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Summary

Dealing with missing data via parametric multiple imputation methods usually implies

stating several strong assumptions about both the distribution of the data and about un-

derlying regression relationships. If such parametric assumptions do not hold, the multiply

imputed data are not appropriate and might produce inconsistent estimators and thus

misleading results. In this paper, a fully nonparametric and a semiparametric imputation

method are studied, both based on local resampling principles. It is shown that the final

estimator, based on these local imputations, is consistent under no or fewer parametric

assumptions. Asymptotic expressions for bias, variance and mean squared error are de-

rived, showing the theoretical impact of the different smoothing parameters. Simulations

illustrate the usefulness and applicability of the method.

Some key words: Bootstrap; Kernel weights; Multiple imputation; Missing value; Nonpara-

metric imputation; Nonresponse; Semiparametric imputation.



2

1 Introduction

There exist many ways to deal with missing data problems, ranging from the most naive

one of focusing on the complete cases only to well-defined parametric, semiparametric and

nonparametric approaches. Our approach is novel in several aspects. We focus attention

on nonparametric smoothing methods to obtain multiple imputation estimators in a non-

Bayesian framework. Unlike most of the literature, which deals with missing covariate

values, our method allows for missing response data.

From the large literature on missing data, we highlight only a few particularly relevant

references. Kernel methods for imputation of missing values were introduced by Tittering-

ton & Sedransk (1989), who used kernel density estimation in combination with a nonpara-

metric bootstrap for imputing values. Their method does not directly account for relation-

ships between variables. For single imputation in a nonresponse setting, Cheng (1994) and

Chu & Cheng (1995) used kernel estimators in a regression model, providing a nonpara-

metric version of the so-called ‘poor man’s data augmentation’, which is known to under-

estimate variability, especially in cases with substantial missingness. For missing covariate

data, smoothing methods have been applied by Wang et al. (1998) to estimate selection

probabilities. Other semiparametric approaches, in the sense of not having to specify a

fully parametric model, although not directly in a smoothing context, are constructed for

drop-out models in Scharfstein et al. (1999).

We focus on scenarios where some of the variables are fully observed and some in-

volve missing measurements. The parameter of interest is a marginal parameter of an

incompletely observed variable, and the regression relationship between a partially ob-

served response variable and a fully observed covariate is exploited to augment the data.

Whereas multiple imputation is mainly regarded as a Bayesian technique (Rubin, 1978,

1987), the proposed methods are bootstrap-based (Efron, 1994). In the next section, we

introduce two classes of local bootstrap methods. The local resampling method is fully

nonparametric and hence relaxes distributional assumptions and assumptions concerning

regression functions. The local semiparametric resampling method still assumes that the

conditional distributions are, for example, locally normal but allows nonlinear conditional

mean structures. Throughout, we assume an ignorable nonresponse mechanism.

In the next section we introduce some basic notation and explain the imputation algo-

rithm. Section 3 focuses on the local bootstrap method, asymptotic results are presented
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in § 4 and the selection of the different smoothing parameters involved in the procedure, is

considered in § 5. Section 6 summarises the results of a simulation study.

2 Local imputation scheme

Consider one completely observed continuous variable X and one incompletely observed

continuous variable Y . The parameter of interest is a function θ(µX , µY ) of the two means.

Since there is no missing X value, the problem reduces to consistent estimation of µ = µY ;

estimators of other moments of Y and functions thereof can be obtained in a straightforward

manner. The main idea is to exploit the assumed regression relationship between X and

Y to yield better estimators for µ. Let Zi = (Xi, Yi, δi), i = 1, . . . , n, be independent

observations, where δi = 0 if Yi is missing and δi = 1 otherwise. Under the strongly

ignorable missing at random assumption (Rosenbaum & Rubin, 1983)

π(X) := E(δ|X) = E(δ|X,Y ). (1)

In other words, Y and δ are conditionally independent given X. Note that this assumption

is weaker than missingness completely at random since dependence on the observed variable

X is allowed. Little & Rubin (1987, p. 15), term data of this type missing at random but

not observed at random.

Our approach extends the local single imputation of Cheng (1994) to a non- or semi-

parametric version of a ‘proper’ imputation method and is related to the approximate

Bayesian bootstrap method as described in equation (3.7) of Efron (1994); see also Little

& Rubin (1987, § 12.4). An essential ingredient of the algorithm is the local generation

of Y observations. Let x be a specific value of X at which a Y value is to be generated

and let wj(x), j = 1, . . . , n, denote positive weights with
∑n
j=1 wj(x) = 1. The local resam-

pling method generates a Y value from the distribution L(x) with cumulative distribution

function
n
∑

j=1

wj(x)I{Yj ≤ y}. (2)

Detailed treatment of the choice of weights is postponed to § 3. First we describe the

steps of the local m-fold multiple imputation algorithm, where as an example, attention is

restricted to a normal likelihood in Step 2.
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Step 1: Resampling step

Fix ` between 1 and m. For each observation i = 1, . . . , n, if δi = 1, generate Y ∗
i (`) from

the distribution L(Xi). This is a nonparametric resampling of the observed data vectors.

Step 2: Imputation step

Fix ` between 1 and m. Given the data from Step 1, we create imputations for

the missing Y values. This can be done in several ways, using local resampling or

local semiparametric resampling. More explicitly, conditional on the resampled data

(Xi, Y
∗
i (`), δi), i = 1, . . . , n, we construct a distribution L∗

`(Xi), for local resampling, or

local estimators µ̂∗
`(Xi), σ̂

∗2
` (Xi), for local semiparametric resampling. If Yi is missing,

that is if δi = 0, we generate Y +
i (`) from L∗

`(Xi), for local resampling, or, for local semi-

parametric resampling, we generate Y +
i (`) from N{µ̂∗

`(Xi), σ̂
∗2
` (Xi)}. It is clear that local

semiparametric resampling is more efficient if normality holds. In both Step 1 and Step 2,

data are generated independently for i = 1, . . . , n, ` = 1, . . . ,m.

Step 3: Construction of the final estimators

For Ỹi(`) = δiYi + (1 − δi)Y
+
i (`), µ̂(`) = n−1 ∑n

i=1 Ỹi(`) is the estimator of the mean

based on the `th augmented dataset, and the final multiple-imputation estimator for µ is

µ̂ =
1

m

m
∑

`=1

µ̂(`).

The algorithm has the same structure as its parametric counterpart. Since an imputed

observation Y + is subject to extra variability, Step 1 is needed for obtaining a proper

imputation method (Efron, 1994). This extra randomness can be introduced in different

ways. The triplets (Xi, Yi, δi), i = 1, . . . , n, could be resampled with replacement; this is

case resampling. We opted for an alternative approach, where Y values are generated,

conditional on X and δ, incorporating the regression relationship between X and Y in a

nonparametric way. This approach is legitimate because of assumption (1), which states

that the missingness mechanism is noninformative for the parameter µ of interest. The

advantage of the method is that it generates samples with exactly the same range of X

values as in the original sample, avoiding samples which might only poorly reflect the

regression structure, the latter which is essential in Step 2.

The nonparametric imputation method is applicable in a wide variety of statistical

models, and can be used for discrete response data. The small adaptation needed for

semiparametric resampling is the specification of the appropriate distribution function in
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Step 2 of the algorithm. For examples of local likelihood estimators in multi-parameter

families, see Aerts & Claeskens (1997).

A local bootstrap method both avoids parametric assumptions and allows much more

flexibility in the regression design than does for example hot-deck imputation (Rao & Shao,

1992), where one requires a covariate to take on only a few different values, with replication.

3 Local bootstrap methods

The choice of the weights in the resampling scheme is crucial. Global uniform weights

δj/
∑

j δj would simply result in mean imputation of the Y -values, ignoring the regression

structure completely. More useful are kernel weights of the type

wj(x) =
δjKh (x−Xj)

∑n
k=1 δkKh (x−Xk)

(3)

where the kernel K(·) is a symmetric unimodal probability density function, Kh(u) =

K(u/h)/h, and h = hn is a bandwidth parameter converging to zero as the sample size

increases. It is not necessary to use the same set of weights in the resampling and imputation

steps. In particular, since the smoothing weights in Step 2 use a resampled set of data,

it is advisable to use a second bandwidth g = gn in a possibly different kernel L for the

construction of the weights in the imputation step. In case of possible confusion, choice of

bandwidth will be included in the notation.

Local weights (3) are defined such that observed Yj values, of which the corresponding

Xj is closer to the specific value x, and which are in an area with larger chance of having

missing observations, get larger weights. The latter is readily understood by rewriting the

weights (3) as wj(x) = δjw̃j(x)/π̂(x) where the classical Nadaraya-Watson weights w̃j(x) =

Kh (x−Xj) /
∑n
k=1 Kh (x−Xk) and where π̂(x) =

∑n
j=1 Kh (x−Xj) δj/

∑n
j=1 Kh (x−Xj)

is the kernel estimator for π(x). Thus we do not have to make any parametric assumptions

about the missingness probability distribution since this is automatically taken care of by

the kernel weights. The effect of π̂(x) on the weights stresses the importance of the few

available but highly informative Y observations in a ‘sparse’ area with a lot of missingness.

In the complete data case, Aerts et al. (1994) have shown that distribution (2) is con-

sistent and asymptotically normal for estimating the conditional distribution of Y given

X = x. They also showed that a resampling scheme based on this distribution leads to a

consistent bootstrap procedure. In an analogous way it can be shown that, if Y values are
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missing, (2) is a consistent estimator for the distribution function P (Y ≤ y|X = x, δ = 1).

Its mean equals the well-known Nadaraya-Watson estimator at x from the complete cases

(Nadaraya, 1964; Watson, 1964), which can be rewritten as µ̂(x) =
∑n
j=1 w̃j(x) δjYj/π̂(x),

where the numerator is the kernel estimator of E (δY |X = x) and the denominator esti-

mates E (δ|X = x) nonparametrically. It immediately follows from assumption (1), that

µ̂(x) is an estimator of E (Y |X = x). The variance of (2) is a consistent nonparametric

variance estimator. These provide alternatives to the local likelihood estimators in local

semiparametric resampling.

Given the known limitations of Nadaraya-Watson weights, alternative sets of local

weights are worth considering, such as biased bootstrap weights (Hall & Presnell, 1999),

constrained to make the adjusted estimator unbiased for linear functions. Here we define

w̆j(x) = δjKh(x − Xj) {1 + c(x−Xj)Kh(x−Xj)}−1 [
∑n
k=1 δkKh(x−Xk) {1 + c(x−Xk)

× Kh(x−Xk)}−1
]−1

, where c is the solution to the equation
∑n
j=1 δj(x − Xj)Kh(x −

Xj) {1 + c(x−Xj)Kh(x−Xj)}−1 = 0. These weights are asymptotically equivalent to lo-

cal linear weights. Hence they automatically correct for boundary bias, while remaining

positive. Alternative or additional constraints on the resampling distribution can be im-

posed in a similar way.

If the proportion of missingness would be known, missing data could be dealt with as

in a weighted-distributions regression setting, for which Ahmad (1995), see also Jones

(1991), derives a kernel estimator analogue to the direct sampling case. The corre-

sponding weights, with π estimated by the kernel estimator π̂, are defined as w̌j(x) =

δjw̃j(x){π̂(Xj)
∑n
k=1 δkw̃k(x)/π̂(Xk)}−1. The important difference from the weights (3) is

the evaluation of π̂ at the covariates Xj.

The performance of the above weights will be numerically illustrated in § 6.1, where it

turns out that the precise choice of weights has little effect on the final estimator.

If more than one variable is completely observed, local methods could take all of them

into account. However, in high dimensions kernel-based methods might lose some of their

attractiveness because of the curse of dimensionality.

4 Asymptotic expressions of bias and variance

The final estimator µ̂ is consistent, under conditions similar to those in Cheng (1994).

Smoothness conditions require µ(x), the conditional mean of Y given X = x, the den-
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sity function, fX(x), and the function π(x), to possess at least two bounded derivatives,

bandwidth sequences to tend to zero at a rate faster than n−1/3, and kernel functions K

and L in both steps to be bounded and symmetric probability density functions with finite

second moments. We also assume that Y has a finite second moment, and that all required

expected values are finite.

A first result shows that the final estimator µ̂ is asymptotically unbiased and that the

bias depends on both bandwidth sequences in a typical nonparametric way. For some

constants c1 and c2,

E (µ̂) = µ+ c1h
2 + c2g

2 + o(h2 + g2) , as n→∞. (4)

For the asymptotic variance of µ̂, we get as n → ∞, with additional constants c3, . . . , c6

and with σ2(X) = var(Y |X),

var(µ̂) = (mn)−1E [σ2(X){1− π(X)}/π(X)] + n−1[E{σ2(X)/π(X)}+ var{µ(X)}]

+n−2(c3h
−1 + c4g

−1) + n−1(c5h
2 + c6g

2) + o{(h2 + g2)n−1}, (5)

showing that µ̂ is root-n consistent as an estimator for µ. Outlines of proofs of (4) and (5)

are given in the Appendix. The second term on the right-hand side of var(µ̂) represents

the variance of a single mean imputation, as shown in Cheng (1994). The first term stems

from the multiple imputation approach with additional randomness generated in Step 1.

In the case of no missingness, the leading term in (5) reduces to var(Y )/n, as expected.

The constants ci depend on the second derivatives of µ(x), fX(x) and π(x), with respect

to x, as well as on second moments of the kernel functions.

The following central limit result holds

√
n var(µ̂)−1/2{µ̂− E(µ̂)} → N(0, 1), (6)

in distribution, with mean and variance as given by (4) and (5); see the Appendix for more

details.

The mean squared error of µ̂ is

MSE(µ̂) = c0n
−1+(c1h

2+ c2g
2)2+(c3h

−1+ c4g
−1)n−2+(c5h

2+ c6g
2)n−1+o{(h2+g2)n−1},

(7)

where c0 = m−1E [σ2(X){1− π(X)}/π(X)] + E{σ2(X)/π(X)}+ var{µ(X)}.
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In the remainder of this section we examine the behaviour of a particular estimator of

var(µ̂) by showing how it relates to expression (5).

In parametric multiple imputation estimation, the variance of µ̂ is typically estimated by

S2(µ̂) = Ŵ+(1+m−1)B̂, where Ŵ is the average within-imputation variance estimator, i.e.

Ŵ = m−1 ∑m
`=1 S

2
` , where nS

2
` is the unbiased sample variance within the `th augmented

dataset, and B̂ is the between-imputation variance, i.e. B̂ = (m − 1)−1 ∑m
`=1{µ̂(`) −

m−1 ∑m
k=1 µ̂(k)}2. It is shown in the Appendix that

E(Ŵ ) =
1

n

[

var{µ(X)}+ E{σ2(X)}
]

+O{(h2 + g2)n−1} (8)

E(B̂) =
1

n
E

{

1− π(X)

π(X)
σ2(X)

}

+O{(h2 + g2)n−1}, (9)

which proves the asymptotic unbiasedness of S2(µ̂) as an estimator of var(µ̂).

The construction of the variance estimator S2(µ̂) is simple and is exactly the same as

in parametric multiple imputation methods. This is an advantage over other estimators of

this variance, such as the nonparametric estimator of Cheng (1994), where an additional

smoothing parameter needs to be selected.

5 Optimal bandwidths

5.1 Asymptotically optimal bandwidths

The asymptotically optimal bandwidths minimise the dominant terms in (7). Terms of

order O(h/n) are negligible compared to order O{(nh)−2} terms, as long as h = O(n−α),

with α > 1/3. The same holds for g, where the order of g is not restricted to be the same

as the order of h.

By differentiating (7) and omitting all negligible terms, we find that both bandwidths

are O(n−2/5), yet with different constants, depending on c1, c2, c4 and c5.

Since the constants in front of the n−2/5 are functions of higher derivatives of µ(x),

these cannot be computed exactly for any dataset. Data-driven bandwidth selection is to

be advised, although in practice any ‘reasonable’ bandwidth choice will give satisfactory

results.
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5.2 Jackknife bandwidth selection

Using the asymptotically optimal order derived in the previous section, jackknife ideas can

be utilized to estimate the mean squared error of µ̂ for different choices of the bandwidths

h and g. A data driven selection of both smoothing parameters minimizes the estimated

mean squared error.

As a result of the double resampling estimation, the following jackknife procedure retains

all data generated in Steps 1 and 2, but modifies, for each i = 1, . . . , n, the imputed

data Y +
j (`) to Y

+(−i)
j (`) by shifting them to a new mean reflecting the deletion of the ith

observation while using hn−1 = Ch(n − 1)−2/5 and gn−1 = Cg(n − 1)−2/5. This idea was

inspired by the adjusted jackknife as proposed by Rao & Shao (1992). Here and in the

sequel, a superscript (−i) refers to exclusion of the ith observation.

Based on all the data, the conditional mean of the variable Y +
i (`) is given by µ̂+

n (Xi;hn, gn)

=
∑n
k=1 wk(Xi; gn)µ̂(Xk;hn) where µ̂(Xk;hn) =

∑n
j=1 wj(Xk;hn)Yj. Within each jackknife

run i, referring to deletion of the ith observation, the imputed observation Y +
j (`) is replaced

by the adjusted imputed value

Y
+(−i)
j (`) = Y +

j (`) + {µ̂+(−i)
n−1 (Xj;hn−1, gn−1)− µ̂+

n (Xj;hn, gn)},

where the notation explicitly mentions the bandwidths. Estimator µ̂(−i) is µ̂ based on

jackknife imputed values. The leading bias term of the average µ̄ of the jackknife pseudo-

values, µ̂n,i = {nαµ̂− (n− 1)αµ̂(−i)}/{nα− (n− 1)α}, cancels out when α = 4/5, and leads

to a bias-corrected estimator µ̄, which is called the generalised jackknife statistic (Gray &

Schucany, 1972). Since the bias of µ̂ is not O(1/n), the choice α = 1 corresponding to

Quenouille’s (1956) original jackknife pseudovalues is not appropriate here.

The difference b̂(µ̂) = µ̂− µ̄ is known as the jackknife bias estimator and the jackknife

variance estimator for µ̂ is given by vâr(µ̂) = {n(n − 1)}−1 ∑n
i=1(µ̂n,i − µ̄)2.; see Efron &

Tibshirani (1993, § 11.2). Both bias and variance depend on the values of the unknown

constants Ch and Cg. Optimal choices can now be derived by minimising the estimated

mean squared error, given by b̂2(µ̂)+vâr(µ̂). As illustrated in the next section, this jackknife

procedure succeeds in selecting a proper choice of Ch and Cg. An in-depth study of the

theoretical properties and the finite sample behaviour of this jackknife bandwidth selector

is beyond the scope of this paper and will be pursued elsewhere.
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6 Simulation results

6.1 A simulation study

The following methods for multiple imputation are included in this simulation study. The

first, naive approach uses the complete cases only. Among the parametric methods we

consider single imputation (Buck, 1960) and multiple imputation, according to Rubin (1978,

1987) and Efron (1994). These methods all assume a parametric regression relationship

between Y and X. Rubin’s multiple imputation assumes joint normality of (X,Y ). In

Efron’s bootstrap approach, the complete cases are resampled and used to fit a linear

regression model of Y on X in order to impute Y -values from a normal distribution with

estimated linear conditional mean function and estimated constant variance.

Three nonparametric approaches are also included. The first is a single imputation

method, in which a local linear estimator of the conditional mean is used to impute for

missing Y values (Cheng, 1994). The other two methods are those studied in this pa-

per, namely multiple imputation by local resampling or local semiparametric resampling,

employing different sets of local weights (1) wj, (2) w̆j, (3) w̌j; see §3.
In a first scenario Y observations are generated from a normal distribution with con-

ditional mean µ(x) = −3 + x + 7x2 and conditional variance σ2(x) = exp(3 + 0.2x). The

completely observed X variable follows a uniform distribution on the interval [0,10]. Val-

ues are missing with conditional probability 1 − π(x) = {1 + exp(0.5 − 0.1(x − 5)2)}−1,

which is largest at the ends of the interval. With these specifications, the true value of the

parameter of interest is µ = E{µ(X)} = 235.33 and the total percentage of missingness is

E{π(X)} = 0.57. In this and all other scenarios we took the number of multiple imputa-

tions to be m = 3. Other values, m = 5 and m = 10, gave very comparable results and are

not shown.

We generated 1000 samples {(Xi, Yi, δi), i = 1, . . . , n}. Table 1 summarises the main

results for n=200. Results for n=100 are similar and are not shown here. The standard

normal kernel function was used in all nonparametric imputation methods and all band-

widths were kept fixed. For the nonparametric single imputation only one bandwidth is

needed and was taken as 1.5. For the local semiparametric resampling the bandwidth in

Step 1 was h = 0.25 and in Step 2 we chose g = 1.5. The local resampling method used

the same bandwidth h = g = 0.25 in both steps. These choices are based on some initial
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experiments.

For each imputation method and each run we computed the multiple imputation es-

timate µ̂, its estimated standard error S(µ̂) and a 95% confidence interval µ̂ ± 1.96S(µ̂).

Averages of the point estimates are shown in columns 1 and 2 of Table 1. Column 3 shows

the simulated standard error of µ̂. Columns 4 and 5 show the average length of the 1000

confidence intervals and the simulated coverage probability. Rubin & Schenker (1986) sug-

gested adjusting additionally for the multiple imputation by using critical points based on

t with (m− 1){1+ (m/(m+1))(Ŵ/B̂)}2 degrees of freedom. The average lengths of these

adjusted confidence intervals and simulated coverage probabilities are shown in columns 6

and 7, only for the multiple imputation methods.

Table 1 About Here.

Next to linearity of µ(x), all parametric multiple imputation methods assume a constant

variance σ2(x). Moreover Rubin’s parametric multiple imputation assumes X to be nor-

mally distributed. The local resampling and local semiparametric resampling approaches

do not violate any model specifications.

As expected, the complete-cases method and the parametric imputation methods clearly

underestimate the true mean µ while the nonparametric approaches perform much better.

A comparison of the averages of the estimated standard errors and the simulated stan-

dard errors confirms the need for multiple imputation. Note that the average lengths of

the confidence intervals and the associated coverage probabilities are equal or larger for

the construction based on a t random variable (Rubin & Schenker, 1986) for all multiple

imputation methods. This approach reduces to the normal confidence intervals for single

imputation.

For this scenario there is not much difference between the local semiparametric resam-

pling and local resampling methods; both improve significantly upon the parametric meth-

ods. Also, there are almost no differences between the different local weighting schemes.

In a second scenario, response data follow a 6:4 mixture of N{µ(x), σ2(x)} and

Exp{1/µ(x)}, where µ(x) = 6 + (x − 2)(x − 4) + 5 cos(πx), σ(x) = exp(0.02x), and

logit{π(x)}=2 − 0.4x, resulting in µ = 17.33. Since there is more misspecification, dif-

ferences between parametric and nonparametric methods are more pronounced. Table 2

gives the simulation results for the local methods using bandwidths h = 1 and g = 1.5 for

n = 200.
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Table 2 About Here.

In this scenario, the semiparametric methods, using a normal local likelihood in Step 2,

turn out to be quite robust against the model misspecification. The local linearised weights

w̆j result in somewhat lower coverage probabilities, caused by a slight overestimation of µ.

Better results might be obtained if the bandwidth were be optimised in each simulation

run. The precise choice of local weights turns out to be of less importance.

Several parameters and underlying functions may influence the behaviour of the different

imputation methods. We experimented with some other variations of these simulation

settings, all leading to essentially the same conclusions. The local imputation method

improves upon the classical methods when one or more of the parametric assumptions are

violated. When all assumptions underlying the parametric multiple imputation methods

are fulfilled, local resampling and local semiparametric resampling do not outperform the

parametric approaches, although the loss in efficiency incurred by using unnecessarily a

local imputation method remains small.

6.2 Jackknife data driven bandwidth selection

As an illustration, we applied the jackknife method of § 5.2 to a randomly chosen sample

obtained from the first scenario in § 6.1, using the weights wj, defined in (3). For the local

resampling imputation, the grid 0.2, 0.25, 0.3, 0.5, 1, 2.5, 5, 20, 30, 40 was used for both

constants Ch and Cg. In this way 100 estimates of µ̂ and the corresponding mean squared

error of µ̂ were calculated. This resulted in a surface as shown in Fig.1(a). Figure 1(b)

shows the estimated mean squared error as a function of µ̂ using a loess fit. This shows

that lower values of the mean squared error correspond to estimates in the neighbourhood

of the true value µ = 235.33. The minimum is attained at µ̂ = 233.15, with bandwidths

h = 0.601 and g = 0.024. This latter plot also shows that different choices for h and g can

lead to a wide range of µ̂-values, from about 225 to 260, indicating that a precise bandwidth

choice is not unimportant.

Jackknifing with local semiparametric imputation was also examined for the same sam-

ple, using a Ch, Cg-grid based on 1, 1.5, 2.5, 5, 7.5, 10, 15, 20, 30, 40. Larger values were

needed, which seems plausible for a partly parametric approach. A plot of the estimated

mean squared error versus µ̂ is shown in Fig.1(c). The loess curve indicates a steeper de-

scent towards the minimum, but on the other hand there is more variability. Estimates in
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the range of 224 to 231 have more or less the same associated mean squared error. For this

sample, however, the local resampling method seems to do better. A similar experiment

was done with sample size equal to 100 instead of 200. The result is shown in Fig.1(d).

The curve seems to flatten out at its minimum of µ̂ = 236.39, corresponding to h = 0.396

and g = 3.170.

Our conclusion is that the jackknife method gives promising results but further research

is needed.

Figure 1 About Here.

Appendix

Proofs

Throughout the Appendix, we denote by E(·|O) the expectation conditional on Z1, . . . , Zn

and by E(·|O,R) the expectation conditional on Z1, . . . , Zn, Z
∗
1 , . . . , Z

∗
n, where Z∗

i =

(Xi, Y
∗
i , δi).

Proofs are given here for the local resampling algorithm; for local semiparamet-

ric resampling, the proofs are very similar. Arguments hold for any set of weights

on the observed data for which, with g a twice continuously differentiable function,
∑n
j=1 E{wj(X;h)g(Xj)} → E{g(X)}+O(h2). This condition holds for the weights studied

in § 3.

Proof of (4)

Since µ̂ is defined as

µ̂ =
1

m

m
∑

`=1

1

n

n
∑

j=1

Ỹj(`),

where Ỹj(`) = δjYj+(1−δj)Y +
j (`), the first term contributes to E(δjYj) = E{E(δjYj|Xj)} =

E{π(X)µ(X)}.Next, by definition of Y +
j (`), E{(1−δj)Y +

j (`)} = E[(1−δj)E{Y +
j (`)|O,R}] =

E{(1 − δj)µ̂
∗
`(Xj; g)}. Using the explicit formula µ̂∗

`(Xj; g) =
∑n
i=1 wi(Xj; g)Y

∗
i (`), condi-

tioning on the observed data and using a Taylor expansion, hereby making use of the

symmetry of the kernel functions K and L, we obtain that

E{(1− δj)Ỹj(`)} = E{µ(X)(1− π(X))}+O(h2 + g2).
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Together with the result for the first term, E (δjYj), this concludes the proof.

Proof of (5)

Conditioning on observed and first-stage resampled data, we obtain var(µ̂) = E{var(µ̂|O,R)}+
var{E (µ̂|O,R)}. By definition of the multiple imputation estimator µ̂, we have

E{var(µ̂|O,R)} = 1

mn
E [(1− δ1) var{Y +

1 (1)|O,R}]

=
1

mn
E [(1− δ1)E{σ̂∗2

1 (X1; g)|O}], (A)

where

σ̂∗2
1 (X1; g) =

n
∑

j=1

{Y ∗
j (1)− µ̂∗

1(X1; g)}2wj(X1; g).

The inner expectation in (A), which is conditional on the observed data, is most easily

obtained by explicitly rewriting {Y ∗
j − µ̂∗(Xi; g)}2 as (Y ∗

j )
2 − 2Y ∗

j µ̂
∗(Xi; g) + {µ̂∗(Xi; g)}2,

and by calculating the conditional expectation of each term separately, using computations

similar to those in the proof of (4). Proceeding this way, we obtain that

E{var(µ̂|O,R)} = 1

mn
E [{1− π(X)}σ2(X)] +O{(h2 + g2)n−1}.

Next, we turn to

var{E (µ̂|O,R)} = var[E{E (µ̂|O,R)|O}] + E [var{E (µ̂|O,R)|O}]

= 1
n
var[δ1Y1 + (1− δ1)E{µ̂∗

1(X1; g)|O}] + 1
mn

E [(1− δ1) var{µ̂∗
1(X1; g)|O}]. (B)

Similar calculations as before yield, for the first term in (B),

1
n
[E{σ2(X)/π(X)}+ var{µ(X)}+O(h2 + g2)],

and, for the second term,

1
mn

(

E[{1− π(X)}2σ2(X)/π(X)] +O(h2 + g2)
)

,

from which the result follows.

Proof of (6)

Define

V1n = 1
n

n
∑

i=1

(1− δi)µ̂
∗
1(Xi; g)− E{µ(X)}+ 1

n

n
∑

i=1

δiYi,
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V2n = E(V1n|O).

Conditional on Z∗
1 , . . . , Z

∗
n,
√
n(µ̂− µ− V1n)→ N1, in distribution and, conditional on

Z1, . . . , Zn,
√
n(V1n − V2n)→ N2, in distribution. Unconditionally,

√
nV2n → N3, in distri-

bution, where the Ni have a normal distribution. Since V2n features only observed data,

normality is readily obtained. Distributions of N1 and N2 can be obtained by separating

the randomness induced by the bootstrap resampling as in the following triangular arrays:

√
n(V1n − V2n) =

n
∑

j=1

[

n−1/2(1− δj)
n
∑

i=1

wi(Xj; g)
n
∑

`=1

{

Y` −
n
∑

k=1

wk(Xi;h)Yk}

×I{w(`−1)(Xj;h) < U1j ≤ w(`)(Xj;h)}
]

,

√
n(µ̂− µ− V1n) =

n
∑

i=1

[

n−1/2(1− δi)
n
∑

`=1

{Y ∗
` −

n
∑

k=1

wk(Xi; g)Y
∗
k }

×I{w(`−1)(Xi; g) < U2` ≤ w(`)(Xi; g)}
]

,

where w(k)(Xi;h) =
∑k
j=1 wj(Xi;h) and w(0) = 0. The independent random variables U1j

(respectively U2j) follow a uniform distribution on (0, 1), and are independent of Z1, . . . , Zn

(respectively Z∗
1 , . . . , Z

∗
n). A central limit theorem result for the triangular arrays above is

obtained via classical arguments.

Application twice of Lemma 1 of Schenker & Welsh (1988) yields the desired result that
√
n(µ̂−µ)−N → 0 in distribution, where N is as the convolution of the three distributions

above, namely a normal random variable with mean and variance as already calculated in

(4) and (5).

Proof of (8)

By straightforward calculation we get that, with µ2(X) = E(Y 2|X),

E(Ŵ ) =
1

n(n− 1)

n
∑

i=1

E



{δiYi + (1− δi)Y
+
i (1)}2 − 1

n

{

n
∑

i=1

δiYi + (1− δi)Y
+
i (1)

}2




= 1
n
E{µ2(X)} − 1

n
[E{π(X)µ(X)}]2 − 2

n
E{π(X)µ(X)} · E[{1− π(X)}µ(X)]

− 1
n
(E[{1− π(X)}µ(X)])2 +O{(h2 + g2)n−1}

= 1
n
E{µ2(X)} − 1

n
[E{µ(X)}]2 +O{(h2 + g2)n−1}

= 1
n
[var{µ(X)}+ E{σ2(X)}] +O{(h2 + g2)n−1},

which is result (8).
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Proof of (9)

For ` = 1, . . . ,m, define the random variables

Dn(`) =
1

n

n
∑

i=1

(1− δi)Y
+
i (`).

Being a sample variance, the estimator B̂ is an unbiased estimator of the variance of Dn(1),

conditional on the observed data. Hence,

E (B̂) = E [var{Dn(1)|O,R}] + E(var[E{Dn(1)|O,R}|O]). (C)

By definition of Dn(1) and Y +
i (1),

var{Dn(1)|O,R} =
1

n2

n
∑

i=1

(1− δi) var{Y +
i (1)|O,R} = 1

n2

n
∑

i=1

(1− δi)σ̂
∗2
1 (Xi; g).

Since this depends on both the observed and the first-stage resampled data, we calculate

the first term of (C) via E(E[var{Dn(1)|O,R}|O]). As in the proof of (5), the expectation

of the resulting random variable is given by

1
n
E[{1− π(X)}σ2(X)] +O{(h2 + g2)n−1}.

The second term in (C) can be shown to equal

1
n
E[{1− π(X)}2σ2(X)/π(X)] +O{(h2 + g2)n−1},

from which (9) follows.
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Figure 1: (a) estimated mean squared error response surface plot for local resampling

method with n = 200, (b) estimated mean squared error plotted against µ̂ for local re-

sampling method with n = 200, (c) estimated mean squared error plotted against µ̂ for

local semiparametric resampling method with n = 200, (d) estimated mean squared error

plotted against µ̂ for local resampling method with n = 100.
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Table 1: Simulation results for the first scenario. For each method: average of µ̂ and S(µ̂)

(columns 1 and 2), simulated standard error of µ̂ (column 3), average length and estimated

coverage probability of confidence intervals (columns 4 and 5) and average length and

estimated coverage probability adjusted for multiple imputation (columns 6 and 7). True

value is µ = 235.33.

method ave.(µ̂) ave.(S(µ̂)) sse(µ̂) ave.CI sim.cov. adj. ave. CI adj.cov.

All data 235.41 15.83 15.77 62.07 0.954 - -

Complete cases 214.71 19.86 19.82 77.87 0.788 - -

PSI 215.33 14.93 16.93 58.54 0.682 - -

Rubin PMI 215.23 17.26 17.22 67.67 0.759 70.03 0.778

Efron PMI 215.12 17.08 17.38 66.94 0.739 69.07 0.755

NPSI 236.57 15.22 18.11 59.78 0.889 - -

LSR(1) 235.86 17.58 18.13 68.96 0.925 72.39 0.925

LSR(2) 237.09 17.30 18.62 67.83 0.917 69.85 0.920

LSR(3) 236.55 17.64 18.42 69.16 0.925 72.31 0.932

LR(1) 233.53 17.38 18.71 68.13 0.919 71.97 0.924

LR(2) 234.45 17.20 18.66 67.43 0.919 69.85 0.921

LR(3) 234.20 17.52 18.87 68.69 0.916 71.97 0.920

PSI: parametric single imputation method, Rubin PMI: Rubin’s parametric multiple imputation method,

Efron PMI: Efron’s parametric multiple imputation method, NPSI: nonparametric single imputation

method, LSR: local semiparametric resampling method, LR: local resampling method. For the latter

two, local weights (1) wj , (2) w̆j , (3) w̌j are used.
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Table 2: Simulation results for the second scenario. For each method: average of µ̂ and S(µ̂)

(columns 1 and 2), simulated standard error of µ̂ (column 3), average length and estimated

coverage probability of confidence intervals (columns 4 and 5) and average length and

estimated coverage probability adjusted for multiple imputation (columns 6 and 7). True

value is µ = 17.33.

method ave.(µ̂) ave.(S(µ̂)) sse(µ̂) ave.CI sim.cov. adj. ave. CI adj.cov.

LSR(1) 17.75 1.74 1.79 6.83 0.938 7.53 0.948

LSR(2) 18.24 1.72 1.94 6.75 0.906 7.30 0.918

LSR(3) 17.66 1.72 1.76 6.73 0.936 7.36 0.946

LR(1) 18.00 1.72 1.82 6.76 0.927 7.35 0.933

LR(2) 18.48 1.77 2.01 6.94 0.898 7.59 0.918

LR(3) 17.53 1.70 1.76 6.66 0.936 7.22 0.945

LSR: local semiparametric resampling method, LR: local resampling method. Local weights (1) wj , (2)

w̆j , (3) w̌j are used.


