
Master’s Thesis Engineering Technology

Supervisors / Cosupervisors:

David De Schepper

Implementation of an open-source PROFIBUS 
interface between ROS and a Panasonic robot

Prof. Dr. Ir. Eric Demeester

Ir. Jeroen De Maeyer

Master of Energy Engineering Technology

Jorn Geutjens

Master of Energy Engineering Technology

2017-2018

Over the last decades, a substantial part of
robotics research has focused on path
planning algorithms for robotic manipulators.

These novel algorithms make an abstraction
of the underlying robotic hardware: they
generate robot motion commands and expect
robot state information in a specific format
that is independent of the proprietary
language in which commercial robots are
typically programmed.

Therefore, for each commercial robot that
needs to be controlled using these
algorithms, a driver is required to transform
the robot-independent commands to robot-
specific commands and vice versa. ROS is an
example of an opensource robot software
platform in which such drivers can be
developed [1].

1. Create a robot model of the Panasonic VR-006L robot in ROS (figure 1);
2. Translate ROS commands to commands that can be interpreted by the 

Panasonic robot controller (unidirectional);
3. Create a robust bidirectional interface.

Figure 1: The Panasonic VR-006L robot at ACRO

ImplementationIntroduction

Create a model (figure 2) of the
robot in ROS. This is performed by
making a URDF (Unified Robot
Description Format) file, which
describes the kinematic and
geometric relations between the
links and the joints of a robot. ROS
needs this for visualisation, path
planning and collision detection.

Figure 2: Robot model of the Panasonic VR-006L visualised
with the joint frames in RViz

Make a physical connection between ROS and the
controller. Figure 3 shows a schematic representation of
the bidirectional setup. Since the Panasonic robot
controller has got a PROFIBUS card, a connection using
this fieldbus is obvious. To connect ROS with the robot,
an open implementation of the PROFIBUS-DP protocol in
Python is used [2],[3]. This makes it possible to run our
driver in ROS and send commands to the inputs of the
controller. Then, a Panasonic program on the controller
reacts to the inputs accordingly. Finally, a USB to RS485
adapter makes it possible to send data from ROS to the
robot controller using differential voltages over the
PROFIBUS-DP network.

Figure 3: Bidirectional setup

1. A robot model of the Panasonic VR-
006L manipulator in ROS has been
made.

2. An offline program for making csr files
(Panasonic-specific file containing all
the information of the robot program)
from ROS commands has been
established.

3. An online ROS driver using an open
PROFIBUS implementation has been
realised. Figure 4 shows an execution
of a real movement visualised in RViz.
The driver is based on Panasonic’s G2
robot controller, of which the biggest
limitations are that it cannot read in
joint positions and sending these back
to ROS. Therefore, an upgrade to a G3
controller with an Ethernet connection
is suggested for future work to make
accurate and reliable path planning
possible.

Figure 4: Generated movement visualised in RViz

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. 
Mg, “ROS: an open-source Robot Operating System,” Icra, vol. 3, p. 5, 2009.
[2] M. Büsch, “PROFIBUS software stack,” 2016, last visited on 20-05-2018. [Online]. 
Available: https://bues.ch/cms/automation/profibus.html
[3] ACROMAG, “Introduction to PROFIBUS-DP,” ACROMAG, Tech. Rep., 2002.

Objectives

Results


