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Preface

To conclude the final year of engineering technology at the university of Hasselt, I wanted

an experience I would never forget. This is why I chose to go do my thesis on Erasmus

in a country I have always appreciated and admired before, Finland. Internet of things

has always fascinated me, because of the rapid growth of the amount of devices con-

nected to the internet and the growing power these devices have. I believe this is a field

worth investing time in.

This interest in Finland and IoT has led me to the department of pervasive computing

at Tampere University of Technology, where a lot of resources are invested in IoT and

liquid software. Liquid software was unknown to me, but interested me from the mo-

ment I researched it. This led me to do my thesis on both of these topics.

I would like to thank my supervisor at TUT, prof. dr. K. Systä and my supervisor at

UHasselt, dr. K. Aerts for providing assistance and valuable feedback regarding the the-

sis. I would also like to thank M. Sc. F.A. Ghohandizi for providing information about

the IoT framework and helping me resolve any issues I encountered with it. Lastly, I

would like to thank my parents for giving me the unforgettable opportunity to study

and live abroad.

I sincerely hope my work contributed to the field of IoT and liquid software and the

future development of the IoT-framework.
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Abstract

To mass-deploy and manage IoT applications, an IoT framework was developed by

TUT. The capabilities of this framework have been expanded to include liquid func-

tionalities. To limit the extra work an IoT programmer has to add to their IoT appli-

cations, the liquid functionalities were added to the application non-specific code rather

than the application specific code. To limit power consumption, a polling technique was

introduced to check for changes in the state of the applications. To limit the data com-

munication, two ways were created to communicate state changes between applications.

One uses a peer-to-peer topology to communicate and the other a master-slave topol-

ogy. Synchronization collisions are solved using timestamps.

A network of four IoT devices was used to test the speed of the liquid functionalities as

well as the amount of communication between the devices when synchronized. It was

found that cloning takes marginally longer than migrating or forking, that liquid trans-

fer speeds are greatly influenced by the presence of a resources folder and that com-

munication between devices works as predicted. To limit power consumption when ini-

tiating a liquid transfer, a new way to initiate a liquid transfer has been discussed. It

migrates the power to the RR rather than the IoT device. Data communication can be

limited by saving all synchronized applications on the device instead of using a syncID.





Abstract in het Nederlands

Voor het massa-beheer en -verspreiden van IoT applicaties is er een IoT framework on-

twikkeld door TUT. De mogelijkheden van dat framework zijn uitgebreid zodat ze liq-

uide functionaliteiten bevatten. Om extra werk voor de IoT-programmeur te limiteren,

zijn de liquide functionaliteiten toegevoegd aan het niet-applicatiespecifieke deel van de

code. Om ook energieverbruik te limiteren, is er een polling-techniek gëıntroduceerd die

statuswijzigingen in de applicatie dedecteert. Om data communicatie te verminderen,

zijn er 2 manieren ontwikkeld om status wijzigingen te communiceren. Eén manier ge-

bruikt een peer-to-peer topologie, de andere gebruikt een master-slave topologie. Syn-

chronisatie collisies werden verholpen met behulp van timestamps.

Een netwerk van 4 IoT apparaten werd gebruikt om de snelheid van de liquide func-

tionaliteiten als ook de hoeveelheid communicatie tussen de apparaten te meten. Het

clonen van applicaties duurde marginaal langer dan het migraten of forken van appli-

caties. Er werd ook gevonden dat de liquide transfer snelheden vooral werden bëınvloed

door de aanwezigheid van de resource folder. Als laatste werd bevonden dat communi-

catie tussen apparaten werkt zoals verwacht. Om energieverbruik te beperken, is er een

nieuwe manier bediscusieerd die het energieverbruik naar de RR migreert in plaats van

naar de IoT-apparaten. Datacommunicatie kan gelimiteerd worden door alle gesynchro-

niseerde applicaties op te slaan in het apparaat in plaats van het huidige systeem.





1 Introduction

Internet of Things (IoT) is the connection between everyday devices, with a certain

level of intelligence, through the internet. IoT is becoming more popular by the minute.

These devices range from fire detectors to health monitors and from automatic cars to

smart homes [1–3]. Right now, these devices collect the data and send it to an external

server that processes the data of all devices. Programming off the devices itself will be-

come possible as these devices get smarter and technology advances. To program these

devices, a system with a web browser-based IDE has been proposed and is under de-

velopment by Tampere Univeristy of Technology (TUT) [4]. This system can be used

to develop IoT-applications, mass deploy these applications and monitor the used IoT-

devices. More information on how this system is composed and how it functions, can be

found in Chapter 3.

Besides this system for IoT, TUT has also been active in the field of liquid software.

The number of devices connected to the internet that a person owns, will increase dra-

matically in the following years [2, 5]. This will eventually lead to liquid software. Liq-

uid software is a concept that states that data, state and applications should be able to

move freely between multiple devices and screens [6]. This means, that when writing an

email with an email application on a smartphone the email can transfer to a computer

with the help of a simple swipe. Then, the user can continue writing his/her email with

another email application on the computer, without any disruption. Several structures

and frameworks have already been developed for liquid software [7]. Liquid software

has also been integrated in vendor-specific applications such as Apple’s Handoff and the

Google Documents app [8, 9]. There are 4 main use cases in liquid software: migration,

forking, cloning and forwarding.

The purpose of this Master’s thesis is to combine the IoT application framework devel-

oped by TUT and the first three use cases of liquid software. This means that appli-

cations running on devices deployed by the system should be liquid. Support for liq-

uidity should also be integrated in the browser based IDE. This expands the possibili-

ties of the IoT system and makes it more versatile. When implementing liquid software,

synchronization issues arise. These issues are addressed and possible solutions are pro-

posed.

The following Chapter explains the background and some terms. Chapter 3 is the liter-

ature study. This explains the IoT system and analyses the different architectural de-

cisions and use cases for liquid software. In Chapter 4, the method of how the liquid

software is combined with the IoT system is explained. Here, the synchronization issues

are addressed as well. The results of this combination with a short demonstration of all

use cases are presented in Chapter 5 and discussed in Chapter 6. Here, future work is

also proposed. Conclusions are given in Chapter 7.





2 Background and terms

Liquid software is a vision or concept that states applications and data should not be

constricted to one device, but should be able to move freely between devices. As al-

ready mentioned in the introduction, there are four main use cases respecting liquid

software: forking, migrating, cloning and forwarding. Forking an application is making

a copy of the original application and deploying it to the target device, so that both de-

vices run the same application separately. Migrating an application is the same as fork-

ing it, except that the original application will be deleted from the source device. This

means that only one instance of the application will run at any point in time. An exam-

ple of forking in everyday-life could be playing music on your phone and then fork the

song to every speaker in the house while still continuing to play on your phone. This

is illustrated in figure 1. The difference with migrating is that the music would stop

playing on your phone after the liquid transfer. An example of migration is depicted

in figure 2. In both of these use cases, the persistent data and state have to be trans-

ferred to the source device too. Persistent data or storage is data that is saved in the

application for next usage sessions. State is data that is only temporarily saved in the

application, but includes the values of the variables in the application. Cloning an ap-

plication includes forking it, but keeping all application synchronized. An example of

cloning an application is writing simultaneously with multiple people on a document.

This is depicted in figure 3. The final use case is forwarding, where the inputs are taken

from one device and forwarded to the application running on another device. Similarly,

the outputs can be taken from the device running the application and forwarded to an-

other device [7]. An example of forwarding is typing an e-mail on your phone but using

the keyboard for your laptop. This example is illustrated in figure 4. Forwarding is not

necessary for IoT devices, as inputs and outputs can be accessed with URLs.

Figure 1: The state of 2 devices before and after forking.
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Figure 2: The state of 2 devices before and after migration.

Figure 3: The state of 2 devices before and after cloning.

Figure 4: The state of 2 devices before and after forwarding.
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3 Literature Study

The literature study will be divided into two parts. The first part will elaborate on liq-

uid software. Here, the key requirements are explained for software to be liquid, fol-

lowed by the maturity levels of liquidity for applications. Then, the architectural de-

sign space will be explained. Finally, two existing liquid frameworks will be compared.

The second part of the literature study will explain the IoT framework. The structure

is thoroughly explained and all separate components are elaborated on.

3.1 Liquid software

3.1.1 Key Requirements

According to [5], there are six key requirements for a casual multiple device ownership

world. In this Chapter, they will be elaborated on.

The first requirement states that users should be able to switch between all the devices

connected to the Internet that they have and continue the usage as before. This is one

of the basic concepts of liquid software and is essentially what liquid software stands

for. An effect of this is that all the devices available to the user, should be known to

the software. This can be achieved through a process called discovery. Discovery of

devices can be done through a multitude of ways such as QR codes, Wi-Fi and Blue-

tooth [7]. QR codes hide the complexity of long URLs and remove the tedious process

of typing a long link.

The second requirement states that changing between devices should be as easy and

casual as possible. This can be done multiple ways. Some of which include URLs, QR

codes and Wi-Fi that consequently trigger the liquid transfer. This QR code or URL

will be generated by the device that requests a liquid transfer and can be scanned by

the device to which to transfer. If a device is known through Wi-Fi discovery, the rel-

ative location of the host and target device can be calculated. However not trivial to

implement, this can enable geometrical based gestures for transferring the liquid appli-

cation [7, 10,11]. Maintenance and management of the device should be hidden from the

end-user to improve user friendliness.

The fourth requirement is that when a transfer occurs, the full state of each applica-

tion shall be transferred or recreatable, so that the user can continue their activities on

another device. Web-browsers use Document Object Model-trees (DOM-trees) to repre-

sent data and state. Transfer of state can be achieved through the use of virtual DOM-

trees. DOM-trees consist from a root <html> tag and then a <head> and <body>

tag, which on their turn consist of other nodes [12]. In this approach, only the initial

virtual DOM tree is loaded from the server. When the user requests a liquid transfer,

only the differences between the initial DOM-tree and the current DOM-tree are sent
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to the receiving device. This way it suffices to send only the deltas instead of the entire

state, which greatly reduces the amount of data that needs to be sent [13].

The fifth requirement states that roaming between devices should not be tied to a sin-

gle vendor ecosystem. Nowadays, most liquid applications are tied to a single vendor.

This should not be the case in truly liquid applications. Examples of vendor based liq-

uid applications are Handoff by Apple and Google docs [14].

The sixth and final requirement states that the user should be in full control about the

liquidity of his or her applications and data. For privacy reasons, the user can choose to

not save certain data on certain devices. When migrating or cloning to another user’s

device or a public device, strict control policies should be defined to ensure privacy and

security of data [7].

Today, automatic synchronization is still an exception rather than the norm. According

to [5, 7], automatic synchronization will become the norm for data and applications.

3.1.2 Maturity Levels and Layering

According to [15], liquid web applications can be evaluated with maturity levels. This

can be done by dividing applications into layers, according to the Model View Con-

troller (MVC) pattern, and defining a maturity model regarding the liquidity of web-

sites ranging from solid applications to liquid web applications. The model is based on

three facets, which will each be elaborated on. First logic deployment will be discussed,

then data and state storage and finally the communication channel will be discussed.

Each facet can be divided into three levels.

3.1.2.1 Logic deployment (Controller)

The first layer is the controller layer. This is where the web application executes its

tasks. The three levels regard the client thickness. The first level is an ultra-thin client.

Here, the only entity that can do logic is the server. No logic can be done on the client-

side, meaning scripting languages such as JavaScript can not be used. The only logic

present on the client concerns the retrieving and displaying of the data. The second

level is a thin client. Here the logic is shared between the server and the client. The

server can offload part of its logic to the client. Views can be altered by user input

and made responsive. The third and final level is a thick or rich client. At this level,

the logic is entirely deployed on the client-side. These thick client can also be aware of

other thick clients connected to the web. This is very helpful for liquid applications,

as the view can adapt depending on the other devices. For a thick client, enough com-

puting power should be available on the client side. Off-line operation becomes more

accessible for thick clients [7].
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3.1.2.2 State storage (Model)

The second layer is the model layer. This is where the persistent data of the application

is stored. The three levels regard where the data is stored, ranging from a server system

to a distributed system.

The first level is a centralized storage system. Here, all data-management is deployed

on the server-side. This is good for consistency, all devices of one user can have the

data as the data is stored on the server. However, privacy suffers from this approach

if no proper security is provided. As said in Chapter 3.1.1, the final requirement for liq-

uid applications is that the user should be in full control of the liquidity of their data.

This is obviously not the case in this approach. All data is stored on the server, the

user cannot decide where to store their data. Examples are centralized MySQL [16] and

NoSQL [17] databases. No off-line mode is possible for the clients.

The second level is decentralized storage system. Here, data is stored both on the server-

and client-side. Cookies are a form of a decentralized storage system by caching the

data received from the server. The client can also choose to use the client-side as a pri-

mary data storage system, and the server-side as a backup. This method of data stor-

age enhances data privacy. This is only the case when a direct connection between de-

vices can be set up. It also enhances performance during off-line operation, as long as

the data is cached beforehand. Another benefit is that less data should be downloaded

from the server, meaning that a weaker Internet connection is possible.

The third and final level is a distributed system. Here, the data is stored solely on the

client-side and none on the server-side. This enhances privacy as the data is only stored

on the users devices, unless the devices are not properly secured. Data is shared be-

tween devices through a peer-to-peer channel. It is, however, more challenging to main-

tain data synchronization across all devices as data is stored in multiple places. An-

other problem is the likeliness of devices being off-line for prolonged periods of time,

not being able to synchronize data. In this approach, only a local internet connection is

necessary [7].

3.1.2.3 Communication channel (View)

The third layer regards the communication channel on which data is exchanged. The

three levels concern the direction of communication and whether the clients can com-

municate between each other or not. Any higher levels contain the functionalities of the

previous level. For example, level 3 contains the features from level 1 and 2.

The first level is a client-server pull. Here, only the client can pull data from the server.

An example of this is RESTful HTTP. Cloning and forwarding of the application state

is not obvious with this approach, but can be achieved by regularly polling the state of

the server. The second level is a client-server push. Here, a duplex connection is opened
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by the client to the server. An example of this are Web-sockets. Here, cloning and for-

warding is a possibility. The third level is a peer-to-peer communication channel. Here,

clients communicate with each other without the need of a server. This can reduce la-

tency, as the number of hops can be decreased. This can, for example, be achieved by

the WebRTC protocol.

3.1.2.4 Maturity levels

With the three facets of the model divided into three levels, maturity stages can be de-

fined based on these levels. The first stage are Web 1.0 applications. These applications

only have the view on the client side and the rest on the server side. The applications

use the first level of all facets.

The second maturity stage are rich web applications. Rich web applications use a thin

or ultra-thin client meaning that the client can execute logic. It is possible for rich web

applications to use a decentralized storage system. Rich web applications are still on

the first level of the communication channel facet.

The third maturity stage are real-time web applications. Real-time web applications

can use centralized and decentralized storage systems, but are still restricted to a thin

client. Real-time web applications can however use the second level of the communica-

tion channel facet. These applications can not only pull data from the server, but also

push data. All liquid web applications should be at least at this maturity level.

The fourth stage are hybrid web applications. These applications use the same level as

real-time web applications for the model and controller facet, but are at the third level

for the communication channel facet. Communication is done in a peer-to-peer fashion.

Latency is thus significantly lower.

The fifth and final maturity stage are peer-to-peer web applications. These applications

are at the third level of every facet. They use a distributed storage model, a rich client

and peer-to-peer communication.

3.1.3 Architecture

In this section, several architectural considerations will be elaborated on. They contain

the key elements to form the technical choices or design space discussed in section 3.1.4.

Four architectural considerations are proposed by [7].

A major element of liquid software is the ability to benefit from the advantages of each

device. A truly liquid application should consider different input and output methods

for different devices. A smaller screen should probably display the data in a different

way than a larger screen. Here, UI adaptation plays a major role.
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Another element is data and state synchronization. In software, there are two kinds

of application data, persistent and dynamic. Nowadays, persistent application data is

stored locally on each device and can be synchronized using cloud-based solution. These

are, unfortunately, often vendor based. Liquid software includes not only synchroniza-

tion of persistent data, but also dynamic application data. An example of dynamic ap-

plication data is the zoom-level or position of a web-page. These dynamic application

data can be caught at different levels of granularity. Identification is needed to apply

the correct user settings to the correct user.

The third architectural consideration is the client/server partitioning. This has been

widely discussed already in section 3.1.2. The final element is data security. This has

also been touched on by section 3.1.2. People using liquid software should be able to

decide the liquidity of their data.

3.1.4 Design space

This section discusses some of the technical choices that need to be made to develop a

liquid application. This is also often called the design space. The design space is formed

from the architectural choices discussed in Chapter 3.1.3. Following technical choices

are proposed by [7] and [18]. Each element of the design space is discussed in a separate

section.

The topology of a liquid architecture can be centralized, decentralized or distributed.

This has already been discussed in Chapter 3.1.2. This topology has the same structure

for state replication as well as application source distribution. The topology of the state

replication and application source distribution can differ within one application.

Discovery is a major part of liquid software as the device that wants to do a liquid

transfer must know to which device it can transfer. The process of finding these de-

vices is called discovery and can be achieved in a number of ways. The first approach

is by creating a personal network with either Wi-Fi or Bluetooth and then connecting

devices. Another approach is creating a server and linking devices through shared URL-

or QR-codes. Both of these approaches fall under the term existence discovery. The

third method of discovering new devices is location discovery. Through certain meth-

ods, relative positions can be calculated through Wi-Fi or Bluetooth. To migrate or

clone a session, specific geometrically based gestures can be used (for example swiping

left or forward). The final approach is ownership discovery. This is based on the autho-

rization of users. When a user is authorized on a certain device, it can initiate a liquid

transfer to it. Authorization can be achieved in a number of ways, such as user/pass-

word combination, smartcards and shared secrets.

Layering of liquid software is already discussed in Chapter 3.1.2 with the MVC-model.

The choice between a thick and thin client can be made based on a number of criteria.

These criteria include computing power, energy consumption and required bandwidth.
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The following paragraphs discuss the part of the software that is responsible for the liq-

uid transfers. This ranges from operating system level to component level, each having

its own benefits.

The lowest level is the operating system level. If liquid software is implemented at this

level of granularity, liquid software would not be tied to certain applications, but all ap-

plications would be liquid by default. It is the most complete but also most complex

way of implementing liquid software. Problems include security issues, hardware differ-

ences and resource consumption. Another struggle would be that every device should

run the same operating system.

At a higher level, virtual machines and containers can be used. The transfer of running

all applications can be achieved and it is the most adopted system for doing so. Prob-

lems with limited bandwidth, can be solved by selecting parts of the virtual machine or

container that need to be transferred.

The next level is the application level. It is probably the most natural way when think-

ing of moving a running application. In the previous method, all applications would

have liquid capabilities by default. Here, all applications would have to be programmed

to be liquid.

The final level is the component level. Here, only parts of the application will be trans-

ferred. This positively impacts bandwidth usage as less data should be sent to the tar-

get device. Every component has to be programmed to be liquid.

There are two major alternatives to deploy applications to a client device. The first al-

ternative is on-demand applications. Here, no installation is required and the applica-

tion is downloaded when necessary. The second alternative is pre-installed applications.

On-demand applications can only be used in on-line mode, except if the application is

cached. Pre-installed applications can always be used in off-line mode in a non liquid

manner.

Liquid software deals with two types of data. The first is persistent user data. This

kind of data needs to be stored so that it is available to all devices of the user. The sec-

ond type is the application state. This data must be stored in a manner so that it is

easy to transfer the data when a liquid transfer is requested. During cloning and fork-

ing, conflicts may occur because multiple devices are working on one application. These

conflicts need to be solved at the application level. State synchronization can happen

in two major ways, as briefly discussed in Chapter 3.1.1. The first possibility is trickle

updates. This way, all changes are updated as soon as they are made. The second pos-

sibility is batch updates. Here, changes are cumulated and updated after a period of

time. The latter approach is useful when updating devices that have been off-line for

prolonged periods of time. The last consideration to be made when choosing how to up-

date the state and data, is the way the data gets to the device. The first possibility is

pushing. Here the device that is sending initiates the communication between devices.
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The second possibility is pulling. In this approach, the device that is receives data initi-

ates the communication between devices.

3.1.5 Comparison of the liquid software programming frameworks

In this final section of the literature study regarding liquid software, two programming

frameworks mentioned in [7] will be compared. They are called Liquid.js for DOM (LfD)

and Liquid.js for Polymer (LfP). The comparison is based on the design space discussed

in Chapter 3.1.4 and described in [7]. These are two frameworks with the same goal,

but developed in parallel by different teams.

3.1.5.1 Overview

On the one hand, LfD is a framework based on virtualized DOM trees. Virtualized

DOM trees are a way of quickly manipulating DOM trees through an abstraction layer.

It is deployed as a JavaScript file and runs on the client. This means it has to be in-

cluded in the application. Some initialization code also has to be implemented. On the

other hand, LfP is a framework based on web-components and the Polymer project by

Google. A LiquidBehaviour class can be instantiated into the definition of a component

and can define which properties of the component should be liquid.

3.1.5.2 Topology and Code Deployment

LfD can use both a centralized topology and a decentralized one. It is made such that

any communication protocol can be used to transfer the application. Right now, it uses

WebSockets and all data needs to go through a centralized server. LfP however, aims to

be as decentralized as possible. With LfP, the states are transfered through a peer-to-

peer channel using WebRTC.

Both LfD and Lfp work on an on-demand basis and can be cached afterwards. Individ-

ual components can be cached separately when using LfP. With LfP, any client can re-

quest any other client their copy of the application to enable client repository paradigm.

This is not possible for LfD.

3.1.5.3 Granularity

For LfD, the entire application is always sent to synchronize. This means that the user

can not choose what should be liquid and what not. However, only differences in the

DOM tree are sent to limit data consumption. LfP is component based and allows sin-

gle components to be synchronized independently. This way, it is possible for the user

to keep certain parts of the application private.
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Figure 5: The four levels of abstractions LfP can transfer to another device.

3.1.5.4 Liquid User Experience

LfD and LfP support all liquid use cases except forwarding. LfD is developed with mi-

gration being its top priority, but both forking and cloning are possible too. For LfP,

four levels of abstraction were developed. Devices, assets, components and properties

can all be separately transferred to another device. The differences between these 4 lev-

els of abstractions are depicted in figure 5 [7]. The devices consist of assets and compo-

nents. Assets are the definitions of components and components have properties that

define how it behaves [19].

3.1.5.5 State and data

LfD sends the state and data of the application to another device by comparing the ini-

tial DOM tree with the current DOM tree and the difference between the two is sent.

The developer can choose when to send the state and data. (For example with the press

of a button or when a change in the tree occurs). Sequential use is perfect for this, but

simultaneous use is also possible because conflicts are minimized. The framework sup-

ports both trickle and batch updates [13].

LfP stores the state and data of the application in the clients by default. The developer

can however choose to store the state and data in a centralized web-server. Only trickle

updates can be used.

3.1.5.6 Summary

Table 1 illustrates a quick summary of all the differences and similarities between the

two frameworks discussed in this section.

As can be seen, both frameworks have their advantages and disadvantages. However,

it can be seen that LfP has progressed further in the liquid field. With its support for

client repositories and decentralized topology, LfP enters the hybrid web applications

maturity level whereas LfD remains at the real-time web applications maturity level.

On top of this, LfP provides more freedom to choose which part of the application is
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LfD Lfp

Technology DOM-trees Polymer

Topology Centralized Decentralized

Code Deployment On-demand with caching On-demand with caching

and client repositories

Caching No individual components Individual components

Granularity Application level Component Level

Liquid use cases Migration, forking, cloning Migration, forking, cloning

Updates Trickle & Batch Trickle

Table 1: The differences between LfD and LfP.

liquid and which part is not. This freedom is not present in LfD. Both LfD and LfP

provide the same liquid functionalities. LfD does provide both trickle and batch up-

dates where LfP only provides trickle updates.

3.2 IoT Application Framework

Nowadays, IoT devices have relatively little computing power and only retrieve data

and send it to the cloud. But according to [20,21], IoT devices will become more power-

ful and will eventually be able to host applications. Following is a close analysis to the

dynamic, distributed platform, named liquidIoT, developed by TUT and the require-

ments it needs to satisfy. Lastly, continuous development (CD) for IoT programming is

discussed.

3.2.1 Implementing distributed systems

The first alternative that needs to be considered is the communication protocol between

peers, the two obvious alternatives being Web Services like SOAP and WSDL and the

RESTful style. SOAP, being resource-hungry and complex, is complicated for program-

mers in the usage of these services. REST provides scalability and is straightforward.

IoT devices very often provide simple interfaces and functionalities, so REST is the ob-

vious choice between the alternatives. Using REST as an interface for IoT applications

is a concept called Web of Things (WoT). In the platform suggested in [21], the user

interacts directly with the peers through their URL rather than with a mash-up that

interacts with the peers and filters the data. A service discovery mechanism needs to

present because users often need to interact with multiple peers. This mechanism has to

have a group communication mechanism in place for bulk operations.

Only services are not enough to make a distributed system. In IoT, innovation is often

a requirement for finding the best business cases. This requires rapid and regular up-

dates to the devices. Because in IoT not all devices are equally powerful and differ from
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each other, they do not need the same version at all times. The deployment mechanism

should automate the discovery process to avoid human errors when deploying new ap-

plications. The deployment mechanism should also be scalable, as many applications

need to be deployed and updated with single operations. Both of these reasons call for

CD.

3.2.2 LiquidIoT

With the requirements listed above, TUT developed a programming platform for IoT

devices called LiquidIoT. LiquidIoT consists of 3 components: the application frame-

work, the runtime environment and the resource registry. All will be explained in detail

now including the workflow of deploying an application and the communication between

the components.

3.2.2.1 The application framework

The application framework provides the developer with certain functionalities that he/she

needs to fill in with application specific code. There are three functions that need to be

filled in, as can be seen in figure 6. The first one is task. This is the function that gets

called on regular intervals. It is also possible to only execute this task once. The second

function is initialize. This gets called before the task function is called, like establishing

a connection. The third and final function is the terminate function. This gets called

before the applications stops and is used for gracefully killing connections with other

peers. Applications can also provide REST interfaces called application interfaces (API)

that can be called from anywhere in the network. Figure 6 displays all functionalities

the application needs.

Figure 6: The developer uses this framework to give the application the functionalities

it needs.

After all functionalities are filled in and the API’s are in place, the tool packs the appli-

cation in to one package. This contains a main.js file that defines the source code and
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main liquidIoT functions, which can be expanded by adding other source files, and a

Package.json file that includes some metadata like name and version. It also includes a

liquidiot.json file used for discovery and bookkeeping and a folder called resource that

contains any images or sounds. The package can then be deployed. The deployment

window can be seen in figure 7. The table on the right displays all applications that can

be deployed on the devices, displayed on the left.

Figure 7: This screen is used to deploy applications to devices. Another tab can be

used to manage the applications.

3.2.2.2 The runtime environment

The runtime environment is a system based on NodeJS [22] and it transforms any IoT

device to an application server that can host IoT applications. The runtime environ-

ment receives the code from the framework, prepares the application and notifies the

resource registry about its status.

3.2.2.3 Resource registry

All IoT devices and applications are in this system are managed by centralized system

called the resource registry (RR). It also contains a resource discovery system, which

will be explained in Chapter 3.2.2.5. It keeps track of all resources and their capabili-

ties. Resources are divided into four categories: applications, devices, device capabilities

and application interfaces.

3.2.2.4 Application deployment flow

When an application needs to be developed and deployed, the following steps are fol-

lowed. First, when a new device is installed, it registers itself to the RR. Secondly, the
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Figure 8: The flow of deploying and managing an application with LiquidIoT.

new application needs to be developed or an already existing application needs to be

found. Then, all suitable devices are found through the RR. The fourth step is deploy-

ing the application through the application management API provided by the runtime

environment. Then, the deployment returns the status of the deployment to the devel-

opment tool and if successful to the RR too. Now the developer can query the appli-

cation and finally manage and monitor the application through the RR. A diagram is

shown in figure 8.

3.2.2.5 Discovery Mechanism

In this Chapter, the technical details of the discovery mechanism used in LiquidIoT are

explained. All resources known to the RR are described in JSON format. All devices

have an id, name, location and a list of capabilities among other pieces of information.

It also has a list of applications which on its turn have an id, name, list of interfaces

and many more.

For the RR to find appropriate resources, a query language has to be used. It should be

easy to understand for all people that come into contact with it and it should support

complex query patterns. Currently the ArangoDB Query Language (AQL) is used due

to its similarity to the Structured Query Language (SQL) and its support for document

oriented structures. On top of this, AQL also has some procedural elements like a for-

loop.
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3.3 Continuous Delivery

Continuous delivery (CD) is the act of automatically testing of new pieces of code and

preparing them for deployment. When a new piece of code is written, it goes through

testing. If the code passes all automated tests, it goes to the automated release process.

Only the actual release is done manually. This has several benefits such as an acceler-

ated time to market, improved productivity and reliable releases [23].

CD is mostly used in cloud-based infrastructures. However, [20] has found similarities

between CD for cloud-based Internet services and IoT applications. When deploying a

new application with CD, there are several deployment patterns, all with advantages

and disadvantages. The most straightforward method is in-place deployment. Here,

the new version replaces the old one and only a short downtime is present. If only the

application changes, downtime can be short. However if a change of execution environ-

ment is necessary, downtimes may be larger. This method is easy to transfer to IoT.

Another method is rolling deployment. The in-place deployment pattern changes all

applications at once, where the rolling deployment pattern updates the applications se-

quentially. This strategy takes more time but has the advantage of having zero down-

time, as there is always one host running. Another advantage is that if the new version

is faulty, the old version can be rolled back before all applications have been changed to

the new faulty one. This pattern requires a balance-loader to regulate which application

needs to be updated at what time. This is not easily integrable to IoT because of the

need of a balance-loader.

One more method that will be discussed is the blue-green deployment pattern. Here,

when the application needs to be updated, the old application remains on the device

during transition. When the new software is stable, the URL’s are swapped and the

new version is active. Using this approach, zero down-time is present and a rollback is

easy as it only requires changing the URL’s back. A disadvantage is that the transfer

of persistent data between versions is complicated. With the mindset of IoT devices

becoming more powerful, a limited version of the blue-green deployment pattern is inte-

grable.

Staging can also be used with the blue-green deployment pattern. Staging makes use of

a staging environment that is an exact replica of the production environment. IoT de-

vices are always tightly connected with the physical world, so a staging area is imprac-

tical. However, a simulator can be used. The staging environment can be hosted in the

target device as the new application. When the simulation runs correctly, the URL’s

can be swapped.

Canaries are a final optimization to application deployment. Canaries are a subset of

the IoT-devices that host the new applications, while all other devices still have the old

application. When all goes correctly with the canaries, it is to be expected that the ap-

plication will work too in the other devices. Staging, the blue-green deployment pattern
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with the integration of canaries, seems to be the most stable version of application de-

ployment.

3.4 Conclusion

To develop IoT-applications, a framework has been developed to easily code, manage

and deploy these applications. This framework consists of three main components: the

resource registry, the IDE and the runtime environment. The IDE is used to create, de-

ploy and manage all applications and devices. The RR is used to keep track of all appli-

cations and devices. Finally, the runtime environment is used to run all applications on

the devices.

Liquid software is a vision to make all applications liquid, meaning they can seamlessly

flow from one device to another. There are four main use cases regarding liquid soft-

ware. The first is forking. This means making a copy of an application, its state and

its storage and deploying it on another device. The second use case is migrating. Mi-

grating is the same as forking except that the original application gets deleted from the

source device after the transfer. The third use case is cloning. This is forking an ap-

plication and keeping state updates synchronized with each other. This means that all

cloned applications are always in the same state. The final use case is forwarding, where

the inputs and outputs of one device are forwarded to another device.

The design space is an important part to design liquid software. It discusses how the

liquid software is implemented. This includes state replication topology, application

source topology, the discovery mechanism, layering, granularity, client deployment and

state and data. Two frameworks have been developed that implement the facets of the

design space differently. LfP is at a higher maturity level and provides more freedom

regarding liquid support.
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4 Method

The goal of the thesis is to implement basic liquid functionalities such as migration,

forking and cloning in the IoT framework so that the IoT developer has minimal extra

work to implement these liquid functionalities. To achieve this, an incremental and iter-

ative way of working was used [24]. This means that only one problem was being solved

at a time. First, the existing code of the IoT framework was analyzed so that further

development would go fluently. Then work continued in small steps. The first step in

coding added support for communicating between IoT devices. Then, an extra tab was

added to the IDE. After every step, testing was done to make sure everything worked

as expected. When a test failed, a new design was made, developed and tested again.

Each iteration of code was reviewed by the research team led by Professor K. Systä and

feedback was provided to improve the code and liquid support. An illustration of the

iterative development method can be seen in figure 9.

Figure 9: To develop the project, an iterative way of working was used.

4.1 Design science research

Design science research (DSR) is an important research paradigm for information sys-

tems (IS). DSR for IS describes how to properly design a scientific artifact and then

research it. An artifact can be defined as multiple things, but in the scope of this thesis,

an artifact is a system design [25]. According to [26], there are seven research guide-

lines for a research to be a DSR. Firstly, the research must provide an artifact of some

kind. Secondly, the artifact should solve existing problems. Thirdly, the artifact must

be tested. Fourthly, the research must provide contributions to the field of the arti-

fact. Fifthly, the construction and testing of the artifact should rely on tested methods.
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Sixthly, the artifact should make use of existing and tested methods provided by oth-

ers. And finally, a DSR must be presented so its clear for technology-oriented as well as

business-oriented people.

This thesis provides a solution to implement liquid functionalities to IoT devices within

an IoT framework. The design of the functionalities has been described in the follow-

ing sections of this Chapter. The liquid functionalities are tested and the results of

tests and evaluations are presented in Chapter 5. The results are discussed in Chap-

ter 6. The construction of this research was based on a incremental design process, as

explained in the previous section. Several packages made by and tested by others were

used in the creation of the system, such as the tar-pack [27] package and Lodash [28]

provided by npm.

4.2 Migration and Forking

The implementation of migration and forking forms the basis of the other use cases of

liquid software. The only difference between migration and forking, is that the appli-

cation gets deleted from the source device after migration whereas it stays active after

forking of the source application. Because of this, both methods run the same code but

with an extra function that deletes the application for migration.

4.2.1 Algorithm of migration and forking

For migration and forking, the entire application code, state and local storage has to

be transferred to a new device. As can be seen in figure 10, the transfer consists of

three steps. Firstly, the IDE needs to send a signal to the source device that it needs

to migrate or fork its application. This signal contains the applicationID of the applica-

tion that needs to transferred, the URL of the target device and if the transfer method

should be a migrate or a fork. The sending of the signal does not necessarily have to be

done by the IDE. If the signal is correct, the application will transfer regardless of the

origin of the signal. Secondly, the source device needs to do the migration or forking.

To do this, the source device collects all necessary code-files from its application and

stores them in a separate directory. Then it polls the state of the application and saves

it in a JSON-format that is then saved in the same directory as the code. Afterwards,

the storage gets copied into that same directory. The storage contains all resources like

sound- and image-files. Finally, the directory that contains all information is packed

into a tarball with the .tgz extension-format. To do the packing, the device uses the

tar-pack package [27] provided by npm. This tarball is then sent to the target device

that handles it. The handling is explained in the next paragraph. Everything neces-

sary for migrating and forking, from collecting all required files to sending the tarball,

is done by the runtime environment. No extra code has to be added to the applications

written by the developer. It is important to notice that the IDE also sends a tarball to
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the target device when deploying a normal non-liquid application, without a state-file.

This tarball can also contain a number of resources.

Finally, when a target device receives a tarball, it unpacks it like it would unpack any

normal application that it would receive from the IDE. It saves the file that contains

the state of the source application for later use. When the application is deployed, a

function gets called from the application code before any task is ran. This function

reads the contents of the file that contains the state of the source application, and changes

its state accordingly. The application then reports its status to the RR and the IDE for

user feedback about the transfer. After this, the application code is ran as usual, with

the correct initial state.

Figure 10: The source device packs a tarball that it can send to the target device.

4.3 Cloning

To implement cloning, two alternative methods were developed for the communication

of state-changes. The first method uses peer-to-peer communication between applica-

tions, the second method communicates in a master-slave fashion. Here, the master is

the RR and the slaves are the applications. For both methods, a pushing technique is

used rather than a pulling technique. This means that when the state of an application

changes, it will forward this to other devices rather than the devices asking to other de-

vices if they have had any state-changes. Both methods use the same approach for the

transfer itself, as this is similar to forking with subtle additions. The methods for com-

municating state changes will be explained afterwards.

To keep applications synchronized, each application has a syncID. All applications that

are mutually synchronized have the same syncID. Applications that are not synchro-

nized with any other application, have a value of -1 for the syncID. This syncID is saved

in a separate file in the application that is used for all liquid purposes. This file right

now only contains the syncID. The file is generated in the browser-based IDE. When an

application gets deployed from the IDE, the syncID is always -1.
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Applications are synchronized if the state of the applications are the same. Synchro-

nization is necessary when a state change happens. A state change is defined as the ad-

dition of a variable, the deletion of a variable or the change in contents of a variable

within the memory. Applications can be ordered to not synchronize their state and only

accept state changes. This way, the application will listen to the applications that are

sending out their state changes.

State changes can be detected in three major ways. The first way is by polling the state

on a regular basis. This can be done using JavaScript’s setInterval method. For this ap-

proach, the application’s state has to be cached in memory and this cache can be com-

pared to the actual state of the application. When a change is detected between the

cache and the actual state, synchronization is necessary. The cache is always updated

to the actual state when a state has been detected.

The second way is by triggering an event when the state changes. Because JavaScript

does not call any event when a variable changes, this is harder to implement. A possible

solution can be made by altering the source code of JavaScript itself. The final way is

by only sending state changes when a specific function is called, implemented by the de-

veloper. This requires extra code for the application developer but expands the liberty

that the developer has. This has already been implemented in LfD [7].

4.3.1 Transfer of applications

When a transfer has been initiated by the user on the IDE, the application that is be-

ing cloned first needs to check its syncID. If the value of the syncID is not -1, the ap-

plication that needs to be cloned is already synchronized with other applications. In

this case, the source application can be forked. The syncID, application and state are

transferred to the new device. The application on the new device is automatically syn-

chronized with any other applications with the same syncID.

If, however, the value is equal to -1, the application needs to initialize the synchronize

operation. It does this by requesting a syncID from the RR. The RR then generates

a new random unique syncID and sends it back to the application that needs to be

cloned. The application saves this value and a normal fork can be initiated.

4.3.2 Peer-to-peer synchronization of the state

The first method for cloning applications uses a peer-to-peer communication protocol.

This means that in principle, no external server is necessary. This method does still re-

quire the RR that is present in the IoT framework. It uses the RR for receiving a syn-

cID and requesting synchronized devices. For the communication of the synchroniza-

tion, 4 steps are defined for the peer-to-peer approach, as can be seen in figure 11. The

steps are as follows:
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1. A state change happens in the first application.

2. Application 1 requests all applications with the same syncID as it from the RR.

3. The RR returns all applications with the syncID that was provided.

4. The first application publishes all state changes to the applications it received.

Figure 11: Synchronizing two applications with peer-to-peer communication.

The RR uses an AQL query to find all applicationIDs and the URLs for the devices

and sends it back when requested. The application that is sending the state updates

then sends data in JSON format to the second device via a POST method that contains

the applications ID (aid), the variables that have been added or changed (data), the

variables that have been deleted (dels), the synchronization ID (syncID) and the time of

the update (time). The device receives the POST data and sends it to the application

that changes its state accordingly. An example of the POST-data in JSON format can

be seen in figure 12.

Figure 12: Example of data that needs to be synchronized.

When an application requests all synchronized applications from the RR and it receives

an empty array, the device sets its syncID to -1 locally and requests the RR to update

its value to -1 as well. After this, the application is not synchronized anymore.
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4.3.3 Master-slave synchronization of the state

An alternative method for the synchronization of cloned application uses a master-slave

topology. As there is already an external server, the RR, present in the IoT framework,

no extra hardware is necessary. It is however possible to create a dedicated server just

for synchronization. As depicted in figure 13, three steps are needed for this method.

The steps are as follows:

1. A state change happens in the source application.

2. The device sends the state change to the external server.

3. The external server handles the state change and forwards it to all synchronized

devices.

The external server uses the same method as the option for synchronization to find all

synchronized devices and to send the synchronization data to target devices. However,

in this method, the external server can decide whether to accept or drop any synchro-

nization requests. This enables more control over the system, as all states are central-

ized and conflicts can be handled in a centralized place.

Similarly to the first method for synchronization, when a device requests synchroniza-

tion and no other devices are synchronized with it, the external server will urge the de-

vice to change its syncID value to -1 so that it is no longer requesting synchronization.

Figure 13: Synchronizing two applications in a master-slave fashion.

4.3.4 Synchronization collisions

When a state change happens in two applications at approximately the same time,

they will send the state changes to each other, which will result in a collisions where

the devices have different states. To solve this, [29] has proposed a solution that uses

timestamps. Firstly, an example of a certain use case is given which results in a non-
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synchronized state. For simplicity, time-steps of 1ms are presumed and sending the new

state to other applications takes 2ms to travel over the communication channel.

Time Application 1 Application 2 Communication channel

0ms State changes to 1 Idle in state 0 Idle

1ms Idle in state 1 State Changes to 2 Transmitting state 1

to application 2

2ms Idle in state 1 Idle in state 2 Transmitting state 1

to application 2 and state 2

to application 1

3ms Idle in state 1 Receive state of application 1 Transmitting state 2

to application 1

4ms Receive state of application 2 Idle in state 1 Idle

5ms Idle in state 2 Idle in state 1 Idle

Table 2: When two applications have a state-change close to each other, synchroniza-

tion issues arise.

As depicted in table 2, two applications can result in different states after a synchro-

nization attempt. This is because a state change happened in application 2 while the

state change of application 1 was still transmitting, which resulted in a swap of states

rather than a synchronization of states. To solve this, timestamps are added to each

state change and each application saves the timestamp of the last state change. When

an application receives a state change, it will first check if the state change is newer

than the last state change. If it is newer, the state change is accepted, otherwise it is

discarded. Only timestamps of accepted state changes are saved. Table 3 depicts the

same situation as table 2, but with the solution in place. The text in red depicts a dis-

carded received state change. The variable t is the saved timestamp of the last accepted

state change for the two applications.

Time Application 1 Application 2 Communication channel

0ms State changes to 1 (t=0) Idle in state 0 (t=0) Idle

1ms Idle in state 1 (t=0) State Changes to 2 (t=1) Transmitting state 1

to application 2

2ms Idle in state 1 (t=0) Idle in state 2 (t=1) Transmitting state 1

to application 2 and state 2

to application 1

3ms Idle in state 1 (t=0) Receive state of application 1 Transmitting state 2

to application 1

4ms Receive state of application 2 Idle in state 2 (t=1) Idle

5ms Idle in state 2 (t=1) Idle in state 2 (t=1) Idle

Table 3: Synchronization issue solved using timestamps.

The end state of both application is now the same, with minimal extra resources needed.

This is because application 2 discarded the state of application 1. It did this because

application 2 itself had already done a more recent state change.
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4.4 Technical changes

In this section, the technical changes made in the code for every part of the IoT frame-

work are explained. The code is available on GitHub, the links for the different compo-

nents of the IoT framework can be found at the end of this section.

In the non-application specific code of the runtime environment, three new endpoints

were added on the device level. The first endpoint is to migrate or fork an application

running on the device. The second one is to clone an application and the final endpoint

is to pass along synchronization data to the correct application. These endpoints then

execute the relevant parts of the code to do the liquid transfer. An organized table of

all new endpoints at the device level in the runtime environment can be seen in table 4.

On the application level, four new endpoints were added. The first endpoint is used to

receive synchronization data passed on by the device. The second endpoint is used to

save the current state of the application. The third returns the syncID of the applica-

tion and the final endpoint saves a newly received syncID. Furthermore, a setInterval

method was added to check for state changes in the application. This method can call

request the synchronized devices from the RR and send synchronization data to other

applications. A schematic overview of the new APIs added to the application level of

the runtime environment can be found in table 5. The new endpoints of the device and

application are illustrated in figure 14.

Figure 14: The endpoints added to the device and application level of the non-

application specific code.

The IDE works with Angular 1 and Jade templates. Because of this, no extra design

had to be done to implement the extra tab. The use of Jade and Angular 1 resulted in

good reusable and reliable code so that little code had to be added to implement the

liquid functionalities.

The RR has only been expanded by two new endpoints. The first endpoint is used to

generate a new syncID when requested by an application. The second endpoint trans-

mits the synchronization data when making use of the master-slave fashion with cloned
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applications. These functions make use of queries written in AQL to make sure that no

two identical syncIDs are generated and to find synchronized devices. A structural rep-

resentation of all new APIs for the RR can be found at table 6.

4.4.1 REST APIs

This section illustrates all new REST APIs added to the program in a constructive

manner.

URL Method Parameters Description

/transfer POST id Migrates or forks the application with its

url id equal to id to url. del indicates

del if the current application should be deleted.

/clone POST id Clones the application with its id equal

url to id to url.

/sync POST aid Relay the entire body to the

application with aid

Table 4: The REST APIs present in the runtime environment at the device level.

URL Method Parameters Description

/sync POST time Sets all applications variables to the

data ones represented in data and deletes

dels the ones represented in dels.

/savestate GET / Saves the state to a file.

/syncId GET / Returns the syncID.

/saveSyncId POST syncId Saves a new syncId.

Table 5: The REST APIs present in the runtime environment at the application level.

URL Method Parameters Description

/generateSyncId GET / Returns a new syncID.

/stateupdate POST syncId Sends the body to all applications

aid with the same syncId except for

the application with id aid.

Table 6: The REST APIs present in the resource registry.

4.4.2 Links to code

The code for the IoT framework components can be found at following links.

Resource Registry: https://github.com/caspervranken/liquidiot-server/tree/CasperRR
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Runtime environment: https://github.com/farshadahmadi/liquidiot-server/tree/Casper-

clone-p2p

IDE: https://github.com/caspervranken/liquidiot-IDE
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5 Results

The three main liquid functionalities, migrating, cloning and forking were added to the

framework. In this Chapter, it is explained how the user can use these functionalities

within the framework. The functionalities are also tested on speed and correctness.

These results are then discussed in Chapter 6.

To include all liquid functionalities in the IDE, a new tab was generated in the deploy

and update window. The contents of the new tab can be seen in figure 15. On the left

hand side, the different applications can be seen that are installed on devices. The table

on the right displays all available devices. Three buttons are available for the different

integrated liquid use cases: migration, forking and cloning.

Figure 15: The tab created for all liquid use cases.

N applications installed on devices can be selected and M devices can be selected on the

right hand side to initiate a liquid transfer. Every application will do the liquid transfer

to all devices selected. If a liquid transfer is initiated, the IDE sends the list of selected

devices, together with the selected liquid use case, to all applications that then handle

the request.

To initiate a liquid transfer of any kind, the developer does not need to add any addi-

tional code to the application. All applications deployed by the IDE are liquid by de-

fault. This is because all liquid functionalities are implemented in the runtime environ-

ment and non-application specific code. Because of this, it is not possible to declare

components of the application non-liquid.

5.1 Test setup

A network of 4 Raspberry Pi 3 Model B’s was installed and connected through a local

network to test the altered IoT framework. This enabled P2P communication between

the devices. The RR and IDE ran on a Ubuntu virtual machine running on a Intel-i5

dual core laptop with 8GB of memory with Windows 10. This laptop was also in the

same network. The database linked to the RR ran on a virtual machine outside the lo-

cal network. A diagram of the setup is depicted in figure 16.
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Figure 16: A schematic representation of the test setup.

To test migration and forking, the time taken from receiving the signal from the IDE

to preform a liquid transfer to another device receiving and reporting a good transfer

is measured. This time is also dependent on the network characteristics. The same is

done for cloning, but the amount of synchronization messages between all devices is also

measured. The task of the IoT applications gets called every second. The code depicted

in the listings below, is used to test all liquid functionalities of the IoT framework. It

contains JSON objects, arrays and normal variables. Measuring the time it takes to do

a liquid transfer and the amount of synchronization messages with the same program

across the devices, results in a good representation of the traffic on the communication

channel and the speed at which the liquid transfers happen.

$app.$configureInterval(true , 1000);

$app.$initialize = function(initCompleted){

$app.people = [{"name":"Name 1","age":21} ,{"name":"Name 2","age"

:19}];

$app.counter = 0;

initCompleted ();

};

$app.$task = function(taskCompleted) {

$app.counter = $app.counter + 1;

for(var i = 0; i < $app.people.length; i++){

if($app.counter %3===0){

$app.people[i].age = $app.people[i].age +1;

}

console.log("Person " + i + "’s name is " + $app.people[i].name

+ " and is aged " + $app.people[i].age + ".");

}

taskCompleted ();

};

$app.$terminate = function(terminateCompleted){

terminateCompleted ();

};

Listing 1: Code for testing the liquid capabilities of the IoT framework
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5.2 Migration and forking test results

Migration and forking were tested by initiating a liquid transfer with varying amounts

of resources attached. The amount of resources attached were 0MB (no resources folder

present), 1.9MB of resources and 3.6MB of resources. These resources were arbitrary

pictures and sound files. The average time needed to do the liquid transfer with a cer-

tain amount of resources is given in table 7. Another test was used to measure the im-

portance of target devices in migration or forking time. The average time to migrate or

fork an application with no resources folder for different amounts of target devices can

be seen in table 8. The averages were made over five measurements and all raw mea-

surements can be found in appendix A.

Resources (MB) Time to migrate or fork (s)

0 0.313

1.9 1.597

3.6 1.604

Table 7: The time to migrate or fork the application with varying amounts of resources.

Amount of target devices Time to migrate or fork (s)

1 0.313

2 0.306

3 0.316

Table 8: The time to migrate or fork the application with varying amounts of target

devices.

5.3 Cloning test results

Testing for cloning was divided in to two parts, one for the liquid transfer and one for

state synchronization. The testing for liquid transfers is identical to the testing for mi-

gration and forking. To test synchronization, the amount of synchronization messages

was measured during a time span of 10 seconds with a varying amount of devices syn-

chronized. The amount of time needed to clone one application with varying amounts

of resources is given in table 9. For this test, only one target device was present. The

amount of synchronization messages for a certain amount of synchronized devices is

given in table 10.
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Resources (MB) Time to clone (s)

0 0.494

1.9 1.801

3.6 1.803

Table 9: The time to clone the application with varying amounts of resources.

Synchronized devices Amount of messages in 10s.

2 21

3 30

4 42

Table 10: The amount of synchronization messages sent between a certain amount of

synchronized devices.
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6 Discussion

6.1 Migration and forking

In the implemented method for migration and forking, the application source topology

uses client repositories. Applications are received through the other peers in the net-

work when a sequential transfer happens. The discovery and layering are already pro-

vided by the IoT framework. The liquidity operates at the virtual machine level, all ap-

plications are liquid by default. This is because the packing is done on the device rather

than on the application. The applications are downloaded and installed on the devices,

this means they are able to run in off-line mode. The applications are thick-clients, as

the model, view and controller are all present on the device running the applications.

As stated in the previous Chapter in tables 7 and 8, the speed of migration or forking

solely depends on the amount of resources present in the application to be transferred.

When no resources are present, the average time to migrate or fork is 0.313 seconds.

The time to migrate or fork barely changes when doubling the amount of resources.

This indicates that including a resource folder adds between 1.2 and 1.3 seconds to the

migration or forking. The amount of target devices has marginal impact on the time to

migrate or clone.

6.2 Alternative method for migration or forking

The implemented method for migrating and forking uses the power of the devices to

pack the state and application of the source device into a tarball and to send this tar-

ball to the target device. An alternative method can be used when the computational

power is limited. Here, the IDE sends a request for a liquid transfer to the source de-

vice. The source device then saves the state to a state-file and sends it back to the

IDE. Because the IDE is used to initially deploy applications, they have the source-code

saved for every application that is deployed. It is also possible to save all applications

on the RR and use the RR to do the following process. It then packs this application

together with the received state-file into a tarball and sends it to the target device. Fig-

ure 17 depicts this process. The steps are as follows:

1. A request for a liquid transfer is sent to the source device.

2. The source device polls the state and sends it to the IDE.

3. The IDE packs the application together with the state-file into a tarball and sends

it to the target device.

4. The target device reports the state of the deployment.

An advantage of using this approach is that the computational power is focused on the
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Figure 17: The IDE packs the tarball and sends it to the target device.

PC or laptop running the IDE or the server running the RR rather than on the weaker

IoT device. This advantage will however become more irrelevant over time as IoT de-

vices get more powerful over time [5]. A major disadvantage is that the IDE or RR

must have every application stored. This is not necessary for the implemented method,

as the IDE only needs to have the application stored at deployment. Right now, the

RR never stores the applications. The energy consumption due to communication does

not play a major role, as the energy cost for setting up a WiFi connection is high rela-

tive to the energy cost per bit sent [30] and the number of connections created is equal

compared to the implemented method. The design space is similar to the implemented

method except for the application source topology, which uses a master repository in-

stead of client-repositories.

6.3 Cloning

To communicate state-changes between applications, there are two alternatives: peer-to-

peer and master-slave communication. When using the peer-to-peer alternative, fewer

hops are needed for communicating the state-changes. There also is less load on the

RR. Both alternatives use a pushing technique rather than a pulling technique. This

is because of the size of the network of the devices. The framework is made to support

thousands of IoT devices, each running the synchronized application. When a pulling

technique is used, each device has to poll every other device on a regular basis. Thus

for a network consisting of n devices, n2 connection are necessary. This results in a high

bandwidth and a lot of computing power. The pushing technique bypasses this problem

by only sending the state changes when a state change has happened. For the same net-

work consisting of n devices, the best case only uses n connections while the worst case

(all applications having a state-change simultaneously) has n2 connections. The pushing

technique thus uses fewer or an equal amount of connections than the pulling technique.

To detect state-changes, the polling technique is used. The polling technique does not
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need to poll very often in this use case. This is because IoT devices typically only record

the environment in the order of seconds. Because of this, the polling can be done in the

order of milliseconds and still be accurate. The event-based technique would require al-

tering the source-code of JavaScript.

To prevent synchronization collisions, a timestamp is added to every state-change. This

approach assumes in its current form that all clocks are synchronized over the devices.

Due to clock drift [31], the clocks of the different devices will differ after some amount

of time. There are fortunately a number of ways to synchronize clocks in distributed

systems [32, 33]. It is also possible to create a dedicated time server to synchronize

across all devices. This time server first fetches the time of all devices in the network,

averages these times and reports back to all devices how much they should alternate

their time. This is referred as the Berkeley algorithm for clock synchronization and has

proven itself useful and efficient [34].

Chapter 5 depicted the time to clone and the amount of synchronization messages be-

tween certain numbers of synchronized devices in tables 9 and 10. The time it took to

clone an application without any resources was on average 0.494 seconds. This is about

0.2 seconds more than the time it takes to migrate or fork. This is because the appli-

cation has to request a syncID from the RR. The same amount of extra time can be

found when resources are included. This is because cloning and migration initializations

have a lot of shared code. When 2 devices were synchronized, 21 synchronization mes-

sages were measured in a time span of 10 seconds. This is 1 more synchronization mes-

sage more than expected. The target device when hosting a new cloned application first

sets its new applications state to completely empty, which is then immediately changed

by the initialization code of the application. This results in an extra synchronization

message per cloned application. When 3 devices were synchronized only 30 synchroniza-

tion messages were measured, which is 2 less than expected. This can be caused by a

lag in the communication channel. The amount of synchronization messages is linear

with the amount of synchronized devices.

6.4 Alternative method for cloning

The current method for synchronizing cloned applications uses a syncID to determine

which application is synchronized with which. An alternative method for synchronizing

could save all synchronized applications in the application’s storage. This would require

extra storage but fewer connections would be necessary and no external server would

need to be present.

A challenge in this approach is to keep all applications updated with what they need to

be synchronized with. When a device running a synchronized application is offline for

a short amount of time and then a new application gets synchronized, the application

that was offline would not know of this new application. These issues have already been
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solved by decentralized storage systems [35].

The major advantage of using this approach over the implemented synchronization ap-

proach is that no external server is needed, thus no single-point of failure is present in

the system. A minor disadvantage of using this approach is that more storage is needed

on the IoT devices. This is becoming more irrelevant because the cost associated with

SSD storage has been plummeting every year [36]. The storage needed to save data

about IoT devices is also tiny. Assuming that every device takes up 100 bytes of mem-

ory, 1000 synchronized devices would only take up 100kB of extra storage.

6.5 UI in liquid software

Future work in implementing liquid software in the IoT framework could be the includ-

ing of UI adaptation in the implemented liquid functionalities. Right now, the migra-

tion, forking and cloning do not consider UI and only operate on the scripting level.

Both LfD and LfP consider a different approach to include the UI and adapt it to dif-

ferent devices.

LfD is made for shadow DOM-trees and can thus include libraries like Bootstrap that

use CSS-class to make the UI responsive [37]. This also exists for the Polymer project,

but to a lesser extent [38]. The choice of technology for the IoT UI is thus an arbitrary

one, as long that the technology is sufficiently mature.

What does matter is the way that the UI gets transferred to the new device. One way

is to use to subtract the original UI from the current UI to get difference between the

UIs or the delta. This is the way LfD works and it does this by the use of virtual DOM-

trees. This delta can then be added up to the original UI in the new device to replicate

the UI from the source device. Another way is to set components of the UI to liquid

and then always send these elements to the new device. This approach is used by LfP.

Another way is to send the entire UI to the new device, this would minimize complexity

but would increase bandwidth.
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7 Conclusion

IoT devices have grown in power over the years and will continue to follow this trend.

IoT devices will soon be able to host applications. To mass-deploy and manage these

IoT-applications, TUT has developed a IoT-framework. Besides this IoT framework,

liquid software is on the rise caused by the increasing number of devices per capita.

Liquid software states that applications, state and data should not be bound to one de-

vice, but should flow between all devices available to the user. There are four main use

cases regarding liquid software: migration, forking, cloning and forwarding.

The goal of this Master’s thesis was to combine the TUT developed IoT-framework

with three of the liquid use cases (migration, forking and cloning). This means that ap-

plications hosted on the IoT-devices in the framework should be able to migrate and

fork, as well as synchronize their data when cloned.

To migrate and fork applications, the current state of the data is polled and saved to a

file. This file is then packed together with the application into a tarball that then gets

sent to the target device(s). When a migrate happens, the current application is deleted

from the source device. This does not happen when forking. Cloning includes forking

an application and keeping both the source and target application synchronized.

To synchronize applications, the state of the application that needs to be synchronized

is polled on a regular interval. When the polling detects a change in state, it will send

this change to the target application. This can be done in a P2P or master-slave fash-

ion. The synchronization can result in synchronization collisions where two applications

end up with different states. To solve this, timestamps were added to the synchroniza-

tion updates.

To test the liquid functionalities of the IoT framework, a setup was made consisting of

four Raspberry Pi 3 Model B’s, the RR and IDE running on a virtual machine all con-

tained in a LAN. The RR was connected to an external database. The migration, fork-

ing and cloning of an application were all much faster without resources attached in the

source application. When a resources folder is present in the source application, the size

of it plays a marginal role. Cloning takes 0.2 seconds longer than migration or forking

due to the extra part of receiving a syncID from the RR. The amount of synchroniza-

tion messages between cloned applications was as much as expected.

The combination of liquid software and the IoT framework resulted in a new tab being

created in the IDE. In this tab, N applications could be selected on the left-hand side

to do a liquid transfer on M devices selected on the right-hand side of the tab. Three

buttons were added for the three liquid functionalities implemented in the framework.

In future work, computational load can be taken off the IoT devices when migrating or

forking by using alternative methods. One way is to pack the application at the IDE or

RR for migrations and forks with a state file received from the source device. This low-
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ers the computational power needed on the source device but requires all applications

to be on the IDE or RR. For cloning, an alternative method can be used as well. All

applications could save a list with all other applications it is synchronized with. This

would remove the single point of failure that is now present when cloning and would re-

quire less connections. It would however require more storage, but this is a minor issue

as SSD storage gets more compact and cheaper over the years.
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using virtual dom trees,” Current Trends in Web Engineering, pp. 142–154, 2016.

53
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A Test measurements

Migrate or Fork Clone

Resources (Mb) Tijd (s) #Target Devices Resources (Mb) Tijd (s) #Target Devices

0 0,284 1 0 0,492 1

0 0,283 1 0 0,512 1

0 0,372 1 0 0,476 1

0 0,296 1 0 0,506 1

0 0,329 1 0 0,485 1

1,9 2,251 1 1,9 1,68 1

1,9 1,286 1 1,9 2,017 1

1,9 1,521 1 1,9 1,543 1

1,9 1,85 1 1,9 2,266 1

1,9 1,079 1 1,9 1,499 1

3,6 1,588 1 3,6 1,681 1

3,6 1,83 1 3,6 6,302 1

3,6 1,489 1 3,6 1,897 1

3,6 1,509 1 3,6 1,689 1

3,6 4,693 1 3,6 1,945 1

0 0,304 2

0 0,271 2

0 0,296 2

0 0,315 2

0 0,346 2

0 0,323 3

0 0,337 3

0 0,283 3

0 0,29 3

0 0,348 3

Table 11: Raw test measurements.
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