ G : ∀a ∈ G : e ◦ a = a = a ◦ e (Identity Axiom)

4. ∀a ∈ G : ∃a−1 ∈ G : a ◦ a−1 = e = a−1 ◦ a (Inverse Axiom)

An Abelian or commutative group is a group with a fifth property:

5. ∀a, b ∈ G : a ◦ b = b ◦ a (Commutative Axiom)

In the case of Abelian groups, the operation is often denoted with +. Also, the

inverse element of an element a becomes −a and the unity element is denoted with

0.

Definition. A subgroup of a group (G, ·) is a non-empty subset H of G, such that

(H, ·) is also a group.

35

36 APPENDIX A. Mathematical Background

Examples.

(R,+) The set of real numbers under addition.

(Z,+) The set of integers under addition.

(Zn,+) The finite set of integers {0 . . . n− 1} under addition.

(Z∗
p, ·) The finite set of integers {1 . . . p− 1} under multiplication, with p prime.

Field

A field is a Abelian group F with a second operation · : F ×F 7→ F that meets the

following statements:

1. (F\{0}, ·) is an Abelian group with the identity element denoted by 1

2. ∀a, b, c ∈ F : a · (b + c) = a · b + a · c (Distributive Axiom)

Remark. A field with a finite number of elements is called a finite field or Galois

field. The Galois field of order p, i.e. with p number of elements, is denoted by Fp

or GF (p).

APPENDIX B. REGISTER LIFETIME OF

ALGORITHM 7

R
eg

is
te

r
li

fe
ti

m
e

of
A

lg
or

it
h

m
7

in
[1

3]

37

38 APPENDIX B. Register Lifetime of Algorithm 7

APPENDIX B. Register Lifetime of Algorithm 7 39

R
eg

is
te

r
li

fe
ti

m
e

of
A

lg
or

it
h

m
7

in
[1

3]
af

te
r

re
sc

h
ed

u
li

n
g

40 APPENDIX B. Register Lifetime of Algorithm 7

APPENDIX C. OPEN SOURCE VHDL

This appendix explains how to use the design VHDL code to reconstruct the results.

All VHDL code can be found in the Github repository: https://github.com/

NielsPirotte/MasterThesis_Niels_Pirotte.

The repository has the following directory structure:
MasterThesis Niels Pirotte/

magma sim/

MM design1/

MM design2/

PA design1/

PA design2/

PM design1/

PM design2/

magma sim Validation scripts for Magma to check the correct operation of the

design.

MM design1 First implementation of Montgomery Multiplication with two 4P

inputs and a 2P output. Also two 2P inputs can be added and subtracted resulting

in a 4P output.

MM design2 Implementation according to the paper of Koç: ”A scalable Archi-

tecture for Montgomery Multiplier”.

Word size equals 1.

PA design1 Implementation of Point Addition with complete formulae according

to: ”Complete addition formulas for prime order elliptic curves” p13 algorithm 8.

Remark: The implementation is working properly, but keep in mind that x2 and y2

need to be converted to the Montgomery domain. They are the only inputs that

need to be converted.

PA design2 Implementation of Point Addition with complete formulas according

to: ”Complete addition formulas for prime order elliptic curves” p12 algorithm 7.

Uses the same number of registers as design 1.

PM design1 Implementation of point multiplication using the principle of the

Montgomery Ladder.

41

42 APPENDIX C. Open Source VHDL

PM design2 Same as PM design1, but with randomization of operations.

How To

1. Customize constants.vhd

2. Load all necessary(1) VHDL files in ModelSim PE (or another HDL simulator)

3. Customize the inputs in the test bench file (tb Top Level Entity)

constants.vhd In the constants.vhd file, the number of bits of the prime (log2primeM),

the prime (primeM) and B3 = 3 ·b need to be specified, as can be seen in Program 1

below. With these parameters the elliptic curve becomes uniquely defined. Impor-

tant to note is that the B3 constant needs to be transformed into the Montgomery

domain (B3 ·R).

(1)When simulating point addition, a valid MMALU architecture needs to be loaded. Likewise,
point multiplication relies on a valid implementation of point addition.

APPENDIX C. Open Source VHDL 43

--

-- Author: Niels Pirotte

--

-- Project Name: Masterthesis Niels Pirotte

-- Package Name: constants

-- Description: Definition and settings of parameters ECC coprocessor

-- Information:

-- This implementation provides a ECC (Elliptic Curve Crypto)

-- hardware implementation for an ASIC

-- We use the complete addition formulas for prime order

-- elliptic curves as described by: Complete Addition Formulas

-- for Prime Order Elliptic Curves

-- by Joost Renes , Craig Costello , and Lejla Batina

-- The goal is an implementation optimizing the area of the ASIC

--

l ibrary ieee;

use ieee.std_logic_1164. a l l ;

-- To determine number of bits for an integer

use IEEE.math_real."ceil";

use IEEE.math_real."log2";

package constants i s

-- Parameters

--

-- Number of bits of the prime

--constant log2primeM: integer := 3;

constant log2primeM: integer := 256;

-- Therefore the inputs of the MMALU are < 2M

-- Number of bits of scanning counter for the 2M inputs

constant e: integer := integer(ceil(log2(Real(log2primeM +4))));

--constant primeM: std_logic_vector(log2primeM -1 downto 0) :=

"111"; -- 7

--For the secp256k1 curve

constant primeM: std_logic_vector(log2primeM -1 downto 0) :=

x"FFFEFFFFFC2F";

--EC (Elliptic Curve)

--defining the EC

--needs to be in Montgomery representation => 3*b*R

--i.e. R = 128 = 2 mod 7 and b = 1 => 3*2*2 = 12 mod 7 = 5 mod 7

-->It is crucial b3 is given in Montgomery coordinates !!!

--constant B3: std_logic_vector(log2primeM -1 downto 0) := "101";

constant B3: std_logic_vector(log2primeM -1 downto 0) :=

x"00015000050250";

end constants;

Program 1 constants.vhd

44 APPENDIX C. Open Source VHDL

APPENDIX D. MAGMA VALIDATION SCRIPT

//This is a magma script

// secp256k1 (http ://www.secg.org/SEC2 -Ver -1.0. pdf)

n:= 780799;

// Define prime

p := 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1;

p;

field := GF(p);

b := 7;

b3 := 3*b;

// Curve polynomial

curve_poly <x> := Polynomial(field , [b, 0, 0, 1]);

curve_poly;

// Define Elliptic Curve

E<x, y, z> := EllipticCurve(curve_poly);

E;

#(field);

#(E);

//Get a points on the elliptic curve

// Points(E);

X := E!

[5506626302227734366957871889516853432625060345377759

4175500187360389116729240 ,

32670510020758816978083085130507043184471273380659243

275938904335757337482424 ,

1];

printf "X = "; X;

cartesian := CartesianPower(E, 2);

cartesian;

// Define Addition law

add_law := map <cartesian -> E | P :->

E![

(P[1][1]*P[2][2]+P[2][1]*P[1][2])*(P[1][2]*P[2][2] -

3*b*P[1][3]*P[2][3]) -3*b*(P[1][2]*P[2][3]+P[2][2]*P[1][3])

*(P[1][1]*P[2][3]+P[2][1]*P[1][3]) ,

(P[1][2]*P[2][2]+3*b*P[1][3]*P[2][3])*(P[1][2]*P[2][2] -

3*b*P[1][3]*P[2][3])+9*b*P[1][1]*P[2][1]*

(P[1][1]*P[2][3]+P[2][1]*P[1][3]) ,

(P[1][2]*P[2][3]+P[2][2]*P[1][3])*(P[1][2]*P[2][2]

3*b*P[1][3]*P[2][3])+3*P[1][1]*P[2][1]*

(P[1][1]*P[2][2]+P[2][1]*P[1][2])

]>;

45

46 APPENDIX D. Magma Validation Script

// Point multiplication

pm := function(m, P)

Out := P;

S := [x : x in [1..m -1]];

i f not (P in E) then

return false;

end i f ;

for i in S do

In := cartesian!<P, Out >;

Out := In @ add_law;

end for ;

return Out;

end function;

printf "n = "; n;

res := pm(n, X);

printf "nX = "; res;

testres := E!

[78615513602287977103249641354618743671933021561241

40349507612323419231582126 ,

159819151740090759687997987896447471785755189569986

88755831396236203191742561 ,

952156990433714754371095526906834045346965035580346

88976019490288295699161980];

assert testres eq res;

printf "testres = "; testres;

Program 2 Magma script to validate correct operation of the design applied to the

secp256k1 curve.

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Design of a fully balanced ASIC coprocessor implementing complete addition
formulas on Weierstrass elliptic curves

Richting: master in de industriële wetenschappen: elektronica-ICT
Jaar: 2018

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Pirotte, Niels

Datum: 4/06/2018

