
Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Novel Levenberg-Marquardt based methods for application-specific
hardware enabled high-speed, high-accuracy, six degrees of
freedom camera-based pose estimation

2017•2018

PROMOTOR :

Prof. dr. ir. Luc CLAESEN

COPROMOTOR :

Prof. dr. ir. Nele MENTENS

BEGELEIDER :

De heer Wout SWINKELS

Michiel Darcis
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Novel Levenberg-Marquardt based methods for application-specific
hardware enabled high-speed, high-accuracy, six degrees of
freedom camera-based pose estimation

2017•2018

PROMOTOR :

Prof. dr. ir. Luc CLAESEN

COPROMOTOR :

Prof. dr. ir. Nele MENTENS

BEGELEIDER :

De heer Wout SWINKELS

Michiel Darcis
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Acknowledgements

My interest in cameras and images started during my Bachelor’s thesis where I
worked on an image processing application. When looking for a topic for my Mas-
ter’s thesis, I wanted to further my knowledge in the computer vision area. In this
work, I had to catch up on a lot of theory. However, this was more a blessing than
a curse. I loved diving into the books. I did not want to stop until I fully under-
stood how it worked. This brought with it the necessary frustrations, but the ex-
perience you have when something finally makes sense is so rewarding.

My sincere thanks goes to Prof. dr. ir. Luc Claesen. This thesis would not be pos-
sible without his ideas, vast knowledge and guidance. I could always walk into his
office whenever I had questions. It is also funny to think how at the start of his
career, he was the supervisor of my uncle. Now many years later, he got to have
another member of the family under his wings.

I would also like to thank ing. Wout Swinkels. Sharing an office with him was a
great experience. His advice and support were very important to this thesis. I am
also grateful for the many discussions and the laughter we had during the year.

This Master’s thesis is the cherry on the cake of my student career at the Univer-
sity of Hasselt. Looking back at the beginning, I can conclude that I have grown
a lot as a person. I would like to thank my friends Karel Bertrands en Sander De-
norme who have taken this journey with me. Finally, I want to thank my family
for always believing in me.

Michiel Darcis June 2018

i

ii

Contents

List of Tables v

List of Figures vii

Abstract ix

Abstract (Nederlands) xi

1 Introduction 13
1.1 Camera-based pose estimation applications 13
1.2 Problem statement . 15
1.3 Objectives . 16
1.4 Materials and Methods . 17
1.5 Outline . 17

1.5.1 Introduction . 17
1.5.2 Theory . 18
1.5.3 Camera pose estimation algorithm implementation 18
1.5.4 Experiments . 18
1.5.5 Conclusion . 18

2 Theory 19
2.1 Pinhole camera model . 19
2.2 Camera calibration . 24
2.3 6 degrees of freedom camera pose estimation 26
2.4 Levenberg-Marquardt optimization 28

3 Camera pose estimation algorithm implementation 33
3.1 Obtaining intrinsic parameters . 33
3.2 Axis-angle transformation . 35
3.3 Reversing lens distortion of image points 37
3.4 Computing the Jacobian and error vector 39
3.5 Determining the step . 41
3.6 The complete algorithm . 42

4 Experiments 47
4.1 The setup . 47
4.2 The procedure . 49
4.3 Results . 50

4.3.1 Movement in Y-direction . 50
4.3.2 Movement in Z-direction . 52

iii

4.3.3 Marker turned 45 degrees . 54
4.3.4 Camera turned with respect to scanner 56

4.4 Discussion . 58
4.5 Comparison to Caltech toolbox . 59
4.6 Addition of point correspondences whilst iterating 59

5 Conclusion 63
5.1 PoseLab implementation . 63
5.2 Future work . 64

Bibliography 65

Appendices 69
A: Pseudocode camera pose estimation algorithm 71

iv

List of Tables

3.1 Camera calibration results for the Samsung Galaxy S8 34

4.1 Absolute difference between Caltech toolbox and PoseLab for each
pose parameter . 59

v

vi

List of Figures

1.1 Examples of camera pose estimation applications 14
1.2 Prospective motion correction . 14
1.3 Orthognathic surgery planning . 15

2.1 The pinhole camera model . 19
2.2 Projection of a 3D world point onto the image plane 20
2.3 Relationship between camera coordinate system and world coordi-

nate system . 22
2.4 Radial distortion . 23
2.5 Tangential distortion . 24
2.6 Axis-angle representation . 27

3.1 The world coordinate system . 33
3.2 Calibration images . 34
3.3 Reprojection error . 35
3.4 Flowchart of the camera pose estimation algorithm 43

4.1 The test bench . 47
4.2 Setup to measure the displacement of a step 48
4.3 Starting positions of the different experiments 49
4.4 Pose parameters for every position for a movement in the Y-direction 51
4.5 Residuals of XYZ-coordinate for a movement in the Y-direction . . . 52
4.6 Pose parameters for every position for a movement in the Z-direction 53
4.7 Residuals of XYZ-coordinate of each image for a movement in the

Z-direction . 54
4.8 Pose parameters for every position for the marker turned 45 degrees . 55
4.9 Residuals of XYZ-coordinate of each image for the marker turned

45 degrees . 56
4.10 Pose parameters for every position for the camera turned approxi-

mately 45 degrees . 57
4.11 Residuals of XYZ-coordinate of each image for the camera turned

approximately 45 degrees . 58
4.12 Number of 2D-3D point correspondences in function of iteration

number . 60
4.13 Value of the damping factor in function of iteration number 60
4.14 Value of the cost at every iteration 61

vii

viii

Abstract

This Master’s thesis addresses the measurement problem of camera-based six degrees-
of-freedom (6-DoF) pose determination. The intention is to use this method in
applications where speed and accuracy are critical. Examples are position feed-
back for haptic man-machine interface systems for use in maxillo-facial surgery
planning, prospective motion correction and stereotactic surgery. They require
high accuracies (tens of microns), sampling rates higher than 1kHz and latencies
shorter than 1msec. The goal of this thesis is to set up a detailed experimental
model for the development of complex algorithms that enables the evaluation of
architectural design decisions.

Software-based methods for 6-DoF camera based pose estimation exist. How-
ever, due to much too low frame rates (60Hz) and much too high latencies (tens
of msecs), they are not suited for the envisioned measurements. They are also not
directly implementable in hardware. The applications will demand dedicated cam-
eras with FPGA based hardware architectures, directly interfacing with and em-
ploying all capabilities of modern image sensors.

To enable future development of 6-DoF camera based hardware architectures,
this thesis has studied pose estimation methods and worked out a Levenberg-
Marquardt optimization based prototyping environment "PoseLab" that will en-
able to analyze, subdivide, evaluate and experiment with various trade-offs (ac-
curacy, sampling frequencies, latencies, camera resolution, hardware complexity,
...).

ix

x

Abstract (Nederlands)

Deze masterproef behandelt het probleem van camera gebaseerde pose bepaling
met 6 vrijheidsgraden. Het is de bedoeling om deze methode in de toekomst te ge-
bruiken voor contactloze positiebepalingen waar de snelheid en accuraatheid een
kritieke rol spelen. Voorbeelden hiervan zijn positie terugkoppeling voor haptis-
che interface systemen in maxillo faciale chirurgie, prospectieve bewegingscorrectie
en stereotactische chirurgie. Deze vereisen een hoge accuraatheid, bemonsterings-
frequenties groter dan 1kHz en vertragingen lager dan 1msec. Het doel van deze
masterproef is het opzetten van een gedetailleerd experimenteermodel voor het on-
twikkelen van gespecialiseerde algoritmen waarbij architecturale ontwerpbeslissin-
gen kunnen geëvalueerd worden.

Software methodes om de camera pose te bepalen bestaan maar zijn dankzij hun
te lage frame rates (60Hz) en te hoge vertragingen (tientallen msec) niet geschikt.
Ze zijn ook niet meteen om te zetten naar hardware. Voor performante toepassin-
gen zullen speciale FPGA gebaseerde architecturen nodig zijn die interfacen met
de beeldsensor en de mogelijkheden van parallelle hardware ten volle benutten.

Om de ontwikkeling van camera gebaseerde hardware architecturen mogelijk te
maken, zijn in deze thesis de methodes om de pose te bepalen bestudeerd. Hieruit
is een framework "PoseLab" ontwikkeld om de pose te berekenen via de Levenberg-
Marquardt optimalisatie. Dit zal gebruikt worden voor het analyseren van ver-
schillende afwegingen (accuraatheid, bemonsteringsfrequenties, vertragingen, cam-
era resolutie, hardware complexiteit, ...).

xi

xii

Chapter 1

Introduction

1.1 Camera-based pose estimation applications
This Master’s thesis is situated in the research area of pose estimation where the
position and orientation of an object with respect to a camera needs to be deter-
mined in relation to a predefined world coordinate system. A pose corresponds to
the 3D position as well as the 3-axis orientations of an object. It is represented as
six degrees of freedom also abbreviated as 6-DoF. Camera pose estimation is used
in a wide variety of computer vision applications. It plays an important role in
augmented reality [1]. The pose of the camera is utilized to accurately display vir-
tual objects on the image in such a way that they are perceived to be part of the
real world. This is illustrated by figure 1.1a. Another important domain is that
of robotics. Autonomous navigation relies on knowing the position of the robot in
the world. A camera based system can be used for this purpose [2]. Also, know-
ing the pose of a robot arm enables the creation of intelligent grasping systems
[3]. An example can be seen in figure 1.1b. Furthermore, camera pose estimation
is employed in the creation of 3D digital models. It is possible to create models
solely based on multiple images of an object. Figure 1.1c shows a model of the
Colosseum created using only the images made by tourists.

Camera pose estimation is also starting to be used in applications that require
high speed and high accuracy. An example of such an application is the track-
ing of a patient’s head inside a magnetic resonance imaging (MRI) scanner, also
known as prospective motion correction [7]. The resolution of MRI images that
can be obtained is limited by the movement of the patient inside the scanner.
Even small movements, caused for example by the heartbeat or breathing, lower
the quality of the resulting image. Camera pose estimation is used to track the
movement of the patient in real-time to correct the imaging pulse sequence of the
scanner. A marker is placed on the patients head, as illustrated by figure 1.2a. A
camera utilizes this marker to calculate the position of the patient. This informa-
tion is used to adjust the scanner accordingly. Figure 1.2b shows the improvement
of the image quality.

Another real-time application in the medical world that needs high accuracy is a
haptic feedback system for planning orthognathic surgeries. In orthognatic surgery,
corrections are made to the position of the upper and/or lower jaw [9]. Plaster

(a) Augmented reality [4] (b) Robotics [5]

(c) 3D modeling [6]

Figure 1.1: Examples of camera pose estimation applications

(a) Marker placed on the patient’s head [8,
p. 2]

(b) Improvement of the image quality [8, p.
4]

Figure 1.2: Prospective motion correction

cast models are used to determine the correct positioning of the jaws. The sur-
geon moves the models until the optimal occlusion is achieved, as shown by fig-
ure 1.3a. The relative position of the jaws are indicated by reference lines on the
models. Having found the correct position of the models, intermediate splints are
created to be used during the surgery. Figure 1.3b illustrates the use of the splint.
Next to plaster casts, the surgeon can also use digital models. This makes the fab-
rication of the splints easier as 3D printing techniques can be used. However, the
surgeon does not perceive any haptic feedback while working with digital mod-
els. This makes it difficult to determine the optimal occlusion. A solution to this
problem is to use camera-based pose estimation to determine the position of the
jaws relative to each other. A camera is connected to one jaw, while a marker is
attached to the other. This makes it possible for the surgeon to use the plaster
cast models to get haptic feedback, whilst the pose estimation is used to move the
digital models accordingly. This way, the surgeon has real-time positioning infor-
mation of the plaster casts inside his hand. Next to the requirement of high-speed

14

pose estimation, a high accuracy is needed because a slight deviation in the splint
can cause discomfort for the patient later on [10]. In [11], a software based proof
of concept has been realized, but in order to be practically useful the accuracy,
sample rate and latency must be improved by several orders of magnitude.

(a) Determining the optimal occlusion using
plaster cast models [12]

(b) Using an intermediate splint to correctly
position the jaws [13]

Figure 1.3: Orthognathic surgery planning

1.2 Problem statement
Camera pose estimation is an extensively researched area because of its wide va-
riety of applications. However, the algorithms in use today are computationally
expensive. This makes it difficult to achieve high frame rates which are crucial
for real-time applications that demand high accuracy. Currently, the propspec-
tive motion correction application can only reach 80 frames per second [8]. Hav-
ing a higher frame rate will result in better MRI images than currently possible.
However, computational speed prohibits the realization of this goal. It is possible
to use lower resolution images to increase the frame rate. However, this will also
reduce the accuracy of the pose estimation. This is not an option for the appli-
cations where a high accuracy is equally important as speed. The computational
resources need to be enhanced to lower the time required for the processing of a
frame. A possibility is to use faster processors or graphical processing units [14].
However, their inherent latency times from camera to action as well as high power
consumption make them far from ideal.

Application-specific hardware is needed to effectively achieve higher frame rates
and enable low latencies. Advances in field programmable gate arrays (FPGA’s)
make them suitable for creating complex system-on-chip solutions. They are also
reconfigurable, which improves the development time. However, the making of
dedicated hardware designs brings its own challenges. Firstly, creating a hard-
ware solution is more difficult than building the equivalent software program. In
software, many libraries and built-in functions are available to ease the develop-
ment. It is not needed to know every detail of the program. This is different in
hardware. Here, complete knowledge of the full system is required to correctly im-
plement the digital logic. There are no libraries that make abstractions of certain
components of the algorithm. Secondly, it is much more difficult to test and debug

15

a hardware system in comparison to a software program. Software is a sequence
of execution statements. A debugger can scan the code line-by-line, showing the
states of the variables at that moment. In hardware, many things are running in
parallel. This makes it difficult to observe how the logic is behaving.

On the other side, using dedicated hardware also brings new opportunities. The
software algorithms of today are designed to calculate the camera pose in a se-
quential way. Direct hardware implementation in FPGA’s has the potential to re-
alize the algorithms exploiting the capabilities of the parallel processing directly in
dedicated hardware circuits. This is not an automatic process, but requires the in-
telligence of human engineers to be able to obtain efficient results. It requires the
understanding of the mathematics problem at hand, the algorithmic options, and
possibilities to reformulate the problem such that it is suitable for exploiting the
capabilities provided by a direct hardware implementation. Dedicated hardware
also has the advantage to be able to directly interface to the image sensor, thereby
directly exploiting the capabilities provided and possible shortcutting unnecessary
delays (such as frame buffers, communication buffers, networking overhead, frame
data copying from CPU memory to GPU memories etc...). These delays add up
to the latency of the pose estimation, thereby limiting the frequency bandwidth of
the control systems based on the pose measurements.

In order to be able to evaluate various algorithmic and architectural alternatives
as well as the potential exploitation of the intricacies of the hardware and image
sensor interfaces, a mathematical framework is needed to help the engineer trade-
off specific application requirements and possible architectural choices.

1.3 Objectives
This Master’s thesis is part of a larger project. The goal of this project is to cre-
ate a dedicated hardware solution for the haptic feedback application discussed
earlier. The objective is to improve the frame rate, as well as the accuracy. A
thousand frames per second with an accuracy of twenty micrometers at two cen-
timeters distance is the ultimate target. This Master’s thesis is an essential phase
in realizing this objective. The aim of the research done here is to gain a detailed
understanding, which is required for a hardware implementation, of the state of
the art camera pose estimation methods. More in particular, the use of the Levenberg-
Marquardt optimization algorithm is studied. In addition, a framework is realized
in Matlab that allows to experiment with the available design trade-offs. This is
absolutely necessary when evaluating hardware architectural alternatives.

The first objective of this Master’s thesis is to create a software implementation of
the Levenberg-Marquardt optimization algorithm to determine the pose of a cam-
era based on 2D-3D point correspondences. Normally, This method is applied as a
black box function provided by software libraries such as OpenCV [15]. The goal
here is to open up the black box and compute the camera pose without using calls
to external libraries. This ensures that all the calculations required to obtain the
camera pose are fully known. The choice of starting with a software implementa-
tion is made because it is much easier for debugging and experimentation.

16

The software implementation will be used as a framework to create an algorithm
that is designed to run on dedicated hardware and optimized for a specific ap-
plication. Here, the first steps will be taken to adapt the Levenberg-Marquardt
based pose estimation to take advantage of the hardware interface to the cam-
era. This leads to the second goal of this Master’s thesis, to enable Levenberg-
Marquardt to take in new 2D-3D point correspondences as the camera is reading
out the individual rows of the frame.

1.4 Materials and Methods
The evaluation framework made in this thesis has been given the name PoseLab.
For the implementation of PoseLab, MATLAB® is used. It has been chosen be-
cause camera pose estimation is a mathematical problem and uses matrices ex-
tensively. MATLAB makes it easy to work with matrices and other mathemati-
cal tools. It is a very high-level programming language, which speeds up the de-
sign process. There is also an open source camera calibration toolbox, developed
at Caltech, available for MATLAB [16]. This is used for determining the intrin-
sic parameters of the camera, a necessary step prior to camera pose estimation.
MATLAB is not the fastest software and would not be ideal for real-time software
applications. However, this does not matter for this thesis, as dedicated hardware
architectures are the target implementation platform. But before being able to do
that, it is necessary to very well model, evaluate and experiment all architectural
decisions by accurate mathematical models. MATLAB is a suitable environment
for this evaluation.

A test setup is used to verify the correctness of the implementation of the Levenberg-
Marquardt based camera pose estimation method. The test setup has been re-
alized by Aerts Thomas [17]. It uses the stepper motor of a flatbed scanner to
accurately move a 8x11 checkerboard pattern. The size of the squares is 12x12
mm. The AdaFruit Arduino Motorshield v1 drives the stepper motor [18]. A Java
application interfaces with the test bench in order to move the pattern to a de-
sired position. The camera of the Samsung Galaxy S8 is used to take the pic-
tures. It has an image sensor resolution of 12 megapixels and outputs images of
size 4032x3024. The camera operates in pro mode to enable manual focus. This
is done to ensure that the focal length is the same for every image. The shutter
speed and ISO of the camera have been set to 1/45 s and 125 respectively.

1.5 Outline

1.5.1 Introduction

An overview is given on the role of camera pose estimation in computer vision.
Two applications that require high-speed, high-accuracy solutions are discussed,
namely prospective motion correction and orthognathic surgery planning. Then,
the shortcoming of speed of the current software algorithms is discussed and how
dedicated hardware is needed to overcome this problem. Hereafter, the objective
of this Master’s thesis is explained. Finally, the materials that have been used are

17

given.

1.5.2 Theory

This chapter discusses the theory needed to understand the research that has been
done in this Master’s thesis. It starts by explaining the pinhole camera which is
used to model the projection of a point in the real world onto the image sensor
of the camera. After that, Zhang’s calibration method [19] is discussed which
determines the intrinsic parameters of the pinhole model. These are distinct for
each camera. Then, it is described how the position and orientation of the cam-
era in the world can be recovered. Finally, the Levenberg-Marquardt optimization
method is explained in detail.

1.5.3 Camera pose estimation algorithm implementation

This chapter describes the implementation of the camera pose estimation algo-
rithm. First, it is explained how the intrinsic parameters are obtained for the
camera used in this thesis. Then, the functions used inside the algorithm are ex-
plained in detail. The functions perform the following tasks: axis-angle transfor-
mation, reverse lens distortion, calculate the Jacobian, calculate the error vector
and determine the step. Finally, the flow of the camera pose estimation algorithm
is illustrated with a flowchart.

1.5.4 Experiments

A total of four experiments have been completed. First, the setup to conduct the
experiments is described. Secondly, the procedure is explained. After this, the re-
sults are given and discussed. Next, a comparison is made between PoseLab and
the Caltech toolbox. Finally, The behavior of Levenberg-Marquardt when new
point correspondences are added is examined.

1.5.5 Conclusion

In this chapter, an overview is given of the work done in this thesis. To end, the
work that needs to be done in the future is discussed.

18

Chapter 2

Theory

2.1 Pinhole camera model
The pinhole camera is a model which describes how a 3D point in the real world
is projected to a 2D point in the image [20], [21]. Figure 2.1 illustrates the setup.
In this model, the camera has an infinitesimally small hole where it takes in the
light. This point is referred to as the optical center. A light ray coming from a
distant object passes the optical center and is captured on the image plane where
the image sensor is located. The assumption is made that only one light ray from
a particular point in the world enters the camera. This process creates an image
where the object in front of the camera is upside down.

Figure 2.1: The pinhole camera model [22]

The mathematical formulation of the projection can be easily derived. Figure 2.2
shows how a 3D world point is projected onto the image plane. By putting the
image plane in front of the optical center, the image is inverted in the vertical di-
rection and brings it the right-side up. The camera coordinate system is defined
at the optical center where one axis, the z-axis in this case, is in the viewing di-
rection of the camera. This is called the optical axis. The point where the image
plane intersects the optical axis is known as the principal point. The distance be-
tween the principal point and the optical center is defined as the focal length f . A
point in the real world is described by its coordinates (Xc, Yc, Zc) expressed in the
camera coordinate system. The corresponding point on the image plane has coor-
dinates (ximage, yimage), also expressed in the camera coordinate system. Equations

19

(2.1) and (2.2) can be easily derived from similar triangle geometry.

Figure 2.2: Projection of a 3D world point onto the image plane [20, p. 372]

ximage = f
Xc

Zc
(2.1)

yimage = f
Yc
Zc

(2.2)

Note that the depth information is lost. This is because the collection of 3D points
that make up a line that intersects the optical center are projected onto the same
point in the image plane. This leads to ambiguities and implies that if the ximage
and yimage coordinates of a single image point are known, the 3D coordinate in the
world cannot be uniquely found. Only the direction of the light ray can be recov-
ered and the information of depth is lost.

However, this model simplifies a real camera too much. Extensions on this basic
model are needed to achieve decent results. The first extension corrects for the
fact that the principal point is not in the center of the image sensor as assumed
in equations (2.1) and (2.2). This is caused by imperfections during the produc-
tion process. Two new parameters cx and cy are added to take this into account.
These are the coordinates of the principle point in the image sensor coordinate
system which has the origin in the upper left corner of the image. Shifting the
(ximage, yimage) coordinate by (cx, cy) respectively, pixel coordinates (x, y) are ob-
tained. Another adjustment is needed to equations (2.1) and (2.2) to allow rect-
angular pixels in addition to square pixels. Rectangular pixels are often used in
low-end cameras. Two different focal lengths fx and fy, in pixels, are needed to
make this possible. These values are the product of the physical focal length, in
mm, and the size of the imager elements in the x or y direction, in pixels per mm.
Taking the corrections described here into account, the equations for the x and y

20

coordinate become:

x = fx
Xc

Zc
+ cx (2.3)

y = fy
Yc
Zc

+ cy (2.4)

The perspective projection described by equations (2.3) and (2.4) can be reduced
to a matrix equation. The convention for projective transformations is to make
equations more elegant by using homogeneous coordinates instead of Cartesian co-
ordinates. By using homogeneous coordinates points at infinity can be represented
by finite coordinate values. These homogeneous coordinates have an extra dimen-
sion and the property that two points are equivalent when their coordinate values
are proportional. A possible homogeneous coordinate corresponding to a specific
Cartesian coordinate can be found by simply appending a one as an extra coor-
dinate. This is called a normalized homogeneous coordinate. Using homogeneous
coordinates, the perspective projection can then be described by equation (2.5).
The Cartesian pixel coordinates, x and y, can be recovered by using the property
that two points are equivalent if one is a multiple of the other. Dividing u and v
by w, gives the normalized homogeneous coordinate [x y 1]T .

uv
w

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0



Xc

Yc
Zc
1

 (2.5)

Another possible extension to the model is to let the pixels have a parallelogram
shape. A new parameter s, the skew coefficient, is introduced and represents the
angle between the x- and y-axis of the pixel. The model is then given by equa-
tion (2.6). This equation also introduces the scaling factor τ which results from
the equivalence between homogeneous points whose coordinate values are propor-
tional.

τ

xy
1

 =

fx s cx 0
0 fy cy 0
0 0 1 0



Xc

Yc
Zc
1

 (2.6)

Up to now, the 3D points in the world are given with respect to the camera co-
ordinate system. In practice, 3D points are often given in a predefined coordi-
nate system. A point in this world coordinate system needs to be expressed in
the camera coordinate system in order to make use of equation (2.6). This can be
done by applying the appropriate translation and rotation as shown by figure 2.3.
In Cartesian coordinates, the relationship is described by equation (2.7). Here,
Cw ∈ R3×1 is the position of the optical center expressed in the world coordi-
nate system, xw ∈ R3×1 is a 3D point expressed in the world coordinate system,
R ∈ R3×3 is a rotation matrix and Xc ∈ R3×1 is the same 3D point expressed in
the camera coordinate system. For homogeneous coordinates, the matrix equation
is given by (2.8) [23]. However, (2.7) can be expanded to Xc = RXw −RCw. In
most literature, the term −RCw ∈ R3×1 is renamed to the translation vector t.

21

Figure 2.3: Relationship between camera coordinate system and world coordinate
system [23, p. 18]

The final equation to express a 3D point, defined in the world coordinate system,
in the camera coordinate system is given by (2.9).

Xc = R(Xw −Cw) (2.7)
Xc

Yc
Zc
1

 =


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1



1 0 0 −cx
0 1 0 −cy
0 0 1 −cz
0 0 0 1



Xw

Yw
Zw
1

 (2.8)


Xc

Yc
Zc
1

 =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xw

Yw
Zw
1

 (2.9)

Combining equations (2.6) and (2.9) into (2.10), a 3D point in the world can be
mapped to the 2D image point of the camera.

τ

xy
1

 =

fx s cx 0
0 fy cy 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1



Xw

Yw
Zw
1

 (2.10)

Note that the fourth column of the first matrix contains only zeros and thus will
not contribute to the result of the matrix multiplication. This means that the
fourth column of the first matrix and the fourth row of the second matrix can
be removed. This leads to the final matrix equation of the perspective projection
given by (2.11). Matrix K contains the intrinsic parameters that are specific to
the camera and is referred to as the calibration matrix. Matrix

[
R t

]
contains

22

the extrinsic parameters which represent the position and orientation of the cam-
era with respect to the world coordinate system.

τ

xy
1

 =

fx s cx
0 fy cy
0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz



Xw

Yw
Zw
1

 = K
[
R t

]
X (2.11)

As mentioned earlier, the pinhole camera has an infinitesimally small point where
it takes in the light. This way, only a small amount of light can enter the camera
which results in the need of a very long exposure time. Real cameras make use
of lenses to catch more light. In theory, a perfect lens exists which will not intro-
duce distortions. However, difficulties in manufacturing prohibits the perfect lens
from being made. Imperfect lenses introduce lens distortions in the image. The
two most important categories of lens distortions are the radial and tangential dis-
tortion.

Figure 2.4 illustrates radial distortion. It has the effect that pixels are bent more
the further away they are from the center of the image. This is the result of light
rays at the edges of the lens being bent more than light rays at the optical center.
Radial distortion can be modeled by equations (2.12) and (2.13). Here, (x, y) is
the pixel coordinate without radial distortion, r is the distance of this coordinate
to the principal point, k1−3 are the radial distortion coefficients and (xdist, ydist) is
the pixel coordinate as captured by the camera with radial distortion.

Figure 2.4: Radial distortion [20, p. 376]

xdist = x(1 + k1r
2 + k2r

4 + k3r
6) (2.12)

ydist = y(1 + k1r
2 + k2r

4 + k3r
6) (2.13)

Figure 2.5 illustrates tangential distortion. This is caused by the image plane not
being completely parallel to the lens. Imperfections in the manufacturing process
are responsible for this. One of the reasons can be the use of cheap glue. Tangen-
tial distortion can be modeled by equations (2.14) and (2.15). There are two tan-
gential distortion coefficients p1 and p2.

23

Figure 2.5: Tangential distortion [20, p. 377]

xdist = x+ [2p1y + p2(r
2 + 2x2)] (2.14)

ydist = y + [p1(r
2 + 2y2) + 2p2x] (2.15)

Combining radial and tangential distortion, there are a total of five distortion co-
efficients (k1, k2, k3, p1, p2). There are other types of distortions but these do not
have a significant effect compared to radial and tangential distortions.

2.2 Camera calibration
As stated earlier, the calibration matrix contains parameters which are specific
to each camera. Estimating these parameters for a particular camera is known
as camera calibration [24]. The most widely used method today has been pro-
posed by Zhang in 1998 [19]. This method makes use of a 2D pattern to generate
known 3D points in the world. This pattern is often a checkerboard because the
corner points are easily extracted [25]. The world coordinate system is on the pat-
tern itself. The Z-axis is defined perpendicular to the pattern. By doing this, the
3D coordinates of every point on the pattern are known. It also results in the Z-
coordinate being 0 for every point as the pattern lays in a two dimensional plane.
This will simplify equation (2.11) by eliminating the Z-coordinate as shown by
(2.16). Here, r1 and r2 are the first and second column of the 3 × 3 rotation ma-
trix respectively.

τ

xy
1

 = K
[
r1 r2 t

] Xw

Yw
1

 (2.16)

Equation (2.16) can be seen as a linear transformation of a 2D point to another
2D point. This linear transformation is a homography H which in this case is de-
scribed by K

[
r1 r2 t

]
. The next step is then to take multiple images of the

pattern at different positions and angles, and estimate the homography H be-
tween the pattern and the image. To get an estimate for H , a system of linear

24

equations needs to be solved. The mathematical details are described in [19]. The
matrix H has 8 degrees of freedom (not 9 because homogeneous coordinates are
used). Because every observed point gives 2 equations, one for x and one for y, at
least 4 points are needed to estimate the homography.

The calibration matrix K can be extracted from the homography H =
[
h1 h2 h3

]
=

K
[
r1 r2 t

]
. This is done by exploiting the fact that r1 and r2 are orthonormal

(rT1 r2 = 0 and ||r1|| = ||r2|| = 1) which leads to the following two constraints given
by equations (2.17) and (2.18).

hT1 K
−TK−1h2 = 0 (2.17)

hT1 K
−TK−1h1 = hT2 K

−TK−1h2 (2.18)

Now define a matrix B = K−TK−1 which is symmetric and positive definite.
This matrix B can be found by solving a system of linear equations V b = 0 where
b = [b11, b12, b13, b22, b23, b33]

T . Matrix V is constructed using the the fact that
hTi Bhj can be written as vTijb. Here, vij is defined as[
hi1hj1 hi1hj2 + hi2hj1 hi3hj1 + hi1hj3 hi3hj2 + hi2 hj3 hi3hj3

]
. The constraints

described earlier can then be formulated as: vT12b = 0 and vT11b − vT22b = 0. For

one image, the matrix V is described by
[

vT12

vT11 − vT22

]
. Using only one image, the

matrix V is not large enough to get a solution for b. Remember that multiple pic-
tures are taken and that for each image a homography is estimated. The matrix
V is then found by stacking the results for every image in the vertical direction.
Because b has 6 degrees of freedom, 3 different images are needed to obtain a solu-
tion.

Once b, and thus B, is found by solving the system of linear equations described
above, the calibration matrix K can be extracted by performing a Cholesky de-
composition.

chol(B) = AAT (2.19)

A = K−T (2.20)

In addition to the intrinsic parameters, this method can also recover the extrinsic
parameters for every image once K is known. They are determined using equa-
tions (2.21) to (2.24) where µ = 1/||K−1h1||.

r1 = µK−1h1 (2.21)

r2 = µK−1h2 (2.22)

r3 = r1 × r2 (2.23)

t = µK−1h3 (2.24)

However, the solution for the intrinsic and extrinsic parameters can still be refined
because the algebraic distance that is minimized has no physical meaning. This

25

can be done by finding the maximum likelihood estimate. It also makes it pos-
sible to determine the distortion coefficients. The maximum likelihood estimate
can be found by minimizing equation (2.25). This equation represents the squared
reprojection error of the m points on the pattern across all n images. Here, x̂ is
the reprojection of the jth point on the pattern, Xj, in image i. The vector xij is
holding the pixel coordinates of the jth point in image i. The vector q contains
the distortion coefficients. This non-linear minimization problem can be solved by
using the Levenberg-Marquardt optimization algorithm which will be discussed in
section 2.4.

n∑
i=1

m∑
j=1

||xij − x̂(K, q,Ri, ti,Xj)||2 (2.25)

2.3 6 degrees of freedom camera pose estimation
The pose of the camera is described by the extrinsic parameters as stated earlier.
The rotation matrix R represents the orientation of the camera with respect to
the world coordinate system. The matrix R has dimension 3× 3 and thus has nine
parameters that need to be determined. However, a rotation matrix has only three
degrees of freedom. These are the angles of rotation around the X, Y and Z axis
which are called roll (θ), pitch (φ) and yaw (γ) respectively. The rotation matrices
that describe the rotation around each of the three axes are given by equations
(2.26) to (2.28). The rotations around every axis need to be combined to get the
resulting rotation matrix. The values of the roll, pitch and yaw angles needed to
obtain the correct rotation matrix depend on the sequence in which the rotations
around the individual axes are applied. The convention is to first rotate around
the X-axis, then the Y -axis and finally the Z-axis. Equation (2.29) describes the
calculation of the rotation matrix R using roll, pitch and yaw angles in the ZY X-
sequence.

RX =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (2.26)

RY =

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

 (2.27)

RZ =

cos(γ) −sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 (2.28)

R = RZRYRX (2.29)

Because the rotation matrix only has three degrees of freedom, it is possible to
parameterize the orientation using three parameters. This way, only three param-
eters need to be determined instead of nine. The axis-angle notation [26], shown
in figure 2.6, is utilized for this purpose. It uses a 3 × 1 vector w = [wx, wy, wz]

T

26

to indicate the axis of rotation. The magnitude ‖w‖ specifies the angle of rota-
tion around w. It can be shown through a Taylor series expansion that ebwcx rep-
resents a three dimensional rotation matrix. Here, bwcx is the skew-symmetric
matrix of the vector w as given by equation (2.30). The relationship between a
vector w and its corresponding rotation matrix can be derived from the Taylor
series expansion and is described by (2.31). In the case where w = βŵ, with ŵ
being the unit vector of the rotation axis and β the angle around this axis, equa-
tion (2.31) simplifies to (2.32). This is known as the Rodrigues transformation.

Figure 2.6: Axis-angle representation [27]

bwcx =

 0 −wz wy
wz 0 −wx
−wy wx 0

 (2.30)

ebwcx = R = I +
sin(‖w‖)
‖w‖

bwcx +
1− cos(‖w‖)
‖w‖2

bwc2x (2.31)

R = I + sin(β)bŵcx + (1− cos(β))bŵc2x (2.32)

As mentioned earlier, the vector t represents the translation of the camera with
respect to the world coordinate system. It also has three degrees of freedom. Re-
call that t implicitly gives the position Cw of the camera through the relation
t = −RCw. To recover the position of the camera, equation (2.33) is used.

Cw = −R−1t (2.33)

The pose of a camera has six degrees of freedom. Three for rotation and three for
translation. Thus, a total of six parameters need to be determined. The process of
finding these is called camera pose estimation. The most accurate and widely used
methods are based on the perspective-n-point (PnP) problem. Here, it is assumed
that the intrinsic parameters and distortion coefficients of the camera are known.
Given n known 3D world points and the corresponding 2D image points, equation

27

(2.11) can be used to solve for the extrinsic parameters. At least three point cor-
respondences are needed to find a solution for the camera pose. However, having
more point correspondences will always lead to a better accuracy.

There exists a considerable amount of algorithms which can be used to solve the
PnP problem. The first set of algorithms are non-iterative. In this category, the
most important algorithms are: P3P [28], efficient PnP (EPnP) [29] and direct
least squares (DLS) [30]. The second category consists of iterative algorithms.
These require more computing time but will give more accurate results. They
minimize the total reprojection error as given by equation (2.25) but only for one
image. The Levenberg-Marquardt optimization algorithm leads to the most accu-
rate results.

2.4 Levenberg-Marquardt optimization
The Levenberg-Marquardt algorithm is a non-linear optimization method [31],
[32], [33]. It is used to find the parameters of a model so that it matches the ex-
perimental data. This is done by finding the minimum of a cost function. The
cost function represents how well the model agrees with the experimental data. A
large value for the cost function means that the data predicted by the model using
the current parameters is far off the observed data. The measure of how much the
model disagrees with the data is often taken to be the summation of the squared
error of every data point.

In the context of camera calibration and pose estimation, the error dj ∈ R2×1 of
the jth data point is defined as the difference between the 2D image point and
the reprojection of the corresponding 3D world point using the model described
by equation (2.11). Notice that each point correspondence gives rise to two error
terms. One for the x-value and one for the y-value. This is shown by equations
(2.34) and (2.35). Define a vector-valued function f(Θ) : Rp → R2m for m data
points that takes as input the p × 1 vector Θ which contains the p parameters to
be determined, and outputs the 2m × 1 error vector [d1x, d1y, ..., dmx, dmy]

T . When
estimating the pose of the camera, vector Θ contains the six parameters that de-
scribe the orientation and position as discussed in section 2.3. The resulting sum
of squared errors cost function is given by equation (2.36). The factor 1

2
is there to

simplify the derivation of the derivatives. Note that equation (2.36) is the same as
(2.25), but this time only for one image.

djx = xjx − x̂jx(K, q,R, t,Xj) (2.34)

djy = xjy − x̂jy(K, q,R, t,Xj) (2.35)

F (Θ) =
1

2
||f(Θ)||2 = 1

2
f(Θ)Tf(Θ) (2.36)

The minimum of cost function F (Θ) is found in an iterative manner. The param-
eters in Θ are set to an initial value Θ0. Then, step h1 is calculated. This vector
contains the correction for each parameter so that F (Θ0 + h1) < F (Θ0). After

28

this, Θ1 is appointed the value Θ0 + h1. Again, a step h2 is calculated so that
F (Θ1 + h2) < F (Θ1). This iterative process of taking steps towards lower values
for cost function F (Θ) is carried out until F (Θ) reaches its minimum.

To find step h, the cost function F (Θ) is approximated by a Taylor series expan-

sion. This is given by equation (2.37). The vector g =
[
∂F
∂Θ1

, ..., ∂F
∂Θp

]T
is the gra-

dient which contains the first-order partial derivatives with respect to every pa-
rameter. Matrix H is the Hessian matrix and is defined as Hi,j = ∂F

∂Θi∂Θj
with

i,j ∈ [1..p]. It contains the second-order partial derivatives. The goal is to find the
step h which minimizes the approximation. This can be done by differentiating
equation (2.37) with respect to h and set it to zero which leads to equation (2.38).

F (Θ + h) = F (Θ) + gTh+
1

2
hTHh (2.37)

Hh = −g (2.38)

The next step is to determine the gradient g and Hessian H . It can be shown
that g is equal to JTf(Θ). The 2m × p matrix J is called the Jacobian matrix.
It contains the first-order partial derivatives of all the entries in f(Θ) with respect
to each parameter in Θ. In the case of camera pose estimation, J is given by
equation (2.39). It can be proven that the Hessian H is equal to JTJ+f

′′
(Θ)Tf(Θ).

In the assumption that f(Θ) is linear, f ′′
(Θ) = 0, Hessian H can be approxi-

mated by JTJ . Substituting g and H in (2.38) leads to equation (2.40), known
as the matrix notation of the normal equations, which needs to be solved to ob-
tain step h.

J =


∂d1x
∂Θ1

· · · ∂d1x
∂Θ6

∂d1y
∂Θ1

· · · ∂d1y
∂Θ6...
...

∂dmx

∂Θ1
· · · ∂dmx

∂Θ6
∂dmy

∂Θ1
· · · ∂dmy

∂Θ6

 (2.39)

(JTJ)h = −JTf(Θ) (2.40)

Using (2.40) to calculate step h is known as the Gauss-Newton method. Leven-
berg and Marquardt made an extension to this method by introducing a damp-
ing factor λ > 0 as shown by (2.41). The influence of the damping factor will be
discussed by looking at the case where λ is very small, and when λ is very high.
When λ is small, equation (2.41) reduces to (2.40) and the Levenberg-Marquardt
method becomes the Gauss-Newton method. The advantage of Gauss-Newton is
that it converges very rapidly when close to the minimum. For large values of λ,
(2.41) reduces to λh = −JTf(Θ) or h = − 1

λ
· g. Step h is now along of the

gradient which represents the direction of the fastest reduction in the cost func-
tion. The size of the step is controlled by factor 1

λ
. The higher the value of λ,

the smaller the step. This approach of trying to reach the minimum is known as

29

the gradient descent method. It ensures a rapid decrease when the current so-
lution is far from the minimum. By controlling the value of λ at every iteration,
Levenberg-Marquardt can switch between Gauss-Newton and gradient descent to
provide rapid convergence. Damping factor λ thus controls the size and the direc-
tion of step h.

(JTJ + λI)h = −JTf(Θ) (2.41)

As stated earlier, equation (2.40) is the matrix notation of the normal equations.
In general, the normal equations (ATA)x∗ = ATb give the analytical solution to
the linear least squares problem Ax∗ ≈ b. It finds the parameters x∗ that mini-
mize the squared error defined as ‖Ax − b‖2. Comparing equation (2.40) to the
general case, it can be seen that it represents the normal equations which form
the solution for the linear least squares problem of f(Θ) + Jh ≈ 0. Similarly,
equation (2.41) represents the normal equations of the linear least squares prob-

lem
[
f(Θ)

0

]
+

[
J√
λI

]
h ≈ 0. However, normal equations are not the only solutions

to linear least squares problems. They can also be solved by orthogonal transfor-
mation. The first step is to determine the QR decomposition of the matrix A so

that QTA =

[
R1

0

]
, where Q is an orthogonal matrix and R an upper triangular

matrix. It can be shown that the solution is found by solving R1x
∗ = QT

1 b using
backward substitution [34]. If matrix A is of size m × n and m > n, then the ma-
trix Q1 contains the first n columns of Q. This method is more accurate than the
normal equations.

The damping factor λ needs to be updated at every iteration to calculate the op-
timal step h. This update is done based on the gain ratio % defined by equation
(2.42). It is the actual decrease of the cost function F with respect to the decrease
predicted by the linear model L. Recall that f(Θ) is assumed to be linear in or-
der to approximate the Hessian H as JTJ . It can be shown that the denominator
can be written out as 1

2
hT (λh − g). It can also be proven that this is always pos-

itive. A small value for % means that L(h) is a bad approximation of F (Θ + h)
and thus the damping factor λ needs to be increased to take smaller steps. For
a large value of %, λ may be decreased to increase the size of the steps because
L(h) is a good approximation. The method used to calculate the new value for
λ is as follows. First, an extra factor υ is introduced. If the gain ratio % is larger
than zero, the cost function decreases by applying step h and λ is multiplied by
max{1

3
, 1 − (2% − 1)3} while υ is set equal to two. When the gain ratio is equal

or less than zero, step h does not lead to a decrease in cost function. In this case,
λ is multiplied by υ. The factor υ itself is doubled and a new iteration is started
in an attempt to find a better step h. When multiple iterations do not find a de-
crease in cost function, λ becomes large and the steps will be small in order to
eventually seek a decrease in cost function.

% =
F (Θ)− F (Θ + h)

L(0)− L(h)
(2.42)

30

The algorithm needs to be stopped when the minimum is reached. In this point,
the gradient g of cost function F (Θ) should be equal to zero. A viable stopping
criterion is then to determine if the supremum norm ‖g‖∞ is smaller than a cho-
sen value ε1. A second way to stop the algorithm is when the step h becomes too
small or ‖h‖ < ε2(‖Θ‖ + ε2). This formulation also takes the size of the param-
eters into account. When Θ is large, the algorithm stops when h is too small rel-
ative to Θ with a factor of ε2. When Θ is small, step h is considered too small if
it is less than ε2

2. Lastly, the algorithm needs to be stopped if it reaches a certain
number of iterations in order to prevent an infinite loop.

31

32

Chapter 3

Camera pose estimation algorithm
implementation

3.1 Obtaining intrinsic parameters
Before the pose can be determined, the intrinsic parameters and distortion coeffi-
cients of the camera need to be known. The camera calibration toolbox from Cal-
tech is used for this task. It utilizes the method of Zhang [19] as discussed in 2.2.
The camera of the Galaxy S8 has been calibrated using the 8x11 checkerboard
pattern of the test bench. This pattern contains 70 corners with known world co-
ordinates. The origin of the world coordinate system is placed in the upper left
corner as shown by figure 3.1. The X-axis is along vertical direction, while the Y -
axis is along the horizontal direction. To obtain a right-handed coordinate system,
the Z-axis must point towards the camera.+

Figure 3.1: The world coordinate system

33

A total of 25 images are used to calibrate the camera. These images are shown
by figure 3.2. The corners are extracted using the corner extraction engine of the
toolbox. After this, the calibration is executed. The toolbox uses a gradient de-
scent method, instead of Levenberg-Marquardt, to minimize the reprojection er-
ror. Table 3.1 shows the resulting intrinsic parameters and distortion coefficients.
Note that the skew coefficient and the third radial distortion coefficient are not es-
timated by default. However, a skew coefficient of 0 is often a good assumption in
most practical applications. the third radial distortion coefficient is left out of the
calibration because the uncertainty is larger than the coefficient itself. Figure 3.3
shows the reprojection error for every corner on the checkerboard in every calibra-
tion image.

Figure 3.2: Calibration images

Table 3.1: Camera calibration results for the Samsung Galaxy S8

Focal length (pixels) fx 3237.13525± 17.67636
fy 3238.04681± 16.17327

Principal point (pixels) cx 1977.83019± 11.55264
cy 1510.92708± 14.03050

skew s 0.00000± 0.00000

Radial distortion
k1 0.11378± 0.00959
k2 −0.29215± 0.05808
k3 0.00000± 0.00000

Tangential distortion p1 0.00294± 0.00125
p2 −0.00290± 0.00144

Mean reprojection error (pixels) x 0.65425
y 0.64650

34

Figure 3.3: Reprojection error

3.2 Axis-angle transformation
The pose of a camera consists of a rotation matrix and translation vector. How-
ever, the rotation matrix has nine elements but only three degrees of freedom. In
Levenberg-Marquardt, it is desired to optimize for as few parameters as possible.
The axis-angle transformation, as discussed in 2.3, is used to parameterize the ro-
tation using a rotation vector containing three parameters instead of nine. Having
fewer parameters to estimate increases the speed of the algorithm. This section
discusses the implementation of the axis-angle transformation. The function is de-
scribed by algorithm 1 and is based on [16], [26]. It transforms a rotation matrix
into the axis-angle representation and vice-versa.

If the input is a 3 × 1 rotation vector, the function will return the corresponding
rotation matrix. The first step is to check that the rotation angle θ is bigger than
a certain small value ε1. In the Caltech toolbox, ε1 is set to eps which is the rela-
tive accuracy of a floating point number in MATLAB. When θ is too small, there
is no rotation and the identity matrix will be returned. Else, there is a rotation
and the equivalent rotation matrix is returned using equation (2.31). It may be
necessary to normalize the input if the rotation angle θ is larger than π.

If the input is a 3 × 3 matrix that satisfies inT = in−1 and det(in) = ±1, then
it is a rotation matrix and the function will return the corresponding axis-angle
representation. A value ε2, which is set to (10 · 1020) · eps in the Caltech toolbox,
is used to test these conditions. First, the rotation matrix is projected to the spe-
cial orthogonal group SO(3). This ensures that the determinant is equal to +1.
This is also known as a proper rotation. The projection is done by performing a

35

singular value decomposition and multiplying the matrix containing the left singu-
lar vectors with the transpose of the matrix containing the right singular vectors.
The next step is to obtain the unit rotation axis v. It corresponds to the eigenvec-
tor belonging to the eigenvalue of 1. It can be shown that the rotation angle θ is
equal to atan2((vT · vhat), (trace(R) − 1)). Here, R is the rotation matrix and
vhat = [R(3, 2)−R(2, 3),R(1, 3)−R(3, 1),R(2, 1)−R(1, 2)]T . The trace oper-
ation calculates the sum of the diagonal elements. The atan2 function determines
the four-quadrant inverse tangent. The unit rotation vector is then multiplied by
the rotation angle to obtain the axis-angle representation.

Algorithm 1 Axis-angle transformation
function AxisAngle(in)

if in ∈ R3×1 then
θ ← ||in||
if θ < ε1 then

R← I3

else
t← in
if θ > π then

t← (θ−2·π)·in
θ

end if
θ ← ||t||

tx ←

 0 −t(3) t(2)
t(3) 0 −t(1)
−t(2) t(1) 0


R← I3 +

sin(θ)
θ
tx +

1−cos(θ)
θ2

t2x
end if
return R

else if in ∈ R3×3 and ||inT · in− I3|| < ε2 and abs(det(in)− 1) < ε2 then
R← in
[U, S, V]← svd(R)
R← U · V T

[V,D]← eig(R)
v ← Eigenvector in V belonging to the eigenvalue equal to 1
vhat = [R(3, 2)−R(2, 3), R(1, 3)−R(3, 1), R(2, 1)−R(1, 2)]T
θ ← atan2((vT · vhat), (trace(R)− 1))
return v ∗ θ

end if
end function

36

3.3 Reversing lens distortion of image points
A necessary step before a 2D-3D correspondence can be used in the optimization,
is to correct the 2D image point for lens distortion. Doing this beforehand, allows
Levenberg-Marquardt to use a simpler reprojection model that does not take the
lens distortion into account. This makes the required calculations easier through-
out the whole optimization step. Algorithm 2 shows how to correct the image
points. The implementation is based on the OpenCV library [35]. Equations (3.1)
and (3.2) show the distortion model that is utilized. It contains 8 distortion pa-
rameters, 6 for radial distortion and 2 for tangential distortion. In contrast to
(2.12) and (2.13), the radial distortion term is extended with a denominator part.
In this thesis however, the extra radial distortion parameters are not estimated
during the calibration and will thus be equal to zero.

Prior to inverting the distortion, the image coordinate needs to be normalized.
This makes the coordinate independent of the intrinsic parameters. Next, the lens
distortion is reversed using an iterative approach [36]. First, the lens distortion
is estimated using the coordinate of the original distorted point. However, when
the distortion is again applied to the undistorted point using its coordinate, the
reprojection will not be at the original image point and this gives rise to an error.
The Euclidean distance is used as the error metric. The algorithm then uses the
coordinate of the undistorted point to refine the estimate of the lens distortions.
This is repeated until a point is found that, when the distortion model is applied
and after denormalization, leads to an error that is smaller than a predetermined
tolerance. Another stopping criterion is when the maximum number of iterations
is reached.

xdist = x · 1 + k3r
6 + k2r

4 + k1r
2

1 + k6r6 + k5r4 + k4r2
+ (2p1xy + p2(r

2 + 2x2)) (3.1)

ydist = y · 1 + k3r
6 + k2r

4 + k1r
2

1 + k6r6 + k5r4 + k4r2
+ (p1(r

2 + 2y2) + 2p2xy)) (3.2)

37

Algorithm 2 Undistort image points
function Undistort(ImagePoints,K,DistCoeffs,maxError,maxIters)

Extract intrinsic parameters from K
fx ← K(1, 1)
fy ← K(2, 2)
cx ← K(1, 3)
cy ← K(2, 3)

for all ImagePoints do
//Normalize
x← (ximage − cx)/fx
y ← (yimage − cy)/fy

x0 ← x
y0 ← y
itercounter ← 0
while error > maxError and itercounter < maxIters do

//Undo distortion, DistCoeffs = (k1, k2, p1, p2, k3, k4, k5, k6)
r ←

√
x2 + y2

x← (x0 − (2p1xy + p2(r
2 + 2x2))) · 1+k6r6+k5r4+k4r2

1+k3r6+k2r4+k1r2

y ← (y0 − (p1(r
2 + 2y2) + 2p2xy)) · 1+k6r6+k5r4+k4r2

1+k3r6+k2r4+k1r2

//Determine error
r ←

√
x2 + y2

xdist ← x · 1+k3r6+k2r4+k1r2

1+k6r6+k5r4+k4r2
+ (2p1xy + p2(r

2 + 2x2))

ydist ← y · 1+k3r6+k2r4+k1r2

1+k6r6+k5r4+k4r2
+ (p1(r

2 + 2y2) + 2p2xy))

xproj ← xd · fx + cx
yproj ← yd · fy + cy

error =
√
(xproj − ximage)2 + (yproj − yimage)2

itercounter ← itercounter + 1
end while
//Denormalize
xundistorted ← x · fx + cx
yundistorted ← y · fy + cy
return (xundistorted, yundistorted)

end for
end function

38

3.4 Computing the Jacobian and error vector
The Jacobian matrix is given by equation (2.39). The computation of this ma-
trix is taken from [33]. Here, the calculation happens on a row-per-row basis. Be-
fore executing the Levenberg-Marquadt optimization, symbolic expressions need
to be found for the first-order partial derivatives with respect to the six pose pa-
rameters for the reprojection error equations (2.34) and (2.35). The expressions
are determined using the symbolic math toolbox of MATLAB and is summarized
by algorithm 3. First, the rotation matrix is written in symbolic form in function
of the three variables of the corresponding rotation vector using the Rodrigues
transform. Secondly, a translation vector is made out of three other symbolic vari-
ables. Then, the symbolic expression of the reprojection of a world coordinate is
calculated. The calibration matrix K is assumed to be given and contains the
real values instead of symbolic variables. Note, that the third column of the ro-
tation matrix and the Z-coordinate are left out because a flat checkerboard is
used as pattern. Also, it does not contain the distortion coefficients as the ob-
tained image points will be undistorted beforehand. After this, the symbolic ex-
pressions of the error terms djx and djy are found by introducing new variables
for the x-coordinate and y-coordinate of an extracted, and undistorted, image
point. Finally, the symbolic expressions of the column vectors

[
∂djx
∂Θ1

, · · · , ∂djx
∂Θ6

]
and[

∂djy
∂Θ1

, · · · , ∂djy
∂Θ6

]
are computed using the jacobian function of the toolbox.

The result of algorithm 3 will be two long symbolic expressions that are a function
of the six pose variables and the XY-coordinates of the world point. The Jaco-
bian can now by calculated by simply substituting the variables with the values
of the pose parameters and the coordinates of the world point. This is shown by
algorithm 4. For every corner on the checkerboard, its world coordinates and the
current values of the six pose parameters are used to evaluate the expressions of
Jx and Jy to calculate the two corresponding rows of the Jacobian. It is advised
to calculate Jx and Jy once for a certain calibration matrix K and copy them
into the CalculateJacobian function instead of using the MATLAB function subs
to evaluate the symbolic expressions. Because Jx and Jy are very long, the subs
function will be very slow.

As discussed earlier, the error vector f(Θ) contains the reprojection error in the
x-coordinate and y-coordinate for every world point. It is also calculated on a
row-per-row basis and described by algorithm 5. The implementation is based
on [33]. For every point, equations (2.34) and (2.35) are applied and the result
is stored in the error vector.

39

Algorithm 3 Finding symbolic expression of partial derivatives
function SymbolicJacobian(K)

//Define the necessary symbolic variables
syms txs tys tzs wxs wys wzs Xs Y s xim yim real

//Symbolic expression of Rodrigues representation, [wxs], of rotation matrix
θ ← sqrt(wxs2 + wys2 + wzs2)
tx ← [0 −wzs wys; wzs 0 −wxs; −wys wxs 0]
R← I3 + sin(θ)tx + (1− cos(θ))t2x

//Symbolic expression translation vector
t← [txs; tys; tzs]

//Symbolic expression of reprojection
[u, v, w]← K · [R(:, 1), R(:, 2), t] · [Xs;Y s; 1];
x← u/w
y ← v/w

//Symbolic expressions of error terms
djx ← xim− x
djy ← yim− y

//Symbolic expression of first-order partial derivatives
Jx ← jacobian(dx, [wxs, wys, wzs, txs, tys, tzs])
Jy ← jacobian(dy, [wxs, wys, wzs, txs, tys, tzs])
return Jx, Jy

end function

40

Algorithm 4 Computing the Jacobian
function CalculateJacobian(Jx, Jy,Θ,WorldPoints)

for i = 1:Number of WorldPoints do
X ← WorldPoints(1, i)
Y ← WorldPoints(2, i)

J(2·(i-1)+1,:) ← substitute variables in Jx with pose parameters in vec-
tor Θ and XY-coordinate of the ith world point

J(2·(i-1)+2,:) ← substitute variables in Jy with pose parameters in vec-
tor Θ and XY-coordinate of the ith world point

end for
return J

end function

Algorithm 5 Computing the error vector
function CalculateError(K,R, t, ImagePoints,WorldPoints)

for i = 1:Number of WorldPoints do
X ← WorldPoints(1, i)
Y ← WorldPoints(2, i)
x← ImagePoints(1, i)
y ← ImagePoints(2, i)

[u′, v′, w′]← K · [R(:, 1), R(:, 2), t] · [X;Y ; 1];
x′ ← u′/w′

y′ ← v′/w′

f(2·(i-1)+1,:) ← x− x′
f(2·(i-1)+2,:) ← y − y′

end for
return f

end function

3.5 Determining the step

Recall that the step h is the solution of the linear least squares problem
[
f(Θ)

0

]
+[

J√
λI

]
h ≈ 0. This can be determined in two ways. The first possibility is to solve

the augmented normal equations described by equation (2.41). In this thesis how-
ever, the solution via orthogonal transformation is chosen because it is mathemat-
ically more accurate. The implementation is shown by algorithm 6. It takes as
input the Jacobian matrix, the damping factor and the error vector. A linear least

squares problem is generally written as Ax∗ ≈ b. Here, A is the matrix
[

J√
λI

]
and b is equal to −

[
f(Θ)

0

]
. The next step is to compute the QR-decomposition

of A. Only the first six columns of Q and the first six rows of R will be needed.

41

In MATLAB, this is indicated by adding a zero as the second argument to the qr
function. To find the solution for h, R1h = QT

1 b needs to be solved. This can
be done via backward substitution because R1 is an upper triangular matrix [37].
Backward substitution starts by calculating the last unknown, h(6) in this case.
This is then used to solve for h(5). These two known parameters then make it
possible to calculate h(4), and so on.

Algorithm 6 Computing the step
function Step(J, λ, f)

A←
[
J√
λI

]
b← −

[
f

[0, 0, 0, 0, 0, 0]T

]
[Q1, R1]← qr(A, 0)

//Solve R1h = QT
1 b through backward substitution

qtb← QT
1 b

for i = 6:-1:1 do
h(i)← (qtb(i)−R(i, :) · h)/R(i, i)

end for

return h
end function

3.6 The complete algorithm
This section describes the full camera pose estimation algorithm used in the Pose-
Lab framework. The code in [31], [33] was taken as a starting point. Figure 3.4
shows the flowchart of the implemented algorithm. The corresponding pseudocode
can be found in appendix A.

Certain variables need to be initialized before Levenberg-Marquardt can start
finding the optimal extrinsic parameters. First, the calibration matrix and distor-
tion coefficients are required. They are retrieved from the results of a calibration
performed previously. In addition, the symbolic expressions necessary to compute
the Jacobian matrix need to be obtained by using the function SymbolicJacobian
described in 3.4. The Levenberg-Marquardt optimization also requires an initial-
ization of the pose parameters. Normally, an analytical method, such as P3P and
EPnP, is used to determine the pose initialization. When such a method returns
the orientation as a rotation matrix, an axis-angle transformation has to be ap-
plied. In a real-time application however, the pose calculated on the previous
frame can be used as an initialization. Finally, 2D-3D point correspondences are
needed. In a dedicated hardware solution where the frame is read row-by-row, the
algorithm can start as soon as the first points are found.

The algorithm then continues by computing the Jacobian and the error vector

42

Figure 3.4: Flowchart of the camera pose estimation algorithm

43

at the initialization parameters by using algorithms 4 and 5. In case all the 2D-
3D point correspondences are known beforehand, such as a software application,
the initial parameters may already minimize cost function F (Θ). It is therefore
checked if the gradient g = JTf(Θ) is equal to zero. This condition is met if the
supremum norm ‖g‖∞ is less than a predetermined threshold ε1. In this context,
the supremum norm is the same as the maximum absolute value in the gradient
vector. The threshold is chosen to be 10−8. When already at the minimum, the
pose of the camera is described by the initialization parameters. The Rodrigues
representation is converted into a rotation matrix via an axis-angle transformation
and is returned together with the translation vector. In a hardware implementa-
tion however, not all the correspondences may be known at the start. That is why
an extra condition that the camera needs to be at the end of the frame has to be
met in order to stop the algorithm.

When the initialization parameters do not minimize the cost function, the itera-
tion process begins. Before this can start, the damping factor λ needs to be ini-
tialized. In [38], they suggest to use a value proportional to the maximum value
of the diagonal of matrix JTJ . This can be expressed as η · max

{
diag(JTJ)

}
.

Here, η is a small value and was chosen to be 10−8. The factor υ, used when the
step does not lead to a decrease in cost function, is initialized to 2. After this, the
Levenberg-Marquardt iterations start. If the maximum number of iterations is not
reached and the camera is not at the end of the frame, the step h is calculated as
described in 3.5. Then, it is checked whether the step is too small. This is when
the Euclidean norm ‖h‖ is smaller than ε2(‖Θ‖ + ε2). Here, ε2 is also set equal to
10−8. When the step is too small, and in case of a hardware implementation the
camera has reached the end of the frame, the camera pose parameters are found
and the corresponding rotation matrix and translation vector are returned. Else,
the parameters are increased by h.

Next, it is determined whether the step has led to a decrease in the cost function.
This is done by evaluating the gain ratio % described by 2.42. To do this, the error
vector f(Θ + h) is calculated at the updated parameters. Then, the cost function
is computed two times using equation (2.36). The error vector f(Θ) is used to
calculate the cost function F (Θ) at the old parameters, and f(Θ + h) determines
the cost function F (Θ+h) at the updated parameters. The numerator of the gain
ratio is then found by subtraction. The denominator is computed as 1

2
hT (λh− g).

While the algorithm is iterating, the camera is at the same time reading the frame
row-by-row. Before the correct actions are taken based on the value of the gain
ratio, it is checked if new 2D-3D point correspondences are found by the camera.
If they are available, they are added to the data. This will lead to two extra rows
in the Jacobian and error vector per point correspondence. Different calculations
will be needed if data is added.

If the gain is calculated to be greater than zero, the step has led to a decrease in
cost function and the updated parameters are accepted as the current best esti-
mate for the camera pose. The Jacobian and error vector are evaluated at these
new parameters, and possibly with extra data. The gradient is recalculated and

44

its supremum norm is tested against ε1 to see if the parameters minimize the cost
function. If they do, and the camera has reached the end of the frame, the camera
pose is found and the rotation matrix and translation vector are returned. If not,
more iterations are needed and the damping factor λ needs to be updated. It was
chosen to reinitialize λ as described before when new data was added. If no extra
data was added, λ is updated by multiplying it with max{1

3
, 1 − (2% − 1)3} and

setting υ equal to 2.

If the gain is calculated to be less than or equal to zero, the step does not cause a
decrease in the cost function. The updated parameters are not accepted and the
subsequent actions depend on whether new data is added or not. When no new
data is added, λ is multiplied by υ in order to try and find a new step that does
lead to a decrease in the cost function. The factor υ itself is multiplied by 2. If
new data is added, the Jacobian, error vector and gradient need to be recalcu-
lated. The damping factor λ has to be reinitialized because there may have been
successive iterations that have failed to decrease the cost function. This leads to
a very large value of λ because it is multiplied by υ on each failed iteration. The
initialization is done as described before.

45

46

Chapter 4

Experiments

4.1 The setup
The experiments were done using the test bench of Thomas Aerts [17]. Figure
4.1 shows the setup. An A4 1200 dpi flatbed scanner (1200 dpi × 1200 dpi) is
mounted on a table. A custom construction has been made to firmly attach the
checkerboard marker to the scanner bar. The camera is clamped on a stand of the
chemistry lab. A bluetooth click device is used to take images remotely. This way,
there is no need to push the button which can alter the position of the camera.
The laptop connected to the Arduino is put on a different table. This is done in
order to minimize the effects on the test setup due to the movements of the per-
son sitting behind the laptop.

Figure 4.1: The test bench

A stepper motor moves the checkerboard pattern along the shaft on the flatbed
scanner. It can be assumed that a precise linear motion is possible because in a
scanner it is important to position the head correctly with an accuracy of 1200 dpi

47

which corresponds to 20µm. In the experiments done in this thesis, the measure-
ments have been done for movements of entire steps taken by the stepper motor.
This is done to get better repeatable results and to avoid less accurate positioning
when microstepping would be used.

In order to measure how far the marker is displaced as a result of one full step
of the stepper motor, modifications have been made to the scanner as shown by
figure 4.2. A ruler was glued to the scanner. It can measure up to 0.025 inches or
0.635 mm. In addition, a piece of wood was glued to the scanner bar holding the
marker. The edge of the wood was used to read the value of the ruler. The marker
was placed at one side of the scanner and the value read of the ruler was 11.575
inches or 294.005 mm. Then, the stepper motor made 250 steps and the ruler was
read again. This time, it was a value of 4.95 inches or 125.73 mm. Thus, a total
distance of 168.275 mm was traveled. This leads to a displacement of 0.673 mm ±
0.003 mm per step.

Figure 4.2: Setup to measure the displacement of a step

48

4.2 The procedure
To test the PoseLab framework, four experiments have been made. In each case,
the marker is moved linearly along the scanner. The starting point is at the end
of the scanner as seen in figure 4.1. Then, the marker is moved 10 full steps at
a time. After each 10 steps, an image is taken. This is done until a total of 250
steps are made. This leads to a total of 26 positions or 26 images per experiment.
For each image, the pose of the camera is calculated with respect to the world co-
ordinate system defined in the upper left corner of the checkerboard as described
earlier. Figure 4.3 shows the starting position for each experiment. First, the marker
is moved in the Y-direction. Secondly, the scanner and marker are turned 90 de-
grees to simulate movement in the Z-direction. Then, the marker is turned 45 de-
grees and moves away from the camera. Finally, the camera is turned roughly 45
degrees with respect to the scanner so that the movement is not along the optical
axis.

(a) Movement in Y-direction (b) Movement in Z-direction

(c) Marker turned 45 degrees (d) Camera turned with respect to the scan-
ner

Figure 4.3: Starting positions of the different experiments

For every image, the first step is to calculate the pose using the Compute Extrinsic
function of the Caltech toolbox. Using the calibration results from section 3.1,
the function starts by detecting the corners of the checkerboard using its corner
extraction engine. Based on the found 2D-3D point correspondences, the extrin-
sic parameters are calculated. Finally, the rotation matrix and translation vector
are returned. Additionally, the Rodrigues representation of the rotation matrix is
given. The extracted corners and their respective world coordinates are also saved.

Next, the camera pose is computed by PoseLab. The same corner coordinates and

49

corresponding world coordinates as in the Caltech toolbox are used. In addition to
the 2D-3D point correspondences, the MATLAB function requires the calibration
matrix, distortion coefficients, and an initialization rotation matrix and transla-
tion vector. To get an initialization, the result of the Caltech toolbox is taken and
a value of 0.05 rad was added to the roll and yaw angles, 0.04 rad to the pitch an-
gle, 2 mm to the X-coordinate and 3 mm to the Y-coordinate and Z-coordinate.
These values are chosen arbitrarily. Furthermore, because the long term goal is to
create a hardware solution and this is still a software implementation, the addition
of new data whilst iterating needs to be simulated. This is done by adding a new
row, consisting of 10 checkerboard corners, to the used 2D-3D point correspon-
dences after every 5 iterations of Levenberg-Marquardt.

4.3 Results
This section gives the results of the four different experiments. For every exper-
iment, the value of each pose parameter is plotted against the position number
during the experiment. Despite the fact that there is no way to measure and ver-
ify the rotation, the rotational parameters are given for completeness. The orange
dots in the plots are the values as calculated by the MATLAB PoseLab. Because
the scanner creates a linear motion, straight lines can be fitted to the coordinates
of the camera position.

4.3.1 Movement in Y-direction

Figure 4.4 shows the calculated pose parameters for every image in the experi-
ment. The slope of the line fitted to the Y-coordinate is calculated to be -6.691
mm per 10 steps. The slope of the X-coordinate was determined to be -0.0260 mm
per 10 steps. The slope of the Z-coordinate was -0.0561 mm per 10 steps. Figure
4.5 shows the deviations from the calculated values to the fitted line for all three
coordinates. These errors are also called the residuals.

50

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Pose parameters for every position for a movement in the Y-direction

51

Figure 4.5: Residuals of XYZ-coordinate for a movement in the Y-direction

4.3.2 Movement in Z-direction

The pose parameters during this experiment are given by figure 4.6. The slope
of the Z-coordinate was calculated to be 6.861 mm per 10 steps. This leads to an
average change of 0.6861 mm in the Z-coordinate per full step. The slope of the
X-coordinate and Y-coordinate were -0.3565 mm per 10 steps and 0.0446 mm per
10 steps respectively. The residuals are shown by figure 4.7.

52

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Pose parameters for every position for a movement in the Z-direction

53

Figure 4.7: Residuals of XYZ-coordinate of each image for a movement in the Z-
direction

4.3.3 Marker turned 45 degrees

Figure 4.8 shows the calculated pose parameters for the experiment where the
marker is turned 45 degrees and moved away from the camera. The slope of the
Z-coordinate was 4.8655 mm per 10 steps, whilst the slope of the Y-coordinate
was -4.8659 mm per 10 steps. The X-coordinate had a slope of -0.0711 mm per 10
steps. The residuals are shown by figure 4.9.

54

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Pose parameters for every position for the marker turned 45 degrees

55

Figure 4.9: Residuals of XYZ-coordinate of each image for the marker turned 45
degrees

4.3.4 Camera turned with respect to scanner

Figure 4.10 shows the calculated pose parameters for the experiment where the
camera was turned approximately 45 degrees in order to not align the movement
of the marker with the optical axis. The slope of the Z-coordinate was 6.8632 mm
per 10 steps. The slope of the X-coordinate and Y-coordinate were -0.3299 mm
per 10 steps and -0.1034 mm per 10 steps respectively. The residuals are shown by
figure 4.11.

56

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Pose parameters for every position for the camera turned approxi-
mately 45 degrees

57

Figure 4.11: Residuals of XYZ-coordinate of each image for the camera turned
approximately 45 degrees

4.4 Discussion
A modified flatbed scanner has been used to create a precise linear movement.
This can clearly be seen in the resulting plots for the X, Y and Z-coordinates. The
fitted straight lines matched the data well. From the Y-coordinate of the first ex-
periment and the Z-coordinate of the second and fourth experiment, it is possible
to retrieve the size of a full step of the stepper motor. Because 10 steps are taken
between images, dividing the slope by 10 gives the change in value of the coordi-
nate as a result of a single step. In the first experiment, this leads to a change of
0.6691 mm in Y-coordinate per step. In the second experiment, a step changes the
Z-coordinate by 0.6861 mm. Similarly, a step in the fourth experiment leads to a
change of 0.6863 mm. These values are close to the measured step size of 0.6731
mm.

The deviation from the measured value can have many causes. The main cause is
that the test test setup is a low cost solution. There is no way to align the optical
axis of the camera in the correct manner. Furthermore, the checkerboard is not
perfectly parallel to the scanner. These reasons not only cause the measured step
size to be different, but also induces a change in the values of the other coordi-
nates. That is why their slopes are not equal to 0. Also, the manner in which the
stepper motor is driven has an effect on the stability and reproducibility.

Observing the plots of the residuals, it can be noted that the size of the devia-
tions from a linear motion is generally smaller in the Z-coordinate than in the X-
and Y-coordinate. This is unusual because measuring a change in depth is harder
than measuring a change in the X- or Y-direction. A reason can be the sort of im-
ages used during the calibration. In most images, the checkerboard is in the mid-
dle. Because the lens distortion is most significant on the edges of the image, the
checkerboard corners do not give a lot of information on the amount of distortion.

58

This may lead to incorrect values of the distortion coefficients. In addition, the ac-
curacy of the pose estimation itself plays a role. The ability to accurately retrieve
the 2D-3D point correspondences is the main obstacle. Many factors need to be
taken into account. Some of them are: resolution, quality of the marker, lightning
conditions and the distance to the camera. The quality of the camera, and in par-
ticular the lens, also has an influence.

4.5 Comparison to Caltech toolbox
In addition to finding the 2D-3D point correspondences for each image, the Cal-
tech toolbox also calculates the camera pose. To compare the results with the
MATLAB PoseLab, the absolute differences for each pose parameter are exam-
ined. The mean difference and the standard deviation are given by table 4.1. It
can be seen that results of PoseLab are in accordance with the Caltech toolbox.
However, it is difficult to tell how accurate the calculated parameters are because
the test bench does not allow the verification of absolute camera poses. One rea-
son for the differences is that the toolbox uses gradient descent as optimization
method, whilst here Levenberg-Marquardt is used. Another possibility is the qual-
ity of the initialization.

Table 4.1: Absolute difference between Caltech toolbox and PoseLab for each pose
parameter

Pose parameter Mean Standard deviation
x (mm) 0.0056 0.0128
y (mm) 0.0028 0.0066
z (mm) 0.0020 0.0019
θ (rad) 1.0184e-05 2.4659e-05
φ (rad) 2.0706e-05 4.9513e-05
γ (rad) 5.3242e-06 6.4381e-06

4.6 Addition of point correspondences whilst iter-
ating

In the PoseLab framework developed in this thesis, it is made possible to add new
data while iterating. For a single image, the number of point correspondences,
damping factor and cost are examined in function of the iteration number. The
tenth image of the first experiment is taken as test. At the end of each iteration,
the size of the buffer containing the point correspondences, the damping factor
and cost are saved. Figures 4.12 to 4.14 show the result.

From 4.12, it can be clearly seen how the buffer contains 10 new point correspon-
dences, a row of checkerboard corners, after every 5 iterations. Figure 4.13 illus-
trates how the damping factor is reinitialized when new point correspondences are
added. The cost, shown by figure 4.14, starts at a value of 7.5e4. After the first it-
eration, the cost is reduced to 30. When the number of correspondences increases,

59

the overall cost rises because there are simply more points. However, the reduc-
tion in cost due to extra iterations becomes less as the number of point correspon-
dences increases. This is because the information about the camera pose carried
by new data is less as more point correspondences are known. There is still a re-
duction but this cannot be clearly seen on the figure because of the scale.

Figure 4.12: Number of 2D-3D point correspondences in function of iteration
number

Figure 4.13: Value of the damping factor in function of iteration number

60

Figure 4.14: Value of the cost at every iteration

61

62

Chapter 5

Conclusion

5.1 PoseLab implementation
Currently, the software algorithms to calculate the pose of a camera are too com-
putationally expensive to achieve high frame rates in real-time applications. Application-
specific hardware will be needed to obtain the desired processing speeds. This re-
quires knowledge of every calculation needed to retrieve the pose of the camera.
An extensive literature review is needed to understand every step. This thesis ex-
plains the basic theory of the pinhole camera model, camera calibration, 6 degrees
of freedom camera pose estimation and the Levenberg-Marquardt optimization.

The first goal of this Master’s thesis is to create the PoseLab experimentation
platform in MATLAB that uses the Levenberg-Marquardt optimization method
to compute the camera pose. The second goal is to make it possible to accept 2D-
3D point correspondences whilst iterating. The implementation is discussed of the
necessary functions to perform the axis-angle transformation, lens distortion rever-
sion and the computation of the Jacobian matrix, error vector and step. The flow
chart of the complete algorithm is also given. To allow the addition of new data,
changes need to be made to the Levenberg-Marquardt algorithm. When new data
is added, the damping factor is reinitialized and the Jacobian and error vector are
recomputed.

To verify the correctness of the PoseLab framework, a test setup has been used to
create linear movement of a checkerboard marker. The linearity is clearly seen in
the plots of the camera position coordinates. The step size of the stepper motor
derived from calculated positions are in agreement with the measured value. The
step sizes derived from the experiments were in accordance with the measured
step size. However, because the test bench was a low cost solution, the values did
not perfectly match. There were also slight deviations from the linear movement.
There may be a lot of reasons for this. One possible cause is the incorrect calibra-
tion of the distortion coefficients. The correctness is also verified by comparing the
calculated poses with the ones determined by the Caltech toolbox.

63

5.2 Future work
This Master’s thesis is the basis for a project that is trying to create an application-
specific hardware solution to accurately calculate the camera pose in real-time.
The PoseLab framework will serve as an experimental test bench to be able to
quantitatively evaluate hardware architectural alternatives. Besides the possibil-
ity to add 2D-3D point correspondences to the algorithm whilst iterating, other
hardware specific modification will be made.

In addition to further developing specialized algorithms, better verification of the
calculated camera pose is needed. Here, a low cost test setup is used to create a
linear movement. It was not possible to verify rotational angles and thus a test
setup must be designed that can do this. Next to rotational angles, another de-
sired upgrade is for the test bench to be able to validate the absolute pose of the
camera. Currently, it is only possible to determine the relative motion with re-
spect to a starting position. Next to the pose, other aspects of the camera-based
pose estimation will need to be tested such as the influence of the resolution, the
marker, the lightning conditions, etc. on the achieved accuracy.

When the specialized algorithm is completely verified, the software will serve as a
blueprint to facilitate the creation of application specific pose estimation hardware
architectures. It will be opted to first implement the algorithm on an FPGA as it
is more flexible than an integrated circuit. Once the hardware design is completed,
tests can be done to measure the improvements in the speed and accuracy of the
pose estimation.

64

Bibliography

[1] R. Yu, T. Yang, J. Zheng, and X. Zhang, “Real-time camera pose estima-
tion based on multiple planar markers”, Proceedings of the 5th International
Conference on Image and Graphics, ICIG 2009, pp. 640–645, 2010. doi:
10.1109/ICIG.2009.93.

[2] C. Wang and X. Guo, “Feature-based RGB-D camera pose optimization for
real-time 3D reconstruction”, Computational Visual Media, vol. 3, no. 2,
pp. 95–106, 2017, issn: 2096-0433. doi: 10.1007/s41095- 016- 0072- 2.
[Online]. Available: http://link.springer.com/10.1007/s41095-016-
0072-2.

[3] T. Liu, Y. Guo, S. Yang, S. Yin, and J. Zhu, “Monocular-Based 6-Degree
of Freedom Pose Estimation Technology for Robotic Intelligent Grasping
Systems”, Sensors, vol. 17, no. 2, p. 334, 2017, issn: 1424-8220. doi: 10.
3390 / s17020334. [Online]. Available: http : / / www . mdpi . com / 1424 -
8220/17/2/334.

[4] R. Chin, eDrawings for iOS with Augmented Reality, 2013. [Online]. Avail-
able: http : / / blogs . solidworks . com / solidworksblog / 2013 / 02 /
augmented-reality-in-edrawings.html (visited on 04/28/2018).

[5] B. Spice, Robot’s In-Hand Eye Maps Surroundings, Determines Hand’s Lo-
cation, 2016. [Online]. Available: https://www.cmu.edu/news/stories/
archives/2016/may/robot-hand-camera.html (visited on 04/28/2018).

[6] T. Malisiewicz, The Future of Real-Time SLAM and Deep Learning vs SLAM,
2016. [Online]. Available: http://www.computervisionblog.com/2016/01/
why-slam-matters-future-of-real-time.html (visited on 04/28/2018).

[7] J. Maclaren, M. Herbst, O. Speck, and M. Zaitsev, “Prospective motion cor-
rection in brain imaging: A review”, Magnetic Resonance in Medicine, vol.
69, no. 3, pp. 621–636, 2013, issn: 07403194. doi: 10.1002/mrm.24314.

[8] J. Maclaren, B. S. R. Armstrong, R. T. Barrows, K. A. Danishad, T. Ernst,
C. L. Foster, K. Gumus, M. Herbst, I. Y. Kadashevich, T. P. Kusik, Q. Li,
C. Lovell-Smith, T. Prieto, P. Schulze, O. Speck, D. Stucht, and M. Zaitsev,
“Measurement and Correction of Microscopic Head Motion during Magnetic
Resonance Imaging of the Brain”, PLoS ONE, vol. 7, no. 11, e48088, 2012,
issn: 1932-6203. doi: 10.1371/journal.pone.0048088. [Online]. Available:
http://dx.plos.org/10.1371/journal.pone.0048088.

[9] L. Ramirez, Corrective jaw surgery. [Online]. Available: http : / / www .
maxillofacialcentre.com/index.php/services/corrective- jaw-
surgery (visited on 04/28/2018).

65

[10] Y. Sun, “Digital intermediate splint fabrication and image-guided maxillary
positioning”, PhD thesis, Hasselt University, 2013.

[11] J. Stals, “Pose estimation with a camera for orthogrnathic surgery planning”,
Master’s thesis, Hasselt University, 2015.

[12] Mobilization/positioning. [Online]. Available: https://www2.aofoundation.
org/wps/portal/!ut/p/a0/04%7B%5C_%7DSj9CPykssy0xPLMnMz0vMAfGjzOKN%
7B%5C_%7DA0M3D2DDbz9%7B%5C_%7DUMMDRyDXQ3dw9wMDAx8jfULsh0VAdAsNSU!
/?approach=%7B%5C&%7Dbone=CMF%7B%5C&%7Dclassification=95b-
Mandible,%20Sagittal%7B%5C&%7DcontentUrl=srg/95b/05-RedFix/P315-
BSSO-Hunsuc/05%7B%5C_%7DMobilizationPosit (visited on 04/29/2018).

[13] Mock surgery and fabrication of splints. [Online]. Available: https://www2.
aofoundation.org/wps/portal/surgerypopup?contentUrl=/srg/
95b/05-RedFix/X300-SpecCond-PlanningOrthSurg/X300-06%7B%5C_
%7DMockSurgandFabofSplints.jsp%7B%5C&%7DsoloState=precomp%7B%5C&
%7Dtitle=%7B%5C&%7DLanguage=en (visited on 04/28/2018).

[14] Z. Cao, Y. Sheikh, and N. K. Banerjee, “Real-time scalable 6DOF pose es-
timation for textureless objects”, Proceedings - IEEE International Con-
ference on Robotics and Automation, vol. 2016-June, pp. 2441–2448, 2016,
issn: 10504729. doi: 10.1109/ICRA.2016.7487396.

[15] OpenCV Camera Calibration and 3D Reconstruction, 2018. [Online]. Avail-
able: https : / / docs . opencv . org / 2 . 4 / modules / calib3d / doc /
camera%7B%5C_%7Dcalibration%7B%5C_%7Dand%7B%5C_%7D3d%7B%
5C_%7Dreconstruction.html?highlight=calib%7B%5C#%7Dsolvepnp.

[16] J.-Y. Bouguet, Camera Calibration Toolbox for Matlab, 2015. [Online]. Avail-
able: http://www.vision.caltech.edu/bouguetj/calib%7B%5C_%7Ddoc/
(visited on 04/29/2018).

[17] T. Aerts, “Calibration and evaluation system for 3D camera systems”, Mas-
ter’s thesis, Hasselt University, 2018.

[18] L. Ada, Adafruit Motor Shield, 2015. [Online]. Available: https://learn.
adafruit.com/adafruit-motor-shield/overview (visited on 05/30/2018).

[19] Z. Zhang, “A Flexible New Technique for Camera Calibration (Technical
Report)”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 11, pp. 1330–1334, 2002, issn: 01628828. doi: 10.1109/34.
888718. arXiv: arXiv:1011.1669v3.

[20] G. Bradski and A. Kaehler, “Camera Models and Calibration”, in Learn-
ing OpenCV, 1st ed., Sebastopol: O’Reilly Media, 2008, pp. 370–403, isbn:
978-1-4493-1465-1. doi: 10 . 1109 / MRA . 2009 . 933612. arXiv: arXiv :
1011.1669v3. [Online]. Available: http://shop.oreilly.com/product/
0636920022497.do.

[21] C. Stachniss, Photogrammetry I - 15a - Camera Extrinsics and Intrinsics,
2015. [Online]. Available: https://www.youtube.com/watch?v=DX2GooBIESs%
7B%5C&%7Dindex=28%7B%5C&%7Dlist=PLKEuOzA9RZ2WnWf7vj2hQEXRIeB8hpxHa
(visited on 05/28/2018).

[22] PAKSC, Simple Pinhole Camera Science, 2015. [Online]. Available: https:
//paksc.org/pk/diy-projects/homemade-simple-pinhole-camera/.

66

[23] R. Collins, “Lecture 12 : Camera Projection”, in, Penn State University,
2007. [Online]. Available: http://www.cse.psu.edu/%7B~%7Drtc12/
CSE486/lecture12.pdf.

[24] C. Stachniss, Photogrammetry I - 16b - DLT & Camera Calibration, 2015.
[Online]. Available: https://www.youtube.com/watch?v=Ou9Uj75DJX0%7B%
5C&%7Dlist=PLKEuOzA9RZ2WnWf7vj2hQEXRIeB8hpxHa%7B%5C&%7Dindex=31
(visited on 05/28/2018).

[25] Z. Wang, Z. Wang, and X. Xu, “Extraction of the corner of checkerboard
image”, Proceedings of the World Congress on Intelligent Control and Au-
tomation (WCICA), pp. 6783–6788, 2008. doi: 10.1109/WCICA.2008.
4593961.

[26] Z. A. Hartley Richard, “Representations of rotation matrices”, in Multiple
View Geometry in computer vision, 2nd ed., New York: Cambridge Univer-
sity Press, 2004, pp. 578–587.

[27] Tutorial 17 : Rotations. [Online]. Available: http://www.opengl-tutorial.
org/intermediate-tutorials/tutorial-17-quaternions/ (visited on
04/13/2018).

[28] G. Xiao-Shan, H. Xiao-Rong, and T. Jianliang, “Complete solution classifi-
cation for the perspective-three-point problem”, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 930–943, 2003.

[29] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi, “Revisiting
the PnP problem: A fast, general and optimal solution”, Proceedings of the
IEEE International Conference on Computer Vision, pp. 2344–2351, 2013,
issn: 1550-5499. doi: 10.1109/ICCV.2013.291.

[30] J. A. Hesch and I. Stergios, “A Direct Least - Squares (DLS) Method for
P n P”, in IEEE International Conference on Computer Vision, 2011, p. 4,
isbn: 9781457711022.

[31] K. Madsen, H. Nielsen, and O. Tingleff, “Methods for non-linear least squares
problems”, Technical University of Denmark, Tech. Rep., 2004, pp. 18–30.

[32] Z. A. Hartley Richard, “Iterative Estimation Methods”, in Multiple View Ge-
ometry in computer vision, 2nd ed., New York: Cambridge University Press,
2004, pp. 597–602.

[33] P. Mittrapiyanuruk, “A Memo on How to Use the Levenberg-Marquardt Al-
gorithm for Refining Camera Calibration Parameters”, Purdue University,
Tech. Rep., pp. 5–10. [Online]. Available: https://engineering.purdue.
edu/kak/computervision/ECE661%7B%5C_%7DFall2012/homework/hw5%7B%
5C_%7DLM%7B%5C_%7Dhandout.pdf.

[34] S. Marschner, “CS3220 Lecture Notes : QR factorization and orthogonal
transformations”, Computing, vol. 2, no. March, pp. 1–8, 2009.

[35] OpenCV, Undistort. [Online]. Available: https://github.com/opencv/
opencv/blob/master/modules/imgproc/src/undistort.cpp (visited on
05/28/2018).

[36] P. Abeles, Inverse Radial Distortion Formula. [Online]. Available: http :
//peterabeles.com/blog/?p=73 (visited on 05/28/2018).

67

[37] H. Douglas, Backward substitution, 2005. [Online]. Available: https://ece.
uwaterloo.ca/%7B~%7Dece204/howtos/backward/ (visited on 05/13/2018).

[38] H. B. Nielsen, “Damping parameter in marquardt’s method”, Technical Uni-
versity of Denmark, Lyngby, Tech. Rep., 1999, p. 7. [Online]. Available: http:
//www2.imm.dtu.dk/documents/ftp/tr99/tr05%7B%5C_%7D99.pdf.

68

Appendices

Appendix A: Pseudocode camera pose estimation algorithm 71

69

70

Appendix A: Pseudocode camera
pose estimation algorithm

Algorithm 7 Camera pose estimation
function CameraPose(ImagePoints,WorldPoints,K,DistCoeffs,R0, t0)

Jx, Jy ← SymbolicJacobian(K)

//Stopping criteria
ε1 ← 10−8

ε2 ← 10−8

imax ← 500

//Initialize parameters
tx← t0(1)
ty ← t0(2)
tz ← t0(3)

w ← AxisAngle(R0)
wx← w(1)
wy ← w(2)
wz ← w(3)

//Add available 2D-3D correspondences to the data buffers
impBuffer ← undistorted 2D image coordinates
wpBuffer ← 3D world coordinates

//Compute Jacobian, error vector and gradient
J ← CalculateJacobian(Jx, Jy, [wx;wy;wz; tx; ty; tz] , wpBuffer)
f ← CalculateError(K,AxisAngle([wx;wy;wz]), [tx; ty; tz] , impBuffer, wpBuffer)
g ← JT · f

71

//Pose found?
if ‖g‖∞ ≤ ε1 and endOfFrame then

return AxisAngle([wx;wy;wz]), [tx; ty; tz]
end if

//initialize λ and υ
λ← 10−8 ·max(diag(JTJ))
υ ← 2

i← 0
//Iterate
while i < imax and endOfFrame do

i← i+ 1

h← Step(J, λ, f)
if ‖h‖ ≤ ε2(‖ [wx;wy;wz; tx; ty; tz] ‖+ ε2) and endOfFrame then

return AxisAngle([wx;wy;wz]), [tx; ty; tz]
else

//updated parameters
wxupd ← wx+ h(1);wyupd ← wy + h(2);wzupd ← wz + h(3);
txupd ← tx+ h(4); tyupd ← ty + h(5); tzupd ← tz + h(6);
fupd ← CalculateError(K,AxisAngle([wxupd;wyupd;wzupd]), [txupd; tyupd; tzupd] ,

impBuffer, wpBuffer)

//Cost function
F ← 1

2
· fT · f

Fupd ← 1
2
· fTupd · fupd

//gain
%← F−Fupd

1
2
·h′·(λ·h−g)

//Add new 2D-3D correspondences if available
Add new undistorted 2D image coordinates to impBuffer
Add new 3D world coordinates to wpBuffer

if % > 0 then
//Accept parameters
wx← wxupd;wy ← wyupd;wz ← wzupd;
tx← txupd; ty ← tyupd; tz ← tzupd;

//Recalculate Jacobian, error vector and gradient
J ← CalculateJacobian(Jx, Jy, [wx;wy;wz; tx; ty; tz] , wpBuffer)
f ← CalculateError(K,AxisAngle([wx;wy;wz]), [tx; ty; tz] ,

impBuffer, wpBuffer)
g ← JT · f

72

//Pose found?
if ‖g‖∞ ≤ ε1 and endOfFrame then

return AxisAngle([wx;wy;wz]), [tx; ty; tz]
end if

//update λ
if Data was added then

λ← λ ·max(
[

1
3
, 1− (2 · %− 1)3

]
)

else
λ← 10−8 ·max(diag(JTJ))

end if
υ ← 2

else
if Data was added then

//Recalculate Jacobian, error vector and gradient
J ← CalculateJacobian(Jx, Jy, [wx;wy;wz; tx; ty; tz] , wpBuffer)
f ← CalculateError(K,AxisAngle([wx;wy;wz]), [tx; ty; tz] ,

impBuffer, wpBuffer)
g ← JT · f

//Reinit λ
λ← 10−8 ·max(diag(JTJ))
υ ← 2

else
//Increase λ
λ← λ · υ
υ ← 2 · υ

end if
end if

end if
end while
return AxisAngle([wx;wy;wz]), [tx; ty; tz]

end function

73

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Novel Levenberg-Marquardt based methods for application-specific hardware
enabled high-speed, high-accuracy, six degrees of freedom camera-based
pose estimation

Richting: master in de industriële wetenschappen: elektronica-ICT
Jaar: 2018

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Darcis, Michiel

Datum: 4/06/2018

