2017-2018

A study on the state of the art of conductive silicone nanocomposites for stretchable electronics

Jeff Rutten

Master of Electronics and ICT Engineering Technology

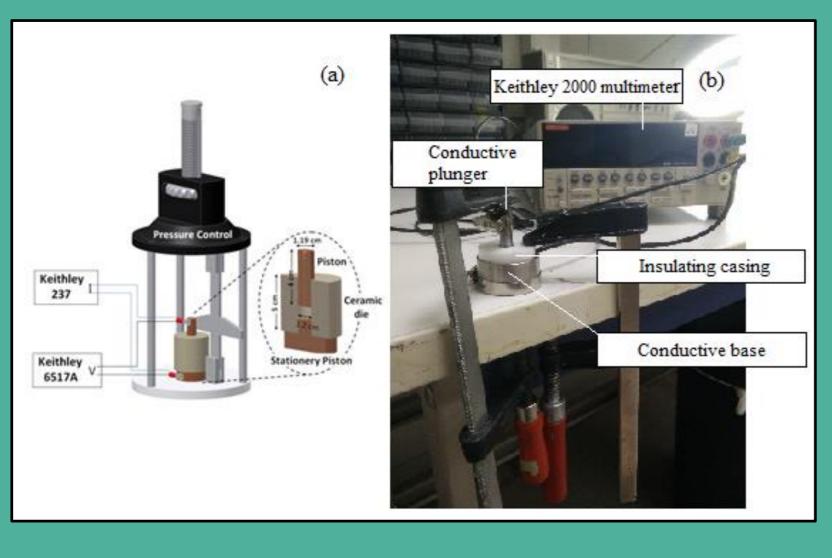
Introduction

Institute for Materials Research of Hasselt University

- One of the topics within the functional materials • engineering group (FME) is the investigation of stretchable electronics
- Conductive nanocomposites are made with conductive particles and the silicone PDMS
- Accurate percolation thresholds of the fillers need to be determined

Preliminary study

- How can we estimate the resistivity of bulk particles?
- What is the best dispersion technique?
- What is are the reported percolation thresholds of the used particles?



- Measuring the resistivity of bulk particles
- Dispersion experiments

Practical investigations

Resistivity of bulk particles

- A powder press compresses the particles, thus increasing the contact area
- A Keithley measures the resistance Bulk resistivity is calculated with of the compressed disk

• Percolation experiments **Practical**

investigations • Characterisation of the composite

• Estimation of the conductivity of the particles

- Four achieved percolation thresholds
- **Results** • Gauge factor determined for each composite

Dispersion experiments

Solution mixing, high speed mixing, ball milling and three roll milling are compared

percolation experiments

Samples are • fabricated and the resistance is measured

Characterisation

Tensile tests determine the Gauge factor and the elongation until breakage

Results

Resistivity of bulk particles

• An estimation of the resistivity was made

alculated

Dispersion experiments

High speed mixing and three roll milling yield the best results, based on SEM images

Percolation experiments

Filler	Volume percentage	Weight percentage	Resistance ($\mathbf{\Omega}$)
	(<u>vol</u> %)	(wt%)	

	resistivity	
Carbon black	1.95 x 10⁻² Ω *m	
Carbon black &	6.70 x 10 ⁻⁴ Ω *m	
CNTs		
Silver coated	3.35 x 10 ⁻⁴ Ω *m	
copper flakes		
Pristine SWCNTs	5.02 x 10 ⁻⁴ Ω *m	
Silver nanowires	4.61 x 10 ⁻³ Ω *m	

CB & CNTs	29.22	6	7.50 x 10 ⁴
MWCNTs	5.34	9	1.32 x 10 ⁶
SWCNTs in PDMS oil	0.09	0.10	2.24 x 10 ⁷
(Matrix)			
Pristine SWCNTs	Incalculable (unknown pristine SWCNT density)	0.10	2.23 x 10 ⁷

Characterisation

- Composites containing carbon black exhibit a high chance in resistance under strain
- On the other hand, the resistance of MWCNT composites remains constant until an elongation of 100%, as depicted on the right

0,00	0,50	1,00	1,50	2,00	2,50		
Relative elongation							

Conclusions

- The resistivity of the bulk powders was estimated
- Four percolation thresholds are accurately determined
- Conductive composites were created which exhibit favorable characteristics for both stretchable strain sensors as conductors, depending on the filler

Supervisors / Cosupervisors: Prof. dr. ir. Wim Deferme drs. ing. Steven Nagels

•

