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Abstract (English)

The thesis is concerned with the improvement and evaluation of hybridized discontinuous

Galerkin (HDG) methods for problems from computational fluid dynamics (CFD). HDG

methods and high order methods in general promise to improve the quality of simulations

used in research and development due to their high accuracy. However, due to their relatively

young age there are open question regarding their stability, efficiency and applicability to a

wide range of different problems. This thesis focuses on tackling some of these points.

The main concern of this thesis are time-dependent, viscous flow problems that are often

described by Euler or Navier-Stokes equations. Therefore, we investigate different types of

implicit time integration methods of high order that have not been applied earlier to the HDG

methods. This includes implicit general linear methods and multiderivative time integrators.

The multiderivative time integrators introduce additional time derivatives that need to be

approximated. We find that the approach used for explicit time integrators fails to deliver a

uniformly stable discretization. Thus, we devise a new approach for implicit multiderivative

integrators that remedies the stability issues.

The efficient implementation of the numerical method is important to limit the required

run-time of simulations. During this thesis we have developed several implementations which

led to the contribution of an implementation of an HDG method to FESTUNG, an open

source framework for MATLAB / GNU Octave. Besides efficiency we focus on a code that is

well documented, extendable and easy to use.

Many equations used for CFD are nonlinear and thus their solutions are prone to develop

shocks. In order to handle shocks properly with the HDG method, a shock capturing method

must be employed. We identify a suitable shock capturing method and justify our decision

by comparing the method to other approaches. Additionally, we show that our choice allows

to approximate several demanding test cases that contain shocks.

The approximation of a solution to the equations we study requires to solve linear systems

of equations. The solving process is a very time and memory consuming part of a simulation.

Thus, it is necessary to have an efficient solution strategy. We discuss a newly introduced

linear solver that makes use of the special structure of discontinuous Galerkin methods. We

apply the new solver to nonlinear problems, which has not been done before, and compare it

to an established linear solver to find good agreements in the results of both solvers.
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Abstract (Dutch)

In dit proefschrift hebben we het over het onderzoek en de verbetering van een hybridized

discontinuous Galerkin (HDG) methode, toegepast op problemen uit de computationele

vloeistofmechanica. De HDG methode is een methode van hoge consistentie-orde, die zeer

nauwkeurige simulaties in onderzoek en ontwikkeling belooft. De methode is vrij recent, en er

zijn dus nog heel wat open vragen rond stabiliteit, efficiëntie en dergelijke. In dit proefschrift

zullen we antwoord geven op enkele van die vragen.

Qua toepassingen is dit proefschrift gericht op tijdsafhankelijke viscose stromingen, vaak

beschreven door de Euler of Navier-Stokes vergelijkingen. Er worden verschillende impliciete

tijdstapmethoden van hoge orde onderzocht, die tot nog toe nooit op de HDG methode

toegepast werden. In het bijzonder zullen we het hebben over impliciete algemene lineaire

methoden, en impliciete multiderivative tijdstapmethoden. De stabiliteit van de laatstge-

noemde integratoren is bij een eerste aanpak, gebruikmakend van de standaardprocedure voor

expliciete methoden, slechter dan verwacht. Er wordt dus een nieuwe methode voorgesteld

die een onvoorwaardelijke stabiliteit garandeert.

Uiteraard is een efficiënte implementatie van numerieke methoden belangrijk om snel goede

resultaten te verkrijgen. Er wordt met verschillende implementaties gewerkt, in het bijzonder

hebben we een HDG implementatie bijgedragen aan FESTUNG, een open source framework

voor MATLAB / GNU Octave. Naast het verkrijgen van een efficiënt stuk software was het

zeer belangrijk om een goed gedocumenteerd en gebruikersvriendelijk programma aan te

maken.

De vergelijkingen die vloeistofmechanica beschrijven zijn normaliter niet-lineair. Dit kan tot

discontinüıteiten leiden. Om dit met de HDG methode te behandelen is dus een betrouwbare

shock capturing methode nodig. In deze thesis identificeren we een geschikte shock capturing

methode en motiveren onze keuze door een vergelijking met andere gebruikelijke methoden

te maken. We laten zien dat verschillende moeilijke problemen met shocks opgelost kunnen

worden.

Tenslotte maakt de benadering het onvermijdelijk om lineaire stelsels van vergelijkingen

op te lossen, wat een groot deel van de tijd en van het geheugen in beslag neemt. Bijgevolg

is een efficiënte strategie voor de benadering van deze (lineaire) stelsels broodnodig. We

bespreken een nieuwe methode die de speciale hiërarchische structuur van de basisfuncties

gebruikt, en passen deze ook op een niet-lineaire vergelijking toe.
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Abstract (German)

Die vorliegende Dissertation beschäftigt sich mit der Verbesserung und Untersuchung von

hybridisierten diskontinuierlichen Galerkin-Verfahren (HDG-Verfahren) für Probleme der

numerischen Strömungsmechanik. HDG-Verfahren und im Allgemeinen Verfahren hoher

Ordnung, zeichnen sich durch eine hohe Genauigkeit aus. Die hohe Genauigket verspricht

die Qualität von Simulationen aus Forschung und Enwicklung zu verbessern. Es sind jedoch

Fragen zur Stabilität, Effizienz und Anwendbarkeit auf eine große Anzahl verschiedener

Probleme offen.

Das Hauptaugenmerk dieser Arbeit sind zeitabhängige Strömungen, die häufig durch

die Euler- oder Navier-Stokes-Gleichungen beschrieben. Aus diesem Grund untersuchen

wir verschiedene Arten von impliziten Zeitintegratoren hoher Ordnung, die noch nicht

mit HDG-Verfahren angewandt wurden. Die Untersuchung beinhaltet implizite allgemeine

lineare Verfahren und implizite multiderivative Zeitintegratoren. Die Stabilität der impliziten

multiderivative Zeitintegratoren ist geringer als erwartet, wenn das typische Vorgehen für

explizite Verfahren dieser Art verwendet wird. Darum entwickeln wir einen neuen Ansatz für

implizite Verfahren, der die Stabilitätsprobleme löst.

Die effiziente Implementierung des numerischen Verfahrens ist sehr wichtig für einen

geringen Zeitaufwand von Simulationen. Im Rahmen der Entwicklung verschiedener Imple-

mentierungen wurde eine Version des HDG-Verfahrens zu FESTUNG, einem quelloffenen

Softwarepaket für MATLAB / GNU Octave, beigesteuert. Neben guter Effizienz zielen wir

auf gute Dokumentation, einfache Nutzbarkeit und Erweiterbarkeit ab.

Viele Gleichungen aus der Strömungsmechanik sind nichtlinear, was häufig zu Unstetigkeiten

in der Lösung führt. Um diese Unstetigkeiten vernünftig mit einem Verfahren hoher Ordnung

wie dem HDG-Verfahren zu approximieren, muss ein shock-capturing Verfahren verwendet

werden. Wir identifizieren ein geeignetes Verfahren und begründen unsere Entscheidung

durch den Vergleich mit anderen solcher Verfahren. Des Weiteren zeigen wir, dass unsere

Wahl des Verfahrens die Approximation verschiedener komplizierter Testfälle erlaubt.

Das Lösen der betrachteten Probleme erfordert die Lösung von linearen Gleichungssystemen.

Dieser Schritt macht einen Großteil der Zeit- und Speicheranforderungen der Simulation aus.

Deshalb ist es wichtig einen effizienten linearen Löser zu verwenden. Wir diskutieren einen

neuen linearen Löser, der die spezielle Struktur von diskontinuierlichen Galerkin-Verfahren

ausnutzt. Wir wenden den Löser erstmals auf nichtlineare Probleme an und beobachten eine

gute Übereinstimmung der Resultate mit denen eines etablierten Lösers.
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1. Introduction

Research and development in the field of fluid dynamics are more and more supported by

simulations. Real world experiments, e.g. in wind channels, are still an important pillar when

developing new technical devices. However, facilities that allow for running such experiments

are usually expensive. Moreover, the manufacturing of prototypes and adjusting of experiment

parameters might be expensive and time consuming, maybe even impossible. One way to

augment or replace some of these real world experiments are simulations.

In this thesis we are interested in the development of a numerical method for flow problems

stemming from classical fluid dynamics. Typical applications can be the flow around an

obstacle like around aircrafts, cars, buildings, or the inside of technical devices such as an

engine. An example is given in Fig. 1.1. These flows can be described by mathematical

models involving partial differential equations (PDEs). The PDEs used in fluid dynamics are

based on the physical principles that mass, momentum and energy are conserved. Famous

examples in the field of fluid dynamics are the Euler and Navier-Stokes equations. The

description by PDEs allows to solve the problems approximately with numerical methods.

The field of solving flow problems numerically is usually referred to as computational fluid

dynamics (CFD).

CFD became important after the introduction of finite volume (FV) methods because

these respect the conservative property of the PDEs to be solved. Due to the popularity of

FV methods a lot of research has been done on these. Thus, there is a solid understanding

of their behavior and trust in their results both in science and industry. However, ongoing

research on numerical methods has led to the development of several new schemes in order

to improve or succeed finite volume methods [234]. These schemes are usually referred to as

high order methods as they promise higher accuracy (in space) than established (low order)

classical FV methods. The high accuracy is highly desirable as it promises to lead to more

efficient numerical discretizations. Moreover, high spatial accuracy extends the applicability

of CFD simulations to further problems that require the resolution of large and very fine

scales such as aeroacoustics. Classical finite volume methods are either too inaccurate to

resolve such features or require too much computational work. Moreover, the extension of

these methods to high order on unstructured meshes with elements of arbitrary shape is

cumbersome. As high order methods are relatively new the understanding of these methods

is not yet as solid as for the FV methods. Therefore, a lot of research is done to evaluate and

1



1. Introduction

Figure 1.1.: A flow around the logo of the computational mathematics (CMAT) group of

Hasselt university. The flow comes from the left and a wake develops downstream

of the letters.

understand these methods that focuses on making the high order methods stable, efficient

and suitable for a wide range of flow problems. This is necessary for the further promotion of

CFD in terms of reliability and applicability to real world problems of practical significance

[221].

A class of methods of particular interest for problems from computational fluid dynamics,

because they respect the conservation property, are discontinuous Galerkin (DG) methods.

These methods combine ideas from established finite volume methods with ideas from finite

element methods. The domain of interest is split into intervals, also called elements, (of length

∆x). Then, the solution is approximated on each interval by a polynomial of degree P being

typical for finite element method. The approximation by a polynomial allows to increase the

local accuracy by increasing the polynomial degree. The term “discontinuous” is part of the

name of DG methods as these methods do not enforce continuity of the approximated solution

between the intervals. In Fig. 1.2, we present the influence of the polynomial degree P on

the approximation for a simple example. The quality of the approximation increases rapidly

with increasing polynomial degree for smooth solutions. For the lower degree approximations

it is also possible to observe the discontinuity in the solution between elements.

Discontinuous Galerkin methods inherit many desirable features from finite volume methods

while leading to a higher order approximation of space. A drawback specific to this class

of methods is the large number of degrees of freedom that arise in comparison to other

methods. This becomes especially penalizing when using implicit solution techniques such as

implicit time discretizations and steady state solvers. In this case, a (series of) linear system

of equations has to be solved where the unknowns become globally coupled. This leads to

2
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Figure 1.2.: The projection of sin(2πx1) on [0, 1] onto polynomials of degree P = 0, 1, 2.

The domain [0, 1] has been split into five intervals of length ∆x = 0.2 that are

indicated by the dashed vertical lines. The projection becomes rapidly better

when the polynomial degree is increased.

intense memory and run-time requirements.

When the problem is solved in time one usually computes the solution for time steps of size

∆t. The size of the time steps cannot be chosen freely, but it depends on the desired accuracy

and stability requirements. The discretization of PDEs such as the Euler and Navier-Stokes

equations has to respect an upper bound of the CFL-condition in order to be stable if explicit

time integrators are used. The CFL-condition links the time step size ∆t to the size of

the elements ∆x with the speed information propagates. For the Euler equations the CFL

number behaves like C ∼ ∆t
∆x

while for the Navier-Stokes equations the CFL number behaves

like C ∼ ∆t
∆x2 . In the case of large information propagation speeds or very small elements,

the time step size has to be adapted. This can usually not be avoided since the speed of

information propagation is dictated by the problem at hand. At the same time the size of

the intervals ∆x also depends on the problem and features one wants to observe, hence the

mesh size can become very small. One can circumvent the strict CFL-condition of explicit

time integration methods by using certain implicit time integration methods at the cost that

(nonlinear) systems of equations have to be solved in each time step.

In order to reduce the number of globally coupled unknowns hybridized discontinuous

Galerkin (HDG) methods have been introduced. These methods introduce an additional

unknown that exists only on element traces, i.e. the element boundaries. The additional

unknown allows to rewrite the arising global system of equations. The resulting globally

coupled system of equations contains only degrees of freedom of the newly introduced hybrid

unknown. As the trace of an element has lower dimensionality than the element, this approach

can lead to immense reductions in the number of globally coupled unknowns. The unknowns

on elements still exist and have to be computed in an element-local fashion which works very

nicely with nowadays parallel computer architectures.

3



1. Introduction

The HDG methods have mainly been introduced for time-independent problems, but have

been extended to time-dependent problems as well. In this setting these methods are mainly

used with implicit time integration schemes. The special structure of the HDG methods is in

particular beneficial if linear systems of equations have to be solved. This is the case when

implicit time integrators are used or steady state problems are solved. Still, most of the work

has focused on the application of HDG methods to steady state problems.

This thesis focuses on further extending the applicability of HDG methods to time-dependent

problems. We believe that the schemes can be advantageous for problems from CFD that

greatly benefit from implicit time integration techniques. Thus, we work on the following

topics related to this goal in this thesis:

• We implement and discuss the HDG methods in an open source framework for

MATLAB / GNU Octave that allows for rapid prototyping. The main goals is to

provide on an efficient implementation that is well documented such other researcher

can benefit from this implementation as well.

• We consider two classes of time integration methods new to HDG methods: Implicit

general linear methods and multiderivative time integrators. These can offer great

advantages over classical time integrators in terms of stability, run-time and accuracy.

We discuss two ways to incorporate multiderivative time integrators and examine their

stability. For this we devise a new way to approximate time derivatives that leads to

a stable time discretization as the standard approach for explicit schemes fails to be

uniformly stable for implicit schemes.

• We identify and investigate a suitable shock capturing method with a simple mesh

adaptation procedure. This allows us to apply the HDG method to time-dependent

problems with discontinuous solutions. We show the solution of a number of demanding

test cases in order to present the versatility of the approach.

• We investigate a newly introduced solver for the linear systems that uses the special

structure of discontinuous Galerkin methods. Our experiments include the application

of this solver to nonlinear problems.

Each of these points are critical in order to apply the HDG method to a wide range of flow

problems in an efficient and stable manner.

Structure of the thesis

This thesis is structured as followed. In Ch. 2, we introduce the governing equations studied

in this thesis. This includes a review of classical PDEs from fluid dynamics such as the

Euler and Navier-Stokes equations. Ch. 3 introduces discontinuous Galerkin methods. We
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first introduce a ‘classical’ local discontinuous Galerkin (LDG) method. On this basis we

describe the hybridized discontinuous Galerkin methods. The HDG methods are our main

concern in this thesis. We also highlight the special features of the methods compared to

other discontinuous Galerkin methods and shortly discuss their implementation. As we are

focusing mainly on time-dependent problems, we review some already established implicit

time integration schemes for the HDG methods in Ch. 4. The chapter covers backwards

differentiation formulae and diagonally implicit Runge-Kutta methods. These methods are

used in the following chapters to approximate the solution of new test cases or to compare

against new types of time integrators. In Ch. 5, we introduce implicit general linear methods as

a first new type of time integrators. These methods are a generalization of the time integrators

introduced in the chapter before. Afterwards, we focus extensively on implicit multiderivative

time integrators in Ch. 6. We present and analyze two different ways to incorporate the

additional time derivatives arising from these kind of time integrators. In Ch. 7, we discuss

the efficient implementation of hybridized discontinuous Galerkin methods in MATLAB /

GNU Octave. The implementation has been done in the open source framework called

FESTUNG and includes an extensive documentation of the implementation. Afterwards, we

discuss the application of the HDG method to time-dependent problems with discontinuous

solutions in Ch. 8. The approach includes the careful choice of a shock capturing method

and the investigation of a mesh adaptation procedure. In Ch. 9, we discuss a special solver

for the arising linear systems that takes advantage of the structure of discontinuous Galerkin

methods. We end the thesis with a conclusion of the work and outlining present and possible

future work in Ch. 10.

Publications

During the preparation of this thesis the following works have been published or accepted for

publication:

Journal publications

[124] A. Jaust, B. Reuter, V. Aizinger, J. Schütz, and P. Knabner. “FESTUNG: A MATLAB / GNU

Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin

(HDG) formulation”. In: Computers and Mathematics with Applications 2018.12 (2018), pp. 4505–

4533.

[126] A. Jaust, J. Schütz, and D. C. Seal. “Implicit multistage two-derivative discontinuous Galerkin

schemes for viscous conservation laws”. In: Journal of Scientific Computing 69.2 (2016), pp. 866–

891.

[212] J. Schütz, D. C. Seal, and A. Jaust. “Implicit Multiderivative Collocation Solvers for Linear Partial

Differential Equations with Discontinuous Galerkin Spatial Discretizations”. In: Journal of Scientific

Computing 73.2 (2017), pp. 1145–1163.
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[120] A. Jaust and J. Schütz. “General linear methods for time-dependent PDEs”. In: Theory, Numerics

and Applications of Hyperbolic Problems II. Ed. by C. Klingenberg and M. Westdickenberg. in

press.

[121] A. Jaust, J. Schütz, and D. C. Seal. “Multiderivative time-integrators for the hybridized discontinuous

Galerkin method”. In: Conference Proceedings of the YIC GACM 2015. Ed. by S. Elgeti and J.-W.

Simon. Publication Server of RWTH Aachen University, 2015. url: https://publications.rwth-

aachen.de/record/480970/files/ProceedingsYIC-GACM-ACCES.pdf.

[122] A. Jaust, J. Schütz, and M. Woopen. “A Hybridized discontinuous Galerkin Method for Unsteady

Flows with Shock-Capturing”. In: AIAA Paper 2014-2781 (2014).

[125] A. Jaust, J. Schütz, and V. Aizinger. “An efficient linear solver for the hybridized discontinuous

Galerkin method”. In: PAMM 16.1 (2016), pp. 845–846.

[127] A. Jaust, J. Schütz, and M. Woopen. “An HDG Method for Unsteady Compressible Flows”. English.

In: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014. Ed. by

R. M. Kirby, M. Berzins, and J. S. Hesthaven. Vol. 106. Springer International Publishing, 2015,

pp. 267–274.

This thesis discusses parts of the results of the publications above, but also presents further

results.
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2. Governing equations

The goal of this thesis is to investigate a numerical method for accurately solving time-

dependent partial differential equations (PDEs) arising from fluid dynamics. Therefore, the

equations to be solved are usually the Euler or Navier-Stokes equations [7, 153, 185, 207,

230, 236]. There exist other ways of describing flows problems, e.g. using the Boltzmann

equation [224, 239], but we do not focus on these kinds of models here. While developing

and implementing the methods it is usually a good choice to start with simpler or at least

scalar equations such as the convection, convection-diffusion or Burgers’ equation [143, 145,

229]. Therefore, we introduce these equations as well.

The chapter is structured as follows. First, we define some notation to compactly represent

the equations. After that, the special structure all of the equations considered in this thesis

is laid out. Finally, the Euler and Navier-Stokes equations, including a dimensional analysis

and boundary conditions, are introduced. Most parts of this section are described in more

detail in standard text books about fluid dynamics and aerodynamics [7, 153, 185, 207, 230,

236] and publications about the analysis and numerical approximation of conservation laws

[91, 136–138, 143, 145, 229].

2.1. Notation

We consider equations in d space dimensions with coordinate xi, i = 1, ..., d. In this work

we focus on PDEs in one or two space dimensions. However, the PDEs considered extend

to three space dimensions, too. Vectors v ∈ Rn are denoted by italic letters and matrices

A ∈ Rm×n by capitals using roman letters. Besides standard notation for derivatives we

introduce the dyadic product for two vectors a, b ∈ Rd defined as

a⊗ b = abT =


a1b1 . . . a1bd

...
. . .

...

adb1 . . . adbd

 . (2.1)

The product is also defined for vectors of different lengths and dimensions larger than d, but

we only use it for vectors having the same length as the space dimension d. Additionally, we
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2. Governing equations

define the divergence of a matrix A ∈ Rm×d as

∇ ·A = ∇ ·


a11 . . . a1d

...
. . .

...

am1 . . . amd

 :=


∇ · (a11, . . . , a1d)

T

...

∇ · (am1, . . . , ad)
T

 =


∑d
i=1

∂a1i
∂xi

...∑d
i=1

∂ami
∂xi

 . (2.2)

We solve the PDEs for an unknown w that is a function of time and space, i.e. w = w(t, x).

In order to avoid unnecessary clutter in the equations we do not always state this explicitly.

Additionally, we use the Kronecker delta δij that is defined as

δij :=

1 i = j

0 i 6= j
.

2.2. Problems in flux formulation

All PDEs in this work can be reformulated as

∂tw +∇ · (fc(w)− fv(w,∇w)) = h(w,∇w) on (t, x) ∈ (0, tend]× Ω

w(0, x) = w0(x)
(2.3)

where the unknown w(t, x) may be vector valued with m components. The space domain is

denoted as Ω and the time interval as (0, tend]. We might also refer to the time-space domain

as ΩT := (0, tend]×Ω. The functions fc, fv and h are given and may depend on the unknown

w and the latter two also on the gradient ∇w. Additionally the functions might depend

explicitly on time t and space x, but we suppress this to keep the notation compact. We refer

to fc as convective, to fv as viscous flux function and to h as source term. Therefore, we

refer to the equation (2.3) as the PDE in flux formulation. The fluxes are given as

fc = (fc,1, . . . , fc,d), fv = (fv,1, . . . , fv,d)

such that we can make use of the divergence operator for matrices (2.2). The flux in

xi-direction is given by fc,i and fv,i respectively. Usually, both fluxes are continuously

differentiable, i.e. fc,i ∈ Cl(Rm,Rm) and fv,i ∈ Cl(Rm × Rm×d,Rm) with l ≥ 1.

Depending on the type of equation analyzed, not all terms must be present. If ∂tw is not

present, the PDE reads

∇ · (fc(w)− fv(w,∇w)) = h(w,∇w)

and the PDE describes a steady state problem, that is w = w(x). In the absence of a viscous

flux and source term

∂tw +∇ · fc(w) = 0

we have a first order partial differential equation. In case, a viscous flux fv is present, the

PDE is a second order partial differential equation because fv depends on ∇w.
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2.3. Hyperbolic equation

2.3. Hyperbolic equation

Let us for the moment focus on the hyperbolic PDE

∂tw +∇ · fc(w) = 0 (2.4)

already mentioned in the previous section. Equations that fall into this framework have been

extensively studied in the field of conservation laws. For a detailed analysis of these equations

and numerical methods the reader is referred to text books like [91, 136–138, 143, 145, 229].

The equation is hyperbolic if the eigenvalues of a linear combination of the Jacobians

f ′c,i(w), i = 1, . . . , d with

A(w, v) :=

d∑
i=1

∂

∂w
fc,i(w) · vi (2.5)

are real for any v ∈ Rd \ {0} and a full set of linear independent eigenvectors exists. In this

case, A can be written as

A(w, v) = R(w, v)Λ(w, v)R−1(w, v) (2.6)

with Λ = diag(λ1, . . . , λm) ∈ Rm×m being the matrix having the eigenvalues on its diagonal

and R = (r1, . . . , rm), ri ∈ Rm, is the matrix with the associated eigenvectors as columns. The

real eigenvalues dictate an important property of this type of equations; they describe wave

propagation velocities. From this follows the speed and the direction in which information

propagates along so called characteristic lines.

In 1D, the solution being transported along characteristic lines is an important property

and allows, in principle, to solve the PDE exactly. However, for nonlinear problems the

characteristic lines tend to intersect after finite time resulting in a discontinuity, a shock,

in the solution. Therefore, the solution is not continuous nor differentiable anymore and

therefore does not fulfill the equation (2.4) in the classical sense. However, discontinuous

solutions should be admissible because the physical problems one aims to model show (nearly)

discontinuous properties as well.

In multiple space dimensions the equations show the same behavior like the development

of non-smooth solutions. However, the analysis is much more involved and cannot be easily

taken over from the 1D case. Nevertheless, the results from 1D can guide the development of

numerical schemes [91, 111, 143, 229]. Especially boundary conditions can make use of the

theory in 1D as the problem can be interpreted as a 1D problem in direction normal to the

boundary, see Sec. 2.6.2.

A number often discussed for hyperbolic problems is the so-called CFL (Courant-Friedrichs-

Lewy) number. The CFL number relates the speed of which information propagates in the

mesh to the time step size of a numerical simulation. In this thesis we use a hyperbolic CFL
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2. Governing equations

number defined as

CFL := |λmax| ∆t

∆xmin
(2.7)

based on the largest eigenvalue λmax present in the computational domain and ∆xmin being

the smallest edge of all elements in the mesh. We use this definition of the CFL number also

for problems that are not purely hyperbolic. In these cases the CFL number is based on the

eigenvalue of the hyperbolic part of the equation.

Remark 1 Flows in reality do not have truly discontinuous jumps in their quantities due to

the present viscosity. Instead the flow quantities change strongly over a very short distance

leading to steep gradients. The width or thickness of a shock depends on the viscosity µ and

heat conductivity κ which themselves depend on the free mean path l of the fluid [248]. The

free mean path is the average distance of molecules in the gas traveling before they collide.

Depending on the assumptions on the viscosity and the conductivity with regard to their

dependence on temperature and pressure and the used equations, Navier-Stokes or Boltzmann,

the shock width is often derived to be a multiple of the free mean path l [156, 187, 192]. The

flow features, such as vortices, observed in typical CFD applications are much larger than the

free mean path and therefore than a shock. In this case it can be a valid modeling assumption

for shocks to be discontinuous [145].

2.4. Convection-diffusion equation

A common model problem is the convection-diffusion equation which can be written in flux

formulation (2.3) with fluxes

fc(w) = uw, fv(w,∇w) = ε∇w (2.8)

and possibly a given source term h. The convection velocity u = u(t, x) may be a function of

time and space and describes the transport of the unknown along the flow field u = (u1, . . . , ud).

In the case of a multicomponent vector m > 1 the velocity u might become a matrix. The

viscous term with diffusion constant ε > 0 accounts for diffusive effects. This leads to a

smoothing of the solution over time. In case of vanishing diffusivity ε ≡ 0, the problem is

purely convective meaning the initial data is transported along u.

This equation models the typical flow properties present in real world flows, namely

convective transport and diffusive transport. Therefore, the convection-diffusion equation is

very suitable for model development as one can easily focus on single effects by setting u ≡ 0

or ε ≡ 0. Moreover, it is comparably easy to construct problems that have an analytical

solution.

Remark 2 In the literature, the convection speed u is sometimes also referred to as advection

speed when it is constant. Consequently, the equation might be referred to as advection-diffusion

equation in this case.
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2.5. Boundary conditions

We mainly use two kinds of boundary conditions for hyperbolic equations and the convection-

diffusion equations.

Dirichlet boundaries If incoming characteristics or the diffusivity of a problem requires a

boundary value we can set the value on the boundary as

wBC = w∞

where the ∞-index refers to a known boundary state.

Periodic boundaries It is often advantageous to use a very simple setting in terms of domain

and boundary conditions for verification and testing. A common choice is to consider a

periodic domain with periodic length li in the ith space dimension. This refers to setting

w(t, xi) = w(t, xi + li)

and extends the domain to infinity in the respective space dimension.

2.6. Euler equations

A famous set of equations used in CFD are the Euler equations [7, 91, 153, 207, 230, 236].

They describe inviscid flow. The equations in d space dimensions are given by

∂ρ

∂t
+∇ · (ρu) = 0, (2.9a)

∂(ρu)

∂t
+∇ · (ρu⊗ u+ pI) = 0, (2.9b)

∂E

∂t
+∇ · ((E + p)u) = 0, (2.9c)

and describe the conservation of mass (2.9a), conservation of momentum in every spatial

direction i (2.9b), and conservation of energy (2.9c). For this given set of Euler equations it

is assumed that the effect of gravitational forces can be neglected. Otherwise, an additional

term ρg would appear on the right hand side of the momentum conservation equation.

There are d + 2 equations, but d + 3 unknowns (density ρ [ kg
m3 ], velocity in xi-direction

ui [ m
s

], total energy per unit volume E [ J
m3 ] and pressure p [ N

m2 ]). Therefore, an additional

equation is needed. A common closure is the ideal gas law [153, 236]

p = ρRT (2.10)

with R [ J
kg·K ] being the specific gas constant and T [K] the temperature. Under the assumption

that the gas is calorically perfect, the specific internal energy is given as e = cvT [ J
kg

] with
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2. Governing equations

cv [ J
kg·K ] being the specific heat capacity at constant volume. The specific heat capacity at

constant pressure is referred to as cp [ J
kg·K ]. Specific heats and the specific gas constant are

parameters depending on the studied gas. For air under normal conditions a ratio of specific

heats γ =
cp
cv

is usually assumed to be γ ≡ 1.4 [7, 153, 236]. Moreover, the relations

cp − cv = R, cp =
γR

γ − 1
, cv =

R

γ − 1
,

hold and allow us to rewrite the internal energy e as

e = cvT =
RT

γ − 1
⇔ RT = (γ − 1)e. (2.11)

Additionally, the total energy E can be expressed as

E = ρ

(
e+

1

2
‖u‖22

)
making it clear that the total energy consists of two parts, the inner energy ρe the fluid holds

as heat and as kinetic energy 1
2
ρ‖u‖22. Using this equation together with the equations (2.11)

for the specific internal energy the pressure is given as

p = ρRT = (γ − 1)ρe = (γ − 1)

(
E − 1

2
ρ‖u‖22

)
. (2.12)

Another important quantity is the speed of sound of the fluid

c =
√
γRT =

√
γp

ρ
. (2.13)

In particular when one wants to compare two different flow conditions one often refers to the

Mach number

Ma =
u0

c
(2.14)

that relates a characteristic flow velocity u0 to the speed of sound. The Mach number

is a nondimensional number that can be obtained by dimensional analysis [7, 153, 207,

230, 236] as described in the next section. The Mach number often serves as a measure of

compressibility and information propagation direction. For low Mach numbers Ma < 0.3 the

density variations are usually less than 5%. In this case, the flow is sometimes considered

incompressible, i.e. ρ ≡ const. In the case Ma > 1 the flow is supersonic which affects the

direction of information propagation. The eigenvalues are all positive in this case hence

information can only move in flow direction and not upstream anymore. Flows around

obstacles like an airfoil often locally exhibit Mach numbers in the supersonic regime even if

the free stream is subsonic (Ma < 1), but close to the supersonic regime, i.e., Ma > 0.8. This

has to be considered because supersonic flows do usually not return to subsonic conditions

by undergoing a smooth transition. Instead, a shock — a discontinuity in flow quantities —
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2.6. Euler equations

develops. It is a common feature of supersonic flows that is also observed in the real world.

This behavior results from the nonlinearity in the Euler equations and can pose a severe

problem for numerical discretizations.

As mentioned in the previous section, the Euler equations can be rewritten in flux formula-

tion (2.3). Since the Euler equations are a system of first order equations no viscous flux is

present. In this work we focus on the Euler equations in two space dimensions. In this case

the vector of unknowns and the convective flux fc = (fc,1, fc,2) are given as

w =


ρ

ρu1

ρu2

E

 , fc,1(w) =


ρu1

p+ ρu2
1

ρu1u2

u1(E + p)

 , fc,2(w) =


ρu2

ρu1u2

p+ ρu2
2

u2(E + p)

 . (2.15)

2.6.1. Dimensional analysis

The Euler equations (2.9) are given in ‘dimensional’ form. In order to simplify the comparison

of different experiments related to fluid dynamics one can bring the equations to dimensionless

form by eliminating all units of the unknowns and parameters present in the equations [7, 153,

207, 230, 236]. Rewriting the equations in nondimensional form leads to a set of dimensionless

parameters that allow for a better understanding of the behavior and comparison of different

problems. Consider two flows with largely differing flow velocities. Although one flow is ‘fast’

while the other is ‘slow’ they can behave identical when the remaining flow parameters are

adapted accordingly. The dimensional analysis normalizes the equations such that these cases

can be easily identified.

In this work the dimensional analysis is done by defining suitable reference parameters

and rescaling the equations to remove all units. Another way to do so is using Buckingham’s

Π-theorem [7, 153, 207] for which all units of parameters and unknowns in the equations

are identified. These are then used to compute the dimensionless numbers. The number

of dimensionless parameters is independent of the used reference parameters and which

approach for the nondimensionalization is used. However, this may affect the definition of the

dimensional parameters. We choose the reference parameters such that we get dimensionless

numbers that are commonly used in fluid dynamics.

First, the reference parameters have to be defined. A reference density ρ0, length L,

velocity u0 and pressure p0 are chosen. In contrast to the other sections, the unknowns and

parameters with units are denoted by ·′ in the following. Unknowns and parameters without

this indicator are dimensionless. Then, the dimensionless parameters can be expressed as

ρ =
ρ′

ρ0
,

∂

∂xi
= L

∂

∂xi′
, ui =

u′i
u0
, t =

t′

( L
u0

)
, p =

p′

p0
. (2.16)
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This choice follows [7] and is not the only suitable choice as explained earlier. One could

choose a reference time, for example. However, the reference parameters should be known

quantities. While it is usually not easy to define an obvious reference time for flow problems

it is easy to define a meaningful length due to the investigated geometry (size of an obstacle

in flow field, height of a channel) and velocity like the velocity at the inflow or at free flow

conditions. In the following we briefly present the process of scaling the mass, momentum

and energy equations.

Conservation of mass The scalings in (2.16) are plugged into the mass conservation (2.9a)

equation. This leads to

∂ρ′

∂t′
+∇′ ·

(
ρ′u′

)
= 0

⇔
(u0ρ0

L

) ∂ρ
∂t

+
(u0ρ0

L

)
∇ · (ρu) = 0

⇔ ∂ρ

∂t
+∇ · (ρu) = 0

and as all reference quantities cancel, the dimensional and dimensionless form of the equation

are identical.

Conservation of momentum After rescaling the momentum equation (2.9b)

∂(ρ′u′)

∂t′
+∇′ ·

(
ρ′u′ ⊗ u′

)
= −∇′ · (p′I)(

ρ0u
2
0

L

)
∂(ρu)

∂t
+

(
ρ0u

2
0

L

)
∇ · (ρu⊗ u) = −

(p0

L

)
∇ · (pI)

∂(ρu)

∂t
+∇ · (ρu⊗ u) = − p0

ρ0u2
0

∇ · (pI)

a factor of scaling parameters is left in front of the pressure gradient. This is a dimensionless

number for the Euler equations. When multiplied by the dimensionless ratio of specific heat

capacities γ

p0

ρ0u2
0

=
c2

γu2
0

=
1

γMa2

it can be reformulated using the speed of sound (2.13) to reveal the Mach number (2.14).

The dimensionless form of the momentum equation therefore reads

∂(ρu)

∂t
+∇ · (ρu⊗ u) = − 1

γMa2∇ · (pI).

The ratio of specific heats is a dimensionless number depending on the fluid/gas studied

while the Mach number depends solely on the flow conditions.
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Conservation of energy As for the mass and momentum equations the energy equation

(2.9c) is rescaled

∂E′

∂t′
+∇′ ·

(
E′u′

)
= −∇′ ·

(
p′u′

)
(
ρ0u

3
0

L

)
∂E

∂t
+

(
ρ0u

3
0

L

)
∇ · (Eu) = −

(p0u0

L

)
∇ · (pu)

∂E

∂t
+∇ · (Eu) = − p0

ρ0u2
0

∇ · (pu)

and the same term of reference parameters is obtained as for the momentum equation, i.e. no

new dimensionless parameter is found. The energy equation in dimensionless form is given as

∂E

∂t
+∇ · (Eu) = − 1

γMa2∇ · (pu) .

2.6.2. Boundary conditions

In order to solve the Euler equations boundary conditions wBC must be prescribed. Special

care has to be taken on boundaries at which the fluid enters the domain (inflow boundaries,

see Fig. 2.1a), i.e. u · n < 0, and leaves the domain (outflow boundaries, see Fig. 2.1b), i.e.

u · n > 0. The normal vector n points out of the computational domain and u is the flow

velocity vector. The boundary conditions may depend on the state inside the computational

domain win and the free flow state outside the computational domain w∞ on these boundaries.

See Fig. 2.1 for a brief sketch of the situation of both boundary situations.

The Euler equations form a hyperbolic equation with real eigenvalues [91, 111, 143, 229]

λ1 = u · n+ c, λ2 = u · n− c, λj = u · n, j = {3, . . . ,m} (2.17)

that dictate how boundary conditions have to be prescribed. This follows from (2.6) by

setting v to the normalized outward pointing normal vector n with ‖n‖2 = 1 on the domain

boundary. The eigenvalues refer to the characteristic velocities in the domain, the normal

velocity u · n of the fluid and the speed of sound c in the domain. Thus, whenever λi < 0 on

a boundary holds, a characteristic quantity has to be prescribed by a known boundary state

and for λi > 0 on a boundary the interior state can be used. This directly relates to the

Mach number (2.14). For subsonic flows, i.e. Ma < 1, the absolute value of the flow velocity

including the absolute value of the velocity in the normal direction u · n are guaranteed

to be smaller than the speed of sound. This means that information mainly propagates in

the normal flow direction, but part of the information may also propagate in the opposite

direction as λ2 < 0. Therefore, m − 1 quantities must be prescribed on inflow boundaries

while one quantity must be given on outflow boundaries where Ma < 1 holds.

The situation changes for supersonic flows, i.e. Ma > 1, as flow information propagates

only downstream. In this case the sign of all eigenvalues at the inflow boundary u · n < 0
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wBC

u

w∞ win

n

(a) Inflow boundary.

wBC

u

w∞win

n

(b) Outflow boundary.

Figure 2.1.: Sketch of the inflow and outflow boundary situation. The flow direction is from

left to right, w∞ indicates the free flow conditions outside the domain and win

indicates the state inside the domain. A compatible boundary state wBC has to

be determined on the domain boundary (dashed line).

is negative and at the outflow boundary u · n > 0 is positive. Therefore, a full set of m

quantities must be given at the inflow boundary while no quantities are to be prescribed on

outflow boundary.

Although the number of conditions that has to be set is known due to the characteristics,

the characteristics do not state how values on the boundary have to be determined. In the

literature, see e.g. [40, 77, 111, 143, 229], different ways to define boundary conditions for

numerical simulations are described. In the following, we limit the description to the ones

used in this work.

Slip wall boundary condition Solid walls, such as the walls of a channel or the surface of

an airfoil cannot be penetrated by the fluid. Thus, the boundary condition must be chosen

such that the velocity in normal direction is zero, i.e. u · n = 0, on walls. This means the flow

shall not go through the boundary, but rather follow its tangential direction. This can be

achieved by imposing a boundary condition that mirrors the velocity in the normal direction.

The velocity in the tangential direction, the density and the energy are unchanged. This

boundary state wBC in 2D reads

wBC(win) =


1 0 0 0

0 1− n2
1 −n1n2 0

0 −n1n2 1− n2
2 0

0 0 0 1

win

where win is the state on the inside of the domain boundary and ni, i = 1, 2 are the

components of the normal vector.
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2.6. Euler equations

Characteristic far field boundary condition Due to the Euler equations being hyperbolic

the flux Jacobian using the normal vector n can be written as(
∂

∂w
fc(w)

)
· n = R(w, n)Λ(w, n)R−1(w, n)

as stated in (2.6). This allows to set the boundary conditions at the far field using the

characteristic representation wC = R−1(w, n)w. This representation is advantageous as the

boundary values can be set depending on the sign of the local eigenvalues (2.17). An eigenvalue

λi < 0 describes a characteristic entering the domain. The corresponding characteristic

unknown on the boundary wBC,C,i (indicated by the additional BC subscript) is set from

the given boundary state that is usually not given in the characteristic representation. In

this case the boundary state is transformed to the characteristic representation by wBC,C,i =

(R−1wBC)i. For all other eigenvalues the values from the interior of the domain can be used.

After setting all entries, the vector is transformed back into conservative form wBC. The

corresponding matrices R and R−1 can be found in text books as [91, 111, 143]. Note that

the order of eigenvalues used in the diagonal matrix Λ(w, n) may differ depending on the

source.

Riemann invariant boundary condition Another way to obtain boundary conditions is based

on so called Riemann invariants [40, 111, 143, 229]. On the boundary we can interpret the

Euler equations as 1D problem when considering the problem in the normal direction, see

Fig. 2.1 for a sketch of the situation at inflow and outflow boundaries. In this case, one can

observe that certain quantities, the Riemann invariants, are constant on characteristic curves

that are related to the eigenvalues u, u+ c and u− c (2.17) for smooth flows.

Using the 1D Euler equations (in non-conservative form) and its eigenvector basis (2.3)

one can derive the quantities that are constant along the characteristic lines [111, 143, 229].

The entropy s is such a quantity which fulfills the convection equation

∂ts+ u∂xs = 0

and therefore is constant along streamlines. Two additional invariants R± = u± 2c
γ−1

that

are constant can be derived on the characteristic lines given by the eigenvalues u± c.
The correct boundary state wBC has to be derived from the two states adjacent to the

boundary: The state in the interior of the domain win and the state outside of the domain

given by the free flow quantities w∞. The density and pressure on the boundary can be

determined by

ρBC =

(
c2BC

γsBC

) 1
γ−1

, pBC =
ρBCc

2
BC

γ
(2.18)

once the entropy s = c2

γργ−1 is known. On an inflow boundary the flow is entering the

domain. Thus, the entropy is constant along the streamline entering the domain and it can
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2. Governing equations

be determined from the free flow state. In this case, we have

sBC =
c2∞

γργ−1
∞

(2.19)

on inflow boundaries.

An expression for the speed of sound cBC on the boundary is still missing, but necessary

to determine the density and pressure (2.18). Moreover, the velocity on the boundary uBC is

needed to complete the boundary state wBC. Both can be determined using the Riemann

invariants R±. At an inflow boundary, the Riemann invariants referring to outgoing waves

R+ and incoming waves R−

R+ = uin · n+
2cin
γ − 1

, R− = u∞ · n− 2c∞
γ − 1

,

depend on the interior state and free flow. We know that the invariants must be constant

along their characteristic lines. Therefore, we can follow the characteristic lines to the

boundary state and obtain

uBC · n+
2cBC

γ − 1
= uin · n+

2cin
γ − 1

, (2.20a)

uBC · n− 2cBC

γ − 1
= u∞ · n− 2c∞

γ − 1
. (2.20b)

After adding and subtracting the two equations we obtain

uBC · n =
1

2

(
R+ +R−

)
, cBC =

γ − 1

4

(
R+ −R−

)
for the velocity in the normal direction and the speed of sound on the boundary. Now, the

entropy (2.19) and therefore the density and pressure (2.18) can be determined. The velocity

has to be projected back onto the x1- and x2-direction as the whole process based on Riemann

invariants uses the 1D problem in the direction normal to the domain boundary. Then, the

velocity vector is given by

uBC = u∞ + (uBC · n− u∞ · n)n. (2.21)

Outflow boundary conditions follow the same procedure, but the roles of interior and free

flow quantities are interchanged.

Supersonic boundary conditions As described before, at supersonic flow conditions we need

to describe all flow quantities at the inflow and no boundary conditions at the outflow.

Therefore, we set

wBC(win) = wBC =

 ρ∞

ρ∞u∞

E∞


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2.7. Navier-Stokes equations

at the inflow and wBC(win) = win on outflow boundaries. The quantities given at free flow

conditions are denoted by ·∞. This is the extension of the Dirichlet boundary conditions to

the Euler equations as described previously, see Sec. 2.5.

2.7. Navier-Stokes equations

The second set of famous equations in CFD discussed in this work are the Navier-Stokes

equations [7, 153, 185, 207, 230, 236]. These extend the Euler equations by modeling viscous

effects. This means that momentum and energy are exchanged within the fluid by inner

friction and heat transport is accounted for. The incorporation of viscosity also introduces

flow features like boundary layers and turbulence, e.g., that are not described by the Euler

equations. As one can see from the Navier-Stokes equations

∂ρ

∂t
+∇ · (ρu) = 0 (2.22a)

∂(ρu)

∂t
+∇ · (ρu⊗ u+ pI) = ∇ · S (2.22b)

∂E

∂t
+∇ · ((E + p)ρu) = ∇ · (Su−∇q) (2.22c)

the viscous effects are described by additional terms compared to the Euler equations (2.9).

The vector of unknowns w is the same as for the Euler equations. The additional terms are

the stress tensor S and the heat flux q [ W
m2 ]. The components of the stress tensor are defined

as

Sij := µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij∇ · u

)
.

The stress tensor introduces a viscosity µ [ kg
ms

] that depends on the type of fluid and the

temperature. A common closure for the viscosity is Sutherland’s law [225] given as

µ =
C1T

3
2

T + C2

where C1 and C2 are model constants depending on the fluid. A common choice of the

coefficients for air modeled as an ideal gas are

C1 = 1.461 · 10−6 kg

m · s ·
√

K
, C2 = 110.3K.

A new dimensionless number tightly linked to the viscosity is the Reynolds number

Re =
ρ0u0L

µ0
(2.23)

which relates the inertial to viscous forces. For small Reynolds numbers the viscous forces

dominate. The Reynolds number is also often used as an indicator whether a turbulent or a
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2. Governing equations

laminar flow is present. What ‘small’ (or ‘large’) means in this setting highly depends on the

problem analyzed.

The heat flux q is defined as

q = −κ∇T
with conductivity κ > 0 [ W

m·K ]. The negative sign results from heat being transferred from

regions of high to regions of low temperature. The conductivity depends on the fluid type

and can be derived from the Prandtl number, another dimensionless number:

Pr =
µcp
κ
,

that is usually known. For air at moderate temperatures a value of Pr = 0.72 is commonly

assumed. The temperature T is now needed explicitly in the equation and can be computed

using the definition of the internal energy (2.11) and the ideal gas law (2.10) to give

T =
1

cv

(
E

ρ
− 1

2
‖u‖22

)
=

1

cv(γ − 1)ρ

(
E − 1

2
ρ‖u‖22

)
=

1

(γ − 1)cv

p

ρ
.

The pressure p is given by the ideal gas law (2.10).

As for the Euler equations, the Navier-Stokes equations can be written in flux formulation

(2.3) as well. The convective flux fc is the same as for the Euler equations (2.15) and the

viscous flux

fv,1(w) =


0

S11

S21

S11u1 + S12u2 + κ ∂T
∂x1

 , fv,2(w) =


0

S12

S22

S21u1 + S22u2 + κ ∂T
∂x2

 (2.24)

has to be added. The equations include space derivatives up to second order and therefore

the PDE is of second order. The problems are usually convection dominated, i.e. the viscous

effects are small compared to convective effects.

2.7.1. Dimensional analysis

The dimensional analysis follows the same procedure as for the Euler equations in Sec. 2.6.1.

First, reference values of the parameters are fixed to express the dimensionless parameters as

ρ =
ρ′

ρ0
,

∂

∂xi
= L

∂

∂xi′
, ui =

u′i
u0
, t =

t′u0

L
, p =

p′

p0
,

e =
e′

cvT0
, κ =

κ′

κ0
, µ =

µ′

µ0
.

(2.25)

These contain the same parameters as for the Euler equation (2.16), but has been extended

by a reference internal energy e0 = cvT0, a reference heat conductivity κ0, and a reference

viscosity µ0.
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2.7. Navier-Stokes equations

Mass equation Using the dimensionless parameters as defined in (2.25) and plugging them

into the mass equation (2.22b) one obtains the same representation as for the Euler equations,

see Sec. 2.6.1. This is no surprise as mass conservation has to be fulfilled for both equations.

Momentum equation The analysis of the momentum equation is also similar to the analysis

for the Euler equations where the added stress tensor makes the only difference. Therefore,

the rescaling of the momentum equation

∂(ρ′u′)

∂t′
+∇′ ·

(
ρ′u′ ⊗ u′ + p′I

)
= ∇′ · S′

⇔ ρ0u
2
0

L

∂(ρu)

∂t
+
ρ0u

2
0

L
∇ · (ρu⊗ u) +

p0

L
∇ · (pI) =

µ0u0

L2
∇ · S

⇔ ∂(ρu)

∂t
+∇ · (ρu⊗ u) +

p0

ρ0u2
0

∇ · (pI) =
µ0

ρ0u0L
∇ · S

⇔ ∂(ρu)

∂t
+∇ · (ρu⊗ u) +

1

γMa2∇ · (pI) =
1

Re
∇ · S

only reveals one additional dimensionless number that has not been present in the Euler

equations, namely the Reynolds number (2.23).

Energy equation The dimensional analysis of the energy equation (2.22c) differs clearly

from the dimensional analysis of the Euler equation due to the presence of the stress tensor

and heat conduction. Moreover, the definition of a reference energy e0 allows for a different

dimensionless form. The energy equation is rescaled using the defined parameters

∂E′

∂t′
+∇′ ·

(
(E′ + p′)u′

)
=∇′ · (S′u′) +∇′ · (κ′∇′T ′)

⇔ ρ0u0cvT0

L

∂E

∂t
+
ρ0u0cvT0

L
∇ · (Eu) +

p0u0

L
∇ · (pu) =

µ0u
2
0

L2
∇ · (Su) +

κ0T0

L2
∇ · (κ∇T )

such that all dimensions vanish. After eliminating the parameters in front of the time

derivative

∂E

∂t
+∇ · (Eu) +

p0

ρ0cvT0
∇ · (pu) =

µ0u0

ρ0LcvT0
∇ · (Su) +

κ0

Lρ0u0cv
∇ · (κ∇T )

three factors are obtained that can be expressed as dimensionless parameters. The first factor

p0

ρ0cvT0
=
ρ0RT0

ρ0cvT0
=
R

cv
= γ − 1

depends only on the dimensionless ratio of specific heats. The second factor reveals

µ0u0

ρ0LcvT0
=

µ0

ρ0Lu0
· u2

0

cvT0
=
γR

cv

µ0

ρ0Lu0
· u2

0

γRT0
= γ(γ − 1)Re−1Ma−2,
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2. Governing equations

which is the ratio of specific heats, the Reynolds number and the Mach number. The last

factor
κ0

Lρ0u0cv
=

µ0

Lρ0u0

κ0

cvµ0
=

µ0

Lρ0u0

κ0γ

cpµ0
= Re−1Pr−1

introduces the Reynolds and the Prandtl number. Using these dimensionless numbers, the

energy equation can be written as

∂E

∂t
+∇ · (Eu) + (γ − 1)∇ · (pu) =

γ(γ − 1)

Re ·Ma2∇ · (Su) +
1

Re · Pr
∇ · (κ∇T ).

We have found four dimensionless numbers for the Navier-Stokes equations. This means that

knowledge of the Mach number, Reynolds number, Prandtl number and the ratio of specific

heats are sufficient to uniquely define the flow for the Navier-Stokes equations.

2.7.2. Boundary conditions

Most boundary conditions described for the Euler equations, see Section 2.6.2, hold also

for the Navier-Stokes equations. The only exception is the wall boundary condition. The

fluid still cannot penetrate the wall, but due to the viscous effects the wall influences the

flow velocity in tangential direction. This is accounted for by using no-slip wall boundary

conditions which enforce u = 0. Therefore, the boundary state is given by

wBC(win) =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

win.

On no slip walls an additional condition for the temperature has to be imposed. We choose

adiabatic condition ∇T · n = 0, i.e. no heat flux through the wall. This is achieved by setting

the first and last row of the viscous flow (2.24) to zero

fv(wBC)wall =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 fv(wBC).
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3. Space discretization

In this work we focus on the presented governing equations from the previous section that are

discretized in space by a discontinuous Galerkin (DG) method. The first work published on

discontinuous Galerkin method dates back to 1973 [193]. The method was picked up quickly

and led to the development of interior penalty methods [10, 66], but was rarely used in CFD.

It took almost twenty years until the DG method received major recognition in the CFD

community. This was mainly after a paper series of Cockburn, Shu and co-authors [45, 47, 52,

57, 58] on solving hyperbolic problems with these schemes. They combined a discontinuous

Galerkin space discretization with Runge-Kutta time stepping and approaches from finite

volume methods for flux definition and stabilization. These schemes are often referred to as

Runge-Kutta discontinuous Galerkin (RKDG) methods.

The approach has been generalized by Cockburn and Shu leading to the so called local

discontinuous Galerkin (LDG) method [56, 247]. This method uses a mixed formulation [26]

of the original problem to generate an explicit representation of higher space derivatives.

Peraire and Persson introduced the compact discontinuous Galerkin (CDG) method by [179]

which is closely related to LDG methods. Many other authors developed discontinuous

Galerkin methods for CFD as well: Famous methods are the ones by Bassi and Rebay [20,

21], Douglas and Dupont [66] or Baumann and Oden [22, 23]. Hartmann and Houston showed

that discontinuous Galerkin methods have nice properties for adaptive space discretizations

[102, 105, 106].

Further information on discontinuous Galerkin methods can be found in the books of

Hesthaven and Warburton [109], Di Pietro and Ern [62], the lecture notes of Hartmann [104],

or in the review articles of Cockburn and co-authors [54, 55] and the references therein.

In this section, the space discretization is described for the considered problems in flux

formulation

∂tw +∇ · (fc(w)− fv(w,∇w)) = h(w,∇w) on (t, x) ∈ ΩT

w(0, x) = w0(x).
(2.3 revisited)

After the introduction of some additional notation, we describe the general idea of discon-

tinuous Galerkin methods. Then, we go further to the hybridized discontinuous Galerkin

(HDG) methods that are the main concern of this thesis. For the HDG discretization, we

explain the linearization and static condensation process in more detail in order to emphasize
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3. Space discretization

Ω

n

Figure 3.1.: An example domain Ω with outward pointing normal vector n.

the special properties of this scheme. We conclude this section with some remarks on the

implementation of the method.

3.1. Notation

We introduce some additional notation for the description of the numerical method. These

follow standard notation commonly used for discontinuous Galerkin methods as it can be

found in articles and textbooks. For a domain Ω as depicted in Fig. 3.1 an outward pointing

normal vector n is defined for every point of the domain boundary ∂Ω. We assume that all

normal vectors are normalized, i.e. ‖n‖2 = 1. The definition of the normal vector allows to

define boundary values stemming from the inner and the outer of the domain for an arbitrary

function v as

v±(x) := lim
ε→0

v(x± εn), x ∈ ∂Ω.

Thus, the values v− are referred to as inner values and v+ as outer values. This is impor-

tant as discontinuous Galerkin discretizations usually lead to two distinctive values of the

approximated solution on (element) boundaries.

Based on this definition the average operator {·} and jump operator J·K for a scalar v ∈ R
or vector quantity v ∈ Rd are defined. The average operator {·} is given as

{v} =
1

2
(v+ + v−) (3.1)

and acts on each component if v ∈ Rd. The jump operator J·K distinguishes more clearly

between a scalar or a vector quantity. In the scalar case v ∈ R, the operator is given as

v ∈ R : JvK := n+v+ + n−v− = (v− − v+)n− ∈ Rd. (3.2a)

In the case of a vector v ∈ Rd the jump operator is defined as

v ∈ Rd : JvK := n+ · v+ + n− · v− =
(
v− − v+) · n− ∈ R. (3.2b)

Note that the jump operator applied to a scalar quantity gives a vector quantity as result

while applying the jump operator to a vector quantity results in a scalar quantity. We slightly
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Ω

(a) Square domain Ω. (b) Domain divided into 32 subdomains Tk.

Figure 3.2.: A square domain Ω is partitioned into subdomains T1, . . . , T32.

abuse the notation of the jump operator for multicomponent unknowns, i.e. m > 1. If the

vector v has m components, the jump operator is defined as

v ∈ Rm : JvK :=


Jv1KT

...

JvmKT

 ∈ Rm×d. (3.2c)

The definition refers to the component-wise application of the jump operator for scalars

(3.2a). If the jump operator is applied to a quantity v ∈ Rm×d that, for example, results

from evaluating the flux functions fc and fv, see Sec. 2.2, it is defined as

v ∈ Rm×d : JvK :=


J(v11, . . . , v1d)

TK
...

J(vm1, . . . , vmd)
TK

 ∈ Rm. (3.2d)

It means that the jump operator is applied to each row interpreted as vector.

In general, we do not consider the domain as a whole, but a partitioning of the domain

into K non-overlapping subdomains or elements Tk such that

Ω =
K⋃
k=1

Tk (3.3)

holds, see Fig. 3.2. Such a partitioning is also called a mesh Th = ∪kTk and contains all

elements Tk. A mesh in 2D using triangles to subdivide a square domain is given in Fig. 3.2b.

The characteristic size of the elements is given by the mesh size ∆x which resembles the

shortest side of all the triangular elements in the mesh. The boundary of an element Tk is

referred to as ∂Tk and contains the surrounding edges. We also have edges Ek̄ stemming from

the subdivision. The set of all edges or faces is called Eh = ∪k̄Ek̄ and it contains K := |Eh|
edges. This set of edges is sometimes also referred to as the skeleton of the mesh. Note that

there is a difference when one refers to edges from the sets Eh and ∂Tk. In the set Eh each

edge of the triangulation appears once. If one considers every element Tk and considers all
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n

n

n

Tk

(a) Normal vectors on element edges/faces.

n

Ek̄

(b) Normal vector of an edge.

Figure 3.3.: A triangular domain with the corresponding normal vectors of each edge.

its edges in ∂Tk one visits inner edges of the skeleton twice because inner edges are shared by

neighboring elements, see Fig. 3.2b.

For an element, we have an outward pointing normal vector defined for each side, see

Fig. 3.3a. Additionally, we have a normal vector defined for each edge Ek̄ ∈ Eh, see Fig. 3.3b.

These figures show simplices as we deal with these type of elements if nothing else is stated.

However, one reason for the popularity of discontinuous Galerkin methods is their ability to

work on elements of (almost) arbitrary shape and it is also possible to combine different types

of shapes in one mesh. A good example for this are DG methods working on agglomerated

meshes [8, 18, 19, 37]. In Fig. 3.4 an example of a flow simulation on a mesh consisting of

arbitrary polygons is given.

Agglomerated meshes can be easily generated by connecting neighboring elements of a

‘standard’ mesh consisting of simplices or quadrilaterals, for example, as generated by common

meshing tools. This allows to solve a problem on a much coarser mesh which may lead to less

unknowns. This applies also to the HDG method, but depends on the shape of polygons. The

reduction of degrees of freedom depends on the ratio of the number of edges K to number of

elements K, see Fig. 3.6. The HDG method reduces the number of unknowns most (compared

to standard DG methods) if one has the least amount of edges per element. This is the case

for simplices and gets worse for arbitrary polygons with increasing number of edges.

3.2. Discontinuous Galerkin methods

The discontinuous Galerkin method we present falls into the class of the local discontinuous

Galerkin (LDG) methods [56, 216, 247]. In general, the problem (2.3) is a second order PDE

due to the viscous terms. The problem is rewritten as a system of first order PDEs. For this,

an auxiliary unknown σ := ∇w is introduced. The auxiliary unknown allows to rewrite the
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(a) Density distribution around a NACA0012 air-

foil.

(b) Close up of the density distribution at the tip

of a NACA0012 airfoil.

Figure 3.4.: Plot of the density solution of a flow around a NACA0012 airfoil (left) and a

close up on the tip of the airfoil (right) computed with the HDG method. The

mesh consists of arbitrarily shaped polygons. Free stream boundary conditions

with Mach number Ma = 0.2, Reynolds number Re = 500 and an angle of attack

of 10◦ are used. The red lines indicate isolines of the density and the black lines

indicate the outline of the elements.

original problem as

σ −∇w = 0

∂tw +∇ · (fc(w)− fv(w, σ)) = h(w, σ)
(3.4)

and is often referred to as a problem in mixed formulation [26, 252]. Now, one seeks for a

solution to this problem. The name of the discontinuous Galerkin method already indicates

that one uses a Galerkin ansatz in a discontinuous setting. We assume that the domain Ω

has been subdivided such that a suitable mesh Th is available. Then, we define the finite

dimensional function spaces

Hh := {v ∈ [L2(Ω)]m·d | v|Tk ∈ [PP (Tk)]m·d, Tk ∈ Th} (3.5a)

Vh := {v ∈ [L2(Ω)]m | v|Tk ∈ [PP (Tk)]m, Tk ∈ Th} (3.5b)

for the approximation of the unknowns σ ≈ σh ∈ Hh and w ≈ wh ∈ Vh. We use the index ·h
to indicate discrete quantities. We choose polynomial functions spaces with PP (Tk) being the

polynomial space of degree P on the simplex Tk. The degree of the polynomial space refers

to the total degree in this thesis. For a polynomial space in two space dimensions d = 2 a

possible choice of the basis is xi1x
j
2. The polynomial space of total degree P contains all basis

functions that fulfill i+ j ≤ P . The function spaces restrict the polynomial space PP to the

subdomains Tk of the mesh. Thus, continuity of the solution is only assumed on an element
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as the solution is represented by a polynomial. Jumps in the solution between neighboring

elements are allowed. We use the function spaces to seek for a solution of the problem in

weak formulation which is common for Galerkin methods [26, 252].

In general, any polynomial basis can be used. However, the basis should be chosen carefully

since in practice the choice can have a serious impact on the performance and accuracy of

the scheme [62, 109]. In this work, we use Legendre polynomials as basis functions. The

approximations to the solutions wh and σh shall lie within these spaces. In the scalar case,

i.e. m=1, one looks for polynomial representations of the unknown expressed as

σkh(t, x) =

Nσ∑
i=1

Σki (t)τkh,i(x), x ∈ Tk,

wkh(t, x) =

N∑
i=1

W k
i (t)ϕkh,i(x), x ∈ Tk.

(3.6)

The index k refers to the representation of the solution on the kth element Tk and the

solution is reconstructed using a given set of N basis functions ϕkh,i defined for the element

and a set of coefficients W k
i (t) that have to be determined. The equivalent holds for the

auxiliary unknown and its Nσ basis functions τkh,i and coefficient vector Σki (t). This easily

extends to vector quantities using the respective basis functions and introducing additional

coefficients for each quantity. The representation (3.6) may differ slightly depending on the

chosen polynomial space.

The unknowns approximating the solution are functions in time t and space x and the test

functions are functions in space x. This does not change in the following and therefore the

explicit dependence is not stated in order to keep the notation short.

Let us first restrict to the problem on a single element Tk. We seek a solution (σh, wh) ∈
Hh×Vh to the problem (3.4). By multiplying the equation by test functions (τh, ϕh) ∈ Hh×Vh
and integrating over the element we obtain

∫
Tk

σhτhdx−
∫
Tk

∇whτhdx = 0

∫
Tk

∂twhϕhdx+

∫
Tk

∇ · (fc(wh)− fv(wh, σh))ϕhdx =

∫
Tk

h(wh, σh)ϕhdx.

Subsequently, we integrate by parts to remove the requirement of the solution to be differen-
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3.2. Discontinuous Galerkin methods

tiable. Thus, we obtain the weak formulation∫
Tk

σhτhdx+

∫
Tk

wh∇ · τhdx−
∫
∂Tk

ŵτ−h · nds

−
∫

∂Tk∩∂Ω

wBCτ
−
h · nds = 0

(3.8a)

∫
Tk

∂twhϕhdx−
∫
Tk

(fc − fv) · ∇ϕhdx+

∫
∂Tk

(f̂c − f̂v) · nϕ−h ds

+

∫
∂Tk∩∂Ω

(f̂BC
c − f̂BC

v ) · ϕ−h nds =

∫
Tk

hϕhdx

(3.8b)

that has to hold for all test functions (τh, ϕh) ∈ Hh × Vh. As there is a finite number of

test functions this creates a finite set of equations that can be solved. We do not mention

the explicit dependency of the fluxes and source term on σh and wh in (3.8) to keep the

representation compact.

The weak formulation contains two different kinds of integrals on element boundaries

∂Tk: Integrals over edges that do not intersect the domain boundary ∂Tk \ ∂Ω and such

integrals where the element boundary intersects with the domain boundary ∂Tk ∩ ∂Ω. The

integrals inside the domain Ω couple neighboring elements while the integrals on the the

domain boundary incorporate boundary conditions specified by the problem studied, see

Sec. 2. The global solution is given by putting all local solutions together by summing over all

elements Tk. Further explanations of weak formulations and finite element methods, especially

discontinuous Galerkin methods, can be found in text books and lecture notes [26, 62, 104,

109, 252] and in references therein. Note that there are no continuity restrictions on the

solution between elements and jumps in the solution between two neighboring elements Tk and

Tk′ are admissible even if the true solution of the problem is continuous. Thus, discontinuous

Galerkin methods fall into the class of non-conforming methods. The evaluation of functions

on boundary integrals requires special treatment and is denoted by ·̂.
The coupling between elements is achieved solely through integrals over element boundaries

∂Tk where the convective flux f̂c, viscous flux f̂v and ŵ have to be evaluated. In order to define

these in a manner that leads to a stable, consistent, and conservative approximation one uses

numerical flux functions denoted by ·̂. This idea is closely related to finite volume methods

where the solution is also allowed to be discontinuous between elements. In the setting of the

local discontinuous Galerkin methods the numerical flux f̂c has to obey requirements known

from finite volume methods; namely the flux must be consistent, conservative, and monotone

[143, 145, 229]. A possible choice is a (local/global) Lax-Friedrichs/Rusanov flux [55, 138,

143, 200, 229]

f̂c(w
+
h , w

−
h ) := {fc(wh)} − αc

2
JwhK (3.9)
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3. Space discretization

for the convective flux. The stabilization parameter αc has to be chosen carefully to obtain

a stable scheme and should be at least of the size of maximum absolute value of the local

eigenvalue of
(
∂
∂w
fc(w

±)
)
· n on the edge.

The remaining flux functions have to be chosen for the viscous flux and the auxiliary

equation. Flux functions of convective problems usually stem from hyperbolic problems where

one has some knowledge about the propagation direction. Thus, the fluxes are constructed to

respect this direction by upwinding. Diffusive (elliptic) problems do not have a dominating

direction of information propagation. Therefore, local discontinuous Galerkin methods define

the numerical fluxes as

ŵ(w+
h , w

−
h , σ

+
h , σ

−
h ) :={wh} − C12JwhK + C22Jfv(wh, σh)K

f̂v(w+
h , w

−
h , σ

+
h , σ

−
h ) :={fv(wh, σh)}+ C11JwhK− C12Jfv(wh, σh)K

(3.10)

with C11 > 0 and C22 ≥ 0 being scalars and C12 being a vector [53, 56]. The choice of

these parameters determines the stability and convergence of the scheme. In the literature, a

number of different choices are discussed, see e.g. [53, 55, 181, 247]. In general, the idea is to

fix a direction of propagation and invert the direction between the unknown and auxiliary

unknowns.

In order to introduce the global problem we use the following abbreviations

(g1, g2)Th :=

K∑
k=1

∫
Tk

g1 · g2dx

(g1, g2)∂T in
h

:=

K∑
k=1

∫
∂Tk\∂Ω

g1 · g2ds, (g1, g2)∂T BC
h

:=

K∑
k=1

∫
∂Tk∩∂Ω

g1 · g2ds

(3.11)

for the summation of inner products. This allows for a more compact notation. Then, the

global version of the semi-discrete problem (3.8) is to find a solution (σh, wh) ∈ Hh×Vh such

that for all test functions (τh, ϕh) ∈ Hh × Vh

(σh, τh)Th + (wh,∇ · τh)Th − (ŵ, τ−h · n)∂T in
h

−(wBC, τ
−
h · n)∂T BC

h
= 0

(∂twh, ϕh)Th − ((fc − fv),∇ϕh)Th + ((f̂c − f̂v) · n, ϕ−h )∂T in
h

+((f̂BC
c − f̂BC

v ) · n, ϕ−h )∂T BC
h

= (h, ϕh)Th

holds with suitable numerical fluxes defined as in (3.9) and (3.10).

Remark 3 The number of total unknowns is greatly increased for large m and d due to the

auxiliary unknowns. These can be removed by applying local lifting operators [179] which in

turn increase the cost of the computations.
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3.3. Hybridized discontinuous Galerkin methods

3.3. Hybridized discontinuous Galerkin methods

The HDG methods have been introduced in 2009 [50, 167, 168] while the main ideas, namely

the discontinuous Galerkin method [193] and the ideas to reduce the number of globally

coupled unknowns [97, 251] were already developed in the 1970’s and 1960’s. The methods

have been quickly adopted by the community and extended to linear and nonlinear problems

such as from fluid dynamics [72, 163, 165, 167–169, 211, 237]. Nowadays, HDG discretizations

also exist for many different problems outside of classical CFD applications such as a higher

order (in terms of space derivatives) PDEs like the Korteweg-de Vries equation [65, 203],

porous media [70, 83, 84, 202], magnetohydrodynamics [44, 146, 170, 232, 250], elasticity [129,

219, 235, 245], or wave equations [89, 90, 93, 206, 222], for example. Moreover, researchers

are concerned with space-time HDG methods [197, 198], efficient implementation [124, 199,

202], HDG-DG methods for implicit-explicit (IMEX) discretizations [130], and its efficiency

compared to other numerical discretizations [112, 124, 132, 246]. Additional information

can be found, e.g., in the introductory paper of Huerta et al. [215] or the review paper of

Cockburn [48] and the respective references therein.

The HDG methods have been introduced because the class of ‘classical’ discontinuous

Galerkin methods such as the one introduced in the previous section have one major drawback.

The local stencil of the solution without continuity requirements introduces a large number

of unknown coefficients to be determined when compared to other numerical methods. Then,

if an implicit solution technique is chosen, the degrees of freedom become globally coupled

leading to a matrix of considerable size that must be inverted. This may limit the application

of DG schemes to problems of engineering size due to memory and runtime requirements.

However, one often wants to use an implicit solution techniques. A common example are

steady state problems where implicit schemes converge quickly to the steady state solution

while explicit schemes would not. Time-dependent problems can also benefit from implicit

time-stepping if the problem is stiff. This is usually the case for problems in CFD due to

the diffusive nature of the Navier-Stokes equations, diffusive stabilization techniques for the

Euler equations or anisotropic meshes.

The core idea of hybridized or hybridizable discontinuous Galerkin methods [50, 69, 165,

167–169, 211] is the introduction of an additional hybrid unknown λ that only exists on the

element boundaries. Although this gives rise to more degrees of freedom in total, the hybrid

unknown makes the resulting system of equations amenable to static condensation. After

applying static condensation the system of equations is only globally coupled in this hybrid

unknown λ. A brief sketch of this process is given in Fig. 3.5. Static condensation and its

implications for the method are discussed in greater detail in Section 3.3.2. The current

section focuses solely on the introduction of the numerical scheme.

We can reuse many of the terms introduced for the LDG method in the previous section,
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Introducing hybrid variable

on edges

Remove element unknowns

from global coupling

Figure 3.5.: The (simplified) process of removing the globally coupled unknowns stemming

from the DG discretization ( ) by introducing hybrid unknowns ( ).

see Sec. 3.2. For the hybrid unknown λh we define an additional function space

Mh := {f ∈ [L2(Eh)]m | f|Ek̄ ∈ [PP (Ek̄)]m, Ek̄ ∈ Eh} (3.13)

that defines the piecewise polynomial functions on edges Ek̄. The hybrid unknown is then

expressed in terms of basis functions µh ∈Mh

λk̄h(t, x) =
N∑
i=1

Λk̄i µ
k̄
h,i(x), x ∈ Ek̄. (3.14)

similar to the auxiliary unknown σh and unknown wh in (3.6). The only difference, is that a

solution is approximated on the edge Ek̄.

Again, this is a discontinuous approximation, i.e. there is no continuity requirement of

the hybrid unknown. This means, that at vertices where several edges touch, the values of

λh from different edges may differ. A special class of methods that enforce a continuous or

a mixed continuous/discontinuous representation of the hybrid unknown are the so called

embedded discontinuous Galerkin methods (EDG) and interior embedded discontinuous

Galerkin methods (IEDG) [51, 72, 98, 166, 178]. However, these methods are out of the scope

of this work.

The discretization of the problem (2.3) follows the same procedure as in the previous

section, see Sec. 3.2. The equation is rewritten as a system of first order PDEs by introducing

the auxiliary unknown σh. Then, the equations are multiplied by test functions (τh, ϕh, µh) ∈
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3.3. Hybridized discontinuous Galerkin methods

Hh × Vh ×Mh, integrated by parts and summed up over all elements and edges to obtain

(σh, τh)Th + (wh,∇ · τh)Th − (ŵ, τ−h · n)∂T in
h
− (wBC, τ

−
h · n)∂T BC

h
= 0 (3.15a)

(∂twh, ϕh)Th − ((fc − fv),∇ϕh)Th + ((f̂c − f̂v), nϕ−h )∂T in
h

+((f̂BC
c − f̂BC

v ), nϕ−h )∂T BC
h

= (h, ϕh)Th (3.15b)

(Jf̂c − f̂vK, µh)Ein
h

+ α(λh − wBC, µh)EBC
h

+((fv − fBC
v ) · n, µh)EBC

h
= 0. (3.15c)

The first two equations look in fact almost identical to (3.8). However, there are two main

differences. Firstly, different numerical flux functions are used. As numerical flux function in

the auxiliary equation (3.15a) we use

ŵ := λh. (3.16)

The remaining flux functions are modified (global) Lax-Friedrichs/Rusanov [165] fluxes

f̂c(λh, w
−
h ;n) = fc(λh) + αc(λh − w−h )nT (3.17a)

f̂v(λh, w
−
h , σ

−
h ;n) = fv(λh, σ

−
h )− αv(λh − w−h )nT (3.17b)

where αc > 0 and αv > 0 are stabilization parameters. The fluxes have been modified to use

the hybrid unknown λh and data local (σ−h , w
−
h ) to an element Tk. Thus, the fluxes over an

edge of this element can be evaluated without the knowledge about the solution (σ+
h , w

+
h ) on

the neighboring element. The convective stabilization coefficient αc has to be set (at least)

as large as the largest eigenvalue of the matrix described in (2.5). This is identical to the

Lax-Friedrichs flux (3.9). For the global Lax-Friedrichs/Rusanov flux we choose the largest

eigenvalue in the computational domain Th.

The viscous stability parameter follows from the diffusive processes. For the Navier-Stokes

equations the stability parameter can be set to αv = γ
Pr·Re

as suggested in [165]. The

non-dimensional numbers refer to the dominance of diffusive processes. The authors also

argue that αv is usually very small for compressible flows as the Reynolds number tends to

be large. As the stabilization term of the numerical fluxes only differ in the stabilization

parameter we can write the difference of the numerical fluxes as

f̂c(λh, w
−
h )− f̂v(λh, w

−
h , σ

−
h ) = fc(λh)− fv(λh, σ

−
h ) + α(λh − w−h )nT

with a combined stability coefficient α := αc + αv.

The second difference is the third equation (3.15c) that has been added. This equation

is needed to uniquely define the hybrid unknown and is chosen such that fluxes on edges

are conservative in the normal direction. For a compact notation of the HDG method (3.15)
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3. Space discretization

we use the shorthand notation for inner products introduced in Eq. (3.11) and additionally

define additional shorthand notations of inner produces on element edges

(g1, g2)Ein
h

:=
K∑
k̄=1

∫
Ek̄\∂Ω

g1 · g2ds, (g1, g2)EBC
h

:=

K∑
k̄=1

∫
Ek̄∩∂Ω

g1 · g2ds. (3.18)

In order to allow for an even more compact notation the some abbreviations are defined. We

group the function spaces as Xh := Hh×Vh×Mh. In a similar fashion, the abbreviated vector

of test functions xh ∈ Xh is defined as xh(x) := (τh(x), ϕh(x), µh(x)) and the abbreviated

solution vector wh(t, x) := (σh(t, x), wh(t, x), λh(t, x)) are defined. Similar to the previous

section, see Sec. 3.2, the combined approximated solutions wh and the combined test functions

xh are functions in time and space, respectively. Again, we do not state the dependence

in time t and space x explicitly to keep the notation short. Then, we write the global

semi-discrete problem (3.15) simply as

∂tT (wh,xh) = N (wh,xh). (3.19)

The term T (wh,xh) refers to terms incorporating the time derivative of the solution

∂tT (wh,xh) = (0, (∂twh, ϕh)Th , 0)T (3.20)

and N (wh,xh) collects all remaining, possibly nonlinear, terms. This notation shows that

the discretized system of equations is a system of ordinary differential equations (ODEs).

The system of equations can now be discretized in time by a suitable time integration scheme.

Particular choices and the reasoning are presented in the chapters Ch. 4–6. The absence

of time derivatives of the auxiliary unknown σh and the hybrid unknown λh leads to a

differential algebraic equation (DAE). The differential algebraic structure requires a careful

choice of the time integrator [101].

Remark 4 In case a first order PDE is discretized, i.e. fv ≡ 0, the auxiliary variable σh

is not needed. This means equation (3.15a) is removed and the remaining equations (3.15b)

and (3.15c) simplify accordingly.

Remark 5 We expect that the method has optimal convergence in ‖·‖L2 -norm [165, 211] for

smooth problems. This means the method should converge with order P + 1 in space for the

unknown wh including and auxiliary unknown σh. In the setting of time dependent problems,

the observed convergence rate also depends on the chosen time step size ∆t and the order of

convergence of the chosen time integrator.
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3.3. Hybridized discontinuous Galerkin methods

3.3.1. Linearization of nonlinear problems

The system of equations (3.19) is nonlinear when discretizing Euler or Navier-Stokes equations.

Therefore, the arising system of equations cannot be solved directly. In this work, we solve

the nonlinear problem by applying a (damped) Newton-Raphson method [61], often also

called Newton’s method. We assume that the semi-discrete problem has been discretized in

time, e.g. by an implicit Euler method. Then, the system of equations can be written as

T (wn+1
h ,xh)− T (wn

h ,xh) = ∆t N (wn+1
h ,xh)

with n denoting the current time level, n+ 1 being the time level where a new solution has to

be computed for and ∆t being the time step size ∆t = tn+1 − tn. We can rewrite this system

of equations as N

N(wn+1
h ) = 0 (3.21)

such that one has to find a root of the system of equations. Newton’s method solves this

kind of problem by a series of linear problems. For a given start value wn+1,0
h one obtains an

approximation of the root by solving a sequence of equations

N′(wn+1,l
h )sl = −N(wn+1,l

h ) (3.22)

in order to update the approximation to the root

wn+1,l+1
h = wn+1,l

h + sl.

This procedure is repeated until an abort criteria is reached. A common criteria is a user-

specified tolerance tol that specifies when the the update sl is small ‖sl‖2 < tol such that

the Newton method is stopped. In practice, one also defines an upper kmax for l at which the

computations are aborted.

The construction of the matrix N′, also called the Jacobian, requires to differentiate N with

respect to the unknown wh. This can be done either exactly or by a suitable approximation

that does not tamper the accuracy and convergence of Newton’s method.

For high-order methods such as the discontinuous Galerkin method the matrices are usually

large, but have only few nonzero entries per row. Such matrices are called sparse. The direct

inversion of these matrices is undesirable in most cases. Although the matrix is sparse its

inverse is usually a dense matrix with many nonzeros. Thus, the inversion would be memory

and time consuming. A common approach is to solve this system by an iterative method

from the class of Krylov methods that solves the system approximately [36, 152]. In this case,

the method is also called a Newton-Krylov method. If we do not specify anything different,

the system is solved using a restarted (F)GMRES method [201, 220].

The fact that the linear system of equations is solved approximately emphasizes also

the need to specify a tolerance tol for the update sl. One cannot expect that the method
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converges with sl = 0 on a computer with finite precision where the Jacobian may have been

computed approximately and the resulting linear system has been solved with finite accuracy.

A practical problem may be that Newton’s method only converges to a root if the starting

value is already close enough to the root and the Jacobian is accurate and invertible. If this is

fulfilled, the method converges with second order to the root. Moreover, for time-dependent

problems the differences of the solution between time steps are often small and thus the

solution at the old time level wn
h is usually a good starting value for the Newton method.

However, in cases where the method does not properly converge or where one wants to

speed up the nonlinear solver we introduce a dual time-stepping method as introduced by

Jameson [116, 117]. The solution of (3.21) is interpreted as a steady state problem that is

solved by

∂wn+1
h

∂τ
+ N(wn+1

h ) = 0 (3.23)

with a pseudo time τ . The dual-time stepping approach has the advantage that one can use

techniques from steady-state frameworks to increase the convergence speed. Applying the

implicit Euler and Newton’s scheme to this equation gives(
N′(wn+1,l

h ) +
1

∆τ l
I

)
sl = −N(wn+1,l

h ) (3.24)

with ∆τ l being the pseudo time step that does not relate to the physical time step ∆t. The

method can also be referred to as a damped Newton’s method. The pseudo time step should

depend on the solution wn+1,l
h and ∆τ l →∞ for l→∞ such that solution converges towards

the solution of the initial method (3.22). In this work, we choose ∆τ l := Cl ·∆x with

C
l =


c0

[
−2
(
l
l0

)3
+ 3

(
l
l0

)2
]
, l ≤ l0, ‖N(wn+1,l−1

h )‖2 > tolC

Cl−1

[
1 + c1 max

(
0, log

(
‖N(w

n+1,l−1
h

)‖2
‖N(w

n+1,l−1
h

)‖2

))]
, otherwise

where ∆x is the element size, l0 is a user-defined iteration index and tolC is a user-defined

tolerance for which C should be ramped. After l0 is exceeded or the residual is small enough,

i.e. one is close to the solution, C is increased quickly in order to converge to the solution

of the initial problem (3.22). The ramping is inspired by the approach discussed by May

et al. [152]. Further information about the ramping procedure used in this thesis, the

user-defined parameters c0 and c1, and its influence on steady state solution can be found in

[209].

Note that the dual-time stepping scheme may harm the time accuracy if the inner iterations

are not fully converged. Thus, we solve the arising linear system of equations with an iterative

scheme, but with small tolerance. If a steady problem is solved, we can also use the approach

to introduce a pseudo time. In this case no physical meaningful time t is present, but the

discretized problem can still be expressed as in (3.21).
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3.3. Hybridized discontinuous Galerkin methods

3.3.2. Static condensation

After the system of equations (3.15) has been discretized in time one obtains the fully discrete

set of equations. Independent of whether one chooses the dual time-stepping approach (3.24)

or the standard Newton’s method (3.22) the resulting system can be written in matrix vector

notation as Aσσ Aσw Aσλ

Awσ Aww Awλ

Aλσ Aλw Aλλ


Σ

W

Λ

 =

RσRw
Rλ

 . (3.25)

The system matrix consists of blocks that refer to the equations of the auxiliary unknown

Aσ(·) (3.15a), the unknown Aw(·) (3.15b) and the hybrid unknown Aλ(·) (3.15c). The second

index shows to which unknown the block is referring, so Aσw refers to the matrix that stems

from terms in the equation of the auxiliary unknown that include the unknown wh. The

vector R(·) refers to the residual vectors of the corresponding equations and the vectors Σ,

W , and Λ hold the coefficients needed to represent the approximated solutions. If Newton’s

method is used these vectors contain updates of the coefficients instead of the full coefficients

of the solutions. The system of equations is considerably larger than for standard DG methods

where all matrices and vectors referring to the hybrid unknown would vanish. However, the

structure of the system of equations allows to solve the system in an efficient way. This

process is often referred to as static condensation and the idea has been introduced already in

1965 for continuous Galerkin discretizations [97]. In the same year de Veubeke demonstrated

how a continuous Galerkin method could be hybridized [251]. His discretization loosened

the continuity restrictions of the unknowns and re-enforced the restriction through a hybrid

unknown leading to a linear system of equations which is amenable to static condensation.

This method has been further analyzed by several authors [9, 25, 49] who used the solution

of the hybrid unknown for a post-processing procedure to increase the accuracy of the

other unknowns. In the work of Cockburn et al. [51] a short overview over the history of

hybridization of finite element methods and discontinuous Galerkin methods is given. In the

same publication the authors introduced a unified framework of this concept for different

numerical discretizations. This included the discontinuous Galerkin methods and thus leading

to hybridized or hybridizable discontinuous Galerkin methods [50, 165, 167–169, 211]. A

broad overview over the hybridization of numerical methods and static condensation can

be found in a recent review paper of Cockburn [48]. As mentioned in this paper, the static

condensation process is closely related to the Schur complement [249].

Now, to condense the system of equations (3.25) it can be interpreted as two systems. One

system (
Aσσ Aσw

Awσ Aww

)
︸ ︷︷ ︸

=:Aloc

(
Σ

W

)
+

(
Aσλ

Awλ

)
Λ =

(
Rσ

Rw

)
(3.26)
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that stems from the original problem and the equation

(
Aλσ Aλw

)(Σ

W

)
+ AλλΛ = Rλ (3.27)

stemming from the hybrid equation. The first system (3.26) can be solved:(
Σ

W

)
=

(
Aσσ Aσw

Awσ Aww

)−1(
Rσ

Rw

)
︸ ︷︷ ︸

=:L1

−
(

Aσσ Aσw

Awσ Aww

)−1(
Aσλ

Awλ

)
︸ ︷︷ ︸

=:L2

Λ, (3.28)

with the vector L1 and matrix L2. These are often referred to as local solves or local solvers.

By reordering the coefficients of the vector (Σ,W )T such that coefficients of elements are

grouped, i.e. (ΣT1 ,WT1 , . . . ,ΣTK ,WTK )T, it shows that the matrix Aloc is block diagonal.

This means the the system matrix consists of square matrices on its diagonal. Moreover, the

residuals and matrices assembled in (3.26) can be assembled locally and also Aloc can be

inverted locally. This leads to many small systems of equations that need only little memory

and the systems of equations can be solved independently. Therefore, the matrix blocks can

be inverted in parallel.

Now, the local solves can be used to eliminate the dependency on (Σ,W )T in the second

equation (3.27) as (
Aλσ Aλw

)
L1 −

(
Aλσ Aλw

)
L2Λ + AλλΛ = Rλ

which gives (
−
(

Aλσ Aλw

)
L2 + Aλλ

)
︸ ︷︷ ︸

=:GHDG

Λ = Rλ −
(

Aλσ Aλw

)
L1 (3.29)

as globally coupled system. Therefore, assembling and solving the globally coupled system

(3.25) is done in three steps that avoid constructing the matrix as a whole:

1. Compute the local solves using (3.26).

2. Solve the globally coupled system (3.29).

3. Update the local solutions using the local solves and the updated hybrid solution using

(3.26).

Depending on the memory requirements one can either save the local solves L1 and L2 or

recompute them when the solution is reconstructed.

We want to emphasize that the number of hybrid unknowns λh does not depend on the

introduction of the auxiliary unknown σh. Thus, it is much less tempting to remove the

auxiliary unknowns by lifting operators. The auxiliary unknown increases the assembly and
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solving cost of the local solves and the globally coupled system of equations since additional

terms have to be incorporated. On the other hand the lifting operator would also introduce a

large number of smaller problems to be solved that requires computational work. Another

way to avoid the additional unknowns would be the use of a different flux like an interior

penalty formulation.

3.3.3. Consequences of the static condensation process

We want to briefly present the benefits possible by using a hybridized discontinuous Galerkin

method compared to ‘classical’ discontinuous Galerkin methods. Consider a simple square

domain as shown in Fig. 3.2a that is represented by a uniform mesh of triangles. Such

a triangular mesh is shown in Fig. 3.2b. The mesh can be viewed as consisting of Kx1

square elements in the x1-direction and Kx2 square elements in the x2-direction. These

square elements are then divided into two triangles. For uniform meshes of a square we have

Kx1 = Kx2 and thus the mesh contains K = 2Kx1Kx2 = 2 · (Kx1)2 triangles. In this case,

the mesh contains

K(K) = 4

√
K

2︸ ︷︷ ︸
edges on ∂Ω

+ 2

(√
K

2
− 1

)(√
K

2

)
︸ ︷︷ ︸
vertical and horizontal edges

+
K

2︸︷︷︸
diagonal edges

= 2

√
K

2
+

3

2
K

unique edges and is a function of K. The asymptotic ratio between the number of elements

to edges in the mesh is

lim
K→∞

K

K(K)
= lim
K→∞

K

2
√

K
2

+ 3
2
K

=
2

3
.

It is clearly visible that a triangular mesh as choses as example has always more edges than

elements. In the setting of ‘classical’ DG methods the number of globally coupled unknowns

stem from the degrees of freedom on elements while for the hybridized DG method the

globally coupled unknowns stem from the degrees of freedom on edges. Even though the

number of edges is typically larger than the number of elements the total number of globally

coupled unknowns can be lower for hybridized DG methods because the number of degrees

of freedom increase slower for increasing polynomial degree P . The number of unknowns N

on a simplex is given by

N(d, P ) = Πd
i=1

(P + i)

i
(3.30)

and depends on the space dimension d and polynomial degree P of the chosen polynomial

representation [62]. On a triangle (d = 2) one has N(2, P ) = (P+1)(P+2)
2

while on a edges

(d = 1) one has N(1, P ) = (P + 1). Thus, the local number of degrees per freedom grows

much faster for the 2D element than on a edge.
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Figure 3.6.: Comparison of globally coupled unknowns and nonzero entries of DG and HDG

methods. The mesh is assumed to have a ratio of number of elements to edges of
K

K
= 2

3
. The data is presented for d = 2 space dimensions.

In Fig. 3.6 we show how the number of globally coupled unknowns and the number of

nonzero entries in the resulting system of equations compare. It is assumed that the ratio

between elements and edges is K

K
= 2

3
. Furthermore, possible auxiliary unknowns are

neglected for the DG method. In the images we plot the ratio of globally coupled unknowns

and number of nonzero entries of the HDG method compared to the DG method for different

polynomial degrees P ∈ {0, 1, . . . , 6}. This means that whenever the ratio is below one, the

HDG method is advantageous compared to the LDG method.

Fig. 3.6a shows the number of globally coupled unknowns. It is clear from the figure that

the HDG method has the same number of globally coupled unknowns already for P = 1.

The ratio of globally coupled unknowns of the HDG method compared to the DG method

becomes increasingly advantageous for the HDG method as P increases.

Fig. 3.6b shows the number of nonzero entries in the resulting matrix. We made the

simplifying assumption that all elements and edges are coupled to the same number of

elements and edges. In practice, this does not hold for boundary elements and edges. The

number of local degrees of freedom is even more important for the number of nonzeros as

one has quadratic blocks of size N(d, P )2 and therefore a quadratic dependency. This is also

observable in the figure as the HDG method has less nonzero entries already for P = 1. It

is assumed that an element or edge only couples to its nearest neighbors. Each triangular

element creates four blocks of size
(

(P+1)(P+2)
2

)2

as it couples with itself and its three

neighbors, see Fig. 3.7a. For edges of triangles five blocks of size (P + 1)2 are contributed by

each edge as a edge couples to itself and the four edges of the two elements sharing the edge,
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3.3. Hybridized discontinuous Galerkin methods

(a) For a standard DG method the unknowns of

the center triangle (red dots) are globally cou-

pled to the degrees of freedoms of its the three

neighboring elements (blue vertical lines).

(b) For an HDG method the unknowns of the

center edge shared (red solid) by two elements

are coupled to the unknowns of the edges of

the adjacent triangles (blue dashes).

Figure 3.7.: Schematic of unknowns coupled between elements for the DG (left) and the HDG

(right) method. In both methods the unknowns of the considered triangle or

edge (red) is coupled to itself and its related neighbor counterparts (blue).

see Fig. 3.7b.

The results only hold for meshes that are infinitely often refined such that K

K
= 2

3
.

Considering the square domain and the uniform triangular mesh in Fig. 3.2, we can compute

the globally coupled degrees of freedom and nonzero entries for the DG and HDG method in

a more realistic setting. This has been done in Fig. 3.8.

The coarsest mesh consists of K = 2 elements and is refined eight times leading to

K = 131072 elements in the finest mesh. Fig. 3.8a shows the ratio of globally coupled

unknowns of the HDG method compared to the number of globally coupled unknowns of a

standard DG method. It is clear from the figure that the theoretical values are approached

swiftly. If polynomials of degree P > 1 are used, the HDG method has less globally coupled

unknowns than a standard DG method after 2 refinements which translates to a coarse mesh

with only K = 32 elements. This mesh is the one presented in Fig. 3.2b. The number of

nonzero entries in the matrix is already lower on the coarsest mesh for P > 1. Therefore, the

HDG method offers benefits for globally coupled systems already on rather coarse meshes

and moderate polynomial degrees.

For a mesh with K = 128 elements and P = 3 we plot the nonzero structure of the matrix

G that represents the globally coupled system, see Fig. 3.9a. The matrix stems from an

upwind DG and our HDG implementation as described in [124]. One clearly sees that the

matrix GHDG of the HDG scheme is much smaller and has less than 50% of the number of

nonzero entries of the DG method, see Fig. 3.9b.

It is obvious that the construction of the globally coupled system of equations for the HDG

method requires more work than for standard DG schemes. The static condensation process

requires the assembly of small, local systems that have to be solved. Due to the locality of

the problem the assembly and solving of the system of linear system of equations can be done

in parallel by default. A problem that can be run in parallel without further intervention,
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3. Space discretization
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Figure 3.8.: Comparison of globally coupled unknowns and nonzero entries of DG and HDG

methods. A regular mesh of a square domain is generated and uniformly refined,

see Fig. 3.2b for an example. Data for meshes with K = 2, 8, 32, . . . , 131072 is

displayed.

such as the assembly and solving of the local problems, is often called an embarassangily

parallel problem [108]. When the assembly and solving of the linear system of equations

is implemented the assembly can be parallelized without additional effort. Therefore, the

assembly is well-suited for current (super-)computer architectures that heavily rely on parallel

execution of code.

The potential savings in runtime and memory requirements due to the static condensation

process do not only hold in theory but also in practice. In Fig. 3.10, we present the

evolution of globally coupled unknowns and nonzero entries under the same assumptions as

before. However, we consider a mesh as described for test case C2.1 of the first and second

“International Workshop on High-Order CFD Methods” [234]. The coarsest mesh as shown

in Fig. 3.11 is much closer to the meshes considered in engineering applications. The mesh

contains two NACA0012 airfoils at different angle of attack in a circular domain that has

a radius of 100 times the chord length of an airfoil. Again, the ratios of globally coupled

unknowns and nonzeros of the HDG method compared to the DG method reach values close

to the one for infinite refinements. However, this time the coarsest mesh is already benefiting

the HDG method.

The second example, see Tab. 3.1, compares the errors (in L2-norm) and the runtimes of

a standard upwind DG method and an HDG method as presented in Sec. 3.3. The HDG

method provides significant savings in runtime over the DG method especially for large P

while obtaining similar errors. The results stem also from our MATLAB implementation

described in [124]. In this paper there is also a more detailed analysis of the runtime.
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3.4. Implementation

(a) The nonzero structure of an upwind DG dis-

cretization. The matrix GDG ∈ R1280×1280

has 31162 nonzero entries.

(b) The nonzero structure of an HDG discretiza-

tion as described in this work. The matrix

GHDG ∈ R832×832 has 14592 nonzero entries.

Figure 3.9.: The nonzero pattern of the global matrix of an upwind DG scheme (left) and

an HDG scheme (right) as used in this work. A linear advection equation is

solved using the MATLAB code described in [124]. A square mesh with K = 128

elements and polynomials of degree P = 3 are used.

Moreover, the implementation may be further optimized for the HDG method since most of

the time is not spend on solving the equations, but rather on evaluating certain integrals of

(3.15b). Additionally, the implementation does not exploit parallelization explicitly. However,

MATLAB usually solves linear systems of equations in parallel in some way. Further

comparisons of the HDG method to other numerical discretizations like DG [27, 241] and

continuous Galerkin (CG) methods [112, 132, 246] can be found in the literature.

3.4. Implementation

The results presented in this work stem from various implementations of the HDG method.

If nothing else is explicitly stated, the implementation is written in C++ and Netgen

and NGSolve [204, 205] are used for mesh generation, mesh handling, polynomials and

integration formulae. The local problems are solved using LAPACK [6] and the global system

is solved using PETSc [12–14]. The code has been parallelized using MPI [158] such that

it supports distributed memory system inspired by the thesis of Niklas Fischer [76]. For

parallel computations the mesh is partitioned using METIS [131]. We do not show any

results concerned with the parallel performance of the code used in this doctoral thesis as

the parallel performance of the used HDG implementation was not part of the conducted

research. Results for a parallel HDG implementation for shared memory systems can be
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Figure 3.10.: The ratio of globally coupled unknowns and nonzero entries in the global matrix.

The graphs compare the HDG method to a standard DG method on a uniformly

refined of a circular mesh containing two airfoils as described in [234] (NACA

airfoil tandem). Data for meshes with K = 3893, . . . , 3986432 elements is

displayed.

found in the works of Roca et al. [199] and for distributed memory systems in the work of

Samii et al. [202], for example. A major problem that makes it hard to have an efficient

parallel implementation is the globally coupled system. The assembly and solving of the

globally coupled system require the parallel processes to communicate. This communication

is usually rather slow compared to other operations and may lead to other processes having

to wait for completion of the communication. This is not unique to the HDG method, but all

numerical methods that construct and solve a globally coupled linear system of equations.

In Fig. 3.12, a brief overview over the main building blocks of the code are presented. The

object oriented features and templates available in C++ allow for a good abstraction. The

choice of the programming language allows to easily switch between different time integrators,

governing equations or file formats for output files. Other big building blocks are the wrapper

that obtains the finite elements from NGSolve and the Newton solver that calls suitable linear

solvers. A more elaborate explanation of relevant parts is given in the following sections.

Furthermore, an open source implementation in MATLAB for 2D linear advection equations

is available [124]. We have contributed the implementation to the FESTUNG project [79,

80, 124, 195] during the preparation of this thesis. The project offers a high-performance

MATLAB/GNU Octave framework for discontinuous Galerkin methods. A further imple-

mentation for developing and testing in 1D based on MATLAB, that follows the ideas of

FESTUNG closely, has been used.
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3.4. Implementation

(a) Full mesh. (b) Zoomed in mesh centered at the origin.

Figure 3.11.: A mesh containing a tandem of NACA airfoils. The generated mesh has

K = 3893 elements and is centered around the center point of the first airfoil.

On the left hand side the whole domain is shown and on the right hand side a

close-up of the airfoils is presented.

Error ‖·‖L2 runtime [s]

P DG HDG DG HDG

0 1.87e-01 2.35e-01 27.1 39.8

1 7.25e-02 7.78e-02 157 218

2 5.53e-02 5.44e-02 797 717

3 4.02e-02 4.13e-02 3980 3166

4 4.16e-02 4.18e-02 10996 7199

Table 3.1.: Comparison of L2-errors and runtimes for DG and HDG solvers as presented in

[124]. A linear convection equation has been solved.
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Figure 3.12.: Simplified structure of the implementation. The HDG solver consists of five

major parts that are related to the finite element discretization in space, dif-

ferent time discretizations, different model equations that can be solved, an

implementation of Newton’s method with related linear solvers and file in- and

output.

46



4. Review of time discretizations for the HDG method

In Sec. 3.3, the PDE (2.3) was discretized in space and one obtained a semi-discrete problem.

In order to numerically solve time-dependent problems we need to discretize the problem also

in time in order to receive the fully discrete system. It has also been mentioned in Sec. 3.3

that with

∂tT (wh,xh) = N (wh,xh) (3.19 revisited)

the semi-discrete system is a differential algebraic equation. This is common among many

numerical space discretizations and is not unique to (hybridized) discontinuous Galerkin

methods. A common approach to discretize the semi-discrete system is to use well-known

time-stepping methods for ODEs. Popular choices are multistep schemes and multistage

methods. For a broad overview of different methods we refer to the extensive text books of

Hairer, Wanner and Nørsett [99], its second part by Hairer and Wanner [101] or Butcher [28].

In the previous chapter, it has also been mentioned that the semi-discrete system of the

HDG method is a differential algebraic equation of order one [119, 165] due to the lack of

time derivatives of the auxiliary unknown σh and hybrid unknown λh. The index of the DAE

refers to how often the equations have to be differentiated with respect to time such that one

can recover an ordinary ODE [101]. This is a tedious task and might not always be possible

due the requirements of the differentiability of the solutions.

The time integrators should be at least A-stable [99, 101, 223] as the studied problems

are stiff. The reason we prefer methods with good stability properties is that these methods

can be applied directly to DAEs and keep the order of convergence for all quantities of the

DAEs. Under certain conditions no order reduction is observed [101, 223]. This means that

the time integrator keeps its order of convergence in time t when applied to a DAE. This is

not automatically the case for other time integrators [101].

It was mentioned in the previous chapter that implicit methods create one or more globally

coupled systems per time step that have to be solved. Therefore, the HDG method is in

particular interesting due to the application of static condensation, see Sec. 3.3.2. However,

the construction and solving of the linear system is still the most expensive part of the

method. Therefore, we investigate several different classes of time integrators in order to

identify stable and efficient time integrators for the HDG method.

This chapter focuses on introducing time integrators already established for the HDG

method [119, 165, 168, 169, 208]. In this thesis, these integrators are used for either new
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4. Review of time discretizations for the HDG method

applications or to compare them with new time integrators. The chapter is structured as

follows: First, we introduce additional notation for the time discretization of the semi-discrete

problem (3.20). Subsequently, we discuss the stability requirements of our space discretization.

Then, we present multistep methods, such as backwards differentiation formulae (BDF), and

multistage methods, such as Runge-Kutta (RK) schemes. Each description of the numerical

integrators is concluded by numerical experiments.

4.1. Notation and definitions

The time integrators used in this thesis are usually introduced in the setting of an ordinary

differential equation

w ′(t) = g(t, w(t)), t ∈ (0, tfinal],

w(0) = w0,
(4.1)

with unknown w, a given right hand side g and given initial data w0. We do so, as well, to

keep a consistent notation with the literature, but we also state the system of equations for

the fully discretized problem for a discretization using the HDG method. This can be done

quite easily, because, as mentioned in Sec. 3.3, the semi-discrete system (3.19)

∂tT (wh,xh) = N (wh,xh) (3.19 revisited)

is a DAE. The notation has been chosen to ‘hide’ the differential algebraic equation such that

the shape of the problem is very close to the problem of solving an ODE as shown in (4.1).

Using this notation it is possible to apply the time integrators for ODEs to the semi-discrete

PDE with very similar notation.

For the time discretization, the time slab is divided into a set of N t + 1 discrete times

0 = t0 < t1 < . . . < tN
t

= tfinal

where the time difference between consecutive times

∆tn := tn+1 − tn

is referred to as time step or time step size. In general, these may vary during the simulation,

i.e. ∆tn 6= ∆tn+1. If equidistant time steps are used, i.e. ∀n, ∆tn = ∆tn+1, then we may

drop the time index n and refer to the time step simply as ∆t = tfinal
Nt

. In this case, the

time is given as tn = n ·∆t. Furthermore, we use the shorthand notations wn = w(tn) and

gn = g(tn, w(tn)) when the exact solution and exact right hand side are evaluated at time tn.

In the discrete setting we use wnh ≈ w(tn) and gnh = g(tn, wnh) in order to refer to the solution

obtained from the time integrator. The approximated solution and right hand side evaluated

using the approximated solution are indicated by · h. We use the same short hand notation

for unknowns stemming from the discretization of the PDE.
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4.1. Notation and definitions

The theory of differential equations is not the concern of the thesis. Therefore, we limit the

introduction to a short explanation of the required stability properties and the description of

the time integration methods to a minimum. Further information on these methods can be

found in various text books [28, 99, 101, 223].

If multiderivative time integrators are used, we need more than just the first time derivative.

In order to allow for a compact notation we define

∂it :=
∂i

∂ti
, ∂ix :=

∂i

∂xi

as shorthand notation for time and space derivatives in one space dimension.

4.1.1. Stability requirements

In order to underline the need for implicit solvers that are at least A-stable, we analyze the

spectrum of the HDG-operator for the linear convection equation in 1D

∂tw + u∂xw = 0, on x ∈ [0, 1] (4.2)

with periodic boundary conditions. After discretizing the system in space using the HDG

method, one obtains the following system of equations(
Mϕ∂tW

0

)
+

(
Aww Awλ

Aλw Aλλ

)(
W

Λ

)
= 0

where the naming of the matrices follows Sec. 3.3.2. The matrix Mϕ denotes a mass matrix.

This has to be reformulated to get the semi-discrete system that only depends on W. The

hybrid unknown Λ can be eliminated from the system in a similar fashion to the static

condensation procedure, see Sec. 3.3.2. The equation can be rewritten as

Mϕ∂tW + AwwW + AwλΛ = 0 (4.3a)

AλwW + AλλΛ = 0 (4.3b)

where the first line refers to the equations stemming from the initial PDE and the second

line refers to the hybrid equation introduced for the HDG method, see Sec. 3.3. The set of

hybrid equations can be used

AλwW + AλλΛ = 0⇔ Λ = −A−1
λλAλwW

to express the hybrid unknown Λ in dependence of W. After plugging this into (4.3a) we

obtain

Mϕ∂tW +
(
Aww −AwλA−1

λλAλw

)
W = 0.

Inverting the mass matrix leads to

∂tW = ÃW (4.4)
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(a) Eigenvalues of the HDG method for increasing

polynomial degree on a mesh with K = 16
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Figure 4.1.: The development of the spectrum of HDG operator for the linear convection

equation. The linear convection equation has been discretized in 1D on Ω = [0, 1]

and with periodic boundary conditions.

with Ã := −M−1
ϕ

(
Aww −AwλA−1

λλAλw

)
.

We compute the eigenvalues λ of Ã for u = 1. Thus, the stabilization coefficient α of the

numerical flux functions, see (3.17a), is set to 1. The discretization uses Legendre polynomials

as basis functions (without normalization) and the eigenvalues are computed by MATLAB’s

eig function for eigenvalues of full matrices. The resulting spectra are presented in Fig. 4.1

for increasing polynomial degree P on a fixed mesh with K = 16, see Fig. 4.1a, and under

uniform mesh refinement for fixed P = 3.

All eigenvalues lie in the left half-plane of the complex plane and the spectrum depends on

the mesh size ∆x and P . In both cases, the spectrum grows rapidly when the spatial accuracy

increases. Even for rather coarse meshes and low polynomial degrees the absolute values

of the largest eigenvalues are already several orders of magnitude larger than the smallest

eigenvalues.

In order to better understand the significance of the eigenvalues of the HDG-operator for

the choice of a suitable time integrator, we briefly discuss stiff problems. The term stiff is

commonly used in the theory of differential equations like ordinary differential equations

(4.1) [28, 99, 101, 223]. Stiff problems usually behave badly when solved using explicit time

integrators. These integrators require very small time step sizes ∆t while convergence against

the correct solution is slow and the numerical solution may show strong oscillations. In [101],
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4.1. Notation and definitions

the authors call an equation stiff if explicit methods do not work properly and give a large

number of examples for such problems.

The reason why a differential equation is stiff can have different causes. In the setting of

a classical ODEs stiffness can refer to processes that happen concurrently, but at different

speeds. A common example is the kinetics of chemical reactions where some reactions happen

much faster than others.

The solution process of PDEs using a spatial discretization usually leads to a system of

differential equations. This may result in a system of stiff ODEs depending on the PDE

discretized and the numerical method used for the discretization in space. An example for

such PDEs are the ones having a diffusion term. This terms often leads to stiff behavior of

the system of differential equations [101]. An example for a stiff system caused by the space

discretization is in fact the HDG method as the method leads to a system of differential

algebraic equations that also introduces stiffness.

The analysis of the eigenvalues of a system of differential equations can help identifying stiff

systems. If the system of differential equations is nonlinear, it has to be linearized. Then, the

eigenvalues λi ∈ C of the resulting linear system can be computed. The problem is usually

referred to as stiff if the real part of the eigenvalue is negative and the absolute values of the

(linearized) problem differ greatly

Re(λ) < 0, max
i,j

|λi|
|λj |
� 1.

When plotting the spectrum of the HDG-operator, see Fig. 4.1, i.e. the eigenvalues of the

system of differential equations (4.4), one sees that the absolute values of the eigenvalues

differ greatly. Thus, the HDG discretization leads to a stiff system of differential equations

as already claimed. This may seem like a drawback, but the HDG method is especially

beneficial for problems when one has to use an implicit time integrator anyway. Then, one

can take advantage of the static condensation process, see Sec. 3.3.2, that reduces the size of

the globally coupled system one has to solve.

In order to tackle stiff problems time integration methods with special stability properties

have been derived. A famous problem to test the stability of a scheme is Dahlquist’s problem

w′(t) = λw, w0 = 1 (4.5)

with λ ∈ C and solution w(t) = eλt. After applying a time discretization to Dahlquist’s

problem one obtains a procedure to update the solution in each time step for which the

behavior depends on the scaled complex number z := λ∆t. The stability region S contains

all complex values z for which the time discretization is stable. More details on the update

procedure for different kind of methods, such as multistep or multistage methods, for example,

can be found in the literature [99, 101, 223].
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4. Review of time discretizations for the HDG method

As we have seen, the largest eigenvalues tend to become larger in magnitude when the

discretization in space becomes more accurate, so one obvious choice for a preferable stability

region is

S ⊃ {z ∈ C | Re(z) ≤ 0},

where the complete left half plane of the complex numbers is included. In literature this is

called A-stability. In practice one may not need a method that is stable for the complete half

plane. As shown for the HDG method, see Fig. 4.1, one may not need stability for values

close to the imaginary axis with large complex part. Still, A-stability would ensure stability

in this region and therefore exclude numerical schemes stable for a large range of the left half

plane, but not the whole. Thus, a (possibly) weaker sort of stability given as

S ⊃ {z ∈ C | | arg(z)− π| < α},

exists. This type of stability is called A(α)-stability with α referring to the angle between

the real axis and the upper/lower bound of the stability region. Thus, the inner angle of the

axis-symmetric domain is given by 2α. For α = π
2

the stability region is again the left half

plane and thus its equivalent to A-stability. Depending on the angle α the eigenvalues may

be outside of the stability region. In Fig. 4.1, we can see that some eigenvalues with large

imaginary but small real parts that are clustered close to the imaginary axis and thus are

require a large angle α to be within the stability region of the time integrator.

Although A- and A(α)-stability are a good measure whether a method is suitable for

stiff problems we mention that “A-stability is not the whole answer to the problem of stiff

equations” (R. Alexander [4]). Even A-stable methods would not necessarily lead to stable

discretizations and the order of convergence of the method might deviate. This has led to

the introduction of stricter stability conditions in order to ensure the stability of the method

in such cases. For one-step methods one observes for problematic schemes that they do

not damp oscillations in the solution sufficiently for Re(z)→ −∞. A one-step method that

guarantees to damp oscillations even for very small z is called L-stable [101]. Therefore,

L-stable methods can be beneficial for stiff problems as the ones we aim to solve in this thesis.

4.2. Multistep methods

In order to compute an approximation of the solution at a new time tn+1, several solutions

wn+1−i
h , i = 0, 1, . . . , r − 1 and evaluations of the right hand side gn+1−i

h , i = 0, 1, . . . , r of

the r previous time steps are used. Then, the formula to update wn+1
h given as

r∑
i=0

aiw
n+1−i
h = ∆tn

r∑
i=0

big
n+1−i
h (4.6)
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BDF1 BDF2 BDF3 BDF4

α 90.00◦ 90.00◦ 86.03◦ 73.35◦

Source: Hairer and Wanner [101]

Table 4.1.: Angle α of A(α)-stable BDF-methods up to order 4.

has to be solved. A method with such structure is called a multistep method. The coefficients

ai, bi ∈ R and the number of steps r ∈ N have to be chosen such that the method is of high

order in time and has good stability properties. In our case we use an implicit method, i.e.

a0 6= 0, b0 6= 0, as only such a method can be at least A-stable.

For the discretization of the semi-discrete system we choose backwards differentiation

formulae (BDF) that have been first introduced by Curtiss and Hirschfelder [60]. The method

gained major recognition after the book of Gear [85]. Such a BDF method uses r known

approximations wn−ih , i = 0, . . . , r − 1, the unknown approximation wn+1
h and evaluates the

right hand side of the ODE only at tn+1. Thus, the method is given by

r∑
i=0

aiw
n+1−i
h = ∆tngn+1−i

h (4.7)

with coefficients ai ∈ R. The coefficients of the BDF scheme up to fourth order are given in

the appendix, see Tab. A.1.

The BDF scheme up to r ≤ 6 is zero-stable and of Qth order convergent in time, i.e.

maxn‖wt
n

h −w(tn)‖ ≤ C∆tQ with some positive constant C. For BDF methods it holds that

the order in time is equal to the number of known approximation used, i.e. Q = r holds. This

property holds also when applied to differential algebraic equations of index 1 as created

by the HDG method. In both cases, ODE and DAE of index one, the approximations of

wn−ih , i = 0, . . . , r − 1 must fulfill ‖wn−ih − w(tn−i)‖ = O(∆tQ), i = 1, . . . , r. Consecutive

time steps computed by the BDF method fulfill this automatically. However, special attention

has to be paid to the first r approximations w1
h, . . . , w

r
h that have to be computed numerically

when the scheme is started from the initial conditions. Note that w0
h = w(0) is given by the

initial condition and is therefore considered exact. Although BDF methods can be derived

for variable time step sizes ∆tn [99] we restrict ourselves to constant time step sizes ∆t. The

schemes are also often named BDFr to indicate the order of convergence in time and the

number of time steps used in the scheme.

The BDF schemes have the advantage that they lead to only one system of equations that

has to be solved per time step. During the construction of the system only known data from

previous time steps is needed, coming with the cost of some memory and a slightly increased

assembly time for increasing r. However, the method is only A(α)-stable for Q > 2 with
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4. Review of time discretizations for the HDG method

α decreasing rapidly for increasing r, see Tab. 4.1. In fact, the famous ‘second Dahlquist

barrier’ states that there cannot be a linear multistep method of order Q > 2 that is A-stable

[101]. Therefore, we limit ourselves to the use of the BDF method up to r = 3. In practice,

other implementations avoid these problem by using an automatic time step size and order

adaptation [85].

BDF applied to the HDG method Following the definition of the BDF method for ODEs

(4.7) applied to the semi-discrete HDG formulation (3.19) leads to the discrete formulation

r∑
i=0

aiT (wn+1−i
h ,xh) = ∆tnN (wn+1

h ,xh), ∀xh ∈ Xh.

which has to be solved for each time step n = 1, . . . , N t.

For methods of order Q > 1 a startup procedure is needed. The BDF2 method is started

using the BDF1 method, which in fact is the implicit Euler method, because it is second order

accurate for the first time step. The BDF3 method is started using the BDF2 method with

an time step size ∆t̃ that ensures the accuracy of the solution. Depending on the problem at

hand this may lead to a large number of BDF2 steps that have to be carried out during the

startup phase.

The BDF methods have been applied to the HDG method already in [119, 167, 168, 208].

We use the BDF methods for verification of test cases in which the time integrator is not the

main concern.

4.2.1. Numerical results

It has been mentioned in Sec. 3.3 that we can expect the space discretization to be of order

P+1 accurate. We solve time-dependent problems with an implicit time integrator. Therefore,

the order of accuracy of the used time integrator is important for the overall order of accuracy

of the scheme. One could also use lower order time integrators and reduce the time step size

∆t accordingly to not tamper with the accuracy given by the space discretization. However,

this would also lead to a CFL-like condition that we want to avoid. Thus, in combination

with the time integrator the total error depends on the spatial and temporal discretization,

Hence, we expect max(Q,P + 1) as total order of accuracy for smooth solutions.

In the following we present numerical results for two different test cases. The first one

solves a linear advection-diffusion equation in order to verify the mixed approach to represent

the second space derivatives. The second test case solves the Euler equations in order to

verify that the implementation handles nonlinear systems of equations correctly.
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4.2. Multistep methods

Linear advection-diffusion equation

In this test case, the linear advection-diffusion equation with

fc(w) = wuT, fv(w,∇w) = ε∆w

is solved on the domain Ω = [−0.5, 0.5]2 up to tfinal = π
4

and constant diffusivity ε = 10−3.

The velocity vector is still constant in time, but depends on the space coordinate u(x) =

(−4x2, 4x1)T. The initial condition is given by a Gaussian

w(0, x) = exp

(
− (x1 − x1,c)

2 + (x1 − x2,c)
2

2s2

)
that travels in circular, counter-clockwise direction while being damped due to the diffusive

process. The exact solution is given by

w(t, x) =
2s2

2s2 + 4εt
exp

(
− (x′1 − x1,c)

2 + (x′2 − x2,c)
2

2s2 + 4εt

)
x′1 = x1 cos(4t) + x2 sin(4t)

x′2 = −x1 sin(4t) + x2 cos(4t)

with standard deviation s set to 0.1 and the point around which the initial Gaussian is

centered is xc = (−0.2, 0)T. We prescribe the exact solution as boundary condition on all

domain boundaries. This is the same test case that has been used for verifying the HDG

method in previous publications [119, 167, 208].

We set the stability parameter to α = 2 and solve the system of equations using a restarted

GMRES until the residual drops below 10−12. The initial time step size on the coarsest mesh

with K = 2 is ∆t = π
32

. The mesh is uniformly refined, thus with each refinement the number

of elements increases by a factor of 4 and the time step is halved.

In Fig. 4.2, we show numerical results obtained with the BDF methods. All BDF methods

reach the expected order of convergence. The solution already improves after few refinements.

Additionally, increasing the polynomial degree P to Q reduces the total error, but the order

of accuracy (slope) stays the same. This indicates that the global error on the coarser meshes

is dominated by the spatial error.

Euler equations

The Euler equations (2.9), as described in Sec. 2.6, are solved on Ω = [0, 2]2. The initial

conditions are given by

ρ = 1 + 0.2 sin(π · (x1 + x2)), u1 = 0.7, u2 = 0.3, p = 1.0

and periodic boundary conditions are employed. The exact solution is given by

ρ(t, x) = 1.0 + 0.2 sin(π · ((x1 + x2)− t(u1 + u2)))
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Figure 4.2.: Errors of the rotating Gaussian (linear convection-diffusion) test case solved with

HDG and BDFr methods. The problem is solved on the domain Ω = [−0.5, 0.5]2

up to tfinal = π
4

and constant diffusivity ε = 10−3. The velocity vector is

given as u(x) = (−4x2, 4x1)T and the CFL-number is CFL =
√

2π
16
≈ 0.278.

After sufficient refinements the methods reach the expected convergence rate

max(P + 1, Q).
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Figure 4.3.: Errors of the nonlinear test case (Euler equations) solved with HDG and BDFr

methods. The problem is solved on Ω = [0, 2]2 up to tfinal = 1. The CFL-number

is CFL ≈ 1.042. After sufficient refinements the methods reach the expected

convergence rate max(P + 1, Q).

with the velocities and pressure being constant [128]. We run the simulation up to a final

time tfinal = 1.

The test case is rather simple as many quantities stay constant. However, it is one of the

few cases where the solution stays smooth and where one has an analytical expression of the

solution without adding an artificial source term to the equations. Moreover, it is testing

the ability of the numerical method and its implementation to solve a system of equations

correctly when the transport velocity is anisotropic.

The settings of the solver are very similar to the previous test cases. We set the stability

parameter to αc = 1 and solve the system of equations using a restarted GMRES until the

residual drops below 10−12. The Newton solver iterates until the absolute or relative residual

in L2-norm drops below 10−12. The initial time step size on the coarsest mesh with K = 2 is
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4. Review of time discretizations for the HDG method

∆t = 0.5. The mesh is uniformly refined, thus with each refinement the number of elements

increases by a factor of 4 and the time step is halved.

In Fig. 4.3, we present the results of the BDF methods applied to this problem. The

method reaches the expected order of convernce after few refinements. Similar to the linear

advection-diffusion equation increasing the polynomial degree P to Q reduces the error

slightly without changing the slope of the error plot.

4.3. Multistage methods

Another common class of time integrators are multistage methods. These fall in the class of

one-step methods. Thus, no history of previous time steps is needed, but only the known

solution at tn. High order accuracy in time and stability are achieved by computing s

intermediate solutions wn,ih by solving

wn,ih = wnh + ∆tn
i∑

j=1

aijg
n,i
h , i = 1, . . . , s. (4.8a)

These intermediate steps are also called stages. The solutions of the stages are then combined

wn+1
h = wnh + ∆tn

s∑
i=1

big
n,i
h (4.8b)

to update the solution. The coefficients aij , bi and ci are chosen in such a way that the

approximation is of high order in time and the method has good stability properties. The

time tn,i is given by the combination of the coefficient ci and the time step size ∆t as

tn,i := tn + ci∆t
n.

In order to construct methods that are at least A-stable, one has to choose an implicit

method. Unlike classical multistep methods one can construct methods that are A- and

L-stable also for orders higher than two. However, this comes at the cost of additional stages

that lead to more computational work.

A common way to represent the coefficients of the method is the use of a Butcher tableau,

see Tab. 4.2a. If for a stage i at least one coefficient aij , j ≥ i is nonzero, the stage is implicit

as it couples to itself or another unknown stage.

As not all stages need to be implicit this has led to a variety of terms indicating the

implicit nature of the scheme. We focus on so called diagonally implicit Runge-Kutta (DIRK)

methods [4]. For these methods it holds that aii 6= 0 and aij = 0, j > i, see Tab. 4.2b. Thus,

a stage is coupled only to itself and previously computed stages and the method leads to s

systems of equations that have to be solved consecutively.

In many applications, especially in semi-discretized PDEs, the initial system of equations

is already very big. The application of fully implicit Runge-Kutta methods would lead to
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c1 a11 . . . a1s

...
...

. . .
...

cs as1 . . . ass

b1 . . . bs

(a) Butcher tableau of a Runge-Kutta method.

c1 a11

...
...

. . .

cs as1 . . . ass

b1 . . . bs

(b) Butcher tableau of an (embedded) diagonally

implicit Runge-Kutta method. Left out coef-

ficients in the upper right are zero.

Table 4.2.: Butcher tableau of Runge-Kutta methods and diagonally implicit Runge-Kutta

methods.

systems of equations costly to assemble or invert. Thus, we do not consider these methods

in this thesis. However, we want to mention that fully implicit Runge-Kutta methods have

recently attracted interest in the CFD community [117, 118, 177]. One main advantage of

these methods is that they can achieve higher order while having fewer stages than DIRK

methods.

In many publications, DIRK methods with a constant diagonal term aii = C are used [4,

41, 191]. Hairer and Wanner are referring to these methods also as singly diagonally implicit

Runge-Kutta (SDIRK) method [101]. These methods can also be A- and L-stable with the

restriction that such a method with s stages is at most of order Q = s accurate in time.

We mainly use the second and third order method with two and three stages by Alexander

[4] that are second and third order accurate in time and the fourth order method with five

stages by Hairer and Wanner [101]. A second option of a four stage fourth order method is

the scheme of Al-Rabeh [191]. However, the method of Al-Rabeh is not L-stable and thus

the method might fail for very stiff problems. The methods are named DIRKsQ to refer to

the DIRK method with s stages and order Q, so DIRK54 is Hairer’s and Wanner’s method

with five stages that is fourth order accurate in time. Besides the mentioned methods we

use also a first order DIRK scheme DIRK11 that in fact refers to the implicit Euler method.

Note that the implicit Euler method also coincides with the BDF1 method. The coefficients

of the methods can also found in the appendix A.

Remark 6 All methods, except the one by Al-Rabeh, are stiffly accurate, i.e. asj = bj . This

also implies that the methods are L-stable [101].

Time step adaptation One step methods like the presented DIRK methods are well-suited

for coupling with automatic time step adaptation [41, 101, 191]. They only depend on the

solution of the known time level which makes it easy to change the time step size ∆tn during

the simulation without the need of any rescaling of previous solutions or similar. Moreover,
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c1 a11

...
...

. . .

cs as1 . . . ass

b1 . . . bs

b̂1 . . . b̂s

Table 4.3.: Butcher tableau of an diagonally implicit Runge-Kutta method with an embedded

formular for error estimation. Left out coefficients in the upper right are zero.

for a reasonable time step adaptation an estimator δ̃n,∆tn of the local error is necessary. The

local error at time level n+ 1, which we define as

δ̃n,∆tn := w(tn+1; tn, wnh)− wh(tn+1; tn, wnh),

is the difference between the exact solution w and the approximated solution wh. Both use

the approximated solution wnh at the known time level n as initial data for one time step.

The time step adaptation should modify the time step such that at the end of the simulation

the error in the solution is bounded

‖w(tN
t

)− wh(tN
t

)‖ ≤ tol · (tNt − t0)

where tol is a user defined constant. In this setting it is useful that

‖w(tN
t

)− wh(tN
t

)‖ ≤
∑
n

‖δ̃n,∆tn‖

holds. By controlling the local error in every time step we can control the global error in

time. For this, an estimator sn,∆tn ≈ δ̃n,∆tn is needed. In the setting of DIRK methods a

simple error estimator can be introduced.

It is possible to integrate a lower or higher order DIRK method within an existing DIRK

method [41, 101, 191]. The Butcher tableau, see Tab. 4.2b, can be extended by additional

coefficients for that, see Tab. 4.3. The coefficients b̂i, i = 1, . . . , s are used to compute an

additional approximation

ŵn+1
h = wnh + ∆tn

s∑
i=1

big
n,i
h

to the solution. The estimator for the local error is then given as

sn,∆tn := ‖wn+1
h − ŵn+1

h ‖.

The time step adaptation depends strongly on the ratio

rn,∆tn :=
sn,∆tn

tol ·∆tn
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as it relates the (estimated) local error of the executed time step to the maximum allowed

error. If rn,∆tn > 1, the local error of the current time step has to be rejected and the time

step must be recomputed with a smaller time step size. If rn,∆tn ≤ 1, the local error was

smaller than the maximum allowable error and the time step is accepted. The ratio helps to

determine the time step size ∆tn+1 since it should not be greater than one, but values close

to one are preferred as this minimizes the number of time step sizes. At the same time the

adaptation strategy should not be too optimistic in order to minimize the number of rejected

time steps.

We aim to solve nonlinear problems and thus we can use additional information from the

Newton method, see Sec. 3.3.1, to guide the time step adaptation [101]. If the solution varies

only mildly between two time steps the Newton method is likely to converge within few

iterations. This is taken into account by an additional safety factor

α(k) := 0.9 · 2kmax + 1

2kmax + k

with k being the number of Newton steps and kmax the maximum number of Newton steps

allowed. If the solution is accepted, we set the new time step size to

∆tn+1 := α(k)r
− 1
Q

n,∆tn∆tn.

It is sometimes necessary to enforce a minimum and maximum allowable time step. Therefore,

we can set parameters ∆tmin and ∆tmax that ensure that ∆tmin ≤ ∆tn ≤ ∆tmax. More

information on the time adaptation process can be found in the books of Hairer and Wanner

[101] and Dahmen and Reusken [61] or the books and papers in which DIRK methods are

used [41, 101, 191]. The employment of a time step adaptation strategy to an HDG space

discretization has been discussed in [119].

DIRK methods applied to the HDG method As for the BDF method the DIRK methods

for ODEs (4.8a) and (4.8b) can be applied directly to the semi-discrete problem (3.19). Thus,

for every stage one has to solve

T (wn,i
h ,xh) = T (wn

h ,xh) + ∆tn
i∑

j=1

aijN (wn,i
h ,xh), ∀xh ∈ Xh,

and the solution at the time level tn+1 is obtained by

T (wn+1
h ,xh) = T (wn

h ,xh) + ∆tn
r∑
i=1

biN (wn,i
h ,xh), ∀xh ∈ Xh.

DIRK methods have been applied to the HDG method already in [119, 123, 165, 169]. Again,

we use the schemes for verification or test cases in which the time integrator is not the main

concern.
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4.3.1. Numerical results

We verify the implementation using the same test cases as for the multistep methods, see

Sec. 4.2.1. The settings of the problems, linear solver and Newton’s method are the same as

earlier. We do not present results for the first order DIRK method (=implicit Euler) which

would be identical with BDF1 scheme. Instead, we present results for the second and third

order method by Alexander [4], the fourth order method of Al-Rabeh [191] and the fourth

order method of Hairer and Wanner [101].

Linear advection-diffusion equation

In Fig. 4.4, we present the solutions for the linear advection-diffusion test case, see Sec. 4.2.1.

We see that the third and fourth order methods recover the correct order of convergence after

few refinement steps. The second order DIRK scheme, see Fig. 4.4a, shows increasingly lower

error for increasing polynomial degrees P which is in particular visible for P = 2 and P = 3.

Euler equations

In Fig. 4.5, we present results of the nonlinear test case, see Sec. 4.2.1, solved with DIRK

methods. In all cases, the correct overall order of convergence max(Q,P + 1) is observable for

suitable polynomial degrees P and sufficiently refined meshes. As for the nonlinear test case,

see Sec. 4.3.1, the methods with Q < 4 using polynomials of degree P −1 > Q does not change

the effective order of convergence, but decreases the overall error if it was dominated by the

spatial error. Similar to the linear test case, the DIRK methods reach slightly lower errors

than the BDF methods of the same order, see Fig. 4.3. Both fourth order time integrators

show the lowest errors.
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Figure 4.4.: Errors of the rotating Gaussian (linear convection-diffusion) test case solved

with HDG and DIRKsQ methods. The problem is solved on the domain Ω =

[−0.5, 0.5]2 up to tfinal = π
4

and constant diffusivity ε = 10−3. The velocity vector

is given as u(x) = (−4x2, 4x1)T and the CFL-number is CFL =
√

2π
16
≈ 0.278.

After sufficient refinements the methods reach the expected convergence rate

max(P + 1, Q).
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Figure 4.5.: Errors of the nonlinear test case (Euler equations) solved with HDG and DIRKsQ

methods. The problem is solved on Ω = [0, 2]2 up to tfinal = 1. The CFL-number

is CFL ≈ 1.042. After sufficient refinements the methods reach the expected

convergence rate max(P + 1, Q).
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5. General linear methods for time integration

The previous chapter, see Ch. 4, presents two classes of time integrators that have been used

for HDG space discretizations. In this chapter, we discuss general linear methods (GLM)

[28–30, 35, 113, 114] that we have newly applied to the HDG method. These time integrators

are a generalization of multistep and multistage methods. These methods combine the

approach of the previous two classes of time integrators and allow to construct new schemes

with advantageous properties. The results show that the methods are straight-forward to

apply and also cover the time integrators of the previous chapter. Thus, the framework of

general linear methods is also interesting from the implementation point of view. Some parts

the results discussed in this chapter have been published in [120].

5.1. Introduction

The previously introduced time integrators can both be viewed as special cases of general

linear methods (GLM) [28, 31, 32, 39, 114]. A big advantage over classical time integrators

such as BDF and DIRK methods is that one can obtain methods with high accuracy that

are L- and A-stable while having higher stage order Qi > 1, i = 1, . . . , s. This is particularly

important for very stiff problems [81]. Moreover, there are techniques available to adapt

the time step size and the order of the scheme [34, 113, 114] and an extension to implicit

explicit (IMEX) methods exists [233] as well. In this section, we study the coupling of an

HDG method to a diagonally implicit multistage integration method (DIMSIM) in Nordsieck

representation [30, 33].

Multistage methods, see Sec. 4.3, rely on only r = 1 external approximation – the solution at

the previous time step – but compute s ≥ 1 internal approximations during stages. Multistep

methods, see Sec. 4.2, rely on r ≥ 1 external approximations that are passed from one time

step to another, but have only s = 1 internal approximation that equals the solution at the

new time step. General linear methods allow the usage of several internal approximations

s ≥ 1 and external approximations s ≥ 1.

Diagonally implicit Runge-Kutta methods may suffer from order reduction for very stiff

problems [81]. This is caused by the rather low stage order. The stage order Qi of the ith

stage of a multistage order is given by

‖wn,ih − w(tn,i)‖ = O(∆tQi+1).
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5. General linear methods for time integration

For common DIRK methods with constant diagonal term aii the stage order is at most one

[101].

In order to avoid the order reduction one can use methods of higher stage order. Implicit

Runge-Kutta methods can be constructed with higher stage order if they are not only

diagonally implicit [101, 177]. Another class of methods that can be used are general linear

methods, like the diagonally implicit multistep integration methods (DIMSIMs) [30] as they

can be constructed to have high order, high stage order and good stability properties [35].

While BDF methods suffer from the decreasing stability region for higher order, the DIRK

schemes suffer from the increasing number of stages necessary to construct a method that

is A- and L-stable. A DIRK method of order four that is A- and L-stable has at least five

stages [101] while it is possible to construct a fourth order DIMSIM with the same stability

properties that has only s = 4 internal approximations [243].

The update formulae of the DIMSIMs rely on four quantities. There are s internal

approximations Yi and the same number of right hand side evaluations of the ODE Gj := g(Yj)

that use the internal approximations. In the context of DIMSIMs Gj are also often referred

to as stage derivatives. Additionally, r external approximations y
[n]
j at the known time level

tn are used. The quantities are used to compute r of external approximations at the new time

level tn+1. In the literature, these quantities are often written as single vectors consisting of

the data

Y =


Y1

Y2

...

Ys

 , G =


G1

G2

...

Gs

 , y[n] =


y

[n]
1

y
[n]
2

...

y
[n]
r

 , y[n+1] =


y

[n+1]
1

y
[n+1]
2

...

y
[n+1]
r

 . (5.1)

The shape of the method depends heavily on the choice of values to be stored in y[n+1]

and y[n] and the way it is represented in this notation [28, 33]. Pure multistep methods

may store solutions at previous times yn−r, yn−r+1, . . . , yn−1, the corresponding derivatives

f(wn−r), f(wn−r+1), . . . , f(wn−1) or both. Pure multistage methods only need to store the

solution of the previous time wn−1.

The shape of general linear methods is quite similar to the one of multistep methods (4.6)

and multistage methods (4.8). Applying it to an ODE (4.1) leads to s internal approximations

that have to be computed

Yi =

s∑
j=1

aij∆tGj +

r∑
j=1

uijy
[n]
j , i = 1, . . . , s. (5.2a)

These intermediate solutions Yi are then used to update the r external approximations

y
[n+1]
i =

s∑
j=1

bij∆tGj +

r∑
j=1

vijy
[n]
j , i = 1, . . . , r, (5.2b)
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5.1. Introduction

which includes the solution at the new time step [32]. The internal approximations are similar

to the stages of a Runge-Kutta method while the external approximations are similar to the

previous solutions used in multistep methods.

The order and stability of the method depends on the careful choice of real coefficients aij ,

uij , bij and vij . The coefficients of the method can be compactly written as matrices

A U

B V
, A ∈ Rs×s,B ∈ Rr×s,U ∈ Rs×r,V ∈ Rr×r (5.3)

and an abscissa vector c ∈ Rs that indicates the intermediate times tn + ci∆t at which the

stages are evaluated. This is the same as for multistage methods, see Sec. 4.3.

In this work, we focus on DIMSIMs in Nordsieck formulation [30, 33, 114]. These are closely

related to (singly) diagonally implicit Runge-Kutta methods in the sense that the matrix A

has the same structure as the diagonally implicit Runge-Kutta methods, see Tab. 4.2b. Thus,

it is a lower triangular matrix with nonzero entries on the diagonal. Similar to the case of

DIRK methods, it leads to s systems of equations that have to be solved for each internal

approximation. Furthermore, these methods can be A- and L-stable just like Runge-Kutta

methods. We use DIMSIMs of order Q = 1 to Q = 3 that were presented in [114]. The chosen

DIMSIMs have stage order Qi = Q. Therefore, these methods are also potentially suitable

for problems where DIRK methods may suffer from order reduction.

We refer to the methods as DIMSIM1, DIMSIM2 and DIMSIM3 to distinguish between

the schemes of different order. Each method has s = Q internal and r = Q + 1 external

approximations. In general, it is possible to construct the methods with only r = Q external

approximations. However, this formulation makes adaptation of the time step ∆t more

complicated. Therefore, the methods have been introduced in Nordsieck formulation [33,

174] as well. This means, instead of carrying data from several old time steps, y[n] is the

Nordsieck vector

y[n] =



y(tn)

∆ty′(tn)

∆t2y(2)(tn)
...

∆try(r)(tn)


(5.4)

that stores the derivatives of w. Using the specific form (5.4) has the advantage that time

step adaptation can be easily incorporated since it only requires rescaling of the Nordsieck

vector at the cost of an additional entry in y[n]. This has been successfully applied in [29, 34,

113, 114] in the setting of ODEs. In this work, we do not pursue time step adaptation for

DIMSIMs.

DIMSIMs in Nordsieck formulation are usually constructed from a DIMSIM in ‘classical’

formulation by transforming it. In order to differentiate between the classical formulation
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5. General linear methods for time integration

and Nordsieck formulation the transformed matrices of the initial matrices (5.3) are often

referred to as
A P

G Q
, A ∈ Rs×s,G ∈ Rr×s,P ∈ Rs×r,Q ∈ Rr×r. (5.5)

The naming also indicates, that the matrix A is not affected by the transformation. Therefore,

the method keeps its diagonally implicit structure.

In practice, most users do not compute higher derivatves of the ODE due to the additional

challenge. Therefore, one usually uses an approximation to the Nordsieck vector [33]. In the

case of the first order method with r = 2 it is self-starting since the Nordsieck vector is given

by

y[0] =

(
y0

∆tf(y0)

)
.

Higher order methods require a different approach. In [244], the author constructed special

Runge-Kutta schemes that compute an approximation to the Nordsieck vector at t = 0. In

[113, 114], the author describes an approach where the higher order DIMSIMs are started

from lower order DIMSIMs using suitable error estimators. In this work, we use an approach

similar to the starting procedure of backwards differentiation formulae. We use an already

available DIRK scheme of suitable order and compute r equidistant approximations to the

solution at times ti = i ·∆t, i = 1, . . . , r. These values are used together with the given

initial data to construct an approximation to the Nordsieck vector using interpolation. We

interpolate the vector at tr meaning that the first r are computed with the according DIRK

method for schemes with Q > 1.

Backward differentiation formulae as general linear method For testing the implementation

we choose to rewrite the already investigated BDF methods described in Sec. 4.2 as general

linear method. In this case, the vector of external approximations contains the values at the

r previous time steps

y[n] =
(
wn, . . . , wn−s+1)T.

Therefore, the methods have r external approximations and s = 1 internal approximations.

The coefficients of the BDF3 method as general linear method are given in Tab. 5.1a.

Diagonally implicit Runge-Kutta methods as general linear method Similar to the BDF

methods we can also rewrite DIRK methods as DIMSIMs. We do so in order to verify

our implementation. As for the previous test cases we use test problems where an exact

solution is available. Moreover, we can compare the numerical results of DIRK methods in

the framework of general linear methods to the previous implementation of DIRK methods

from the previous section. The coefficients of the DIRK22 method formulated as general

linear method are given in Tab. 5.1b.
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Table 5.1.: Coefficients of the BDF3 and DIRK22 method as used in the general linear method

formulation.

Applying DIMSIMs to the HDG method In (3.19), the semi-discrete form of the equations

is already in the shape of an ODE. Therefore, we have to solve (5.2a) and (5.2b) with slightly

modified notation. In each stage i of the method we compute an internal approximation by

solving

T (wn,i
h ,xh) = −∆t

i∑
j=1

aijN (wn,j
h ,xh) +

r∑
j=1

uijT (y[n],xh), ∀xh ∈ Xh.

Once all stage values wn,ih are known we obtain the updated solution from

T (y
[n+1]
i , ϕh) = −

s∑
j=1

bij∆tN (wn,j
h ,xh) +

r∑
j=1

vijT (y
[n]
j ,xh)

which only requires the local inversion of a mass matrix on each element. The term y[n+1]

stores an approximation to the Nordsieck vector

y[n−1] =


wnh

∆t∂tw
n
h

...

∆tr∂rtw
n
h

+O(∆tQ+1). (5.6)

5.2. Numerical results

In this section we present numerical results obtained from the HDG discretization with

DIMSIM time integrators in order to verify application of DIMSIMs to the HDG method.

Besides the test cases shown in the previous Sections 4.2 and 4.3 we present additional results

for the linear advection equation and of viscous flow around a circular obstacle for which

vortices shed (Navier-Stokes equations). These results have been partly presented in [120].
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Figure 5.1.: Errors of the linear convection test case solved with HDG and the BDF and DIRK

methods from the previous sections and their respective formulations as general

linear method. The problem is solved on the domain Ω = [0, 2]2 up to tfinal = 1

and the constant velocity is u = (1, 1)T. The CFL-number is CFL = 1√
2
≈ 0.707.

There is virtually no difference in the obtained errors.

Linear advection equation

The linear advection equation with constant velocity vector u = (1, 1)T is solved on the

domain Ω = [0, 2]2 up to tfinal = 1. The viscous flux and source term are set to zero. The

initial condition is given by

w(0, x) = sin(2πx1) sin(2πx2)

and periodic boundary conditions are used such that the exact solution at every time is given

by

w(t, x) = sin(2πx1 − t) sin(2πx2 − t).
The stability parameter is set to αc =

√
2 and the system of equations is solved using a

restarted GMRES until the residual drops below 10−12. This is all carried out within the

framework of the nonlinear solver. However, as it is a linear problem, only one Newton step

is needed. The initial time step size on the coarsest mesh with K = 2 is ∆t = 0.5. The mesh

is uniformly refined, thus with each refinement the number of elements increases by a factor

of 4 and the time step is halved.

In Fig. 5.1, we show numerical results of the BDF and DIRK methods and their respective

formulations as general linear method in order to verify the implementation. One sees no

differences in the errors of the two formulations. It indicates the correctness of implementation

for multistage and multistep methods in GLM formulation.

In Fig. 5.2, the results obtained from thie DIMSIMs for different polynomial degrees are

presented. All methods obtain the expected order of convergence once the spatial resolution
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Figure 5.2.: Errors of the linear convection test case solved with HDG and DIMSIMQ methods.

The problem is solved on the domain Ω = [0, 2]2 up to tfinal = 1 and the constant

velocity is u = (1, 1)T. The CFL-number is CFL = 1√
2
≈ 0.707. After sufficient

refinements the methods reach the expected convergence rate max(P + 1, Q).

is high enough. Further increasing the polynomial degree to P > Q+ 1 decreases the error

level without changing the slope. Therefore, the error is clearly dominated by the temporal

error. This indicates the correctness of the implementation and the validity of our start-up

procedure for the DIMSIMs in Nordsieck formulation.

Linear convection-diffusion equation

The second test problem is the linear advection-diffusion test case also used in the previous

sections with exactly the same settings, see Sec. 4.2.1 for a detailed description. In Fig. 5.3

we present the results obtained with the DIMSIMs of order Q = 1 up to Q = 3. The behavior

of the methods is identical to the behavior of the DIRK methods and the BDF1 method, see

Fig. 4.4 and 4.2. This indicates that the DIMSIMs obtain the same accuracy in time as the
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5. General linear methods for time integration

Sr cD

Gopinath [92] 1.3406 0.1866

Henderson [107] 1.336 —

Williamson [238] — 0.1919

Table 5.2.: Values of the Strouhal number Sr and the drag coefficient from the literature.

DIRK methods and the higher stage order does not have significant influence on the solution.

Euler equation

The correctness of the nonlinear solver is verified using the nonlinear problem posed by Euler

equation with the settings described in Section 4.2.1. In Fig. 5.4, we present the numerical

results. Again, the behavior is similar to the results of the DIRK methods of the respective

order and the BDF1 method, see Fig. 4.5 and 4.3. The methods show the correct order of

convergence max(P + 1, Q). Increasing the spatial resolution to P > Q− 1 does not change

the slope, and thus not the total order of convergence, but may reduce the error. The latter

is mainly observed for the third order integrator, see Fig. 5.4c.

Navier-Stokes equations

Besides the Euler equations (2.9) a common equation that has to be solved in CFD are the

Navier-Stokes equations (2.22). Thus, we present results for the compressible, viscous flow

described by these equations. We consider the flow around a cylinder at Reynolds number

Re = 180 and Mach number Ma = 0.2. At these flow conditions vortices shed from the

cylinder which is known as a Kármán vortex street [7, 207].

We compute the solution on a mesh that extends to 20 diameters around the cylinder. The

mesh has K = 2916 elements and it is the same that has been used in previous publications

[119, 242]. We use polynomials of degree P = 1, 2, 3. The flow field is initialized with free

stream conditions. At t ≈ 750 the vortex street develops. We look at the fully evolved vortex

street in the interval t ∈ [103; 104] and compute the mean drag coefficient cD and the Strouhal

number Sr. These can be compared to data from the literature given in Tab. 5.2. The system

of equations is solved using Newton’s method until the residual drops below 10−10. The

arising linear system is then solved with a restarted GMRES until the relative residual drops

below 10−10.

The data obtained from the computations using the DIMSIMs are reported in Tab. 5.3.

In general, the results are very similar to the results from the literature and our previous

publications [119, 242].
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Figure 5.3.: Errors of the rotating Gaussian (linear convection-diffusion) test case solved with

HDG and DIMSIMs. The problem is solved on the domain Ω = [−0.5, 0.5]2

up to tfinal = π
4

and constant diffusivity ε = 10−3. The velocity vector is

given as u(x) = (−4x2, 4x1)T and the CFL-number is CFL =
√

2π
16
≈ 0.278.

After sufficient refinements the methods reach the expected convergence rate

max(P + 1, Q).
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Figure 5.4.: Errors of the nonlinear test case (Euler equations) solved with HDG and DIMSIMs.

The problem is solved on Ω = [0, 2]2 up to tfinal = 1. The CFL-number is

CFL ≈ 1.042. After sufficient refinements the methods reach the expected

convergence rate max(P + 1, Q).
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P = 1 P = 2 P = 3

∆t Sr cD Sr cD Sr cD

1 0.1733 1.2110 0.1733 1.2164 0.1733 1.2171

5 0.0000 0.9723 0.1222 0.9542 0.1238 0.9492

10 0.0000 0.9723 0.0000 0.9228 0.0000 0.9181

(a) Results obtained for DIMSIM1.

P = 1 P = 2 P = 3

∆t Sr cD Sr cD Sr cD

1 0.1898 1.3455 0.1898 1.3649 0.1898 1.3651

5 0.1849 1.3449 0.1882 1.3714 0.1882 1.3727

10 0.1733 1.3317 0.1774 1.3401 0.1774 1.3405

(b) Results obtained for DIMSIM2.

P = 1 P = 2 P = 3

∆t Sr cD Sr cD Sr cD

1 0.1898 1.3448 0.1898 1.3645 0.1898 1.3649

5 0.1832 1.3216 0.1882 1.3377 0.1882 1.3385

10 0.1667 1.2803 0.1708 1.2840 0.1708 1.2845

(c) Results obtained for DIMSIM3.

Table 5.3.: Values of Strouhal number Sr and drag coefficient cD for viscous flow around a

cylinder at Reynolds number Re = 180 and Mach number Ma = 0.2. The CFL-

numbers are CFL ≈ 15.085 (∆t = 1), CFL ≈ 75.425 (∆t = 5) and CFL ≈ 150.85

(∆t = 10). The HDG method with varying polynomial degree P and a mesh with

K = 2916 elements and DIMSIMs of order 1 to 3 have been used to solve the

problem.
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5. General linear methods for time integration

When a coarse resolution in time is used, i.e. ∆t = 10, with the first order integrator, see

Tab. 5.3a, the mean drag coefficient is far off the values from the literature. Moreover, the

simulation does not capture the time-dependent behavior of the test case as one can see

from the Strouhal number being zero. Only for ∆t = 1 the first order method recovers the

time-dependency for all polynomial degrees P . Although the values are still out of the range

of the values from literature, they increase for decreasing ∆t and thus tend to approach the

right values. We have observed the failure to catch the time-dependency of this test case

for time steps ∆t > 10 even for higher order time integrators before [119] and thus is not

unexpected.

The second and third order DIMSIMs, see Tab. 5.3b and 5.3c, both capture the time-

dependent behavior in all cases. Even for ∆t = 10 the Strouhal number is already close to

the correct range of values and for smaller time steps the Strouhal is in between the values

reported in the literature, see Tab. 5.2. Moreover, the approximation of the Strouhal number

only differs slightly for increasing P while it changes much more for smaller time step size

∆t. Thus, the Strouhal number profits much more from smaller time step sizes than from an

improved spatial resolution.

This trend can also be observed for the mean drag coefficient. In most cases, the mean drag

coefficient grows slowly for decreasing time step sizes. However, the second order DIMSIM

overpredicts the mean drag coefficient for P > 1 and ∆t = 5, but then the coefficient decreases

again for ∆t = 1. For the smallest time step size ∆t = 1 the mean drag coefficients of both

time integrators are very close to each other and slightly above the values from the literature.
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6. Multiderivative time integrators for the hybridized

discontinuous Galerkin method

The previous chapters introduced ‘classical’ multistep and multistage methods, see Ch. 4,

and their generalization in the framework of general linear methods, see Ch. 5. In the current

chapter, we introduce multiderivative time integrators [28, 67, 101, 139, 190, 214, 231] for the

HDG method. As the name suggests, these methods incorporate additional time derivatives

in order to achieve a high order time accuracy.

The chapter consists of two parts that discuss two different ways to discretize the higher

order time derivatives. The first one deals with the discretization of multiderivative methods

using a Cauchy-Kowalevski procedure. In the field of PDEs it is also referred to as Lax-

Wendroff procedure. It uses the PDE to express time derivatives as space derivatives and has

been successfully applied for the discretization of explicit multiderivative methods [214, 231].

In the second part, we present a new approach that introduces special auxiliary unknowns

to express additional time derivatives. This approach is straight forward to apply to linear

problems. It has also the advantage that the number of additional unknowns to be introduced

is independent of the number of space dimensions d in contrast to the Cauchy-Kowalevski

approach. We also discuss how the new approach can be extended to nonlinear problems.

This chapter extends the work on time integrators for the HDG method in several ways. To

the knowledge of the author, multiderivative methods have not been used for HDG methods

before. Moreover, the application of implicit multiderivative methods for the solution of

PDEs seem to have gotten less attention than explicit methods. The second approach for

discretizing the additional time derivatives has not been discussed in literature before, to our

knowledge. The results of this chapter have been partially presented in [121, 126, 212].

6.1. Introduction

The time integrators presented in the previous sections obtained a high-order discretization

by using a time history of the solution or by introducing intermediate steps. A third possible

way directly follows from the Taylor series

w(t+ ∆t) = w(tn) + ∆t∂tw(t) +
∆t2

2
∂2
tw(t) + . . .+

∆tM

M !
∂Mt w(t) +O(∆tM+1). (6.1)
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6. Multiderivative time integrators for the hybridized discontinuous Galerkin method

These time integration methods are also referred to as Taylor (series) methods [28]. The

approach presents a straightforward approach on how to construct a method of arbitrary

order by incorporating additional time derivatives. It is no surprise that it is also possible to

combine the previous approaches, multistep and multistep methods, with additional time

derivatives [86, 87, 100]. In this case, we refer to the method as a multiderivative method

while the Taylor methods refer to a method directly obtained by a Taylor expansion in time.

Lax and Wendroff used multiderivative methods in 1960 [139]. Various authors have been

working on discontinuous Galerkin method with Lax-Wendroff type time integration [96,

188, 189] and called these methods Lax-Wendroff discontinuous Galerkin (LWDG) methods.

The method has also been applied to weighted essentially non-oscillatory (WENO) methods

[190, 214]. However, the methods have just recently (reattracted) interest for application to

problems in CFD. Seal et al. introduced a framework for multiderivative multistage methods

[214] for DG and WENO schemes applied to hyperbolic PDEs. Further work on two-derivative

time integrators has been carried out by different authors [42, 231]. Recent publications use

multiderivative time integrators to solve Navier-Stokes [173] and Euler equations [175]. All of

the publications use explicit multiderivative methods.

In this work, we focus on implicit one-step methods with multiple time derivatives. The

time integrators should be at least A-stable and therefore cannot be explicit. An additional

challenge in this setting is the proper approximation of the additional time derivatives. This

has to be done in a stable, accurate, and efficient manner. Moreover, it should be done in a

straightforward way that allows for a simple and efficient implementation for its practical

use. In the explicit case it is usually unnecessary to approximate the time derivatives with

the full accuracy of the space discretization as the time derivatives are scaled by powers of

the time step size (6.1). Then, the CFL condition of explicit methods enforces that ∆x ≈ ∆t.

We cannot expect this to hold for implicit methods where we want to use large time steps.

In the following, we discuss two different approaches for the approximation of the higher

time derivatives. The first one follows a Cauchy-Kowalevski procedure to replace time by

space derivatives. This has been used for explicit time integrators, but we also introduce

additional unknowns for the approximation of space derivatives introduced. This is necessary

in the implicit case where the time step size is usually much larger than the mesh size.

The second approach introduces auxiliary variables that directly approximate the needed

time derivatives. We show that it has straightforward to use and has several advantages over

the Cauchy-Kowalevski approach for implicit time integration.

In our first publication on multiderivative publications we have solved a simple linear

problem and have obtained promising results [121]. Further, investigation has showed the

instable behavior when the Cauch-Kowalevski procedure is used [126]. We solve this problem

by discretizing the additional time derivatives in a new way in our most recent publication

[212].
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6.2. Lax-Wendroff/Cauchy-Kowalevski approach

Order (k, l) α1 α2 α3 β1 β2 β3

3 (1, 2) 1/3 0 0 −2/3 1/6 0

4 (2, 2) 1/2 1/12 0 −1/2 1/12 0

5 (2, 3) 2/5 1/20 0 −3/5 3/20 −1/60

6 (3, 3) 1/2 1/10 1/120 −1/2 1/10 −1/120

Table 6.1.: Coefficients of two-point collocation schemes.

6.2. Lax-Wendroff/Cauchy-Kowalevski approach

The multiderivative time integrators considered in this section are two-point collocation

methods. That means that the update is computed by approximating the solution only at

the current time level tn and the new time level tn+1 while using several derivatives of the

unknown. The shape of such a method is given by

l+k∑
j=0

∆tj(∂jtw
n+1)P(l+k−j)(0) =

l+k∑
j=0

∆tj(∂jtw
n)P(l+k−j)(1) (6.2)

with polynomial P(t) = tk(t−1)l

(k+l)!
. We can write these methods more compactly as

wn+1 = wn +

M∑
m=1

∆tm(αm∂
m
t w

n − βm∂mt wn+1) (6.3)

with coefficients αm, βm ∈ R being derived from (6.2). In this section, we focus on methods

with two time derivatives, i.e. 0 < k ≤M, l = M and M = 2. In this case, the method can

be written as

wn+1 = wn + ∆t
(
α1∂tw

n − β1∂
1
tw

n+1)+ ∆t2
(
α2∂

2
tw

n − β2∂
2
tw

n+1) . (6.4)

The stability properties and accuracy of the method depend on the choice of the coefficients

which are determined from (6.2). In our case, we focus on implicit two-point collocation

methods. Coefficients of methods of order three to six are given in Tab. 6.1. Note that in

the current section we use only the third order and fourth order method. The fourth order

method is A-stable while the third order method is A- and L-stable [126].

For simplicity, we want to apply the method (6.4) to a hyperbolic equation

∂tw +∇ · fc(w) = 0

as introduced in Sec. 2.3. Applying the two-derivative method to the hyperbolic equation,

the method reads

wn+1 = wn + ∆t
(
α1∂tw

n − β1∂tw
n+1)+ ∆t2

(
α2∂

2
tw

n − β2∂
2
tw

n+1) (6.5)
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6. Multiderivative time integrators for the hybridized discontinuous Galerkin method

where we have to approximate the time derivatives. For this, we use the Cauchy-Kowalevski

procedure

∂tw = −∇ · fc(w)

∂2
tw = −∇ · ∂tfc(w) = −∇ ·

(
f ′c(w)∂tw

)
= ∇ ·

(
f ′c(w)∇ · fc(w)

)
...

(6.6)

where the PDE is used to replace time derivatives by space-derivatives. In the context

of PDEs, this procedure for deriving higher order time discretizations is often referred to

as a Lax-Wendroff procedure due to the work of Lax and Wendroff [139]. In theory, this

approach can be continued up to arbitrary time derivatives. We want to emphasize that this

approach is also applicable to viscous PDEs as done in our publication [126] in 1D. In our

case, the discretization of a hyperbolic equation leads to a convection-diffusion type equation

after discretizing in time. The approximation of higher order space derivatives using an

HDG discretization is also discussed in [43, 46, 64] where additional auxiliary variables are

introduced in a similar fashion as presented in this thesis.

For the application of the implicit two-derivative methods we rely on an accurate represen-

tation of the derivatives as we aim to use large time steps ∆t. For this we can reuse already

implemented codes by using the LDG formulation introduced in Sec. 3.2. In the case of a

hyperbolic equation we can interpret ∇ · (f ′c(w)∇ · fc(w)) as an additional viscous flux. The

hybridized discontinuous Galerkin method is especially beneficial when using the auxiliary

unknown σ compared to the unhybridized LDG method. As described in Sec. 3.3 the number

of unknowns only increases locally, while the globally coupled systems is still only coupled by

the hybrid unknown λ independent of the auxiliary variable σ.

An HDG discretization of two-derivative time integrators

In order to give a compact representation we introduce

∂tw = −∇ · fc(w) =: R(w)

∂2
tw = ∇ · (f ′c(w)∇ · fc(w)) =: R2(w)

(6.7)

for the first and second time derivative. Then, we can express (6.5) as

wn+1 = wn + ∆t
(
α1R(wn) + α2R(wn+1)

)
−∆t2

(
β1R2(wn) + β2R2(wn+1)

)
.

For the time discretization we use the shorthand notation

∂tT (wh,xh) = N (wh,xh). (3.19 revisited)
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6.3. Numerical results

Then, the system of equations to be solved is

1

∆t

(
T (wn+1

h ,xh)− T (wn
h ,xh)

)
=

2∑
i=1

Ni(wn+i−1
h ,xh)

with

Ni(wn+i−1
h ,xh) =

N
aux
i (wn+i−1

h , τh)

N eq
i (wn+i−1

h , ϕh)

N hyb
i (wn+i−1

h , µh)

 .

The first entry, N aux
i , refers to the equation of auxiliary unknown σ (3.15a) that is introduced

to approximate the second spatial derivatives. We focus on problems on domains with

periodic boundaries such that the integrals incorporating boundary conditions vanishes. The

other entries, N eq
i , refers to the equation stemming from the discretization of the initial PDE

(3.15b), and N hyb
i refers to the equation stemming from the hybrid approach to ensure that

the flux in the normal direction is conservative (3.15c). These two equations are slightly

modified to incorporate the space derivatives of second order and the coefficients of the time

integrator. The fluxes fc and fv are replaced by

fc(w
n+i−1) = αifc(w

n+i−1),

fv(wn+i−1,∇wn+i−1) = −βi∆tf ′c(wn+i−1)(∇ · fc(wn+i−1))
(6.8)

to obtain the two-derivative formulation without changing the initial HDG formulation (3.15).

Note that the ∇w is needed in order to express ∇ · fc(w). The same numerical fluxes (3.17)

are used with the fluxes (6.8).

This approach is, in principle, straightforward as the Jacobian f ′c(w) is available in the

code already. However, for the application of Newton’s method, see Sec. 3.3.1, the Jacobian

of our newly introduced viscous flux fv is needed. This adds additional complexity as it

introduces the derivative of the Jacobian and the derivative of ∇ · fc(w).

6.3. Numerical results

In this section we show two dimensional numerical results for systems of equations. The

results can also be found in our publication [126]. We solve the (nonlinear) system of equations

using Newton’s method. The resulting linear system is solved using GMRES with block

Jacobi preconditioning until the relative residual drops below 10−12. Newton’s method is

carried out until the L2-norm of the residual drops below 10−10.

Linear convection equation

We first examine a system of two uncoupled linear convection equations and solve it on

Ω = [0, 2]2 up to final time tfinal = 0.1. This test case is used to verify that the implementation
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6. Multiderivative time integrators for the hybridized discontinuous Galerkin method

is correct and that the approach is valid. The flux is chosen to be fc(w) = (fc,1, fc,2) with

fc,1(w) = A1w, fc,2(w) = A2w. (6.9)

The vector of unknowns is w = (w1, w2)T. The matrices for this linear system are given by

A1 =

(
1
3

8
3

16
3
− 7

3

)
, A2 =

(
− 7

3
− 5

3

− 10
3
− 2

3

)
. (6.10)

These matrices have the same eigenvector basis, which means we can express these as

A1 = SDA1S−1 and A2 = SDA2S−1 with

DA1 =

(
−5 0

0 3

)
,DA2 =

(
1 0

0 −4

)
, S =

(
− 1

2
1

1 1

)
, S−1 =

(
− 2

3
2
3

2
3

1
3

)
. (6.11)

We choose the initial conditions to be

w0(x) =

(
sin(π(x+ y))

sin(π(x+ y))

)
. (6.12)

In this case, the exact solution is given by

w(t, x) =

(
sin(π(x+ y + t))

sin(π(x+ y + t))

)
(6.13)

if periodic boundary conditions are employed. Results are presented in Fig. 6.1 for the ratio
∆t
∆x

= 0.025. The errors for w1 and w2 are perfectly identical which indicates the correctness

of the implementation for systems of equations. The third order integrator reaches the

expected order of convergence in all cases. For P = 3, the method is still third-order accurate,

but it has a lower error than in the case of P = 2. The fourth-order integrator, however, does

not achieve fourth-order in time. In the case P < 3, the method gets close to the expected

order of P + 1 while for P = 3 the order deteriorates during the refinements. After the sixth

refinement it seems not to converge any further. Most likely, this behavior is observed due

to stability issues of the fourth-order integrator. Additionally the condition ∆t
∆x

= 0.025 is

not desirable, but similar behavior has been also observed for the convection equation in one

space dimension [126].

Euler equations

The second test case is the nonlinear problem described in Sec. 4.2.1. Thus, we solve the

Euler equations with periodic boundary conditions. However, we solve it up to final time

tfinal = 0.5 due to the rather strict time step requirement also observed for this test case

and we use ∆t
∆x

= 0.05. This is again a very strict restriction we do not want for an implicit

method.
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(b) Fourth-order integrator, error of w1.

10−1 100

10−7

10−5

10−3

10−1

101

Element size ∆x

E
rr

or
‖w

2
−
w

h
,2
‖ L

2

P = 0

P = 1

P = 2

P = 3

(c) Third-order integrator, error of w2.
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(d) Fourth-order integrator, error of w2.

Figure 6.1.: Numerical results for the linear coupled convection equation obtained by the

HDG method. The problem is solved on Ω = [0, 2]2 up to final time tfinal = 0.1.

The CFL-number is CFL ≈ 0.124. Temporal integration is performed with the

third-order integrator and the fourth-order integrator. We show the results for

both components w1 and w2.
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(a) Third-order method.
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(b) Fourth-order method.

Figure 6.2.: Numerical results for the Euler equations obtained by the HDG method. The

problem is solved on Ω = [0, 2]2 up to final time tfinal = 0.5. The CFL-number is

CFL ≈ 0.104. Temporal integration is done via the third-order integrator and

the fourth-order integrator. We show the error in the density ρ.

Both integrators produce similar errors with the third-order integrator having slightly

lower errors. The conclusion is that the higher-order integrator does not exhibit any serious

advantage over the lower-order integrator for this test case. For this problem, we find that

increasing the polynomial order always increases the rate of convergence, which is in contrast

to the previous cases. However, the method does not achieve optimal convergence. The third

order integrator shows convergence rates larger than 3 for P = 3, indicating that the spatial

error is dominating. In the linear test case, going from P = 2 to P = 3 decreased the error

level, whereas the slope of the error graph stayed almost constant (cf. Fig. 6.1). This, in fact,

increases the slope. Nevertheless, both integrators show a slight decrease of the convergence

rate during refinements. We attribute this again to the poor stability of the scheme.

6.4. Analysis of the unstable behavior

We have seen that the multiderivative time integrators behave unexpected in the sense that

they underlie certain restrictions on the time step size ∆t depending on the mesh size ∆x.

Moreover, in the nonlinear test case no clear statement about the order of accuracy in time

can be made.

Overall there are several disadvantages of the approach. The strict time step restriction

prevents the efficient the application of the implicit multiderivative time integrators as the

restriction seems to be even stricter than for explicit methods. Additionally, computing a

single, implicit time step is much more time consuming due to the system of equations that

has to be constructed and solved. The presented approach also has an additional auxiliary
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6.4. Analysis of the unstable behavior

variable and a rather complex viscous flux — especially for the Euler equations — compared

to standard methods presented in the previous section, see Sec. 4.

In order to understand the issues of the method better, we carry out a von Neumann

stability analysis. We discretize the linear convection equation using finite difference space

discretizations in one space dimension on an infinite domain

∂tw + u∂xw = 0, u > 0 (6.14)

with constant, positive convection velocity u. We follow the Cauchy-Kovalevski procedure

(6.6) to replace the time by space derivatives. This gives

∂tw = −u∂xw, ∂2
tw = ∂t (−u∂xw) = −u∂x (∂tw) = −u∂x (−u∂xw) = u2∂2

xw (6.15)

for the derivatives. For the finite difference discretization we assume a constant mesh size

∆x = xj − xj−1. The derivatives are discretized by an upwind difference for the convective

term to respect the direction of information propagation and a central difference for the

second space derivative

∂xw(xj) ≈
wj − wj−1

∆x
, ∂2

xw(xj) ≈
wj−1 − 2wj + wj+1

∆x2
. (6.16)

This follows the ‘standard’ approach for convection-diffusion equations. The stability analysis

of the fourth order method is presented first and subsequently the third order method is

analyzed. A more detailed description of the analysis can be found in the appendix, see

Sec. B.

Fourth order method

The fourth order time integrator is given by the formula

wn+1 = wn +
∆t

2

(
∂tw

n + ∂tw
n+1)+

∆t2

12

(
∂2
tw

n − ∂2
tw

n+1)
The method is applied to the convection equation (6.14) letting the time derivatives be

replaced by space derivatives (6.15) such that we obtain

wn+1 = wn − u∆t

2

(
∂xw

n + ∂xw
n+1)+

u2∆t2

12

(
∂2
xw

n − ∂2
xw

n+1) . (6.17)

Then, the space derivatives are discretized by the finite differences (6.16) and we introduce

ν := u∆t
∆x

to simplify the notation. The term ν refers to the CFL number. The method should

be stable for all choices of ν. This leads to

wn+1
j = wnj −

ν

2

(
wnj − wnj−1 + wn+1

j − wn+1
j−1

)
+
ν2

12

(
wnj−1 − 2wnj + wnj+1 − wn+1

j−1 + 2wn+1
j − wn+1

j+1

)
.
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The terms are reordered such that the unknowns at the new time level n+ 1 are on the left

hand side while the unknowns at the old time level n are on the right hand side

wn+1
j +

ν

2

(
wn+1
j − wn+1

j−1

)
+
ν2

12

(
wn+1
j−1 − 2wn+1

j + wn+1
j+1

)
= wnj −

ν

2

(
wnj − wnj−1

)
+
ν2

12

(
wnj−1 − 2wnj + wnj+1

)
.

(6.18)

A von Neumann stability analysis considers data that can be represented by a Fourier mode.

The solution wj at the points xj of the finite difference discretization can then be expressed

as

wnj = eikxj , wnj+1 = eikxj eik∆x, wnj−1 = eikxj e−ik∆x (6.19)

with i being the imaginary unit and k being the wave number. The updated solution is given

by

wn+1
j = r(k,∆x,∆t)wnj

using the amplification factor r(k,∆x,∆t). We insert the Fourier mode representation of the

unknowns in (6.18) and divide by eikxj to obtain

r(k,∆x,∆t) (1 +
ν

2

(
1− e−ik∆x

)
+
ν2

12

(
e−ik∆x − 2 + eik∆x

))
= 1− ν

2

(
1− e−ik∆x

)
+
ν2

12

(
e−ik∆x − 2 + eik∆x

)
.

The amplification factor can be expressed as

r(k,∆x,∆t) =
1− ν

2

(
1− e−ik∆x

)
+ ν2

12

(
e−ik∆x − 2 + eik∆x

)
1 + ν

2
(1− e−ik∆x) + ν2

12
(e−ik∆x − 2 + eik∆x)

.

The discretization is stable if the Fourier mode is not amplified, i.e. |r(k,∆x,∆t)| ≤ 1.

Therefore, we investigate the numerator

f(k,∆x,∆t) = 1− ν

2

(
1− e−ik∆x

)
+
ν2

12

(
e−ik∆x − 2 + eik∆x

)
and the denominator

g(k,∆x,∆t) = 1 +
ν

2

(
1− e−ik∆x

)
+
ν2

12

(
e−ik∆x − 2 + eik∆x

)
with the amplification factor r(k,∆x,∆t) := f(k,∆x,∆t)

g(k,∆x,∆t)
. Evaluating |r(k,∆x,∆t)| requires

the absolute values of the complex numbers given by the numerator and denominator. In

order to avoid handling the square root resulting from the complex number we analyze

|r(k,∆x,∆t)|2. First, we replace the Fourier mode by its representation in trigonometric

form eikxj = cos(kxj) + i sin(kxj). Then, the numerator and denominator are given by

f(k,∆x,∆t) =1− ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(2 cos(k∆x)− 2)
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and

g(k,∆x,∆t) =1 +
ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(2 cos(k∆x)− 2) .

Now, we introduce the following substitution

y := cos

(
k∆x

2

)
⇒ cos(k∆x) = 2y − 1, sin(k∆x) = ±2

√
y(1− y) (6.20)

with y ∈ [0, 1]. It allows to write the numerator as

f(k,∆x,∆t) =1− ν
(

1− y ± i
√
y(1− y)

)
+
ν2

3
(y − 1)

and the denominator as

g(k,∆x,∆t) =1 + ν
(

1− y ± i
√
y(1− y)

)
+
ν2

3
(y − 1) .

Now, |r(k,∆x,∆t)|2 ≤ 1 is only fulfilled if |f(k,∆x,∆t)|2 ≤ |g(k,∆x,∆t)|2. Thus, we check

|f(k,∆x,∆t)|2 ≤ |g(k,∆x,∆t)|2

⇔
(

1− ν(1− y) +
ν2

3
(y − 1)

)2

≤
(

1 + ν(1− y) +
ν2

3
(y − 1)

)2

.

After expanding and canceling terms it gives

−ν(1− y) +
1

3
ν3(y − 1)2 ≤ ν(1− y)− 1

3
ν3(y − 1)2

and can be further simplified to

2

3
ν3(1− y)2 ≤ 2ν(1− y).

This obviously holds for y = 1. Under the assumption that y 6= 1 the inequality can be

simplified to
2

3
ν3(1− y)2 ≤ 2ν(1− y)

⇔ ν2 ≤ 3

1− y

and therefore ν ≤
√

3
1−y , y ∈ [0, 1), has to hold since we consider only positive values for

ν. From this follows that the method is unstable for all y ∈ [0, 1) if no restrictions are

imposed on the CFL number ν. However, one would expect a stable method if a A-stable

time integrator is used. In the appendix, see Sec. B.1.1, a more detailed description of the

computations is presented.

87



6. Multiderivative time integrators for the hybridized discontinuous Galerkin method

Third order method

The von Neumann stability analysis of the third order method follows the same procedure as

for the fourth order method in the previous section. We start with the formula of the third

order method

wn+1
h = wnh +

∆t

3

(
∂tw

n + 2∂tw
n+1)− ∆t2

6
∂2
tw

n.

Again, the method is applied to the convection equation (6.14), where time derivatives are

replaced by space derivatives (6.15), leading to

wn+1 = wn − u∆t

3

(
∂xw

n + 2∂xw
n+1)− u2∆t2

6
∂2
xw

n+1. (6.21)

The resulting terms are discretized using the finite differences (6.16) and the CFL number

ν := u∆t
∆x

is introduced. The unknowns are reordered such that the unknowns at the new

time level n+ 1 are on the left hand side while the unknowns of the old time level n are on

the right hand side. This gives

wn+1
j +

ν

3

(
2wn+1

j − 2wn+1
j−1

)
+
ν2

6

(
wn+1
j−1 − 2wn+1

j + wn+1
j+1

)
= wnj −

ν

3

(
wnj − wnj−1

)
.

The solution is expressed using the Fourier modes (6.19) and eikxj is eliminated which leads

to

r(k,∆x,∆t)

(
1 +

ν

3

(
2− 2e−ik∆x

)
+
ν2

6

(
e−ik∆x − 2 + eik∆x

))
= 1− ν

3

(
1− e−ik∆x

)
.

We define the amplification factor again as r(k,∆x,∆t) := f(k,∆x,∆t)
g(k,∆x,∆t)

with

f(k,∆x,∆t) =1− ν

3

(
1− e−ik∆x

)
g(k,∆x,∆t) =1 +

ν

3

(
2− 2e−ik∆x

)
+
ν2

6

(
e−ik∆x − 2 + eik∆x

)
.

Using the trigonometric form of the complex numbers gives

f(k,∆x,∆t) = 1− ν

3
(1− cos(k∆x) + i sin(k∆x))

and

g(k,∆x,∆t) = 1 +
2ν

3
(1− cos(k∆x) + i sin(k∆x)) +

ν2

6
(2 cos(k∆x)− 2) .

We use substitution (6.20) and obtain

f(k,∆x,∆t) = 1− 2ν

3

(
1− y ± i

√
y(1− y)

)
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for the numerator and

g(k,∆x,∆t) = 1 +
4ν

3

(
1− y ± i

√
y(1− y)

)
+

2ν2

3
(1y − 1)

for the denominator. As in the previous section we check whether |f(k,∆x,∆t)|2 ≤
|g(k,∆x,∆t)|2 holds. We obtain(

1− 2ν

3
(1− y)

)2

+

(
2ν

3

√
y(1− y)

)2

≤
(

1 +
4ν

3
(1− y) +

2ν2

3
(1y − 1)

)2

+

(
4ν

3

√
y(1− y)

)2

which can be simplified to

0 ≤ (1− y)

(
3 +

1

3
ν3(1− y)− 4

3
ν2(1− y)

)
.

Now, the method is stable if the inequality holds for all y ∈ [0, 1]. For an implicit method,

that is A-stable, we expect this inequality to hold for all ν as well. The special case y = 1 is

simple as the right hand side vanishes. For y 6= 0, it is sufficient to check

0 ≤ 3 +

(
1

3
ν3 − 4

3
ν2

)
(1− y)︸ ︷︷ ︸

=:h(ν)

. (6.22)

This inequality is not fulfilled for arbitrary choices of ν > 0 and y ∈ [0, 1). For y = 0, we have

plotted h(ν) in Fig. 6.3 and one clearly sees that the function becomes negative approximately

for ν ∈ (2.30278, 3). The bounds have been determined numerically and rounded to five

decimal places. Thus, the method is subject to a CFL-like condition for which it is stable. A

more detailed version of the analysis can be found in the appendix, see Sec. B.1.2.

6.5. A new stable approach

The previous approach to implicit multiderivative time integrators has been shown to be

unfeasible due to stability issues. However, multiderivative schemes are still an interesting

alternative to the more standard schemes due to the availability of time integrators with very

few stages and high accuracy.

6.5.1. Devising a stable discretization

The standard approach to discretize a convection-diffusion equation using upwind finite

differences for the convective term and central differences for the diffusion term leads to a

discretization that is only conditionally stable. We show now that it is possible to generate a

unconditionally stable discretization with only small changes.
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0 1 2 3 4

0

1

2

3

ν

h
(ν
)

y = 0

Figure 6.3.: Plot of the squared absolute value of the stability function h(ν) (6.22) for different

CFL numbers ν over the domain ν ∈ [0, 4]. The stability function is displayed

for y = 0. The method is stable for this wave number provided h(ν) ≥ 0. In

order to be stable for all wave numbers, we need h(ν) ≥ 0 for all y ∈ [0, 1) where

y is defined in (6.20).

The diffusion term stems from the convection term. Thus, we use the an upwind discretiza-

tion for the second order term that has the same upwind discretization as the discretization

of the convective term. More precisely, we use

∂xw(xj) ≈
wj − wj−1

∆x
, ∂2

xw(xj) ≈
wj − 2wj−1 + wj−2

∆x2
. (6.23)

for the approximation of the space derivatives for u > 0. The same assumptions regarding

the mesh, domain etc. are the same as for the analysis of the Cauchy-Kovalewski approach,

see Sec. 6.4.

Fourth order method We follow the same procedure for the von Neumann stability analysis

as earlier. After applying the fourth order integrator to the convection equation (6.14) an

replacing time by space derivatives we get

wn+1 = wn − u∆t

2

(
∂xw

n + ∂xw
n+1)+

u2∆t2

12

(
∂2
xw

n − ∂2
xw

n+1) . (6.17 revisited)

Then, we discretize the derivatives using the finite differences (6.23) and use substitute

ν := u∆t
∆x
≥ 0 to obtain

wn+1 = wn − ν

2

(
wnj − wnj−1 + wn+1

j − wn+1
j−1

)
+
ν2

12

(
wnj − 2wnj−1 + wnj−2 − wn+1

j + 2wn+1
j−1 − wn+1

j−2

)
.
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We reorder the terms such that unknowns at the new time level n+ 1 are on the left hand

side and the terms of the known time level n are on the right hand side

wn+1 +
ν

2

(
wn+1
j − wn+1

j−1

)
+
ν2

12

(
wn+1
j − 2wn+1

j−1 + wn+1
j−2

)
=wn − ν

2

(
wnj − wnj−1

)
+
ν2

12

(
wnj − 2wnj−1 + wnj−2

)
.

The solution is again represented by a Fourier mode (6.19). We obtain a new term wnj−2 =

eikxj e−2ik∆x due to the upwind discretization of the second space derivative. After inserting

the Fourier mode representation and dividing by eikxj we get

r(k,∆x,∆t)

[
1 +

ν

2

(
1− e−ik∆x

)
+
ν2

12

(
1− 2e−ik∆x + e−2ik∆x

)]
=1− ν

2

(
1− e−ik∆x

)
+
ν2

12

(
1− 2e−ik∆x + e−2ik∆x

)
with amplification factor r(k,∆x,∆t). Again, we define the amplification factor as r(k,∆x,∆t) :=
f(k,∆x,∆t)
g(k,∆x,∆t)

. We have

f(k,∆x,∆t) =1− ν

2

(
1− e−ik∆x

)
+
ν2

12

(
1− 2e−ik∆x + e−2ik∆x

)
g(k,∆x,∆t) =1 +

ν

2

(
1− e−ik∆x

)
+
ν2

12

(
1− 2e−ik∆x + e−2ik∆x

)
.

Using the trigonometric form of the complex numbers gives

f(k,∆x,∆t) = 1− ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(1− 2 cos(k∆x) + 2i sin(k∆x) + cos(2k∆x)− i sin(2k∆x))

and

g(k,∆x,∆t) = 1 +
ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(1− 2 cos(k∆x) + 2i sin(k∆x) + cos(2k∆x)− i sin(2k∆x)) .

For further simplification we use the double angle formulae

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos2(θ)− sin2(θ) = 1− 2 sin2(θ) = 2 cos2(θ)− 1
(6.24)

to express the numerator as

f(k,∆x,∆t) = 1− ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12

(
1− 2 cos(k∆x) + 2i sin(k∆x) + 2 cos2(k∆x)− 1− 2i sin(k∆x) cos(k∆x)

)
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and the denominator as

g(k,∆x,∆t) = 1 +
ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12

(
1− 2 cos(k∆x) + 2i sin(k∆x) + 2 cos2(k∆x)− 1− 2i sin(k∆x) cos(k∆x)

)
.

Again, we use the substitution (6.20) to express the terms as

f(k,∆x,∆t) = 1− ν (1− y)∓ νi
√
y(1− y)

+
ν2

3

(
1− 3y + 2y2 ± i

√
y(1− y)∓ i(2y − 1)

√
y(1− y)

)
and

g(k,∆x,∆t) = 1 + ν (1− y)± νi
√
y(1− y)

+
ν2

3

(
1− 3y + 2y2 ± i

√
y(1− y)∓ i(2y − 1)

√
y(1− y)

)
.

The discretization is stable if |r(k,∆x,∆t)|2 ≤ 1 holds. Thus, we check if |f(k,∆x,∆t)|2 ≤
|g(k,∆x,∆t)|2 holds. Hence, if(

1− ν (1− y) +
ν2

3

(
1− 3y + 2y2))2

+ y(1− y)

(
∓ν +

ν2

3
(±2∓ 2y)

)2

≤
(

1 + ν(1− y) +
ν2

3
(1− 3y + 2y2)

)2

+ y(1− y)

(
±ν +

ν2

3
(±2∓ 2y)

)2

.

After bringing all terms to the right hand side and simplifying the expression we obtain

0 ≤ 4ν(1− y) +
2ν3

3
(1− y)2 .

This inequality is fulfilled for all y and ν as we require ν ≥ 0 and y ∈ [0, 1]. It follows that

the scheme is stable for all time step sizes. A more detailed version of the von Neumann

stability analysis can be found in the appendix, see Sec. B.2.1.

Third order method The analysis for the third order method follows the same procedure as

for the fourth order method. The method is applied to the convection equation (6.14) and

the time derivatives are replaced by space derivatives. This gives

wn+1 = wn − u∆t

3

(
∂xw

n + 2∂xw
n+1)− u2∆t2

6
∂2
xw

n+1 (6.21 revisited)

and the derivatives are discretized using the finite differences (6.16) and ν := u∆t
∆x

is introduced

to obtain
wn+1
j = wnj −

ν

3

(
wnj − wnj−1 + 2wn+1

j − 2wn+1
j−1

)
− ν2

6

(
wn+1
j − 2wn+1

j−1 + wn+1
j−2

)
.

92



6.5. A new stable approach

Again, we reorder the unknowns such that all unknowns at the new time level are on the left

hand side, express the solution using Fourier modes (6.19) and eliminate eikxj . This gives

r(k,∆x,∆t)

(
1 +

2

3
ν
(

1− e−ik∆x
)

+
ν2

6

(
1− 2e−ik∆x + e−2ik∆x

))
= 1− ν

3

(
1− e−ik∆x

)
.

Again, we define the amplification factor as r(k,∆x,∆t) := f(k,∆x,∆t)
g(k,∆x,∆t)

with

f(k,∆x,∆t) =1− ν

3

(
1− e−ik∆x

)
g(k,∆x,∆t) =1 +

2ν

3

(
1− e−ik∆x

)
+
ν2

6

(
1− 2e−ik∆x + e−2ik∆x

) (6.25)

in this case. Using the trigonometric form of the complex numbers we obtain

f(k,∆x,∆t) = 1− ν

3
(1− cos(k∆x) + i sin(k∆x)) (6.26)

and

g(k,∆x,∆t) =1 +
2ν

3
(1− cos(k∆x) + i sin(k∆x))

+
ν2

6

(
1− 2 cos(k∆x) + 2i sin(k∆x) + cos2(k∆x)− 1− 2i sin(k∆x) cos(k∆x)

)
(6.27)

and after using the substitution (6.20) one obtains

f(k,∆x,∆t) = 1− 2ν

3

(
1− y ± i

√
y(1− y)

)
and

g(k,∆x,∆t) = 1 +
4ν

3

(
1− y ± i

√
y(1− y)

)
+

2ν2

3

(
1− 3y + 2y2 ± i

√
y(1− y)∓ i

√
y(1− y)(2y − 1)

)
.

Now, we have to check whether |f(k,∆x,∆t)|2 ≤ |g(k,∆x,∆t)|2 holds. We get(
1− 2ν

3
(1− y)

)2

+

(
2ν

3

√
y(1− y)

)2

≤
(

1 +
4ν

3
(1− y) +

2ν2

3

(
1− 3y + 2y2))2

+ y(1− y)

(
±4ν

3
+

2ν2

3
(∓2y ± 2)

)2
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which can be simplified to

0 ≤4

3
ν2(1− y)2 +

4

9
ν4(1− 3y + 2y2)2

+ 4ν(1− y) +
4

3
ν2(1− y)2 +

16

9
ν3(1− y)2

+
4

9
ν4y(1− y)(2y − 2)2.

This inequality is fulfilled for all y and ν as we require ν ≥ 0 and y ∈ [0, 1]. It follows that

the scheme is stable for all time step sizes. A more detailed version of the von Neumann

stability analysis can be found in the appendix, see Sec. B.2.2.

6.5.2. Sketch of the new approach

In order to outline how a stable discretization can be obtained for arbitrary space discretiza-

tions we focus on d = 1 space dimensions in order to keep the notation simple. However, the

idea directly extends to higher d as shown in [212]. The main idea is that for a linear PDE

like a linear convection-diffusion equation, see Sec. 2.4,

∂tw + u∂xw − ε∂2
xw = h, ε > 0

one obtains a system of equations

∂tW = ADGW + bDG (6.28)

after discretizing the method in space with a ‘standard’ discontinuous Galerkin method that

does not use any auxiliary unknowns. In our publication [212] a symmetric interior penalty

method [10] has been used as space discretization, but it is also applicable to the hybridized

discontinuous Galerkin method with minor modifications. The matrix ADG stems from the

space discretization of the space derivatives, the vector W contains the coefficients to express

the solution (3.6) using the polynomial basis and the vector bDG stems from the source term

h.

The idea is to introduce auxiliary variables of the time derivative of the unknown instead

of expressing the time derivative by space derivatives. For this we introduce the following

indexing

W1 := W

Wi := ∂tWi−1, i > 1
(6.29)

where W1 refers to the coefficients stemming from the unknown quantity w expressed by the

polynomial basis. The coefficients Wi, i > 1 refer to the ith time derivative of the unknown

w or their approximation, respectively.

This substitution allows to write the linear equation (6.28) as

∂tW1 = ADGW1 + bDG (6.30)
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where we have done nothing but using our new nomenclature. Now, for a two-derivative

method as the ones used in the previous section, see Sec. 6.2, the second time derivative is

used. Diffentiating equation (6.30) with respect to time gives

∂2
tW1 = ADG∂tW1 + ∂tbDG

where ∂tW1 can be expressed by (6.30) leading to

∂2
tW1 = ADG (ADGW1 + bDG) + ∂tbDG. (6.31)

It is advantageous to express time derivatives by additional unknowns. In this case, we

introduce the unknown

W2 = ADGW1 + bDG (6.32)

which allows us to express (6.31) compactly as

∂2
tW1 = ADGW2 + ∂tbDG

⇔ ∂tW2 = ADGW2 + ∂tbDG.
(6.33)

This approach can be extended straightforwardly to higher time derivatives. This also means

that the second time derivative ∂2
tW1 = ∂tW2 can be recovered from W1 by differentiating

the source term h to obtain ∂tbDG.

The third time derivative would require the differentiation of (6.31) once again. As we

have an explicit expression of the first time derivative (6.32) by W2 and the second time

derivative W3 = ∂tW2 through (6.33) we can instead differentiate (6.33) to obtain

∂2
tW2 = ∂tW3 = ADG∂tW2 + ∂2

t bDG

⇔ ∂tW3 = ADGW3 + ∂2
t bDG.

Thus, an approximation to the third time derivative is available by differentiating the source

term h once more to compute ∂2
t bDG.

The two-point collocation schemes with up to three time derivatives, as introduced in

Sec. 6.2, then can be expressed as

Wn+1
1 −Wn

1

∆t
= ADG

(
α1W

n
1 − β1W

n+1
1

)
+ ∆tADG

(
α2W

n
2 − β2W

n+1
2

)
+ ∆t2ADG

(
α3W

n
3 − β3W

n+1
3

) (6.34)

using the additionally introduced auxiliary variables. Note that (6.34) presents the formulation

without source term, i.e. bDG = 0, to allow for a compact notation.

In [212] we have shown that the new approach leads to an unconditionally stable time

discretization. Moreover, an extensive number of numerical experiments in two space

dimensions has been carried out. All investigated multiderivative integration methods have

shown optimal order of convergence and usually the error is lower than for the DIRK methods

presented in Sec. 4.3.
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6.5.3. Application to hybridized discontinuous Galerkin methods

After the introduction of the new approach to discretize additional time derivatives we extend

the approach to the hybridized discontinuous Galerkin method. This includes the application

to DG discretizations like LDG that use an auxiliary unknown σ for space derivatives. The

interior penalty DG method used in [212] does not use any auxiliary unknowns for space

derivatives. Moreover, we present how to apply the approach to the HDG method.

We follow the approach of the previous section closely. In order to have all unknowns

present, we consider the discretization of the 1D convection-diffusion equation

∂tw + u∂xw − ε∂2
xw = h.

Using similar notation of the matrices as in the section about the static condensation process,

see Sec. 3.3.2, we can write the resulting system of equations as 0

Mϕ∂tW1

0

 =

Aσσ Aσw Aσλ

Awσ Aww Awλ

Aλσ Aλw Aλλ


Σ1

W1

Λ1

+

 0

Rw

0

 (6.35)

which follows the notation we have introduced in (6.28). However, we obtain a larger

matrix due to the auxiliary and hybrid unknown than in the previous section and the static

condensation process has not yet been applied. Now, we can differentiate the equation with

respect to time an obtain 0

Mϕ∂
2
tW1

0

 =

Aσσ Aσw Aσλ

Awσ Aww Awλ

Aλσ Aλw Aλλ


∂tΣ1

∂tW1

∂tΛ1

+

 0

∂tRw

0

 .

We use the substitution for time derivatives defined in (6.29) and apply it also for the auxiliary

and hybrid unknown. This gives 0

Mϕ∂tW2

0

 =

Aσσ Aσw Aσλ

Awσ Aww Awλ

Aλσ Aλw Aλλ


Σ2

W2

Λ2

+

 0

∂tRw

0

 . (6.36)

which is the HDG version of (6.33). For the definition of ∂tW2 the time derivatives of the

auxiliary Σ2 = ∂tΣ1 unknown, hybrid unknown Λ2 = ∂tΛ1 and possible source terms ∂tRw

are needed. Thus, one also has to introduce additional auxiliary unknowns to approximate

time derivatives that were not present in the initial system of equations (6.35). However, the

globally coupled system is then, once again, only coupled in the hybrid unknown Λ1 and

Λ2. The other unknowns W1, W2, Σ1 and Σ2 can be eliminated by the static condensation

procedure, see Sec. 3.3.2.

All methods given in Tab. 6.1 are implemented. These are the same as in the paper [212].

In contrast to Sec. 6.2 this also includes methods of fifth and sixth order that use three time

derivatives.
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c A(1) · · · A(M)

(b(1))
T · · · (b(M))

T

(a) General shape of an extended

Butcher tableau for multiderivative

Runge-Kutta methods.

0 0 0 0 0 0 0

0.5 101
480

8
30

55
2400

65
4800

− 25
600

− 25
8000

1.0 7
30

16
30

7
30

5
300

0 − 5
300

7
30

16
30

7
30

5
300

0 − 5
300

(b) Butcher tableau of the multiderivative Runge-Kutta

method used in this work with M = 2.

Table 6.2.: General form of Butcher tableaux of multiderivative Runge-Kutta methods and

coefficients of the two-derivative three-stage multiderivative Runge-Kutta method

used in this work. The method is sixth order accurate in time.

Fully implicit multiderivative collocation methods In addition to the two-point collocation

method, we implement the multiderivative collocation method presented in [212]. It follows a

similar procedure as the standard Runge-Kutta method, see Sec. 4.3, where stage values

wn,ih = wnh +

M∑
m=1

∆tm
s∑
j=1

a
(m)
ij ∂mt w

n,j
h , i = 1, . . . , s, (6.37a)

are approximated. After all stage values have been obtained the solution can be updated as

wn+1
h = wnh +

M∑
m=1

∆tm
s∑
i=1

b
(m)
i ∂mt w

n,j
h . (6.37b)

The update formulae of Runge-Kutta methods are simply extended for M time derivatives

of the unknown wh instead of only using one. The coefficients can be noted in an extended

Butcher tableau, see Tab. 6.2a. As an example, the coefficients of a method using three

stages and two time derivatives, are given in Tab. 6.2b.

6.6. Numerical results

The new approach for discretizing implicit multiderivative time integrators is verified using

the linear convection and convection-diffusion equation in one space dimension. As we did

not show any results in the 1D case for any ‘classical’ time integrators introduced in Sec. 4,

we first show results using different DIRK methods. Subsequently the results obtained by

two-point collocation schemes and the fully implicit multiderivative collocation methods are

presented. The solver used for that has been implemented in MATLAB.

In order to present the applicability of the approach in two space dimensions we present

further results afterwards. They have been obtained by a symmetric interior penalty discon-

tinuous Galerkin (SIP-DG) method. We have presented parts of the results in our publication

[212]. This SIP-DG method is not hybridized. At the point of time this thesis has been
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6. Multiderivative time integrators for the hybridized discontinuous Galerkin method

written the implementation of a HDG method using the new approach for multiderivative

time integrators has been work in progress. Further details about the interior penalty DG

method used can found in our publication and about interior penalty DG methods in [10,

66], for example. We follow the same order to present results as in the one dimensional

case. The approach in two space dimensions is verified using the same PDEs as in one space

dimension. For each PDE we first present results for DIRK methods since we haven’t shown

any results of the SIP-DG implementation before. Afterwards we present the results obtained

by two-point collocation schemes and the fully implicit multiderivative collocation method.

The solver used has been implemented in C++ based on Netgen and NGSolve using PETSc

for solving the linear system.

6.6.1. Results in 1D

We present results using standard and multiderivative time integrators in one space dimension.

The hybridized discontinuous Galerkin method has been used as space discretization.

Linear convection equation The linear convection equation

∂tw + u∂xw = 0

is solved on a domain Ω = [0, 1] in the time for tfinal = 1 with constant velocity vector u = 1

and periodic boundary conditions. The initial condition is

w(0, x) = sin(2πx)

such that the solution is given by w(t, x) = sin(2πx − ut). The initial time step size is

∆t = 0.5 and mesh size is ∆x = 1.0. Both are refined uniformly.

In Fig. 6.4, we present the results using DIRK methods of order Q = 1 to Q = 4 with

polynomials of degree P = Q − 1. We see that all methods achieve the expected order of

convergence which indicates the correctness of the implementation. Note that the scaling

of the axes is chosen such that it is easily comparable with the numerical results of the

multiderivative time integrators.

In Fig. 6.5, the results using the two-point collocation methods from third up to sixth order

for different polynomial degrees are shown. One clearly sees that the order of covergence

is either limited by the spatial resolution or the order of the time integrator. For all time

integrators, the expected order of convergence in time is reached once the spatial resolution

is high enough, i.e. P = Q− 1. Increasing the polynomial degree to P = Q has no influence

on the slope and thus no influence on the overall order of convergence of the method.

In Fig. 6.6, we present the results of the fully implicit multiderivative Runge-Kutta method

for different polynomial degrees. Again, the correct order in time and space is recovered. If
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Figure 6.4.: Numerical results for the convection equation with parameters u = 1 and

tfinal = 1.0 using HDG for space discretization and DIRK schemes for time

integration. The time step size for the coarsest triangular mesh, consisting of

one element, was chosen to be ∆t = 0.5. The CFL-number is CFL = 0.5.

the polynomial degree is high enough such that the overall error is not dominated anymore

by the spatial discretization, i.e. P = 5, the errors are slightly lower than for the two-point

collocation method of sixth order, see Fig. 6.5d.

All tested time integrators work as expected. In contrast to the Lax-Wendroff approach,

see Sec. 6.2, no stability issues nor order degradation have been observed.

Linear convection-diffusion equation As second test case we consider the linear convection-

diffusion equation

∂tw + u∂xw − ε∂2
xw = h

on Ω = [0, 1] with periodic boundary conditions. The end time is tfinal = 1, the convection

velocity is u = 1.0 and the diffusion constant is ε = 0.1. In comparison to the pure convection

equation in the previous section, the mixed formulation incorporating the auxiliary unknown

σ is used, see Sec. 3.3. Thus, the new approach for the approximation of the time derivatives

introduces additional unknowns for the time derivatives of σ (and their approximation).

Moreover, we prescribe a source term h such that the solution is given by

w(t, x) = e−t sin(2π(x− ut)).

The numerical experiments use the initial time step ∆t = 0.5 and mesh size ∆x = 1.0. Both

are uniformly refined for the convergence study.

In Fig. 6.7 we present the results using DIRK methods of order Q = 1 to Q = 4 with

polynomials of degree P = Q−1. As for the convection case all methods achieve the expected

order of convergence. This indicates the correctness of the implementation.
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(a) Third order method (k = 1, l = 2).
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(b) Fourth order method (k = 2, l = 2).
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(c) Fifth order method (k = 2, l = 3).
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(d) Sixth order method (k = 3, l = 3).

Figure 6.5.: Numerical results for the convection equation with parameters u = 1 and

tfinal = 1.0 using HDG for space discretization and two-point collocation schemes

for time integration. The time step size for the coarsest triangular mesh, consisting

of one element, was chosen to be ∆t = 0.5. The CFL-number is CFL = 0.5.
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Figure 6.6.: Numerical results for the convection equation with parameters u = 1 and

tfinal = 1.0 using HDG for space discretization and a multiderivative Runge-Kutta

method for time integration. The time step size for the coarsest triangular mesh,

consisting of one element, was chosen to be ∆t = 0.5. The CFL-number is

CFL = 0.5.
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Figure 6.7.: Numerical results for the convection-diffusion equation with parameters u = 1,

tfinal = 1.0 and ε = 0.1 using HDG for space discretization and DIRK schemes for

time integration. The time step size for the coarsest triangular mesh, consisting

of one element, was chosen to be ∆t = 0.5. The CFL-number is CFL = 0.5.
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6. Multiderivative time integrators for the hybridized discontinuous Galerkin method

In Fig. 6.8, the results using the two-point collocation methods from third up to sixth

order for different polynomial degrees are shown. All methods achieve the expected order

of convergence in time once the spatial resolution is high enough. In contrast to the purely

convective test case, the error is rather limited by the temporal error than the spatial error.

For the third and fifth order methods, see Figs. 6.8a and 6.8c, we present also the results for

P = Q. Besides the order of convergence being limited by the temporal order one barely sees

any difference in the errors for P = Q and P = Q− 1. The only obvious differences occur for

the fifth order method for very small error levels where also the accuracy of the linear solver

of MATLAB plays an important role.

In Fig. 6.9 we present the results of the fully implicit multiderivative Runge-Kutta method

for different polynomial degrees. As for the two-point collocation methods the order of

convergence is either limited by the spatial or temporal error and recovers sixth order for

P = 5. The errors in the case P ≥ 4 do not further decrease after a few refinements. We

attribute this to the implementation of the method and the linear solver of MATLAB. The

implementation does not assume that the multiderivative Runge-Kutta has an explicit first

step, but allows for fully implicit multiderivative Runge-Kutta methods. Moreover, the local

solvers are assembled for all elements at once, in order to allow for an easy and efficient

implementation. However, without a reordering of the unknowns the local solves cannot be

solved truly local. Instead, the arising system of equations is solved with MATLAB’s linear

solver (mldivide).

All tested time integrators work as expected for the linear convection-diffusion problem.

Again, no stability issues nor order degradation have been observed.

6.6.2. Results in 2D using an interior penalty DG method

We present results using standard and multiderivative time integrators in two space dimensions.

A symmetric interior penalty discontinuous Galerkin (SIP-DG) method has been used as

space discretization. The results stem from our publication [212] that introduces the new

approach for discretizing implicit multiderivative time integrators. Further information about

this kind of discontinuous Galerkin methods can be found in our publication and the work of

Arnold et al. [10], for example. If nothing else is mentioned, the linear system is solved using

a GMRES solver with ILU(2) preconditioner until the relative residual drops below 10−10.

Linear convection equation The linear convection equation

∂tw +∇ · (uw) = 0

is solved on a domain Ω = [0, 1]2 in the time for tfinal = 1 with constant velocity vector

u = (1, 1)T and periodic boundary conditions. The initial condition

w(0, x) = sin(2πx1) sin(2πx2)
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(a) Third order method (k = 1, l = 2).

10−2 10−1
10−14

10−11

10−8

10−5

10−2

101

∆t
E

rr
o
r
e h

P = 0

P = 1

P = 2

P = 3

(b) Fourth order method (k = 2, l = 2).
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(c) Fifth order method (k = 2, l = 3).
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(d) Sixth order method (k = 3, l = 3).

Figure 6.8.: Numerical results for the convection-diffusion equation with parameters u = 1,

tfinal = 1.0 and ε = 0.1 using HDG for space discretization and two-point

collocation schemes for time integration. The time step size for the coarsest

triangular mesh, consisting of one element, was chosen to be ∆t = 0.5. The

CFL-number is CFL = 0.5.
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Figure 6.9.: Numerical results for the convection-diffusion equation with parameters u = 1,

tfinal = 1.0 and ε = 0.1 using HDG for space discretization and a multiderivative

Runge-Kutta method for time integration. The time step size for the coarsest

triangular mesh, consisting of one element, was chosen to be ∆t = 0.5. The

CFL-number is CFL = 0.5.

is used such that the solution is given by w(t, x) = sin(2πx1 − u1t) sin(2πx2 − u2t). The

initial time step size is ∆t = 0.25 and the coarsest mesh consists of two triangular elements,

i.e. ∆x = 1.0. Both are refined uniformly.

In Fig. 6.10 we present the result using DIRK methods of order Q = 1 to Q = 4 with

polynomials of degree P = Q − 1. We see that all methods achieve the expected order of

convergence. This indicates the correctness of the implementation. Note that the scaling

of the axes is chosen such that it is easily comparable with the numerical results of the

multiderivative time integrators in two space dimensions.

In Fig. 6.11, the results using the two-point collocation methods from third up to sixth

order for different polynomial degrees are shown. One clearly sees that the order of covergence

is either limited by the spatial resolution or the order of the time integrator. For all time

integrators, the expected order of convergence in time is reached once the spatial resolution

is good enough, i.e. P = Q− 1. Increasing the polynomial degree to P = Q has no influence

on the slope and thus no influence on the overall order of convergence of the method. This

results are also in good agreement with the results in one space dimension when the HDG

method is used for space discretization, see Fig. 6.5.

In Fig. 6.12 we present the results of the fully implicit multiderivative Runge-Kutta method

for different polynomial degrees. Again, the correct order in time and space is recovered. In

contrast to the results in one space dimension, there is visible difference in the error between

this time integrator and the two-point collocation scheme of sixth order, see Fig. 6.11d.

All tested time integrators work as expected. In contrast to the Lax-Wendroff approach,
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Figure 6.10.: Numerical results for the convection equation in two space dimensions with

parameters u = (1, 1)T, tfinal = 1.0. DIRK schemes have been used for time

integration and a symmetric interior penalty discontinuous Galerkin method has

been used for space discretization. The time step size for the coarsest triangular

mesh, consisting of one element, was chosen to be ∆t = 0.25. The CFL-number

is CFL =
√

2 · 0.25 ≈ 0.354.

see Sec. 6.2, no stability issues nor order degradation have been observed. The results are in

good agreement with the one obtained in one space dimension using the HDG method for

space discretization.

Linear convection-diffusion equation As second test case we consider the linear convection-

diffusion equation

∂tw +∇ · (uw − ε∇w) = h

on Ω = [0, 1]2 with periodic boundary conditions. The end time is tfinal = 1, the convection

velocity is u = (1, 1)T and the diffusion constant is ε = 0.1. Moreover, we prescribe a source

term h such that the solution is given by

w(t, x) = e−t sin(2π(x1 − u1t)) sin(2π(x2 − u2t)).

The numerical experiments use the initial time step ∆t = 0.5 and mesh size ∆x = 1.0. Both

are uniformly refined for the convergence study. In comparison to the HDG discretization for

this PDE in 1D the SIP-DG formulation does not require any auxiliary unknowns. However,

the SIP-DG formulation is not meaningful for polynomials of degree P = 0. Thus, we present

results only for P > 0.

In Fig. 6.13, we present the result using DIRK methods of order Q = 2 to Q = 4 with

polynomials of degree P = Q−1. As for the convection case all methods achieve the expected

order of convergence. This indicates the correctness of the implementation.

105



6. Multiderivative time integrators for the hybridized discontinuous Galerkin method

10−2 10−1

10−9

10−7

10−5

10−3

10−1

101

Time step size ∆t

E
rr

o
r
‖w
−

w
h
‖ L

2

P = 0

P = 1

P = 2

P = 3

(a) Third order method (k = 1, l = 2).
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(b) Fourth order method (k = 2, l = 2).
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(c) Fifth order method (k = 2, l = 3).
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(d) Sixth order method (k = 3, l = 3).

Figure 6.11.: Numerical results for the convection equation in two space dimensions with

parameters u = (1, 1)T, tfinal = 1.0. Two-point collocation schemes have

been used for time integration and a symmetric interior penalty discontinuous

Galerkin method has been used for space discretization. The time step size

for the coarsest triangular mesh, consisting of one element, was chosen to be

∆t = 0.25. The CFL-number is CFL =
√

2 · 0.25 ≈ 0.354.
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Figure 6.12.: Numerical results for the convection equation in two space dimensions with

parameters u = (1, 1)T, tfinal = 1.0. Multiderivative Runge-Kutta method have

been used for time integration and a symmetric interior penalty discontinuous

Galerkin method has been used for space discretization. The time step size

for the coarsest triangular mesh, consisting of one element, was chosen to be

∆t = 0.25. The CFL-number is CFL =
√

2 · 0.25 ≈ 0.354.
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Figure 6.13.: Numerical results for the convection-diffusion equation in two space dimensions

with parameters tfinal = 1.0 and ε = 0.1. DIRK schemes have been used for time

integration and a symmetric interior penalty discontinuous Galerkin method has

been used for space discretization. The time step size for the coarsest triangular

mesh, consisting of one element, was chosen to be ∆t = 0.5. The CFL-number

is CFL =
√

2 · 0.5 ≈ 0.707.
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(a) Third order method (k = 1, l = 2).
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(b) Fourth order method (k = 2, l = 2).
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(c) Fifth order method (k = 2, l = 3).
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(d) Sixth order method (k = 3, l = 3).

Figure 6.14.: Numerical results for the convection-diffusion equation in two space dimensions

with parameters u = 1, tfinal = 1.0 and ε = 0.1. Two-point collocation

schemes have been used for time integration and a symmetric interior penalty

discontinuous Galerkin method has been used for space discretization. The time

step size for the coarsest triangular mesh, consisting of one element, was chosen

to be ∆t = 0.5. The CFL-number is CFL =
√

2 · 0.5 ≈ 0.707.
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Figure 6.15.: Numerical results for the convection-diffusion equation in two space dimensions

with parameters u = 1, tfinal = 1.0 and ε = 0.1. A multiderivative Runge-Kutta

method has been used for time integration and a symmetric interior penalty

discontinuous Galerkin method has been used for space discretization. The time

step size for the coarsest triangular mesh, consisting of one element, was chosen

to be ∆t = 0.5. The CFL-number is CFL =
√

2 · 0.5 ≈ 0.707.

In Fig. 6.14, the results using the two-point collocation methods from third up to sixth

order for different polynomial degrees is shown. All methods achieve the expected order of

convergence in time once the spatial resolution is high enough. For the third and fifth order

methods, see Figs. 6.14a and 6.14c, we present also the results for P = Q. Besides the order

of convergence being limited by the temporal order one barely sees any difference in the

errors for P = Q and P = Q− 1. For the simulations with P = 5 we observed that the linear

solver might not converge. Thus, we use a direct solver. We observe this behavior also for

the DIRK methods of all orders for P = 5. Thus, it’s most likely related to the condition

number of the linear system becoming increasingly worse for increasing polynomial degree

P . This is not surprising, but also necessitates another solution strategy as direct solvers

are usually not feasible. In our publication [212], we suggested that one could initialize the

GMRES solver with the solution of a lower order method.

In Fig. 6.15, we present the results of the fully implicit multiderivative Runge-Kutta

method for different polynomial degrees. As for the two-point collocation methods the order

of convergence is either limited by the spatial or temporal error and recovers sixth order for

P = 5. Again, we use a direct solver in order to solve the linear system for P = 5 instead of

the GMRES method.

In contrast to the HDG implementation the sixth order time integrators show no deviation

of the errors on the finest levels. The SIP-DG formulation does not depend on any local solves

and thus is independent of the accuracy of these. Moreover, for the SIP-DG implementation
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6. Multiderivative time integrators for the hybridized discontinuous Galerkin method

we present less refinements (six instead of eight in the one dimensional case). Thus, the errors

for the most accurate methods are still greater than 1010 while in the one dimensional case the

implementation reached much smaller error levels. We restrict ourselves to fewer refinements

due to the increased computational work needed in two space dimensions which also increase

the run-times of the implementation. All tested time integrators work as expected for the

linear convection-diffusion problem. Again, no stability issues nor order degradation have

been observed.

110



7. Efficient implementation of hybridized discontinuous

Galerkin methods in MATLAB / GNU Octave

An important point in the development of numerical schemes is rapid prototyping. Suitable

numerical libraries allow the quick implementation and testing of new ideas. Some popular

libraries in the context of finite element methods are Netgen/NGSolve [204, 205], FEniCS [5,

147], deal.II [15] or Nektar++ [38], for example. These libraries provide highly optimized

implementations that usually offer an interface to programming languages like C/C++

or scripting languages like python. In order to accompany such libraries by a tool that

allows rapid prototyping in the context of discontinuous Galerkin methods with MATLAB /

GNU Octave, FESTUNG (F inite E lement S imulation Toolbox for UN structured Grids) has

been introduced in [80].

FESTUNG is an open source MATLAB [226] / GNU Octave [68] framework for the easy

implementation of discontinuous Galerkin methods in two space dimensions. Besides focusing

on the completeness of necessary tools and data structures for implementing DG methods

easily, the framework focuses on an implementation with high computational efficiency and

full compatibility with the open source software GNU Octave.

In [80], the following goals have been formulated that should be accomplished with

FESTUNG:

1. “Design a general-purpose software package using the DG method for a range of

standard applications” and provide this toolbox as a research and learning tool in the

open source format (cf. [79]).”

2. “Supply a well-documented, intuitive user-interface to ease adoption by a wider com-

munity of application and engineering professionals.”

3. “Relying on the vectorization capabilities of MATLAB / GNU Octave optimize the

computational performance of the toolbox components and demonstrate these software

development strategies.”

4. “Maintain throughout full compatibility with GNU Octave to support users of open

source software.”
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7. Efficient implementation of HDG methods in MATLAB / GNU Octave

The goals have been formulated to guide the development of a framework that fills a gap in

the frameworks already available. A more detailed discussion of this can be found in the first

FESTUNG paper [80].

The framework’s source code is documented with Doxygen compatible comments. It is

possible to generate the documentation of the code in various formats directly from its

comments in the source code using Doxygen. Additionally, new releases are accompanied by

publications that come with examples and detailed explanations of new features and changes.

The initial publication [80] introduced the FESTUNG framework and described the main

goals and motivation of the project. Moreover, in this publication the basic concepts and

implementations needed for a DG discretization like polynomials and handling of meshes

are described. How to use the framework and its functions is explained by discretizing a

time-dependent diffusion equation using the local discontinuous Galerkin method [56, 247], see

Sec. 3.2. The implicit Euler method is used as time integrator. The second part of the paper

series [195] deals with the discretization of a time-dependent convection equation using an

upwind DG method with slope limiting. In this publication, explicit strong stability preserving

(SSP) Runge-Kutta time integrators are used. The third part of the paper series [124] has

been written during the preparation of this thesis. This work extends the framework and

describes the implementation of a hybridized discontinuous Galerkin methods as used in this

thesis including the introduction of DIRK methods for time integration. The implementation

also uses a new program structure that will be described in the fourth part [194] that is

currently in preparation. The third FESTUNG paper [124] is covered in this thesis.

We first introduce some additional notation that slightly deviates from the one introduced

previously. This is done in order to stay aligned with the notation used in the FESTUNG

framework. The notation also refers better to the implementation that heavily relies on vector

and matrix operations in MATLAB / GNU Octave than the previously used notation but

is harder to read. Afterwards, we briefly discuss the problem discretized and introduce the

nomenclature for the arising terms as used in our publication. The assembly of matrices and

vectors is shortly highlighted. The description of the assembly includes the implementation

of the assembly in MATLAB / GNU Octave. This description focuses on a small choice of

assembly routines in order to keep this section compact. An extensive description can be

found in the paper series [80, 124, 195] and the documentation of the code [196]. We end the

section with the discussion of some numerical results and compare the HDG method with an

upwind DG discretization from a previous FESTUNG publication [195].

To the knowledge of the author of this thesis, no HDG implementation in MATLAB /

GNU Octave has been available that fulfills all the goals formulated by the FESTUNG

project. In [82], a MATLAB implementation of the HDG method in three space dimensions

is discussed. It also makes extensive use of the vectorization in MATLAB / GNU Octave in

order to allow for an efficient discretization. A comparison to other available MATLAB /
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GNU Octave implementation can be found in the first part of the FESTUNG paper series

[80].

7.1. Notation

The notation used in this chapter is a combination of the notation used in our publication

[124] and the notation used in this thesis as introduced in Sec. 3. The notation in this chapter

is refined as we use indices extensively to distinguish between and enumerate elements, faces,

degrees of freedom and so on. Therefore, a slight deviation from the previously introduced

notation cannot be avoided.

Recall that the domain Ω is partitioned into a mesh with K triangular elements T . The

set Eh contains all edges Ek̄ of the triangulation. The set of all edges can also be expressed

as Eh = E in
h ∪ EBC

h as it consists of all edges Ek̄ ∈ E in
h that are at the interior of the

domain and boundary edges Ek̄ ∈ EBC
h that represent the domain boundary. Boundary

conditions might be necessary on the boundary edges. Thus we split the set of boundary

edges further into EBC
h = EBC,in

h ∪ EBC,out
h as it consists of the edges Ek̄ ∈ EBC,in

h where

inflow boundary conditions have to be prescribed and edges Ek̄ ∈ EBC,out
h where outflow/no

boundary conditions have to be prescribed.

On edge Ek̄ ∈ Eh a normal vector nk̄ (with unit length) is defined. It is chosen such that

it points outwards of element Tk̄− . The element can be chosen arbitrarily but stays fixed

after choosing it. Boundary edges only have one adjoining element thus the vector nk̄ always

points out of the domain boundary. From this definition it also follows that the element Tk̄−

adjoining an edge always exists while the element Tk̄+ only exists for edges Ek̄ ∈ E in
h . In

order to reduce the number of indices, Tk̄− is referred to as Tk̄ if no confusion with Tk̄+ is

possible.

In order to stay aligned with the implementation and the notation in the FESTUNG

framework we denote the number of elements by K and the number of edges by K. We

refer to elements using indices k, and add bars ·̄ (e.g., k̄ or K) whenever we refer to edges

and edge related quantities. Additionally, we make use of the notation from the previous

publications [80, 195] where we referred to edges of an element Tk as Ekn, n ∈ {1, 2, 3}. Note

the difference between this element-local edge numbering (“Ekn is the nth edge of the kth

element”) and global edge numbering (“Ek̄ is the k̄th edge in the mesh”).

For the description of the method we need mappings allowing us to switch back and forth

between element-local and global indices. For that reason, we introduce a mapping ρ(k, n)

that relates the nth edge Ekn of element Tk to its global index in the set of edges Eh,

ρ : {1, . . . ,K} × {1, 2, 3}→ {1, . . . ,K}, (k, n) 7→ k̄ . (7.1)

This mapping is not injective since for each interior edge there exists a pair of index tuples
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νk−n−E
k
−
n

−Tk−

Tk+

Figure 7.1.: Two triangles adjacent to edge Ek̄. It holds Ek̄ =Ek−n− = Ek+n+ and

νk−n− = −νk+n+ .

(k−, n−) and (k+, n+) that map to the same edge index k̄, i. e., Ek̄ = Ek−n− = Ek+n+ (see

Fig. 7.1). We define a second mapping κ(k̄, l) to identify elements Tk− , Tk+ adjacent to an

edge Ek̄. In this, argument l ∈ {1, 2} denotes the edge-local index of the adjacent elements; it

is constructed so that l = 1 refers to the “inner” element Tk− (that always exists) while l = 2

refers to the “outer” element Tk̄+ that exists only for interior edges Ek̄ ∈ E in
h ,

κ : {1, . . . ,K} × {1, 2}→ {0, . . . ,K}, (k̄, l) 7→
{
k− ∈ {1, . . . ,K} , if l = 1

k+ ∈ {0, . . . ,K} , if l = 2

}
. (7.2)

As element indices start counting from 1, we set κ(k̄, 2) = 0 , ∀Ek̄ ∈ EBC
h to mark the absence

of the “outer” element.

In order to refer to the implementation we use a monospace font. The function “assembleVe-

cEdgePhiIntVal” is referred to as assembleVecEdgePhiIntVal, for example. Functions/syntax

that stems form MATLAB / GNU Octave use the monospace font and are colored as in the

respective MATLAB / GNU Octave editor such as for when indicating a for-loop.

7.2. Discretization

Let ΩT := (0, tend]× Ω be the time-space domain as introduced in Sec. 2.2. Then, we solve

the linear convection equation

∂tw +∇ · fc(w) = h(w), on (t, x) ∈ ΩT

with a source term in the flux formulation as introduced in Sec. 2.2. The convective flux is

given as

fc(w) = uw

with known velocity u. For further information, see Sec. 2.4. The problem is equipped with

suitable initial and boundary data. As before, all functions and the unknown may depend

on time t and space x coordinates, but we do not state this explicitly to maintain better

readability.
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The problem considered is the same as in the second part of the FESTUNG paper series

[195].

7.2.1. Semi-discrete form

For discretizing the PDE in space we follow the procedure as described for the HDG method

in Sec. 3.3. Then, we obtain the following weak formulation

∫
Tk

∂twh ϕhdx−
∫
Tk

fc · ∇ϕhdx+

∫
∂Tk

f̂c · nTk ϕhds =

∫
Tk

hϕh dx , (7.3a)

on a single element. On a single edge we obtain

∫
Ek̄

µh

{
α
(
2λh − w−h − w+

h

)
on Ek̄ ∈ E in

h

λh − w∂Ω(w−h ) on Ek̄ ∈ EBC
h

}
ds = 0. (7.3b)

As before one has to find solutions (wh, λh) ∈ Vh ×Mh that fulfill the equations for all test

functions (ϕh, µh) ∈ Vh ×Mh. This slightly differs from the description in Sec. 3.3 where

we directly presented the global formulation. We choose the local description in order to

properly describe the assembly process of the local matrices. The global formulation (3.15) is

then given again by summing over all elements and edges.

The term w∂Ω denotes the value of the unknown on the domain boundary. In this chapter

we discuss only a linear convection equation. Thus, we have only outflow and inflow boundary

conditions and w∂Ω is given by

w∂Ω(w−h ) =

w−h , on outflow boundary ∂Ωout ,

wD, on inflow boundary ∂Ωin .

On inflow boundaries the known value wD is prescribed and on outflow boundaries no values

needs to be prescribed, see also Ch. 2. The local discrete solutions wh on Tk ∈ Th and λh on

Ek̄ ∈ Eh are represented using local basis functions on elements and edges

wh(t, x)
∣∣
Tk

=
N∑
j=1

Wkj ϕkj(x) , λh(t, x)
∣∣
Ek̄

=
N∑
j=1

Λk̄j µk̄j(x) .
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7.2.2. System of equations

The equation (7.3a) is tested with ϕh = ϕki, i = 1, . . . , N yielding a time-dependent system

of equations. The element Tk contributes

∂t

K∑
j=1

Wkj(t)

∫
Tk

ϕkj ϕki dx︸ ︷︷ ︸
I (Mϕ)

−
K∑
j=1

Wkj(t)

2∑
m=1

∫
Tk

um(t, x)ϕkj ∂xmϕki dx︸ ︷︷ ︸
II (−G1 and −G2)

+

K∑
j=1

Λkj

∫
∂Tk\∂Ω

(u(t, x) · n) µk̄j ϕki ds︸ ︷︷ ︸
III (S)

− α
K∑
j=1

Λkj

∫
∂Tk\∂Ω

µk̄j ϕki ds︸ ︷︷ ︸
IV (αRµ)

+α

K∑
j=1

Wkj

∫
∂Tk\∂Ω

ϕkj ϕki ds︸ ︷︷ ︸
V (αRϕ)

+

∫
∂Tk∩∂Ω

ϕki (u(t, x) · n)

{∑K
j=1 Λkj µk̄j on ∂Ωout

wD(t, x) on ∂Ωin

}
ds︸ ︷︷ ︸

V I (Sout and Fϕ,D)

=

∫
Tk

hϕki dx︸ ︷︷ ︸
V II (H)

(7.4a)

to the system of equations. In the same manner (7.3b) is tested against µh = µk̄i, i = 1, . . . , N

such that the semi-discrete equation is given by

α

K∑
j=1

Λkj

∫
∂Tk\∂Ω

µk̄j µk̄i ds︸ ︷︷ ︸
V III (αM̄µ)

−α
K∑
j=1

Wkj

∫
∂Tk\∂Ω

ϕkj µk̄i ds︸ ︷︷ ︸
IX (−αT)

+
K∑
j=1

Λkj

∫
∂Tk∩∂Ω

µk̄j µk̄i ds︸ ︷︷ ︸
X (M̃µ)

−
∫
∂Tk∩∂Ω

µk̄i

{∑K
j=1 Wkj ϕkj on ∂Ωout

wD(t, x) on ∂Ωin

}
ds︸ ︷︷ ︸

XI (−Kµ,out and Kµ,D)

= 0.

(7.4b)

We have enumerated the different terms using Roman numerals and named the resulting

matrices and vectors following the naming scheme of the previous FESTUNG publications

[80, 195].

The global system of equations of (7.4) in matrix form is then given by

Mϕ∂tW +
(
−G1 −G2 + αRϕ

)︸ ︷︷ ︸
=:L̄

W + (S + Sout − αRµ)︸ ︷︷ ︸
=:M

Λ = H − Fϕ,D︸ ︷︷ ︸
=:Bϕ

, (7.5a)

(−αT−Kµ,out)︸ ︷︷ ︸
=:N

W +
(
αM̄µ + M̃µ

)
︸ ︷︷ ︸

=:P

Λ = −Kµ,D(t)︸ ︷︷ ︸
=:Bµ(t)

(7.5b)
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with representation vectors

W (t) :=
[
W11(t) · · ·W1N (t) · · · · · ·WK1(t) · · ·WKN (t)

]T
Λ(t) :=

[
Λ11(t) · · ·Λ1N (t) · · · · · ·ΛK1(t) · · ·ΛKN (t)

]T
.

Contributions from volume terms I, II and VII

All matrices in system (7.5) have sparse block structure, and we define the non-zero entries

in the remainder of this section. For all remaining entries we assume zero fill-in.

The integral of term I gives the standard mass matrix Mϕ ∈ RKN×KN with components

defined as

[Mϕ](k−1)N+i,(k−1)N+j =

∫
Tk

ϕkj ϕki dx .

This leads to a block diagonal matrix because basis and test functions ϕki, i ∈ {1, . . . , N}
are only supported on element Tk. Therefore

Mϕ =


Mϕ,T1

. . .

Mϕ,TN


where Mϕ,Tk is the local mass matrix

Mϕ,Tk =

∫
Tk


ϕk1ϕk1 . . . ϕk1ϕkN

...
. . .

...

ϕkNϕk1 . . . ϕkNϕkN

 dx ∈ RN×N .

We abbreviate Mϕ = diag(Mϕ,T1 , . . . ,Mϕ,TN ).

The block matrices Gm ∈ RKN×KN , m ∈ {1, 2} are given component-wise by

[Gm](k−1)N+i,(k−1)N+j =

∫
Tk

um ϕkj ∂xmϕki dx (7.7a)

again leading to a block-diagonal matrix Gm = diag(Gm
T1
, . . .Gm

TK
), where each block is given

by

Gm
TK =

∫
Tk

um


ϕk1∂xm ϕk1 . . . ϕkN ∂xmϕk1

...
. . .

...

ϕk1 ∂xmϕkN . . . ϕkN ∂xmϕkN

dx . (7.7b)

The source term enters the discretization as an additional term H ∈ RKN on the right-hand

side of the equation. The entries are given as

[H](k−1)N+i =

∫
Tk

hϕki dx
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such that the full vector is easily assembled as

H =


HT1

...

HTK

 with HTk =

∫
Tk

h


ϕk1

...

ϕkN

 dx.

Contribution of edge terms III, IV, V, VI— first equation

Compared to the DG discretization used in the previous FESTUNG publications [80, 195],

the number of edge integrals has increased significantly. This is caused by the following

factors:

1. Edge integrals are split into integrals over interior edges and over edges on the domain

boundaries.

2. The numerical flux function (3.17) contains three terms compared to only one for the

upwind flux used in [195].

3. An additional unknown is introduced that is only defined on edges resulting in an addi-

tional equation (7.3b).

To improve readability, we split the presentation of edge integrals into two sections: first,

edge terms in the original equation for wh (7.3a) and then the edge terms in the hybrid

equation (7.3b). Throughout the assembly description and within the implementation we

use the element-based view, i.e., all edge terms are presented in a form allowing for the

assembly as nested loops over elements Tk, k ∈ {1, . . . ,K} and then edges Ekn, n ∈ {1, 2, 3}
of each element. This is different from the edge based view which would allow to assemble

the terms in a single loop over all edges Ek̄, k̄ ∈ {1, . . . ,K}. We make this choice since the

data structures in FESTUNG favor the element-based view. For that reason, from now on,

we always consider µknj = µk̄j using the mapping ρ : (k, n) 7→ k̄ specified in (7.1).

Term III contributes to matrix S ∈ RKN×KN as

[S](k−1)N+i,(k̄−1)N+j =
∑

Ekn∈∂Tk∩Ein
h

∫
Ekn

(u · nkn)µknj ϕki ds . (7.9a)

The entries are structured into N ×N -blocks with contributions from each edge on every

element given as

SEkn =

∫
Ekn

(u · nkn)


µkn1 ϕk1 . . . µknN ϕk1

...
. . .

...

µkn1 ϕkN . . . µknN ϕkN

ds . (7.9b)
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Note that this is the contribution of a single interior edge Ekn ∈ ∂Tk ∩ E in
h of triangle Tk.

As this integral is also evaluated on the neighboring element, this block will produce two

contributions to matrix S.

The matrix from term IV is a block matrix Rµ ∈ RKN×KN with blocks of size N × N
given by

[Rµ](k−1)N+i,(k̄−1)N+j =
∑

Ekn∈∂Tk∩Ein
h

∫
Ekn

µknj ϕki ds

with i ∈ {1, . . . , N} and j ∈ {1, . . . , N}. The local matrix of a single edge reads

Rµ,Ekn =

∫
Ekn


µkn1 ϕk1 . . . µknN ϕk1

...
. . .

...

µkn1 ϕkN . . . µknN ϕkN

 ds . (7.10)

Term V gives another block diagonal contribution Rϕ ∈ RKN×KN , where each entry is given

by

[Rϕ](k−1)N+i,(k−1)N+j =
∑

Ekn∈∂Tk∩Ein
h

∫
Ekn

ϕkj ϕki ds.

The element-local matrix is then

Rϕ,Tk =
∑

Ekn∈∂Tk∩Ein
h

∫
Ekn


ϕk1 ϕk1 . . . ϕkN ϕk1

...
. . .

...

ϕk1 ϕkN . . . ϕkN ϕkN

ds ,

where each edge Ekn of each triangle Tk is visited exactly once, and Rϕ = diag(Rϕ,T1 , . . . ,Rϕ,TK ).

Term VI incorporates the boundary conditions on boundary edges Ek̄ ∈ EBC
h . In the case

of an inflow boundary condition, this contributes to the right-hand side. Each entry of the

vector Fϕ,D ∈ RKN is given as

[Fϕ,D](k−1)N+i =
∑

Ekn∈∂Tk∩EBC,in
h

∫
Ekn

(u · nkn)wD ϕki ds .

Outflow boundary conditions depend on λh and therefore on the solution. This gives us an

additional contribution Sout ∈ RKN×KN to the left hand side, where each entry is given by

[Sout](k−1)N+i,(k̄−1)N+j =
∑

Ekn∈∂Tk∩EBC,out
h

∫
Ekn

(u · nkn)µknj ϕki ds .

This is almost identical to (7.9a) with the only difference being the set of edges considered,

and thus the sub-blocks take the same form as in equation (7.9b). In the implementation, S

and Sout are assembled together.
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Contribution of edge terms VIII, IX, X, and XI — hybrid equation

The first term — term VIII — is very similar to an edge mass matrix with the only differences

being the parameter α that has to be respected and the fact that every edge is visited twice

because it is an integral over interior edges Ek̄ ∈ E in
h . The matrix M̄µ ∈ RKN×KN is given by

[M̄µ](k̄−1)N+i,(k̄−1)N+j =
∑

Ekn∈∂Tk∩Ein
h

∫
Ekn

µknj µkni ds (7.12)

for i, j ∈ {1, 2, . . . , N} and k̄ ∈ {1, 2, . . . ,K}. This leads to a block diagonal matrix because

the ansatz and test functions µkni = µk̄i, i ∈ {1, 2, . . . , N} have support only on the cor-

responding edge Ekn = Ek̄. Term IX is very similar to term IV, where each entry of the

resulting matrix T ∈ RKN×KN is given as

[T](k̄−1)N+i,(k−1)N+j =
∑

Ekn∈∂Tk∩Ein
h

∫
Ekn

ϕkj µkni ds (7.13)

with i ∈ {1, . . . , N}, j ∈ {1, . . . , N}, and k̄ given by the mapping in (7.1). The contribution

of a single edge is

TEkn =

∫
Ekn


ϕk1 µkn1 . . . ϕkN µkn1

...
. . .

...

ϕk1 µkn1 . . . ϕkN µknN

ds. (7.14)

In fact, we have T = RT
µ from (7.10) such that it does not have to be assembled separately.

Term X gives us the edge mass matrix on boundary edges

[M̃µ](k̄−1)N+i,(k̄−1)N+j =
∑

Ekn∈∂Tk∩EBC
h

∫
Ekn

µknj µkni ds (7.15)

for i, j ∈ {1, 2, . . . , N}, k̄ ∈ {1, 2, . . . ,K} and the matrix entries given in (7.12). These

integrals are over edges on the domain boundary, so that each integral is only evaluated once.

The last term — term XI — incorporates boundary data into the hybrid equation. For the

inflow boundary edges, we obtain a contribution to the right-hand side Kµ,D ∈ RKN with

components

[Kµ,D](k̄−1)N+i =
∑

Ekn∈∂Tk∩EBC,in
h

∫
Ekn

wD µkni ds ,

and outflow boundaries add a contribution to the matrix Kµ,out ∈ RKN×KN where components

are given as

[Kµ,out](k̄−1)N+i,(k−1)N+j =
∑

Ekn∈∂Tk∩EBC,out
h

∫
Ekn

ϕkj µkni ds,

meaning that we obtain a block matrix similar to T (see (7.14)).
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7.2.3. Time discretization

In the FESTUNG framework we employ diagonally implicit Runge-Kutta (DIRK) methods

as introduced in Sec. 4.3. Therefore, we do not repeat the details about the time integrators

here, but briefly introduce the time discretization using the nomenclature of the FESTUNG

framework. The system of equations in (7.5) in semi-discrete form can be reformulated in

matrix notation as

Mϕ∂tW (t) = Bϕ(t)− L̄(t)W (t)−M(t) Λ(t) =: RRK(t,W (t),Λ(t)) ,

0 = Bµ(t)−N(t)W (t)− PΛ(t),

with matrices as defined in (7.5) This is a first order differential algebraic equation as described

in Sec. 3.3. In the FESTUNG framework we use the DIRK schemes of orders 1 to 4 by

Alexander [4] and Hairer and Wanner [101] without time step adaptation, see also Sec. 4.3.

Time step adaptation, however, would be easy to incorporate as described in Sec. 4.3.

For the employed DIRK scheme with s stages, the update at tn+1 is obtained by solving

MϕW
(i) = MϕW

n + ∆t

i∑
j=1

aij RRK

(
t(j),W (j),Λ(j)

)
0 = B(i)

µ −N(i)W (i) − PΛ(i)

for i = 1 . . . , s and setting

Wn+1 = W (s)

with t(i) = tn + ci∆t
n and coefficients aij , bj , ci are defined in the routine rungeKuttaImplicit

(see Butcher tableau in Tab. 4.2b).

Remark 7 All of the employed DIRK schemes in the FESTUNG framework are A- and

L-stable [101].

Remark 8 The DIRK schemes used in the FESTUNG framework are stiffly accurate, i.e.

bj = asj , j = 1, . . . , s .

This means in particular that the last update W (s) is the updated solution at the new time

tn+1.

7.3. Implementation

In the first publication [80] the following implementation conventions have been formulated:

1. “Compute every piece of information only once. In particular, this means that stationary

parts of the linear system to be solved in a time step should be kept in the memory

and not repeatedly assembled and that the evaluation of functions at quadrature points

should be carried out only once.”
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2. “Avoid long for loops. With “long” loops we mean loops that scale with the mesh size,

e. g., loops over the triangles Tk ∈ Th or edges Ek̄ ∈ Eh. Use vectorization instead.”

3. “Avoid changing the nonzero pattern of sparse matrices. Assemble global block matrices

with the command sparse( , , , , ), kron, or comparable commands.”

In our implementation we follow these conventions as close as possible.

In this section, we present some of the general ideas used in FESTUNG. We define

operators used for an efficient implementation of the HDG method and briefly present the

structure of the program. Afterwards we present the construction of a selection of matrices

needed to assemble the system of equations (7.5). We also discuss the implementation of

these routines in MATLAB / GNU Octave.

We cover only a small choice of matrices in order to keep this section compact. Namely, we

discuss the construction of the matrices Gm, S, Sout, M̄µ and M̃µ. The matrices Gm differ

significantly from their counterpart in the previous publication [195] because the convection

velocity u is evaluated at each integration point. The matrices S and Sout differ from their

counterparts in the previous publication since they incorporate the hybrid basis functions

µh as the matrices stem from an edge integral that evaluates the hybrid unknown λh. The

last matrices, M̄µ and M̃µ, that we describe, are matrices resulting from the hybrid equation

(7.3b) and thus are absent in the previous parts of the paper series. The full documentation

and explanation of further assembly routines can be found in the publications [80, 124, 195]

and in the documented implementation on Github [196].

7.3.1. Backtransformation to reference element and reference interval

The integrals over edges Ek̄ and elements Tk are not evaluated in the physical space. Instead

the computations are done on a reference triangle T̂ = {[0, 0]T, [1, 0]T, [0, 1]T} and the

reference interval [0, 1]. Quantities evaluated on the reference triangle and interval are

denoted by ·̂. The result is transferred from the reference triangle to any triangle Tk =

{xk1, xk2, xk3} ∈ Th using an affine mapping Fk. Besides the affine mapping Fk we also have

its inverse F−1
k that maps from the element in physical space back to the reference element

T̂ . We briefly describe the transformation of integrals and discuss the newly introduced

mappings used for the HDG method. A more extensive description of the mappings and the

transformation of integrals can be found in the first FESTUNG publication [80].

For functions w : Tk → R and ŵ : T̂ → R , we imply ŵ = w ◦ Fk , i. e., w(x) = ŵ(x̂) . The

gradient is transformed using the chain rule:

∇ =
(
∇̂Fk

)−T ∇̂, (7.17)

where we abbreviated ∇̂ = [∂x̂1 , ∂x̂2 ]T. This results in transformation formulae for integrals
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over an element Tk or an edge Ekn ⊂ Tk for a function w : Ω→ R∫
Tk

w(x) dx =
|Tk|
|T̂ |

∫
T̂

w ◦ Fk(x̂) dx̂ = 2|Tk|
∫
T̂

ŵ(x̂) dx̂ , (7.18a)∫
Ekn

w(x) dx =
|Ekn|
|Ên|

∫
Ên

w ◦ Fk(x̂) dx̂ =
|Ekn|
|Ên|

∫
Ên

ŵ(x̂) dx̂ . (7.18b)

In the same manner we introduce a mapping γ̂n : [0, 1]→ Ên from the reference interval [0, 1]

to the nth edge of the reference element [80]. We use this to transform Eq. (7.18b) further

|Ekn|
|Ên|

∫
Ên

ŵ(x̂) dx̂ =
|Ekn|
|Ên|

∫ 1

0

ŵ ◦ γ̂n(s) |γ̂′n(s)| ds = |Ekn|
∫ 1

0

ŵ ◦ γ̂n(s) ds ,

where we use the fact that |γ̂′n(s)| = |Ên|.
A difference compared to previous publications in the FESTUNG paper series are edge

integrals with basis functions from an adjoining element and basis functions defined on

the edge, e.g.,
∫
Ekn

ϕki µk̄j dx with k̄ = ρ(k, n) as defined in (7.1). They are transformed

according to transformation rules (7.18b) and γ̂n such that∫
Ekn

ϕki µknj dx = |Ekn|
∫ 1

0

(ϕ̂i ◦ γ̂n(s))
(
µ̂j ◦ β̂kk̄(s)

)
ds ,

where we introduced an additional mapping β̂kk̄ : [0, 1] → [0, 1] that adapts the edge

orientation to match the definition of µknj = µk̄j , which is given as

β̂kk̄(s) =

s if κ(ρ(k, n), 1) = k ,

1− s if κ(ρ(k, n), 2) = k
(7.19)

with κ(ρ(k, n), l) = κ(k̄, l) as given in (7.2).

As in the other FESTUNG publications [80, 195], triangle and edge integrals are approx-

imated using numerical quadrature rules after transformation to reference element T̂ or

reference interval [0, 1], respectively. For the reference triangle it reads

∫
T̂

ŵ(x̂)dx̂ ≈
R∑
r=1

ωrŵ(x̂r)

with integration weight ωr ∈ R and integration points x̂r ∈ T̂ . Similar formulae are used for

integration on the reference interval. Further information about the numerical integration

can be found in the previous publications. In the experiments presented we use quadrature

rules of order 2P + 1 on both elements and edges.
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Configure Problem:
Choose Ω, P, ∆x;
Define w0,wD, u, h.

Preprocess and Initialize Problem:
Generate grid data structures;
Compute M̂ϕ, M̂µ, R̂ϕ, R̂µ, Ĝ, Ŝ;
Assemble Mϕ, M̄µ, M̃µ, Rϕ, Rµ, P, T;
Project w0 into DG space.

Enter time
stepping loop Preprocess Step:

Assemble G, S, H,
Fϕ,D, Kµ,D, Kµ,out.

Solve Step:
Solve linear sys-
tems for Λ and W.

repeat for every DIRK stage

Figure 7.2.: Structure of the solution algorithm. The last two steps are executed repeatedly

as part of the time stepping loop. The image is taken from our publication [124].

7.3.2. Program structure

The general control flow of the program is depicted in Fig. 7.2. At first, the implemented

solver starts with a pre-processing phase that includes the definition of solver parameters,

initial data, boundary conditions, and the right-hand side function followed by the assembly

of time-independent matrix blocks and global matrices. In the time stepping loop, the

time-dependent global matrices and right-hand side vectors are assembled before solving

the resulting linear system. Note that this has to be done for every DIRK stage. Output

files in VTK or Tecplot file formats are written after a user-defined number of time steps.

Our implementation features a new program structure that differs from the one used in

the previous FESTUNG publications. It has been introduced to allow for a more flexible

implementation of DG schemes than before and will be discussed in detail in the fourth paper

in the series [194] by other authors.

Solving the local problems

The local solves, see Sec. 3.3.2, require the inversion of a matrix(
Σ

W

)
=

(
Aσσ Aσw

Awσ Aww

)−1(
Rσ

Rw

)
︸ ︷︷ ︸

=:L1

−
(

Aσσ Aσw

Awσ Aww

)−1(
Aσλ

Awλ

)
︸ ︷︷ ︸

=:L2

Λ, (3.28 revisited)

that is block-diagonal. In order to solve the resulting system of equation we can implement

the algorithm in several different ways: In our MATLAB / GNU Octave implementation, it

turned out to be most efficient to explicitly compute the inverse of the matrix in a block-wise

fashion and then to apply the inverse matrix to the right hand side. Thus we select a number

of elements and invert the corresponding blocks at once instead of inverting all element-blocks

separately or inverting the entire matrix at once. This block-wise inversion is implemented in

the routine blkinv. The optimal block size depends on the utilized hardware, especially on

the cache sizes of the employed CPU. Heuristically, we determined 32 · 2−P ·N to be a good

choice in our case (for hardware details see Tab. 7.2). Optionally, one could parallelize the

local solves since they do not depend on each other.

124



7.3. Implementation

7.3.3. Assembly

In this section, the vectorized assembly of the block matrices in (7.5) is outlined. For that

purpose, the required terms are transformed to reference triangle T̂ or reference interval [0, 1]

and then evaluated by numerical quadrature.

As in the previous papers in the series [80, 195], we make extensive use of the Kronecker

product A⊗ B of two matrices A ∈ Rma×na , B ∈ Rmb×nb defined as

A⊗ B := [[A]i,j B] ∈ Rmamb×nanb . (7.20)

We use the brackets [ · ] to refer to the entry of a matrix. Thus, [A]i,j refers to the entry

of matrix A in the ith row and jth column. The resulting matrix of the Kronecker product

is a matrix where each entry is the product of one entry of A multiplied with the matrix

B. Additionally, we employ the operation A⊗V B with mb = rma, r ∈ N introduced in the

second FESTUNG paper [195] as

A⊗V B :=
[
[A]i,j [B](i−1)r:ir,:

]
∈ Rmb×nanb , (7.21)

which can be interpreted as a Kronecker product that takes a different right-hand side for

every row of the left-hand side. This operation is implemented in the routine kronVec. In many

cases we must select edges matching a certain criterion, e.g., edges in the interior Ekn ∈ E in
h .

We denote this using the Kronecker delta symbol with a matching subscript that indicates

the criterion to be met, for example

δEkn∈Ein
h

:=

{
1 if Ekn ∈ E in

h ,

0 otherwise .
(7.22)

Some of the block-matrices in the system of equations (7.4) appeared in identical or only

slightly different form in previous publications [80, 195]. In this theses, we describe the

assembly of the matrices only for a small subset of the matrices needed to construct the

system of equations (7.5). The description of the other matrices can be found in the earlier

FESTUNG publications or in the third part [124] that focuses on the implementation of HDG

methods in FESTUNG. Further differences to the standard DG implementation in [195]

arise in all matrices that stem from edge integrals involving the new unknown λh and in

matrices Gm that are assembled without projecting u(t, x) into the broken polynomial space.

Assembly of Gm

For the assembly of matrices Gm from (7.7) we make use of the transformation rule for the

gradient (7.17). Due to the time-dependent function um(t, x) in the integrand we cannot
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reduce the assembly to Kronecker products of reference matrices as it is possible for the mass

matrix, for example. We apply transformation rules (7.17), (7.18a) and obtain∫
Tk

u1(t, x)ϕkj ∂
1
xϕki dx ≈

R∑
r=1

(
B22
k [U1]k,r [Ĝ]1,r,i,j − B21

k [U1]k,r [Ĝ]2,i,j,r
)
,

∫
Tk

u2(t, x)ϕkj ∂
2
xϕki dx ≈

R∑
r=1

(
−B12

k [U2]k,r [Ĝ]1,r,i,j + B11
k [U2]k,r [Ĝ]2,i,j,r

)
with a multidimensional array Ĝ ∈ R2×N×N×R that represents a part of the contribution

of the quadrature rule in every integration point q̂r on the reference element T̂ . The

arrays Um ∈ RK×R hold the velocity components evaluated in each quadrature point of each

element

[Ĝ]m,i,j,r := ωr ∂x̂m ϕ̂ki ϕ̂kj , [Um]k,r := um(t, Fk(q̂r)) .

We integrate the integration weight ωr into the multidimensional array. The element-local

matrix G1
Tk
∈ RN×N is then given as

G1
Tk =

R∑
r=1

B22
k


ωr u1(t, Fk(q̂r)) ∂

1
xϕ̂1 ϕ̂1 · · · ωr u1(t, Fk(q̂r)) ∂

1
xϕ̂1 ϕ̂N

...
. . .

...

ωr u1(t, Fk(q̂r)) ∂
1
xϕ̂N ϕ̂1 · · · ωr u1(t, Fk(q̂r)) ∂

1
xϕ̂N ϕ̂N



−B21
k


ωr u1(t, Fk(q̂r)) ∂

2
xϕ̂1 ϕ̂1 · · · ωr u1(t, Fk(q̂r)) ∂

2
xϕ̂1 ϕ̂N

...
. . .

...

ωr u1(t, Fk(q̂r)) ∂
2
xϕ̂N ϕ̂1 · · · ωr u1(t, Fk(q̂r)) ∂

2
xϕ̂N ϕ̂N




=

R∑
r=1

(
B22
k [U1]k,r [Ĝ]1,:,:,r −B21

k [U1]k,r [Ĝ]2,:,:,r
)
.

On first sight, this procedure appears to closely follow the assembly of Gm in [195]; however,

conceptually, there is a big difference: The presented procedure uses a quadrature rule which

is applied to all elements at the same time using blocks of basis functions evaluated in each

quadrature point, whereas the procedure to assemble Gm in [195] builds the full matrix

from the contributions of each degree of freedom of the projected DG representation of the

velocity using already integrated reference blocks. To speed up the implementation, we do

not assemble a global sparse matrix in each iteration of the for-loop over quadrature points

and adding to the sparse matrix from the previous iteration. Instead, we use the standard

Kronecker product (7.20) to build a dense KN ×N vector of blocks, from which the global

sparse matrix is constructed using the vectorial Kronecker operator (7.21)

G1 =
R∑
r=1

IK×K ⊗V



B22

1 [U1]1,r
...

B22
K [U1]K,r

⊗ [Ĝ]1,:,:,r −


B21

1 [U1]1,r
...

B21
K [U1]K,r

⊗ [Ĝ]2,:,:,r

 ,
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where IK×K is the K ×K identity matrix. The matrix G2 is assembled analogously.

The function assembleMatElemDphiPhiFuncContVec assembles the matrices G following the

procedure described. Reference blocks Ĝ are provided in parameter refElemDphiPhiPerQuad

and have been pre-computed by integrateRefElemDphiPhiPerQuad. The two components of

the continuous function in the integrand, in our case the velocity components, are given as

function handles in funcCont1 and funcCont2. This allows to evaluate the velocity components

at each integration point. The integration points are obtained from quadRule2D and the

evaluated velocities in x1- and x2-direction are stored in valOnQuad1 and valOnQuad2. Note

that no long for-loops are used, but most of the computations is done using vectorized

operations. The assembled matrices G1 and G2 are stored in a cell named ret and returned

by the function.

function ret = assembleMatElemDphiPhiFuncContVec(g, refElemDphiPhiPerQuad , funcCont1 , funcCont2 ,

↪→ qOrd)

K = g.numT; [N, ~, R] = size(refElemDphiPhiPerQuad {1});

if nargin < 5, p = (sqrt (8*N+1) -3)/2; qOrd = max(2*p, 1); end

[Q1 , Q2, ~] = quadRule2D(qOrd);

ret = { zeros(K*N, N), zeros(K*N,N) };

for r = 1 : R

valOnQuad1 = funcCont1(g.mapRef2Phy (1, Q1(r), Q2(r)), g.mapRef2Phy (2, Q1(r), Q2(r)));

ret {1} = ret{1} + kron(g.B(:,2,2) .* valOnQuad1 , refElemDphiPhiPerQuad {1}(:, :, r)) ...

- kron(g.B(:,2,1) .* valOnQuad1 , refElemDphiPhiPerQuad {2}(:, :, r));

valOnQuad2 = funcCont2(g.mapRef2Phy (1, Q1(r), Q2(r)), g.mapRef2Phy (2, Q1(r), Q2(r)));

ret {2} = ret{2} - kron(g.B(:,1,2) .* valOnQuad2 , refElemDphiPhiPerQuad {1}(:, :, r)) ...

+ kron(g.B(:,1,1) .* valOnQuad2 , refElemDphiPhiPerQuad {2}(:, :, r));

end % for

ret {1} = kronVec(speye(K,K), ret {1});

ret {2} = kronVec(speye(K,K), ret {2});

end % function

Assembly of S and Sout

The matrices S and Sout are assembled together as they have the same structure, but stem

from different edges of the mesh. Thus, the set of relevant edges is expanded to E in
h ∪ EBC,out

h .

On a relevant edge Ekn we transform terms of the form given in Eq. (7.9a) using the

transformation rules and approximate the integral by a one-dimensional numerical quadrature

rule:∫
Ekn

(u · nkn)ϕki µknj ds = |Ekn|
∫ 1

0

((u(t) ◦ Fk ◦ γ̂n(s)) · nkn) ϕ̂i ◦ γ̂n(s) µ̂j ◦ β̂kk̄(s) ds

≈
R∑
r=1

((u(t) ◦ Fk ◦ γ̂n(q̂r)) · nkn)︸ ︷︷ ︸
=:[Un]k,n,r

ωr ϕ̂i ◦ γ̂n(q̂r) µ̂j ◦ β̂kk̄(q̂r)︸ ︷︷ ︸
=:[Ŝ]i,j,n,r,l

,

where Un ∈ RK×3×R holds the normal velocity evaluated in each quadrature point, and the

subscript l in Ŝ ∈ RN×N×3×R×2 covers the two cases of β̂kk̄ in (7.19). This allows us to
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assemble the global matrix as

S =

3∑
n=1

∆n ⊗V


R∑
r=1

2∑
l=1


δ
E1n∈Ein

h
∪EBC,out
h

|E1n| δκ(ρ(1,n),l)=1 [Un]1,n,r

...

δ
EKn∈Ein

h
∪EBC,out
h

|EKn| δκ(ρ(K,n),l)=K [Un]1,n,r

⊗ [Ŝ]:,:,n,r,l

 (7.23)

with

∆n :=


δE1n=E1 . . . δE1n=E

K

...
. . .

...

δEKn=E1 . . . δEKn=E
K

 . (7.24)

We introduce the permutation matrix ∆n ∈ RK×K , n ∈ {1, 2, 3} that has a single entry

per row indicating the correspondence Ekn = Ek̄ for all elements and edges. It takes care of

the necessary permutations from the element-based view of the assembly to the edge-based

view of the edge degrees of freedom.

The matrices are assembled in assembleMatEdgePhiIntMuVal. Both matrices are assembled at

once by specifying all interior and outflow edges in markE0T. The reference block Ŝ is evaluated

at each quadrature point and pre-computed by integrateRefEdgePhiIntMuPerQuad and handed

to the function in the parameter refEdgePhiIntMuPerQuad. The parameter valOnQuad stores

the normal velocity Un evaluated at the quadrature points of each edge. The matrices are

then constructed following (7.23) with three nested for loops that reproduce the summation.

The resulting matrix S + Sout is stored in ret and returned by the functions. As before all

loops are short and are independent of the number of elements in the mesh.

function ret = assembleMatEdgePhiIntMuVal(g, markE0T , refEdgePhiIntMuPerQuad , valOnQuad)

K = g.numT; Kbar = g.numE;

[N, Nmu , ~, R] = size(refEdgePhiIntMuPerQuad {1});

ret = sparse(K*N, Kbar*Nmu);

for n = 1 : 3

RknTimesVal = sparse(K*N, Nmu);

markAreaE0T = markE0T(:, n) .* g.areaE0T(:, n);

for l = 1 : 2

markAreaSideE0T = markAreaE0T .* g.markSideE0T (:, n, l);

for r = 1 : R

RknTimesVal = RknTimesVal + kron(markAreaSideE0T .* valOnQuad(:, n, r), ...

refEdgePhiIntMuPerQuad{l}(:, :, n, r));

end % for r

end % for l

ret = ret + kronVec(sparse (1:K, g.E0T(:, n), ones(K, 1), K, Kbar), RknTimesVal);

end % for n

end % function

Assembly of M̄µ and M̃µ

The hybrid mass matrices M̄µ and M̃µ (see Eq. (7.12) and (7.15)) stem from the hybrid

equation. In contrast to the two types of matrices described before the hybrid mass matrices
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rely only on hybrid test and basis functions µh. We apply the transformation rules to obtain∫
Ekn

µknj µkni ds = |Ekn|
∫ 1

0

µ̂j ◦ β̂kk̄(s) µ̂i ◦ β̂kk̄(s) ds = |Ekn|
∫ 1

0

µ̂j(s) µ̂i(s) ds︸ ︷︷ ︸
=:[M̂µ]i,j

.

We can use the permutation matrices ∆n (see Eq. (7.24)) again. Then, we obtain the global

matrices

M̄µ =

3∑
n=1

(∆n)T


|E1n| δE1n∈Ein

h

. . .

|EKn| δEKn∈Ein
h

 ∆n

⊗ M̂µ ,

M̃µ =

3∑
n=1

(∆n)T


|E1n| δE1n∈EBC

h

. . .

|EKn| δEKn∈EBC
h

 ∆n

⊗ M̂µ .

The assembly only differs in the edges that the matrix has to be assembled. It is identified

using the Kronecker delta as defined in (7.22).

In assembleMatEdgeMuMu the hybrid mass matrices M̄µ and M̃µ are assembled. The array

markE0T plays the role of the Kronecker delta in the matrix definition by selecting the relevant

edges for either matrix. Depending on the edges marked either M̄µ or M̃µ is assembled. The

input parameter refEdgeMuMu is the mass matrix M̂µ evaluated on the reference interval [0, 1].

It is pre-computed by integrateRefEdgeMuMu. Once again, the for-loop is short and does not

depend on the mesh size. The assembled mass matrix is stored in ret and returned by the

function.

function ret = assembleMatEdgeMuMu(g, markE0T , refEdgeMuMu)

Nmu = size(refEdgeMuMu , 1); Kedge = g.numE;

ret = sparse(Kedge * Nmu , Kedge * Nmu);

for n = 1 : 3

Kkn = g.areaE0T(:, n) .* markE0T(:, n) ;

ret = ret + kron(sparse(g.E0T(:, n), g.E0T(:, n), Kkn , Kedge , Kedge), refEdgeMuMu);

end % for

end % function

7.4. Numerical results

In this section, we verify our implementation by means of convergence experiments followed

by some performance analysis of the code. In addition, a runtime comparison of the presented

HDG discretization against a time-implicit version of the DG discretization from the second

FESTUNG publication [195] is given. Further results for different parameters or test cases

that verify our implementation can be found in the related publication [124].
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P 0 1 2 3

j ‖wh−w‖ EOC ‖wh−w‖ EOC ‖wh−w‖ EOC ‖wh−w‖ EOC

1 2.69e-01 — 6.42e-02 — 7.35e-03 — 1.50e-03 —

2 1.86e-01 0.53 1.75e-02 1.88 7.41e-04 3.31 9.79e-05 3.94

3 1.18e-01 0.66 4.32e-03 2.02 8.55e-05 3.12 6.26e-06 3.97

4 6.86e-02 0.78 1.07e-03 2.01 1.04e-05 3.03 3.96e-07 3.98

5 3.78e-02 0.86 2.68e-04 2.00 1.30e-06 3.01 2.52e-08 3.97

Table 7.1.: L2-discretization errors for the unsteady problem in Sec. 7.4.1 measured at tfinal = 2

and experimental orders of convergence for different polynomial degrees using

HDG. We have ∆xj = 1
3·2j , K = 18 · 4j triangles, and ∆tj = 1

5·2j in the jth

refinement level. The CFL number of the test case is CFL = 3
5
e1 ≈ 1.63.

7.4.1. Analytical convergence tests

Our implementation is verified by comparing the experimental orders of convergence to the

analytically predicted ones for smooth solutions. For that, we choose an exact solution w(t, x)

and a velocity field u(t, x), with which we derive boundary data wD and source term h

analytically by substituting w and u into the convection equation. The discretization

error ‖wh − w‖L2 is computed as the L2-norm of the difference between the numerical and

the analytical solutions at the end time (see [80]). From that, the experimental order of

convergence EOC is given by

EOC := ln

(‖w∆xj−1 − w‖L2

‖w∆xj − w‖L2

)/
ln

(
∆xj−1

∆xj

)
.

We verify the time and space discretization using a time-dependent test case that is

inspired by the steady state test case used in the previous FESTUNG publication [195]. The

exact solution is given by w(t, x) = cos(7x1) cos(7x2) + exp(−t) and the velocity field is set

to u(x) := [exp((x1 + x2)/2), exp((x1 − x2)/2)]T. The source term is determined accordingly.

The problem is solved on Ω = [0, 1]2 up to tfinal = 2. The mesh size and time step size are

refined as ∆xj = 1
3·2j and ∆tj = 1

5·2j with j referring to the refinement level. The order of

the DIRK scheme is chosen as P + 1.

In Tab. 7.1, we present the solution up to P = 3. In all cases the method shows the

expected order of convergence of EOC = P + 1 in time and space. In our publication [124],

we present additional test cases that test the correct implementation of the time and space

discretization separately.
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(a) Exact solution. (b) P = 0.

(c) P = 1. (d) P = 2.

(e) P = 3. (f) P = 4.

Figure 7.3.: HDG solutions for the solid body rotation benchmark for different polynomial

orders at end time tend = 2π. The problem is solved on Ω = [0, 1]2 with velocity

field u(x) = [0.5− x2, x1 − 0.5]T. The CFL-number is CFL ≈ 2.104.
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(a) Exact solution. (b) P = 0.

(c) P = 1. (d) P = 2.

(e) P = 3. (f) P = 4.

Figure 7.4.: DG solutions for the solid body rotation benchmark for different polynomial

orders at end time tend = 2π. The problem is solved on Ω = [0, 1]2 with velocity

field u(x) = [0.5− x2, x1 − 0.5]T. The CFL-number is CFL ≈ 2.104.
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Figure 7.5.: Cross-sections of the two different DG solutions for the solid body rotation

benchmark with P = 3 at end time tend = 2π. The problem is solved on

Ω = [0, 1]2 with velocity field u(x) = [0.5− x2, x1 − 0.5]T. The CFL-number is

CFL ≈ 2.104.
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7.4.2. Comparison to the unhybridized DG implementation

The second part of the FESTUNG paper series was also concerned with the convection

equation [195]. In contrast to the work presented here, an unhybridized (upwind) discontinuous

Galerkin discretization with explicit strong stability preserving Runge-Kutta methods was

used. In order to make both implementations comparable, we implemented a variant of the

upwind DG solver that incorporates the DIRK schemes for time-stepping. Then, we compute

solutions to the solid body rotation benchmark proposed by LeVeque [144] to compare the

two space discretizations.

The initial solution consists of a slotted cylinder, a sharp cone, and a smooth hump (see

Fig. 7.3a) placed in a square domain Ω = [0, 1]2 with velocity field u(x) = [0.5− x2, x1 − 0.5]T

producing a full counterclockwise rotation of the initial scene over time interval at tfinal = 2π.

The initial data satisfies

w0(x) =



1 if

(x1 − 0.5)2 + (x2 − 0.75)2 ≤ r
∧ (x1 ≤ 0.475∨x1 ≥ 0.525∨x2 ≥
0.85)

1−G(x, [0.5, 0.25]T) if (x1 − 0.5)2 + (x2 − 0.25)2 ≤ r
1
4
(1 + cos(πG(x, [0.25, 0.5]T))) if (x1 − 0.25)2 + (x2 − 0.5)2 ≤ r

0 otherwise


.

We set r = 0.0225 and G(x, x0) := 1
0.15
‖x− x0‖2, choose homogeneous Dirichlet boundary

conditions wD = 0 and right-hand side function h = 0. The first line of the initial data refers

to the slotted cylinder being initialized in the domain. The second line initializes the sharp

cone in the domain and the third line initializes the smooth hump. The initial data at all

other parts of the domain is zero. For our computations an unstructured mesh is generated

by MATLAB’s initmesh. We set the maximum element size to ∆x = 2−6 which results in a

mesh with K = 14006 elements. The time step size is set to 2π
320

.

In Figs. 7.3 and 7.4, we present the computed solution at end time tend = 2π for different

polynomial degrees. We chose a color map (inspired by [11]) that emphasizes violations

of the discrete maximum principle. We have a color gradient from black via white to

green in the range [0, 1]; values in the range [−0.1, 0) ∪ (1, 1.1] are colored red, and values

in (−∞,−0.1) ∪ (1.1,+∞) are colored yellow. To make oscillations in the bottom range

more visible, we gradually reduce the opacity to zero. Figure 7.5 presents intersection lines

for P = 3.

Clearly, the lowest order approximation is unusable for this kind of problem in both

implementations with numerical diffusion smearing out most (DG) or all (HDG) features

of the solution. For P > 0, solutions from HDG and DG are in good agreement for all

approximation orders with each other. This finding is substantiated by the intersection lines

in Fig. 7.5 and the L2-errors shown in Tab. 3.1 exhibiting only minor differences between both
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7.4. Numerical results

‖wh(tend)− w0‖L2(Ω) runtime [s]

P DG HDG DG HDG

0 1.87e-01 2.35e-01 27.1 39.8

1 7.25e-02 7.78e-02 157 218

2 5.53e-02 5.44e-02 797 717

3 4.02e-02 4.13e-02 3980 3166

4 4.16e-02 4.18e-02 10996 7199

Hardware/software details

CPU Intel Core-i7

4790

(Haswell)

RAM 32 GBytes

MATLAB R2017a

Table 7.2.: Comparison of L2-errors for the solid body rotation benchmark (see Sec. 7.4.2) at

end time tend = 2π (using initial data as the exact solution) and runtimes for DG

and HDG solvers (left). Details of the employed hardware and software (right).

The runtimes have been presented previously in Tab. 3.1.

discretizations. However, also clearly visible are severe violations of the discrete maximum

principles and oscillations in the wake of cylinder and cone, which do not become less

pronounced with increasing approximation order. This type of behavior can be alleviated

using slope limiters as shown in the second FESTUNG paper [195]. Unfortunately, designing

slope limiters for implicit time stepping methods is a non-trivial task and lies beyond the

scope of this work.

When comparing the runtimes for both discretizations in Table 3.1, it becomes clear

that the static condensation outlined in Sec. 3.3.2 becomes advantageous especially for

higher approximation orders making HDG a superior approach for time-implicit high-order

discretizations.

7.4.3. Performance analysis

A major advantage of the hybridized DG method is the fact that the globally coupled linear

equation system resulting from the discretization is relatively compact and easy to solve, see

Sec. 3.3.2. In order to support this by numbers we present some performance results that

show the runtime distribution among the different steps of the code. In order to highlight

the benefits for the solving procedure we disregard pre-processing and initialization tasks.

These are only performed once and are usually very similar among different kinds of space

discretizations. We consider ten time steps of the solid body rotation benchmark presented

in Sec. 7.4.2. The runtimes and their share are determined using MATLAB’s profiler. When

analyzing the runtimes of the instructions we see that the linear solvers, local and global

problem, together with the assembly of the time-dependent block matrices, particularly G

and S, are responsible for the majority of the computation time.

In Tab. 7.3, we present the runtimes in seconds and the runtime shares for the most
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∆xmax = 2−4 (K = 872) ∆xmax = 2−6 (K = 14006)

runtime assembly step solver step runtime assembly step solver step

P G S local global G S local global

0 0.641 0.181 (28.2%) 0.047 (7.3%) 1.156 0.367 (31.7%) 0.617 (53.4%)

18.2% 8.3% 25.5% 61.7% 13.4% 19.6% 4.5% 91.9%

1 0.919 0.351 (38.2%) 0.278 (30.3%) 6.698 1.820 (27.2%) 4.674 (69.8%)

29.3% 17.9% 33.1% 59.0% 42.6% 29.3% 23.8% 71.2%

2 1.818 0.655 (36.0%) 0.852 (46.9%) 21.945 6.271 (28.6%) 15.491 (70.6%)

41.5% 21.4% 34.5% 56.0% 55.8% 31.0% 25.3% 66.1%

3 5.627 3.079 (54.7%) 2.353 (41.8%) 100.089 53.218 (53.2%) 46.688 (46.6%)

72.2% 15.6% 33.1% 53.7% 79.2% 17.0% 26.5% 60.2%

4 10.159 6.273 (61.7%) 3.685 (36.3%) 230.148 151.809 (66.0%) 78.151 (34.0%)

80.7% 12.3% 27.3% 53.9% 88.2% 9.9% 26.8% 56.6%

Table 7.3.: Runtime distribution for 10 time steps of the solid body rotation benchmark

(see Sec. 7.4.2) without initialization tasks (i.e., only time stepping loop) of the

HDG method. The runtime is measured using MATLAB’s profiler. We compare

different mesh sizes and approximation orders with runtimes given in seconds.

Percentages for assembly and solvers are relative to the runtime of the time

stepping loop, percentages for the assembly of G and S (see Sec. 7.3.3) are relative

to assembly runtime, and percentages for computation of local solves L1 and L2

(see Sec. 3.3.2) and solving the global system of equations for λh are relative to

solver step runtimes. Details on the employed hardware and software are given in

Table 7.2 (right).

136



7.4. Numerical results

expensive parts of the code; the assembly of matrices and solving of linear systems of

equations. We run the experiments for different polynomial degrees P ∈ {0, 1, 2, 3, 4} and on

two different meshes with K = 872 and K = 14006 elements. We focus on the time spent

for the assembly of the matrices and the solving of the local and global linear systems of

equations.

The results show that the runtime increases also with increasing mesh size and polynomial

degree. This is no surprise because in both cases the amount of computations that have

to be done increases. It is more interesting to see that the runtime for the assembly grows

stronger than for the solving of the linear systems for larger polynomial degrees. For P > 2

the assembly step takes up more time than the solver steps.

The percentage of time spend on solving the linear systems grows for increasing polynomial

degrees up to P = 2 and it decreases afterwards when compared to the assembly routines.

At the same time we observe that the percentage of time spent on the global solve, within

the solver step, decreases for increasing polynomials degree. There is no big difference in

the evolution of the runtime distribution on local and global solves when one compares the

coarse with the fine mesh. We would like to point out that the computation of the local solve

is element-local and thus could be easily parallelized with virtually perfect scaling.

The distribution of the runtime spent in the assembly step becomes dominated by the

assembly of G for increasing polynomial degrees. This is probably caused by the way the

matrix is constructed. It grows due to the increased number of degrees of freedom when

the polynomial degree is increased. At the same time we also need more integration points

when assembling the matrix. Nevertheless, the total runtime increase for higher polynomial

approximation orders is not as pronounced as for the unhybridized DG solver as shown

in Sec. 7.4.2. The cost of the assembly of G might be decreased by following the approach

used in the second part of the FESTUNG paper series [195] in which the convection velocity

was projected onto the polynomial space. In this work, we evaluated the convection velocity

at every integration point and thus we need a loop over all integration points, see Sec. 7.3.3.
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8. Flows with discontinuous solutions

It has been mentioned in the introduction of the governing equations, see Ch. 2, that some

PDEs used to model fluid flow are nonlinear and that these nonlinearities can lead to non-

smooth solutions. This is also the case for Euler and the Navier-Stokes equations. For flows

with high velocities the Navier-Stokes equations are dominated by the nonlinear convective

effects such that the viscous features are not enough to ensure a smooth solution when

approximated with a numerical scheme. When the solution of such a non-smooth solution is

approximated by a high-order method it may lead to serious nonphysical oscillations.

In order to give more insight into the problem of approximating disconinuities with high

order polynomials we present the L2-projection of the sign(x1) function onto Legendre

polynomials for different polynomial degrees, in Fig. 8.1. Oscillations appear due to the

discontinuity in the sign(x1) function. These oscillations are obviously undesirable, but

common for methods being at least of second order accurate in space [143]. This behavior is

also known as Gibbs phenomenon. As seen in the figure, the problem cannot be resolved by

increasing the spatial resolution only, i.e. increasing P , but the numerical discretization has

to recognize and respect the discontinuity in some way [62, 109, 138, 143, 162].

The problem of an oscillating solution at discontinuities for higher order methods has

been identified early (at the latest in 1950 [162]) and different solution strategies have been

proposed. Popular approaches are flux limiters and slope limiters [1, 2, 52, 58, 135, 140–142,

−1 −0.5 0 0.5 1

−1

0

1

x1

w
h

P = 8

P = 16

P = 32

P = 64

P = 128

Figure 8.1.: Projection of the sign function onto Legendre polynomials of different degrees.

Oscillations (Gibb’s phenomenon) are visible.
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8. Flows with discontinuous solutions

149] and artificial viscosity (AV) models [17, 94, 133, 139, 154, 155, 162, 164, 171, 184]. A

broader overview over different shock capturing approaches can also be found in the text books

of LeVeque [143, 145] or Toro [229] and the application of these techniques to discontinuous

Galerkin methods in the books of Hesthaven and Warburton [109] and of Pietro and Ern [62].

Flux limiter methods split the numerical flux function into a low order part (like an upwind

flux) that behaves nicely at discontinuities. An additional high order part that allows for a

high order space discretization is added to the low order part and augmented by a special

limiter function. This limiter deactivates the high order contribution close to discontinuities

to avoid oscillations.

Slope limiters are closely related to flux limiters and aim to eliminate oscillation in the

solution by acting directly on the slope of the solution. Similar to the flux limiters a special

slope limiter function is defined that identifies discontinuities and limits the slope in their

vicinity while it should not affect regions of smooth solutions.

The name of artificial viscosity models already indicates how these methods work. They

introduce an artificial viscosity that is introduced to the PDE discretized. The viscosity will

smear out the discontinuity slightly such that it obtains a small width that can be captured by

the numerical method and dampens out nonphysical oscillations. In order to keep consistency

with the initial PDE the applied viscosity should be small and only applied in regions with

discontinuities. Moreover, the artificial viscosity εav has to depend on the mesh size ∆x

such that it vanishes under refinement, i.e. ∆x→ 0⇒ εav → 0. For discontinuous Galerkin

methods the artificial viscosity should be chosen as εav = O( ∆x
P

) as less viscosity is necessary

due to the sub-cell resolution of these schemes [184].

In this thesis we do not consider flux nor slope limiters. These approaches usually require

non-differentiable operations that make it hard to apply these methods when implicit solution

techniques are used as in our case [2, 135]. Moreover, the limiting procedures require

information from neighboring elements which interferes with the special structure of the HDG

methods. In the HDG methods the coupling of neighboring element is expressed through

the hybrid variable on element edges without accessing the solution on neighboring elements.

This is required to obtain the special structure of the linearized system of equations that is

amenable to static condensation, see Sec. 3.3.2. Therefore, limiters cannot be applied straight

forward, if at all, to HDG methods.

Instead we focus on the application of an artificial viscosity model. We use the model

introduced by Persson and Peraire [182, 184] which has been constructed especially for

discontinuous Galerkin methods and uses the special structure of the solution representation

by polynomials. The method works locally on each element and thus keeps the locality of the

HDG method. Moreover, the artificial viscosity model is differentiable.

The shock width in the approximated solution usually scales with the mesh size ∆x of the

element where the shock is present. In order to get a sharp approximation of the shock it
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8.1. Application of an artificial viscosity model to the HDG method

is often beneficial to refine the mesh locally at the shock location. This can be an involved

procedure that requires additional attention for time-dependent problems. At the shock the

mesh should be refined, but the shock often moves through the domain for unsteady problems.

Therefore, the mesh should be coarsened after a discontinuity has passed through an element

and the solution is smooth again. Otherwise the shock will create an overly refined mesh

over time that would increase the computational costs tremendously. We present a simple

approach to adapt the mesh based on a fine triangular triangulation. From this fine level a

coarse level will be created by agglomeration of neighboring elements.

This chapter is structured as follows: First we describe the artificial viscosity model and its

application to the PDE in more detail. Afterwards we discuss the mesh adaptation approach

using agglomerations of elements. We conclude the chapter by numerical results for a 1D

shock tube problem where we investigate the effectiveness of the shock capturing method

and its coupling to time adaptive and space adaptive simulations. For this, we extend the 1D

problem in x2-direction and solve it on a very simple 2D mesh. Thus, the approach to adapt

the mesh is expected to work for more involved two dimensional test cases as well. More

involved 2D test cases on adaptive meshes have not been included in this thesis due to the

limited computational efficiency of the current implementation and is left for future work.

To the knowledge of the author of this thesis the shock capturing method has not been

used for HDG methods before. Moreover, previous publication about HDG methods and

applied to problems with shocks have been focusing solely on steady problems. Some parts

of the results discussed in this section have been presented at conferences and publications

[122, 127].

8.1. Application of an artificial viscosity model to the HDG method

The PDEs that we consider in this thesis have the shape

∂tw +∇ · ((fc(w)− fv(w,∇w)) = h(w,∇w) (2.3 revisited)

with possibly nonlinear functions fc and fv. We mentioned previously, see Ch. 2, that these

equations may have discontinuous solutions even if the initial data is smooth. This is often

the case for purely hyperbolic PDEs like the Euler equations, see Sec. 2.3. The solution of

the Navier-Stokes equations is smooth as long as the convective effects do not become too

strong. However, for large (local) Mach numbers Ma > 1 the regularizing effect of the viscous

terms is not strong enough such that different kinds of discontinuities develop.

In the case of shocks, the high order approximation of the discontinuous Galerkin methods

(for P > 0) will create nonphysical oscillations. These oscillation can be reduced by the

introduction of an additional viscous term fv,av that smooths the discontinuity and damps

overshoots in the solution.
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In the following, we focus on purely hyperbolic problems, see Sec. 2.3, to keep the notation

more compact. This has no impact on the application of such a stabilization term on

convection-diffusion equations as the Navier-Stokes equations. As mentioned before the

viscous effects of the Navier-Stokes equation may not be strong enough to ensure a continuous

solution. In these cases artificial viscosity models can be applied. Common cases that need

stabilization are flows with shocks or turbulent flows.

We express the (nonlinear) hyperbolic problem as

∂tw +∇ · fc(w) = 0 (2.4 revisited)

as before. These type of equations do not have any diffusive term to regularize the solution.

In order to stabilize the problem the artificial viscous flux fv,av is added to the equation

∂tw +∇ · (fc(w)− fv,av(w,∇w; εav)) = 0. (8.1)

It simply acts as an additional viscous flux. The artificial viscosity εav has to be determined

such that it scales with the mesh size, i.e. εav = O(∆x), is nonzero only in the vicinity of the

shock and is large enough to sufficiently smooth the discontinuity. Additionally the artificial

viscosity should scale with the polynomial degree P such that εav = O( ∆x
P

) holds and may

depend on the solution wh, its gradient ∇wh and some user-defined parameters.

The artificial viscosity model that we use in this theses has been introduced by Persson and

Peraire [184]. In order to detect discontinuities it takes advantage of the way the discontinuous

Galerkin method represents the approximated solution. In Sec. 3.2, we introduced the solution

representation on an element Tk as

wkh(t, x) =

N∑
i=1

W k
i (t)ϕkh,i(x), x ∈ Tk, (3.6 revisited)

with orthogonal basis functions ϕkh,i(x) (Legendre polynomials) and coefficients W k
i (t). The

idea of the shock detector by Persson and Peraire is that this representation is similiar to the

Fourier representation of the solution. In case of a discontinuous solution representation where

shocks are present oscillation occur, see Fig. 8.1, most information is stored in the highest

order “modes”. These modes can represent the oscillations best and thus the coefficients

related to this mode are dominating. In the setting of the discontinuous Galerkin method

the modes relate to the basis functions and their polynomial degree. The highest order

polynomial basis functions represent the highest order modes.

In order to define a high and low order/mode representation recall that the number of

basis functions is denoted by

N(d, P ) = Πd
i=1

(P + i)

i
(3.30 revisited)
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s0 − κav s0 + κav

εk,0
av
2

εk,0av

sk

εkav

Figure 8.2.: Sketch of (8.3) to determine a the element-wise artificial viscosity εkav depending

on the smoothness indicator sk.

and depends on the space dimension d, in our case usually d = 2, and the polynomial degree

P . A high mode representation of the solution is defined as

ŵkh(t, x) =

N(2,P )∑
i=N(2,P−1)+1

W k
i (t)ϕki (x),

where it is assumed that the basis functions are ordered according to their (total) polynomial

degree. Thus, the basis functions ϕki (x), i = N(2, P − 1) + 1, N(2, P − 1) + 2, . . . , N(2, P )

are the ones with (total) polynomial degree that is exactly P . The high mode solution ŵkh is

the reconstructed solution that is based only on the highest order polynomial basis functions.

Persson and Peraire define the smoothness indicator as

Sk :=

(
ŵkh, ŵ

k
h

)
L2(Tk)(

wkh, w
k
h

)
L2(Tk)

(8.2)

where (·, ·)L2(Tk) is the standard L2-inner product on Tk. If the value of the smoothness

indicator is large, most information is stored in high order modes and most likely has strong

oscillations, which indicate a discontinuity. Otherwise the solution is assumed to be smooth.

The smoothness indicator is easy to evaluate due to the hierarchical structure of the Legendre

polynomials that are used as basis functions. This property is crucial to efficiently evaluate

the smoothness indicator. The indicator has been found to be very reliable by the authors

[184] and has been incorporated also into other shock capturing methods, see [16, 17, 133] for

example.

Besides identifying regions with discontinuous solutions the value of the smoothness

indicator (8.2) can be used to determine how much viscosity should be added. In regions of

weak oscillations caused by a discontinuity only a small amount of viscosity is needed while

more viscosity is needed at the shock location. Therefore, Persson and Peraire propose the
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following (smooth) function

εkav =


0 , sk < s0 − κav

εk,0av

2

(
1 + sin

(
π(sk − s0)

2κav

))
, s0 − κav ≤ sk ≤ s0 + κav

εk,0av , sk > s0 + κav

. (8.3)

with sk := log10 S
k, see Fig. 8.2. User-defined parameters ε0

av, s0 ∼ logP and κav have to

be chosen such that the shock is accurately approximated [172, 184]. The bulk viscosity ε0
av

determines the maximum amount of viscosity that can be added. The parameters s0 and

κav determine at what values of the smoothness indicator the viscosity should be added and

how big the interval is where the applied viscosity is increased smoothly using a sinusoidal

function. The effective bulk viscosity εk,0av in each element Tk is derived from the user-defined

bulk viscosity ε0
av and is given by εk,0av = ε0

av
∆x
P

to ensure that the effective viscosity fulfills

εkav = O( ∆x
P

). Note that the artificial viscosity has a constant value within each element.

We have not specified the quantity that should be used in the smoothness indicator (8.2).

In the setting of a scalar convection-diffusion equation or Burgers’ equation one would directly

work with the unknown. The Euler and Navier-Stokes offer a variety of components in the

vector of unknowns and additionally a physical interpretation of the flow. Common choices

include quantities like the density ρ, entropy s, enthalpy H or derived quantities like the

Mach number Ma that vary strongly at discontinuities. We choose the density ρ as indicator

as this indicator is simple to employ and we found it to be a reliable indicator in the test

cases we studied.

8.1.1. Choice of the stabilization term

The artificial viscosity model usually defines a way to detect discontinuities and how to

compute the amount of artificial viscosity that should be added. It usually leaves different

options open for the stabilization term that can be used. The stabilization term should

introduce diffusive effects to smooth the solution and damp oscillations. A simple choice that

works for scalar convection-diffusion, Burgers’, but also Euler and Navier-Stokes equations is

to choose the viscous flux to be

fv,av(w,∇w; εav) := εav∇w,

which is a Laplacian with artificial viscosity εav.

This term is added only in the vicinity of discontinuities to stabilize the solution. Thus,

we do not expect this term to have a too big influence on the overall solution and we do not

want this term to increase the amount of work too much. Therefore, we discretize this term
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8.1. Application of an artificial viscosity model to the HDG method

in an inconsistent way. We add∫
Tk

fv,av · ∇ϕhdx ≈
∫
Tk

∇ · fv,avϕhdx

to (3.15b) and neglect the boundary integral terms. This term is used commonly in literature

for stabilization [103, 115] and is the stabilization term we use in this thesis.

This is not the only way do add a (diffusive) stabilization term. It has been mentioned in

Sec. 2.7 that the Euler equations represent the inviscid limit of the Navier-Stokes equations.

Therefore, another obvious stabilization term would be the Navier-Stokes viscous flux (2.24).

Due to the absence of viscous effects based on the flow physics in the Euler equations one

would have to artificially define suitable parameters like the Prandtl number Pr and thus a

heat conductivity.

The choice of the stabilization term and its influence on the stabilization and shock width

has been discussed in the literature [95, 184] and the references in [73]. Persson and Peraire

[184] found that the Navier-Stokes viscous flux would lead to a sharper shock representation

than a Laplacian. Other authors argue against the physics based stabilization because it

lacks the diffusive term for the mass conservation equation [133] and may lead to nonphysical

solutions for the Euler equation [95]. Therefore, we use an (inconsistent) Laplacian for

stabilization that also has a simpler structure than the viscous term of the Navier-Stokes

equations.

8.1.2. Continuous reconstruction of the artificial viscosity

We have presented that problems with discontinuous solutions lead to oscillations in the

approximated solution as shown in Fig. 8.1. Another problem that leads to spurious oscillations

has been identified for artificial viscosity models if an element-wise constant viscosity is

employed. The viscosity acts only locally near the discontinuity and thus may vary greatly

between neighboring elements. This (large) discontinuity in the artificial viscosity might

introduce spurious oscillations itself [16, 17]. As a remedy it has been proposed to use a

(more) smoothly varying artificial viscosity [16, 17, 133, 182]. Barter and Darmofal introduced

a PDE-based artificial viscosity that would be smooth, but introduce an additional PDE

that has to be solved. Persson [182] and Klöckner et al. [133] introduced reconstructions to

obtain a continuous artificial viscosity. Their investigations indicate that reconstructing the

viscosity to have higher regularity such that it becomes differentiable does not offer additional

advantages.

Whenever we use a continuous artificial viscosity we follow the C0-reconstruction proposed

by Persson [182]. First, the artificial viscosity is computed on every element. Afterwards, we

compute at each vertex the maximum viscosity of its neighboring elements. The viscosity is

then reconstructed linearly on each element using the viscosity values on the vertices.
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8. Flows with discontinuous solutions

The reconstruction procedure is non-local and would increase the stencil of the numerical

method. Moreover, the determination of the maximum value on the vertices is a non-smooth

operator that would pose a problem for the application of the Newton method. Thus, Persson

also proposed to “weakly” couple the artificial viscosity model to the solver [182]. This means

that the viscosity field is precomputed at the beginning of each time step and is held constant

through the time step. By following this approach the artificial viscosity model is not part of

the Jacobian needed for Newton’s method.

8.2. Mesh adaptation through agglomeration

We have mentioned in the introduction that mesh adaptation is often employed to improve

the approximation of discontinuities. Although the sub-cell resolution of DG methods allows

to resolve discontinuities within an element and leading to shock widths smaller than the

element size ∆x the shock might still be rather wide if the element is large. Therefore, an

adaptive mesh refinement is often used in this scenario [74, 155, 186].

The adaptation procedure is especially involved in the case of time-dependent problems as

it should not only allow refinement but also incorporate coarsening of the mesh. In Fig. 8.3

we show the situation of a simulation with refinement, but no coarsening after one eighth of

simulation time. The super sonic flow enters a channel with a step from the left such that a

shock develops. The shock starts from the step and subsequently grows and moves to the left

[240]. Elements are refined if artificial viscosity applied to it and the element size is larger

than ∆x > 0.04.

In the Fig. 8.3 we present the initial mesh at t = 0 with K = 120 elements and the density,

the applied artificial viscosity and the mesh at t = 0.5 with K = 3654 elements. One can

clearly see how the mesh was refined, see Figs. 8.3a and 8.3d, due to the moving shock front.

The mesh refinement was triggered by the artificial viscosity applied at the shock front and

the forward facing step where a singularity is present, see Fig. 8.3c.

It is clear hat the number of elements increased greatly although the density solution,

see Fig. 8.3b, does not incorporate that many features requiring such a high resolution.

Nevertheless, many refined elements remain in the mesh that are not necessary to properly

resolve the current structure of the solution and these elements could be removed.

The example shows that mesh refining and coarsening can be crucial to optimize the

required computational work in time-dependent simulations. At the same time the refining

and coarsening procedure should be cheap such that it does not nullify the run-time savings

the additional computational work required by the mesh adaptation procedure.

We investigate a mesh adaptation procedure that bases on the agglomeration of elements.

The main idea is to generate a fine mesh consisting of triangular elements. These are

connected to form arbitrarily shaped polygons to create the coarse level. The polygons then
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8.2. Mesh adaptation through agglomeration

(a) Initial mesh at t = 0.

(b) Contour plot of the density ρ at t = 0.5.

(c) Plot denoting the amount of artificial viscosity applied to each element at t = 0.5.

(d) Refined mesh at t = 0.5.

Figure 8.3.: Plots showing the influence of mesh refinement without coarsening. The initial

mesh and mesh, density ρ and artificial viscosity at t = 0.5 are shown. The HDG

method has been used as space discretization.
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8. Flows with discontinuous solutions

Figure 8.4.: A mesh that was constructed by agglomerating elements using METIS. Note the

varying geometrical shapes.

can be split into smaller polygons until one eventually recovers the triangular elements on

the finest level. This approach has the advantage that it is easy to introduce into an existing

software framework and it also works nicely with meshing tools that allow to refine meshes,

but do not allow for easy coarsening of the mesh. As we work on a fixed fine level mesh

no active remeshing has to be done nor any hierarchy of meshes has to be stored. The

repartitioning of polygons is comparably easy and cheap to do. However, this also means

there is no anisotropic mesh refinement or similar to align with flow features. The polygonal

elements require some extra work when a polygon is formed. In that case the basis functions

are orthogonalized. The quadrature rules on the underlying triangular elements are used also

for the polygon. This introduces way more quadrature points than needed, but ensures that

the accuracy of the integration formula. This could obviously be optimized by computing

tailored integration formulae for the newly formed elements, but this topic is out of the scope

of this thesis. New integration formulae have been discussed in [157, 161], for example.

We implement the procedure in the following way. First a mesh is generated using

Netgen that is deemed fine enough as the finest level for the approximation of the test case.

Afterwards, a suitable set of partitions is computed using the graph partitioning tool METIS

[131]. This results in a partitioning that minimizes the number of edges in the resulting

polygonal mesh. The number of globally coupled unknowns of the HDG method depends

on the number of edges in the triangulation. It is beneficial for the total number of globally

coupled unknowns to have as few edges as possible. We define a maximum partition size

Kp ∈ N that determines how many triangles are combined at most to define a polygon. Then,

given the triangulation, partition size Kp and the connectivity graph of the mesh, METIS

returns a map i 7→ m(i), |m(i)| ≤ Kp. The map contains the element number of the elements

Tk of the underlying triangular mesh. The coarse mesh T ph = {T pk } is then given by elements

T pk :=
⋃

i:m(i)=k

Ti.

If a polygon needs refinement and it consists of at least 4 triangles, METIS computes a
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8.3. Numerical results

Figure 8.5.: A mesh with K = 100 elements as used for approximating Sod’s shock tube

problem.

new partitioning of the polygon. Otherwise it is split into the underlying triangles. If an

element is flagged for coarsening we check for neighboring elements that have been flagged for

coarsening, too, and merge then into a larger polygon. In Fig. 8.4, we show how the coarsest

level of such a polygonal mesh could look like for the test case presented in Fig. 8.3. More

information on discontinuous Galerkin methods on polygon meshes for different applications

can be found e.g. in [18, 19, 37].

Remark 9 Hybridized discontinuous methods are well-suited for the approach using arbitrary

polygons as elements as part of the formulation is edge-based. In 2D, the edge shape does not

depend on the shape of the element at hand. However, the effectiveness of the hybridization and

static condensation process highly depends on the ratio of edges per element. Fewer edges per

element induce a higher increase of globally coupled unknowns. Arbitrary polygons, however,

can have an arbitrary number of edges and thus the hybridized discontinuous Galerkin method

might in fact become less efficient than on standard elements like simplices or quadrilaterals.

Similar behavior can be observed for unhybridized DG methods or other numerical schemes.

8.3. Numerical results

We present numerical results of a 1D test case to evaluate the shock capturing method and

the time and space adaptation processes. Afterwards we discuss two different unsteady flows

with shocks in 2D that create complex flow patterns.

8.3.1. Sod’s shock tube

Sod’s shock tube problem [218] is a one-dimensional Riemann problem on Ω = [0, 1]. The

initial flow condition is given by two constant states separated by a discontinuity. The HDG

implementation is only capable of solving problems in two space dimensions. Therefore, we

solve the problem on the two-dimensional domain [0, 1]× [0, 2
K

] with K being the number of

elements of the mesh. An example of such a mesh is given in Fig. 8.5. This choice of domain

leads to a mesh with minimal number of elements in x2 direction. On the domain boundaries

we apply slip wall boundary conditions.

In Fig. 8.6a we present the initial left wl and right hand side states wr. We set wl for

x1 < 0.5 and wr otherwise. In both regions the initial velocity is zero, but the pressure

and density of the left state are much higher than of the right state. This is comparable to
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Figure 8.6.: Initial data and solution of Sod’s shock tube problem.

the conditions in a shock tube where two constant flow states with zero flow velocity are

separated by a membrane. The membrane is burst such that a supersonic flow condition

develops.

The density distribution of the developing flow field at tfinal = 0.2 is given in Fig. 8.6b. The

fluid accelerates from the initial state (I) towards the right hand side through an expansion

wave (II) until it reaches a region of constant density (III). This state transitions to another

state of constant density (IV) through a contact discontinuity. The density and also the energy

are discontinuous, but the velocity and pressure stay constant over this type of discontinuity.

In order to reach the state in the fifth region, which is given by the initial right hand state,

the flow has to undergo a shock where all quantities are discontinuous.

Justification of shock capturing method We consider the shock capturing method of Persson

and Peraire [182, 184] with C0-reconstruction (PePeC0) and without C0-reconstruction (PePe)

for our simulations. This is not the only choice for the artificial viscosity model. There are

other artificial viscosity methods by Nguyen and Peraire [164] (NgPe) and Moro et al. [155]

(MoNgPe), for example. The authors have proposed and investigated these artificial viscosity

models in the context of HDG methods. These artificial viscosity methods use the dilatation

∇ · u as indicating variable for shocks. In the vicinity of a shock the fluid velocity decreases

rapidly over a small length which leads to negative dilatation with large absolute value.

We have found some minor issues with the dilatation based shock capturing methods with

the model parameters supplied in their respective publications. The artificial viscosity should

only be added in the vicinity of discontinuities, and other regions should not be affected by the

artificial viscosity. We test this for the four artificial viscosity models on Ω = [0, 1]× [0, 0.04]

using the Euler equations. The mesh has K = 50 element and we use polynomials with
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Figure 8.7.: Artificial viscosity of four different shock capuring methods when applied to the

Euler equations with constant solution. Only the viscosity of the shock capturing

model of Nguyen and Peraire is nonzero.

P = 4. The unknown w is initialized with ρ = 1 and p = 1 and all velocities being zero.

Afterwards the shock capturing methods are applied and the resulting artificial viscosity

computed. We extract the artificial viscosity from the (vertical) centerline, see Fig. 8.7. The

method proposed by Nguyen and Peraire adds a constant amount of artificial viscosity to the

problem. This undesired behavior has been addressed in the newer artificial viscosity model

in [155].

In order to check the applicability of the shock capturing methods we also apply them

to Sod’s shock problem on a mesh with K = 100 elements, polynomials of degree P = 2

and time step size ∆t = 2 · 10−4. The density ρ at final time tfinal = 0.2 and the artificial

viscosity that is applied at that time are presented in Fig. 8.8. Note the y-axis on the left

hand side represents the scale of the density while the right hand side refers to the artificial

viscosity. The scaling of the right hand side for the shock capturing by Nguyen and Peraire

is two orders of magnitude smaller than for the other methods. There is no result reported

for the shock capturing method of Moro et al. since the shock sensor creates an floating

point exception that causes the simulation to crash for strong negative dilatation. This is

unavoidable with the parameters stated in [155]. Nevertheless, it is expected to have large

negative values for dilatation in real world applications as a strong deceleration is observed

at shocks.

The results for the density are very similar to each other for all shock capturing methods,

see Fig. 8.8. In all cases the numerical method is stabilized sufficiently and the discontinuities

are smoothed. The contact discontinuity is smoothed a bit more than the shock for all

schemes and there are small oscillations observable at the head and tail of the expansion

wave. Larger overshoots are visible in the vicinity of the discontinuities. The overshoots near

the contact discontinuity are least pronounced if we use the method of Persson and Peraire
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Persson & Peraire.
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Persson & Peraire with C0-reconstruction.
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Figure 8.8.: The density and artificial viscosity at final time tfinal = 0.2 for Sod’s shock tube.

The problem is solved on a mesh with K = 100 elements, polynomials of degree

P = 2 and time step size ∆t = 2 · 10−4. The CFL-number is CFL ≈ 0.022. The

results for different shock capturing methods are presented. The HDG method

has been used as space discretization.
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Figure 8.9.: Close-up of the shock of Sod’s shock tube and the approxmiated solution. Different

artificial viscosity models have been applied. The vertical lines indicate element

boundaries. The problem is solved using the HDG method on a mesh with

K = 100 elements, polynomials of degree P = 2 and time step size ∆t = 2 · 10−4.

The CFL-number is CFL ≈ 0.022.

without C0-reconstruction. However, in this case the overshoots at the shock are a bit larger

than for the method with C0-reconstruction. The method of Nguyen and Peraire creates also

some overshoots near the shock. In comparison to the other artificial viscosity model NgPe

has the largest overshoot in front (left) of the shock. The other artificial viscosity models

create the largest overshoot behind the shock, but the amplitudes of the overshoots of the

methods still have the same magnitude. The method of Nguyen and Peraire and the method

of Persson and Peraire with C0-reconstruction also create very small oscillations between the

expansion wave and the contact discontinuity that are much less pronounced in Persson’s

and Peraire’s method if no C0-reconstruction is used.

A close up of the solution around the shock is presented in Fig. 8.9. The vertical lines

indicate element boundaries. One can see that the shock is captured within the elements next

to the shock position and leads to some small oscillations in the neighborhood. All shock

capturing methods lead to similar shock profiles. The method of Nguyen and Peraire has a

slightly higher overshoot in front of the shock than the other methods which show a larger

overshoot behind the shock.

The artificial viscosity added at tfinal and also the locations where the viscosity is added,

differ considerably between the three methods, see Fig. 8.8. Nguyen’s and Peraire’s method

adds significantly less artificial viscosity. The amount of viscosity is about two orders of

magnitude less than for the other methods. However, in the figure the viscosity at the final

time is presented so the figure does not contain information about the total amount of viscosity

that has been applied to the problem over the whole duration of the simulation. The artificial

viscosity model might have applied more viscosity in the beginning of the simulation while
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8. Flows with discontinuous solutions

the other methods might have done the opposite. For Nguyen’s and Peraire’s method we also

observe an oscillating artificial viscosity, especially along the expansion wave and the region

between the contact discontinuity and the shock indicating that the solution is oscillating

in this region. Moreover, the method tends to add viscosity even at all smooth parts of the

solution which is less pronounced in regions with positive dilatation. Persson’s and Peraire’s

and artificial viscosity model shows similar behavior with and without C0-reconstruction.

When the viscosity is reconstructed the model adds viscosity only in the vicinity of the shock.

Additionally viscosity at the head and tail of the expansion wave, in the region between the

contact discontinuity, and the shock is added when the C0-reconstruction is not used. The

behavior to add viscosity at several locations is similar to the behavior the method of Nguyen

and Peraire.

The results obtained in this section guided our choice of the shock capturing method. The

smoothness indicator (8.2) is reliable when applied to the density. We do not need to tune

any parameters in order to avoid floating point exceptions. The choice of the parameters

s0 and κav is still crucial to add sufficient viscosity to shock regions. At the same time the

smoothness indicator decays quickly enough such that usually no viscosity is added to smooth

flow regions.

Standard time integrators We investigate the influence of different time integrators on the

shock approximation. In Fig. 8.10 we present results for a mesh containing K = 100 elements

and polynomials of degree P = 2. The applied time integrators are the BDF2 and three

different DIRK methods. All DIRK methods are suitable for a time-adaptive simulation

through an integrated lower order DIRK method for error estimation, see Sec. 4.3. We

use the third order method with s = 3 stages of Cash [41] that extends the DIRK method

of Alexander [4] by a lower order error estimator. We refer to it as “Cash” in our plots.

Additionally we use the fourth order s = 4 stage method of Al-Rabeh [191] and the fourth

order s = 5 stage method of Hairer and Wanner [101]. For the fourth order methods we use

the shorthand notations “AR” and “HW” in the plots. We use a constant time step size

∆t = 5 · 10−4 for all methods. The parameters of the shock capturing method are set to

ε0
av = 0.45, s0 = −14 log(P ) and κav = 0.4. The artificial viscosity εav is recomputed after

each Newton step based on the updated solution. No reconstruction is applied, thus the

artificial viscosity is constant element-wise. The data has been extracted from the center line

at 200 equidistant points.

In Fig. 8.10 we present the density ρ and artificial viscosity εav at tfinal = 0.2. The results

indicate that for the given parameter settings the results barely depend on the accuracy of the

time integrator. The applied artificial viscosity smooths the solution such that overshoots are

barely visible. Such smoothing can be observed at the head and tail of the expansion wave,

at the contact discontinuity and at the shock. Most viscosity is applied in the vicinity of the
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(a) BDF2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

D
en

si
ti

es
ρ

an
d
ρ
h

exact
ρh

0

0.5

1

1.5

2

2.5
·10−3

A
rt

ifi
ci

al
v
is

co
si

ty
ε a

v

AV

(b) Cash DIRK.
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(c) Al-Rabeh DIRK.
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(d) Hairer and Wanner DIRK.

Figure 8.10.: Sod’s shock tube: Comparison of the final density with the exact solution for

different time integration methods. The problem is solved using the HDG

method on a mesh with K = 100 elements, polynomials of degree P = 2 and

time step size ∆t = 5 · 10−4. The CFL-number is CFL ≈ 0.055.
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8. Flows with discontinuous solutions

shock and a much smaller amount is applied at the contact discontinuity. The difference in

amount of viscosity applied might stem from the fact that the contact discontinuity has been

smoothed much more than the shock. Thus, the shock profile is quite sharp, especially when

compared with the contact discontinuity.

The results indicate that all time integrators are adequate to discretize the problem. The

results are very similar so the choice of high order time integrator does not show an immediate

advantage over low order time integrators. The employed shock capturing method stabilizes

the discretization sufficiently and leads to a good approximation of the shock and only small

overshoots.

Time step adaptation We have seen in the previous part that the accuracy of the time

integrator barely affects the solution. We have mentioned before that the DIRK methods of

Cash, Al-Rabeh, and Hairer and Wanner allow for an easy time step adaptation as described

in Sec. 4.3. In [119] we have investigated this time step adaptation for smooth flow problems.

In this section, we investigate the behavior of the time step adaptation and its influence on

the solution for Sod’s shock problem.

In our experiments we set the tolerance to tol = 10−1 and set the lower and upper bounds,

∆tmin and ∆tmax, for the time step sizes such that 10−4 ≤ ∆tn ≤ 5 · 10−3 holds for all

time step sizes. The simulation is started with ∆t0 = ∆tmin. All other parameters of the

simulation are identical to the ones of the previous simulation with fixed time step size.

In Fig. 8.11h we present the density and artificial viscosity at final time tfinal = 0.2 and

additionally the time step evolution. The numerical results for the density are very similar to

the one for the fixed time step size. Only small overshoots can be observed and the contact

discontinuity is smoothed strongly. The shock, however, is approximated much sharper than

the contact discontinuity. In contrast to the fixed time step simulation the artificial viscosity

profiles are slightly different between the different time integrators, but roughly the same

amount of viscosity is added near the shock for all time integrators. Much less viscosity is

added at the contact discontinuity and the shape of the viscosity profiles at this position

are very similar for Cash’s and Al-Rabeh’s DIRK method. The profiles mostly differ in

the amount of viscosity added which is largest for Cash’s DIRK method. For Hairer’s and

Wanner’s method no viscosity is added at the contact discontinuity at final time tfinal = 0.2.

The evolution of the time step size, see Fig. 8.11d, shows that the time integrators show

all qualitatively the same behavior. The time step sizes are increased for some period and

then abruptly decreased again. The abrupt decrease of time steps is a result of time steps

being rejected. After a longer time span of 0.03 the abrupt decrease of the time step size

repeats after smaller time spans of roughly 0.01 until the end of the simulation and at the

same times for each time integrator. It is noticeable that the time step bounds, ∆tmin and

∆tmax, are never hit except for the first time step where we set ∆t0 = ∆tmin and the last
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(a) Cash DIRK.
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(b) Al-Rabeh DIRK.
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(c) Hairer and Wanner DIRK.
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(d) Evolution of the time step size ∆tn.

Figure 8.11.: Sod’s shock tube: Comparison of the final density with the exact solution for

different time integration methods and artificial viscosity at tfinal. Adaptive time

stepping has been used and the evolution of the time step size is plotted. The

solution has been computed on a mesh with K = 100 elements and polynomials

of degree P = 2. The largest possible CFL-number is CFL ≈ 0.548. The HDG

method has been used as space discretization.
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8. Flows with discontinuous solutions

Cash AR HW

Time steps accepted 149 116 133

Time steps rejected 37 25 43

Time steps computed 186 141 176

Total Newton steps 14261 15110 22659

Table 8.1.: Number of computed time steps, accepted time steps and total Newton steps for

Sod’s shock tube test case with adaptive time step adaptation. The HDG method

has been used as space discretization.

time step where the time step is set to ∆tn = tfinal − tn. The method of Hairer and Wanner

tends to increase the time step furthest while the method of Cash tends to use the smallest

time step sizes of the three methods compared.

In Tab. 8.1 we give an overview over the number of computed time steps, the number of

accepted time steps and the total number of Newton steps during the simulation. The table

shows that the methods behave quite differently. The lowest order method, the method of

Cash, computes the most time steps and roughly 80% of the time steps have been accepted.

The high number of time steps computed fits into the image of the smallest time steps chosen

with this time integrator. Al-Rabeh’s DIRK methods computes much less time steps and

has a slightly higher time step acceptance rate of roughly 82%. The method of Hairer and

Wanner has slightly less computed time steps than Cash’s method, but rejects the most time

steps leading to an acceptance rate of around 75%.

We also compare the number of Newton steps as they are an indicator of the total

computational costs. The Newton steps can be considered the most expensive part as they

involve constructing the globally coupled system of equations and solving the local solves.

Therefore, the number of Newton steps as a measure of costs is a reasonable indicator.

However, the number of Newton steps alone does not account for the real computational

time which is also affected by the speed of convergence of the employed linear solver and by

the suitability of the integrator for efficient implementation. We observe that Cash’s method

is least expensive and Al-Rabeh’s method is slightly more expensive although fewer time

steps have been computed and rejected. Hairer’s and Wanner’s method needs by far the most

Newton steps. The number of needed Newton steps is affected by the different number of

stages of Cash’s (s = 3), Al-Rabeh’s (s = 4) and Hairer’s and Wanner’s (s = 5) in each time

step and how fast the Newton solver converges in each of the time steps. Based on these

observations the lowest order time integrator is most efficient as there is no obvious difference

in the solutions of the different time integrators.

The large number of rejected time steps increases the costs of the time integrators tremen-
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8.3. Numerical results

dously. A rather non-smooth variation of time step sizes has also been observed by other

authors when applying adaptive time step control to test cases with shocks [133]. In order to

decrease the number of time steps one could try different time step adaptation strategies. A

proportional-integral-derivative (PID) controller based on the ideas of control theory could

be a possible remedy [101]. The controller uses a history of the estimated error to lead to a

much smoother variation of time step sizes ∆tn.

Again, the differences in the solution of the different DIRK methods are minimal (Figure

8.11a – 8.11c). In contrast to the previous case with fixed time step sizes a greater difference

in the location and amount of viscosity added can be observed between the methods. For

Cash’s and Al-Rabeh’s methods artificial viscosity is added near the contact discontinuity,

but not for Hairer’s and Wanner’s method. Nonetheless, the greater variation of artificial

viscosity added does not seem to have a visible effect on the obtained solutions by the different

time integrators which still are in good agreement with each other.

The evolution of the time step sizes in Figure 8.11d are fairly similar for all DIRK methods.

Hairer’s and Wanner’s method tends to use the largest time steps and Cash’s method tends

to use the smallest time steps. This is most likely caused by the order of accuracy of the

methods, as Hairer’s and Wanner’s method is of fourth order consistent in time while Cash’s

method is of third order consistent in time. Nevertheless, all methods struggle at the same

points during the simulation where the time step has to be reduced. For all methods this

leads to rejected time steps.

Mesh adaptation The solution of Sod’s shock tube, see Sec. 8.3.1 and especially Fig. 8.6,

can be represented by polynomials nicely. In most regions the solution is constant or varies

smoothly as for the expansion wave. The only critical points that require a higher resolution

are the discontinuities and the head and tail of the expansion wave as there is no smooth

transition from the constant states to the expansion wave; i.e. the solution is not differentiable

at these points.

In Fig. 8.12 we present the solution of Sod’s shock tube computed with BDF2 time

integration and the same simulation parameters as before, but on a finer mesh with K = 400

elements at final time tfinal = 0.2. Moreover, we compare the solution against the solution

on the coarser mesh as presented in Fig. 8.10a. The approximation of the solution is very

good. The head and tail of the expansion wave are approximated nicely and the width of

the shock and contact discontinuity approximation is very small. The amount of artificial

viscosity is much lower than on the coarse mesh, see Fig. 8.10a, which is related to the fact

that the effective viscosity is scaled with ∆x
P

. Moreover, the viscosity is only added at the

shock location, but not at the contact discontinuity. As stated in the previous paragraph, the

solution mostly improves at the discontinuities and the head and tail of the expansion wave

on the fine mesh. The approximation is much closer to the exact solution. Thus, it would be
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(a) Final density distribution using BDF2 on a

mesh with K = 400 elements.
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(b) Comparison of the final density distribution

using BDF2 for time integration on meshes

with K = 100 and K = 400 elements and the

exact solution.

Figure 8.12.: Solution of Sod’s shock tube computed with BDF2 time integration and K = 400

elements. The solution is compared against the solution with K = 100 elements

from Fig. 8.10a. The problem is solved using the HDG method with polynomials

of degree P = 2 and time step size ∆t = 2 · 10−4. The CFL-number is

CFL ≈ 0.219.

beneficial to have a mesh that is refined at the critical points of the solution where a higher

polynomial degree alone would not improve the approximation. At the same time the mesh

could be coarser at regions with constant or smooth solution which can be nicely represented

by polynomials. The solution changes over time, hence the mesh should do allow so as well.

In order to respect the time-dependent solution and to adapt the mesh accordingly we

employ the mesh adaptation strategy described in Sec. 8.2. The time step size is set to

∆t = 5 · 10−4 and BDF2 is used for time integration. The shock capturing parameters are

κav = 0.4, ε0
av = 0.3 and s0 = 3.75. The polynomial degree is again P = 2. The underlying

mesh has 100 elements and we investigate the two cases with Kp = 5, see Fig. 8.13, and

Kp = 10, see Fig. 8.14. Thus, a polygon may consist of up to 5 and 10 triangles, respectively.

The resulting mesh at the beginning of the simulation at t = 0 is shown in Figs. 8.13a and

8.14a. Additionally the coarse mesh with the underlying triangles indicated can be found in

Figs. 8.13b and 8.14b.

The solutions in both cases, see Figs. 8.13c and 8.14c, are in good agreement with each

other. The shock is approximated relatively sharp while the contact discontinuity is smoothed

much more. There are some small overshots at the end of the expansion wave. Both cases

also show very similar distribution of artificial viscosity. The good agreement of the solutions

is also recognizable in the adapted meshes at tfinal = 0.2, see Figs. 8.13d and 8.14d. The
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8.3. Numerical results

(a) The mesh at t = 0.0.

(b) The polygon mesh (black) at t = 0.0 with underlying triangular mesh (red).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x1

D
en

si
ty
ρ

a
n

d
ρ
h

exact

HDG

0

0.5

1

1.5

2

2.5
·10−3

A
rt

ifi
ci

a
l

v
is

co
si

ty
ε a

v

AV

(c) Solution on polygon mesh at t = 0.2.

(d) The mesh at t = 0.2.

Figure 8.13.: Sod’s shock tube: The problem is solved using the HDG method on an adaptive

polygonal mesh with Kp = 5 and K = 100 elements, polynomials of degree

P = 2 and time step size ∆t = 5 · 10−4. The largest possible CFL-number is

CFL ≈ 0.055.
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8. Flows with discontinuous solutions

(a) The mesh at t = 0.0.

(b) The polygon mesh (black) at t = 0.0 with underlying triangular mesh (red).
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(c) Solution on polygon mesh at t = 0.2.

(d) The mesh at t = 0.2.

Figure 8.14.: The problem is solved using the HDG method on an adaptive polygonal mesh

with Kp = 10 and K = 100 elements, polynomials of degree P = 2 and time

step size ∆t = 5 · 10−4. The largest possible CFL-number is CFL ≈ 0.055.
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(a) Evolution of the relative total number of glob-

ally coupled degrees of freedom over time.
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(b) Evolution of the relative total number of local

degrees of freedom over time.

Figure 8.15.: Evolution of globally coupled and local unknowns over time for Sod’s shock tube

on an adaptive mesh. The HDG method has been used as space discretization.

meshes are slightly refined at the head and tail of the expansion wave and strongly refined

at the discontinuities. The solution in both cases is also very similar to the results on fixed

meshes from previous sections. The good agreement of the solutions on the adaptive meshes

with the solution on a fixed mesh also underlines that the higher mesh resolution is in fact

not necessary at all parts of the domain, but only where larger changes in the solution can

be observed.

In Fig. 8.15 we present the evolution of the degrees of freedom, globally coupled and local,

over time. The evolution shows that the number of unknowns is almost identical for both

partition sizes, especially during the second half of the simulation. The number of unknowns

even becomes larger for some time steps when the larger partition size Kp = 10 is used. This

means that the larger allowable partition size Kp = 10 does not automatically lead to a

coarser mesh and thus lower number of unknowns. Nevertheless, both partition sizes cause

a reduced number of globally coupled unknowns of around 33% during the simulation and

almost 66% reduced number of local unknowns when compared to the mesh with K = 100

triangular elements. This also shows two potential limitations of the used fine mesh and the

polygonal elements when used with the HDG method.

The fine mesh has a large number of edges K = 201 compared to the number of elements

K = 100 since it has only two elements in x2-direction. Thus there is a large number of

hybrid unknowns that is rather untypical compared to meshes for real world applications, see

Sec. 3.3.3. The other limitation is the increased number of edges for arbitrary polygons. In

Sec. 3.3.3 and Rem. 9, it has been mentioned that the effectiveness of the HDG method in

regards of decreasing the globally coupled unknowns depends on the number of edges per

element. This effectiveness decreases for increasing number of edges. We have not put any
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8. Flows with discontinuous solutions

restriction on the shape of the polygons as this would also increase the complexity of the

adaptation process. Nevertheless, the HDG method would still lead to a lower number of

globally coupled unknowns than a standard DG method for sufficiently large polynomial

degrees. The number of globally coupled unknowns per element increases with O(KP 2) for

standard DG discretizations while it grows as O(KP ) if one considers the case with d = 2

space dimensions. The polynomial degree that has to be used in order to lead to less globally

coupled unknowns for the HDG method depends strongly on the ratio of elements to edges

in the mesh, see Sec. 3.3.3. The same holds for the resulting number of nonzero entries of the

globally coupled system of equations.

8.3.2. Mach 3 flow over a forward facing step

This 2D test case is based on the work of Emery [71] and describes a supersonic flow in a

channel with a forward facing step. This test case has been used for the evaluation of several

numerical schemes and has been recognized especially after the publication of Woodward and

Colella [240] who used the test case for the comparison of different shock capturing methods.

In Fig. 8.16a we sketch the physical domain. The dimensions are normalized such that

the height L of the channel inlet is L = 1. The channel is three times as long as it is high

and has a step at 0.6L of 0.2L units. A supersonic, inviscid flow is entering the channel

from the left and stays supersonic over the whole domain. On the top and bottom, walls are

restricting the domain. As the flow is assumed to be inviscid it is described by the Euler

equations, see Sec. 2.6. The simulation reaches a steady state solution after a certain time.

However, for the evaluation of shock capturing methods in the unsteady case the solution

at tfinal = 4 is computed since it has a richer structure than the steady state solution. The

flow in the channel is initialized with the flow conditions at the inlet. At the inlet the flow

enters the domain with Mach number Ma = 3 and no velocity component in x2-direction.

An intermediate solution at t = 0.5 of this test case has been presented in Fig. 8.3.

In Fig. 8.16b we denote the expected solution structure of the density ρ at final time

tfinal = 4. The supersonic flow hits the step which leads to a bow shock in front of the

step that is reflected by the top wall leading to a lambda shaped shock. The right leg of

the lambda shock is reflected two more times at the walls until it leaves the domain. If

the resolution of the numerical discretization is high enough a Helmholtz instability can be

observed. The instability originates at the lambda shaped shock and travels with the flow out

of the domain. Moreover, a rarefaction fan is created at the tip of the step. The rarefaction

fan may create further instabilities depending on the resolution. The tip of the step might

cause problems for the numerical method as it is a singular point. Woodward and Colella

[240] suggested to correct the flow state by copying the flow state of neighboring cells of the

discretization onto the cells at the tip. Other authors replace the sharp edge of the step by
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(a) The physical domain of the Mach 3 step problem with boundary coniditions.
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(b) Schematic of the solution of the density ρ for the Mach flow problem over a forward facing step at

tfinal = 4.

Figure 8.16.: A sketch of the physical domain of the Mach 3 step test case and a schematic

of the expected structure of the solution at tfinal = 4.
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8. Flows with discontinuous solutions

Figure 8.17.: The mesh used for the Mach 3 step test case. It has K = 3552 elements.

a rounded one with very small diameter and justify this by a completely sharp edge being

unphysical [155]. We follow the approach of Persson [182] who did not apply any corrections,

but rather let the shock capturing method handle the singular point.

In order to discretize the problem we use slipwall boundary conditions for the walls and

supersonic boundary conditions at the inflow and outflow. We use a mesh with K = 3552

elements that is fixed in time, see Fig. 8.17. In Fig. 8.18, we present the density ρh and

artificial viscosity εkav distribution. Polynomials of degree P = 2 have been used with BDF2

time stepping and fixed time step size ∆t = 2 · 10−4. The parameters of the shock capturing

method are set to ε0
av = 0.75, κav = 0.25 and s0 = 2.5. Even with the rather low spatial

resolution the pattern of the solution denoted in Fig. 8.16b is clearly visible. The bow shock

has developed in front of the step and is reflected by the top wall to create a lambda shock.

The shock is then reflected by the bottom and top wall. The shock itself is resolved within a

few cells and is thus sharp regarding the used mesh size and polynomial degree. The bow

shock is significantly wider than the remaining parts of the shock downstream because the

shock is very strong and the mesh is coarse compared to the other regions of the domain.

The rarefaction fan at the tip of the step is slightly visible. The instability developing from

the lambda shock is not visible, but the behavior of the density behind the lambda shock

indicates the presence of an instability that is not fully resolved. The artificial viscosity

method adds viscosity only in the vicinity of the shock. In smooth regions no viscosity is

added. Additionally, the simulation is stabilized by viscosity being added at and near the

singular point. At these locations less viscosity is added than at the bow shock.

In Fig. 8.19 we present the final density solution on the same mesh with slightly varied

parameters. We use polynomials of degree P = 4 and a DIRK22 time stepper with ∆t = 10−4.

The parameters of the shock capturing are set to ε0
av = 0.75, κav = 0.1 and s0 = 2. We

additionally plot isolines of the density to improve the visibility of the shocks. Even though

the mesh is the same as before the solution improves. The bow shock is approximated sharper

than in the P = 2 case. Moreover, the influence of the instabilities developing from the

lambda shock and the rarefaction fan are more obvious although still not completely resolved.
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8.3. Numerical results

(a) Density ρh.

(b) Cell-wise artificial viscosity εkav.

Figure 8.18.: The density ρh and element-wise artificial viscosity εkav. The problem has

been solved using the HDG method on a mesh with K = 3552 elements and

polynomials of degree P = 2 up to tfinal = 4. The CFL-number based on the

inflow boundary conditions is CFL ≈ 0.064.

Figure 8.19.: Plot of the final density ρh distribution of the Mach 3 step test case. Polynomials

of degree P = 4 and DIRK22 time stepping have been used. The problem

has been solved using the HDG method on a mesh with K = 3552 elements

up to tfinal = 4. The CFL-number based on the inflow boundary conditions is

CFL ≈ 0.032.
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(a) The physical setting of the double Mach wedge

test case. A supersonic flow coming from the

left hits a wedge.

L R

30◦

(b) “Physical domain” setting of the double Mach

wedge case.
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(c) “Rectangular domain” setting of the double Mach wedge case.

Figure 8.20.: The physical domain that motivates the double Mach wedge test case and the

two domains used for numerical simulations. The capital letters indicate the

parts of the domain where the left (L) and the right (R) hand side state is used.

The dashed line indicates the border in between the initial states.

8.3.3. Double Mach wedge

The second 2D test case we study is the double Mach wedge problem that has been introduced

by Woodward and Colella [240]. A supersonic flow hits a symmetric wedge that leads to a

non-normal reflected shock which creates a complex flow pattern. In Fig. 8.20a we sketch

the problem setting. The flow is coming from the left when it hits the wedge. The angle

between the x1-axis and the sides of the wedge is 30◦. Due to the symmetry of the problem

one usually focuses only on the upper part of the wedge.

We use two different domains for the approximation of the test case. One is close to the

physical domain, see Fig. 8.20b, which we refer to as the “physical domain” in our discussion.

The other one is a rectangular [0, 4]× [0, 1] excerpt of the mesh, see Fig. 8.20c, which we refer

to as the “rectangular domain” and is indicated in Fig. 8.20a by the red dashed rectangle.

Both domains contain the same interesting flow features. Focusing on the rectangular domain

decreases the size of the computational domain and thus the size of the mesh needed at the

cost of more complex boundary conditions at the upper boundary.

Both domains are initialized with two different flow states; the left (L) and right (R) hand

side state. The simulation is run until tfinal = 0.2, at which the solution has a structure as
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wall
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Figure 8.21.: Schematic of the structure of the solution of the double Mach wedge at tfinal =

0.2.

indicated in Fig. 8.21. The shock given by the initial conditions travels through the domain

and a bow shock develops from the tip of the wedge (left). When the bow shock approaches

the traveling shock a complex shock interaction occurs, leading to several shocks and a jet.

A Helmholtz instability can be observed in the jet if the resolution is high enough.

Physical domain The simulation on the physical domain is initialized with the free flow

conditions

ρl = 8, u1,l = 8.25, u1,l = 0, pl = 116.5

as left hand state (L) and the post shock conditions

ρr = 1.4, u1,r = 0, u1,r = 0, pr = 1

a right hand state (R). On the left hand boundary we use supersonic inflow boundary

conditions and slip-wall boundary conditions everywhere else. On the top boundary symmetry

boundary conditions are used. For the simulation we use a coarse mesh with K = 3167

elements, see Fig. 8.22a, with ∆t = 5 · 10−4 and fine mesh K = 8395, see Fig. 8.23a, with

∆t = 2.5 · 10−4 and polynomials of degree P = 3. DIRK22 time stepping has been applied.

The solution on the coarse and the fine mesh are presented in Fig. 8.22 and Fig. 8.23. We

present the used mesh, a pseudocolor and an isolines plot of the density and the element-wise

artificial viscosity. As for the Mach 3 step test case the viscosity is only applied in the vicinity

of the shock and not in areas with smooth solution. This indicates that the smoothness

indicator detects the discontinuities correctly. The application of viscosity in a vertical line

in the center of the domain above the shock results from an artifact due to the discontinuous

initial conditions that travels through the domain. Most artificial viscosity is added at the

shocks with less added in the shock interaction region. The shocks are approximated sharply

and are thus clearly recognizable. On the fine mesh the shock is captured more compactly,

which can also be seen in the thinner lines of artificial viscosity added. Moreover, the solution

is captured more accurately in the region where the jet occurs. However, the Helmholtz

instability cannot be observed on the coarse nor on the fine mesh. The shock capturing
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8. Flows with discontinuous solutions

(a) Mesh with K = 3167 elements. (b) Cell-wise artificial viscosity using 14 levels

from εk,min
av = 0.0 and εk,max

av = 0.014.

(c) Density distribution for 20 levels with ρmin =

1 and ρmax = 19.

(d) Isolines of the density distribution for 20 lev-

els with ρmin = 1 and ρmax = 19.

Figure 8.22.: Mesh and solution on the physical domain at t = 0.2 for the double Mach

wedge (Euler equations) on a mesh with K = 3167 elements. The CFL-number

is CFL ≈ 0.163. The HDG method with P = 3 has been used as space

discretization.
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8.3. Numerical results

(a) Mesh with K = 8395 elements. (b) Cell-wise artificial viscosity using 15 levels

from εk,min
av = 0.0 and εk,max

av = 0.007.

(c) Density distribution for 20 levels with ρmin =

1 and ρmax = 19.

(d) Isolines of the density distribution for 20 lev-

els with ρmin = 1 and ρmax = 19.

Figure 8.23.: Mesh and solution on the physical domain at t = 0.2 for the double Mach

wedge (Euler equations) on a mesh with K = 8395 elements. The CFL-number

is CFL ≈ 0.148. The HDG method with P = 3 has been used as space

discretization.
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8. Flows with discontinuous solutions

parameters or the mesh resolution lead to too much dissipation such that no instability

appears. These results have also been discussed in [127].

Rectangular domain The results on the “physical” domain show the structure of the solution

as expected, but fails to resolve all features. Therefore, we redo the simulation on the

rectangular domain and a much finer mesh with K = 58240 elements and polynomials of

degree P = 4. We use DIRK22 time stepping with time step size ∆t = 10−5. We set the

parameters of the shock capturing method to ε0
av = 1.5, κav = 0.1 and s0 = 2. As mentioned

before we have to slightly adjust the initial and boundary conditions for the rectangular

domain. The left (L) hand state is given by

ρl = 8, u1,l = 8.25 sin(60◦), u1,l = −8.25 cos(60◦), pl = 116.5

to account for the fact that the flow is not parallel to the x1-axis when entering the domain.

The right hand state (R) remains unchanged and is thus given by

ρr = 1.4, u1,r = 0, u1,r = 0, pr = 1.

At the top boundary we prescribe the left and right hand state during the simulation. This

boundary is time-dependent as we have to prescribe the shock position on the boundary. The

x1-coordinate of the shock is given by

xs(t) =
1

6
+

1

tan(60◦)
+

10

sin(60◦)
t.

As for the simulation on the physical domain the general solution structure is clearly

recognizable, see Fig. 8.24a. The shocks are approximated nicely and are very sharp. The

sharp approximation of the shock is also reflected by the very thin strip of artificial viscosity

added at the shock, see Fig. 8.24b. Moreover, the high spatial resolution makes the Helmholtz

instability at the jet observable. In order to improve the visibility of the instability, we

present also a zoom into the shock interaction region, see Fig. 8.24c. The instability is clearly

visible and in good agreement with results in the literature, see [182], for example.
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8.3. Numerical results

(a) Density distribution.

(b) Cell-wise artificial viscosity.

(c) Zoom into the shock inter action region.

Figure 8.24.: Density and artificial viscosity of the double Mach wedge test case (Euler

equations). We present the solution on the rectangular domain and the mesh

consists of K = 58240. The CFL-number is CFL ≈ 0.013. The HDG method

with P = 4 has been used as space discretization.
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9. Application of a hierarchical scale separation solver

We have discussed in Sec. 3.3.1 that assembling and solving the linear system of equations is

the most expensive part of the numerical discretization. The amount of work and memory

needed for the linear system has been reduced by using a hybridized discontinuous Galerkin

method. The assembly process is more involved due to the computation of the local solves,

but the solving process is usually faster due to the much smaller matrix and smaller number

of nonzero entries, see Sec. 3.3.3.

Further opportunities to reduce the computational effort lie within the applied linear solver.

The linear system

Aλ = b

arising from the discretization is large but sparse. The matrix could be inverted using direct

solvers which would explicitly compute the inverse A−1. However, the inverse is usually

dense, i.e. has many nonzero entries, hence it would lead to unfeasible memory and run-time

requirements. Thus, it is common to use iterative methods. One important ingredient for an

efficient iterative method is a sufficiently good preconditioner. However, choice of a suitable

iterative solver and preconditioner also rely heavily on the used space discretization and the

discretized PDE.

In the field of CFD, the generalized minimal residual (GMRES) [201] method is very

popular. Common choices for preconditioning are block Jacobi and Gauss-Seidel methods

[151] or incomplete LU (ILU) factorization [183]. In practice, the GMRES method works very

well, especially for time-dependent problems where the changes in the solution between two

time steps usually are small compared to steady state problems. Therefore, it is not necessary

to use an ILU preconditioner that is also very expensive in terms of run-time when used for

time-dependent problems. Due to the impact on the overall efficiency of the CFD solver,

especially efficient linear solvers [3, 75, 88, 134, 148, 150, 160, 227, 228] and preconditioners

[63, 176, 180, 183, 217] for DG methods are a topic of great interest.

Approaches to efficiently solve linear systems arising from DG discretizations include p-

and hp-multigrid methods [75, 148, 150] that use a hierarchy of meshes to improve or speed

up the solution process. The p-part refers to generating such a hierarchy by varying the

polynomial degree to get this hierarchy. Thus p = 0 is the coarsest level, p = 1 the next finest

level and so on. The h-part refers to the generation of an hierarchy of meshes. Since varying

p is usually more straight forward this is a popular choice for DG methods. Note that the
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9. Application of a hierarchical scale separation solver

standard notation for the polynomial degree p and mesh size h from the literature have been

used in this paragraph.

In [159, 160] the authors construct an iterative method particularly constructed for HDG

methods for linear problems. A special two-grid method [24, 59] for discontinuous Galerkin

methods first solves the problem on a very much coarse mesh. Afterwards the solution from

the coarse mesh is used to linearize and solve the problem on the fine mesh such the overall

computational costs are close to solving the linear system once on the fine mesh because

Newton’s method on the fine mesh converges after one step. A linear solver for discontinuous

Galerkin methods using hierarchical basis functions has been introduced in [3]. The idea of

this linear solver is to disassemble the solution representation in a fine and a coarse scale.

The disassembly can be done cheaply if hierarchical basis functions are used [135] and the

solver can be interpreted as a special version of a two-grid p-multigrid method. The approach

has been studied for HDG and linear problems in [210]. Another variant of this scheme

called the inexact hierarchical scale separation (IHSS) has been introduced in [227, 228]. The

authors make extensive use of the features of the HSS for an efficient implementation that

can be much faster that a classical GMRES method. A variant of their method for MATLAB

is available at GitHub [78].

In the following sections, we discuss the hierarchical scale separation approach for HDG. It

has been applied to nonlinear steady-state problems. We present and discuss the results in

the end of this chapter. Some of the results for nonlinear test cases have been presented and

discussed in [125].

9.1. Hierarchical scale separation solver

The solver employed in this section is a hierarchical scale separation solver [3, 135] which

shares similarities with a P -multigrid method [75, 150]. The authors of the HSS method

emphasize that it has two distinctive features separating it from other multigrid methods.

1. The hierarchical scale separation solver splits the degrees of freedom associated with

the solution representation in only two different scales: a coarse and a fine scale.

2. All degrees of freedom of the fine scale are updated simultaneously. This is different

from other schemes where these are updated consecutively.

In order to define the coarse and the fine scale one has to use a discontinuous Galerkin

discretization with hierarchical basis functions. In the initial publication, Taylor polynomials

have been used. We use Legendre polynomials as described in Sec. 3.2 that form a hierarchical

basis, as well. In this case, the discrete unknown λh can be expressed as

λ = λ+ λ′, (9.1)
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9.1. Hierarchical scale separation solver

where the coarse scale λ refers to the solution based on the P = 0 basis function and the fine

scale λ′ to the remaining degrees of freedom. The polynomial representation of the hybrid

unknown (3.14) can be used to identify coarse scale and fine scale solution as

λh(t, x) = Λk̄1µ
k̄
h,1(x), λ′h(t, x) =

N∑
i=2

Λk̄i µ
k̄
h,i(x), x ∈ Ek̄.

Obviously, this splitting is only interesting for P > 0. Otherwise, the system of equations

simplifies to the piece-wise constant case where only a coarse scale exists.

The idea of the hierarchical scale separation approach is to solve the globally coupled

system of equations for the coarse scale problem. The fine scale problem acts as a correction

of the coarse scale solution that is decoupled from element dependencies. The decoupling

allows to apply the fine scale correction locally in an iterative fashion and is carried out until

the residual drops below a given threshold.

The splitting in a coarse and fine scale as given in (9.1) allows us to reorder the linear

system of equations Aλ = b such that it can be written as(
A B

B′ A′

)(
λ

λ′

)
=

(
b

b′

)
.

The reordering results in several matrices coupling the unknowns of different scales and a

corresponding splitting of the vector of unknowns and the right hand side.

The matrix A couples degrees of freedom of the coarse scale with each other and B couples

coarse scale degrees of freedom with fine scale degrees of freedom. Matrix A′ couples fine

scale degrees of freedom and B′ couples fine scale degrees of freedom with coarse scale degrees

of freedom. Accordingly, the vector b is the right hand side of the coarse scale and b′ the one

of the fine scale.

The iterative solution procedure uses this splitting in different scales, see Alg. 1. The coarse

scale A system is used to get a new approximation of the coarse solution. Afterwards, the

fine scale system A′ is used to improve the solution. In order to do so in an efficient manner

the matrix is split into a block-diagonal part A′diag and its remainder A′offdiag = A′ −A′diag.

The fine scale correction is constructed such that only the block diagonal matrix has to be

inverted.

We have mentioned in Sec. 3.3.2 that the computation of local solves can be parallelized

very efficiently because these computations are element-wise. The HSS approach introduces

an additional layer of locality that can be exploited for an efficient implementation. The

coarse scale system is globally coupled, but it only grows slowly as it depends on the number

of elements rather than on the polynomial degree of the basis function. The assembly and

solving of the coarse scale system of linear equations needs a certain amount of communication

of all processes. Nevertheless, assembling and solving the coarse scale system of equations
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9. Application of a hierarchical scale separation solver

Data: A,A′,B,B′, b, b′, tol, imax

Result: Solution λn+1.

λ0 = 0;

λ′0 = 0;

i = 0;

r0 =
√
‖b‖22 + ‖b′‖22;

while ( ri
r0
> tol and (ri > 10−16) and i < imax do

Solve: Aλi+1 = −B̂λ′i + b;

Solve: A′diagλ
′
i+1 = −B′λi+1 −A′offdiagλ

′
i + b′;

λi+1 = λi+1 + λ′i+1;

r = B̂λ′i+1 + Aλi+1 − b ;

r′ = B′λi+1 + A′λ′i+1 + A′diagλ
′
i+1 − b′;

ri+1 =
√
‖r‖22 + ‖r′‖22;

i = i+ 1;

end

λn+1 = unmap(λi, λ
′
i);

Algorithm 1: Implemented HSS algorithm as drop-in replacement for PETSc’s GMRES.

is still much cheaper than for other methods due to the much lower number of degrees of

freedom (one per element for HSS). The correction/smoothing process involving the degrees

of freedom from P > 0 basis functions can be done completely locally because the system

of equations is split such that only the block diagonal part A′diag must be inverted for the

fine scale system of equations. No information from other edges nor elements is needed when

A′diag is inverted. Similar to the local solves these can be done element-wise and could be

done by a direct solver as the matrices are rather small. However, the implementation used

to generate the results presented in this thesis, does not solve the fine scale problem in a

local fashion. The authors in [227, 228] exploit the locality explicitly for an efficient solution

process of the fine scales. They could observe superior behavior of the solver over GMRES in

terms of runtime. In the initial publication of HSS [3], the authors have already shown that

the HSS approach can be much more efficient than a more ‘traditional’ P -multigrid approach.

Implementation

We want to briefly discuss the implementation as it differs slightly from the one in other

publications. We use a (preconditioned) restarted GMRES provided by PETSc for the coarse

and fine scale solves. In order to keep the implementation simple, we construct the matrix

A′diag containing all diagonal blocks instead of only assembling the matrix locally for each
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9.1. Hierarchical scale separation solver

edge. The resulting system for the update

A′diagλ
′
i+1 = −B′λi+1 −A′offdiagλ

′
i + b′,

see Alg. 1, is solved by a preconditioned GMRES method. The authors of the IHSS method

[227, 228] also employ a restarted GMRES method for the coarse scale and solve the fine

scale solve problem using the QR decomposition of the local block matrices. The HSS solver

applied to the HDG method in [210] solves the system of equations with a GMRES method

without restarts nor a preconditioner.

The implementation of the HSS solver employed in this work aims to be a drop-in replace-

ment for an already implemented GMRES solver based on PETSc. The term “drop-in” means

that the newly implemented solver has the same programming interface as the previously

used linear solver. The HSS solver obtains preassembled matrix blocks as for other linear

solvers available through PETSc and disassembles these blocks to construct the matrices

A,A′diag,A
′
offdiag,B,B

′ and vectors b, b′ internally. In order to do so, it relies on the fact

that the block format for matrices of PETSc is used. In this case, PETSc does expect the

entries to be grouped in blocks. We choose blocks of size m×m with m being the number of

unknowns in the vector of unknowns w. We briefly illustrate the construction of the linear

system of equations based on the blocks at the example of the contribution of a single edge

Ek̄ ∈ Eh to the linear system of the hybrid unknown (3.29). The contribution of a single edge

is constructed such that

Ak̄Λk̄ = bk̄

holds. The matrix

Ak̄ =


A1,1 . . . AN,1

...
. . .

...

A1,N . . . AN,N

 (9.2)

consists of blocks Ai,j of size m×m that resemble the contribution

Ai,j = a (µi,h, µj,h)m×m

of the ith basis function of each unknown tested against the jth test function. Accordingly,

the vector of unknowns is structured in subvectors of length m as

Λk̄ =
(

Λk̄1,1, . . . ,Λ
k̄
1,m,Λ

k̄
2,1, . . . ,Λ

k̄
2,m, . . . ,Λ

k̄
N,1, . . . ,Λ

k̄
N,m

)T

. (9.3)

The right hand side vector b is ordered accordingly. The ordering of the vectors makes it

easy to split them into the two scales

Λk̄ =
(

Λk̄1,1, . . . ,Λ1,m

)T

Λ′k̄ =
(

Λk̄2,1, . . . ,Λ
k̄
2,m, . . . ,Λ

k̄
N,1, . . . ,Λ

k̄
N,m

)T

.
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9. Application of a hierarchical scale separation solver

A1,1 A2,1 . . . ANw
dof,1

A1,2 A2,2 . . . ANw
dof,2

...
...

. . .
...

A1,Nw
dof

A2,Nw
dof

. . . ANw
dof,N

w
dof







A B

B′ A′
diag +A′

offdiag

Figure 9.1.: Schematic of the splitting of the local matrix contribution of a single edge.

The matrix 9.2 is split accordingly to the vector into the coarse and fine scales, see Fig. 9.1.

After solving the linear system using the HSS algorithm, see Alg. 1, the updated solution

vector is unmapped into its initial order (9.3) and returned to the calling function.

9.2. Numerical results

We present the numerical results obtained from the hierarchical scale separation solver applied

to the hybridized discontinuous Galerkin method. First, results for a linear test case are

presented to verify the new implementation. Afterwards, the results of a variety of nonlinear

problems, namely the viscous Burgers’ equation, Euler equation and Navier-Stokes equation,

are presented. In contrast to other chapters of this thesis we focus solely on steady-state

problems to focus on the behavior of linear solver.

Linear convection-diffusion

We solve a boundary linear test case as described in [69]. The same test case has been used

for HDG and HSS in [210]. The linear convection-diffusion equation, see Sec. 2.4, with given

velocity and a given diffusion constant ε is solved on Ω = [0, 1]2. Additionally, a source term

h(x) =

(
x2 +

e
x2
ε
−1

1− e 1
ε

)
+

(
x1 +

e
x1
ε
−1

1− e 1
ε

)
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9.2. Numerical results

Option HSS Coarse level Fine level PETSc

Relative tolerance 10−10 10−12 10−12 10−10

Norm of residual ‖·‖2 ‖·‖2 ‖·‖2 ‖·‖2
Preconditioner – ILU(k) ILU(k) ILU(k)

ILU(k) depth – 3 3 3

Iterative solver – restarted (F)GMRES restarted (F)GMRES restarted (F)GMRES

Restart iterations – 50 50 50

Max. Iterations 1000 1000 1000 1000

Table 9.1.: Parameters of the HSS solver and pure PETSc/GMRES solver for the boundary

layer test case.

is added. The solution for diffusion constant ε = 0.01, where a strong boundary layer develops,

is shown in Fig. 9.2c and for inverted convection direction in Fig. 9.2d. The solution can be

computed analytically as

w(x) =

(
x1 +

e
x1
ε
−1

1− e 1
ε

)(
x2 +

e
x2
ε
−1

1− e 1
ε

)
and depends on the convection velocity and the diffusion constant. For an increasing diffusion

constant ε the steepness of the boundary layers decreases. The initial mesh with K = 8

elements and the mesh after three refinements are displayed in Fig. 9.2a and Fig. 9.2b.

The solvers use similar settings. The linear solvers, let it be PETSc or HSS, solve the

system of equations until the relative residual drops below 10−10 or the absolute residual gets

too close to machine precision. Both solvers are limited to a maximum of 1000 iterations.

The internal fine and coarse scale use the same options for the GMRES method. The settings

are summarized in Tab. 9.1.

The Newton solver aims for an absolute residual below 10−10 within at most ten Newton

steps. We use uniformly refined meshes with up to K = 131072 elements and diffusion

constants ε = {0.01, 0.1, 1}.

Scalar case

We expect that the method recovers an order of convergence of P + 1. Since we are focusing

on steady problems, no time integrator has to be applied. Moreover, we expect that the

results obtained from the two linear solvers are very similar because both solve the linear

system while aiming for the same reduction of the relative residual.

In Fig. 9.3 we present the evolution of the error under uniform refinement for the three

different values of ε. Additionally, we present the errors obtained using the GMRES method

from PETSc (left) that we refer to simply as PETSc and the HSS solver (right). There

is virtually no difference in the solutions of the two linear solvers for neither combination
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9. Application of a hierarchical scale separation solver

(a) Initial mesh with K = 8 elements. (b) Mesh after three refinements with K = 512

elements.

(c) Solution for ε = 0.01 and u = (1, 1)T. We

show the numerical solution of the HSS solver

based on PETSc with P = 3 and K = 2048

elements.

(d) Solution for ε = 0.01 and u = (−1,−1)T. We

show the numerical solution of the HSS solver

based on PETSc with P = 3 and K = 2048

elements.

Figure 9.2.: Initial mesh and mesh after three refinements for the boundary layer test case

(viscous Burgers’ equation). Additionally we present the solution for two different

convection velocities that lead to boundary layers in different corners of the

domain. The HDG method has been used as space discretization.
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9.2. Numerical results

of mesh size ∆x, polynomial degree P and diffusion constant ε. This also indicates the

correctness of our implementation of the HSS solver. For the sake of completeness we give

also the errors for P = 0 although no fine scale exists in this case.

Additionally, we present the evolution of the relative residual over the number of iterations

for the HSS solver in Fig. 9.4. The observed convergence behavior is in good agreement with

results reported in [210] for the same test problem. The number of HSS iterations depends

on the used diffusion constant ε and used polynomial degree P . This might be caused by

the boundary layer that is very steep in this case and cannot be properly resolved on coarse

meshes. The results for larger diffusion constants, where the boundary layer is resolved on

coarser meshes, show less dependence of the number of iterations on the mesh size.

The dependence of HSS iterations on the polynomial degree P is also in good agreement

with the results of [210]. Increasing P leads to a larger number of HSS iterations which is

most prominent on larger meshes. This increase might be related to the resolution of the

boundary layer, as well.

Another feature, also observed previously, is that the residual does not monotonically

decrease in all cases. In many cases, the residual grows in the first HSS iteration and decreases

monotonically after this.

A less desirable feature can be observed on the finest mesh for ε = 1 for all P and on the

finest mesh for ε = 0.1 and P = 3. In these cases, the relative residual does not converge

below 10−10, but very close to it. On cannot expect the relative residual to drop arbitrarily

because the absolute residual is already very small, i.e. ri = O(10−14). Note that we only

plot the residuals for the first 300 iterations, but the mentioned cases do not converge until

the upper bound of 1000 iterations is reached.

Viscous Burgers’ equation

The second test problem is the viscous Burgers’ equation with fluxes

fc(w) =
1

2
w2, fv(w,∇w) = ε∇w

and constant diffusion constant ε. Additionally, a source term h is added to enforce the

same solution as for the linear equation. Compared to previous publications dealing with the

(I)HSS method, the problem is nonlinear due to the convective flux. Thus, the problem is

linearized using Newton’s method, see Sec. 3.3.1. The arising system of linear equations in

each Newton step is solved using the HSS linear solver. The relative tolerances, for which

the coarse and fine scale solve is stopped, are reduced to 10−13 to avoid the behavior on the

finest meshes that was observed in the previous session. The Newton method is carried out

until the relative residual drops by ten orders of magnitude or the absolute residual drops

below 10−16. All other parameters of the linear solvers and the test case remain unchanged.
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Figure 9.3.: The errors obtained by using the GMRES (left) and HSS (right) linear solver

applied to the scalar problem (linear convection-diffusion equation). The error

is plotted over the mesh size for different polynomial degrees P = {0, 1, 2, 3}.
The diffusion constant grows from top to bottom ε = {0.01, 0.1, 1}. There is no

visible difference in the errors of the two solutions. The HDG method has been

used as space discretization.
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Figure 9.4.: Evolution of the relative residual ri
r0

of the HSS solver. The data presented has

been obtained for the linear problem in the scalar case (convection-diffusion

equation). The diffusion constant ε = {0.01, 0.1, 1} grows from left to right

and the polynomial degree P = {1, 2, 3} grows from top to bottom. Each plot

contains the convergence history for each mesh and 300 iterations are shown at

most. Markers are only plotted for every 20th data point. The HDG method

has been used as space discretization.
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Figure 9.5.: Errors of obtained using the GMRES (left) and HSS (right) for the viscous

Burgers’ equation. The error is plotted over the mesh size for different polynomial

degrees P = {0, 1, 2, 3}. The diffusion constant grows from top to bottom

ε = {0.01, 0.1, 1}. There is no visible difference in the errors of the two solutions.

The HDG method has been used as space discretization.
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Like for the linear problem in the previous section, we present the errors obtained using

PETSc’s GMRES method and the HSS solver in Fig. 9.5. The results show again no obvious

differences between the solutions of the two linear solvers. Moreover, the correct order of

convergence is obtained after few refinements.

In Fig. 9.6 we present the convergence behavior of the HSS solver similar to the way we

presented it for the linear problem in Fig. 9.4. However, the viscous Burgers’ equation is

nonlinear which means that the Newton solver usually needs more than one step. Therefore,

we do not present the convergence behavior for all polynomial degrees and mesh sizes, but

only for P = 2 on four different meshes K = {8, 128, 2048, 32768} (top to bottom) and with

diffusion constants ε = {0.01, 0.1, 1.0} (left to right). The figure includes the convergence

behavior for each Newton step.

It is obvious from Fig. 9.6 that the number of Newton steps needed depends on the spatial

resolution. Especially when the boundary layer is pronounced, i.e. ε = 0.01, the most Newton

steps are needed. For ε = {0.01, 0.1} the number of steps reduces slightly when the mesh is

refined and the boundary layer is better resolved. In the case of ε = 1 the mesh size does not

seem to have an influence on the number of Newton iterations.

The HSS method also shows a slight dependence on the diffusion constant ε and mesh

size. Especially for the coarse meshes K = {8, 32} and steep boundary layer ε = 0.01 the

largest number of HSS iterations are needed. Moreover, the number of HSS iterations per

Newton step varies greatly with the first Newton step needing the most HSS iterations. In

the most other cases, the first Newton step is the one that needs the most HSS iterations to

solve the linearized problem, as well. On finer meshes the number of HSS iterations needed

per Newton step varies much less and is between 100 and 200 iterations.

For the test cases with a less pronounced boundary layer, i.e. ε = {0.1, 1}, the number of

HSS iterations only varies very little over the Newton steps, but also only very little over

different mesh sizes or diffusion constants. The strongest dependency can again be observed

on coarse meshes, but in most cases the number of HSS iterations needed is around 140.

Similar as for the linear test case the case with ε = 1 is the least problematic test case.

Moreover, one can also observe again that the residual tends to increase for the first HSS

iteration for some problem settings before it monotonically decreases.

Euler equations

For the application of the HSS solver to nonlinear problems, we investigate inviscid flow

described by the Euler equations around a NACA0012 airfoil. We use the same settings and

mesh with K = 2560 as the authors in [213]. The Mach number at free stream conditions is

Ma = 0.3 and the angle of attack is α = 4 deg. The flow parameters are chose such that no

shocks occur. The domain is a circle centered around the airfoil with radius of 50 times the
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Figure 9.6.: The convergence behavior of the HSS method in each Newton iteration when

solving the viscous Burgers’ equation. The results are shown for increasing

diffusion constant ε = {0.01, 0.1, 1.0} (left to right) and refined meshes with

K = {8, 128, 2048, 32768} elements (top to bottom). In all cases polynomials of

degree P = 2 are used. Markers are only shown for every 20th data point. The

HDG method has been used as space discretization.
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9.2. Numerical results

Figure 9.7.: Excerpt of the mesh used for inviscid flow around a NACA0012 airfoil.

GMRES HSS

P = 0 1.420757e+00 1.420757e+00

P = 1 1.944455e+00 1.944455e+00

P = 2 1.950037e+00 –

P = 3 1.951374e+00 –

(a) Lift coefficient.

GMRES HSS

P = 0 2.368942e-01 2.368942e-01

P = 1 3.034639e-03 3.034639e-03

P = 2 9.622760e-04 –

P = 3 8.007038e-04 –

(b) Drag coefficient

Table 9.2.: Lift and drag cofficients the GMRES method and the HSS solver for different

polynomial degrees P . Results for inviscid flow (Euler equations). The problem

has been solved using the HDG method with different P on a mesh with K = 2560

elements.

chord length. An excerpt of the mesh is shown in Fig. 9.7.

This test case is quite complicated to solve without proper initial conditions. Therefore, a

P -multigrid technique is used to solve the problem. The problem is first solved for P = 0.

Then, the solution is projected onto P = 1 and so on until the desired P is reached. In our

case we aim for a solution at P = 3. Both linear solvers aim to reduce the relative residual by

three orders of magnitude. The relative tolerance of the GMRES methods for the coarse and

fine scale are set to 10−8. All other parameters are as in Tab. 9.1. The Newton solver stops

when the absolute residual drops below 10−10 or more than 12 Newton steps are needed.

We compare the results obtained the by GMRES methods and the HSS solver by computing

the lift and drag coefficient. The results are reported in Tab. 9.2. One can see that the

results are indistinguishable up to P = 1. However, no results for the HSS solver and higher

polynomial degrees are reported because the HSS solver does not converge.
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(b) Relative error P = 2.

Figure 9.8.: Evolution of the relative residual of the HSS solver for polynomials degrees

P = {1, 2}. The data displayed has been obtained for the inviscid test case. The

problem has been solved using the HDG method with different P on a mesh with

K = 2560 elements.

In Fig. 9.8 we present the convergence behavior of the HSS solver for each Newton step.

For P = 1 one observes a similar behavior as for the viscous Burgers’ equation: The first

Newton iteration is the one that needs the most HSS iterations. Consecutive Newton steps

usually need less iterations. For P = 2, one sees that the HSS solver converges for the first few

iterations (≈ 8), but then starts to diverge quickly. Problems with the HSS solver diverging

for linear scalar problems have been reported in [210]. This is clearly undesired behavior and

an open problem for further investigation.

Navier-Stokes equations

Although the results in the previous section are quite disappointing we want to apply the HSS

solver also to the Navier-Stokes equations. We investigate again a NACA0012 airfoil. We use

the same mesh as in [211] where the problem is solved on a quadratic domain. The angle of

attack is set to α = 5 deg, the Mach number is Ma = 0.2 and the Reynolds number Re = 100.

The settings of the linear solvers are the same as in the inviscid case. The tolerance of the

Newton solver is set to 10−8 and the maximum number of Newton steps is set to 15. The

solver uses the same P -multigrid startup procedure as in the inviscid case.

As for the inviscid test case we compute the lift and drag coefficient to compare the solutions

obtained by the GMRES method and the HSS solver. We present the results in Tab. 9.3.

Again, no results are reported for the HSS solver for polynomials of degree P > 1 because

the HSS solver diverges. Nevertheless, the obtained results by the two different linear solvers

are in good agreement. For the drag coefficient the results are in fact indistinguishable.
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9.2. Numerical results

GMRES HSS

P = 0 7.262163e-02 7.262161e-02

P = 1 3.018314e-02 3.018304e-02

P = 2 2.902854e-02 –

P = 3 2.862259e-02 –

(a) Lift coefficient.

GMRES HSS

P = 0 2.511540e-01 2.511540e-01

P = 1 1.750759e-01 1.750759e-01

P = 2 1.766604e-01 –

P = 3 1.767823e-01 –

(b) Drag coefficient

Table 9.3.: Lift and drag cofficients of a NACA0012 airfoil obtained by a GMRES method and

the HSS solver for different polynomial degrees P . The Navier-Stokes equations

have been solved using the HDG method with different P on a mesh with K = 2560

elements. The angle of attack is set to α = 5 deg, the Mach number is Ma = 0.2

and the Reynolds number Re = 100.
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(b) Relative error P = 2.

Figure 9.9.: Convergence behavior of HSS solver based on PETSc solvers with different

polynomials degrees. Navier-Stokes case. The Navier-Stokes equations have

been solved using the HDG method with different P on a mesh with K = 2560

elements. The angle of attack is set to α = 5 deg, the Mach number is Ma = 0.2

and the Reynolds number Re = 100.
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9. Application of a hierarchical scale separation solver

In Fig. 9.9 we plot the convergence behavior for each Newton step. Surprisingly, the first

Newton step for P = 1 is the one needing the fewest HSS iterations. This behavior was not

observed for the other test cases. For P = 2, the HSS converges for the first few (≈ 17)

iterations and diverges quickly after that. This is very similar to what was observed in the

inviscid case. Thus, the same remarks as for the inviscid problem hold. In general, the

HSS solver looks promising for the solution of linear systems of equations stemming from

DG discretizations. However, the divergent behavior for nonlinear systems of equations of

higher polynomial degrees has to be tackled in future work. A possible remedy is to tune the

stability parameter of the numerical flux functions. In [210] the authors could observe that

the convergence behavior is dependent on the choice of the stability parameter. One can also

try to use another numerical flux and other linear solver to solve the coarse and fine scale

problems of the HSS solver.
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10. Conclusion and future work

In this thesis we have discussed various steps to apply the hybridized discontinuous Galerkin

methods to a variety of stationary and time-dependent flow problems in an efficient and stable

manner. In order to construct such schemes we have discussed a variety of time integrators,

shock capturing schemes, an efficient implementation in MATLAB and a new solver for linear

systems of equations. We have presented an extensive set of numerical experiments to verify

and evaluate the new approaches.

We have discussed implicit general linear methods that are the generalization of multi step

and multistage time integrators. This combination allows for methods with higher stage

order than classical Runge-Kutta methods. Their application requires the introduction of a

startup procedure. The numerical results indicate that the integrators work well and produce

almost identical results compared to classical Runge-Kutta method for standard problems.

Although none of the studied test cases led to order reduction in the classical time integrators,

it is beneficial to have these methods at hand as one can come across such problems also in

CFD. Future work can consist of the evaluation of these methods for further stiff problems.

Another field of work can be the study of time step adaptation [29, 113].

Another class of time integrators that we have investigated extensively, is implicit multi-

derivative time integrators. These methods introduce additional time derivatives in order to

realize schemes with higher order of convergence in time. We have discussed two different

approaches that use the underlying discretization in space to approximate time derivatives.

The first approach was based on a Cauchy-Kowalevski procedure where the PDE was dif-

ferentiated with respect to time, which allows to replace time by space derivatives. This

approach has earlier been studied successfully for methods using explicit multiderivative time

integrators [96, 189, 214]. We have observed that the approach introduces severe time step

restrictions. This was unexpected because we have used implicit time integration schemes

that allow very large time steps when applied to ordinary differential equations. We have

carried out a von Neumann stability analysis that confirmed the existence of such time step

restrictions when a PDE is solved.

Based on these findings we have devised a second approach in which the semi-discrete

version of the PDE would be differentiated in time. This approach leads to fewer additional

unknowns that are introduced to the problem and does not introduce unexpected time step

restrictions. We have carried out a von Neumann stability analysis that supports these

193



10. Conclusion and future work

findings. We have also presented numerical results in one and two space dimensions that

confirm these findings. In this work we have presented the new approach solely for linear

problems and the numerical results in two space dimensions have been computed with a

symmetric interior penalty discontinuous Galerkin method. Thus, obvious fields for future

work are the extension to nonlinear problems, for which we have sketched an approach, and

the implementation of these methods for hybridized discontinuous Galerkin methods in two

space dimensions.

The development of numerical methods greatly benefits from tools that allow for a quick

and easy implementation of new schemes and testing of new ideas. Therefore, we have

developed an efficient implementation of the HDG method within FESTUNG, an open source

framework for MATLAB / GNU Octave. The framework has been extended to incorporate

the required hybrid unknowns on element edges and we have incorporated a new way of

assembling terms that depend on space-dependent quantities. We have shown numerical

results to validate the implementation. Moreover, a hybridized discontinuous Galerkin method

has been compared to an upwind discontinuous Galerkin method. It is possible to observe

the promised savings in run-time for simulations with large polynomial degree P . We have

focused on a scalar, linear convection equation in our work. Future work can focus on

nonlinear problems, convection-diffusion equations or systems of equations which have not

been studied in the FESTUNG framework so far.

When describing real world flow problems, a common choice are Euler and Navier-Stokes

equations. Both equations are nonlinear and thus might lead to non-smooth solutions. In

the setting of high order methods, such as the hybridized discontinuous Galerkin methods,

it is necessary to introduce a shock capturing scheme to prevent non-physical oscillations

to appear. The shock approximation can be improved by an approach to adaptively refine

the mesh close to discontinuities as the width of the discontinuities scales with the mesh

size at its location. We have adopted the shock capturing scheme by Persson and Peraire

[184] that behaves advantageous compared to other shock capturing methods that have been

introduced for the HDG methods earlier. We have been able to solve several challenging

time-dependent problems. Additionally, we have coupled the shock capturing method to

a mesh adaptation procedure that is based on the agglomeration of mesh elements. This

allowed for an accurate approximation of discontinuities while the number of degrees of

freedom can be reduced. Future work could include the construction of shock capturing

methods explicitly making use of the hybrid unknown and the application to further test

problems. The mesh adaptation has been studied only on very simple and small meshes

and with a simple indicator for refinement. Future work in this area can focus on more

complicated meshes, improved integration formulae for elements of arbitrary shape, and more

advanced mesh refinement indicators.

The last topic we have focused on was the evaluation of a new solver for the arising linear
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system of equations. We have implemented a wrapper that allows for an easy incorporation

of the linear solver that does not require any change of the programming interface. Moreover,

we were able to apply the solver to nonlinear scalar problems. The results where in good

agreement with results obtained by a GMRES method. We have observed problems when

applying the solver to the Euler and Navier-Stokes equations. Thus, future work has to focus

on these type of equations. We have already suggested that a possible solution would be the

tuning of stabilization parameter of the numerical flux function or replacing the numerical

flux function.

The extension and application of the HDG method to new types of problems has to be

part of future work, too. We are investigating the application of the HDG method to flows

with cavitation, i.e. a fluid that is present in liquid and vapor state. A typical application

where cavitation can be observed is the injector of a gasoline engine. The gasoline in the

injector nozzle is under high pressure. When the nozzle opens and the gasoline starts flowing,

the local pressure can drop below the saturation pressure such that the liquid evaporates.

In order to model the cavitation we use the same model as Hickel et al. [110]. In their

model they assume that the density ρ is a combined density ρ̄ of the vapor phase pressure

ρvap and liquid phase pressure ρliq

ρ̄ = αρvap + (1− α)ρliq.

The parameter α indicates how much of the local volume is present in vapor phase. Thus, we

have α = 0 in the liquid phase and α > 0 in the mixed liquid-vapor phase. For the liquid

phase and the mixed liquid-vapor phase suitable models for the pressure

p(ρ̄) =

(psat +B) ·
(

ρ̄
ρsat,liq

)N
−B, α = 0

psat + C ·
(

1
ρsat,liq

− 1
ρ̄

)
, 0 < α < 1

and the viscosity

µ̄ = (1− α)

(
1 +

5

2
α

)
µliq + αµvap

are formulated. The saturated pressure psat, saturated density of the liquid phase ρsat,liq,

the viscosities in the liquid µliq and vapor µvap phase depend on the fluid studied. The

parameters N , C and B have to be chosen accordingly. A big advantage of this approach is

its simplicity. It can be used with the Euler or Navier-Stokes equations without any changes

in the equations. Only the closures are adapted. Moreover, no interface tracking is necessary

as a mean value state is modeled. The modeling of cavitation is stiff due to the big differences

in pressure in the different phases. Thus, the approximation of flows with cavitation can

greatly benefit from implicit time integration methods and we expect that the HDG method

offers advantages over other schemes.
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10. Conclusion and future work

To summarize, we have developed and evaluated important parts that are necessary to

make hybridized discontinuous Galerkin a versatile tool for problems from fluid dynamics.

We have introduced a number of new time integrators. These offer new features, including

additional stability properties, and possibly a more efficient time integration than established

methods. Together with the work on an efficient solver for the linear system of equations these

are key components to have a stable and efficient method. This is especially important for the

application of the HDG methods in three space dimensions where the computational costs

due to larger number of degrees of freedom grows extensively. The work on mesh adaptation

combined with a shock capturing methods is necessary to approximate flows with shocks.

Otherwise the method would become unstable or at least contain non-physical oscillations.

A lack of mesh adaptation leads to either an unsatisfying resolution of shocks or unfeasible

run-time requirements. The implementation of a hybridized discontinuous Galerkin method

in an open source framework for MATLAB / GNU Octave helps to promote the scheme as it

easily accessible and well documented. Furthermore, it allows for a simple extension of the

HDG method or the application of the HDG method to new PDEs.
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A. Coefficients of time integration methods

Several time integrators have been discussed in Sec. 4. For the sake of completeness we want

to state the coefficients of the introduced methods if it has not been done in the method

description already. The coefficients of BDF methods introduced in Sec. 4.2 can be found in

Tab. A.1.

The coefficients of the diagonally implicit Runge-Kutta methods introduced by Alexander

[4] are given in Tab. A.2. We do not explicitly state the tableau for the implicit Euler method

where every entry is one. The coefficients of the third order method, see Tab. A.2b are

obtained by setting α = 0.43586652150845 and computing the missing values as

τ =
1

2
(1 + α), b1 = −1

4
(6α2 − 16α+ 1), b2 =

1

4
(6α2 − 20α+ 5).

In order to obtain Cash’s method an lower order DIRK method is embedded [41]. The

coefficients b̂i for that are given as

b̂1 =
τ − 0.5

τ − α , b̂2 =
α− 0.5

α− τ .

The coefficients of the fourth order method of Al-Rabeh [191] are stated in Tab. A.3 and the

coefficients of Hairer’s and Wanner’s method are given in Tab. A.4.

The coefficients of the diagonally implicit multistage integration method, see Sec. 5.1,

are given in Tab. A.5. This follows the notation of general linear methods in Nordsieck

formulation (5.5).
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A. Coefficients of time integration methods

a0 a1 a2 a3 a4

BDF1 1.0 −1.0 0.0 0.0 0.0

BDF2 3
2
−2.0 1

2
0.0 0.0

BDF3 11
6

−3.0 3
2
− 1

3
0.0

BDF4 25
12

−4.0 3.0 − 4
3

1
4

Source: Textbook of Dahmen and

Reusken [61]

Table A.1.: Coefficients of BDFk-methods up to order 4.

1− 1√
2

1− 1√
2

0

1.0 1√
2

1− 1√
2

1√
2

1− 1√
2

(a) Coefficients of Alexander’s DIRK22 method.

α α 0 0

τ τ − α α 0

1 b1 b2 α

bi b1 b2 α

b̂i b̂1 b̂2 0

(b) Coefficients of Alexander’s DIRK33 (without

b̂i) and Cash’s DIRK33 method.

Table A.2.: Coefficients of Alexander’s and Cash’s DIRK methods. The coefficients of the

three stage method are given in the text.

0.4358665 0.4358665 0 0 0

0.0323722 -0.4034943 0.4358665 0 0

0.9676278 -0.3298751 0.8616364 0.4358665 0

0.5641335 0.5575315 -0.1930865 -0.2361781 0.4358665

bi 0.3153914 0.1846086 0.1846086 0.3153914

b̂i 0.6307827 0.1413538 0.2278634 0

Table A.3.: Coefficients of Al-Rabeh’s DIRK method.
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1
4

1
4

0 0 0 0
3
4

1
2

1
4

0 0 0
11
20

17
50

- 1
25

1
4

0 0
1
2

371
1360

- 137
2720

15
544

1
4

0

1 25
24

- 49
48

125
16

−85
12

1
4

bi
25
24

- 49
48

125
16

- 85
12

1
4

b̂i
59
48

- 17
96

225
32

- 85
12

0

Table A.4.: Coefficients of Hairer’s and Wanner’s DIRK method.

1 1 0

1 1 0

1 0 0

(a) Coefficients of DIMSIM1.

1− 1√
2

0 1 −2+
√

2
2

0
6+2
√

2
7

1− 1√
2

1 3
14

(√
2− 4

) √
2

2
− 1

73−34
√

2
28

2
√

2−1
4

1 10
√

2−19
14

3−2
√

2
4

0 1 0 0 0

-1 1 0 0 0

(b) Coefficients of DIMSIM2.

1
2

0 0 1 − 3
2

1 − 5
12

5
4

1
2

0 1 − 7
4

5
4

− 5
8

7
5

4
5

1
2

1 − 17
10

7
5

− 47
60

17
20

41
30

1
3

1 − 31
20

61
60

− 17
40

0 0 1 0 0 0 0
1
2

−2 3
2

0 0 0 0

1 −2 1 0 0 0 0

(c) Coefficients of DIMSIM3.

Table A.5.: Coefficients of DIMSIMs used by Jackiewicz [114].
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B. Von Neumann stability analysis of

Cauchy-Kowalevski multiderivative method

We have observed serious stability issues of the multiderivative methods using the Cauchy-

Kowalevski/Lax-Wendroff approach in Sec. 6.2. In order to understand this better we carry

out a von Neumann stability analysis for the linear convection equation using finite difference

space discretizations.

We solve the linear convection equation

∂tw + u∂xw = 0, u > 0 (6.14 revisited)

such that we have ∂tw = g(w) with g(w) := −u∂xw. Then, we have

∂2
tw = ∂t (−u∂xw) = −u∂x (∂tw) = −u∂x (−u∂xw) = u2∂2

xw = ġ(w)

for the time derivative of the right hand side. For simplicity we assume that the equation

has been discretized on an infinite domain, e.g. by using periodic boundary conditions. We

use a finite difference discretization with mesh size ∆x = xj − xj−1.

B.1. Approximation using upwind and central differences

We approximate the differential operators by

∂xw(xj) ≈
wj − wj−1

∆x
, ∂2

xw(xj) ≈
wj−1 − 2wj + wj+1

∆x2
. (6.16 revisited)

The first time derivative is approximated using an upwind disretization while the diffusive

term is discretized by a central difference. This follows the common procedure when solving

PDEs using finite differences. The upwind discretization is chosen to respect the direction of

information propagation. The diffusive operator has no dominant propagation direction and

thus central differences are a common choice.

B.1.1. Fourth order method

The fourth order method is given by the formula

wn+1
h = wnh +

∆t

2

(
g(wnh) + g(wn+1

h )
)

+
∆t2

12

(
∂tg(wnh)− ∂tg(wn+1

h )
)
.
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B. Von Neumann stability analysis of Cauchy-Kowalevski multiderivative method

The method is applied to the convection equation (6.14)

wn+1 = wn − u∆t

2

(
∂xw

n + ∂xw
n+1)+

u2∆t2

12

(
∂2
xw

n − ∂2
xw

n+1) (6.17 revisited)

and the resulting terms are discretized using the finite differences (6.16)

wn+1
j = wnj −

u∆t

2∆x

(
wnj − wnj−1 + wn+1

j − wn+1
j−1

)
+
u2∆t2

12∆x2

(
wnj−1 − 2wnj + wnj+1 − wn+1

j−1 + 2wn+1
j − wn+1

j+1

)
.

We substitute ν = u∆t
∆x

and obtain

wn+1
j = wnj −

ν

2

(
wnj − wnj−1 + wn+1

j − wn+1
j−1

)
+
ν2

12

(
wnj−1 − 2wnj + wnj+1 − wn+1

j−1 + 2wn+1
j − wn+1

j+1

)
.

For the von Neumann stability analysis we consider data that can be represented by a Fourier

mode

wnj = eikxj , wnj+1 = eikxj eik∆x, wnj−1 = eikxj e−ik∆x

with i being the imaginary unit and k being the wave number. The updated solution is given

by

wn+1
j = r(k,∆x,∆t)wnj

using the amplification factor r(k,∆x,∆t). Before substituting we reorder

wn+1
j +

ν

2

(
wn+1
j − wn+1

j−1

)
+
ν2

12

(
wn+1
j−1 − 2wn+1

j + wn+1
j+1

)
= wnj −

ν

2

(
wnj − wnj−1

)
+
ν2

12

(
wnj−1 − 2wnj + wnj+1

).
such that after substituting the unknown by the Fourier mode and dividing by eikxj one

obtains

r(k,∆x,∆t) (1 +
ν

2

(
1− e−ik∆x

)
+
ν2

12

(
e−ik∆x − 2 + eik∆x

))
= 1− ν

2

(
1− e−ik∆x

)
+
ν2

12

(
e−ik∆x − 2 + eik∆x

)
such that the amplification factor can be expressed as

r(k,∆x,∆t) =
1− ν

2

(
1− e−ik∆x

)
+ ν2

12

(
e−ik∆x − 2 + eik∆x

)
1 + ν

2
(1− e−ik∆x) + ν2

12
(e−ik∆x − 2 + eik∆x)

.

If the discretization is stable, the Fourier mode may not be amplified, i.e. |r(k,∆x,∆t)| ≤ 1.

Therefore, we investigate the numerator

f(k,∆x,∆t) = 1− ν

2

(
1− e−ik∆x

)
+
ν2

12

(
e−ik∆x − 2 + eik∆x

)
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and the denominator

g(k,∆x,∆t) = 1 +
ν

2

(
1− e−ik∆x

)
+
ν2

12

(
e−ik∆x − 2 + eik∆x

)
with r(k,∆x,∆t) = f(k,∆x,∆t)

g(k,∆x,∆t)
. Evaluating |r(k,∆x,∆t)| needs the absolute value of the

complex numbers given by the numerator and denominator. In order to avoid handling the

square root resulting from the complex number we analyze |r(k,∆x,∆t)|2. This leads to the

same statement because |r(k,∆x,∆t)| ≤ 1⇔ |r(k,∆x,∆t)|2 ≤ 1 due to the absolute values

being positive. First, we replace the Fourier mode by its representation in trigonometric form

eikxj = cos(kxj) + i sin(kxj). Then, the numerator and denominator are given by

f(k,∆x,∆t) =1− ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(cos(k∆x)− i sin(k∆x)− 2 + cos(k∆x) + i sin(k∆x))

=1− ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(2 cos(k∆x)− 2)

and

g(k,∆x,∆t) =1 +
ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(cos(k∆x)− i sin(k∆x)− 2 + cos(k∆x) + i sin(k∆x))

=1 +
ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(2 cos(k∆x)− 2) .

Now, we introduce the following substitution

y := cos

(
k∆x

2

)
⇒ cos(k∆x) = 2y − 1, sin(k∆x) = ±2

√
y(1− y) (6.20 revisited)

with y ∈ [0, 1]. It allows to write the numerator as

f(k,∆x,∆t) =1− ν

2

(
1− 2y + 1± i2

√
y(1− y)

)
+
ν2

12
(4y − 2− 2)

=1− ν
(

1− y ± i
√
y(1− y)

)
+
ν2

3
(y − 1)

and the denominator as

g(k,∆x,∆t) =1 +
ν

2

(
1− 2y + 1± i2

√
y(1− y)

)
+
ν2

12
(4y − 2− 2)

=1 + ν
(

1− y ± i
√
y(1− y)

)
+
ν2

3
(y − 1) .

203



B. Von Neumann stability analysis of Cauchy-Kowalevski multiderivative method

The squared absolute value of the numerator and denominator are given as

|f(k,∆x,∆t)|2 =

(
1− ν(1− y) +

ν2

3
(y − 1)

)2

+
(
ν
√
y(1− y)

)2

and

|g(k,∆x,∆t)|2 =

(
1 + ν(1− y) +

ν2

3
(y − 1)

)2

+
(
ν
√
y(1− y)

)2

Now, |r(k,∆x,∆t)|2 ≤ 1 is only fulfilled if |f(k,∆x,∆t)|2 ≤ |g(k,∆x,∆t)|2. Thus, we check

|f(k,∆x,∆t)|2 ≤ |g(k,∆x,∆t)|2

⇔
(

1− ν(1− y) +
ν2

3
(y − 1)

)2

≤
(

1 + ν(1− y) +
ν2

3
(y − 1)

)2

.

After expanding the terms, we get to

1− 2ν(1− y) + ν2(1− y)2 +
1

9
ν4(y − 1)2 +

2

3
ν2(y − 1) +

2

3
ν3(y − 1)2

≤1 + ν2(1− y)2 +
1

9
ν4(y − 1)2 + 2ν(1− y) +

2

3
ν2(y − 1)− 2

3
ν3(y − 1)2

were many terms cancel each other giving

−ν(1− y) +
1

3
ν3(y − 1)2 ≤ ν(1− y)− 1

3
ν3(y − 1)2.

Further simplifications lead to

2

3
ν3(1− y)2 ≤ 2ν(1− y)

which obviously holds for y = 1. Therefore, we assume in the following that y 6= 1 such that

we can simplify this to
2

3
ν3(1− y)2 ≤ 2ν(1− y)

⇔ ν2 ≤ 3

1− y

and therefore ν ≤
√

3
1−y , y ∈ [0, 1) as we consider only positive values for ν. From this

follows, that the method is not stable for all y ∈ [0, 1] without restrictions regarding the CFL

number ν. However, one would expect a stable method if a A-stable time integrator is used.

B.1.2. Third order method

The third order method is given by the formula

wn+1
h = wnh +

∆t

3

(
g(wnh) + 2g(wn+1

h )
)
− ∆t2

6
∂tg(wn+1

h ).
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The method is applied to the convection equation (6.14)

wn+1 = wn − u∆t

3

(
∂xw

n + 2∂xw
n+1)− u2∆t2

6
∂2
xw

n+1

and the resulting terms are discretized using the finite differences (6.16)

wn+1
j = wnj −

u∆t

3∆x

(
wnj − wnj−1 + 2wn+1

j − 2wn+1
j−1

)
− u2∆t2

6∆x2

(
wn+1
j−1 − 2wn+1

j + wn+1
j+1

)
.

We substitute ν = u∆t
∆x

and obtain

wn+1
j = wnj −

ν

3

(
wnj − wnj−1 + 2wn+1

j − 2wn+1
j−1

)
− ν2

6

(
wn+1
j−1 − 2wn+1

j + wn+1
j+1

)
.

Again, we reorder such that unknowns at the new time level are on the right hand side

wn+1
j +

ν

3

(
2wn+1

j − 2wn+1
j−1

)
+
ν2

6

(
wn+1
j−1 − 2wn+1

j + wn+1
j+1

)
= wnj −

ν

3

(
wnj − wnj−1

)
.

Then, the solution is expressed as Fourier modes

r(k,∆x,∆t)eikxj

(
1 +

ν

3

(
2− 2e−ik∆x

)
+
ν2

6

(
e−ik∆x − 2 + eik∆x

))
= eikxj

(
1− ν

3

(
1− e−ik∆x

))
and after eliminating eikxj we obtain

r(k,∆x,∆t)

(
1 +

ν

3

(
2− 2e−ik∆x

)
+
ν2

6

(
e−ik∆x − 2 + eik∆x

))
= 1− ν

3

(
1− e−ik∆x

)
.

Again, we define the amplification factor as r(k,∆x,∆t) = f(k,∆x,∆t)
g(k,∆x,∆t)

. We have

f(k,∆x,∆t) =1− ν

3

(
1− e−ik∆x

)
g(k,∆x,∆t) =1 +

ν

3

(
2− 2e−ik∆x

)
+
ν2

6

(
e−ik∆x − 2 + eik∆x

)
Using the trigonometric form of the complex numbers gives

f(k,∆x,∆t) = 1− ν

3
(1− cos(k∆x) + i sin(k∆x))
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and

g(k,∆x,∆t) =1 +
2ν

3
(1− cos(k∆x) + i sin(k∆x))

+
ν2

6
(cos(k∆x)− i sin(k∆x)− 2 + cos(k∆x) + i sin(k∆x))

=1 +
2ν

3
(1− cos(k∆x) + i sin(k∆x))

+
ν2

6
(2 cos(k∆x)− 2) .

Then, using the substitution (6.20) one obtains

f(k,∆x,∆t) = 1− 2ν

3

(
1− y ± i

√
y(1− y)

)
and

g(k,∆x,∆t) = 1 +
4ν

3

(
1− y ± i

√
y(1− y)

)
+

2ν2

3
(1y − 1) .

The squared absolute value are

|f(k,∆x,∆t)|2 =

(
1− 2ν

3
(1− y)

)2

+

(
2ν

3

√
y(1− y)

)2

and

|g(k,∆x,∆t)|2 =

(
1 +

4ν

3
(1− y) +

2ν2

3
(1y − 1)

)2

+

(
4ν

3

√
y(1− y)

)2

.

Now, one has to check whether |f(k,∆x,∆t)|2 ≤ |g(k,∆x,∆t)|2 holds. We get(
1− 2ν

3
(1− y)

)2

+

(
2ν

3

√
y(1− y)

)2

≤
(

1 +
4ν

3
(1− y) +

2ν2

3
(1y − 1)

)2

+

(
4ν

3

√
y(1− y)

)2

what gives

1 +
4

9
ν2(1− y)2 − 4

3
ν(1− y) +

4

9
ν2y(1− y)

≤1 +
16

9
ν2(1− y)2 +

4

9
ν4(y − 1)2 +

8

3
ν(1− y) +

4

3
ν2(y − 1)

− 16

9
ν3(1− y)2 +

16

9
ν2y(1− y).

Then, we bring all terms to the right hand side of the equation

0 ≤12

9
ν2(1− y)2 +

4

9
ν4(y − 1)2 +

12

3
ν(1− y) +

4

3
ν2(y − 1)

− 16

9
ν3(1− y)2 +

12

9
ν2y(1− y).
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and multiply with 3
4ν

to obtain

0 ≤ν(1− y)2 +
1

3
ν3(y − 1)2 + 3(1− y) + ν(y − 1)− 4

3
ν2(1− y)2

+ νy(1− y).

what can be slightly simplified to

0 ≤ (1− y)

(
3 +

1

3
ν3(1− y)− 4

3
ν2(1− y)

)
.

Now, the method is stable if the inequality holds for all y ∈ [0, 1]. For an implicit method,

that is A-stable, we expect this inequality to be true for all ν, as well. The special case y = 1

is simple as the right hand side vanishes. For y 6= 0, it is sufficient to check

0 ≤ 3 +

(
1

3
ν3 − 4

3
ν2

)
(1− y)︸ ︷︷ ︸

=:h(ν)

.

It turns out that this inequality is not fulfilled for all cases. For y = 0, we have plotted

h(x), see Fig. 6.3, and one clearly sees that the function becomes negative approximately for

ν ∈ (2.30278, 3). The bounds have been determined numerically and rounded to five decimal

places. Thus, the method is subject to a CFL-like condition for which it is stable.

B.2. Approximation using upwind only

In the previous section we have shown the extended von Neumann analysis for the case

where an upwind difference for the convective term and a central difference for the diffusive

term have been used. In both cases it does not lead to an unconditionally stable numerical

method. In this section, we show the extended version of the analysis presented in Sec. 6.5.1.

Therefore, we only use upwind differences

∂xw(xj) ≈
wj − wj−1

∆x
, ∂2

xw(xj) ≈
wj − 2wj−1 + wj−2

∆x2
(6.23 revisited)

for both — first and second — space derivatives. The expression for the second derivative

can be obtained by applying the upwind finite difference twice

∂2
xw(xj) ≈ ∂x

(
wj − wj−1

∆x

)
≈ 1

∆x

(
wj − wj−1

∆x
− wj−1 − wj−2

∆x

)
=
wj − 2wj−1 + wj−2

∆x2

and thus the approach presented in Sec. 6.5 follows this idea closely.
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B.2.1. Fourth order method

The procedure for the von Neumann stability analysis is the same as already seen in Sec. 6.4,

6.5.1 and the previous section. Therefore, we do not introduce every quantity again.

The fourth order method

wn+1
h = wnh +

∆t

2

(
g(wnh) + g(wn+1

h )
)

+
∆t2

12

(
∂tg(wnh)− ∂tg(wn+1

h )
)
.

is applied to the convection equation (6.14) such that we can replace the time by space

derivatives using the PDE. Then we get

wn+1 = wn − u∆t

2

(
∂xw

n + ∂xw
n+1)+

u2∆t2

12

(
∂2
xw

n − ∂2
xw

n+1) (6.17 revisited)

and the derivatives are approximated using the finite differences (6.23). This leads to

wn+1 = wn − u∆t

2∆x

(
wnj − wnj−1 + wn+1

j − wn+1
j−1

)
+
u2∆t2

12∆x2

(
wnj − 2wnj−1 + wnj−2 − wn+1

j + 2wn+1
j−1 − wn+1

j−2

)
.

where we substitute ν =: u∆t
∆x
≥ 0 and obtain

wn+1 = wn − ν

2

(
wnj − wnj−1 + wn+1

j − wn+1
j−1

)
+
ν2

12

(
wnj − 2wnj−1 + wnj−2 − wn+1

j + 2wn+1
j−1 − wn+1

j−2

)
.

We reorder the terms such that unknowns at the new time level n+ 1 are on one side and

the terms of the known time level n are on the right hand side

wn+1 +
ν

2

(
wn+1
j − wn+1

j−1

)
+
ν2

12

(
wn+1
j − 2wn+1

j−1 + wn+1
j−2

)
=wn − ν

2

(
wnj − wnj−1

)
+
ν2

12

(
wnj − 2wnj−1 + wnj−2

)
.

For the von Neumann stability analysis we consider data that can be represented by a Fourier

mode

wnj = eikxj , wnj−1 = eikxj e−ik∆x, wnj−2 = eikxj e−2ik∆x (B.1)

with i being the imaginary unit and k being the wave number. The updated solution is given

by

wn+1
j = r(k,∆x,∆t)eikxj

using the amplification factor r(k,∆x,∆t). Then, we obtain

r(k,∆x,∆t)

[
1 +

ν

2

(
1− e−ik∆x

)
+
ν2

12

(
1− 2e−ik∆x + e−2ik∆x

)]
=1− ν

2

(
1− e−ik∆x

)
+
ν2

12

(
1− 2e−ik∆x + e−2ik∆x

)

208



B.2. Approximation using upwind only

where we have already eliminated the term eikxj . Again, we define the amplification factor

as r(k,∆x,∆t) := f(k,∆x,∆t)
g(k,∆x,∆t)

. We have

f(k,∆x,∆t) =1− ν

2

(
1− e−ik∆x

)
+
ν2

12

(
1− 2e−ik∆x + e−2ik∆x

)
g(k,∆x,∆t) =1 +

ν

2

(
1− e−ik∆x

)
+
ν2

12

(
1− 2e−ik∆x + e−2ik∆x

)
.

Using the trigonometric form of the complex numbers gives

f(k,∆x,∆t) = 1− ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(1− 2 cos(k∆x) + 2i sin(k∆x) + cos(2k∆x)− i sin(2k∆x))

and

g(k,∆x,∆t) = 1 +
ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12
(1− 2 cos(k∆x) + 2i sin(k∆x) + cos(2k∆x)− i sin(2k∆x)) .

We use the double angle formulae

sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos2(θ)− sin2(θ) = 1− 2 sin2(θ) = 2 cos2(θ)− 1
(6.24 revisited)

in order to simplify the expressions. It allows to express the numerator as

f(k,∆x,∆t) = 1− ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12

(
1− 2 cos(k∆x) + 2i sin(k∆x) + 2 cos2(k∆x)− 1− 2i sin(k∆x) cos(k∆x)

)
and the denominator as

g(k,∆x,∆t) = 1 +
ν

2
(1− cos(k∆x) + i sin(k∆x))

+
ν2

12

(
1− 2 cos(k∆x) + 2i sin(k∆x) + 2 cos2(k∆x)− 1− 2i sin(k∆x) cos(k∆x)

)
.

The trigonometric function are substituted by

y := cos

(
k∆x

2

)
⇒ cos(k∆x) = 2y − 1, sin(k∆x) = ±2

√
y(1− y) (6.20 revisited)

with y ∈ [0, 1]. This eventually leads to

f(k,∆x,∆t) = 1− ν

2

(
2− 2y ± i2

√
y(1− y)

)
+
ν2

12

(
1− 4y + 2± 4i

√
y(1− y) + 8y2 − 8y + 2− 1∓ 4i(2y − 1)

√
y(1− y)

)
= 1− ν (1− y)∓ νi

√
y(1− y)

+
ν2

3

(
1− 3y + 2y2 ± i

√
y(1− y)∓ i(2y − 1)

√
y(1− y)

)
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and

g(k,∆x,∆t) = 1 +
ν

2

(
2− 2y ± 2i

√
y(1− y)

)
+
ν2

12

(
1− 4y + 2± 4i

√
y(1− y) + 8y2 − 8y + 2∓ 4i(2y − 1)

√
y(1− y)

)
= 1 + ν (1− y)± νi

√
y(1− y)

+
ν2

3

(
1− 3y + 2y2 ± i

√
y(1− y)∓ i(2y − 1)

√
y(1− y)

)
.

The squared absolute values introduce a lot of additional terms in contrast to the discretization

using central finite differences for the diffusion term. We extract the term y(1− y) from the

squared absolute value of the complex part and slightly simplify it so we get

|f(k,∆x,∆t)|2 =

(
1− ν (1− y) +

ν2

3

(
1− 3y + 2y2))2

+

(
∓ν
√
y(1− y) +

ν2

3

(
±
√
y(1− y)∓ (2y − 1)

√
y(1− y)

))2

=

(
1− ν (1− y) +

ν2

3

(
1− 3y + 2y2))2

+ y(1− y)

(
∓ν +

ν2

3
(±1∓ (2y − 1))

)2

=

(
1− ν (1− y) +

ν2

3

(
1− 3y + 2y2))2

+ y(1− y)

(
∓ν +

ν2

3
(±2∓ 2y)

)2

.

and by

|g(k,∆x,∆t)|2 =

(
1 + ν(1− y) +

ν2

3
(1− 3y + 2y2)

)2

+

(
±ν
√
y(1− y) +

ν2

3
(±
√
y(1− y)∓ (2y − 1)

√
y(1− y))

)2

=

(
1 + ν(1− y) +

ν2

3
(1− 3y + 2y2)

)2

+ y(1− y)

(
±ν +

ν2

3
(±1∓ (2y − 1))

)2

=

(
1 + ν(1− y) +

ν2

3
(1− 3y + 2y2)

)2

+ y(1− y)

(
±ν +

ν2

3
(±2∓ 2y)

)2

.

The previous simplification make it easier to check whether |f(k,∆x,∆t)|2 ≤ |g(k,∆x,∆t)|2
holds. We get(

1− ν (1− y) +
ν2

3

(
1− 3y + 2y2))2

+ y(1− y)

(
∓ν +

ν2

3
(±2∓ 2y)

)2

≤
(

1 + ν(1− y) +
ν2

3
(1− 3y + 2y2)

)2

+ y(1− y)

(
±ν +

ν2

3
(±2∓ 2y)

)2
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where both sides have to be expanded. This leads to the lengthy expression

1 + ν2(1− y)2 +
ν4

9

(
1− 3y + 2y2)2

− 2ν(1− y) +
2

3
ν2 (1− 3y + 2y2)− 2

3
ν3(1− y)

(
1− 3y + 2y2)

+ y(1− y)

(
ν2 +

ν4

9
(±2∓ 2y)2 +

2ν2

3
(±ν)(∓2∓ 2y)

)
≤1 + ν2(1− y)2 +

ν4

9

(
1− 3y + 2y2)2

+ 2ν(1− y) +
2

3
ν2 (1− 3y + 2y2)+

2

3
ν3(1− y)

(
1− 3y + 2y2)

+ y(1− y)

(
ν2 +

ν4

9
(±2∓ 2y)2 +

2ν2

3
(∓ν)(±2∓ 2y)

)
.

where several terms — like all squared terms — cancel and in the last term of the left hand

side we can extract −1 to give

− 2ν(1− y)− 2

3
ν3(1− y)

(
1− 3y + 2y2)− y(1− y)

2ν2

3
(±ν)(±2∓ 2y)

≤+ 2ν(1− y) +
2

3
ν3(1− y)

(
1− 3y + 2y2)+ y(1− y)

2ν2

3
(±ν)(±2∓ 2y).

and we can bring all terms of the left hand side to the right hand and simplify the expression

further. This gives

0 ≤ 4ν(1− y) +
4

3
ν3(1− y)

(
1− 3y + 2y2)+

4ν2

3
y(1− y)(∓ν)(±2∓ 2y)

⇔ 0 ≤ 4ν(1− y) +
4

3
ν3(1− y)

(
1− 3y + 2y2)+

4ν3

3
y(1− y)(2− 2y)

⇔ 0 ≤ 4ν(1− y) +
4ν3

3
(1− y)

(
1− 3y + 2y2 + 2y − 2y2)

⇔ 0 ≤ 4ν(1− y) +
2ν3

3
(1− y) (1− y)

⇔ 0 ≤ 4ν(1− y) +
2ν3

3
(1− y)2 .

This inequality is fulfilled for all y and ν as we require ν ≥ 0 and y ∈ [0, 1]. It follows that

the scheme is stable for all time step sizes.

B.2.2. Third order method

We repeat the exact same steps as for the fourth order method also for the third order method

wn+1
h = wnh +

∆t

3

(
g(wnh) + 2g(wn+1

h )
)
− ∆t2

6
∂tg(wn+1

h ).
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B. Von Neumann stability analysis of Cauchy-Kowalevski multiderivative method

The method is applied to the convection equation (6.14) such that we can replace the time

by space derivatives (6.15) to get

wn+1 = wn − u∆t

3

(
∂xw

n + 2∂xw
n+1)− u2∆t2

6
∂2
xw

n+1

and the resulting terms are discretized by upwind finite differences (6.23)

wn+1
j = wnj −

u∆t

3∆x

(
wnj − wnj−1 + 2wn+1

j − 2wn+1
j−1

)
− u2∆t2

6∆x2

(
wn+1
j − 2wn+1

j−1 + wn+1
j−2

)
.

We introduce ν := u∆t
∆x
≥ 0 and obtain

wn+1
j = wnj −

ν

3

(
wnj − wnj−1 + 2wn+1

j − 2wn+1
j−1

)
− ν2

6

(
wn+1
j − 2wn+1

j−1 + wn+1
j−2

)
.

Again, we reorder such that unknowns at the new time level are on the right hand side

wn+1
j +

2

3
ν
(
wn+1
j − wn+1

j−1

)
+
ν2

6

(
wn+1
j − 2wn+1

j−1 + wn+1
j−2

)
=wnj −

ν

3

(
wnj − wnj−1

)
.

Then, the solution is expressed using Fourier modes (B.1) so we obtain

r(k,∆x,∆t)

(
1 +

2

3
ν
(

1− e−ik∆x
)

+
ν2

6

(
1− 2e−ik∆x + e−2ik∆x

))
= 1− ν

3

(
1− e−ik∆x

)
after eliminating eikxj . Again, we define the amplification factor as r(k,∆x,∆t) := f(k,∆x,∆t)

g(k,∆x,∆t)
.

We have

f(k,∆x,∆t) =1− ν

3

(
1− e−ik∆x

)
g(k,∆x,∆t) =1 +

2ν

3

(
1− e−ik∆x

)
+
ν2

6

(
1− 2e−ik∆x + e−2ik∆x

)
Using the trigonometric form of the complex numbers gives

f(k,∆x,∆t) = 1− ν

3
(1− cos(k∆x) + i sin(k∆x))

and

g(k,∆x,∆t) =1 +
2ν

3
(1− cos(k∆x) + i sin(k∆x))

+
ν2

6
(1− 2 cos(k∆x) + 2i sin(k∆x) + cos(2k∆x)− i sin(2k∆x))

=1 +
2ν

3
(1− cos(k∆x) + i sin(k∆x))

+
ν2

6

(
−2 cos(k∆x) + 2i sin(k∆x) + cos2(k∆x)− 2i sin(k∆x) cos(k∆x)

)
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where we have used the double angle formulae (6.24). We use the substitution (6.20) to

obtain

f(k,∆x,∆t) = 1− 2ν

3

(
1− y ± i

√
y(1− y)

)
and

g(k,∆x,∆t) = 1 +
4ν

3

(
1− y ± i

√
y(1− y)

)
+

2ν2

3

(
1− 3y + 2y2 ± i

√
y(1− y)∓ i

√
y(1− y)(2y − 1)

)
.

The squared absolute values are

|f(k,∆x,∆t)|2 =

(
1− 2ν

3
(1− y)

)2

+

(
2ν

3

√
y(1− y)

)2

and

|g(k,∆x,∆t)|2 =

(
1 +

4ν

3
(1− y) +

2ν2

3

(
1− 3y + 2y2))2

+ y(1− y)

(
±4ν

3
+

2ν2

3
(∓2y ± 2)

)2

.

We have to check again whether |f(k,∆x,∆t)|2 ≤ |g(k,∆x,∆t)|2 holds. This gives(
1− 2ν

3
(1− y)

)2

+

(
2ν

3

√
y(1− y)

)2

≤
(

1 +
4ν

3
(1− y) +

2ν2

3

(
1− 3y + 2y2))2

+ y(1− y)

(
±4ν

3
+

2ν2

3
(∓2y ± 2)

)2

and after expanding the terms we have

1 +
4

9
ν2(1− y)2 − 4

3
ν(1− y) +

4

9
ν2y(1− y)

≤1 +
16

9
ν2(1− y)2 +

4

9
ν4(1− 3y + 2y2)2

+
8

3
ν(1− y) +

4

3
ν2(1− 3y + 2y2) +

16

9
ν3(1− y)(1− 3y + 2y2)

+ y(1− y)

(
16

9
ν2 +

4

9
ν4(∓2y ± 2)2 +

16

9
ν3(±1)(∓2y ± 2)

)
.

The following simplifications

(∓2y ± 2)2 = (2y − 2)2 = (−2y + 2)2

and

(±1)(∓2y ± 2) = −2y + 2
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hold so we can simplify the inequality to get

0 ≤4

3
ν2(1− y)2 +

4

9
ν4(1− 3y + 2y2)2

+ 4ν(1− y) +
4

3
ν2(1− 3y + 2y2) +

16

9
ν3(1− y)(1− 3y + 2y2)

+ y(1− y)

(
4

3
ν2 +

4

9
ν4(2y − 2)2 +

16

9
ν3(−2y + 2)

)
.

We can further simplify the terms

16

9
ν3(1− y)(1− 3y + 2y2) + y(1− y)

16

9
ν3(−2y + 2) =

16

9
ν3(1− y)2

and
4

3
ν2(1− 3y + 2y2) +

4

3
ν2y(1− y) =

4

3
ν2(1− y)2.

We can rewrite the inequality with these transformation to obtain

0 ≤4

3
ν2(1− y)2 +

4

9
ν4(1− 3y + 2y2)2

+ 4ν(1− y) +
4

3
ν2(1− y)2 +

16

9
ν3(1− y)2

+
4

9
ν4y(1− y)(2y − 2)2

what we do need not simplify further. This inequality is fulfilled for all y and ν as we require

ν ≥ 0 and y ∈ [0, 1]. It follows that the scheme is stable for all time step sizes.
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C. Compact formulation of two-point collocation

methods using the new approach

The new approach of approximating the time derivatives introduced in [212] allows to represent

the methods in two different ways. We call the way it has been done in the publication and

explained in Sec. 6.5 the ‘naive’ way in this section. In order to sketch the idea we reuse the

formulation in section for a linear advection-diffusion problem without source term

∂twDG = ADGwDG.

Then, the two-derivative two-point collocation method (6.34) has been written as

Wn+1
1 −Wn

1

∆t
= ADG

(
α1W

n
1 − β1W

n+1
1

)
+ ∆tADG

(
α2W

n
2 − β2W

n+1
2

)
.

This formulation uses the auxiliary unknowns for the time derivatives Wi, i ≥ 1 and the fact

that the next highest time derivative is given by applying the operator ADG once more, i.e.

Wi+1 = ADGWi. In this case, the linear system of equations Ax = b that has to be solved is

given by matrix A (in block-matrix notation)
Aσσ 0 Aσw 0 Aσλ 0

0 Aσσ 0 Aσw 0 Aσλ
β1∆tAwσ β2∆t2Awσ Mϕ + β1∆tAww β2∆t2Aww β1∆tAwλ β2∆t2Awλ

Awσ 0 Aww Mϕ Awλ 0

Aλσ 0 Aλw 0 Aλλ 0

0 Aλσ 0 Aλw 0 Aλλ

 (C.1)

where we follow the naming scheme close to the one introduced in Section 3.3.2, but we

state the mass matrix Mϕ referring to the mass matrix obtained from (3.15b) explicitly.

The matrices A(· ·) are still sparse matrices. Moreover, matrix A consists of several zero

blocks and is thus sparse as well. Although the system of equations is larger, the static

condensation process can still be carried out. However, the resulting system is coupled in M

hybrid unknowns as we have to introduce one for each approximation of a time derivative.

Moreover, many of the block matrices used to assemble A appear more than once. This might

be exploited for an efficient implementation as described in the FESTUNG paper series [80,

124, 195].

The vector of unknowns and right hand side are given by

x =
(
Σn+1

1 ,Σn+1
2 ,Wn+1

1 ,Wn+1
2 ,Λn+1

1 ,Λn+1
2

)T
, b = (0, 0, RCol, 0, 0, 0)T. (C.2)
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C. Compact formulation of two-point collocation methods using the new approach

where the entry in the right hand side vector is given by

RCol =MϕW
n
1

+ α1∆t(AwσΣn1 + AwwW
n
1 + AwλΛn1 )

+ α2∆t2(AwσΣn2 + AwwW
n
2 + AwλΛn2 ).

(C.3)

As one can see the block-matrices can also be reused for the assembly of the right hand side.

The more compact way to represent is to use the newly introduced representations of the

time derivatives. It allows us to write the time integrator as

Wn+1
1 −Wn

1

∆t
= α1W

n
2 − β1W

n+1
2 + ∆tADG

(
α2W

n
2 − β2W

n+1
2

)
where only the highest order time derivative has to be expressed by the operator ADG. All

other time derivatives are available by the introduced auxiliary unknowns. Following this

approach, the matrix A can be expressed
Aσσ 0 Aσw 0 Aσλ 0

0 Aσσ 0 Aσw 0 Aσλ
0 β2∆t2Awσ 0 β1∆tMϕ + β2∆t2Aww 0 β2∆t2Awλ

Awσ 0 Aww Mϕ Awλ 0

Aλσ 0 Aλw 0 Aλλ 0

0 Aλσ 0 Aλw 0 Aλλ

 (C.4)

such that all matrices in the third row containing β1 can be replaced by the mass matrix Mϕ.

The right hand side simplifies accordingly to

RCol =MϕW
n
1 + α1∆tMϕW

n
2

+ α2∆t2(AwσΣn2 + AwwW
n
2 + AwλΛn2 ).

(C.5)

Lower time derivatives access the representation of the time derivative and only need the

assembly of a mass matrix. It leads to a sparser system than the initial formulation and

may lead to massive reductions in runtime because of the smaller assembly costs, memory

requirements and possibly easier solving process of the linear system of equations. The

approach becomes more beneficial for an increasing number of time derivatives M . Moreover,

it promises to be an especially beneficial approach for nonlinear problems, where the Jacobian

of the DG discretization is needed. Together with the multiderivative approach additional

derivatives of the nonlinear functions are needed to the application of the new approach and

the application of a nonlinear solver like Newton’s method.

In Fig. C.1, we present the results of the linear advection test case used to verify the

approach, see Sec. 6.5, for the compact notation of the two-point collocation methods.

The results are nearly indistinguishable from the results obtained in the “non-compact”

formulation, see Fig.6.5. The most apparent differences can be seen for large order in time

and space where one is close to the machine precision/precision of the linear solver employed
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(a) Third order method (k = 1, l = 2).
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(b) Fourth order method (k = 2, l = 2).
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(c) Fifth order method (k = 2, l = 3).
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(d) Sixth order method (k = 3, l = 3).

Figure C.1.: Numerical results for the advection equation with parameters u = 1, tfinal = 1.0.

Time step size for the coarsest triangular mesh, consisting of one element, was

chosen to be ∆t = 0.5. Two-point collocation schemes has been used in compact

formulation for time integration.
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C. Compact formulation of two-point collocation methods using the new approach

by MATLAB. It seems beneficial to use the compact formulation if one aims for reduced

computational costs.

Remark 10 Most of the matrices can be reused efficiently only in the purely linear case and

the unknowns must be reordered such that a local static condensation process can be carried

out.
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[126] A. Jaust, J. Schütz, and D. C. Seal. “Implicit multistage two-derivative discontinuous Galerkin

schemes for viscous conservation laws”. In: Journal of Scientific Computing 69.2 (2016), pp. 866–

891.
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[149] H. Luo, J. D. Baum, and R. Löhner. “A Hermite WENO-based limiter for discontinuous Galerkin

method on unstructured grids”. In: Journal of Computational Physics 225.1 (2007), pp. 686–713.
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