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Executive Summary 

In order to tackle the increasing traffic challenges and to achieve the goal of 

sustainable transportation, various policies have to be devised and implemented. 

In this regard, it is critical to analyze traffic patterns and travel behaviour via 

traffic models and simulations. The traffic data serves as a foundation for the 

development and calibration of such models and simulations. Naturally, this also 

magnifies the importance of traffic data collection methods as well as the 

equipment used. However, it is not easy to collect traffic data for large spans of 

roadway networks as most of the data collection methods require a large fixed 

infrastructure or are labor intensive. It is important to maintain a balance between 

the costs and quality of the collected data. Over the years, several types of data 

collection methodologies and equipment have been employed. However, each 

method and equipment comes with its own set of drawbacks and limitations. 

Traditional equipment such as manual counts, fixed camera, inductive loops etc. 

provide point data only, hence they are not applicable for covering large sections 

of the network. Other advanced equipment e.g. vehicle to infrastructure (V2I), 

probe vehicle with GPS, smartphone technologies etc., produce big datasets and 

are intrusive in nature. Additionally, the use of satellites and manned aircrafts to 

collect dynamic traffic data, is often very expensive. Therefore, there is a need for 

a data collection methodology that combines all the good features of the existing 

apparatus and minimizes the effects of the drawbacks. This leads to the use of 

Unmanned Aerial Vehicles (UAVs) for traffic data collection. 

Unmanned aerial vehicles or drones are considered to be one of the most impactful 

and multi-dimensional emerging technologies of the modern era. The UAV 

technology is swiftly making its presence felt in multiple fields of life varying from 

commercial tasks such as parcel delivery, sports coverage etc. to research 

applications like surveying of inaccessible areas and crop fields. UAVs are also 

being increasingly used in the transportation field to monitor and analyze the 

traffic flow as well as safety conditions, particularly in emergency situations. UAVs 

provide a dynamic and a bird-eye view of the traffic network, and can be utilized 

for example by traffic planners and management centers to determine the state 

of the traffic flow and manage congestion problems. This also provides a cheap 

alternative to fixed camera systems and sensors infrastructure, as they are 

flexible and can be deployed anywhere (mobile). The mobility and flexibility are 

the key assets of this technology. 

The objective of this research is to demonstrate the traffic data collection and 

analysis applications of small UAVs by presenting specific frameworks for the 

conduction of UAV-based traffic studies. This research presents various 
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frameworks and methodologies in order to effectively use the data acquired via 

small UAVs for traffic flow analysis. The ultimate goal is to develop a complete 

package that allows a small UAV-based traffic study for multiple traffic related 

applications, particularly focusing on traffic flow analysis for various types of 

infrastructural  elements. The emphasis is also on the extraction of useful traffic 

information in a short period of time, hence the automated processing and 

analysis of UAV videos. The nature of this research is highly applied and practical, 

aiming to improve the existing data collection and analysis procedures. In this 

regard, a number of contributions are made in each of the chapters of this 

dissertation: 

Chapter 1 gives the introduction of this 3-year PhD research. This chapter 

formulates the problem to be addressed and outlines the research questions. 

Moreover, the contributions and objectives of the research are also described. 

Chapter 2 presents a universal guiding framework for the conduction of a UAV-

based traffic study. The concept of utilizing small UAVs for traffic-related 

applications is addressed in detail. In order to streamline the whole process,  a 

detailed framework is proposed that covers all the aspects of using UAVs for traffic 

data collection and analytical purposes; ranging from ensuring a safe and efficient 

UAV flight execution to the analysis steps that follow the execution of a UAV flight. 

The framework is classified into the following seven components: (i) scope 

definition, (ii) flight planning, (iii) flight implementation, (iv) data acquisition, (v) 

data processing and analysis, (vi) data interpretation and (vii) optimized traffic 

application. It provides a comprehensive guideline and gives an overview of the 

management in the context of the hardware and the software entities involved in 

the process. In this chapter, an extensive yet systematic review of the existing 

traffic-related UAV studies is presented by molding them in a step-by-step 

framework.  

Chapter 3 proposes a detailed methodological framework for automated UAV 

video processing. The main objective is to efficiently process the traffic data 

acquired via UAVs; ensuring the data is converted into useful and reliable traffic 

information. The proposed framework consists of five components, namely: 

preprocessing, stabilization, geo-registration, vehicle detection and tracking, and 

trajectory management. After all these sub-processes, the trajectories of multiple 

vehicles at a particular road segment are extracted, which can then be used either 

to extract various traffic parameters or to analyze traffic flow and safety 

situations. This chapter also gives a brief comparison of existing UAV studies 

based on either manual or semiautomatic processing techniques. However, the 

main focus is on  the description of the proposed automated framework. In the 

end, the proposed framework is validated with the help of a field experiment 

conducted in the city of Sint-Truiden, Belgium. This data is processed and 
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analyzed as per the modules of the framework, resulting in a series of vehicle 

trajectories.   

Chapter 4 evaluates the performance of the proposed UAV based traffic analysis 

system with a special emphasis on the vehicle detection and tracking module. The 

main objective is to determine the level of accuracy of the generated vehicle 

detection and trajectory data. A certain level of accuracy is critical to ensure the 

collected data is converted into useful and reliable traffic information. The UAV 

video processing and analysis framework, initially presented in chapter 3 has been 

further optimized. In order to evaluate the accuracy of the system, the outputs 

from the vehicle detection and tracking system have been compared with the 

ground-truth data. Various measures of performance have been calculated for 

different UAV-based traffic videos. The results show that the overall accuracy of 

the system lies above 90%. Moreover, the sensitivity of UAV flight altitude to the 

overall preciseness of the outputs is also evaluated. The comparison shows that a 

higher altitude level provides more precise results. The results are presented in 

tabular as well as graphical format.   

Chapter 5 explores the applications of data collected via small UAVs, for an in-

depth traffic flow analysis at a signalized 4-legged intersection. The analysis is 

basically a practical extension of the outputs generated from the previously 

proposed detailed methodological framework for automated UAV video 

processing. In this chapter, the main emphasis is on the comprehensive analysis 

of vehicle trajectories extracted via UAV-based video processing framework. An 

analytical methodology is presented for: (i) the automatic identification of flow 

states and shockwaves based on processed UAV trajectories, and (ii) the 

subsequent extraction of various traffic parameters and performance indicators in 

order to study flow conditions at a signalized intersection. The experimental data 

to analyze traffic flow conditions was obtained in the city of Sint-Truiden, Belgium. 

The generation of simplified trajectories, shockwaves, and fundamental diagrams 

help in analyzing the interrupted-flow conditions at a signalized four-legged 

intersection using UAV-acquired data.  

Chapter 6 authenticates the application of small multirotor UAVs for traffic data 

collection and subsequent analysis of traffic streams at urban roundabouts. This 

chapter presents an analytical methodology to evaluate the performance of 

roundabouts by extracting various parameters and performance indicators. The 

performance evaluation methodology is based on: (i) determining traffic volume 

via Origin-Destination matrices between legs, and (ii) analyzing drivers’ behavior 

via gap-acceptance analysis. The overall analytical process is principally based on 

the  previously proposed automated UAV video-processing framework for the 

extraction of vehicle trajectories. The extracted trajectories are further employed 

to extract useful traffic information. The experimental data to analyse roundabout 
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traffic flow conditions was obtained in the city of Sint-Truiden (Belgium). The 

study depicts the overall applicability of the UAV-based traffic analysis system.  

Chapter 7 further extends the traffic data collection applications of UAVs to mixed 

traffic situations in developing countries. The objective is to validate the 

applications of UAV video processing and analysis framework in a more 

challenging traffic scenario. In order to demonstrate the traffic analysis process, 

a case study based on data collected in Pakistan, is presented in this chapter. 

Traffic data has been collected via a small UAV for an urban roundabout and a T-

intersection in Rawalpindi/Islamabad (Pakistan). The overall analytical 

methodology is based on the previously proposed UAV-based traffic analysis 

framework. The extraction of various traffic parameters and measures of 

performance help in highlighting the usefulness of UAVs for traffic analysis. The 

developing countries generally lack even in the basic infrastructure required for 

traffic monitoring and data collection. In this scenario, UAVs can serve as a useful 

apparatus for traffic data collection in developing countries. The results of the 

analysis at two study locations reflect the overall driving attitude and lack of 

implementation of traffic rules in developing countries, resulting in high 

congestion levels and serious safety concerns. 

Chapter 8 explores a new application of the traffic data collected via small UAVs. 

The chapter presents a methodology to utilize the UAV-based traffic data for the 

development as well as for the calibration of microsimulation models. The main 

objective is to examine the feasibility of microsimulation model development from 

UAV-based traffic data. For this purpose, two case studies comprising of a 

roundabout and a signalized intersection, have been presented based on the data 

collected via UAVs in Sint-Truiden, Belgium. The base models are developed using 

PTV VISSIM. The road geometry data and traffic parameters extracted from the 

UAV videos via previously proposed UAV video processing and analysis 

framework, are utilized for the microsimulation model development and 

calibration. The calibration process is based on various measures of effectiveness 

and validation parameters. Acceptable calibration targets have been defined for 

both roundabout and signalized intersection models. The results show that the 

microsimulation models can be calibrated through traffic data collected via small 

UAVs. The study implies that UAVs can become a useful source of traffic data for 

the development and calibration of microsimulation models. 

Chapter 9 concludes the dissertation with a discussion of main findings of this 

research work. The chapter also discusses the limitations and challenges attached 

with the use of UAVs for traffic data collection. Apart from it, the chapter ends 

with some recommendations and an insight into the future research avenues.  
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Beknopte Samenvatting  

Om de toenemende verkeersproblemen aan te pakken en tot een duurzaam 

vervoer te komen moeten verschillende beleidsmaatregelen ontwikkeld en 

geïmplementeerd worden. Daarom is de analyse van verkeerspatronen en 

verplaatsingsgedrag door middel van verkeersmodellen en simulaties van cruciaal 

belang. Verkeersgegevens dienen als basis voor de ontwikkeling en kalibratie van 

dergelijke modellen en simulaties. Hierdoor stijgt uiteraard het belang van de 

methoden voor datacollectie van verkeersgegevens en de gebruikte instrumenten. 

Het is echter niet gemakkelijk om verkeersgegevens te verzamelen voor 

omvangrijke delen van het wegennet aangezien de meesten van de methoden 

voor datacollectie een grote vaste infrastructuur vereisen of arbeidsintensief zijn. 

Het is belangrijk om een evenwicht te bewaren tussen de kosten en de kwaliteit 

van de verzamelde gegevens. Er werden in de loop der jaren verschillende 

methoden en instrumenten gebruikt voor het verzamelen van gegevens. Echter, 

bij elke methode of bij elk instrument zijn er specifieke nadelen en beperkingen. 

De traditionele instrumenten zoals visuele tellingen, vaste camera’s, 

inductielussen etc. leveren enkel gegevens op van een bepaald locatie. Deze 

kunnen niet gebruikt worden voor metingen van grote delen van het netwerk. 

Andere geavanceerde instrumenten, zoals voertuig-infrastructuursystemen (V2I), 

meetvoertuigen uitgerust met GPS, smartphonetechnologieën enz., leveren grote 

datasets op maar zijn opdringerig van aard. Bovendien is het gebruik van 

satellieten en bemande vliegtuigen om dynamische verkeersgegevens te 

verzamelen vaak erg duur. Daarom is er behoefte aan een datacollectiemethode 

die alle goede eigenschappen van de bestaande instrumenten combineert en de 

gevolgen van de nadelen minimaliseert. Dit leidt ons naar het gebruik van 

onbemande luchtvoertuigen (UAV’s) voor het verzamelen van verkeersgegevens. 

Onbemande luchtvoertuigen of drones worden beschouwd als een van de meest 

impactvolle en multidimensionale opkomende technologieën van de moderne tijd. 

De aanwezigheid van de UAV-technologie is meer en meer voelbaar in 

verschillende domeinen, variërend van commercieel gebruik zoals het leveren van 

pakjes of het verslaan van sportwedstrijden tot onderzoekstoepassingen zoals het 

overzien van ontoegankelijke gebieden en akkers. UAV’s worden ook steeds vaker 

gebruikt in het domein van transport om de verkeersstroom en 

veiligheidsomstandigheden te controleren en te analyseren, met name in 

noodsituaties. UAV’s bieden een dynamisch en vogelperspectiefzicht van het 

verkeersnetwerk, en kunnen ingezet worden door bijvoorbeeld verkeersplanners 

en verkeerscentra om de status van de verkeersstroom te beoordelen en 

congestieproblemen te beheren. Het is eveneens een goedkoop alternatief voor 
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vaste camerasystemen en sensorinfrastructuur, omdat ze flexibel zijn en overal 

ingezet kunnen worden (mobiel). De mobiliteit en flexibiliteit zijn de belangrijkste 

troeven van deze technologie. 

Het doel van dit onderzoek is om de verkeersdatacollectie en analysetoepassingen 

van kleine UAV’s aan te tonen door het presenteren van specifieke frameworks 

voor het uitvoeren van UAV-gebaseerde verkeersstudies. Dit onderzoek bevat 

verschillende frameworks en methodologieën zodat er efficiënt gebruik gemaakt 

kan worden van de gegevens die verkregen werden via kleine UAV’s voor de 

analyse van de verkeersstroom. Het uiteindelijke doel is de ontwikkeling van een 

volledig softwarepakket waarmee verkeersstudies door kleine UAV’s kunnen 

worden uitgevoerd voor meerdere verkeerstoepassingen, in het bijzonder voor de 

analyse van de verkeersstroom voor diverse infrastructurele elementen. De 

nadruk ligt ook op het verkrijgen van nuttige verkeersinformatie in een korte 

periode, vandaar de geautomatiseerde verwerking en analyse van UAV-video's. 

Dit onderzoek is zeer toegepast en praktisch van aard, en is gericht op het 

verbeteren van de bestaande datacollectie en analyseprocedures. Hiertoe worden 

er een aantal bijdragen gedaan in elk van de hoofdstukken van dit proefschrift: 

 

Hoofdstuk 1 vertegenwoordigt de inleiding van dit 3-jarig doctoraatsonderzoek. 

Dit hoofdstuk formuleert het probleem dat aangepakt moet worden en schetst de 

onderzoeksvragen. Bovendien worden ook de bijdragen en doelstellingen van het 

onderzoek beschreven. 

Hoofdstuk 2 introduceert een universeel framework voor het uitvoeren van 

verkeersstudies op basis van UAV’s. Het gebruik van kleine UAV's voor 

verkeersgerelateerde toepassingen wordt in detail besproken. Om het hele proces 

te stroomlijnen, wordt er een gedetailleerd framework voorgesteld dat alle 

aspecten van het gebruik van UAV’s voor het verzamelen van verkeersgegevens 

en voor analytische doeleinden bevat; gaande van het uitvoeren van een veilige 

en efficiënte UAV-vlucht tot de er op volgende analysestappen. Het framework 

bevat de volgende zeven componenten: (i) het vastleggen van de doelstellingen, 

(II) vluchtplanning, (III) uitvoering van de vlucht, (IV) gegevensverwerving, (v) 

gegevensverwerking en -analyse, (VI) gegevensinterpretatie en (VII) 

geoptimaliseerd verkeerstoepassing. Het biedt uitgebreide richtlijnen en geeft een 

overzicht van het beheer van zowel de hardware als de software die betrokken 

zijn bij het proces. Dit hoofdstuk bevat een uitgebreide maar systematische 

bespreking van de bestaande verkeersgerelateerde UAV-studies door deze in een 

stappenplan te gieten.  

Hoofdstuk 3 introduceert een gedetailleerd methodologisch framework voor een 

geautomatiseerde UAV-videoverwerking. Het belangrijkste doel is een efficiënte 
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verwerking van de verkeersgegevens die via UAV’s verkregen worden. Hierbij 

dienen de gegevens omgezet te worden in nuttige en betrouwbare 

verkeersinformatie. Het voorgestelde framework bestaat uit vijf componenten, 

namelijk: voorbewerking, stabilisatie, geo-registratie, voertuigdetectie en -

tracking en trajectmanagement. Na het doorlopen van al deze deelprocessen 

worden de trajecten van meerdere voertuigen in een bepaald wegsegment 

geëxtraheerd. Deze kunnen vervolgens gebruikt worden om verschillende 

verkeersparameters te extraheren of om de verkeersstroom en 

veiligheidssituaties te analyseren. In dit hoofdstuk wordt er ook een korte 

vergelijking gegeven van de bestaande UAV-studies op basis van hetzij 

handmatige of semiautomatische verwerkingstechnieken. De nadruk ligt echter 

vooral op de beschrijving van het voorgestelde geautomatiseerde framework. 

Uiteindelijk wordt het voorgestelde framework gevalideerd aan de hand van een 

veldonderzoek uitgevoerd in de stad Sint-Truiden, België. Deze gegevens worden 

verwerkt en geanalyseerd volgens de modules van het framework, resulterend in 

een reeks van voertuigtrajecten.   

Hoofdstuk 4 evalueert de prestaties van het voorgestelde UAV-gebaseerde 

verkeersanalysesysteem met een speciale aandacht voor de voertuigdetectie en -

trackingmodule. De belangrijkste doelstelling is het beoordelen van de 

nauwkeurigheid van de gegenereerde voertuigdetectie en trajectgegevens. Een 

zekere mate van nauwkeurigheid is van cruciaal belang om ervoor te zorgen dat 

de verzamelde gegevens omgezet worden in nuttige en betrouwbare 

verkeersinformatie. Het UAV-videoverwerkings- en analyse framework, dat reeds 

in hoofdstuk 3 voorgesteld werd, wordt verder geoptimaliseerd. Om de 

nauwkeurigheid van het systeem te evalueren, werd de output van het 

voertuigdetectie en -trackingsysteem vergeleken met de werkelijke toestand. 

Verschillende prestatieniveaus werden gevonden voor verschillende UAV-

gebaseerde verkeersvideo's. De resultaten tonen aan dat de algemene 

nauwkeurigheid van het systeem boven 90% ligt. Bovendien werd ook de 

gevoeligheid van de UAV-vluchthoogte t.o.v. de algemene nauwkeurigheid van de 

output geëvalueerd. De vergelijking toont aan dat een hogere vluchthoogte 

preciezere resultaten oplevert. De resultaten worden zowel in tabelvorm als 

grafisch weergegeven.   

Hoofdstuk 5 onderzoekt de toepassingen van gegevens die verzameld werden 

door middel van kleine UAV's voor een diepgaande verkeersstroomanalyse op een 

4-takskruispunt met verkeerslichten. De analyse is in feite een praktische 

uitbreiding van de output die gegenereerd werd door het eerder voorgestelde 

gedetailleerde methodologisch framework voor geautomatiseerde UAV-

videoverwerking. In dit hoofdstuk ligt de belangrijkste nadruk op een omvattende 

analyse van voertuigtrajecten die geëxtraheerd werden via het UAV-gebaseerde 

videoverwerking framework. Er wordt een analytische methodologie voorgesteld 
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voor: (i) de automatische identificatie van verkeersstromen en -schokgolven op 

basis van verwerkte UAV-trajecten, en (II) de daaropvolgende extractie van 

verschillende verkeersparameters en prestatie-indicatoren om de 

verkeersstromen op kruispunten met verkeerslichten te  bestuderen. De 

experimentele data voor het analyseren van de verkeersstromen werd verkregen 

in de stad Sint-Truiden, België. Het genereren van vereenvoudigde trajecten, 

verkeersschokgolven en het fundamenteel diagram helpt bij het analyseren van 

de onderbroken doorstroming op een 4-takskruispunt met verkeerslichten met 

behulp van UAV-verworven gegevens. 

Hoofdstuk 6 staaft de toepassing van kleine multirotor UAV’s voor het 

verzamelen van verkeersgegevens en de daaropvolgende analyse van 

verkeersstromen op stedelijke rotondes. Dit hoofdstuk bevat een analytische 

methodologie om rotondes te evalueren door verschillende parameters en 

prestatie-indicatoren te extraheren. De methodologie voor de evaluatie van 

rotondes is gebaseerd op: (i) het bepalen van het verkeersvolume op basis van 

herkomst-en-bestemmingsmatrices tussen de afritten en (II) het analyseren van 

het gedrag van de bestuurders op basis van de analyse van de aanvaarde 

volgafstand. Het algemene analytische proces is hoofzakelijk gebaseerd op het 

eerder voorgestelde geautomatiseerde UAV-videoverwerking framework voor de 

extractie van voertuigtrajecten. De geëxtraheerde trajecten worden vervolgens 

gebruikt om nuttige verkeersinformatie eruit te halen. De experimentele gegevens 

voor het analyseren van de verkeersstroomvoorwaarden bij rotondes werden 

verkregen in de stad Sint-Truiden (België). De studie bevestigt de algemene 

toepasbaarheid van een UAV-gebaseerd verkeersanalysesysteem. 

Hoofdstuk 7 behandelt de verdere datacollectietoepassingen van UAV’s voor 

gemengde verkeerssituaties in ontwikkelingslanden. Het doel is om de toepassing 

van een UAV-videoverwerkings en –analyse framework te valideren in een 

complexere verkeerssituatie. Om het verkeersanalyseproces te tonen worden er 

in dit hoofdstuk twee case studies gepresenteerd die gebaseerd zijn op gegevens 

die in Pakistan werden verzameld. Er werden verkeersgegevens verzameld via 

een kleine UAV bij een stedelijke rotonde en een T-kruispunt in 

Rawalpindi/Islamabad (Pakistan). De algemene analytische methodologie is 

gebaseerd op het eerder voorgestelde UAV-gebaseerde verkeersanalyse 

framework. De extractie van diverse verkeersparameters en de 

beoordelingscriteria benadrukken het nut van UAV's voor verkeersanalyse. 

Ontwikkelingslanden beschikken over het algemeen zelfs niet over de 

basisinfrastructuur die nodig is voor verkeersbewaking en gegevensverzameling. 

In dit scenario kunnen UAV's een nuttig instrument zijn voor het verzamelen van 

verkeersgegevens in ontwikkelingslanden. De resultaten van de analyse op twee 

locaties weerspiegelen het algemeen rijgedrag en het gebrek aan de 
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implementatie van verkeersregels in ontwikkelingslanden, wat resulteert in hoge 

congestieniveaus en ernstige veiligheidsproblemen. 

Hoofdstuk 8 onderzoekt een nieuwe toepassing van de verkeersgegevens die 

verzameld werden door middel van kleine UAV's. Dit hoofdstuk introduceert een 

methodologie om gebruik te maken van de UAV-gebaseerde verkeersgegevens 

voor de ontwikkeling en de kalibratie van microsimulatiemodellen. Het 

belangrijkste doel is de haalbaarheid te bepalen van de ontwikkeling van 

microsimulatiemodellen op basis van UAV-gebaseerde verkeersgegevens. Hiertoe 

worden twee case studies voorgesteld, bestaande uit een rotonde en een 

kruispunt met verkeerslichten waarvoor de gegevens verzameld werden door 

middel van UAV's in Sint-Truiden, België. De basismodellen werden ontwikkeld 

aan de hand van PTV VISSIM. De vormgeving van de weg en de 

verkeersparameter die uit de UAV-video’s geëxtraheerd werden door middel van 

het eerder voorgestelde UAV-videoverwerkings en –analyse framework worden 

gebruikt voor de ontwikkeling en kalibratie van het microsimulatiemodel. Het 

kalibratieproces is gebaseerd op verschillende effectiviteits- en 

validatieparameters. Er werden aanvaardbare kalibratie doelstellingen 

gedefinieerd voor modellen van zowel rotondes als van kruispunten met 

verkeerslichten. De resultaten tonen aan dat de microsimulatiemodellen 

gekalibreerd kunnen worden door verkeersgegevens die verzameld werden door 

middel van kleine UAV’s. De studie impliceert dat UAV’s een nuttige bron van 

verkeersgegevens kunnen worden bij de ontwikkeling en kalibratie van 

microsimulatiemodellen. 

 

Hoofdstuk 9 sluit het proefschrift af met een bespreking van de belangrijkste 

bevindingen van dit onderzoek. In dit hoofdstuk worden ook de beperkingen en 

uitdagingen besproken die verbonden zijn aan het gebruik van UAV’s voor het 

verzamelen van verkeersgegevens. Het hoofdstuk eindigt met enkele 

aanbevelingen en een blik op toekomstige onderzoeksmogelijkheden.  
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Chapter 1 

1. Introduction 
 

 

1.1 Overview 

This research is aimed to explore the practical applications of small Unmanned 

Aerial Vehicles (sUAVs) for traffic data collection and analysis. The research covers 

all the aspects necessary for conducting a UAV-based traffic study; starting from 

the initial UAV flight planning stage to the analysis and interpretation of the 

collected data. Different frameworks, algorithms and analytical methodologies are 

presented in the following 7 chapters of this dissertation. This chapter describes 

the background or perspective of this research and also outlines the research 

questions. The chapter concludes with an overview of the subsequent chapters of 

this dissertation. 

The rest of this chapter is as follows. Section 1.2 provides the background of the 

research. Section 1.3 describes the motivation for the research. Section 1.4 of 

this chapter presents the problem description and enlists the research questions. 

Section 1.5 presents the resulting research objectives and contributions pursued 

in this thesis. Section 1.6 provides the research approach and finally the thesis 

outline is presented in section 1.7.
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1.2 Background 

Over the last few decades, urbanization rates have increased rapidly. A very high 

percentage of population has migrated towards urban metropolitans in order to 

improve their overall living standards.  According to United Nations, the total 

urban population increased from 30% in 1950 to 54% in 2014. By 2050, the world 

population is projected to reach 10 billion out of which 66% shall be dwelling in 

cities (United Nations, 2015). In Europe, 73% of the population is already living 

in urban areas (United Nations, 2015). Similarly, it has been estimated that the 

population of the current four largest cities of Australia will be equal to its present 

total population by 2050 and the countries like USA, China and India are also 

reported to witness an increase of 33%, 38% and 96% respectively in their major 

cities (Stevenson et al., 2016). While the urban area quadrupled in the time period 

between 1970-2000, it has increased at a twice rate as compared to the 

population in the past few years. This situation has given birth to a variety of  

immense challenges like traffic congestion, unemployment, and a scarcity of 

public facilities (Wu et al., 2015).  

The need to travel has always been considered as a necessity for human society. 

This need has only increased with the soaring growth of urbanization trend; 

thereby resulting in high motorization rates and excessive traffic volumes. This 

trend has caused a major strain on the existing infrastructure. The management 

of transportation operations has become one of the most critical challenges faced 

by local as well as regional governments all over the world. According to the World 

Bank’s report, it  is estimated that transportation contributes almost 20% to the 

total gross national product (GNP) of each country in the world. In most of the 

developing countries, the contribution of transportation in the gross domestic 

product (GDP) is 6% to 12% (Senguttavan, 2006). Since, the transportation 

sector acts as a backbone for any country’s economy and overall progress, 

therefore it is pivotal for transport planners and governments to devise well-

planned transportation policies.  

Traditionally, transport planners and governments focused on the expansion of 

existing infrastructure in order to accommodate for the increasing travel demands. 

With the passage of time,  it was realized that the expansion policy is not 

sustainable and cannot cope with the worsening situation. In this scenario, 

transportation planners and managers have to devise ways to make the 

transportation system more sustainable and efficient[38]. The characteristics of 

the sustainable transport system include accessibility, safety, affordability and 

being environmental friendly (Gilbert et al., 2003; Shiftan & Kaplan, 2003). On 

the other hand, the rapid expansion of cities has led to an increase in vehicle 
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ownership. It is expected that by the year 2020, the number of automobiles in 

the world would be doubled (Litman, 2003). The rapid increase in vehicle 

ownership led to many transport related problems which included traffic 

congestion, traffic accident and environmental pollution (Banister, 2002). In order 

to handle this situation and to achieve the target of sustainable transportation, an 

integration of urban and transportation policy is necessary that could withstand 

all the immense global challenges. Moreover, the efficient use of existing networks 

can only be ensured by monitoring and analyzing traffic streams dynamically, 

especially in emergency situations or other events. This leads to the employment 

of state-of-the-art intelligent traffic information systems.  

The efficient operational management of the network requires an accurate, timely 

and quick inflow of traffic data. Urban planning in general and traffic modelling in 

particular is highly dependent on the available traffic data. The quality of traffic 

data determines the performance of traffic models. Therefore, traffic data 

collection is termed as the primary step towards making informed decisions and 

devising traffic policies that ensure an efficient operation of the network. However, 

it is not easy to collect the traffic data for large spans of roadway networks as 

most of the data collection methods require a large fixed infrastructure or are 

labor intensive (Coifman et al., 2006). 

The traffic data collection methods have evolved with the passage of time. The 

traditional methods e.g. manual counts, induction loops, fixed video camera 

systems etc. have been used abundantly to collect accurate traffic data for a 

number of years. Moreover, advanced ITS technologies e.g. vehicle-to-

infrastructure (V2I), probe vehicles with GPS and other smartphone sensor 

technologies are also being used for traffic data collection. Another alternative for 

traffic data collection is the aerial photography or remote sensing. The 

characteristics such as flexibility, wide field-of-view and quick deployment make 

this technology extremely useful for dynamic traffic data collection. However, the 

use of satellites and manned aircrafts for dynamic traffic data collection may prove 

to be too costly. Recently, unmanned aerial systems in the traffic monitoring, 

management, and control are starting to take center stage (Kanistras et al., 2015; 

Puri, 2005). 

Unmanned aerial vehicles or drones are considered to be one of the most impactful 

and multi-dimensional emerging technologies of the modern era. The UAV 

technology is swiftly making its presence felt in multiple fields of life varying from 

commercial tasks such as parcel delivery, sports coverage etc. to research 

applications like surveying of inaccessible areas and crop fields. The drones are 

also being used in transportation field to monitor the traffic flow and safety 

conditions, particularly in emergency situations (Kanistras et al., 2015; Khan et 

al., 2017; Puri, 2005).  
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UAVs are basically aircrafts that fly without carrying a human pilot. They can either 

be piloted remotely or fly autonomously, but fly without direct human input 

(McCormack & Trepanier, 2008). There are several types of unmanned aerial 

vehicles depending upon their use, size, range and capabilities. UAVs can broadly 

be classified into two categories;(i) fixed wing and (ii) rotary-wing UAVs. 

Traditionally, only fixed-wing UAVs were used for traffic data collection purposes. 

Recently, small multi-rotor UAVs with dimensions less than 2 meters, altitude less 

than 1 kilometer and weight less than 10 kilograms (US Army, 2010), have been 

employed for traffic-related applications. These applications are, however 

currently very limited and are still in the research stages; mainly due to the 

hardware and legal limitations. Nevertheless, this technology is progressing 

rapidly and can be safely termed as a future-proof technology.  

The objective of this research is to demonstrate the traffic data collection and 

analysis applications of small UAVs by presenting specific frameworks for the 

conduction of UAV-based traffic studies. This research presents various 

frameworks and methodologies in order to effectively use the data acquired via 

small UAVs for traffic flow analysis. The ultimate goal is to develop a complete 

package that allows a small UAV-based traffic study for multiple traffic related 

applications, particularly focusing on traffic flow analysis for various types of 

infrastructural  elements. The emphasis is also on the extraction of useful traffic 

information in a short period of time, hence the automated processing and 

analysis of UAV videos. The nature of this research is highly applied and practical, 

aiming to improve the existing data collection and analysis procedures.  

1.3 Motivation 

The aspects of traffic patterns and travel behaviour can be investigated via traffic 

models and simulations. The traffic data serves as a foundation for the 

development and calibration of such models and simulations. Naturally, this also 

magnifies the importance of traffic data collection methods as well as the 

equipment used. As mentioned earlier, various types of equipment have been 

used to collect traffic data over the years. However, each method and equipment 

comes with a set of its own drawbacks and limitations. Therefore, it becomes vital 

to select the equipment that is most appropriate for a given study. The scope and 

the area of study must be carefully studied before making the choice of data 

collection method and equipment. The traditional and widely used methods e.g. 

manual counts, induction loops, fixed video camera systems etc., have certain 

drawbacks as well. Since, such equipment yield point data with generally no useful 

data about traffic flows over a large section of the network (Puri, 2005), a high 

density of sensors or manual deployments are required to cover the entire network 
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or study area. The point data cannot be used to monitor the densities as well as 

process of accumulation and dissipation of queues at the intersections. However, 

it is not feasible to cover the entire network with fixed sensors or deployed 

personnel, therefore certain ‘hidden points’ exist in the network (Barmpounakis et 

al., 2016; Puri, 2005). The transport planners and managers cannot make 

informed decisions based on such datasets as the actual root cause of congestion 

or a particular behavioral pattern may remain unknown. On the other hand, 

advanced traffic data collection methods based on ITS technologies e.g. vehicle-

to-infrastructure (V2I), probe vehicles with GPS and other smartphone sensor 

technologies, are effective, However, these technologies produce large datasets 

which are not easy to process especially in a short time span (Vlahogianni, 2015) 

and with limited computational power. Additionally, such technologies may turn 

out to be intrusive in nature as the actual behaviour of the travelers might be 

influenced since they already know they are being observed (Barmpounakis et al., 

2016; Salvo et al., 2014). Another alternative for traffic data collection, the aerial 

photography or remote sensing have highly valued characteristics such as 

flexibility, wide field-of-view and quick deployment. In addition, this is a non-

intrusive technology yielding unbiased datasets. However, it is quite expensive to 

collect data using satellites or manned aircrafts for a particular study. Therefore, 

it is evident that there is a need for a budget-friendly and flexible technology that 

provides traffic data relevant both in time and space. In this scenario, unmanned 

aerial systems have the capability to fill the loopholes left by other type of data 

collection apparatus.  

The UAV-based data collection systems have the potential for traffic and driving-

behavior monitoring due to their mobility, large field of view, and capability of 

following vehicles (Kanistras et al., 2015). UAVs provide a dynamic and a bird-

eye view of the traffic network, and can be utilized for example by traffic planners 

and management centers to determine the state of the traffic flow and manage 

congestion problems. This also provides a cheap alternative to fixed cameras and 

sensors infrastructure as they are flexible and can be deployed anywhere 

(mobile). The mobility and flexibility are the key assets of this technology (Khan 

et al., 2017).  

UAVs already are starting to take center stage for traffic monitoring, management, 

and control operations (Kanistras et al., 2015; Puri, 2005). UAVs are being 

increasingly used in the transportation field to monitor and analyze the traffic flow 

as well as safety conditions, particularly in emergency situations (Kanistras et al., 

2015; Khan et al., 2017; Puri, 2005). Over the years, this non-intrusive 

technology has improved rapidly and is now capable of providing high resolution 

data (both in space and time) that can be used effectively for detailed traffic 

analysis e.g. for extracting vehicle trajectories and estimating traffic parameters. 

Due to all these characteristics, this technology can  complement and in specific 
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cases even replace the traditional traffic monitoring equipment (fixed camera 

installations, pneumatic vehicle detectors etc.). The real time traffic data 

transmission with a relatively low cost as compared to other ITS sensor 

technologies makes this technology even more worthwhile. UAVs can be 

particularly useful for data collection at sub-urban or such areas in the network 

where there is no or very limited fixed sensor/camera infrastructure.  

In the start of this PhD research project (October-2015), a significant gap was 

observed in the existing literature regarding the use of small rotary-wing UAVs 

(sUAV) for traffic related applications. Moreover, most of the existing studies 

employing sUAVs for traffic-related applications, focused on manual or semi-

automatic processing of the collected data; thereby significantly increasing the 

processing time. Therefore, there was a need for a system that generates useful 

traffic information in a short period of time. As this is a recent technology and the 

actual applications, particularly for traffic data collection have not yet fully 

developed (Barmpounakis et al., 2016; Puri, 2005), therefore, it was identified 

that there is a need for presenting detailed methodological frameworks that serve 

as a guide for not only a safe and efficient execution of UAV-based traffic study 

but also for the processing and analysis steps that follow the execution of a UAV 

flight. With the significant increase in the number of UAV studies expected in the 

coming years, such analytical studies based on systematic frameworks could 

become a useful resource for practitioners and researchers alike. This also implies 

the practical and applied nature of this research. 

1.4 Problem Description & Research Questions 

This dissertation is centered around the applicability of small UAVs for traffic 

survey and analytical studies. However, there are certain limitations and 

challenges attached with this technology. These limitations vary from hardware 

aspects to safety, legal and privacy issues. The limited battery times and extreme 

weather conditions also cause hindrance in the applications of this technology. 

Moreover, the initial literature survey indicated that there was a lack of existing 

literature that particularly focuses on using the small rotary-wing type UAV-

acquired data for traffic analysis purposes. Therefore, in this scenario, the main 

problem identified was the lack of proper methodological frameworks that cover 

all the aspects of conducting a UAV-based traffic study; ranging from the initial 

flight planning stage to the detailed traffic analysis of the collected data. It was 

important to outline as well as demonstrate all the steps necessary for efficient 

utilization of rich UAV data with the help of case studies. Additionally, it was critical 

to reduce the data processing times in comparison to the manual or semi-

automatic techniques.  
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The research gaps identified in the previous section can be formulated into a set 

of various research questions and sub-questions that need to be addressed in a 

scientific manner. For this purpose, this dissertation is revolved around the 

following research questions:  

1. Can the small UAV technology be used effectively for traffic studies and 

what are the challenges or limitations? 

2. How can the small UAVs be employed to conduct traffic-related studies 

and how to efficiently process the collected data? 

3. How can the data collected via UAVs be used for traffic flow analysis of 

different types of infrastructural elements and for varying traffic 

situations? What are the limitations or remaining challenges in this 

context? 

Figure 1.1: Illustration of the defined research questions 

1.5 Objectives & Contributions 

The motivation to address the gaps or shortcomings in the applied use of small 

UAVs for traffic analysis applications leads to the core of this thesis dissertation. 

In order to highlight the potential advantages and benefits of using small UAVs 

for traffic data collection and analysis, this dissertation makes the following 

contributions: 

Contribution 1: Proposing a universal guiding framework for the employment of 

any UAV for traffic-related studies. The proposed systematic framework 

encompasses all the aspects involved in conducting a UAV-based traffic monitoring 

and analysis study. This framework is transferrable and independent of regional 
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constraints or limitations, hence serving as a universal guide for the utilization of 

UAVs in any part of the world.    

Contribution 2: Development of a methodological framework for UAV video 

processing and analysis. It is critical to efficiently utilize the traffic data by 

generating an accurate and timely set of output data. The proposed detailed 

framework streamlines all the video processing and analysis steps in a systematic 

manner. Using various tools, techniques and algorithms, this framework can be 

used to convert the UAV video data into useful traffic information. However, the 

framework is not limited to certain tools or software, as it puts forward the general 

modules involved in the whole process of conducting a UAV-based traffic study. 

Contribution 3: Description of methodologies to conduct in-depth traffic flow 

analysis based on UAV data. With the help of case studies, various traffic situations 

have been analyzed. Moreover, a list of performance measures to analyze different 

types of infrastructural elements, using limited UAV data, is presented.     

The main objective of this research is to demonstrate the applications of small 

UAVs for traffic analysis and monitoring. Another aspect of the research is to 

extract useful traffic information from the collected UAV data, in a short period of 

time.  In this regard, minimization of processing times is dependent on the number 

of automated processes and on the available computational power. In order to 

achieve the desired objectives, the research will focus on defining frameworks for 

an efficient UAV-based traffic data collection, processing and analysis.  

This dissertation is divided into 8 core chapters with each chapter having its own 

set of objectives and contributions. Overall, the initial chapters present the 

frameworks for the utilization of UAVs for traffic-related studies, while the later 

chapters focus more on the traffic analysis methodologies and case studies.  

1.6 Approach 

As mentioned earlier, the initial research problem to be addressed was to identify 

and define a systematic approach for developing a UAV-based traffic analysis and 

monitoring system. For this purpose, a guiding framework is presented, which 

incorporates all the steps necessary for successfully conducting a UAV-based 

traffic analysis study. Additionally, another framework is proposed to streamline 

the UAV video processing and analysis procedure. This framework covers all the 

steps in order to efficiently process the UAV traffic video data and extract useful 

traffic information from the collected data.  

Since one of the objectives of this research is to minimize the time required to  

process and analyze the UAV-based traffic video data, it was important to opt for 

the methods that provide quick as well as accurate outputs. A special 
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consideration was given to minimize the manual operations. For this purpose, the 

proposed framework for the processing and analysis of the UAV data was based 

primarily on automated tools and techniques.  

Most of the existing UAV-based traffic studies employed manual or semi-automatic 

approaches in order to extract detections and tracks of the object or vehicles of 

interest. This approach requires manual operations, hence higher processing 

times. On the other hand, the process of automatic detection and extraction of 

vehicle trajectories has its own complications and challenges. In this research, 

however, the automatic approach was selected for the processing of UAV traffic 

videos. A set of algorithms was developed in C++ (OpenCV library) which will be 

elaborated in detail in the following chapters. In contrast to the commercial 

automated video processing systems (e.g. Data from sky etc.), the emphasis was 

on extracting useful traffic information in a short period of time; eventually leading 

to the real-time processing of the UAV videos in future research. For this purpose, 

the employed algorithms were selected on the basis of minimal processing times 

and computational requirements. A balance was maintained between the accuracy 

and processing time of the developed automated vehicle detection and tracking 

system.  

After the automated vehicle detection and tracking process, the outputs are 

further used for detailed traffic analysis. The traffic analysis approach is dependent 

on the scope and objectives of the study. In this research, the main focus is on 

the traffic flow analysis. Various approaches or methodologies have been 

employed for various infrastructural elements such as signalized intersections, 

roundabouts etc. For signalized intersections, the simplified trajectory approach 

has been used, for example to study shockwaves, queue lengths etc. Furthermore 

traffic volume and gap acceptance modelling approach has been used for 

roundabout flow analysis. Similar approach is also used to analyze mixed traffic 

conditions in the scenario of developing countries, specifically Pakistan. Moreover, 

the integration of UAV-based traffic data with microsimulation modelling approach 

has also been investigated.    

1.7 Thesis Outline 

This dissertation is divided into several chapters based on the theme of conducted 

UAV-based studies. Overall, the research can be classified in 2 parts as per the 

contributions made. The first part (Chapters 2, 3 and 4) consists of the proposed 

frameworks for: (i) the conduction of UAV-based traffic studies, and (ii) the 

efficient processing and analysis of the collected UAV data. A special consideration 

is also given to the automatic vehicle detection and tracking mechanism. The 

second part (Chapters 5,6,7 and 8) focuses more on the traffic flow analysis of 
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the data collected via small UAVs. Table 1.1 gives an overview of the key topics 

covered in each of the following chapters of this dissertation. Similarly, Table 1.2 

shows how the components of developed frameworks and analytical mechanisms 

are integrated in each chapter. It provides a synthetic view of the contributions 

over the different chapters.  

Table 1.1: Key topics covered in each chapter 

Chapters Ch.2 Ch.3 Ch.4 Ch.5 Ch.6 Ch.7 Ch.8 

UAV-based Traffic Framework 

        

UAV Video Processing & Analysis Framework 

        

Traffic Analysis 

Signalized Intersection        

Roundabout Analysis        

Mixed Traffic- Pakistan        

Microsimulation 

Applications 
       

 

Legend 

Main Focus 

(Major) 

 Further Applications 

(Minor) 
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Table 1.2: Checklist of the contributions of each chapter 

Features Ch.2 Ch.3 Ch.4 Ch.5 Ch.6 Ch.7 Ch.8 

UAV-based Traffic Study Framework   

Data Collection √ √ - √ √ √ √ 

Data Processing √ √ - √  √ √ √ 

Video Processing & Analysis Framework   

Video Processing - √ √ √ √ √ - 

Trajectory Extraction - √ √ √ √ √ - 

Signalized Intersection Traffic Analysis   

Simplified Trajectories - - - √ - - - 

Flow State 

Identification 

- - - √ - - - 

Shockwave Analysis - - - √ - - - 

OD Matrices - - - √ - - √ 

Roundabout Traffic Analysis   

OD Matrices - - - - √ √ √ 

Critical Gap Analysis - - - - √ √ √ 

Waiting Times - - - - √ √ - 

Mixed Traffic Analysis - Pakistan   

OD Matrices - - - - - √ - 

Critical Gap Analysis - - - - - √ - 

Turning movement 

behaviour 

- - - - - √ - 

Microsimulation   

Base Model 

Development  

- - - - - - √ 

Calibration & 

Validation 

- - - - - - √ 
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UAVs   

Argus One - √ √ √ √ - √ 

DJI Phantom 4 Pro - - √ - - √ - 

Dataset used   

Sint-Truiden, Belgium - √ √ √ √ - √ 

Rawalpindi/Islamabad, 

Pakistan 

- - √ - - √ - 

Tools used   

C++ - √ √ √ √ √ √ 

Microsoft-Excel  - √ √ √ √ √ √ 

MATLAB - √ √ √ √ √ √ 

PTV VISSIM - - - - - - √ 

 

Chapter 1 gives the introduction of this 3-year PhD research. This chapter 

formulates the problem to be addressed and outlines the research questions. 

Moreover, the contributions and objectives of the research are also described. 

Chapter 2 presents a universal guiding framework for the conduction of a UAV-

based traffic study. The concept of utilizing small UAVs for traffic-related 

applications is addressed in detail. In order to streamline the whole process,  a 

detailed framework is proposed that covers all the aspects of using UAVs for traffic 

data collection and analytical purposes; ranging from ensuring a safe and efficient 

UAV flight execution to the analysis steps that follow the execution of a UAV flight. 

The framework is classified into the following seven components: (i) scope 

definition, (ii) flight planning, (iii) flight implementation, (iv) data acquisition, (v) 

data processing and analysis, (vi) data interpretation and (vii) optimized traffic 

application. It provides a comprehensive guideline and gives an overview of the 

management in the context of the hardware and the software entities involved in 

the process. In this chapter, an extensive yet systematic review of the existing 

traffic-related UAV studies is presented by molding them in a step-by-step 

framework.  

Chapter 3 proposes a detailed methodological framework for automated UAV 

video processing. The main objective is to efficiently process the traffic data 

acquired via UAVs; ensuring the data is converted into useful and reliable traffic 

information. The proposed framework consists of five components, namely: 



Introduction 

13 

 

preprocessing, stabilization, geo-registration, vehicle detection and tracking, and 

trajectory management. After all these sub-processes, the trajectories of multiple 

vehicles at a particular road segment are extracted, which can then be used either 

to extract various traffic parameters or to analyze traffic flow and safety 

situations. This chapter also gives a brief comparison of existing UAV studies 

based on either manual or semiautomatic processing techniques. However, the 

main focus is on  the description of the proposed automated framework. In the 

end, the proposed framework is validated with the help of a field experiment 

conducted in the city of Sint-Truiden, Belgium. This data is processed and 

analyzed as per the modules of the framework, resulting in a series of vehicle 

trajectories.   

Chapter 4 evaluates the performance of the proposed UAV based traffic analysis 

system with a special emphasis on the vehicle detection and tracking module. The 

main objective is to determine the level of accuracy of the generated vehicle 

detection and trajectory data. A certain level of accuracy is critical to ensure the 

collected data is converted into useful and reliable traffic information. The UAV 

video processing and analysis framework, initially presented in chapter 3 has been 

further optimized. In order to evaluate the accuracy of the system, the outputs 

from the vehicle detection and tracking system have been compared with the 

ground-truth data. Various measures of performance have been calculated for 

different UAV-based traffic videos. The results show that the overall accuracy of 

the system lies above 90%. Moreover, the sensitivity of UAV flight altitude to the 

overall preciseness of the outputs is also evaluated. The comparison shows that a 

higher altitude level provides more precise results. The results are presented in 

tabular as well as graphical format.   

Chapter 5 explores the applications of data collected via small UAVs, for an in-

depth traffic flow analysis at a signalized 4-legged intersection. The analysis is 

basically a practical extension of the outputs generated from the previously 

proposed detailed methodological framework for automated UAV video 

processing. In this chapter, the main emphasis is on the comprehensive analysis 

of vehicle trajectories extracted via UAV-based video processing framework. An 

analytical methodology is presented for: (i) the automatic identification of flow 

states and shockwaves based on processed UAV trajectories, and (ii) the 

subsequent extraction of various traffic parameters and performance indicators in 

order to study flow conditions at a signalized intersection. The experimental data 

to analyze traffic flow conditions was obtained in the city of Sint-Truiden, Belgium. 

The generation of simplified trajectories, shockwaves, and fundamental diagrams 

help in analyzing the interrupted-flow conditions at a signalized four-legged 

intersection using UAV-acquired data.  
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Chapter 6 authenticates the application of small multirotor UAVs for traffic data 

collection and subsequent analysis of traffic streams at urban roundabouts. This 

chapter presents an analytical methodology to evaluate the performance of 

roundabouts by extracting various parameters and performance indicators. The 

performance evaluation methodology is based on: (i) determining traffic volume 

via Origin-Destination matrices between legs, and (ii) analyzing drivers’ behavior 

via gap-acceptance analysis. The overall analytical process is principally based on 

the  previously proposed automated UAV video-processing framework for the 

extraction of vehicle trajectories. The extracted trajectories are further employed 

to extract useful traffic information. The experimental data to analyse roundabout 

traffic flow conditions was obtained in the city of Sint-Truiden (Belgium). The 

study depicts the overall applicability of the UAV-based traffic analysis system.  

Chapter 7 further extends the traffic data collection applications of UAVs to mixed 

traffic situations in developing countries. The objective is to validate the 

applications of UAV video processing and analysis framework in a more 

challenging traffic scenario. In order to demonstrate the traffic analysis process, 

a case study based on data collected in Pakistan, is presented in this chapter. 

Traffic data has been collected via a small UAV for an urban roundabout and a T-

intersection in Rawalpindi/Islamabad (Pakistan). The overall analytical 

methodology is based on the previously proposed UAV-based traffic analysis 

framework. The extraction of various traffic parameters and measures of 

performance help in highlighting the usefulness of UAVs for traffic analysis. The 

developing countries generally lack even in the basic infrastructure required for 

traffic monitoring and data collection. In this scenario, UAVs can serve as a useful 

apparatus for traffic data collection in developing countries. The results of the 

analysis at two study locations reflect the overall driving attitude and lack of 

implementation of traffic rules in developing countries, resulting in high 

congestion levels and serious safety concerns. 

Chapter 8 explores a new application of the traffic data collected via small UAVs. 

The chapter presents a methodology to utilize the UAV-based traffic data for the 

development as well as for the calibration of microsimulation models. The main 

objective is to examine the feasibility of microsimulation model development from 

UAV-based traffic data. For this purpose, two case studies comprising of a 

roundabout and a signalized intersection, have been presented based on the data 

collected via UAVs in Sint-Truiden, Belgium. The base models are developed using 

PTV VISSIM. The road geometry data and traffic parameters extracted from the 

UAV videos via previously proposed UAV video processing and analysis framework 

(Khan et al., 2017), are utilized for the microsimulation model development and 

calibration. The calibration process is based on various measures of effectiveness 

and validation parameters. Acceptable calibration targets have been defined for 

both roundabout and signalized intersection models. The results show that the 
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microsimulation models can be calibrated through traffic data collected via small 

UAVs. The study implies that UAVs can become a useful source of traffic data for 

the development and calibration of microsimulation models. 

Chapter 9 concludes the dissertation with a discussion of main findings of this 

research work. The chapter also discusses the limitations and challenges attached 

with the use of UAVs for traffic data collection. Apart from it, the chapter ends 

with some recommendations and an insight into the future research possibilities.  
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Chapter 2 

2. Universal Guiding Framework Based 

on Literature Survey 
 

 

This chapter consists of following peer-reviewed conference paper: 

Khan, M.A.; Ectors, W.; Bellemans, T.; Janssens, D.; Wets, G. UAV-Based Traffic 

Analysis: A Universal Guiding Framework Based on Literature Survey. Transp. 

Res. Procedia 2017, 22, 541–550. 

 

2.1 Overview 

This chapter presents a universal guiding framework for the conduction of a UAV-

based traffic study. The concept of utilizing small UAVs for traffic-related 

applications is addressed in detail. In order to streamline the whole process,  a 

detailed framework is proposed that covers all the aspects of using UAVs for traffic 

data collection and analytical purposes; ranging from ensuring a safe and efficient 

UAV flight execution to the analysis steps that follow the execution of a UAV flight. 

The framework is classified into the following seven components: (i) scope 

definition, (ii) flight planning, (iii) flight implementation, (iv) data acquisition, (v) 

data processing and analysis, (vi) data interpretation and (vii) optimized traffic 

application. It provides a comprehensive guideline and gives an overview of the 

management in the context of the hardware and the software entities involved in 

the process. In this chapter, an extensive yet systematic review of the existing 

traffic-related UAV studies is presented by molding them in a step-by-step 

framework.  

2.2 Abstract 

The Unmanned Aerial Vehicles (UAVs) commonly also known as drones are 

considered as one of the most dynamic and multi-dimensional emerging 

technologies of the modern era. Recently, this technology has found multiple 

applications in the transportation field as well; ranging from the traffic surveillance 
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applications to the traffic network analysis for the overall improvement of the 

traffic flow and safety conditions. However, in order to conduct a UAV-based traffic 

study, an extremely diligent planning and execution is required followed by an 

optimal data analysis and interpretation procedure. This paper presents a 

universal guiding framework for ensuring a safe and efficient execution of a UAV-

based study. It also explores the analysis steps that follow the execution of a 

drone flight. The framework based on the existing studies, is classified into the 

following seven components: (i) scope definition, (ii) flight planning, (iii) flight 

implementation, (iv) data acquisition, (v) data processing and analysis, (vi) data 

interpretation and (vii) optimized traffic application. The proposed framework 

provides a comprehensive guideline for an efficient conduction and completion of 

a drone-based traffic study. It gives an overview of the management in the 

context of the hardware and the software entities involved in the process. In this 

paper, an extensive yet systematic review of the existing traffic-related UAV 

studies is presented by molding them in a step-by-step framework. With the 

significant increase in the number of UAV studies expected in the coming years, 

this literature review could become a useful resource for future researchers. The 

future research will mainly focus on the practical applications of the proposed 

guiding framework of the UAV-based traffic monitoring and analysis study. 

2.3 Introduction 

The continuous increase in number of motorized vehicles and the ever-increasing 

travel demands call for innovative and effective measures to be taken to tackle 

the challenges of high traffic volumes and congestion levels. With the limited yet 

expensive infrastructural expansion alternatives, the transportation managers are 

only left with the option of ensuring an efficient and optimal use of the existing 

network. For this purpose, state-of-the-art intelligent traffic information systems 

are employed to monitor and analyze the traffic streams, particularly in 

emergency situations. 

The efficient operational management of the network requires an accurate, timely 

and quick inflow of traffic data. Traffic data collection and its subsequent analysis 

has also been a critical element for the development and improvement of the 

macroscopic as well as the microscopic traffic simulation models. However, it is 

not easy to collect the traffic data for large spans of roadway networks as most of 

the data collection methods require a large fixed infrastructure or are labor 

intensive (Coifman et al., 2006). 

Over the years, the methods of collecting useful traffic data have evolved with the 

advancement in technology. The induction loops, overhead radar sensors and 

fixed video camera systems have been commonly used to monitor traffic status 
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for a number of years. Although, such traditional devices provide accurate and 

useful data; however, the data collected is only measured at a particular point 

with generally no useful data about traffic flows over space (Puri,2005). This 

results in a number of hidden points as a high density of detectors are required to 

cover the whole network (Barmpounakis et al., 2016a; Coifman et al., 2006). In 

such a dataset, the real root cause of the traffic congestion or any other incident 

remains unknown. Manual detections are made by the specially deployed 

personnel if some traffic information is required beyond the range of the installed 

cameras or sensors.  

Apart from such traditional equipment, advanced ITS technologies such as 

vehicle-to-infrastructure(V2I), probe vehicles with GPS and other smartphone 

sensor technologies resulting in “big datasets” are also being used. However, such 

data is not always easily converted to useful traffic data (Vlahogianni, 2015). Also, 

the use of GPS technology might not be correct for studying the driver behavior 

since the drivers know they are being monitored (Barmpounakis et al., 2016; 

Salvo et al., 2014b).   

The technological advances have recently enabled an alternative to an inflexible 

fixed network of sensors or the labor intensive and potentially slow deployment 

of personnel (Coifman et al.,2006). The complex traffic situations can be fully 

observed with the help of wide field-of-view and non-intrusive sensors and 

cameras mounted on airborne systems. Initially, satellites and manned aircrafts 

were used for traffic surveillance purposes, but a number of quality, cost and 

safety issues have proven these methods to be inefficient. Recently, unmanned 

aerial systems in the traffic monitoring, management, and control are starting to 

take center stage (Kanistras et al.,2013; Puri, 2005).  

The Unmanned Aerial Vehicles (UAVs) commonly also known as drones are 

considered to be one of the most dynamic and multi-dimensional technologies of 

the modern era. This technology is swiftly strengthening its presence in multiple 

fields of the human life, varying from commercial tasks such as parcel delivery, 

sports coverage etc. to research applications e.g. survey of inaccessible areas and 

crop fields. UAVs are predicted to be the most dynamic growth sector of the world 

aerospace market this decade (PR Newswire, 2011). 

As mentioned by Kanistras et al. (2013) and Puri (2005), the UAVs recently are 

being used in the transportation field to monitor and analyze the traffic flow and 

safety conditions. These airborne imaging systems are mobile and most 

importantly provide high resolution traffic data relevant in both time and space 

(Puri,2005). The UAVs cover a large area in short times with an extreme low cost. 

The lower cost can also be achieved, since all the equipment is reusable to a 

different point of interest (Barmpounakis et al., 2016).  
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Although attempts to collect traffic information from UAV-based images have been 

made in the past, their use in traffic studies is still at an early stage (Barmpounakis 

et al,2016; Puri,2005). The actual applications of this technology are currently 

limited in numbers but are still in the research stages. Nevertheless, this 

technology is progressing rapidly and can be safely termed as a future-proof 

technology with the widespread commercial availability and decreasing costs. It 

is forecasted by the aviation authority that 30,000 drones could be over U.S. skies 

by 2020, implying new and improved applications of the technology. 

However, the use of drone technology in traffic related studies involves a high 

level of planning and management precision. With an introduction of state laws 

regarding the use of UAVs, an extremely diligent planning and execution of a UAV 

flight is required as the consequences of a mismanaged execution could be pretty 

severe. For this purpose, we aim to propose a universal framework that serves as 

a guide for not only a safe and efficient execution of a UAV-based traffic study but 

also for the processing and analysis steps that follow the execution of a UAV flight. 

In this paper, we re-organize the existing UAV-based traffic studies into a step-

by-step framework. Such a detailed framework may prove to be helpful for various 

traffic related UAV  studies such as traffic surveillance, network traffic analysis 

and behavioural studies. It may also serve as a foundation for more advanced 

studies involving swarms of UAVs. Up till now, there have been general survey 

studies (Puri,2005; Kanistras et al,2013) regarding the research applications of 

UAVs in the field of transportation, but there has been no such detailed framework 

based on the existing literature. 

This paper is organized as follows: first of all, the relevant survey studies that 

have been carried out regarding the applications of UAVs in traffic field are briefly 

discussed in section 2.4. This is followed by a detailed description of the proposed 

framework (section 2.5). Finally, the section 2.6 comprises of the brief discussion 

of the framework along with the conclusions and the proposed future 

developments of the framework. 

2.4 Related Work 

As mentioned earlier that the UAVs are increasingly being employed for multiple 

purposes. According to the literature, the UAVs are widely being researched for 

traffic surveillance and network evaluation applications (Coifman,2006; Puri et 

al.,2007; Heintz et al.,2007, etc.). Various types of UAVS are being used or tested 

to measure traffic related data at several universities (Puri,2005). A few literature 

survey studies have been conducted to summarize the research work carried out 

around the world regarding UAV-based traffic applications.  
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Puri (2005) discusses and summarizes the research carried out all over the world 

until 2005 in the domain of UAV based traffic surveillance and analysis. The author 

initially covers some of the research work on-going at various universities such as 

University of Florida, Ohio State University, Linköping University, Georgia tech 

etc. This is followed by a systematic categorization of the relevant research based 

on the research objective, methodology, platform used and the place of research. 

Also, the author mentions a number of advantages along with the barriers that 

the UAVs have to overcome in order to be successfully employed for civil 

applications like traffic monitoring and surveillance operations. Similarly, 

Kanistras et al.(2013) adopt the same approach as Puri (2005) by conducting a 

literature survey of the applications of the unmanned aerial vehicles for traffic 

monitoring and management. However, the authors only focus on the research 

that has been carried out in this perspective within a specified period i.e. between 

2005 and 2012. The relevant research conducted during this period is also 

systematically arranged as per the approach employed in the previous research 

of Puri.   

Some researchers have tried to propose a workflow or an outline for the 

conduction of the UAV based studies. Eisenbeiss (2009) proposes a workflow for 

UAV photogrammetric studies particularly for archeological and environmental 

applications. The author enlists and discusses the different modules of the 

proposed workflow i.e. flight planning, image acquisition and processing of UAV 

images. A particular focus is on the improvement of the UAV flight planning and 

control systems, eventually ensuring the quality of the acquired data. On the other 

hand, Zheng et al. (2015) develop a UAV system specifically for driving-behavior 

monitoring to prevent accidents. Based on an application-specific outline or 

workflow, the authors  propose a methodology for real-time vehicle tracking using 

image processing, and vehicle risk modelling through statistical analysis. The main 

focus of this particular work, however is on the evaluation of the drivers’ behavior 

and the development of a risk analysis model.  

2.5 Framework 

In this paper, we re-organize the existing UAV-based traffic studies and the 

available software platforms into a step-by-step framework. This framework 

categorizes the whole process into a number of stages, resulting in a systematic 

and efficient conduction of any drone-based study. The framework based on the 

existing studies, is classified into the following seven components: (i) scope 

definition, (ii) flight planning, (iii) flight implementation, (iv) data acquisition, (v) 

data processing and analysis, (vi) data interpretation and (vii) optimized traffic 

application. Figure 2.1 below illustrates the steps involved in conducting a drone 
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or a UAV platform based traffic related study. We discuss each step on the basis 

of the existing relevant studies with a particular focus on the studies that employ 

small, low altitude (<150m) multirotor UAVs for the traffic related applications. 

Also, a special consideration is given to the data analysis techniques that have 

been used to detect and track different vehicles in the existing relevant studies. 

Figure 2.1 below illustrates the steps involved in conducting a drone or a UAV 

platform based traffic related study. As the figure suggests that the whole process 

can be divided into two main blocks i.e. the drone block and the 

processing(software) block. The output of the scope definition step is fed 

consequently into the two blocks as shown below:  

Figure 2.1: The proposed framework for UAV-based traffic study 

2.5.1 Scope Definition 

The first module of our proposed framework involves the definition of the scope 

of the study to be conducted. This is a critical step in any project as all the latter 

steps are dependent on it. Therefore, a clear problem statement with fixed and 

definite project objectives must be defined during this step. As mentioned by 

Eisenbeiss (2009), the attributes of the workflow modules are generated in the 

first module in which the project parameters like object type, output data, camera 

sensor, type of model helicopter and flight restrictions are designated. These 
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parameters can vary from one application to another. Based on the literature 

review of project scope development (AASHTO,2010), we present a 3-step 

process in the context of a UAV based traffic study as shown in the figure 2.2: 

 

Figure 2.2: The scope definition module 

First of all, the main objectives of the study are defined and a specific focus is 

established with respect to the expected results of the study. The objectives of 

the project may include an implementation of a traffic policy program to improve 

traffic flow or to reduce the traffic conflicts. This can be achieved with the help of 

the drivers’ lane change behaviors and traffic pattern studies e.g. Salvo et al. 

(2014b) use a UAV video to analyze the gap-acceptance in an urban intersection. 

After the establishment of the objective, the network elements to be monitored 

and analyzed are selected. This can be an intersection, a roadway segment, a 

ramp or a combination of them. In the Performance measures step, the 

parameters to be determined for the study are selected such as traffic volume, 

pedestrian volume, number of lane changes, vehicle classification, velocities, 

acceleration/deceleration, number of conflicts etc. The type of traffic parameters 

to be derived from the UAV videos also define the type of UAV flight to be 

conducted e.g. Barmpounakis et al. (2016) extract the vehicle trajectories across 

the different legs of the intersection by just making the UAV hover (constant 

altitude, zero velocity) above an intersection.  

2.5.2 Flight Planning Stage 

The Flight Planning Stage involves the preparation for the implementation of the 

actual UAV flight for the collection of the required data. With the significant 

increase in the number of UAVs, state laws are now being formulated and 

implemented all over the world to avoid major mishaps. In this situation, the UAV 

flight planning step has become even more important. This implies that an in-

depth flight planning, based on the project parameters or scope is essential 

(Eisenbeiss,2009). Based on the literature survey of the traffic related UAV 

studies, the whole process of the UAV flight planning may be classified into three 

main categories; safety, environment and route planning aspects, as shown in the 

figure 2.3.  

Objective Network Elements
Performance 

Measures
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Figure 2.3: The flight planning steps 

These three categories include all the aspects that are critical for ensuring a 

successful UAV flight operation. First of all, the flying zone category of the study 

area must be evaluated with the help of the local flying zone maps. Also, a safe 

distance has to be maintained from the active airfields and from other sensitive 

installments. Based on the relevant flying zone, safety thresholds and other 

project characteristics, the flight parameters may be selected during the flight 

planning process (Eisenbeiss,2009). This is followed by an acquisition of a flight 

permit from the concerned department. This process has become easier with the 

development of UAV flight management platforms which automate a number of 

steps involved in ensuring safety and attaining flight permits. Idronect and Unifly 

UTMS are examples of such platforms from Belgium. 

The location characteristics i.e. infrastructural environment and extents of the 

built-up area in the study zone must also be considered in quest for an optimal 

set of flight parameters. Apart from the spatial planning for the UAV flight, a 

temporal planning is also necessary. This requires a special deliberation towards 

the weather and wind conditions in the area of study along with the optimal 

selection for the time of the day. For example, Salvo et al. (20141) conduct their 

UAV flight at noon as the shadows are minimal during this time of the day, 

ultimately resulting in an easier and higher quality analysis of the videos. Also, 

the interference effects of electromagnetic emissions (Yochim, 2010) and the 

status of GPS satellites especially in case of an automated UAV flight must also be 

considered during the planning phase.  
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With the advancement in the technology, UAV flight planning tools have been 

developed that enable a more systematic and automated flight operation. Using 

such tools, the users can mark the waypoints along the desired path. The users 

can plan and upload the exact route of the flight to the UAV for an automated 

flight.  Mission Planner and UgCS ground station are examples of such softwares. 

However, a backup certified pilot in line of sight (LOS) is compulsory even for 

automated UAV flights in the civilian domain due to security and insurance 

constraints. (Eisenbeiss,2009).   

2.5.3 Flight Implementation Stage 

During the flight implementation Stage, the UAV actually flies over an area of 

interest as per the planned flight path/route. This flight is conducted based on the 

parameters decided during the flight planning stage. The flight depending upon 

the user’s preference and flying expertise, is controlled either manually via the 

radio controller or automatically via the auto-pilot function. This step in 

conjunction with the flight planning step requires a number of safety and legal 

issues to be carefully addressed as mentioned in the previous step. 

During the UAV flight implementation, it also has to be made certain that the 

captured video is not shaky or wobbly. While minor stability issues can be handled 

during the pre-processing stages, the camera platform has to be stable enough to 

achieve a high quality video.  For this purpose, most UAVs hold a gimbal (3-axis) 

which allows the rotation of the camera about a single axis only (Barmpounakis 

et al,2016). The gimbal has its own motion sensors (similar to those that hold the 

UAV stable) and small motors. It keeps the motion of the camera independent 

(within certain limits) from the motions of the UAV (motions from tilting to move 

forward or sideways, or when hit by a gust of wind). The camera operator is able 

to aim the camera at will (overriding the ‘lock’ of the camera position relative to 

the environment). We discuss some individual flight implementation standards 

adopted by the researchers in their traffic-related UAV studies as following:   

Barmpounakis et al. (2016) conduct a UAV flight over a low-volume intersection 

in the university area. The UAV was hovered at a particular point from where all 

the legs of the intersection were clearly visible as shown in the figure 2.4. The 

flight attained a maximum height of 70m and the authors were able to record a 

14-minute video excluding the take-off, landing and the time to reach the 

recording point. The authors particularly selected a site where no alternate 

sufficiently high position was available in the surroundings to have a complete 

overview of the intersection. The flight was planned to be executed on a sunny 

day with moderate wind speed. Also, it was particularly made sure that the flight 
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is conducted during the noon hours so that the effect of shadows is minimal, 

thereby ensuring an efficient detection of vehicles during the analysis stage.  

Figure 2.4: View of the intersection from a UAV (Source: Barmpounakis et al., 2016 ) 

Similarly, Salvo et al. (2014a) implement their UAV flight for the collection of 

traffic data over a road segment in the suburbs of Palermo City, Italy. The authors 

after a thorough planning process conducted the UAV flight and were able to 

collect a 15 minute video with 10 frames per second in HD quality (1280x720). A 

series of flights were conducted to acquire the desired video length due to the 

technical limitations of the hardware. Also, the flights were conducted during the 

noon hours in order to minimize the effects of the shadows of the objects. Salvo 

et al. (2014b) in their another, study conduct the UAV flight over the intersection 

in the vicinity of the university. The authors conducted 5 flights over the area 

under observation at an altitude of 60m and acquired a total of 20 minute HD 

quality video. The UAV was hovered (zero speed, constant altitude) at 5 different 

points during the series of flights.  

Zheng et al. (2015) employed a different approach to validate their driver-

behaviour monitoring study. To counter the safety restrictions imposed by Federal 

Aviation Authority (FAA) and local law enforcement agencies, the authors used 2 

types of methods for controlled testing of their methodology. A test track with RC 

cars instead of real cars was set up to evaluate a UAV-based traffic study. Apart 

from this, the experiment was also conducted in the university grounds in 

controlled conditions. 

2.5.4 Data Acquisition 

 The acquisition of data from the UAV is also a critical step of the proposed 

framework and is largely dependent on the scope of the study. The data that has 
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to be acquired from the UAV includes the high quality UAV recorded video footage 

of the region of interest along any other data from sensors (infrared, thermal, 

ultrasonic etc.) mounted on the UAV. In some cases, the flight telemetry data 

(altitude, horizontal speed, vertical speed along with the position and the 

orientation data) is also acquired from the UAV in order to calibrate the recorded 

video. As indicated by Cramer (2001), the integration of position and orientation 

data generated by the navigation unit of the UAV leads to a reduction of the 

number of physical control points that are required for the orientation and 

calibration of the UAV videos. Overall, the scope specific data is acquired from the 

UAV and is then further treated and processed during the later stages of the 

framework.  

The data acquisition can be real-time or offline depending upon the requirements 

of the project. Most of the studies mentioned up till now in this paper such as 

(Salvo et al,2014a; Salvo et al,2014b; Barmpounakis et al,2016 etc.) employ an 

offline processing approach in which the video data is acquired and processed 

after the completion of the UAV flight. However, some studies such as (Zheng et 

al, 2015; Sekmen et al,2009 etc.) employ a real-time data acquisition and 

processing techniques. Zheng et al. (2015) propose a methodology for a real time 

vehicle tracking system in order to monitor and study the drivers’ behaviour to 

prevent accidents and promote highway safety. The proposed system is based on 

the live transmission of the UAV video to the ground station computer on which a 

near real-time image processing is conducted followed by a statistical analysis for 

vehicle risk modelling. (Luo et al,2011; Sekmen et al, 2009) are other such studies 

which employ a real time data acquisition and processing approach. The authors 

present an airborne traffic surveillance system to detect and track multiple moving 

objects in real-time.         

2.5.5 Data Processing & Analysis  

Video Analytics have attracted significant attention mainly because they enable 

researchers to easily collect detailed trajectory data and at the same time have a 

visual observation of the phenomenon (Barmpounakis et al., 2016). A lot of 

research has been carried out for fixed camera video analysis systems such as 

(Micchalopoulos,1991; Cao et al.,2007; Wang et al.,2008). However, the analysis 

of a traffic stream from a video recorded via an unstable aerial platform i.e. a UAV 

is a relatively new topic. This process is more complex as compared to the analysis 

of a moving traffic stream from a stationary or fixed camera system.  

Multiple approaches have been employed in the existing literature for the 

processing and analysis of the UAV-based traffic data. These approaches can be 

broadly classified into two categories: 
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3.5.1 Semi-Automated Video Analysis: The semi-automated video processing and 

analysis approach has been employed in a number of traffic related UAV studies. 

Such an approach is easy to set up and ensures a high level of accuracy and 

reliability. Also, no complex image processing algorithms are required which 

implies that far less computational power is needed. On the other hand, this 

approach is more laborious and generally requires more manpower as it generally 

involves the establishment of some physical ground control points (GCPs) or have 

certain lengths accurately measured on the site in order to calibrate the UAV 

images. ‘Tracker’ is an open source video analysis and modelling tool (Brown, 

2007, 2008, 2009, 2010) which is commonly used for feature tracking in semi-

automatic analysis studies. This software makes use of the stabilized and 

calibrated video to speed up the tracking process and produce more consistent 

data by eliminating the need for marking each frame (Barmpounakis et al, 2016). 

A few studies that utilize a semi-automatic video analysis approach are (Salvo et 

al, 2014a; Salvo et al,2014b; Barmpounakis et al, 2016). 

3.5.2 Automated Video Analysis: An automated analysis of the UAV acquired 

traffic data involves a series of advanced image processing filters and techniques 

in order to detect and track the relevant road users. The automated video analysis 

is gaining popularity especially for the real-time traffic monitoring and tracking 

applications. Although such an approach is quick and requires minimal manpower, 

it still has some limitations. Generally, the accuracy of such systems fluctuates 

dramatically with changes in conditions such as light, climate etc. Additionally, the 

automated system requires a high computational power and is difficult to initially 

set up as it involves complex algorithms for each sub-task of the analysis. Some 

studies that propose an automated video analysis include (Zheng et al,2015; 

Apeltauer et al,2015; Oh et al, 2014; Azevedo et al, 2014, Luo et al,2011; Sekmen 

et al,2009). The authors attempt to make use of fast and robust object detection 

and tracking techniques for the processing of UAV videos. 

However, for both the approaches, the basic workflow remains the same as 

illustrated in the figure 2.5. The analysis of the UAV-based traffic footage involves 

some pre-processing and stabilization procedures. These are necessary in order 

to make the video ready for the actual analyses steps. After the Geo-Referencing 

or calibration of the images to the real world coordinate system, the detection and 

tracking of different road users is carried out either automatically or semi-

automatically as discussed earlier. 
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 Figure 2.5: The data processing steps 

2.5.6 Data Interpretation 

The interpretation of the processed video data is the next step in the framework. 

The interpretation is done with the help of different types of graphs and charts 

that are generated as an output of the data analysis procedures. This step too, 

along with the preceding steps of the proposed framework, is directly dependent 

on the scope of the study. The trajectories of the vehicles or other road users 

extracted during the analysis part are displayed in x-y planar graphs to 

understand the behaviour and trend of the road users. Similarly, such trajectories 

are also represented graphically to illustrate the traffic movement across the 

intersection as depicted by Barmpounakis et al. (2016) in figure 2.6.  

Figure 2.6: Graphical representation of vehicle trajectories for a given intersection  

(Source: Barmpounakis et al., 2016 ) 

The authors (Barmpounakis et al,2016) especially focus on the unusual 

trajectories that may compromise the traffic safety situation. This is also followed 
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by the construction of OD matrices in order to quantify the traffic volume for each 

leg of the intersection.  Similarly, other authors such as Salvo et al. (2014a) 

determine the traffic kinematic parameters i.e. flow and density during the 

analysis phase of the study. These parameters are then compared with the flow 

and density values determined via theoretical macro-simulation models i.e. 

Greenshields, Greenberg, Underwood models etc.  

2.5.7 Optimized Traffic Application   

The optimized conclusion of the traffic study in accordance with its scope is the 

final step in our proposed UAV-based traffic analysis framework. The study-

specific traffic parameters determined during the analysis and interpretation steps 

are employed to improve the existing traffic models which ultimately help in 

solving the real-world traffic situations. This application dependent optimization 

may include a number of traffic related objectives such as  traffic signal 

optimization, observation of drivers’ behaviours, lane change manoeuvres etc. 

Moreover, a real-time information system can optimize the traffic operation by 

sending alerts to the concerned departments in case of incidents and emergencies 

(Barmpounakis et al,2016). 

Salvo et al. (2014a) conclude their study by comparing the traffic parameters 

obtained via the analysis of the UAV-acquired video with the traffic parameters 

obtained via macro-simulation models. Similarly Salvo et al. (2014b) attempt to 

determine the gap acceptance of all vehicles that try to enter the principle traffic 

stream at an intersection by using a UAV-acquired video dataset. Additionally, 

Barmpounakis et al. (2016) try to optimize the traffic safety and flow conditions 

by understanding the road user behavior in intersections by observing unusual 

trajectories and behavior.     

2.6 Discussion & Conclusions 

This paper presents an extensive yet systematic review of the existing traffic-

related UAV studies by moulding them in a step-by-step framework. Up till now, 

there have been general survey studies (Puri,2005; Kanistras et al,2013) 

regarding the research applications of UAVs in the field of transportation, but there 

has been no such detailed framework based on the existing literature. 

With the passage of time, the UAV technology is rapidly being accepted as a very 

useful and dynamic technology, particularly for the collection of detailed and 

accurate traffic data. This relatively low cost technology provides high resolution 

video data while covering a larger area. The mobility and flexibility of the system 
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further increases the worth of this technology. However, despite of a number of 

advantages, UAVs still have some significant concerns and limitations that need 

to be addressed. The technical limitations i.e. limited battery time, weather 

constraints along with the safety and privacy concerns are the biggest hindrances 

in making this technology more effective. Although, high-end technology could be 

used to increase the battery life, this however exponentially increases the cost of 

ownership. Therefore, the current low cost technology can be utilized most 

effectively by combining it with the other traffic data collection apparatus.  

The UAVs can be used to collect data beyond the range of fixed sensors in order 

to get a detailed and accurate data over space and time. This can particularly be 

useful in areas where the fixed sensor infrastructure is either not available or is 

financially not feasible to install a high density of sensors along the area. 

Moreover, the management of traffic incidents can also be improved drastically 

with the help of such technology. Therefore, it can be concluded that advancement 

in technology, effective regulations and systematic frameworks will result in a 

safer and more efficient usage of the UAVs, particularly for the traffic applications.  

With the significant increase in the number of UAVs, state laws are now being 

formulated and implemented all over the world to avoid major mishaps. In this 

situation, there is a dire need for a systematic and detailed step-by-step 

framework for the conduction of UAV flights. Apart from it, the proposed 

framework may prove to be helpful for various traffic related UAV  studies such 

as traffic surveillance, network traffic analysis and behavioural studies. The 

development of such a framework may optimize the usage of limited UAV flight 

time, thereby resulting in an efficient conduction of the traffic study. Additionally, 

it may also serve as a foundation for more advanced studies involving the swarms 

of UAVs. Overall, the proposed framework serves as a comprehensive guide for 

the conduction of a UAV-based traffic study. The steps involved in the process 

outline all the hardware as well as software ingredients that are essential to ensure 

a safe and efficient operation, management and control of a UAV-based traffic 

study.  

The future research will mainly focus on the implementation of the proposed 

framework in a real-world situation to observe and analyse traffic streams in 

Belgium. A particular focus will also be on the scenario evaluations,  in terms of 

feasibility measures and cost-benefit analysis, in comparison to other existing 

technologies. 
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Chapter 3 

3. Methodological Framework for 

Automated Multivehicle Trajectory 

Extraction 
 

This chapter consists of following peer-reviewed journal paper (published): 

Khan, M. A., Ectors, W., Bellemans, T., Janssens, D., & Wets, G. (2017). 

Unmanned Aerial Vehicle-Based Traffic Analysis: Methodological Framework for 

Automated Multi-Vehicle Trajectory Extraction. Transportation Research Record: 

Journal of the Transportation Research Board (IF:0.695), 32(0), 1–15. doi: 

10.3141/2626-04 

Based on the following peer-reviewed conference paper: 

Khan, M. A., Ectors, W., Bellemans, T., Janssens, D., & Wets, G. (2017). 

Unmanned Aerial Vehicle-Based Traffic Analysis: A Methodological Framework for 

Automated Multi-Vehicle Trajectory Extraction. Transportation Research Board, 

96th Annual Meeting, Washington D.C, USA. 

 

 

3.1 Overview 

This chapter proposes a detailed methodological framework for automated UAV 

video processing. The main objective is to efficiently process the traffic data 

acquired via UAVs; ensuring the data is converted into useful and reliable traffic 

information. The proposed framework consists of five components, namely: 

preprocessing, stabilization, geo-registration, vehicle detection and tracking, and 

trajectory management. After all these sub-processes, the trajectories of multiple 

vehicles at a particular road segment are extracted, which can then be used either 

to extract various traffic parameters or to analyze traffic flow and safety 

situations. This chapter also gives a brief comparison of existing UAV studies 

based on either manual or semiautomatic processing techniques. However, the 

main focus is on  the description of the proposed automated framework. In the 

http://dx.doi.org/10.3141/2626-04
http://dx.doi.org/10.3141/2626-04
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end, the proposed framework is validated with the help of a field experiment 

conducted in the city of Sint-Truiden, Belgium. This data is processed and 

analyzed as per the modules of the framework, resulting in a series of vehicle 

trajectories.   

3.2 Abstract 

Unmanned aerial vehicles (UAVs), commonly referred to as drones, are one of the 

most dynamic and multidimensional emerging technologies of the modern era. 

This technology has recently found multiple potential applications within the 

transportation field, ranging from traffic surveillance applications to traffic 

network analysis. To conduct a UAV-based traffic study, extremely diligent 

planning and execution are required followed by an optimal data analysis and 

interpretation procedure. In this study, however, the main focus was on the 

processing and analysis of UAV-acquired traffic footage. A detailed methodological 

framework for automated UAV video processing is proposed to extract the 

trajectories of multiple vehicles at a particular road segment. Such trajectories 

can be used either to extract various traffic parameters or to analyze traffic safety 

situations. The proposed framework, which provides comprehensive guidelines for 

an efficient processing and analysis of a UAV-based traffic study, comprises five 

components: preprocessing, stabilization, geo-registration, vehicle detection and 

tracking, and trajectory management. Until recently, most traffic-focused UAV 

studies have employed either manual or semiautomatic processing techniques. In 

contrast, this paper presents an in-depth description of the proposed automated 

framework followed by a description of a field experiment conducted in the city of 

Sint-Truiden, Belgium. Future research will mainly focus on the extension of the 

applications of the proposed framework in the context of UAV-based traffic 

monitoring and analysis. 

3.3 Introduction 

The continual increase in the number of motorized vehicles and ever-increasing 

travel demands call for innovative and effective measures to tackle the challenges 

of high traffic volumes and congestion levels. Because infrastructure expansion 

alternatives are limited and expensive, transportation managers are left with the 

option of ensuring an efficient and optimal use of the existing network. For this 

purpose, state-of-the-art intelligent traffic information systems are employed to 

monitor and analyze traffic streams, particularly in emergency situations. 

The efficient operational management of the network requires an accurate, timely, 

and quick inflow of traffic data. The collection and analysis of traffic data have 
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also been critical elements for the development and improvement of macroscopic 

and microscopic traffic simulation models. However, it is not easy to collect traffic 

data for large spans of roadway networks, as most data collection methods require 

a large fixed infrastructure or are labor intensive (Coifman et al., 2006).  

Methods of collecting useful traffic data have evolved with advancements in 

technology. Induction loops, overhead radar sensors, and fixed video camera 

systems have been commonly used to monitor traffic status for a number of years. 

Although such traditional devices provide accurate and useful data, the data 

collected are only measured at a particular point with generally no useful data 

about traffic flows over larger areas (Puri, 2005). This data collection method 

results in many points in the network remaining effectively hidden because a high 

density of detectors would be required to cover the whole network (Barmpounakis 

et al., 2016; Coifman et al., 2006). In such a data set, the real root cause of traffic 

congestion or any other incident remains unknown. Manual detection made by 

specially deployed personnel can be used if some traffic information is required 

beyond the range of the installed cameras or sensors.  

Apart from such traditional equipment, advanced intelligent transportation system 

technologies such as vehicle-to-infrastructure, probe vehicles with GPS, and 

smartphone sensor technologies resulting in “big data sets” are being used, 

especially for the extraction of vehicle trajectories. However, such data are not 

always easily converted to useful traffic information (Vlahogianni, 2015). Also, the 

use of GPS technology might not be applicable for studying driver behavior 

because drivers know they are being monitored (Barmpounakis et al., 2016; Salvo 

et al., 2014a). 

Technological advances have recently provided an alternative to an inflexible fixed 

network of sensors or the labor-intensive and potentially slow deployment of 

personnel (Coifman et al., 2006). Complex traffic situations can be fully observed 

with the help of wide field-of-view and nonintrusive sensors and cameras mounted 

on airborne systems. Initially, satellites and manned aircraft were used for traffic 

data collection purposes (Hoogendoorn et al., 2003). However, various quality, 

cost, and safety issues have proven these methods to be inefficient. Recently, 

unmanned aerial systems in traffic monitoring, management, and control are 

starting to take center stage (Kanistras et al., 2015; Puri, 2005). 

Unmanned aerial vehicles (UAVs), commonly referred to as drones, are one of the 

most dynamic and multidimensional technologies of the modern era. This 

technology is swiftly strengthening its presence in multiple applications, varying 

from commercial tasks (such as parcel delivery and sports coverage) to research 

applications (such as surveys of inaccessible areas and crop fields). UAVs are 

predicted to be the most dynamic growth sector within aviation in the coming 

years (Schaufele, 2015). 
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UAVs have been used in the transportation field to monitor and analyze traffic flow 

and safety conditions (Kanistras et al., 2015; Anuj Puri, 2005). These airborne 

imaging systems are mobile and, more importantly, provide high resolution traffic 

data relevant in both time and space (Anuj Puri, 2005). UAVs, without affecting 

drivers’ behavior, can cover a large area in a short time at a considerably lower 

cost than alternate solutions. The technology can be particularly useful in areas 

where the fixed-sensor infrastructure is either not available or installing a high 

density of sensors is not financially feasible. Mobility and flexibility are the key 

assets of this technology. 

Although attempts to collect traffic information from UAV-based images have been 

made in the past, their use in traffic studies is still at an early stage (Kanistras et 

al., 2015; Puri, 2005). Only a few applications of this technology have been 

implemented, and they are still in the research stages. Practically, UAVs still have 

some significant concerns and limitations that need to be addressed. Technical 

limitations (e.g., limited battery time and weather constraints) and safety and 

privacy concerns are the biggest hindrances in making this technology more 

effective. However, the hardware limitations are expected to be reduced 

significantly in the coming years as the technology is progressing rapidly. 

Automated UAV flights and coordinated flights of a swarm of UAVs are already 

becoming a reality. Therefore, UAVS can be safely termed as a future-proof 

technology, especially with widespread commercial availability and decreasing 

costs. It is forecasted that 600,000 commercial small UAVs (weighing between 

.55 and 55 lbs.) could be over U.S. skies by 2020, implying new and improved 

applications of the technology (Schaufele, 2015).  

However, the use of drone technology in traffic-related studies involves a high 

level of planning and management precision (9). With the introduction of state 

laws regarding the use of UAVs, extremely diligent planning and execution of a 

UAV flight are required as the consequences of a mismanaged execution could be 

severe. For this purpose, Khan et al. proposed a universal framework that serves 

as a guide not only for a safe and efficient execution of a UAV-based traffic study, 

but also for the processing and analysis steps that follow the execution of a UAV 

flight (Khan et al., 2017).  

This paper focuses on the processing and analysis of UAV-acquired traffic footage. 

A detailed methodological framework for automated UAV video processing is 

proposed for the extraction of the trajectories of multiple vehicles at a particular 

road segment. Such trajectories can be used to extract various traffic parameters 

or to analyze traffic safety situations. Until now, most traffic-focused UAV studies 

have employed either manual or semiautomatic processing techniques. This paper 

provides an in-depth description of the proposed automated framework and also 

describes a field experiment conducted in the city of Sint-Truiden, Belgium. With 
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the significant increase in the number of UAV studies expected in the coming 

years, this automated systematic framework could become a useful resource for 

research studies. 

This paper is organized as follows. First, previous relevant studies regarding the 

applications of UAVs in the domain of transportation (traffic) are briefly discussed. 

This review is followed by a detailed description of the proposed framework. To 

support the proposed framework, an experiment along with its results are 

presented. Finally, the paper concludes with some discussion regarding the 

proposed future developments and applications of the framework. 

3.4 Related Work 

UAVs are increasingly being employed for multiple purposes. According to the 

literature, UAVs are being widely researched for traffic surveillance and network 

evaluation applications (Coifman et al., 2006; Heintz et al., 2007; Puri et al., 

2007). Different types of UAVS are being used or tested to measure traffic related 

data at several universities (Puri, 2005). Various authors have discussed and 

summarized the research carried out all over the world in the domain of UAV-

based traffic surveillance and analysis, including a systematic categorization of 

the relevant research based on the research objective, methodology, platform 

used, and the place of research (Kanistras et al., 2015; Puri, 2005). These authors 

mention various advantages along with the barriers that UAVs must overcome to 

be successfully employed for civil applications like traffic monitoring and 

surveillance operations (Kanistras et al., 2015; Puri, 2005).  

Some researchers have tried to propose a workflow or outline for conducting UAV-

based studies. Khan et al. presented a universal guiding framework for ensuring 

a safe and efficient execution of a traffic-related UAV study (Khan et al., 2017). 

The authors reorganized the existing UAV-based traffic studies and the available 

software platforms into a step-by-step framework. The systematic framework 

included a detailed description of all aspects of conducting an efficient traffic 

related UAV study. Similarly, Zheng et al. (2015) developed a UAV system 

specifically focused on monitoring driving behavior to prevent accidents. Based on 

an application-specific outline or workflow, the authors proposed a methodology 

for real-time vehicle tracking by using image processing and vehicle risk modeling 

through statistical analysis. The main focus of this particular work, however, was 

on the evaluation of the drivers’ behavior by developing a risk analysis model. 

Recently, many researchers have attempted to use UAV-acquired traffic videos to 

conduct traffic analysis studies. Salvo et al. (2014b) analyzed the gap acceptance 

of vehicles entering a major road in an urban intersection with the help of UAV 
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videos. The same authors also used UAV-acquired traffic videos to determine 

various traffic parameters (e.g., flow and velocity) and compare them with 

theoretical macro-simulation models (Salvo et al., 2014a). Barmpounakis et al. 

(2016) conducted a UAV-based traffic experiment over a low-volume intersection 

to extract various kinematic parameters, including the estimation of vehicle 

trajectories. All the studies mentioned above employed either manual or 

semiautomatic processing methods; other studies have proposed automated 

video analysis methods (Apeltauer et al., 2015; Gao et al., 2014; Oh et al., 2014; 

Sekmen et al., 2009; Zheng et al., 2015). The authors of these studies have 

attempted to use fast and robust computer vision–based object detection and 

tracking techniques for the processing of aerial traffic videos.  

A lot of research has been conducted for the extraction of vehicle trajectories and 

their application for traffic analysis purposes. Researchers have employed GPS 

and smartphone technology to extract vehicle trajectories (Calabrese et al., 2013; 

Gurusinghe et al., 2002; Iqbal et al., 2014; Punzo & Simonelli., 2005). Apart from 

these big data sources, computer vision technology using fixed camera systems 

has also been researched widely for trajectory extraction and traffic analysis 

applications. Researchers have applied image-processing techniques to fixed-

camera traffic videos to extract and analyze trajectory data (Guido et al., 2014; 

Jutaek et al., 2009; Li et al., 2014; St-Aubin et al., 2013). An extensive trajectory 

data set using Next Generation Simulation has also been developed using video 

analytic techniques (Kim et al., 2005). However, all this research has used fixed 

camera videos. Some researchers have attempted to employ UAV videos to 

extract vehicle trajectories (Apeltauer et al., 2015; Barmpounakis et al., 2016; 

Gao et al., 2014; Rajamohan & Rajan, 2013). Gao et al. (2014) present an 

especially effective methodology on the automatic extraction of vehicle 

trajectories, although in their approach the user initially has to manually select 

the vehicle to be tracked. 

3.5 Proposed Framework 

In this section a detailed framework is proposed for the automatic extraction of 

multivehicle trajectories on a particular stretch of road via UAV-acquired data, and 

a step-by-step methodology is presented for the optimal application of a UAV in 

the domain of transportation engineering and management. The framework 

categorizes the whole process into stages that allow a UAV-based traffic study to 

be conducted systematically and efficiently. The proposed framework, which is 

broadly targeted for traffic analysis and surveillance applications, is classified into 

the following five components: preprocessing, stabilization, geo-registration, 

vehicle detection and tracking, and trajectory management. Figure 3.1 illustrates 
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the steps involved in the processing and analysis of a drone- or UAV-acquired 

video for a traffic-related study. 

The proposed framework employed a combination of software packages to ensure 

an optimal processing and analysis of the traffic-related UAV videos. Apart from 

some video editing tools, the major portion of the implementation was done in 

MATLAB and C++ (OpenCV library).  

In the following subsections, the five elements of the proposed framework are 

discussed in detail. This discussion is followed by a description of an experiment 

and its results to demonstrate the applicability and efficiency of the proposed 

framework. 

Figure 3.1: The proposed framework for the automated UAV video processing and analysis 

3.5.1 Preprocessing 

The first step of the proposed framework is the preprocessing of the traffic video 

acquired via a UAV. This step is critical as all the subsequent steps directly depend 

on it. Various sub-steps can be included in the preprocessing phase of the 

proposed framework to prepare the UAV-acquired traffic videos for the actual 

processing and analysis procedures. 

The preprocessing procedure of the UAV videos can be grouped into three 

categories: video trimming, image rectification, and region-of-interest masking 

stages. First, the UAV videos are trimmed to extract the useful part of the videos. 

Trimming is done by excluding the parts of videos that are not useful for the traffic 

analysis, such as the UAV takeoff and landing portions of the recorded videos. 

After the useful part of the UAV videos is trimmed or extracted, the next step is 
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image rectification. In this step, special attention is given to the type and quality 

of the acquired images. The types of image rectification processes used depend 

on the type of hardware (i.e., UAV and the camera) employed. Image distortions 

such as fish-eye and darkened-edges effects caused by the type and settings of 

lens used are removed or minimized to prepare the video for the processing and 

analysis phase. The main target of this step is to make every pixel of the image 

useful for processing. 

The third step of the proposed framework’s preprocessing phase is the masking 

of the irrelevant parts of the images. This process is particularly significant for 

studies that target automatic detection and tracking of vehicles or other road 

users via computer vision algorithms. Only the regions of interest, such as specific 

lanes in a particular direction, are kept in focus; all other areas are masked in the 

frame. Masking makes the image-processing or computer vision algorithms more 

efficient as they will extract only the required data. In addition, the computational 

power and processing time are optimized. 

3.5.2 Stabilization 

UAVs have advanced significantly over the last few years. State-of-the-art 

hardware parts, including three-axis camera-mount gimbal, have drastically 

improved the stability of the recorded videos. However, the videos acquired via a 

UAV or drone still have a certain amount of shakiness because of external factors 

(such as the pressure applied by wind gusts) or internal factors (such as the 

vibrations of the platform caused by the rotors and other mechanical parts). A 

reliable stabilization procedure is necessary to minimize the effects of UAV 

instability, as even a minor camera vibration can result in major movement in the 

imagery. The stabilization process also significantly simplifies and improves the 

efficiency of the subsequent processes of the proposed framework, particularly 

vehicle detection and tracking. 

The use of a three-axis camera-mount gimbal is critical to achieve the maximum 

possible stability in UAV videos during the flight. These videos are processed 

during the post-recording phase as well to maximize the level of stability. Various 

stabilization methods and software are available that can reduce the effects of 

small camera movements. A simple but laborious method usually employed to 

ensure stability is tracking an established ground control point, or any other 

stationary object whose coordinates are known, throughout the length of the 

recorded video (Barmpounakis et al., 2016). This object is then regarded as a 

reference point, and the difference between the coordinates of this object for 

consecutive frames is applied to the coordinates of all other objects. This 

technique—although effective—requires frame-by-frame manual tracking, as well 

as the prior knowledge of the exact coordinates of the reference object. 
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This paper, however, specifically focuses on using automated techniques for the 

processing of UAV-based traffic videos. A point feature-matching approach is 

employed to counter the instability and shakiness in UAV videos. This MathWork’s 

stabilization approach, as illustrated in Figure 3.2, first converts two consecutive 

frames into grayscale to increase the computation speed. Next, the corner points 

of features in both the images are determined and matched with each other by 

using the concept of the sum of the squared differences. To maintain a degree of 

uniqueness in the matching points and to keep only the valid inliers, a random 

sampling and consensus algorithm is used. These points are then used to compute 

an affine transformation matrix, which is a 3 3 matrix used to correct the 

geometric distortions in the image. The affine transformation matrix performs the 

transformation based on the scale, rotation, and translation parameters. This 

transformation matrix is then warped to all the frames to remove the distortion 

caused by the instability of the UAV platform. 



Figure 3.2: The schematic diagram of the UAV video stabilization process

3.5.3 Geo-registration 

Geo-registration of the UAV-acquired images involves assigning real-world 

distances and coordinates to the image coordinates. The pixel coordinates are 

converted into real-world coordinates to increase the applicability of the produced 

trajectory data. The georeferenced calibrated trajectories can be directly used and 

integrated with various geographic information system applications as well. This 

process also enables the user to visualize and estimate various traffic parameters 

by generating the data in an actual scale. 

To geo-register the UAV-acquired mono-vision two-dimensional (2-D) imagery, 

various UAV-acquired video frames are used to create a mosaic image using the 

scale-invariant feature transformation matching algorithm. This image is then 

assigned a coordinate system (mostly Cartesian) and is calibrated according to a 
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specific scale with the help of any geographic information system tool. This 

calibration leads to the point correspondence step, in which various points on the 

calibrated UAV image are compared to the referenced (or Google) map of that 

particular area. This process results in the generation of two sets of coordinate 

data: the image coordinates and the corresponding real-world coordinates. The 

point correspondence data are then processed using the random sampling and 

consensus algorithm to compute the homography matrix. This 3 3 matrix allows 

the transformation of a 2-D planar image into three-dimensional coordinates by 

using the assumptions of a pinhole camera model. This model is based on certain 

assumptions that enable the projection of a three-dimensional object onto the 2-

D image plane. The coefficients of the matrix H can then be used to convert a set 

of 2-D image coordinates (xi, yi) into the real-world coordinates (xw, yw, zw), as 

shown in the following equations: 

[

𝑥𝑤

𝑦𝑤

𝑧𝑤

] = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] [
𝑥𝑖

𝑦𝑖

1
]       (1) 

 𝑧𝑤 =  ℎ31𝑥𝑖 + ℎ32𝑦𝑖 + ℎ33        (2) 

 𝑥𝑤 = (ℎ11𝑥𝑖 + ℎ12𝑦𝑖 + ℎ13)/𝑧𝑤         (3) 

 𝑦𝑤 = (ℎ21𝑥𝑖 + ℎ22𝑦𝑖 + ℎ23)/𝑧𝑤      (4) 

 

3.5.4 Vehicle Detection and Tracking 

After geo-referencing or calibrating the images to the desired coordinate system, 

the detection and tracking of different road users is carried out. This process is 

the pivotal step in any video analytics– based traffic study as the principal results 

are all based on the efficiency and accuracy of this process. The main aim of any 

vehicle detection and tracking method is to produce consistent tracks of detected 

vehicles while minimizing the number of false or missed tracks. 

The efficiency of the vehicle detection and tracking depends on the method 

employed. The vehicle detection and tracking processes used in existing studies 

can be broadly classified into two categories: semiautomatic and automatic 

techniques (Khan et al., 2017). Semiautomatic techniques produce accurate 

results, but they are laborious and require certain steps to be performed manually 

(Barmpounakis et al., 2016; Salvo et al., 2014a, 2014b). Automatic techniques, 

though having some limitations, are gaining popularity as they provide quick 

results with minimum manpower involved. 
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In the proposed framework, the automatic detection and tracking of vehicles is 

the most complex step as it involves a series of computer vision algorithms to 

efficiently detect and track the different types of vehicles on a particular road 

segment. This process requires a robust and reliable algorithm to produce 

accurate results. For this purpose, a detection and tracking algorithm was 

developed using the OpenCV library in C. The stabilized UAV video was used as 

input into the system. First, the input video was passed through the optical flow–

tracking algorithm, in which the direction and speed of the moving pixels were 

estimated from one frame to another by using the concept of weighted least 

squares (Lucas & Kanade, 1981; Tomasi & Kanade, 1991). The Lucas–Kanade 

optical flow algorithm tracked the corner points of all the significant features 

throughout the video. The output of the optical flow process was then used as an 

input for the background subtraction algorithm.  

Background subtraction is a commonly used technique (especially for static 

videos) in which the moving objects are detected by subtracting the current image 

from the reference background image. The main reason for implementing optical 

flow before background subtraction is to improve its accuracy for the UAV videos, 

which have dynamic backgrounds and some instability. Once the moving objects 

were separated from the background, the neighboring moving pixels (blobs) in 

the foreground were identified as vehicles and tracked through each frame. A 

particular consideration was given in the algorithm to counter the inaccuracies 

caused by losing and reinitializing tracks. Figure 3.3 shows a simplified schematic 

diagram for the vehicle detection and tracking process. 

 

Figure 3.3: The schematic diagram of the vehicle detection and tracking process 

3.5.5 Trajectory Management 

The final step of the proposed framework for an optimal processing and analysis 

of UAV traffic videos is the management of the extracted trajectories of the 
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vehicles of interest. The tracks or trajectories extracted automatically during the 

vehicle detection and tracking step must be dealt with effectively so they can be 

stored and then retrieved for further traffic analysis. 

In the proposed framework, each coordinate of the vehicle detected and tracked 

in the area of study is automatically written and saved to a text (.txt) file. This 

text file which contains the coordinates of each vehicle for every frame of the UAV 

video, enables the user to sort and process the data to extract various traffic 

parameters such as the vehicle’s velocity, average velocity, and acceleration and 

traffic flow. These sorted data can be used to generate various charts and graphic 

displays of the extracted vehicle trajectories to study drivers’ behavior and to 

track unusual activities (incidents). 

3.6 Experiments & Results 

To test the proposed framework for the automated traffic analysis via a UAV-

acquired footage, a series of flights were conducted over an urban intersection 

near the city of Sint-Truiden in Belgium. The equipment used for the flights was 

the Argus-One (from Argus-Vision) which is a high-end octocopter UAV, capable 

of a 9 minute flight while carrying 3 kilograms of weight. Panasonic Lumix GH4 

DSLM camera was attached with the UAV to obtain a high resolution (4K 

Resolution@ 25fps) traffic footage. In addition to this, a live-feed transmission 

(first-person-view) system was also attached with the UAV for real-time 

monitoring of the camera angles. This particular UAV requires simultaneous 

operation by the pilot and the camera operator. Despite of a relatively lower flight 

time, this particular UAV was employed as it provides a high quality and stable 

video data which was necessary to initially develop and test the proposed 

methodology.  Figure 3.4 below shows the Argus-one UAV in standby mode and 

in flight respectively.  

 

Figure 3.4: The argus-one UAV; ready for take-off (left-side) and  in-flight (right-side) 
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The experiment was conducted on a Friday afternoon (16:30 to 18:00 hours) to 

capture the evening rush hour. The weather was mostly clear while the wind level 

was gentle as well (18km/hour, Beaufort scale 3). The location as shown in Figure 

3.5 is an intersection joining the national highways N80 and N718 with speed 

limits of 120km/hour and 90km/hour respectively. The selected 4- legged 

intersection for the experiment leads from the city of Hasselt into the center and 

suburbs of Sint-Truiden, with 2 lanes in each direction. The UAV was hovered 

(constant altitude, zero velocity) above the intersection at the heights of 80m and 

60m.Due to the availability of backup battery packs, a series of flights were 

conducted, resulting in a 14-minute useful traffic video after excluding the take-

off and landing maneuvers.  

 

Figure 3.5: The studied 4-leg intersection; Google earth satellite image (left-side) and  

image from the UAV (right-side) 

As mentioned earlier, a combination of various softwares including MATLAB and 

C++ (OpenCV library) was used to develop an algorithm for the different steps of 

the proposed framework. The aim was to make every step of the framework 

automated with quick outcomes. The UAV video processing and the results 

generation was done on an Intel ® Core ™ i5-4210M CPU@2.60GHz, with 4GB 

RAM and Windows 8.1 (64 bits). The UAV video was stabilized according to the 

proposed methodology explained in the previous sections. The images were then 

scaled as per actual distances and a Cartesian coordinate axis was assigned having 

origin at the center of the intersection.  

The trajectories of multiple vehicles crossing the intersection under observation 

were extracted using the developed computer vision algorithm. Figure 3.6 depicts 

the trajectories of 2 sample vehicles and their corresponding velocity profiles. In 

addition, the figures 3.6(c) and (f) illustrate the space-time diagrams of platoon 

of vehicles while approaching and crossing the intersection at different times 

during the UAV flights.  

A number of interpretations can be made from the trajectories and velocity profiles 

illustrated in Figure 3.6. It can be observed from graphs in Figure 3.6(b) and (c) 
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that all the vehicles in the Platoon-1 including the sample vehicle-1, show an 

increasing speed trend which implies that the traffic signal just turned green at 

the instant. Initially, the sample vehicle moved slowly while approaching the 

center of the intersection as it was moving in a group of vehicles (platoon-1) with 

small headways. As the vehicle entered and crossed the intersection, the velocity 

kept on increasing uniformly. The mean velocity of the sample vehicle while 

approaching and maneuvering through the intersection was measured to be 26 

km/hour with a maximum of 32 km/hour (Figure 3.6(b)). As the accuracy of the 

calibration process was ensured by several measurements at site and then 

verification with Google Maps, therefore the values estimated did not have 

significant errors. 

Similarly, another group of vehicles (platoon-2) approaching and crossing the 

intersection under observation was also analyzed. The graphs in the Figure 3.6(d), 

(e) and (f) illustrate the drivers’ behavior while approaching a signalized 

intersection. It is clearly evident from the trajectories that the each driver 

decelerated in his own particular manner in order to stop at the traffic signal. 

Some trajectories show a smooth transition to a stationary position (e.g. car 7) 

while others have a steep curve (car 1) implying a strong deceleration (Figure 

3.6(f)). Additionally, the behavior of a right-turning vehicle (car 8) can also be 

observed. The slope of the car 8’s trajectory suggests that the vehicle had to 

reduce its speed in order to safely execute the turning maneuver. Such diagrams 

can be also effectively used to monitor and study the unusual trajectories leading 

to traffic incidents.  
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Figure 3.6: The automatically extracted trajectories (a) Trajectory of Sample Vehicle-1 

along x-y axis, (b) Speed profile of sample vehicle-1, (c) x-t trajectories of platoon-1, (d) 

Trajectory of sample vehicle-2 along x-t axes, (e) Speed profile of sample vehicle 
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3.7 Discussion & Conclusion 

This paper presents an extensive and systematic methodological framework for 

the optimal application of a drone or UAV in the domain of transportation 

engineering and management. A step-by-step methodology elaborates the 

processes involved in the automatic extraction of the trajectories of multiple 

vehicles on a particular stretch of road using UAV-acquired data. Most existing 

traffic-related UAV studies generally have employed semiautomatic processing 

and analysis methods; in contrast, the present study emphasizes the automation 

of all the steps included in the framework. The ultimate goal of this research was 

to develop a system that produces useful traffic data in a short time. For this 

purpose, the employed algorithms were selected on the basis of minimal 

processing times and computational requirements. A balance was maintained 

between the accuracy and processing time of the developed automated vehicle 

detection and tracking system. 

The proposed framework is supported by a field experiment conducted in the city 

of Sint-Truiden, Belgium, over an urban intersection. A series of trajectories was 

extracted and graphed by using the proposed methodological framework. The 

results generated depict the overall applicability of the system. Such a systematic 

framework may prove to be helpful for future traffic-related UAV studies as well 

by streamlining the processes involved. It may also serve as a comprehensive 

guide for the automated and quick extraction of multivehicle trajectories from 

UAV-acquired data. 

Although the methodology employed and the results generated showed a 

reasonably good performance, the vehicle detection and tracking algorithms need 

to be more robust and accurate in all types of conditions. Fully automated vehicle 

detection and tracking, although ideal for real-time applications, have limitations 

as well. Errors can arise for various reasons, such as partial occlusions, objects in 

close proximity, and false detections; and a certain amount of noise appears in 

the produced data that must be dealt with. The video stabilization process plays 

an important role in improving the overall efficiency of the detection and tracking 

system. 

Future research will mainly focus on the extension of the applications of the 

proposed framework within the context of UAV-based traffic monitoring and 

analysis. More specific and detailed UAV-based traffic-oriented studies will be 

carried out, and the proposed framework will be extended to implement real-time 

processing and analysis of UAV-acquired data. 
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Chapter 4 

4. An Evaluation of the Accuracy of 

Vehicle Detection & Tracking 

System 
 

This chapter consists of following paper: 

Khan, M. A., Ectors, W., Bellemans, T., Janssens, D., & Wets, G. (2018). 

Unmanned Aerial Vehicle-Based Traffic Analysis: An Evaluation of the Accuracy of 

Vehicle Detection & Tracking Process. (In-Review). 

 

 

 

4.1 Overview 

This chapter evaluates the performance of the proposed UAV based traffic analysis 

system with a special emphasis on the vehicle detection and tracking module. The 

main objective is to determine the level of accuracy of the generated vehicle 

detection and trajectory data. A certain level of accuracy is critical to ensure the 

collected data is converted into useful and reliable traffic information. The UAV 

video processing and analysis framework, initially presented in chapter 3 has been 

further optimized. In order to evaluate the accuracy of the system, the outputs 

from the vehicle detection and tracking system have been compared with the 

ground-truth data. Various measures of performance have been calculated for 

different UAV-based traffic videos. The results show that the overall accuracy of 

the system lies above 90%. Moreover, the sensitivity of UAV flight altitude to the 

overall preciseness of the outputs is also evaluated. The comparison shows that a 

higher altitude level provides more precise results. The results are presented in 

tabular as well as graphical format.   
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4.2 Abstract 

Object Detection and tracking is a widely-researched topic in image processing 

and computer vision field. The applications of this technology are also extended 

to the field of traffic and transportation e.g. for the detection of vehicles,  

measurement of speed, license plate recognition etc. However, these applications 

are heavily dependent on the employed data collection methodology. 

Traditionally, fixed camera systems have been used to collect traffic data for video 

analytics. Recently, Unmanned Aerial Vehicles (UAVs) commonly referred to as 

drones have also been used for traffic data collection and analysis. However, the 

use of this technology still needs to be streamlined and optimized. For this 

purpose, the authors previously proposed a detailed UAV video processing 

framework for the extraction of multi-vehicle trajectories at a particular road 

segment. The proposed methodological framework was validated based on the 

collected experimental dataset. In this paper, however, the main focus is on the 

evaluation of the performance of the proposed UAV based traffic analysis system 

with a special emphasis on the vehicle detection and tracking module. In order to 

evaluate the accuracy of the system, the outputs from the vehicle detection and 

tracking system have been compared with the ground-truth data. Various 

measures of performance have been calculated for different UAV-based traffic 

videos. The results show that the overall accuracy of the system lies above 90%. 

Moreover, the sensitivity of UAV flight altitude to the overall preciseness of the 

outputs is also evaluated. The comparison shows that a higher altitude level 

provides more precise results. The future work will mainly focus on making the 

system more consistent and robust in all types of conditions. 

Keywords: UAVs, Drones, Traffic Applications, Traffic Analysis, Video Analytics, 

Trajectories 

 

4.3 Background 

Traffic analysis and behaviour modelling are the key attributes in transportation 

planning and management. Over the years, various sources have been used to 

gather useful traffic information. One of the widely used methods has been the 

video analytics. This method including the object detection, classification and  

tracking has been widely-researched in image processing and computer vision 

field. This method has attracted significant attention mainly because it provides 

rich data that cannot only be used to easily collect detailed trajectory data but 
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also to maintain a visual observation of the phenomenon (Barmpounakis et al., 

2016).  

Traditionally, fixed camera systems have been used to collect traffic data for video 

analytics. A lot of research has been carried out for fixed camera video analysis 

systems such as (Cao et al., 2007; Micchalopoulos, 1991; Wang et al., 2008). 

Researchers have applied image-processing techniques to fixed-camera traffic 

videos to extract and analyze trajectory data (Guido et al., 2014; Jutaek et al., 

2009; Li et al., 2014; St-Aubin et al., 2013). An extensive trajectory data set 

using Next Generation Simulation has also been developed using video analytic 

techniques (Kim et al., 2005). However, the fixed camera systems have their own 

limitations such as camera angle and the creation of a number of hidden points 

resulting in an inability to extract the detailed trajectories of the vehicles. To tackle 

these issues, some authors made use of satellites and manned aircrafts for traffic 

monitoring (Hinz et al., 2006; Lenhart et al., 2008), but the costs and limited 

availability of these airborne instruments proved to be significant drawbacks. 

Recently, UAVs have been increasingly used for traffic monitoring and analysis 

purposes (Kanistras et al., 2015; Puri, 2005). The analysis of a traffic stream from 

a video recorded via an unstable aerial platform, i.e. a UAV, is a relatively new 

topic. This process is more complex as compared to the analysis of a moving traffic 

stream from a stationary or fixed camera system. This is mainly due to the 

sensitivity of the UAV platform to the environmental and wind conditions.  

UAVs are increasingly being employed for multiple purposes. According to the 

literature, UAVs are being widely researched for traffic surveillance and network 

evaluation applications (Coifman et al., 2006; Heintz et al., 2007; Puri et al., 

2007). Different types of UAVS are being used or tested to measure traffic related 

data at several universities (Puri, 2005). Various authors have discussed and 

summarized the research carried out all over the world in the domain of UAV-

based traffic surveillance and analysis, including a systematic categorization of 

the relevant research based on the research objective, methodology, platform 

used, and the place of research (Kanistras et al., 2015; Puri, 2005). These authors 

mention various advantages along with the barriers that UAVs must overcome to 

be successfully employed for civil applications like traffic monitoring and 

surveillance operations (Kanistras et al., 2015; Puri, 2005). Some researchers 

have attempted to employ UAV videos to extract vehicle trajectories (Apeltauer 

et al., 2015; Barmpounakis et al., 2016; Gao et al., 2014; Rajamohan & Rajan, 

2013). As this is a recent technology and the actual applications, particularly for 

traffic data collection, have not yet fully developed (Kanistras et al., 2015; Puri, 

2005), some considerable concerns and limitations still exist, such as limited 

battery time, safety concerns, etc. In order to streamline the processes involved 

in the application of UAV technology in traffic analysis, a universal guiding 

framework was proposed in (Khan et al., 2017a). 
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The processing and analysis of the UAV-acquired traffic video is a challenging task, 

particularly a manual vehicle annotation in aerial images involves a tremendous 

effort (Apeltauer et al., 2015). For this purpose, multiple approaches have been 

employed in the existing literature for the processing and analysis of the UAV-

based traffic data. These approaches can be broadly classified into two categories; 

(i) semi-automatic, and (ii) fully automatic approach, as explained in detail:  

i) Semi-Automated Video Analysis: The semi-automated video processing and 

analysis approach requires a manual object identification by the analyst for a 

series of frames. A number of existing UAV-based traffic studies are based on this 

processing technique (Barmpounakis et al., 2016; Salvo et al., 2014b, 2014a). 

This technique provides a higher level of accuracy and requires less setup time 

and computation power. However, this processing approach is more time-

consuming and laborious. Various softwares are available that enable the users to 

semi-automatically identify and track various objects. ‘Tracker’ is an open source 

video analysis and modelling tool which is commonly used for feature tracking in 

semi-automatic analysis studies (Brown, 2009). This software makes use of the 

stabilized and calibrated video to speed up the tracking process and produce more 

consistent data by eliminating the need for marking each frame (Barmpounakis 

et al., 2016).  

ii) Automated Video Analysis: The automated video processing approach is based 

on advanced image processing filters and techniques in order to make relevant 

detections over a series of frames. In the last few years, this approach has been 

widely adopted, especially in cases where minimal processing times are desired, 

e.g. in real-time traffic monitoring and tracking applications. Some studies that 

propose an automated video analysis approach for UAV videos have been 

conducted by Apeltauer et al. (2015), Lima et al. (2014), Zheng et al., (2015) etc. 

Additionally, a detailed methodological framework for the automated UAV traffic 

video processing and vehicle trajectory extraction has been presented by Khan et 

al., (2017b) in their previous research. The authors make use of different object 

detection and tracking techniques for the processing of UAV videos. Overall, the 

automated approach provides useful traffic information in a short period of time 

requiring minimal labor. However, some limitations and challenges are also 

attached with this approach. The robustness of automated systems is the key 

issue. The performance may fluctuate with variations in site conditions. Traffic 

intensity, weather, lighting conditions etc. influence the overall accuracy of the 

system. Minor adjustments have to be made in order to achieve the desired level 

of accuracy. Apart from this, another limitation of automated processing approach 

is the required computational power. As the system is based on complex image 

processing algorithms, therefore a certain level of processing power is required. 
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In this paper, the main focus is on the evaluation of performance of the proposed 

UAV based traffic analysis system with a special emphasis on the vehicle detection 

and tracking module. Various criteria for the performance and accuracy evaluation 

have been presented in order to estimate the reliability and robustness of the 

developed system. The measures of performance have been calculated for 

different traffic videos acquired via UAVs. A statistical comparison between the 

automated detections and manual observations (ground truth) has also been 

made. This comparison study can help in maintaining an essential balance 

between the level of accuracy and the processing time. Additionally, the effect of 

UAV flight altitude on the overall precision of the system is also evaluated. With 

the increase in number of UAV-based traffic studies, the detailed evaluation 

results presented in this paper can serve as a reference for future researchers to 

further optimize the developed algorithms.  

This paper is organized as follows: first of all, an overview of the previously 

proposed UAV video processing and analysis framework is given. This is followed 

by a detailed description of the vehicle detection and tracking module. All the 

algorithms employed in this module are explained briefly. The succeeding section 

presents the performance evaluation of the vehicle detection and tracking process. 

Different datasets are employed to determine the accuracy of the system. Finally, 

the paper concludes with a brief discussion regarding the overall performance and 

limitations of the system. This section also gives an outline for the proposed future 

developments of the framework.  

4.4 UAV Video Processing Framework 

In order to extract useful traffic information from traffic videos acquired via small 

UAVs, Khan et al. (2017b) presented a detailed methodological framework. The 

proposed framework streamlined and described all the requisite steps for ensuring 

an efficient processing of the UAV-based traffic data. The framework is categorized 

into five modules, i.e.: (i) pre-processing, (ii) stabilization, (iii) geo-registration, 

(iv) vehicle detection and tracking, and (v) trajectory management. Moreover, 

certain additions have been made in the original framework in order to further 

optimize the final output. Figure 4.1 illustrates the components of the UAV-based 

traffic video data processing framework. 
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Figure 4.4.1: The proposed framework for the automated UAV video processing and analysis 

The proposed framework employed a combination of software packages to ensure 

an optimal processing and analysis of the traffic-related UAV videos. Apart from 

some video editing tools, the major portion of the implementation was done in 

MATLAB and C++ (OpenCV library). In this section, a brief overview of the 

different modules of UAV-based processing and analysis framework, is presented 

whereas the detailed description has been given in (Khan et al., 2017b). 

The first step towards the extraction of useful information from the UAV-based 

traffic videos, is to pre-process the data. The UAV videos are prepared for the 

actual processing and analysis steps by removing or minimizing the undesirable 

aspects of the recorded video e.g., lens distortion effect, ascending/descending of 

UAV, etc. The pre-processing step is important as it maximizes the efficiency of 

the whole system by increasing the processing speed. After preprocessing , the 

next steps are to stabilize and calibrate the traffic videos obtained via small UAVs. 

The stabilization process is necessary particularly for UAV videos as there might 

be a certain level of shakiness in the collected video data. The stabilization filters 

and algorithms can help in reducing the effects of undesired UAV movements. This 

stabilized video data is then calibrated and geo-referenced. The collected UAV 

images are assigned a coordinate system according to a specific scale. Further, 

the UAV acquired mono-vision 2D image coordinates can be converted into a real-

world coordinate system by using a 3x3 homography transformation matrix. This 

matrix is obtained after point correspondence between the UAV-acquired image 

and a referenced map. This transformation increases the applicability of the output 

traffic data The details of the process are given in (Khan et al., 2017b).  

The geo-referencing or calibration process is then followed by the vehicle detection 

and tracking process. This process is the most critical as the overall performance 

of the whole system is heavily dependent on it. In order to obtain a reliable set of 
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detections and tracks, the  geo-referenced or calibrated images are used as an 

input for the automatic detection and tracking module, which constitutes a number 

of sub-modules, as indicated in Figure 4.1. The details of this process are given in 

the following section. The outputs from the vehicle detection and tracking module 

have to be handled systematically in order to use them effectively for further 

traffic analysis. For this purpose, an output file in .txt format is generated. This 

file includes all the relevant spatial and temporal data of vehicles moving across 

the region of interest (ROI). The output data can then be sorted and post-

processed in order to estimate various measures of performance, thereby helping 

in analyzing the actual traffic situation.  

4.5 Vehicle Detection and Tracking 

As mentioned earlier, the main focus of this paper is on the vehicle detection and 

tracking module.  As automated vehicle detection and tracking is the most critical 

and complicated step of the proposed framework, therefore a special consideration 

is given to analyze and evaluate the performance of the developed algorithm. This 

process is the pivotal step in any video analytics-based traffic study as the 

principal results are all based on the efficiency and accuracy of this process. The 

main aim of any vehicle detection and tracking method is to produce consistent 

tracks of detected vehicles while minimizing the number of false or missed tracks. 

In this regard, the efficiency and accuracy of this process is critical for extracting 

a reliable and consistent set of trajectory data.  

The automatic detection and tracking of vehicles involves a series of computer 

vision algorithms to efficiently detect and track the different types of vehicles on 

a particular road segment. This process requires a robust and reliable algorithm 

to produce accurate results. For this purpose, a detection and tracking algorithm 

was developed using the OpenCV library in C. Figure 4.2 shows a simplified 

schematic diagram for the vehicle detection and tracking process.  
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Figure 4.2: The schematic diagram of the vehicle detection and tracking process 

As shown in figure 4.2, the stabilized UAV video is used as input into the system. 

First, the input video is passed through the optical flow–tracking algorithm, in 

which the direction and speed of the moving pixels are estimated from one frame 

to another by using the concept of weighted least squares  (Lucas & Kanade, 

1981; Tomasi & Kanade, 1991). The Lucas–Kanade optical flow algorithm tracks 

the corner points of all the significant features throughout the video. The output 

of the optical flow process is then used as an input for the background subtraction 

algorithm. The main reason for implementing optical flow before background 

subtraction is to improve its accuracy for the UAV videos, which have dynamic 

backgrounds and some instability. Once the moving objects are separated from 

the background, the filtered neighboring moving pixels (blobs) and their contours 

in the foreground, are identified as vehicles and tracked through each frame. 

Further, the Kalman filter algorithm helps in achieving a smooth tracking data. 

Finally, the data association module helps in assigning detections to their relevant 

tracks over a series of frames. A particular consideration is given in the algorithm 

to counter the inaccuracies caused by losing and reinitializing tracks. For this 

purpose,  the occlusion handling module deals with the missed detections and lost 

tracks which can occur due to various reasons. The following sub-sections describe 

each algorithm involved in the vehicle detection and tracking process, in detail: 

4.5.1. Optical Flow 

Optical flow estimates the direction and speed of the moving pixels from one frame 

to another. As defined by Aslani & Mahdavi-Nasab (2013), optical flow describes 

the direction and time pixels in a time sequence of two consequent images. A two 

dimensional velocity vector, carrying direction and the velocity of motion is 
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assigned to the moving pixels. The patterns of motion caused by movement of 

objects or camera over a series of frames can be identified via optical flow fields 

(Royden & Moore, 2012). These 2-dimensional vector fields contain displacement 

vectors which indicate the movement of points over different frames.  

The optical flow mechanism is based on a number of assumptions. The most 

significant assumptions are regarding the pixel intensities or brightness and the 

nature of motion of neighboring pixels. It is assumed that the brightness remains 

constant over the frames and there is no random movement of surrounding pixels.  

Based on these assumptions, the optical flow field is estimated. Consider a 

pixel I(x,y,t) in the initial frame that moves by distance (dx,dy) in next frame 

taken after dt time. This can be represented as: 

     𝐼 (𝑥, 𝑦, 𝑡) = 𝐼 (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡)               (1) 

Approximating the right-hand side with Taylor series leads to the following 

equations: 
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𝜕𝑡

𝑑𝑡

𝑑𝑡
= 0                               (2) 

               𝑓𝑥𝑢 +  𝑓𝑦𝑣 + 𝑓𝑡 = 0                                (3) 

The above equation 3 is the Optical Flow equation. The functions fx and fy are the 

changes in position of the object while ft is the change in time. However, the 

velocity components u and v remain unknown in this equation. The two unknowns 

cannot be solved through one equation. Therefore, in order to solve for u and v, 

various approaches have been developed over the years. The widely used 

approaches are: (i) Horn–Schunck (HS), and (ii) Lucas–Kanade (LK) methods 

(Aslani & Mahdavi-Nasab, 2013). Horn–Schunck algorithm is a dense optical flow 

method that estimates the complete velocity field  based on a differential 

technique (Zainuddin et al., 2015). The horn-Schunk algorithm assumes a 

constant pixel intensity (brightness) all over the image. The process can be 

divided into two parts. In the first part, the partial derivatives are estimated 

whereas in the second part, the sum of the errors are minimized iteratively. This 

results in the motion vector of all the pixels. On the other hand, Lucas–Kanade 

method employs a sparse optical flow methodology. It uses the concept of 

weighted least squares (Lucas & Kanade, 1981; Tomasi & Kanade, 1991) to 

estimate the unknowns in the optical flow equation. As compared to Horn-Schunck 

algorithm, Lucas-Kanade algorithm is computationally more efficient. HS 

algorithm estimates the complete optical flow solution through various iterations, 

hence requiring more computational power and processing time. This issues can 

be tackled by the Lucas-Kanade algorithm, which assumes a constant motion in a 

local patch of pixels under consideration. Only the points in the selected 
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neighborhood are tracked over different frames and are eventually used to 

determine the local flow vector (u, v) with the help of least squares criterion 

(Lucas & Kanade, 1981) as shown in the following equation 4. 

[
𝑢
𝑣

] = [
∑ 𝑓𝑥𝑖

2
𝑖 ∑ 𝑓𝑥𝑖𝑓𝑦𝑖𝑖

∑ 𝑓𝑥𝑖𝑓𝑦𝑖𝑖 ∑ 𝑓𝑦𝑖
2

𝑖

]

−1

[
− ∑ 𝑓𝑥𝑖𝑓𝑡𝑖𝑖

− ∑ 𝑓𝑦𝑖𝑓𝑡𝑖𝑖
]       (4) 

In the developed vehicle detection and tracking algorithm, Lucas-Kanade optical 

flow has been employed due to its high efficiency in terms of processing times and 

computational requirements. 

4.5.2. Background Subtraction 

Background subtraction is a widely used mechanism for object detection (McIvor, 

2000). The objects of interest are isolated from the objects in the background. 

This technique has also been applied in various traffic surveillance systems 

(Gupte, 2002; SenChing et al., 2004). The basic principle of background 

subtraction method is to use a background model as a reference to identify the 

moving objects in the foreground. The current frame is subtracted from the 

reference background frame, hence leading to the detection of the object. 

The background subtraction method can be categorized into two approaches: (i) 

Recursive algorithm, and (ii) Non-Recursive Algorithm (Abdul Malik et al., 2013). 

Recursive algorithm is based on a single background model that is updated on 

each frame whereas a non-recursive technique estimates the background by using 

a sliding-window approach. The Recursive technique is commonly used as they 

are computationally more efficient as compared to Non-Recursive technique. 

However, the issue of error propagation can affect the performance of recursive 

algorithm. Approximate median, adaptive background, Gaussian of mixture etc. 

are some of the background subtraction algorithms based on Recursive 

techniques. 

The accuracy of the background subtraction method depends on the background 

model. Overall, this method is simple to execute, and accurately detects the 

objects in foreground, however the results are sensitive to various factors 

including the motion of the camera and occlusion conditions. Another issue might 

be due to the presence of slow moving objects which might be treated as 

background objects by simple background subtraction algorithms. These issues 

can be better handled by using Mixture of Gaussian background modelling 

algorithm (Stauffer & Grimson, 1999). This algorithm models each pixel as a 

mixture of Gaussians, and accordingly assigns it either to background or 

foreground model based on the weights. 
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In the developed algorithm for vehicle detection and tracking, the output images 

from the Lucas-Kanade optical flow algorithm are used as an input for the 

background subtraction. As mentioned earlier, the combination of optical flow and 

background subtraction methods increase the performance of the system by 

reducing the number of false and missed detections. In the developed algorithm, 

Mixture of Gaussians background subtraction method has been employed to 

differentiate moving vehicles from the background.  

4.5.3. Contour Blob Analysis 

The developed vehicle detection module which includes a combination of Lucas-

Kanade optical flow and mixture of Gaussians background subtraction algorithms, 

results in a binary threshold image. This image consists of black and white pixels, 

where white pixels represent objects detected in the foreground. However, this 

binary state data has to be processed in order to extract useful information from 

it. The detected pixels have to be identified as vehicles, based on various 

conditions and thresholds. For this purpose, the contour blob tracking method is 

used.  

In contouring method, the edges of the foreground object are marked (Shapiro & 

Stockman, 2001). This edge information can be used to cluster neighboring 

foreground pixels. These neighboring pixels (also termed as blobs) represent the 

size and position of a certain vehicle in a particular frame. The contour or blob 

area can be used as an indicator of the vehicle’s size. It can also be used as a 

condition for the selection of only relevant objects or vehicles of interest.  

Accordingly, the spatial information can be used to determine the object’s center 

point, and also to draw the bounding box around it. The bounding box and its 

center point can then be used for tracking the object over a series of frames. 

OpenCV provides a set of useful functions to extract all the information from binary 

images via contouring and blob analysis.  

4.5.4. Kalman Filter 

Kalman filter is a widely used algorithm for point tracking and for obtaining a 

smooth trajectory data. This algorithm helps in removing the noise in final data 

that might be caused due to random detections, occlusions etc. The Kalman 

filtering algorithm also known as linear quadratic estimation (LQE), estimates the 

different states of any process. It is based on the Optimal Recursive Data 

Processing Algorithm. The measurement data including the statistical noise and 

other inaccuracies, observed over a specific time period is used to predict the 

unknown variables. As this prediction is based on a joint probability distribution 

of the measurements, therefore the estimated variable values are more accurate 
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as compared to values based on single measurement data (Welch & Bishop, 

1995).  

Similarly, the Kalman filter can also be defined as “a set of mathematical equations 

that provides an efficient computational (recursive) means to estimate the state 

of a process in several aspects: it supports estimations of past, present, and even 

future states, and it can do the same even when the precise nature of the modelled 

system is unknown” (Welch & Bishop, 1995). It is important to mention that the 

Kalman filter estimates the state of a linear system where the state is assumed 

to be distributed by a Gaussian. The Kalman filter equations can be divided into 

two categories: prediction and measurement. The prediction step is responsible 

for predicting the new state of the linear system by projecting the present state 

and noise estimates (Salarpour et al., 2011). Moreover, the measurement step 

updates the state of the system. As a result of this recursive algorithm, the Kalman 

filter always produces optimal outputs. The equations for the filter are given as: 

�̅�𝑡 = 𝐷𝑋𝑡−1 + 𝑊        (5) 

Σ̅𝑡 = 𝐷Σ̅𝑡−1𝐷𝑇 + 𝑄𝑡         (6) 

Where �̅�𝑡 and Σ̅𝑡 are the state and the covariance predictions at time t. D is the 

state transition matrix which defines the relation between the state variables at 

time t and t − 1. Q is the covariance of the noise W.  

     𝑋𝑡 =  �̅�𝑡 +  𝐾𝑡[ 𝑍𝑡 − 𝑀�̅�𝑡]        (7) 

M is the measurement matrix, K is the Kalman gain. Note that the updated state, 

is still distributed by a Gaussian.  

4.5.5. Data Association (Overlap Ratio Method) 

Data association process plays an important role in the extraction of a useful 

vehicle trajectory data. This process is critical to ensure that the detections over 

a series of frames are assigned to the correct vehicle tracks. The bounding box 

overlap ratio method has been used to check the association of Ids to the vehicle 

detection data. Table 4.1 shows the framework of the algorithm. The main idea of 

this method is to compare the bounding box of the detected vehicle in a specific 

frame with the detected bounding boxes in the successive frames. The threshold 

range (Thresholdmin and Thresholdmax) for the overlap ratio is specified. If a series 

of detections lie within the specified range, an Id is assigned to the detections. 

Additionally, it is also important to cater for random assignment of IDs, which 

might occur due to various reasons. Therefore, the algorithm incorporates certain 

checks for this purpose. Before assigning an Id to a detection, it is verified that 

the similar detection occurs in the defined minimum frames Fmin. Similarly, the 
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maximum frame checking range Fmax  is  also defined in order to keep a check on 

the inactive tracks (tracks with no recent matched detections). 

Table 4.1: The work flow/pseudo-code for the data association process 
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4.5.6. Occlusion Handling 

Different types of occlusions can occur in a traffic video stream. In some cases, 

for example, the vehicles can be partially or completely hidden behind stationary 

road-side objects or between other vehicles in close proximity. Other than that 

lighting conditions and shadows can also create hindrance in proper detection and 

tracking of the objects of interest. Therefore, it is critical to handle the occlusions 

in an effective manner. For this purpose, a specific sets of conditions have been 

incorporated in the vehicle detection and tracking system in order to make it more 

reliable and robust. The following figure (Figure 4.3) shows the work flow diagram 

of the occlusion handler module of the vehicle detection and tracking system. 

 

Figure 4.3: The work flow diagram of the occlusion handling process 

It is evident from Figure 4.3 that various conditions have to be applied in order to 

extract a reliable set of trajectory data. The basic purpose of the occlusion 

handling process is to cater for random outputs that might occur due to varying 

road environment and traffic situations. Overall, the occlusion handler module is 

divided into 2 parts. The first part deals with the random loss of trajectories due 

to occlusion between vehicles or stationary objects. In order to deal with this 

randomness, the last detected coordinate points of a particular trajectory are 

compared with the boundaries of the region of interest (ROI). A centered ROI 

(ROIc = 80% of ROI) is used as the boundary for comparison. If the trajectory is 

lost inside this region, the last coordinates are saved in a temporary vector 

(Ptemp1). These points are then compared with the next detections. If a series of 

detections are found which fulfill the specified criteria, then these detections are 

merged with the trajectory that was lost randomly and the same Id is assigned to 
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them. The specified criteria is based on a set of thresholds for frames, time and 

distance. The matched detections have to be: (i) inside the frame threshold (Fth) 

e.g. the maximum difference between the last coordinate and the potential 

matching coordinate cannot be greater than 50 frames , (ii) less than the 

threshold for time (Tth),and (iii) within the specified threshold for distance (Dth). 

On the other hand, the second part of the occlusion handling process deals with 

the go-stop-go scenario. This can occur at intersections where vehicles come to a 

stationary position and then start moving again. In this scenario, there can be a 

possible loss of detections and tracking. In order to cater for this type of trajectory 

loss, speed measurements have been used as an indicator.  If the speed of a 

specific vehicle tends to zero or any other specified threshold value (Vth), the last 

detected coordinate points are stored in a temporary vector (Ptemp2). These 

coordinates are then used for comparison with the next detections. The same 

criteria as used in the first part of occlusion handling process, is used for this part 

as well. If a new detection matches the specified criteria, it is termed as the 

continuation of the lost trajectory.  

4.6 Experiments & Results 

As mentioned earlier, the proposed UAV video processing and analysis framework 

provides an in-depth description of the processes involved in the conduction of 

UAV-based traffic analysis studies.  However, it is critical to demonstrate the 

applicability as well as evaluate the performance of the proposed framework, 

particularly the vehicle detection and tracking algorithm. For this purpose, this 

section focuses on presenting the performance results of the vehicle detection and 

tracking process. Different datasets have been employed to determine the 

accuracy and processing times of the system. Various measures of performance 

have been calculated in this regard.  

4.6.1 Case Studies/Datasets 

In order to estimate the performance of the developed vehicle detection and 

tracking algorithm, it is important to obtain UAV-based experimental datasets. 

These datasets can then be used as a reference to evaluate the system 

performance. For this purpose, a series of UAV flights were conducted to obtain 

traffic data at various locations. In this paper, 2 sets of experimental data have 

been used. Traffic flow has been observed via UAVs at a signalized intersection 

and an urban roundabout as shown in the images in Figure 4.4. The details of 

these experiments can be found in the in the following chapters of this 

dissertation.   
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Figure 4.4 shows the data collection sites in Sint-Truiden, Belgium. As evident 

from the images that the UAV flights were conducted at an angle from the center 

of intersection. This was due to Belgian legal constraints which prohibit the flying 

of UAVs directly above the population or traffic. It can also be seen that the nature 

of traffic and the level of occlusions vary for different sites and types of 

intersections. All these factors have an influence on the performance of the vehicle 

detection and tracking system. 

Figure 4.4: The data collection sites: UAV view of the roundabout (left-side); UAV view of 

the signalized intersection (right-side). 

4.6.2 Performance Evaluation 

The proposed framework for the extraction of vehicle trajectories using the UAV 

based video footage ensures an efficient utilization of the collected traffic data. 

However, it is important to objectify the performance of the developed algorithm, 

especially the vehicle detection and tracking module. For this purpose, this sub-

section presents a methodology to estimate various measures of performance. 

Most of the indicators have been extracted by comparing the automated extracted 

data with the ground truth data.  

Ground truth data is widely used in the fields of image processing and computer 

vision in order to validate the accuracy and precision of the developed systems. 

Ground truth data basically represents the actual set of measurements or 

detections in the region of interest. The datasets usually contains information 

regarding the object’s actual position, state, time, frame etc. (Glowacz et al., 

2015). This data is mostly generated manually by annotating the collected video 

data. This process can be extremely cumbersome and time-consuming. Lately, 

many tools have been developed to simplify the process. In this study, a modeling 

tool named ‘Tracker’ (Brown, 2009) has been used to manually annotate the 

collected UAV-based traffic videos. The generated ground truth data is then used 

for the evaluation of the developed framework.  
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As stated earlier, various measures of performances (MOP) can be estimated in 

order to quantify the performance of the vehicle detection and tracking algorithm. 

For evaluating the vehicle detection performance, various indicators e.g. 

correctness, completeness, quality etc. can be extracted for different experimental 

UAV videos. These indicators are calculated based on the number of true positives 

(TP), false positives (FP) and false negatives (FN). True positives are the correct 

detections of a particular vehicle or any object of interest, whereas false positives 

are the incorrect or undesired  detections made by the vehicle detection algorithm. 

This may occur due to various reasons, as discussed in the later sections. 

Similarly, false negatives are the detections that are missed by the detector. 

These terms can be used to compare the ground truth data with the automatic 

detections; thereby resulting in various measures of performance. Based on these 

terms, the following can be calculated as:    

  𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
           (7) 

  𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
              (8) 

 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
            (9) 

Tables 4.2 and 4.3 show the vehicle detection results for the roundabout and 

signalized intersection UAV videos, respectively. 10 random samples of 100 

frames each have been selected from the 2 video datasets in order to evaluate 

the vehicle detection performance of the developed algorithm.  It is evident for 

the 2 tables that the performance at roundabout location was less as compared 

to the signalized intersection. This was due to the presence of large number of 

occlusions. Overall, it can be stated that the performance of the system lies above 

90%. This is a reasonably good detection performance, keeping in mind the 

general instability of the UAV platform and the nature of the developed algorithm, 

which is to maintain a balance between accuracy and processing times and 

computational power.  
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Table 4.2: The measures of performance for vehicle detection evaluation at Roundabout 

location 

 

Table 4.3: The measures of performance for vehicle detection evaluation at Signalized-

Intersection 

 

Additionally, other statistical indicators like co-efficient of determination (R-

squared), Root mean square error (RMSE), mean absolute error (MAE) etc. can 

also be used to evaluate the vehicle detection results. Figure 4.5 consists of 

scattered plots for the ground truth and automatic detection data. The R-squared 

values reflect the level of closeness of data to the regression line. In this case, 

this indicates the overall difference between the ground-truth and automatic 

detections. It is evident from figure 4.5 (a) and (b) that R-squared values for 

roundabout and signalized-intersection data are 98.19% and 99.31% 

respectively. Figure 4.5(c) shows the combined evaluation of both the datasets. 

This gives an overall R-squared value of 99.16% for the developed system.   
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Figure 4.5: R-squared measure of performance for vehicle detection evaluation: (a) for 

roundabout;  (b) for signalized intersection; (c) combined overall evaluation 

Apart from the determination of performance parameters for the developed 

vehicle detection system, it is also important to evaluate the sensitivity of different 

UAV flight-related  attributes for traffic data collection. In this regard, the altitude 

at which the UAV flight is conducted, plays a significant role. The altitude has to 

be optimal in order to ensure efficient UAV operation as well as providing the 

maximum coverage for the area under observation. Since, the UAV videos were 

recorded at an angle from the intersection, the altitude or the height factor 

becomes even more important. 

In order to determine the most suitable level of UAV flight altitude for traffic data 

collection, the experimental UAV flights were conducted at 2 altitude levels i.e. 

80m and 60m for each location. The traffic data collected from both observed 

locations in Sint-Truiden (Belgium) was used for testing the UAV altitude 

sensitivity. For both sets of data and altitude levels, a stationary object e.g. road 

marking, lamp post, sign post etc., was tracked over a number of randomly-

selected frames. The coordinates of the reference object were then compared with 

the actual ground-truth coordinates of the object, which were recorded on site 

with the help of GPS receiver. The variation in the location of the referenced 

stationary object as viewed from the UAV perspective, reflects the sensitivity of 

the UAV flight altitude. The box charts in Figures 4.6 and 4.7 show the extent of 

variation in x and y coordinates (longitudes and latitudes) of the marked 

stationary object. The charts show that for both locations, the x and y coordinates 

are closer to the actual ground-truth value for 80meter altitude level. This 

indicates that the errors are magnified at lower UAV altitude. Even a slight UAV 

movement or vibration due to winds and other factors, may cause higher errors 

in measurement at lower altitudes as compared to higher altitudes. Also, the 
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higher UAV altitude provides a better viewing angle by reducing the obliqueness 

in the captured frames as well as minimizing the level of occlusions that might 

occur due to nearby trees and other objects. The effects of shadows also decrease 

at higher altitudes. Therefore, all these factors imply that the higher altitude level 

i.e. 80m provides more precise and consistent data. The effect of errors (due to 

wind, vibration, shadows etc.) reduce with the increased altitude.  However, an 

optimal flight altitude has to be selected by maintaining a balance between the 

advantages and disadvantages of a particular altitude level. The greater height 

may provide large area coverage and consistent measurements, while at the same 

time, the pixel density of the objects of interest may reduce drastically. Therefore, 

the UAV flight altitude has to be selected keeping in mind the project requirements 

and the local regulations (e.g. the maximum height allowed for small UAVs in 

Belgium is 90m). Overall, it can be concluded that the accuracy and preciseness 

of the object detection and tracking process is sensitive to the UAV flight altitude. 

 

Figure 4.6: Evaluation of the effect of flight altitude on the object coordinates (roundabout) 
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Figure 4.7: Evaluation of the effect of flight altitude on the object coordinates (signal 

intersection) 

4.7 Discussion & Conclusion 

The small multi-rotor unmanned aerial vehicles have been demonstrated to be 

applicable for traffic data collection purposes. In this regard, the previously 

proposed guiding framework streamlines all the necessary steps for the 

conduction of a UAV-based traffic study, whereas the UAV-based traffic processing 

and analysis framework further elaborates the methodology in detail (Khan et al., 

2017a, 2017b). As mentioned earlier, the main objective of the proposed UAV-

based traffic analysis system is to efficiently utilize the traffic data obtained via 

UAVs to extract useful traffic information. However, it is critical to evaluate the 

performance of the proposed framework, especially the vehicle detection and 

tracking algorithm. A certain level of accuracy is critical to ensure the collected 

data is converted into useful and reliable traffic information. For this purpose, this 

paper evaluates the performance of the proposed system with a special emphasis 

on the vehicle detection and tracking module.  

In order to evaluate the accuracy of the developed system, various measures of 

performance have been calculated for different UAV-based traffic videos. The 

outputs from the vehicle detection and tracking system have been compared with 

the ground-truth data. Performance indicators i.e. correctness, completeness and 

quality have been estimated using the concept of true positives, false positives 

and false negatives. The results of the performance analysis conducted on 2 UAV-

based experimental datasets indicated an overall accuracy level of more than 

90%. Furthermore, the R-squared values of more than 98% also reflected the 

consistency between the automatic and ground-truth detections. It is also 

important to mention that the level of accuracy directly influences the processing 
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times as well. This is due to the fact that less accurate detections and tracks need 

more post-processing and manual checks (Apeltauer et al., 2015). On the other 

hand, the processing or computation times are greatly dependent on the type of 

algorithms selected for the vehicle detection and tracking process. The semi-

automatic techniques or automated algorithms requiring extensive pre-trained 

datasets, are not useful in cases where least processing times are highly desired. 

Therefore, it is critical to design a system that maintains a balance between the 

accuracy and the processing times. In this regard, the developed system 

performed well as the algorithms were selected keeping in mind the respective 

processing times and required computational power. 

Additionally, the sensitivity of UAV flight altitude on the preciseness of the 

generated outputs has also been tested. For this purpose, the experimental 

dataset with 2 different altitude levels was used to verify the significance of the 

UAV altitude. The results showed that the outputs are more consistent when the 

UAV flies at an altitude of 80 meters as compared to 60 meters. The results also 

showed that the errors due to slight UAV movement are magnified at lower 

altitudes. Hence, indicating that the effects of errors (due to wind, vibration, 

shadows etc.) are sensitive to the UAV flight altitude. Since, the UAV videos were 

recorded at an angle form the intersection, the height factor becomes even more 

important. The objects can be observed better from a greater height due to 

reduced obliqueness (better angle) and less occlusions. Overall, it can be 

concluded that the accuracy and preciseness of the object detection and tracking 

process is sensitive to the UAV flight altitude.  

Although, the small multi-rotor UAVs have been shown to be effective for traffic-

related studies, still the current technology has some limitations. Flight duration, 

safety, legal issues etc. are some of the challenges faced in the applications of 

UAV technology. The flight time of UAVs depends on internal, as well as external, 

factors. Internal factors include the size, payload, battery type, etc., whereas the 

external factors consist of weather conditions, wind conditions, status of GPS 

satellites, etc. Apart from limited flight times, the legal considerations, including 

the safety and privacy concerns, also limit the use of UAVs for practical 

applications. Nevertheless, all these concerns will eventually fade away with the 

development of more reliable and robust technology in the coming years. 

Future research will mainly focus on further optimization of the developed system 

and the respective algorithms. Although, the current systems gives good results, 

still there is a need to make the system more consistent and efficient. The system 

should be able to achieve the highest accuracy level for all types of conditions 

while keeping the post-processing times at minimal levels. For this purpose, 

various approaches for further automation of the system, will be explored. This 

optimization may eventually lead to the real-time analysis of the data streamed 
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via UAVs. Furthermore, the aspects of processing and analyzing traffic data from 

drones flying parallel to the direction of traffic, will also be investigated. 
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Chapter 5 

5. UAV–Based Traffic Analysis: 

Signalized Intersections 

 
 

This chapter consists of following peer-reviewed journal paper (published): 

Khan, M.A.; Ectors, W.; Bellemans, T.; Janssens, D.; Wets, G. (2018). Unmanned 

Aerial Vehicle-Based Traffic Analysis: A Case Study for Shockwave Identification 

and Flow Parameters Estimation at Signalized Intersections. Remote Sensing  

(IF:3.406), 10, 458.  doi:10.3390/rs10030458 

 

 

5.1 Overview 

This chapter explores the applications of data collected via small UAVs, for an in-

depth traffic flow analysis at a signalized 4-legged intersection. The analysis is 

basically a practical extension of the outputs generated from the previously 

proposed detailed methodological framework for automated UAV video 

processing. In this chapter, the main emphasis is on the comprehensive analysis 

of vehicle trajectories extracted via UAV-based video processing framework. An 

analytical methodology is presented for: (i) the automatic identification of flow 

states and shockwaves based on processed UAV trajectories, and (ii) the 

subsequent extraction of various traffic parameters and performance indicators in 

order to study flow conditions at a signalized intersection. The experimental data 

to analyze traffic flow conditions was obtained in the city of Sint-Truiden, Belgium. 

The generation of simplified trajectories, shockwaves, and fundamental diagrams 

help in analyzing the interrupted-flow conditions at a signalized four-legged 

intersection using UAV-acquired data. 

https://doi.org/10.3390/rs10030458
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5.2 Abstract 

Owing to their dynamic and multidisciplinary characteristics, Unmanned Aerial 

Vehicles (UAVs), or drones, have become increasingly popular. However, the civil 

applications of this technology, particularly for traffic data collection and analysis, 

still need to be thoroughly explored. For this purpose, the authors previously 

proposed a detailed methodological framework for the automated UAV video 

processing in order to extract multi-vehicle trajectories at a particular road 

segment. In this paper, however, the main emphasis is on the comprehensive 

analysis of vehicle trajectories extracted via a UAV-based video processing 

framework. An analytical methodology is presented for: (i) the automatic 

identification of flow states and shockwaves based on processed UAV trajectories, 

and (ii) the subsequent extraction of various traffic parameters and performance 

indicators in order to study flow conditions at a signalized intersection. The 

experimental data to analyze traffic flow conditions was obtained in the city of 

Sint-Truiden, Belgium. The generation of simplified trajectories, shockwaves, and 

fundamental diagrams help in analyzing the interrupted-flow conditions at a 

signalized four-legged intersection using UAV-acquired data. The analysis 

conducted on such data may serve as a benchmark for the actual traffic-specific 

applications of the UAV-acquired data. The results reflect the value of flexibility 

and bird-eye view provided by UAV videos; thereby depicting the overall 

applicability of the UAV-based traffic analysis system. The future research will 

mainly focus on further extensions of UAV-based traffic applications. 

Keywords: drones; UAVs; traffic data; traffic data collection; traffic flow analysis; 

vehicle trajectories; shockwave analysis 

5.3 Introduction 

The management of ever increasing traffic volumes and congestion levels is one 

of the most critical challenges faced by modern human society. This problem 

further magnifies particularly at urban intersections. Moreover, there are only 

limited viable options available for the expansion of existing infrastructure. 

Therefore, transport managers are bound to employ “soft measures or policies” in 

order to ensure smooth and efficient traffic operations. For this purpose, it has 

become critical to monitor and analyze the state of traffic flow at urban and 

suburban intersections. However, this requires an accurate, dynamic, and quick 

inflow of traffic data (Khan et al., 2017b). 

The collection of detailed traffic data with traditional equipment, like manual 

counters, induction loops, fixed video camera systems, etc., is an expensive and 
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difficult process as it either requires a large amount of installed 

sensors/equipment or a high number of deployed staff in order to cover the entire 

network (Coifman et al., 2006). Such data cannot be used to estimate the 

densities, as well as other more complex traffic flow phenomenon, such as the 

process of accumulation and dissipation of queues at the intersections. 

Additionally, as it is not practically possible to cover the entire network with fixed 

sensors or deployed staff, therefore, certain ‘hidden points’ emerge in the network 

(Barmpounakis et al., 2016; Puri, 2005). On the other hand, advanced ITS data 

collection technologies e.g., vehicle-to-infrastructure (V2I), floating cars (probe 

vehicles with GPS) and other smartphone sensor technologies have also been 

employed in recent years. These technologies provide detailed and dynamic traffic 

data, however, they result in large datasets which are difficult to handle, especially 

in a short time span (Vlahogianni, 2015). Additionally, such technologies might 

influence the actual behavior of the travelers since they already know they are 

being observed ( Barmpounakis et al., 2016; Salvo et al., 2014a). Another 

alternative for traffic data collection is the aerial photography or remote sensing. 

Satellites and manned aircrafts have been used over the years for dynamic traffic 

data collection. These technologies provide wide field-of-view and unbiased data, 

however cost and deployment issues restrict their practical employment. Recently, 

unmanned aerial systems have started to take the center stage for traffic 

monitoring, management, and control (Kanistras et al., 2015; Puri, 2005). 

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, are being 

used in the transportation field to monitor and analyze the traffic flow and safety 

conditions (Kanistras et al., 2015; Puri, 2005). Traditionally, only fixed-wing UAVs 

were employed for traffic monitoring purposes, however, in recent years the small 

rotary-wing type UAVs have also been used for traffic-related applications (Lee et 

al., 2015). This non-intrusive and low-cost technology has improved rapidly and 

is now capable of providing high-resolution data (both in space and time) that can 

be used to extract vehicle trajectories and estimate traffic parameters. The UAVs 

can be particularly useful for data collection at sub-urban or such areas in the 

network where the installation of fixed sensor infrastructure is not viable. Mobility 

and flexibility are the key assets of this technology (Khan et al., 2017a). As this 

is a recent technology and the actual applications, particularly for traffic data 

collection, have not yet fully developed (Barmpounakis et al., 2016; Puri, 2005), 

some considerable concerns and limitations still exist, such as limited battery 

time, safety concerns, etc. In order to streamline the processes involved in the 

application of UAV technology in traffic analysis, a universal guiding framework 

was proposed in (Khan et al., 2017a). Additionally, a detailed methodological 

framework for the automated UAV traffic video processing and vehicle trajectory 

extraction has been presented in (Khan et al., 2017b). This paper is a detailed 
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application and pilot study of the methodology presented by authors in (Khan et 

al., 2017b). 

In this paper, the main focus is on the traffic flow analysis of vehicle trajectories 

acquired via small rotary-wing UAV footage. The experimental data to analyze 

traffic flow conditions at a signalized intersection was obtained in the city of Sint-

Truiden, Belgium. With the help of a case study, this paper attempts to evaluate 

the performance of the presented analytical methodology at a signalized 

intersection using UAV-acquired trajectory data. An analytical methodology is 

presented for: (i) the automatic identification of shockwaves based on processed 

trajectories and, (ii) the subsequent extraction of various traffic parameters and 

performance indicators in order to study flow conditions at a signalized 

intersection. The paper constitutes an in-depth flow analysis of traffic streams 

crossing a signalized four-legged intersection. Firstly, the trajectories are 

processed based on the critical point approach. These processed trajectories are 

then employed for shockwave analysis and queue estimation at the signalized 

intersection. This type of analysis conducted on UAV-based data may serve as a 

benchmark for further research into practical applications of UAV-based traffic 

analysis systems. With the significant increase in the number of UAV-based traffic 

studies expected in the coming years, such analytical studies based on an 

automated systematic framework could become a useful resource for practitioners 

and researchers alike.  

This paper is organized as follows: first of all, the relevant UAV-based traffic 

analysis studies are discussed concisely. The methodology section consists of a 

brief description of the UAV video processing and trajectory extraction framework 

along with the presentation of the signalized intersection flow analysis 

methodology. In the next section, a case study is presented to support the 

proposed methodology. This includes the vehicle trajectory extraction and the 

subsequent traffic flow analysis. Finally, the paper is briefly concluded along with 

some critical discussion regarding the use of UAVs for traffic data collection, 

analytical applications of the framework, and proposed future developments. 

5.4 Related Work 

According to the literature, various applications of UAVs for traffic monitoring and 

analysis are currently being researched (Coifman et al., 2006; Heintz et al., 2007; 

Puri et al., 2007). Various researchers summarized the current research trends 

around the world regarding the use of UAVs for traffic surveillance and analysis 

applications (Barmpounakis et al., 2017; Colomina & Molina, 2014; Kanistras et 

al., 2015; Puri, 2005). 
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Numerous UAV-based studies specifically for traffic analysis have been conducted 

in the past few years. These studies can be broadly classified into two types 

depending on the video processing technique, i.e., (i) manual or semi-automatic 

studies and (ii) automatic studies. Studies employing the semi-automatic 

approach have shown high accuracy, but are laborious as vehicles have to be 

detected and then manually tracked for a number of frames (Barmpounakis et al., 

2016; Salvo et al., 2014b; Salvo et al., 2014a). In (Salvo et al., 2014a), authors 

make use of UAV traffic footage of a stop-controlled intersection to study the 

drivers’ behavior. The authors determine the gap-acceptance and waiting time of 

vehicles while entering a major road in an urban stop-sign controlled intersection. 

The same authors in (Salvo et al., 2014b) have also attempted to determine 

various traffic parameters (flow, velocity, etc.) from UAV-acquired video data. The 

authors further compare the calculated values with the theoretical macro-

simulation models. Similarly, the authors in ( Barmpounakis et al., 2016) have 

used UAVs to conduct an experiment over an intersection and then using the semi-

automated approach extract the vehicle trajectories and consequently determine 

various traffic parameters. As stated earlier, the semi-automatic approach 

requires a great deal of time for processing while, on the other hand, the 

automatic approach promises a quick processing and analysis procedure, 

ultimately leading to the real-time analysis of the UAV acquired data. Recently, 

the number of studies based on the automated approach have increased 

(Apeltauer et al., 2015; Gao et al., 2014; Khan et al., 2017b; Oh et al., 2014; 

Zheng et al., 2015). The authors have been attempting to extract various traffic 

parameters and vehicle trajectories in an automatic environment by using state-

of–the art object detection and tracking algorithms.  

A great deal of research has been conducted to analyze traffic flow at signalized 

intersections using data acquired from different sources. This also includes the 

shockwave and queue analysis based on the traffic video data (Chai et al., 2013; 

Hourdos & Zitzow, 2014; Morris & Shirazi, 2017). Additionally, a number of studies 

have employed vehicle trajectories from the NGSIM data for shockwave analysis 

and queue estimation (Cheng et al., 2010; Cheng et al., 2011; Izadpanah et al.,  

2009; Lu & Skabardonis, 2007). All these studies have devised and demonstrated 

various ways to evaluate the performance of signalized intersections. However, 

all of the existing studies mentioned up until now have been principally based on 

the fixed video camera systems. Only a couple of studies have been found in the 

existing literature that have employed UAV-based traffic data in order to analyze 

the traffic safety and flow conditions specifically for a signalized intersection. In 

(Chen et al., 2017), the authors analyze the traffic safety conditions at an urban 

signalized intersection using data acquired via a small quadcopter UAV. The 

authors focus on the pedestrian-vehicle conflicts and estimate different 

parameters, e.g., time-to-collision (TTC) and post-encroachment time (PET), as 
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safety performance measures. On the other hand, authors in (Cheng et al., 2013) 

present a computational model based on the famous traffic wave theory in order 

to determine the velocity of stop-start waves at an urban intersection. The authors 

have employed the UAV-acquired traffic data to validate the proposed model. 

However, the paper is focused mainly on the derivation and validation of the model 

equations.  

5.5 Methodology 

This paper is principally based on the vehicle trajectories extracted via the UAV-

based video processing and vehicle trajectory extraction framework originally 

presented in (Khan et al., 2017b). The extracted trajectories are further analyzed 

based on the proposed analytical methodology. This section consists of a brief 

description of the UAV based trajectory extraction framework, which is then 

followed by an explanation of the signalized intersection flow analysis process. 

5.5.1 UAV Video Processing Framework. 

The authors in (Khan et al., 2017b) proposed a detailed UAV-based traffic video 

processing framework in order to automatically extract multi-vehicle trajectories 

for an area of interest. The framework consisted of an in-depth description of the 

steps involved in the systematic and efficient processing of the UAV-based traffic 

data. The whole process as categorized in the framework included five modules: 

(i) pre-processing, (ii) stabilization, (iii) geo-registration, (iv) vehicle detection 

and tracking, and (v) trajectory management. Moreover, certain additions have 

been made in the framework recently in order to further optimize the final 

trajectories. Figure 5.1 illustrates the components of the UAV-based traffic video 

data processing framework. 
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Figure 5.1: The automated UAV video processing and analysis framework with some 

modifications. 

The different modules of the proposed framework are elaborated in detail in (Khan 

et al., 2017b). However, in this paper the different stages are discussed briefly so 

as to give an overview of the UAV video processing and analysis. 

Firstly, the traffic videos acquired via UAVs are pre-processed. The main target of 

the step is to prepare the UAV video for the actual processing and analysis steps 

by removing or minimizing the undesirable aspects of the recorded video e.g., 

fish-eye effect, ascending/descending of UAV, etc. The pre-processing step 

ensures an optimal usage of the computational power, hence, increasing the 

processing speed. This step is followed by the video stabilization and geo-

registration of the UAV-acquired videos. Since a slight camera vibration can induce 

undesired movement in captured images, the stabilization step is critical to 

minimize the level of instability or shakiness in UAV videos. Once the UAV videos 

are stabilized, the efficiency of all other modules of the framework, especially the 

vehicle detection and tracking process, significantly improves. Further, the geo-

registration process ensures an efficient calibration and conversion of the UAV 

acquired mono-vision 2D image coordinates into a real-world coordinate system. 

This is done in order to enhance the applicability of the extracted vehicle trajectory 

data. For this purpose, the UAV image is firstly calibrated according to the real-

world distances and assigned a coordinate system. These image coordinates can 

then be converted to real-world coordinates based on a 3 × 3 homography matrix, 

which is computed after comparing the extracted frames with the referenced map. 

The details of the process are given in (Khan et al., 2017b). In a nutshell, this 

process enables the user to integrate the geo-referenced calibrated trajectories 
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with any GIS application, thereby assisting in an actual-scale visualization and 

estimation of various traffic parameters.  

Once the UAV images are geo-referenced or calibrated to a specific coordinate 

system, the next step is the automatic detection and tracking of multiple road 

users. The efficiency and accuracy of this process is critical in order to obtain a 

reliable and consistent set of trajectory data. The stabilized and calibrated UAV 

videos are fed into the detection and tracking module which constitutes a number 

of sub-modules, as indicated in Figure 5.1. The vehicles in motion are detected 

and tracked by a series of algorithms implemented using the OpenCV library in 

C++. First of all, the optical flow tracking and background subtraction algorithms 

identify the pixels that are in motion. These moving pixels representing the 

vehicles are then tracked over a series of frames with the help of blob tracking. 

Finally, the Kalman filter algorithm helps in achieving a smooth tracking data, 

thereby resulting in fewer outliers and consequently lesser post-processing or 

noise removal.  

A proper management system for the handling of extracted vehicle trajectories is 

critical to efficiently deal with data extracted during the vehicle detection and 

tracking process. The data has to be easily accessible so that it can be effectively 

used for further traffic analysis. For this purpose, a text  file is generated which 

contains all the extracted coordinates of the vehicles detected and tracked in the 

area of interest. Such a data file allows the analyst to conveniently sort and post-

process the data in order to extract various traffic parameters and create different 

types of graphical displays and illustrations of the vehicle trajectory data. 

5.5.2 Signalized-Intersection Flow Analysis Methodology 

The vehicle trajectories extracted via UAV based traffic data collection process can 

be employed for various traffic related applications. This paper presents an 

analytical methodology specifically aimed for a systematic traffic flow analysis at 

signalized intersections. The proposed methodology streamlines the steps 

involved in the efficient employment of the extracted vehicle trajectory data in 

order to analyze the flow at signalized intersections. The methodology as shown 

in Figure 5.2 consists basically of four modules: (i) the automated simplified 

trajectories extraction module, (ii) the automated shockwave identification 

module, (iii) the traffic parameters estimation module, and (iv) the performance 

indicators’ estimation module. 
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Figure 5.2: The proposed methodology for the extraction of signalized intersection traffic 

flow parameters. 

First of all, the extracted vehicle trajectories are fed as an input into the 

automated simplified trajectories extraction module. The raw trajectories are 

processed in order to simplify the visualization of the transformation of traffic flow 

at a signalized intersection. For this purpose, the ‘critical point’ concept presented 

by Cheng et al. (2010) is employed with some modifications. The critical point is 

defined as that point in a vehicle trajectory after which the motion of vehicle 

changes significantly, e.g., a critical point may be detected on a vehicle trajectory 

before it starts accelerating or decelerating. Based on this approach, the critical 

points are identified on the vehicle trajectories which represent the major or 

definitive changes in the motion of vehicles along the road. The critical point 

approach does not only help in simplifying the further analysis of trajectories, but 

also increases the efficiency of the system by reducing the amount of data to be 

processed and analyzed. The logic of the critical point extraction and traffic flow 

state identification algorithm is illustrated in Figure 5.3, where xi is any point on 

the trajectory at time ti with velocity vi and acceleration ai. The critical points (CPs) 

are generated by comparing trajectory points with certain threshold values for 

velocity and acceleration. In order to minimize the chances of false CP detection, 

the succeeding ‘n’ (usually 5 or 10) number of acceleration values are checked. 



 

Chapter 5 

 

90 

 

Moreover, the stopping velocity threshold vs (normally less than 5 km/h) is 

compared with the velocity vcp at the critical point. This assists in identifying the 

true traffic flow regime. Depending on the type of condition it satisfies, the vehicle 

trajectories can be classified into various regimes, i.e., uniform motion, 

accelerated/decelerated motion or stationary regime. It is worth mentioning here 

that the proposed approach is, numerically, very efficient to compute, thereby 

having an advantage over the more complex approaches (e.g., piece-wise linear 

regression methods), particularly for cases requiring a quick processing and 

analysis system.  

 

Figure 5.3: The critical point (CP) extraction and traffic flow state identification algorithm. 

The resulting simplified trajectories of multiple vehicles can then be utilized 

efficiently for the identification of different shockwaves that are generated within 

the proximity of a signalized intersection. The critical points of a series of 

trajectories are grouped together in order to identify shockwaves. Moreover, the 

processed vehicle trajectories can also be used to estimate various traffic flow 

parameters, e.g., density, flow, speed, etc., for each flow regime. These 

parameters can then be used to develop the speed-flow-density fundamental 

diagrams which further assist in determining the unknown parameters.  
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A number of performance indicators can also be extracted to evaluate the 

performance of the traffic infrastructure under consideration. The combination of 

space-time and fundamental diagrams is essential for determining the 

characteristics of traffic flow at the intersection in detail. These diagrams can be 

used effectively not only to study the signal cycle lengths, but also to determine 

the speed of generation and dissipation of shockwaves. Additionally, the extracted 

parameters and the shockwave speeds can also be used for detailed queue 

analysis at an intersection or any other interrupted flow situation. All these 

parameters and performance indicators have been estimated and described in 

detail in the next section with the help of a case study. 

5.6 Case Study 

In this section, a detailed case study is presented in order to validate and 

demonstrate the practicality of the UAV-based traffic data collection, processing 

and analytical methodology. The data collection experiment is followed by the 

automated extraction of the vehicle trajectories which are then further employed 

for detailed traffic flow analysis. The following sub-sections present an in-depth 

description of the whole experiment and the analytical process:  

5.6.1 Experiment Specifications 

In order to obtain an experimental dataset, UAV flights were conducted in the 

suburbs of the city of Sint-Truiden, Belgium. A four-legged sub-urban signalized 

intersection was selected as the area under observation. The location as shown in 

Figure 5.4 is a linking junction between the Belgian national highways N80 (speed 

limit: 120 km/h) and N718 (speed limit: 90 km/h), with two lanes in either 

direction. The specified four-legged intersection primarily handles the traffic 

leading to and from the city of Hasselt into the center and suburbs of Sint-Truiden. 

A detailed flight planning process was carried out before the actual conduction of 

the flights. This included the operational, as well as safety and legal 

considerations. The UAV flights were conducted in order to capture the Friday 

evening rush hour (16:30 to 18:00 h). Importantly, the weather and wind 

conditions were perfect for the UAV flights, i.e., mostly clear skies with gentle 

wind levels (18 km/h, Beaufort scale 3). 
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Figure 5.4: Location map of the observed area, along with the satellite and UAV images of 

the studied intersection (shown in the inset). 

A high-end custom-built octocopter UAV, i.e., Argus-One (from Argus-Vision) with 

an attached Panasonic Lumix GH4 DSLM camera (Panasonic Corporation: 

Kadoma, Osaka, Japan) was employed for a series of UAV flights. The equipment 

used for this experiment belonged to a UAV-imaging company named Argus-

Vision, registered in Tongeren, Belgium. Table 5.1 lists the detailed technical 

specifications of the equipment used. The equipment as shown in Figure 5.5 

provides stable and high-resolution (4K@25 fps) video data with nearly 10–12 

min of flight time. Importantly, the 4K video from this camera does not contain 

any fish-eye effects (curvature, wide field of view). Additionally, an attached live-

feed transmission system allowed to optimize the camera angles for the best view 

of the intersection during the flight. The UAV was hovered (constant altitude, zero 

velocity) over the intersection at the altitudes of 80 m and 60 m above ground 

level. After the conduction of a series of flights over the intersection, the recorded 

video was trimmed in order to remove insignificant parts of the video which 

included, e.g., the take-off and landing maneuvers of the UAV. Eventually, a 

nearly 15-min useful traffic video with 22,649 frames was attained after the pre-

processing or trimming step. It is also worth-mentioning that the UAV camera 

covered approximately 0.07 km2 of intersection area from an 80 m height. 
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Table 5.1: Technical specifications of Argus-one UAV and the attached camera. 

UAV Camera 

Technical Features Technical Features 

Body Carbon fiber Camera 
Panasonic Lumix GH4 

DSLM 

Dimensions 
1200 mm × 1000 mm × 

600 mm 
Body Type SLR-style mirrorless 

Number of 

Rotors 
8 Weight 560 g 

Battery 
16,000 mAH Lipo 

Battery 
Mega Pixels 16 MP 

Flight Time Around 12 min 
Video 

Resolution 
4K (3840 × 2160 pixels) 

Payload 0–3 kg Frame Rate 25 fps 

GPS  
DJI A2 GPS-Compass 

Pro 
  

Range 1200 m   

Speed 0–80 km/h   

 

Figure 5.5: The Argus-one UAV: (left) take-off position, and (right) in-flight. 

5.6.2 Vehicle Trajectories  

The extraction of vehicle trajectories crossing the intersection under observation 

was done using the proposed UAV video processing framework. Specifically, the 

developed computer vision algorithm, as described in the vehicle detection and 

tracking module of the framework, was utilized for this purpose. All the processing 

and analysis was done on an HP (Hewlett Packard Enterprise: Palo Alto, CA, USA) 

Probook 650 G1 machine, having an  Intel® Core™ i5-4210M (2.60 GHz) processor  

with 4-GB RAM and Windows 8.1 (64 bits). It is important to mention that UAV-

acquired images were calibrated and a Cartesian coordinate axis was assigned, 

with the center of the intersection designated as an origin.  
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Figure 5.6 consists of various graphs depicting a selected set of extracted vehicle 

trajectories. These trajectories and speed profiles can be used to make a number 

of interpretations regarding the drivers; behavior, and overall traffic flow. Figures 

5.6a and 5.6b depict the trajectory of a sample vehicle along with its 

corresponding speed profile. Figure 5.6a reflects that the sample car initially came 

to rest upon reaching the queue at the signalized intersection, however it moved 

after a few seconds in order to reduce the queue spacing or the headway. Figure 

5.6b includes the instantaneous speed accompanied by the running average and 

smoothed function speed curves. Running or moving averages help in illustrating 

the trend of instantaneous speed over time as shown in Figure 5.6b. An interval 

of 50 frames, implying a 2-s time window, was used to determine the running 

average speed of the sample vehicle. Similarly, smoothed curve is also used to 

demonstrate the overall speed trend. The smoothed curve is basically a second-

degree (quadratic) polynomial regression curve fit. These curves make the 

interpretation of instantaneous speed data more efficient. In addition, Figure 5.6c 

shows the trajectories of a platoon of vehicles on a space-time diagram while 

Figure 5.6d illustrates a sample set of extracted trajectories overlaid on the UAV-

acquired image. 
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Figure 5.6: (a) The space-time diagram of the trajectory of a sample vehicle; (b) the speed 

profile of the sample vehicle; (c) the space-time diagram of extracted trajectories (labelled 

with assigned number) of a group of vehicles; and (d) an illustration of extra 

The drivers’ behavior while approaching a signalized intersection can be observed 

from graph in Figure 5.6c. It can be inferred from vehicle trajectories that each 

individual driver has its own specific braking behavior in order to halt at the traffic 

signal. Some drivers decelerate smoothly to a stationary position, e.g., car 8 in 

Figure 5.6c. On the other hand, some drivers have the tendency of decelerating 

strongly as indicated by the steep curve of car 1’s trajectory (Figure 5.6c). The 

average speed of the sample vehicle (car 7) based on the smoothing function was 

measured to be 29.52 km/h (8.2 m/s) and 24.48 km/h (6.8 m/s), respectively, 

for the intersection arrival and departure maneuvers (Figure 5.6b).  

Apart from the observation of through traffic, the space-time diagrams can also 

be used to study the behavior of turning vehicles. In this regard, Figure 5.6c 
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indicates the movement of a right-turning vehicle (car 9). The changing slope of 

car 9’s trajectory suggests that the vehicle completed the turning maneuver safely 

by adjusting its speed slightly. All these examples show that the trajectory data 

can be effectively used to study and analyze the traffic flow, as well as safety 

conditions on a specific intersection.  

In addition to the extracted trajectories, the UAV-based traffic video data was also 

used to generate origin-destination matrix for the signalized intersection. The 

volume and direction of the traffic approaching and crossing the intersection is a 

good indicator of the level of service. The Origin-Destination matrices are 

commonly used tools for planning and studying various road infrastructural 

elements. These matrices help in quantifying and analyzing traffic movement 

through each leg of the intersection. In order to determine the traffic volume, a 

virtual counter was placed on each leg of the intersection. These virtual counters 

provide an accurate sum of vehicles entering or leaving the roundabout. Figure 

5.7 shows the counters and OD matrices for the study area. As indicated in Figure 

5.7, maximum traffic flows from Sint-Truiden towards the city of Hasselt (counter 

1) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.  UAV–Based Traffic Analysis: Signalized Intersections 

 

97 

 

Figure 5.7: Traffic counts based on Origin-Destination matrix 

It is important to mention here that the precision of all these calculations is highly 

dependent on the calibration of the extracted frames. Therefore, a two-step 

calibration process was conducted in order to ensure high accuracy and minimal 

errors. This involved several on-site measurements followed by a point 

correspondence step. In this step, the on-site measurements were verified with 

the referenced maps. Various prominent stationary objects visible in the UAV 

image were matched with their coordinates and distances on a referenced satellite 

image. All this helped in the extraction of an accurate trajectory dataset, 

ultimately leading to a precise calculation of other traffic parameters, as well.  

Moreover, the accuracy of the estimated speed was also verified with the ground-

truth speed of the sample vehicle (car 7) during different flow states. This was 

done by calculating the mean absolute percentage error (MAPE) as shown in 

Equation (1). The ground-truth speed, as given in Equation (2), was determined 

by observing the number of frames (Nf) taken by the vehicle to travel between 

two points of known distance (d). In order to determine time (t) for speed 

estimation, the number of frames were divided by the frames per second (fps) of 
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the UAV video The ground-truth speed was evaluated for both the intersection 

arrival and departure phases. Eventually, the mean absolute percentage error was 

found out to be 5.85%. This shows a good level of accuracy especially for an 

oblique angled UAV video. 

MAPE =  
1

N
∑

GROUND TRUTH − ESTIMATION

GROUND TRUTH1,…,N
 ×  100% (1) 

 

GROUND TRUTH SPEED =  
𝑑

𝑡
=  

𝑑

𝑁𝑓

𝑓𝑝𝑠⁄
 (2) 

5.6.3 Traffic Flow Analysis 

As mentioned earlier, the extracted vehicle trajectories can be used for various 

types of traffic analyses, e.g., traffic safety analysis, drivers’ behavior analysis, 

traffic flow analysis, etc. In this paper, however, the focus has been on the traffic 

flow analysis. Therefore, in this regard, the shockwave analysis can be of 

particular interest especially for signalized intersections where the vehicle flow is 

distinctively transformed from one state to another.  

The set of trajectories as shown in Figure 5.6c can be processed based on the 

critical point concept presented in previous section. Figure 5.7 shows the 

transformation of vehicle trajectories into simplified trajectories, which are then 

used for further traffic analysis. 

Figure 5.8a demonstrates the extracted critical points on a sample trajectory while 

Figure 5.8b shows the resulting simplified trajectory. This process results in a 

series of simplified trajectories with distinct flow states. Figure 5.8c shows the 

space-time diagram of the processed trajectories of the vehicles while 

approaching, waiting, and eventually crossing the signalized intersection. It can 

be deduced from the figure that the motion of vehicles have basically three types 

of flow states, i.e., (A) the free-flowing state before reaching the signal, (B) the 

formation of queue during the red phase of the signal (stationary state), and (C) 

the dissipation flow state during the green phase of the signal cycle. These 

changes in flow states at a signalized intersection result in the generation of 

backward shockwaves as indicated in Figure 5.8c. Moreover, the signal cycle 

length can also be determined from such space-time shockwave diagrams. In this 

particular case, it can be observed that the signalized intersection had a 40-s red 

phase interval while the green phase interval was of approximately 40 s as well. 

These estimated times were also verified with the site observation and video 
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recordings. It is clearly evident from Figure 5.8c that simplified trajectories make 

the analysis and interpretation of traffic flow much simpler, thereby assisting in 

an efficient estimation of various traffic parameters and performance indicators. 

Additionally, Figure 5.8d illustrates the positioning of the three traffic flow states, 

i.e., A, B, and C on the UAV-acquired image of the intersection. It is important to 

emphasize that the areas of these flow states (specifically A and B) can vary, 

depending on various factors such as the traffic volume and the length of traffic 

signal cycle.  

Figure 5.8: (a) Extracted critical points (CP) on vehicle trajectory; (b) simplified trajectories 

with identified traffic states; (c) the generated shockwaves and signal cycle length; and (d) 

an illustration of various traffic states on the UAV-acquired image 
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The space-time diagram shown in Figure 5.8c can also be used to produce a flow-

density fundamental diagram. The flows, densities and speeds for different traffic 

states, i.e., A, B, and C can be inferred from the trajectory data obtained through 

UAV-based traffic videos. Figure 5.9a highlights the overall grid-area used for 

density estimation at the signalized intersection, whereas Figure 5.9b 

demonstrates the specific strips of area on the space-time diagram that are 

utilized for density estimation of the three traffic states. 

Figure 5.9: (a) Highlighted area for density estimation; and (b) density estimation for 

various traffic states 

Table 5.2 below shows the values of the traffic parameters i.e., flow, speed, and 

density for each of the three states. It is worth mentioning here that the density 

for state B represents the jam density (kj) while the flow during state C is the 

maximum flow rate (qmax). Additionally, the calculated values of kj and qmax can 

be verified with the default values given for the type of infrastructure and 

prevailing traffic conditions in the Highway Capacity Manual-HCM (Transportation 

Research Board, 2010). The estimated values generally lie on the higher side of 

the default values provided in HCM (default qmax = 1750 to 1900 vehicles/hour, 

default queue spacing for kj = 25feet).  All these parameters cannot only be used 

to link the space-time diagram with the fundamental diagram, but also can be 

used for further analysis, including the determination of shockwave speeds and 

queue lengths. 

Table 5.2: The estimated traffic parameters for each traffic state 

Traffic 

State 

Flow q 

(veh/h/lane) 

Speed v 

(km/h) 

Density k 

(veh/km/lane) 

A 1200 30 40 

B 0 0 160 (kj) 

C 1920 (qmax) 24 80 
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Figure 5.10 represents the flow-density fundamental diagram along with the 

shockwaves and speeds of the vehicles in each traffic state. The speed of the 

shockwaves can be determined using the Equations (3) and (4). The computed 

values are −10 km/h and −24 km/h for the accumulating wave (AB) and the 

dissipating wave (BC), respectively. The negative sign reflects the direction of the 

propagation of the waves, i.e., backwards: 

𝜔𝐴𝐵 =
𝑞𝐴

𝑘𝐴 − 𝑘𝑗
 (3) 

𝜔𝐵𝐶 =
𝑞𝑚𝑎𝑥

𝑘𝐶 − 𝑘𝑗
 (4) 

Figure 5.10: Density-flow fundamental diagram with shockwaves 

Moreover, other performance indicators for the signalized intersection can be 

estimated based on the available data. An example of this performance measure 

can be the maximum queue length which can be used to verify that the end of the 

queue does not influence the flow on a neighboring intersection. Equation (5) can 

be used to determine the maximum queue length (QM), where γ is the duration of 

the red-phase of the signal. The maximum queue length turns out to be 190.47 

meters with a 40 s red phase: 

𝑄𝑀 =  
𝛾

3600
×  

𝜔𝐵𝐶 ×  𝜔𝐴𝐵

𝜔𝐵𝐶 − 𝜔𝐴𝐵
 (5) 
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Similarly, Equation (6) helps in calculating the time (TM) required for the complete 

dissipation of queue after the signal turns green. Substituting the calculated 

shockwave speeds and the red-phase duration, i.e., 40 s into the equation, the 

dissipation time is calculated to be 28.57 s. This value can also be verified with 

the shockwave diagram in Figure 5.8c, where the point of the intersection of 

shockwaves represents the queue dissipation time: 

𝑇𝑀 =  𝛾 ×  
 𝜔𝐴𝐵

𝜔𝐵𝐶 − 𝜔𝐴𝐵
 (6) 

Additionally, the accuracy of the values calculated for various performance 

indicators can be verified by measuring the mean absolute percentage error 

(MAPE). The estimated quantity can be compared with the observed ground truth 

value as shown in Equation (1). A mean error of 7.5% was calculated in the 

estimation of the maximum queue length in the above example. The ground truth 

queue length was calculated by multiplying the number of vehicles in the queue 

by the minimum headway distance (normally 25 feet (~7.6 m)). 

5.7 Discussion 

As mentioned earlier, UAVs or drones, have several potential applications for 

traffic analysis and management. Therefore, there is a need to streamline the 

complete process and conduct validation studies. Accordingly, this paper has 

aimed to demonstrate the real-life application of the UAVs for traffic analysis, 

particularly in the scenario of signalized intersection flow analysis. The overall 

analytical process is principally based on vehicle trajectories extracted via a 

previously-proposed automated UAV video processing framework (Khan et al., 

2017b). Based on these vehicle trajectories, the signalized intersection traffic flow 

analysis has been conducted for a sub-urban 4-legged intersection, situated in 

Sint-Truiden, Belgium. The proposed methodological analysis conducted on such 

experimental data may serve as a proof-of-concept for the actual traffic-specific 

applications of the UAV-acquired data. Such studies can be of particular interest 

not only for researchers, but also for practitioners and traffic experts responsible 

for transport planning and management operations. Furthermore, this study can 

also lead to the integration of UAV-based traffic data with the more conventional 

traffic data collected via fixed cameras, loop detectors, etc. The UAV data can 

provide an additional dimension to the existing traditional data sources. 

The UAV-acquired intersection traffic data was used to estimate various traffic 

parameters. These include the speed, flow, density, shockwaves, signal cycle 

length, queue lengths, queue dissipation time etc. Importantly, the values of 

estimated traffic parameters were found to be in accordance with the ground-
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truth values as well as with the values found in the literature for signalized 

intersections. The ground truth values were calculated manually based on the 

recorded videos and site observations. The estimated and the ground-truth values 

were then used to evaluate the mean absolute percentage error (MAPE). The 

mean error for the speed of the sample vehicle was approximately 5% while the 

error for the estimated queue length was approximately 7.5%. Additionally, the 

values of flow and density were also verified with the default values provided in 

the Highway Capacity Manual for the specific type of infrastructure and prevailing 

traffic conditions. The estimated values were generally on the higher side but with 

no major errors. In future, the estimates can be improved by considering more 

heterogeneous data as well as accurate classification of vehicles.    

Although, vehicle trajectories and the corresponding traffic parameters were 

extracted successfully using the UAV-acquired data, there are still some 

limitations attached with the automated UAV video processing. Various types of 

errors can occur in vehicle detection and tracking due to different reasons such as 

partial occlusions, shadows, objects in close proximity, false detections, etc. 

Therefore, the resulting trajectories may contain some noise and errors which 

have to be dealt-with accordingly. Additionally, some limitations regarding the 

current UAV technology also exist. These include the limited flight time of small 

UAVs, along with some other concerns regarding the safety of flight operations. 

The flight time of UAVs depends on internal, as well as external, factors. Internal 

factors include the size, payload, battery type, etc., whereas the external factors 

consist of weather conditions, wind conditions, status of GPS satellites, etc. Apart 

from limited flight times, the legal considerations, including the safety and privacy 

concerns, also limit the use of UAVs for practical applications. In particular, the 

current Belgian law restricts the small UAVs to fly directly above vehicles and 

population. Therefore, in this study, the UAV was hovered at an oblique angle to 

the intersection traffic, thereby compromising the accuracy of extracted 

trajectories, as well as complicating the overall video processing. Nevertheless, 

all these concerns will eventually fade away with the development of more reliable 

and robust technology in the coming years.   

5.8 Conclusions 

In this paper, the main focus has been on the traffic flow analysis of the extracted 

vehicle trajectories. For this purpose, an analytical methodology has been 

presented for analyzing traffic flow conditions at a signalized intersection. In order 

to validate the methodology, an experimental UAV-based dataset was collected at 

a sub-urban four-legged signalized intersection. A dataset of vehicle trajectories 

was extracted and illustrated graphically in the form of space-time diagrams. 
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These extracted trajectories were then employed for further traffic flow analyses 

relevant for the signalized intersection traffic. The generation of simplified 

trajectories, shockwaves, and fundamental diagrams help in analyzing the 

interrupted flow conditions at the signalized intersection. Importantly, the values 

of the estimated traffic parameters did not have significant errors. The results of 

the analysis reflect the value of the flexibility and birds-eye view provided by UAV 

videos, thereby depicting the overall applicability of the UAV-based traffic analysis 

system. However, the factors affecting the robustness of the system have to be 

addressed in the future research in order to further optimize the use of UAVs for 

traffic data collection. Apart from it, the future research will also be focused on 

further improving and extending the traffic-related UAV applications. In future, 

detailed datasets have to be collected in order to incorporate for heterogeneity in 

traffic flow. Various flights need to be conducted over different times of the day 

and also different days in the week to collect heterogeneous data.  Various 

approaches for further automation and optimization of vehicle trajectories’ 

analysis, including the ‘critical point’ approach, will be explored in more detail. 

Additionally, the prospects of real-time processing and analysis of traffic data 

obtained via UAVs will also be inspected. 
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Chapter 6 

6. UAV–Based Traffic Analysis: 

Roundabouts  
 

 

This chapter consists of following peer-reviewed paper: 
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Wets, G. (2018). Unmanned Aerial Vehicle-based Traffic Analysis: A Case Study 

to Analyze Traffic Streams at Urban Roundabouts, Procedia Computer Science, 

130, 636-643, Ambient Systems, Networks and Technologies (ANT) 2018, Porto, 

Portugal. doi.org/10.1016/j.procs.2018.04.114. 

Khan, M. A., Ectors, W., Bellemans, T., Ruichek, Y,, Yasar, AH,, Janssens, D., & 

Wets, G. (2018). Unmanned Aerial Vehicle-based Traffic Analysis: A Case Study 

to Analyze Traffic Streams at Urban Roundabouts. IEEE ITSM. (Conference 

Extension: In-Review) 

 

 

6.1 Overview 

This chapter authenticates the application of small multirotor UAVs for traffic data 

collection and subsequent analysis of traffic streams at urban roundabouts. This 

chapter presents an analytical methodology to evaluate the performance of 

roundabouts by extracting various parameters and performance indicators. The 

performance evaluation methodology is based on: (i) determining traffic volume 

via OD matrices for each leg, and (ii) analyzing drivers’ behavior via gap-

acceptance analysis. The overall analytical process is principally based on the  

previously proposed automated UAV video-processing framework for the 

extraction of vehicle trajectories. The extracted trajectories are further employed 

to extract useful traffic information. The experimental data to analyse roundabout 

traffic flow conditions was obtained in the city of Sint-Truiden (Belgium). The 

study depicts the overall applicability of the UAV-based traffic analysis system. 
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6.2 Abstract 

Recently, multirotor Unmanned Aerial Vehicles(UAVs) or drones have become 

increasingly popular for a vast variety of civil applications. Efficient traffic data 

collection and extraction of various flow parameters are some of the futuristic 

applications of this technology. However, such applications still need to be 

streamlined and thoroughly explored for varying traffic and infrastructural 

conditions. In this paper, the focus is on the authentication of the application of 

small multirotor UAVs for traffic data collection and subsequent analysis of traffic 

streams at urban roundabouts. This paper presents an analytical methodology to 

evaluate the performance of roundabouts by extracting various parameters and 

performance indicators. The performance evaluation methodology is based on: (i) 

determining traffic volume via OD matrices for each leg, and (ii) analyzing drivers’ 

behavior via gap-acceptance analysis. The overall analytical process is principally 

based on the authors’ previously proposed automated UAV video-processing 

framework for the extraction of vehicle trajectories. The extracted trajectories are 

further employed to extract useful traffic information. The experimental data to 

analyse roundabout traffic flow conditions was obtained in the city of Sint-Truiden 

(Belgium). The results reflect the value of flexibility and bird-eye view provided 

by UAV videos; thereby depicting the overall applicability of the UAV-based traffic 

analysis system. With the significant increase in the usage of UAVs expected in 

the coming years, such studies could become a useful resource for practitioners 

as well as future researchers. The future research will mainly focus on further 

extensions of the UAV-based traffic applications. 

Keywords: Unmanned Aerial Vehicles(UAV);Drones;Traffic Data Collection;Traffic 

Analysis; Roundabout Traffic;Vehicle Trajectories 

6.3 Introduction 

The efficient management and control of ever-increasing traffic volumes and 

congestion levels, has become one of the most critical challenges faced by 

municipalities and governments all over the world. This problem further magnifies 

particularly at urban intersections where a high number of conflict points emerge, 

leading to road safety as well as capacity issues. In this regard, roundabouts 

provide an efficient alternative for managing traffic at at-grade intersections 

(Mahesh & Rastogi, 2016; St-Aubin et al., 2013). Roundabouts are basically 

circular intersections with specific design and traffic flow priorities. The circulating 

traffic is given priority over the approaching traffic, hence ensuring a smooth and 

safe flow of traffic. Based on these priority rules, the roundabouts can also be 
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termed as a series of T-junctions which have their own drawbacks (Fisk, 1991). 

Therefore, it is critical to analyze and evaluate the roundabout performance, 

particularly in urban environments, in order to ensure smooth traffic operation. 

However, for this purpose, an accurate, dynamic and quickly generated traffic 

data is required (Khan et al., 2017b).  

The collection of traffic data is usually an expensive and cumbersome process, 

depending majorly on the employed method and the required level of detail. In 

the past decades, the majority of the traffic data collection has been done using 

the traditional sources e.g. manual counters and observers, induction loops, 

stationary video recorders etc. However, these equipment produce extremely 

limited ‘point’ data which cannot be used to estimate complex traffic flow 

phenomenon such as the process of accumulation and dissipation of queues. In 

addition to this, the emergence of hidden points in the study area further limits 

the scope of the study (Barmpounakis et al. 2016; Puri, 2005). Particular, fixed 

video camera-based studies face a huge problem of occlusion in which the objects 

of interest are hidden either partially or completely behind other objects e.g. trees, 

trucks etc. Although, this problem can be solved technically by increasing the 

number of cameras/sensors or manual observations (Coifman et al., 2006), the 

increased expenses and workforce deem it practically unfeasible. On the other 

hand, advanced ITS data collection technologies e.g. vehicle-to-infrastructure 

(V2I), probe vehicles with GPS and other smartphone sensor technologies have 

also been employed in recent years. These technologies provide detailed and 

dynamic traffic data, however they result in big datasets which are difficult to 

handle especially in a short time span (Vlahogianni, 2015). Additionally, such 

technologies might influence the actual behavior of the travelers since they 

already know they are being observed (Barmpounakis et al., 2016; Salvo et al., 

2014a). Another alternative for traffic data collection is the aerial photography or 

remote sensing. Satellites and manned aircrafts have been used over the years 

for dynamic traffic data collection. These technologies provide wide field-of-view 

and unbiased data, however cost and deployment issues restrict their practical 

employment. Recently, unmanned aerial systems (UAS) have started to gain 

popularity for traffic monitoring, management, and control purposes (Kanistras et 

al., 2015; Puri, 2005). 

Small Unmanned Aerial Vehicles (UAVs), commonly termed as drones have 

become popular for a large variety of civil applications, ranging from survey of 

crop fields to parcel delivery applications (Colomina & Molina, 2014; Khan et al., 

2017a). In the past few years, this technology has also been identified to be useful 

in various transport management and planning applications.. UAVs are being used 

to observe, analyze and evaluate the traffic flow as well as safety conditions 
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(Barmpounakis et al., 2017; Kanistras et al., 2015; Puri, 2005). Traditionally, only 

the fixed-wing UAVs were employed for traffic monitoring purposes, however, in 

recent years the small rotary-wing type UAVs have also been used for traffic-

related applications (Lee et al., 2015). This non-intrusive and low-cost technology 

has improved rapidly and is now capable of providing high-resolution data (both 

in space and time) that can be used to extract vehicle trajectories and estimate 

traffic parameters. The UAVs can be particularly useful for data collection at sub-

urban or such areas in the network where the installation of fixed sensor 

infrastructure is not viable. The key characteristics of this technology are its 

flexibility and the bird-eye view of the area of interest (Khan et al., 2017a). 

However, this is a recent technology and the actual applications, particularly for 

traffic data collection have not yet fully developed (Barmpounakis et al., 2016; 

Puri, 2005). Therefore, there are some concerns and restrictions attached to this 

technology as well, such as limited battery time, safety concerns etc. All these 

concerns have to be coped with in the coming years. In order to streamline the 

processes involved in the application of UAV technology in traffic analysis, a 

universal guiding framework was proposed by Khan et al. (2017a). Additionally, 

a detailed methodological framework for the automated UAV video processing and 

vehicle trajectory extraction has been presented by Khan et al. (2017b).  

In this paper, the emphasis is on the traffic flow analysis of vehicle trajectories 

extracted via small rotary-wing UAV footage. The experimental data to analyze 

traffic flow conditions was obtained over an urban compact roundabout situated 

in the city of Sint-Truiden (Belgium). This paper presents an analytical 

methodology to evaluate the performance of a roundabout by extracting various 

parameters and performance indicators. The performance evaluation 

methodology is based on: (i) determining traffic volume via OD matrices for each 

leg, and (ii) analyzing drivers’ behavior via gap-acceptance analysis. The paper 

constitutes of an in-depth analysis of the roundabout traffic streams. In the 

coming years, the use of UAVs is expected to rise significantly. In this scenario, 

such analytical studies based on an automated systematic framework could serve 

as a reference for practitioners and researchers alike.  

This paper is structured as follows: firstly, the existing literature is discussed 

concisely. The methodology section consists of a brief description of the UAV video 

processing and trajectory extraction framework along with the presentation of the 

roundabout flow analysis methodology. In the next section, a Belgian case study 

is presented to support the proposed methodology. This includes applications of 

extracted vehicle trajectories for traffic flow analysis. Lastly, a brief conclusion 

along with some discussions regarding the limitations and planned future works 

is presented. 
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6.4 Related Work 

As found in the existing literature, UAVs are being researched upon for a wide 

range of applications, including traffic management, monitoring and analysis. 

Various researchers summarized the current research trends around the world 

regarding the use of UAVs for traffic surveillance and analysis applications 

(Barmpounakis et al., 2017; Colomina & Molina, 2014; Kanistras et al., 2015; 

Puri, 2005).  

Numerous UAV-based studies specifically for traffic analysis have been conducted 

in the previous few years. These studies can be classified based on 2 factors i.e. 

(i) type of equipment used, and (ii) type of video processing technique used. In 

the early years, mostly fixed-wing UAVs were used for traffic-related applications7 

whereas recently, many researchers have employed small multirotor UAVs for 

their experiments (Barmpounakis et al., 2016; Khan et al., 2017b; Lee et al., 

2015; Salvo et al., 2014b). Similarly, studies depending on the video processing 

technique can be broadly classified into 2 types i.e. (i) Manual or Semi-Automatic 

studies and (ii) Automatic studies. Studies employing the semi-automatic 

approach are highly accurate, but are time-consuming and laborious as the object 

has to be detected and tracked manually for a number of frames (Barmpounakis 

et al., 2016; Salvo et al., 2014a; Salvo et al., 2014b). On the other hand, the 

automatic approach promises a quick processing and analysis procedure; 

ultimately leading to the real-time analysis of the UAV acquired data. Recently, 

the number of studies based on automated approach have increased (Apeltauer 

et al., 2015; Gao et al., 2014; Khan et al., 2017b; Oh et al., 2014; Zheng et al., 

2015). The authors have been attempting to extract various traffic parameters 

and vehicle trajectories in an automatic environment by using state-of-the-art 

object detection and tracking algorithms. 

A lot of research has been conducted to analyze roundabout traffic flow using data 

acquired from different sources. St-Aubin et al. (2013) employed traffic data from 

a fixed video camera system to analyze driver behavior at roundabouts in Canada. 

The authors extracted various traffic parameters by interpreting vehicle 

trajectories. Similarly, Mussone et al. (2011) have attempted to analyze 

roundabout performance by applying image processing techniques on fixed video 

camera data. All these studies have devised and demonstrated various ways to 

evaluate the performance of roundabouts. However, all of the existing studies 

mentioned up till now have been principally based on the fixed video camera 

systems, which generally produce data with high occlusion rate. Recently, few 

researchers have employed UAV-acquired data to conduct roundabout traffic flow 

and safety analyses studies. Salvo et al. (2014a) have analyzed driving behavior 
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using UAV videos at an urban roundabout in Italy. The authors conducted a gap-

acceptance analysis for vehicles entering the roundabout. Similarly, same authors 

(Salvo et al., 2014b) have also conducted gap-acceptance analysis for an urban 

intersection using UAV data. Additionally, Guido et al. (2017) and Apeltauer et al. 

(2015) have evaluated the accuracy of roundabout traffic data obtained via UAVs. 

6.5 UAV Video Processing and Analysis Framework 

The traffic video data obtained via UAV has to be efficiently processed in order to 

conduct the desired traffic analysis on it. For this purpose, a UAV video processing 

and traffic analysis framework is presented which consists of an in-depth 

description of the steps involved in the systematic usage of the UAV-based traffic 

data.  The UAV video processing framework for the automatic extraction of multi-

vehicle trajectories has been presented in detail by Khan et al. (2017b). The 

processing framework is categorized into five modules i.e.: (i) pre-processing, (ii) 

stabilization, (iii) geo-registration, (iv) vehicle detection and tracking, and (v) 

trajectory management. The processing module is then followed by the traffic 

analysis module in which the trajectory dataset is used as an input. Figure 6.1 

illustrates the components of the UAV based traffic video data processing and 

traffic analysis framework. All the modules of this framework are elaborated in 

detail in the previous research (Khan et al., 2017b). However, in this paper, only 

an overview of the UAV video processing framework is included. 

Figure 6.1: The UAV video processing and traffic analysis framework 

Firstly, the UAV videos are preprocessed by removing or minimizing the 

undesirable aspects of the recorded video. This step is followed by the video 

stabilization and geo-registration of the UAV-acquired traffic videos. The 

stabilization step is critical to minimize the level of instability or shakiness in UAV 
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videos, as even a slight vibration of the camera can affect the accuracy of the 

extracted data. Further, the geo-registration or geo-referencing process ensures 

an efficient conversion of the UAV acquired mono-vision 2D image coordinates 

into a real-world coordinate system in order to enhance the applicability of the 

extracted vehicle trajectory data. Once the UAV images are geo-referenced or 

calibrated to a specific coordinate system, the next step is the automatic detection 

and tracking of vehicles of interest. The efficiency and accuracy of this process is 

critical in order to obtain a reliable and consistent set of trajectory data. The 

stabilized and calibrated UAV videos are fed into the detection and tracking 

module which constitutes of a number of sub-modules as indicated in Figure 6.1. 

The vehicles in motion are detected and tracked via a series of algorithms 

implemented in C++ (OpenCV library). Moreover, the extracted trajectory dataset 

is stored and managed in order to utilize it efficiently for further traffic analysis. 

The processing of UAV videos is then followed by the traffic analysis module in 

which the resulting trajectories are employed to extract useful traffic information. 

In this paper, the capacity and flow analysis of roundabout traffic is conducted by 

estimating various parameters and performance indicators. More specifically, the 

UAV-acquired traffic data is utilized to generate OD matrices for different legs of 

the roundabout by placing virtual counters for each entry and exit point. The 

algorithm for these virtual counters is implemented in visual C++ and the 

computer vision library OpenCV. Additionally, the waiting times and critical gaps 

for the vehicles entering the roundabout are also calculated. The following sections 

will elaborate the detailed analytical process via a case study.  

6.6 Case Study 

As mentioned earlier as well, the main aim of this paper is to demonstrate the 

potential applications of UAVs or drones for traffic analysis and management, 

particularly in the scenario of urban roundabout flow analysis. In this section, a 

detailed case study is presented in order to validate the practicality of the UAV-

based traffic data collection, processing and analytical framework. The data 

collected via UAV flights is used for analyzing traffic volume and capacity by 

generating origin-destination(OD) matrices. Additionally, the extracted data is 

also used to analyze drivers’ behavior via gap-acceptance study. The following 

sub-sections present an in-depth description of the whole experiment and the 

analytical process:   
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6.6.1 Experiment Specifications 

In order to obtain an experimental dataset for the validation of the proposed 

analytical framework, a series of UAV flights were conducted in the urban 

commercial area of the city of Sint-Truiden (Belgium). An urban compact 

roundabout was selected as the area under observation. The location as shown in 

Figure 6.2 is a busy urban commercial area, having a football stadium and rail-

station in the vicinity. The selected roundabout consists of single-lane approaches 

from each side, whereas one leg also has a right turning lane just before the 

roundabout in order to minimize the traffic flowing into the roundabout. A detailed 

flight planning process was carried out before the actual conduction of the flights. 

The UAV flights were conducted in order to capture the early-evening rush hour 

on a Friday afternoon (15:00 to 16:30 hours). Importantly, the weather and wind 

conditions were perfect for the UAV flights i.e. mostly clear skies with gentle wind 

level (18km/hour, Beaufort scale 3).   

Figure 6.2: The UAV view of the studied roundabout (left-side); and Google Earth satellite 

image of the roundabout(right-side)  

A series of  UAV flights were conducted using a custom-built high-end octocopter 

UAV i.e. Argus-One (from Argus-Vision) with an attached Panasonic Lumix GH4 

DSLM camera. The main focus for the experiment was to obtain a high-quality 

experimental data with a minimal setup time. The equipment as shown in Figure 

6.3 has a relatively low flight time of around 10 minutes, but provides an 

extremely stable and high resolution (4K@25fps) video data. Additionally, an 

attached live-feed transmission system allowed to optimize the camera angles for 

the best view of the roundabout area during the flight. The UAV was hovered i.e. 

maintaining a constant altitude with zero velocity, over the study area at 80m and 

60m heights. The series of UAV flights resulted in a nearly 15-minute useful traffic 

video after trimming the take-off and landing maneuvers of the UAV. It is also 

important to mention here that the analysis of UAV traffic videos was done on an 

Intel® Core™ i5-4210M CPU at 2.60 GHz, with 4-GB RAM. 
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Figure 6.3: The Argus-one UAV: (left) take-off position, and (right) in-flight. 

6.6.2 Roundabout Traffic Analysis 

The UAV traffic video data can be employed to extract useful traffic information 

required for analyzing traffic flow. This paper presents an analytical approach, 

specifically aimed to evaluate the performance of an urban roundabout. The 

performance evaluation methodology is based on: (i) quantifying traffic volume 

via OD matrices for each leg, and (ii) analyzing capacity and drivers’ behavior via 

gap-acceptance analysis.  

The volume of the traffic flowing through the roundabout is a good indicator of 

the performance of a roundabout. The Origin-Destination matrices are commonly 

used tools for planning and studying various road infrastructural elements, 

particularly roundabouts. These matrices help in quantifying and analyzing traffic 

movement through each leg of the roundabout. In order to determine the traffic 

volume, a virtual counter is placed on each leg of the roundabout. These virtual 

counters provide an accurate sum of vehicles entering or leaving the roundabout. 

Figure 6.4 shows the counters and OD matrices for the study area. As indicated 

in Figure 6.4, maximum traffic originates from the main city(counter 7) and flows 

majorly into surrounding shopping and residential area(counter 4). It is also worth 

mentioning that the automatic traffic counts were verified by manual counts and 

only a minor error of 2.26% was detected. The errors mainly occurred in case of 

vehicles partially occluded by close-by trees.    
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Figure 6.4: Position of virtual counters at roundabout approaches; and the Origin-

Destination(OD) matrix for the roundabout traffic 

Apart from traffic counts, the analyses of capacity and actual drivers’ behavior are 

important aspects employed for traffic modeling and management. Various 

measures of effectiveness(MOEs) e.g. waiting time, queue lengths, gap 

acceptance/rejection are used to evaluate the infrastructure performance and 

determine level-of-service. Gap-acceptance model is commonly used not only to 

estimate the capacity but also to study drivers’ behavior while merging or crossing 

another traffic stream. The primary parameter used in gap acceptance modeling 

is the critical gap. The critical gap is defined as the minimum time gap between 

consecutive vehicles circulating inside the roundabout that allow waiting vehicles 

on an approach to enter the roundabout (Özuysal et al., 2009). The follow-up 

headway is defined as the time between the vehicles using the same major-street 

headway under the queuing on the roundabout entry (Macioszek, 2018).The 

average range of critical gap and follow-up-time is taken as 4.1 to 4.6 sec and 2.6 

to 3.1 sec (approximately 60% of the critical gap) respectively in the HCM 2000 

(Transportation Research Board, 2000). The estimation of the critical gap is done 

using Modified Raff’s method (Brilon et al., 1999; Mensah et al., 2010), which 
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utilizes both the accepted and rejected gaps. Table 6.1 shows the number of gaps 

accepted or rejected by merging drivers for each time gap level. 

Table 6.1: Number of gaps accepted and rejected according to different time gap intervals 

(seconds)  

Time Gap (seconds) Number of Accepted Gaps Number of Rejected Gaps 

< 1 0 4 

1-2 1 15 

2-3 4 19 

3-4 5 2 

4-5 7 0 

 

As evident from data in Table 6.1, the number of gaps accepted and rejected are 

inversely proportional to each other. According to modified Raff’s method, the 

critical gap can be calculated by determining the intersection point of the gap 

accepted and rejected plots. Figure 6.5 illustrates the critical gap estimation 

approach and highlights the intersection point of the plots as the critical gap. The 

value of the critical gap for the experimental data is found to be approximately 

3.83 seconds. This value is slightly less than the HCM 2000 and HCM 2010 

specified average value of 4.1 seconds, reflecting the general driving attitude and 

also the level of service of the roundabout. 

Figure 6.5: The critical gap estimation based on the plots of accepted and rejected gaps 

As stated earlier, the estimated critical gap and follow-up headway can be used 

to determine the capacity of a roundabout. The capacity of a roundabout gives an 

overview of the performance of the infrastructure. According to Highway Capacity 
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Manual (Transportation Research Board, 2010), the capacity of a roundabout can 

be calculated as:  

𝑞𝑒,𝑚𝑎𝑥 = 𝐴𝑒−𝐵𝑞𝑐       (1) 

where: 

𝑞𝑒,𝑚𝑎𝑥 = Capacity of critical lane (veh/h) 

𝐴 =  
3600

𝑡𝑓
 

𝐵 =  
(0.5(𝑡𝑐 − 𝑡𝑓))

3600
 

𝑡𝑐 = Critical Gap 

𝑡𝑓 = Follow-up headway 

𝑞𝑐 = 𝑣𝑐 = Conflicting flow (veh/h) 

As evident from equation(1), the capacity of a roundabout is dependent on 

conflicting flow, critical gap and follow-up headway. Conflicting flow is the number 

of vehicles circulating inside the roundabout at a particular time interval. The 

conflicting flow was calculated to be 672 vehicles/hour respectively. Using the 

estimated values of critical gap and follow-up headway, the capacity of the 

roundabout was found out to be 1357 vehicles/hour. The estimated capacity can 

be further utilized to determine the level of service of a particular roundabout. 

Similarly, other parameters e.g. waiting time, queue lengths etc. may also be 

estimated using the traffic data acquired via UAVs. 

6.7 Discussion & Conclusion 

In this paper, a case study has been presented in order to validate the applications 

of UAVs for traffic analysis, particularly in the scenario of roundabout flow 

analysis. A framework is presented for processing as well as analysis of traffic 

data acquired via small UAV. The vehicle trajectories are extracted based on 

previously proposed automated UAV video processing framework (Khan et al., 

2017b). In addition to this, a methodology to employ the resulting trajectories for 

roundabout traffic flow analysis is proposed in this paper. The roundabout 

performance evaluation methodology is based on: (i) determining traffic volume 

via OD matrices for each leg, and (ii) analyzing level-of-service and drivers’ 

behavior via gap-acceptance analysis. Based on the collected experimental data, 

a number of performance indicators were estimated. The generation of OD 

matrices and the estimation of critical gap parameter help in analyzing the 
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interrupted flow conditions at an urban single-lane roundabout. The results of the 

analysis reflect the value of the flexibility and the bird-eye view provided by the 

UAV videos. Additionally, the proposed methodological analysis conducted on such 

experimental data may serve as a proof-of-concept for the actual traffic-specific 

applications of the UAV-acquired data. Such studies can be of particular interest 

not only for researchers but also for practitioners and traffic experts responsible 

for transport planning and management operations. 

Further improvements to the UAV-based traffic monitoring and analysis system 

will be made in the future work.  Although, UAVs have been demonstrated to be 

highly effective in traffic applications, still there are some limitations attached with 

the current technology. This includes factors ranging from hardware and software 

to legal aspects, such as the limited flight time of small UAVs along with some 

other concerns regarding the safety of flight operations. Additionally, some 

limitations also exist for the automated processing of the UAV videos. Depending 

on various reasons, false or missed detection errors can occur. All these factors 

need to be addressed in the future research in order to further optimize the use 

of UAVs for traffic data collection. Apart from it, the future research will also be 

focused on conducting a more detailed and comprehensive roundabout traffic 

analysis. The collection of larger datasets will also be necessary in order to 

increase the acceptability of UAVs for actual traffic studies. Additionally, the 

prospects of real-time processing of UAV data will also be explored. 
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Chapter 7 

7. UAV–Based Traffic Analysis: 

Applications in Developing Countries 

(Pakistan) 
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Khan, M. A., Ectors, W., Bellemans, T., Ruichek, Y,, Yasar, AH,, Janssens, D., & 

Wets, G. (2018). Unmanned Aerial Vehicle-based Traffic Analysis: A Case Study 

to Analyze Mixed Traffic Conditions in Developing Countries (Pakistan), (In-

Review). 

 

 

 

7.1 Overview 

This chapter further extends the traffic data collection applications of UAVs to 

mixed traffic situations in developing countries. The objective is to validate the 

applications of UAV video processing and analysis framework in a more 

challenging traffic scenario. In order to demonstrate the traffic analysis process, 

a case study based on data collected in Pakistan, is presented in this chapter. 

Traffic data has been collected via a small UAV for an urban roundabout and a T-

intersection in Rawalpindi/Islamabad (Pakistan). The overall analytical 

methodology is based on the previously proposed UAV-based traffic analysis 

framework. The extraction of various traffic parameters and measures of 

performance help in highlighting the usefulness of UAVs for traffic analysis. The 

developing countries generally lack even in the basic infrastructure required for 

traffic monitoring and data collection. In this scenario, UAVs can serve as a useful 
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apparatus for traffic data collection in developing countries. The results of the 

analysis at two study locations reflect the overall driving attitude and lack of 

implementation of traffic rules in developing countries, resulting in high 

congestion levels and serious safety concerns. 

7.2 Abstract 

The ever-growing levels of motorization rates and travel demands pose a critical 

challenge for transport managers, planners and governments in developed as well 

as developing countries. The mixed traffic conditions worsen off the situation even 

further in developing countries. The management and analysis of such high 

density mixed traffic is a challenge on its own. This calls for embracing a variety 

of state-of-the-art ITS technologies. Although, such technologies are becoming 

common rapidly in developed world, a lot of technologies still need to be 

introduced and applied practically in developing countries. The developing 

countries generally lack even in the basic infrastructure required for traffic 

monitoring and data collection. In this scenario, the Unmanned Aerial Vehicles 

(UAVs) commonly referred to as drones, can become a useful source of traffic 

data in such regions. This flexible and easy-to-deploy technology can yield data 

rich in both time and space. In order to demonstrate the applications of UAVs for 

traffic data collection specifically in developing countries, a case study based on 

data collected in Pakistan, is presented in this paper. Traffic data has been 

collected via a small UAV for an urban roundabout and a T-intersection in 

Rawalpindi/Islamabad (Pakistan). The overall analytical methodology is based on 

the previously proposed UAV-based traffic analysis framework (Khan et al., 

2017b). The extraction of various traffic parameters such as OD matrices, critical 

gaps, average waiting times etc., help in highlighting the usefulness of UAVs for 

traffic analysis. The results of the analysis reflect the overall driving behavior and 

lack of implementation of traffic rules in developing countries. The future research 

will be focused on presenting and analyzing a larger-scale case study in a more 

complicated traffic environment.  

Keywords: UAVs, Drones, Traffic Analysis, OD matrix, Critical Gaps, Image 

Processing, Developing Countries, Pakistan      
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7.3 Introduction 

Since the last quarter of previous century, rapid urbanization has taken place in 

most of the cities around the world. The cities have grown at an enormous rate 

with a high percentage of population migrating towards urban metropolitans in 

order to improve their overall living standards.  According to United Nations, the 

total urban population increased from 30% in 1950 to 54% in 2014. By 2050, the 

world population is projected to reach 10 billion out of which 66% shall be dwelling 

in cities (United Nations, 2015). This has given birth to a variety of  immense 

challenges like traffic congestion, unemployment, and a scarcity of public facilities 

(Wu et al., 2015).  In conjunction with the soaring urbanization rates, the trend 

of using motorized vehicles have also  increased significantly. This trend has 

caused a major strain on the existing infrastructure. The situation gets even more 

intense in low-income and developing countries where the existing infrastructure 

and facilities are not capable of handling the exceeding demands. Additionally, the 

mixed traffic and various other factors such as insufficient regulations, minimal 

law enforcement, rash behaviour etc., further complicate the situation. All these 

factors necessitate the integration  of various policy measures and state-of-the-

art ITS technologies, in order to ensure an effective management of existing 

infrastructure. However, the analysis of high density mixed traffic is a challenging 

task, especially in the situation where there is very limited availability of traffic 

data.  

Urban planning in general and traffic modelling in particular is highly dependent 

on the available traffic data. The quality of traffic data determines the performance 

of traffic models. Therefore, traffic data collection is termed as the primary step 

towards making informed decisions and devising traffic policies that ensure an 

efficient operation of the network. Traditionally, the data collection methodology 

in developing countries has been mostly based on manual observations. In recent 

years, fixed camera systems and induction loops have been installed at specific 

sites. Additionally, satellite and aerial imageries have also been used to collect 

data for analysis of particular areas. However, this data is usually not up-to-date 

and is quite expensive to collect updated data for a particular study. It is obvious 

that there is a significant technology gap between developed and developing 

countries. The governments have invested very little in developing data collection 

infrastructure. Therefore, in this scenario, there is a need for a budget-friendly 

and flexible technology that provides data relevant both in time and space. 

Unmanned Aerial Vehicles (UAVs) commonly referred as drones, are already being 

used to monitor and collect traffic data in developed countries (Kanistras et al., 

2015; Khan et al., 2017a; Puri, 2005). In the early years, only fixed-wing UAVs 

were used for traffic monitoring, however with the advancement of technology, 
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the small rotary-wing type UAVs have become reliable and are being used 

abundantly for various applications. This non-intrusive, low-cost and easy-to-

deploy technology can yield high-resolution rich traffic data. UAVs have the 

potential to become a useful source of traffic data, particularly in  regions where 

there is no or very limited fixed sensor/camera infrastructure. As this is a recent 

technology and the actual applications, particularly for traffic data collection, have 

not yet fully developed (Barmpounakis et al., 2016; Puri, 2005), some 

considerable concerns and limitations still exist, such as limited battery time, 

safety concerns, etc. In order to streamline the processes involved in the 

application of UAV technology in traffic analysis, a universal guiding framework 

was proposed by Khan et al. (2017a). Additionally, a detailed methodological 

framework for the automated UAV traffic video processing and vehicle trajectory 

extraction has been presented in (Khan et al., 2017b). This paper presents a 

detailed application of the methodology presented by authors in (Khan et al., 

2017b).  

The principle aim of this paper is to demonstrate the applications of small UAVs 

for traffic data collection, specifically in developing countries where there is 

minimal data collection infrastructure available. For this purpose, a series of 

experimental UAV flights were conducted in the city of Rawalpindi/Islamabad, 

Pakistan. Traffic data has been collected via a small UAV for an urban roundabout 

and a T-intersection. With the help of two case studies, this paper attempts to 

evaluate the usefulness of UAVs as a mean of collecting valuable traffic data in 

developing countries. Based on our previously proposed UAV video processing and 

analysis framework, the collected traffic data is utilized to analyze the prevailing 

traffic conditions and to extract useful traffic information. This type of analysis 

conducted on UAV-based data may serve as a benchmark for further research into 

practical applications of UAV-based traffic analysis systems. With the significant 

increase in the number of UAV-based traffic studies expected in the coming years, 

such analytical studies based on an automated systematic framework could 

become a useful resource for practitioners and researchers alike.    

This paper is structured as follows: firstly, the related work regarding the use of 

UAVs for traffic data collection specifically in developing countries, is discussed. 

This is followed by a brief description of the UAV-based traffic analysis framework. 

The next section contains a case study which is based on the traffic data collected 

in a Pakistani city using a small UAV. This section also elaborates the vehicle 

trajectory extraction process followed by a detailed traffic analysis. In the end, 

the paper is briefly concluded along with some critical discussion regarding the 

use of UAVs for traffic data collection, analytical applications of the framework, 

and proposed future developments. 
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7.4 Related Work 

The number of UAV-based traffic analysis studies have increased during the last 

decade. Various literature survey studies (Barmpounakis et al., 2017; Colomina & 

Molina, 2014; Kanistras et al., 2015; Puri, 2005) have summarized these 

applications in a systematic manner. Overall, the UAV-based traffic–related 

studies can be categorized on the basis of 2 factors i.e. (i) type of UAV used, and 

(ii) type of video analysis technique used. Traditionally, fixed-wing UAVs were 

used commonly for traffic-related applications (Coifman et al., 2006) whereas in 

the last few years, the focus has shifted towards small multirotor UAVs 

(Barmpounakis et al., 2016; Khan et al., 2017b; Lee et al., 2015; Salvo et al., 

2014b). On the other hand, the existing research can also be classified into 2 

types, based on the video processing technique, i.e. (i) manual or semi-Automatic 

processing and (ii) automatic processing studies. The semi-automatic approach 

yields accurate results, but is time-consuming and laborious as the object has to 

be detected and tracked manually for a number of frames (Barmpounakis et al., 

2016; Salvo et al., 2014b; Salvo et al., 2014a). Moreover, the studies based on 

automated processing approach consist of a quick processing and analysis 

procedure; ultimately leading to the real-time analysis of the UAV acquired data. 

Recently, the number of studies based on automated approach have increased 

(Apeltauer et al., 2015; Gao et al., 2014; Khan et al., 2017b; Oh et al., 2014; 

Zheng et al., 2015). The researchers have employed various state-of-the-art 

object detection and tracking algorithms in order to extract useful traffic 

information from the UAV-based traffic videos. 

Various studies focusing on the analysis of roundabout traffic flow have been 

conducted over the years. Most of these studies have utilized traffic data acquired 

from traditional sources such as fixed camera systems. St-Aubin et al. (2013) 

employed traffic data from a fixed video camera system to analyze driver behavior 

at roundabouts in Canada. The authors extracted various traffic parameters by 

interpreting vehicle trajectories. Similarly, Mussone et al. (2011) have attempted 

to analyze roundabout performance by applying image processing techniques on 

fixed video camera data. Mahesh et al. (2016) examined the relation between 

entry and circulating roundabout flows in the scenario of a developing country i.e. 

India. In this regard, the authors estimated critical gaps for roundabouts. 

Additionally, Polus & Shmuel (1999) calculated critical gaps for roundabouts in 2 

Israeli cities. All these studies have devised and demonstrated various ways to 

evaluate the performance of roundabouts. However, all of the existing studies 

mentioned up till now have been principally based on the fixed video camera 

systems, which generally produce data with high occlusion rate. Recently, few 

researchers have employed UAV-acquired data to conduct roundabout traffic flow 

and safety analyses studies. Khan et al. (2018) analyzed the performance of an 
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urban roundabout by extracting the critical gaps. Salvo et al. (2014b) have 

analyzed driving behavior using UAV videos at an urban roundabout in Italy. The 

authors conducted a gap-acceptance analysis for vehicles entering the 

roundabout. Additionally, researchers have evaluated the accuracy of roundabout 

traffic data obtained via UAVs (Apeltauer et al., 2015; Guido et al., 2017).  

Like roundabouts, various studies have also been conducted around the world for 

the analysis of unsignalized stop-controlled three-leg intersections(T-

intersections). Various researchers have estimated parameters like average 

waiting times, critical gaps, queue lengths etc. in order to determine the level of 

service of the infrastructure (Fitzpatrick, 1991; Rodriguez, 2006; Salvo et al., 

2014a). However, only a handful of studies have been conducted to analyze 

critical gaps and waiting times for vehicles approaching an un-signalized T-

intersection in the scenario of developing countries. Dutta & Ahmed (2017) have 

conducted gap-acceptance analysis on 3 different uncontrolled T-intersections in 

Indian cities. The authors have focused on classifying the driving behaviour in 

heterogeneous traffic conditions. The study is based on data from fixed camera 

systems. However, no study employing the traffic data acquired via UAVs has 

been found. 

7.5 UAV Video Processing & Analysis Framework 

The UAV video processing and analysis framework streamlines all the steps 

necessary to produce useful traffic information form the collected data. The 

framework for the automatic extraction of multi-vehicle trajectories has been 

presented in detail by Khan et al. The processing framework is categorized into 

five modules i.e.: (i) pre-processing, (ii) stabilization, (iii) geo-registration, (iv) 

vehicle detection and tracking, and (v) trajectory management. The outputs 

generated from the processing modules i.e. the vehicle detections and 

trajectories, are used as an input for the traffic analysis module. The traffic 

analysis module differs with the scope and objectives of the study. Figure 1 

illustrates the components of the UAV based traffic video data processing and 

traffic analysis framework. A detailed account of all the components and modules 

of this framework is given in the previous research. However, in this paper, only 

an overview of the UAV video processing framework is included with more focus 

on the analysis part. 
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Figure 7.1: The UAV video processing and traffic analysis framework 

The analysis of the UAV-based traffic footage involves some general pre-

processing and stabilization procedures, mainly due to the instability and other 

limitations of the UAV platform. First of all, the recorded video is trimmed in order 

to retrieve only the useful part of the traffic video; the take-off, landing and other 

insignificant parts of the video are omitted. This is followed by the application of 

stabilization filters. The video is passed through some filters to eliminate or reduce 

the shakiness of the camera. Alternatively, a stationary object could be tracked 

through the entire video to stabilize the video by compensating for the minor 

movements. All these pre-processing and stabilization sub-tasks are necessary in 

order to make the video ready for the actual processing and analyses steps. 

Further, the geo-registration or geo-referencing process ensures an efficient 

conversion of the UAV acquired mono-vision 2D image coordinates into a real-

world coordinate system in order to enhance the applicability of the extracted 

vehicle trajectory data.  After the Geo-Referencing or calibration of the UAV 

images to a coordinate system, the detection and tracking of different road users 

is carried out with the help of the developed algorithm, implemented in C++ 

(OpenCV library). The vehicle detection and tracking algorithm consists of a 

number of sub-modules as illustrated in Figure 7.1. The efficiency and accuracy 

of this process plays a pivotal role in the overall accuracy of the study. The 

stabilized and calibrated UAV videos are fed into the detection and tracking 

module, and the outputs are stored accordingly in order to employ them further 

for traffic analysis. 

The traffic analysis module utilizes the processed UAV video data to extract and 

estimate various traffic parameters and measures of performance. As explained 

before, this paper revolves around the analysis of traffic flow in the scenario of a 

developing country. The flow of traffic at a roundabout and at a T-intersection 
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with merging/diverging traffic, is analyzed in order to demonstrate the 

applications of the collected data. Apart from the video processing module, Figure 

7.1 also shows the overall traffic analysis module along with the specified sub-

modules for different traffic flows. In both cases i.e. roundabout and T-

intersection, traffic volume is an important parameter to be determined. For the 

roundabout traffic, origin-destination matrices are produced to quantify the traffic 

flowing through the roundabout. The approach for estimating traffic volume or 

counts is based on the detection of vehicles. This is done by placing virtual 

counters for each entry and exit point of the roundabout. The algorithm for these 

virtual counters is implemented in visual C++ and the computer vision library 

OpenCV. Additionally, further analysis consists of the calculation of critical gaps 

and average waiting times for the vehicles entering the roundabout and entering 

the major road (merging traffic) respectively. The details of the analytical process 

along with a case study, are given in the following sections.  

7.6 Case Studies 

As stated previously, the main aim of this paper is to validate the applicability of 

UAVs or drones for traffic analysis and management, particularly in developing 

countries with high density mixed traffic conditions. For this purpose, two detailed 

case studies are presented in this section. The whole experiment is centered 

around the UAV-based traffic data collection, processing and analytical 

framework. The section is divided into 2 sub-sections; the first sub-section 

describes the details of the data collection experiment, whereas the following sub-

section contains the processing and analysis of the collected data. This data is 

then used for extracting vehicle trajectories and estimating various traffic 

parameters. The outputs can be used to determine the performance of a particular 

type of infrastructure and also to analyze the overall driving attitude/behaviour 

prevailing in the area of study.  

7.6.1 Experiment Specifications 

In order to develop case studies regarding the applications of UAVs for traffic 

analysis in developing countries, a data collection experiment was setup in 

Pakistan. A series of UAV flights were conducted over 2 sites in the urban city of 

Rawalpindi/Islamabad. Pakistan is a developing country with a population of over 

200 million. Just like other developing countries, there is a sharp increase in 

urbanization and motorization rates over the last few decades. The two twin cities, 

Rawalpindi and Islamabad have also followed the similar trend, hence resulting in 
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an increase of over two times in their population and the metropolitan area in a 

period of two decades (Pakistan Bureau of Statistics, 2017).  

A couple of sites for the data collection experiment, were selected after careful 

considerations.  All the privacy, safety and security concerns were thoroughly 

deliberated. The necessary permits were obtained from the concerned authorities. 

Location 1 as shown in Figure 7.2 comprises of a busy multi-lane roundabout. The 

selected roundabout provides an access to the surrounding residential as well as 

commercial areas. Additionally, it also handles the traffic crossing the area in order 

to approach the Islamabad Highway. On the other hand, Location 2 as shown in 

Figure 7.3 includes a T-intersection between a segment of Grand Trunk (G.T.) 

Road and the main entrance of a Housing/Commercial Society. As it is evident for 

pictures in Figure 7.3, the observed road segment is extremely busy as it handles 

local as well as highway traffic. There is also a school on the opposite side of the 

housing society’s main gate. All these factors affect the movement of turning 

vehicles that are trying to enter the housing society.  

 

Figure 7.2: The studied roundabout at Location 1;  image from the UAV (left-side); Google 

earth satellite image (right-side) 

Figure 7.3: The studied T-intersection at Location 2;  image from the UAV (left-side); 

Google earth satellite image (right-side) 

The selection of UAV equipment is also an important aspect while demonstrating 

the applications of small UAVs. It is critical to maintain a balance between costs 

and video quality. Hence, DJI’s Phantom 4 Pro was employed to collect the traffic 
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data. Phantom 4 Pro is a high-quality and reliable quadcopter UAV with a flying 

time of around 30 minutes. This UAV comes with a 20 megapixel camera, capable 

of recording a high resolution video i.e. 4K Resolution@ 25fps. Moreover, a user-

friendly remote control system and smartphone application makes the UAV 

operation much simpler. The live-feed transmission (first-person-view) system 

helps in selecting the best camera angles of the study area. This particular UAV is 

an ideal option for conducting experimental studies as it provides a high quality 

and stable video data, required to demonstrate and validate the traffic-related 

UAV applications. Figure 7.4 below shows the Phantom 4 Pro UAV while taking-off 

and in flight respectively. The UAV flights were conducted on a Tuesday afternoon 

(16th January, 13:00 to 15:30 hours) to capture the working/school day afternoon 

rush hour. The weather was clear while the wind level was extremely mild as well 

(1-2 km/hour, Beaufort scale 1). The UAV was hovered (constant altitude, zero 

velocity) above the observed locations at the heights of 200 meters and 150 

meters respectively. These heights provided coverage of the entire intersection as 

well as the connecting links. After a series of flights were conducted, a nearly 30-

minute useful traffic video was obtained after excluding the take-off, landing and 

camera adjustment maneuvers.  

Figure 7.4: The Phantom4 Pro UAV; taking-off (left-side) and  in-flight (right-side) 

7.6.2 Traffic Analysis 

In order to extract useful traffic information from the collected data, the UAV video 

processing and analysis framework was utilized. As per the modules of the 

framework, UAV data from the two selected study locations was pre-processed, 

stabilized and geo-referenced as well. The details of these processes can be found 

in (Khan et al., 2017). The next step was to analyze the traffic flow conditions by 

extracting road users’ space-time information and estimating the suitable traffic 

parameters for each location.  The UAV video processing and the results 

generation was done on an Intel ® Core ™ i5-4210M CPU@2.60GHz, with 4GB 

RAM and Windows 8.1 (64 bits).   
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The traffic analysis methodology for Location 1’s roundabout is based on: (i) the 

determination of traffic volume via origin-destination matrix for each roundabout 

approach, and (ii) the estimation of critical gaps to analyze the driving attitude 

and the overall performance of the roundabout. On the other hand, the analytical 

methodology for Location 2’s T-junction includes: (i) the quantification of merging, 

diverging and through traffic, and (ii) the estimation of waiting times for merging 

traffic. Additionally, the analysis points out some serious traffic safety issues or 

conflicts observed during the process at both locations.  

With regards to Location 1, firstly the number of vehicles approaching and crossing 

the roundabout, is estimated with the help of an origin-destination matrix. The 

determination of traffic volume provides a good overview of the level of service 

and overall performance of a roundabout. For this purpose, the origin-destination 

(OD) matrices are widely used to analyze traffic counts across different 

approaches of various types of infrastructural elements, particularly roundabouts. 

In order to create OD matrix for the roundabout at Location 1, the developed 

algorithm was employed. The traffic count was made by placing a virtual counter 

at each approach of the roundabout. These virtual counters provide an accurate 

sum of vehicles entering or leaving the roundabout. It is worth mentioning here 

that the OD matrix did not account for motor bikes, however their influence was 

incorporated in the overall flow analysis of the system. The estimated parameters 

such as critical gaps and average waiting times were affected by the presence of 

motor bikes.  Figure 7.5 displays the virtual counters at each leg, along with the 

estimated OD matrix for the roundabout under study for a period of 5 minutes 

and 27 seconds. The figure also illustrates the direction of traffic, hence identifying 

the traffic originating and terminating approaches. It is obvious from OD matrix 

that the roundabout legs, numbered 6 and 7, are the busiest originating and 

terminating approaches respectively.  The maximum traffic originates to and from 

the direction of Bahria Town Corporate Office. This approach links the traffic to 

the main residential and commercial areas inside Bahria Town, while also 

providing an access to the crossing traffic between Islamabad Highway and other 

surrounding residential schemes. It is also worth mentioning that the automatic 

traffic counts were verified by manual counts and only a negligible amount of error 

was detected, specifically in case of vehicles partially covered by shadows. 
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Figure 7.5: Traffic counts based on origin-destination matrix, at roundabout location. 

In addition to traffic counts, the collected UAV video data can be used to estimate 

other traffic indicators such as waiting times, queue lengths etc. As proposed in 

previous research (Khan et al., 2018), the data can also be used to develop gap 

acceptance models in order to analyze the driving behavior and also the overall 

performance of the roundabout. In this paper, similar methodology is re-applied 

to the scenario of roundabout traffic in a developing country. Modified Raff’s 

method (Brilon et al., 1999; Mensah et al., 2010) has been used to estimate the 

critical gap which is the minimum time gap between circulating traffic that allows 

the approaching vehicle to merge into the roundabout traffic stream (Özuysal et 

al., 2009).  The critical gap value for the roundabout approach number 4 (Figure 

7.6) has been estimated as various conflicts were observed at this approach.  The 

graph in Figure 7.6 illustrates the number of gaps accepted and rejected by the 

approaching drivers for each time gap interval. The gap acceptance and rejection 

are inversely proportional to each other while the intersection point of the two 

plots represent the critical gap. For the experimental Pakistani case, the 

intersection point or the critical gap is found to be approximately around 3 

seconds. It is also important to mention that the Highway Capacity Manual 
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(Transportation Research Board, 2000) provided typical average value of critical 

gap is 4.1 to 4.6 seconds. Therefore, it is obvious that the estimated critical gap 

is significantly less than the HCM typical value. This highlights the driving attitudes 

and the overall performance of the infrastructure, particularly at the observed 

locations and generally in developing nations. The mixed traffic scenario further 

intensifies the traffic situation. Additionally, the values of critical gap can also be 

compared with the values estimated in existing roundabout studies, mostly based 

on data collected via fixed cameras or other traditional equipment.  Mahesh et al. 

(20) estimated the critical gap values of 2.43 and 2.51 seconds for 2 urban 

roundabouts in the scenario of another developing country i.e. India. Similarly, 

critical gaps for roundabouts in 2 Israeli cities were calculated (Polus & Shmuel, 

1999). The estimated values were 4.1 and 4.2 seconds. Moreover, the critical gap 

in (Khan et al., 2018) was found out to be 3.83 seconds for a single-lane urban 

roundabout in Belgium. The comparison of all these values highlights the fact that 

estimated critical gap value is in proportion with the values provided in the existing 

literature. The proposed UAV-based methodology can be effectively used for the 

estimation of such parameters.  

Figure 7.6: The critical gap estimation based on the plots of accepted and rejected gaps 

As explained before, Location 2 comprises of the main entrance/exit community 

gate and a busy highway with some commercial and educational activities in the 

vicinity. This forms a T-intersection at this site, with vehicles merging and 

diverging with the through traffic. Similar to Location 1 analysis, the first part of 

the analytical process is to estimate the traffic movement across the area of 

interest. For this purpose, the traffic counts are made for the merging (exiting 

from gate), diverging (entering the gate) and through Highway traffic. The virtual 

counters are placed at 3 positions as shown in Figure 7.7. This results in the 

quantification of traffic in each direction. Figure 7.7 shows the total counts for the 
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observed time period of 5 minutes and 27 seconds. The table in Figure 7.7 

indicates the traffic volume at the studied T-intersection. It can be seen that the 

amount of vehicles merging and diverging are almost equal while a large number 

of vehicles travel straight on the Highway (major road). 

Figure 7.7: Traffic counts at Location 2’s T-intersection. 

Furthermore, the merging/diverging behaviour of the turning traffic is also an 

important aspect that influences the overall traffic flow state. For this purpose, 

the collected UAV-based traffic data at Location 2, is employed to extract the 

waiting times of the merging traffic that tries to enter the traffic stream at major 

road. The bar chart in Figure 7.8 shows the waiting times of vehicle over a 5-

minute time interval. The estimated average waiting time shown as blue dashed-

line, turns out to be 22.57 seconds. This value reflects a certain level of congestion 

at the major road during the observed time period.  It was identified through the 

video analysis that the Highway (major road) faced a significant amount of 

congestion and blockage during the afternoon rush hour, mainly due to the nearby 

school’s off-time. This affected the merging traffic as well, hence the higher 

waiting times. According to the Highway Capacity Manual (Transportation 

Research Board, 2000), the average waiting time of 22.57 seconds indicates a 

level of service (LOS) D at the intersection. Therefore, the intersection requires 

some improvement measures, particularly during the rush hours. In this scenario, 
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alternatives’ analysis with the help of microsimulation models can assist in 

providing a long-term solution for the problem. 

Figure 7.8: Waiting times for merging traffic on the major road. 

Apart from the traffic flow analysis, several serious traffic safety issues were also 

observed visually at both locations. Vehicles traveling in the wrong direction in 

order to make shortcuts, random behaviour of crossing pedestrians, illegal parking 

are some of the observed traffic issues that influence not only the traffic flow but 

also the safety of the people involved. This also reflects the lack of implementation 

of traffic laws as well as the general attitude and the level of awareness of public. 

The identification of these issues is the first step towards the rectification of the 

problem. Further detailed analysis and behavioral studies are required in order to 

understand the situation comprehensively. 

7.7 Discussion & Conclusion 

This paper presents a systematic approach, specifically aimed to study and 

analyze traffic environment in high density mixed traffic situations in developing 

countries. For this purpose, an experimental UAV-based traffic dataset has been 

collected in an urban city of Rawalpindi/ Islamabad, Pakistan. The collected UAV 

data has been processed and analyzed based on the proposed framework. The 

processed data i.e. the vehicle detections and tracks, are extracted based on the 

improved version of the previously proposed UAV video processing and analysis  

framework (Khan et al., 2017b). Moreover, an analytical methodology to utilize 

outputs from the processing modules, is also presented in this paper.  
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The proposed methodology focuses on analyzing traffic flow state for different 

infrastructural elements. On this basis, the traffic analysis methodology is divide 

into 2 parts, i.e. (i) roundabout analysis, and (ii) T-intersection analysis. The 

roundabout traffic flow analysis is based on: (i) the determination of traffic volume 

via origin-destination matrix for each roundabout approach, and (ii) the estimation 

of critical gaps to analyze the driving attitude and the overall performance of the 

roundabout. On the other hand, the traffic flow analysis of T-intersection includes: 

(i) the quantification of traffic in each direction (merging, diverging and through), 

and (ii) the estimation of waiting times for merging traffic. The proposed 

methodology is demonstrated and validated with the help of two case studies. 

Based on the collected experimental data, a number of performance indicators 

were estimated. Overall, the determination of traffic volume and other parameters 

help in analyzing and interpreting the interrupted flow conditions. The comparison 

of the estimated parameters with the typical values provided in Highway Capacity 

Manual and also with the existing literature, concludes that the proposed UAV-

based methodology can be effectively used for the estimation of various 

parameters. The UAV technology can be employed for data collection, specifically 

in the scenario of developing countries where there are very limited sources of 

traffic data collection. In this regard, the mobility and the bird-eye view provided 

by the UAV videos make this technology even more attractive. Additionally, the 

proposed methodological analysis conducted on such experimental data may 

serve as a benchmark or proof-of-concept for the actual traffic-specific 

applications of the UAV-acquired data in developing countries. Such studies can 

be of particular interest not only for researchers but also for practitioners and 

traffic experts responsible for transport planning and management operations. 

Further improvements to the UAV-based traffic monitoring and analysis system 

will be made in the future work.  Although, UAVs have been demonstrated to be 

highly effective in traffic applications, still there are some limitations attached with 

the current technology. This includes factors ranging from hardware and software 

to legal aspects, such as the limited flight time of small UAVs along with some 

other concerns regarding the safety of flight operations. Additionally, some 

limitations also exist for the automated processing of UAV videos, especially for 

the cases of developing countries with a high density mixed traffic and unexpected 

driver behaviour. Errors such as wrong or lost detections can occur due to multiple 

reasons. As compared to the Belgian case studies, the developed vehicle detection 

algorithm resulted in a much higher error rate in the Pakistani case, thereby 

resulting in high post-processing time. It is also worth mentioning that the 

automatic traffic counts were verified by manual counts. In case of roundabout 

(Location 1), only a negligible amount of error was detected. This was mainly due 

to vehicles that were partially covered by shadows. On the other hand, the 

congested state and high traffic density at T-intersection (Location 2) posed a 
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challenge for the developed vehicle detection algorithm. A certain level of post-

processing was conducted in order to cater for the errors and to achieve the 

desired accuracy standards. All these factors need to be addressed in the future 

research in order to reduce the processing times and further optimize the use of 

UAVs for traffic data collection. Apart from it, the classification of road users must 

also be incorporated in future, especially for mixed traffic environments. The 

future research will also be focused on presenting more complicated case studies 

with a more detailed and comprehensive analysis of various infrastructural 

elements. Additionally, the prospects of microsimulation modelling in the scenario 

of developing countries, will also be explored. 
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Chapter 8 

8. UAV–Based Traffic Analysis: 

Development and Calibration of 

Microsimulation Models 
 

This chapter consists of following paper: 

Khan, M. A., Raza, M. M., Ectors, W., Bellemans, T., Janssens, D., & Wets, G. 

(2018). Unmanned Aerial Vehicle-based Traffic Analysis: Development and 

Calibration of Microsimulation Models, Transportation. (In-Review). 

 

 

 

8.1 Overview 

This chapter explores a new application of the traffic data collected via small UAVs. 

The chapter presents a methodology to utilize the UAV-based traffic data for the 

development as well as for the calibration of microsimulation models. The main 

objective is to examine the feasibility of microsimulation model development from 

UAV-based traffic data. For this purpose, two case studies comprising of a 

roundabout and a signalized intersection, have been presented based on the data 

collected via UAVs in Sint-Truiden, Belgium. The base models are developed using 

PTV VISSIM. The road geometry data and traffic parameters extracted from the 

UAV videos via previously proposed UAV video processing and analysis framework 

(Khan et al., 2017b), are utilized for the microsimulation model development and 

calibration. The calibration process is based on various measures of effectiveness 

and validation parameters. Acceptable calibration targets have been defined for 

both roundabout and signalized intersection models. The results show that the 

microsimulation models can be calibrated through traffic data collected via small 

UAVs. The study implies that UAVs can become a useful source of traffic data for 

the development and calibration of microsimulation models. 



 

Chapter 8 

 

146 

 

8.2 Abstract 

Microsimulation modelling has been widely used in recent years for transportation 

planning and traffic engineering. Generally, microsimulation model development 

requires extensive data with high level of detail. Therefore, it is not easy to collect 

traffic data for microsimulation modelling. Over the years, several data collection 

techniques have been employed for collecting inputs for microsimulation models. 

In the recent years, Unmanned aerial vehicles (UAVs) have also been employed 

for traffic data collection. However, the UAV acquired traffic data has not yet been 

employed for microsimulation modelling. This paper aims to demonstrate and 

validate the applications of traffic data collected via small UAVs for the 

development and calibration of microsimulation models. For this purpose, two 

case studies comprising of a roundabout and a signalized intersection, have been 

presented based on the data collected via UAVs in Sint-Truiden, Belgium. The base 

model for the 2 sites has been developed by using PTV VISSIM. The road geometry 

data and traffic parameters extracted from the UAV videos via previously proposed 

UAV video processing and analysis  framework (Khan et al., 2017b), are utilized 

for the microsimulation model development and calibration. Using the UAV-based 

data, the model is calibrated by selecting various parameters and measures of 

effectiveness (MOEs). Acceptable calibration targets have been defined for both 

roundabout and signalized intersection models. The results show that the 

microsimulation models can be calibrated through traffic data collected via small 

UAVs. The study implies that UAVs can become a useful source of traffic data for 

the development as well as calibration of the microsimulation models. Such 

studies can become a pioneer in establishing the practical applications of UAVs for 

microsimulation studies. It can serve as a reference for future studies. The future 

research will be consisting of a more in-depth analysis of the simulation 

parameters and measures of effectiveness.  
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8.3 Introduction 

Increasing traffic demands and congestion levels have become one of the most 

critical challenges faced by concerned authorities and governments all over the 

world. The rising motorization levels have further magnified the challenges. In 

order to achieve the goals of sustainability, various policy measures have to be 

devised. The transport planners and managers have to balance the traffic demand 

and supply in order to ensure smooth and efficient traffic operations. For this 

purpose, it is necessary to analyze existing traffic trends and network 

performance. Analytical modeling can help in analyzing the current traffic situation 

as well as projecting the future demands. The traffic analytical models can be 

generally categorized into 3 types, i.e. macroscopic, mesoscopic and microscopic 

models. The macroscopic modeling, though effective for large networks, doesn’t 

include details of traffic behavior. However, microsimulation models have the 

ability to model individual traffic behaviour in a stochastic environment. 

Subsequently, they require more computation time and effort to simulate the 

actual traffic conditions. The intention of managing bigger networks with 

comparatively less computational times has directed to the evolution of another 

approach of traffic simulation i.e. mesoscopic approach. Nevertheless, this 

approach is not much precise in the illustration of traffic behavior. However, 

microsimulation traffic modelling or simulated traffic models have now been 

mainly used as a technique to study traffic-engineering and transport-planning 

situations (Khan et al., 2017a). 

In recent years, a lot of efforts have been made for development of 

microsimulation models. Microsimulation has been used in different areas of 

research such as evaluating redistribution policy (Bourguignon & Spadaro, 2006), 

social welfare programs (Citro & Hanushek, 1994), evaluating public policies 

(Spadaro & Fundación BBV, 2007) and evaluating alternative health care 

strategies financing strategies (Hennessy et al., 2015). The major expansion is 

being observed in the use of microsimulation model for traffic engineering and 

planning practices (Dowling et al., 2004). 

In developing a microsimulation model, data requirements are similar in scope as 

data required in conventional mesoscopic or macroscopic models, however, it is 

more intensive in detail. Whereas, specification of local parameters controlling the 

microscopic lane changing, car-following and gap acceptance models is another 

major additional element in model development process (Halcrow & TRL, 2006). 

The required data for developing a microsimulation model includes link-node 

diagram, geometry data (no. of lanes, lane width, curvature etc.), traffic control 

data, traffic demand data, driver’s behavior data and simulation run control data. 

Over the years, several techniques have been employed for traffic data collection. 

The most commonly used methods for data collection include manual 
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observations, fixed camera-based data collection, probe vehicles and aerial 

photographs. 

With the passage of time, many technological advancements have been observed 

in the data collection process. In the recent years, Unmanned aerial vehicles 

(UAVs) have also been employed for traffic data collection. Traditionally, fixed-

wing UAVs were used for traffic data collection, but lately the trend has shifted 

towards the small multirotor UAVs. This is due to improved technology as well as 

wide commercial availability.  As compared to traditional data sources e.g. manual 

collections, fixed video cameras etc., UAVs are flexible and provide a wide 

coverage of the area of interest (Kanistras et al., 2013; Puri, 2005). Also, other 

aerial equipment such as satellites and piloted aircrafts have been proven to be 

inefficient due to several issues regarding quality, cost and safety.  

Since, the UAV acquired traffic data has not yet been employed for 

microsimulation modelling, this paper is focused on demonstrating the 

applicability of UAV based traffic data for the development and calibration of 

microsimulation models. For this purpose, two case studies have been developed 

based on the data acquired via UAVs for signalized intersection and roundabout. 

The UAV-based traffic data has been collected in the city of Sint-Truiden, Belgium. 

The base model for the 2 sites has been developed by using PTV VISSIM. Using 

the UAV-based data, the model is calibrated by selecting various parameters and 

measures of effectiveness (MOEs). Acceptable calibration targets have been 

defined for both roundabout and signalized intersection models. The results show 

that the microsimulation models can be calibrated through traffic data collected 

via small UAVs. The study implies that UAVs can become a useful source of traffic 

data for the development as well as calibration of the microsimulation models. 

Such studies can become a pioneer in establishing the practical applications of 

UAVs for microsimulation studies. The study can be valuable for transport 

planners, researchers and policy makers. 

This paper is organized as follows: first of all, an overview of the existing 

microsimulation studies and the employed data collection methodologies is given. 

This is followed by a description of the proposed methodology for the utilization 

of UAV-based traffic data for microsimulation modelling. The succeeding section 

presents a couple of case studies in order to demonstrate and validate the 

simulation modelling applications of UAV-based traffic data. The models for a 

roundabout and a signalized intersection are developed and calibrated. Finally, 

the paper concludes with a brief discussion regarding the whole process. This 

section also gives an outline for the proposed future research.  



8. UAV–Based Traffic Analysis: Development and Calibration of Microsimulation Models 

 

149 

 

8.4 Related Work 

As mentioned earlier, a detailed dataset is required for the development of 

microsimulation models. Over the years, different data collection methods have 

been used to develop and calibrate microsimulation models. Many studies have 

been conducted regarding data collection methods for traffic simulation. Vehicle 

trajectory data provide detail information that can be utilized to model car-

following, gap-acceptance and lane changing behaviors. According to Alexiadis 

(2006), video based data collection has become more prominent for 

transportation researchers in recent years. In 2001, efforts were made to collect 

vehicle trajectory data for microsimulation modelling in Columbus, Ohio. A team 

was designed which used mobile, pole-mounted camera system to collect data 

(Skabardonis, 2005). Similarly, Ardö et al. (2012) conducted a study employing 

automated video analysis to acquire vehicle trajectory data, as a cost effective 

traffic data solution. Mathew & Radhakrishnan (2010) used video data for 

calibration of model. Whereas, probe vehicle method has also been used for this 

purpose (Ben-Akiva et al., 2002; Fellendorf & Vortisch, 2001). In another study, 

Ben-Akiva et al. (2002) used detector data and aerial photographs for collecting 

data. 

Researches have endeavored to employ microscopic trajectory data in calibration 

process to enhance the credibility and reliability of traditional traffic simulation 

calibration process. For instance, Brockfeld et al. (2004) aligned several car 

following models utilizing information offered by ten test vehicles outfitted with 

Global Positioning System (GPS). Lu et al. (2016) used video-based method for 

calibration of car-following models in VISSIM. Similarly, Fellendorf & Vortisch 

(2001) performed microscopic calibration in VISSIM. A procedure was proposed 

to calibrate commercial motor vehicle distribution using CORSIM by Schultz & 

Rilett (2005). Likewise, Ben-Akiva et al. (2002) used MITSIMLab for calibration of 

microscopic model by using optimization techniques. Moreover, Sheu & Ritchie 

(2001) presented a stochastic traffic model, calibrated by using video data of two-

lane road. However, all the mentioned existing studies have employed either fixed 

camera videos or other traditional equipment to collect data for their simulation 

experiments. 

UAVs have been used for various purposes such as remote sensing and mapping 

(Everaerts, 2008), contemporary conflicts (Kreps & Kaag, 2012), geo-rectified 

mosaics (Turner et al., 2012), as well as monitoring soil erosion (d’Oleire-

Oltmanns et al., 2012). Several traffic related studies have also been conducted 

using unmanned aerial vehicles (Barmpounakis et al., 2016; Khan et al., 2017b, 

2018a, 2018b; Salvo et al., 2014b, 2014a). All these researchers  acquired traffic 

flow data by means of unmanned aerial vehicles. Moreover, (Khan et al., 2017a) 
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states that UAVs are considered to be most dynamic and multidimensional 

evolving technologies of modern era. The bird-eye view data enables the 

researchers to study correlation between flow, speed and density.  

8.5 Methodology 

The main focus of this paper is to demonstrate and validate the applications of 

UAV-based traffic data for microsimulation modelling and calibration. After 

detailed literature review, it was found that the UAV-based traffic data has not yet 

been employed for the development and calibration of microsimulation models. 

Therefore, there is a need to examine the feasibility of using traffic data obtained 

via UAVs for model development. For this purpose, a methodology has been 

proposed that streamlines the processes involved in utilizing the UAV-based traffic 

data for microsimulation modelling. Overall, the methodology is based on the 

general microsimulation modelling approach, however certain modifications are 

made to cater for the UAV data. Figure 8.1 illustrates the proposed methodology 

for the integration of UAV-based traffic data with microsimulation modelling. 

 

Figure 8.1 UAV-based microsimulation modelling and calibration framework 



8. UAV–Based Traffic Analysis: Development and Calibration of Microsimulation Models 

 

151 

 

Firstly, the traffic data for the study area is collected via an unmanned aerial 

vehicle (UAV). This data is used to extract traffic parameters and geometric 

information. The previously proposed UAV-based video processing and vehicle 

trajectory extraction framework (Khan et al., 2017b) is used for this purpose. The 

extracted traffic information is then as an input for base model development. 

Various features and attributes of the study area are added during this process. 

The base model is then calibrated in order to make it as close to reality as possible. 

For this purpose, various parameters are altered and checked against the defined 

criteria. If the selected measures of effectiveness fall within the calibration 

targets, the model is said to be calibrated and replicates the real-life traffic 

situation. The calibrated model can be utilized for various traffic planning and 

control related projects. The proposed methodology is validated with the help of 

case studies in the following sections. 

8.6 Case Study 

The main objective of this paper is to demonstrate the potential applications of 

small UAVs for microscopic traffic model development and calibration. In this 

regard, two case studies are presented to validate the proposed methodology for 

employing UAV-based traffic data. The data acquired via small UAV is utilized for 

base model development as well as for the calibration and validation of the 

developed model. The following sub-sections describe the whole experiment in 

detail.  

8.6.1 UAV-based Data Collection & Processing 

To obtain an experimental dataset for the validation of the proposed framework 

for microsimulation model development and calibration, a series of UAV flights 

were conducted in the city of Sint-Truiden (Belgium). Two sites were selected in 

order to collect traffic data via small UAVs. The first site consisted of an urban 

roundabout as shown in figure 8.2. The selected roundabout is situated in a busy 

urban commercial area, having a football stadium and rail-station in the vicinity. 

The roundabout consists of single-lane approaches from each side, whereas one 

leg also has a right turning lane just before the roundabout in order to minimize 

the traffic flowing into the roundabout. On the other hand, the second site 

comprised of a four-legged suburban signalized intersection. The selected 

intersection as shown in figure 8.2, is a linking junction between the Belgian 

national highways N80 (speed limit: 120 km/h) and N718 (speed limit: 90 km/h), 

with two lanes in either direction. The specified four-legged intersection primarily 

handles the traffic leading to and from the city of Hasselt into the center and 

suburbs of Sint-Truiden.  
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Figure 8.2 The data collection sites: UAV view of the roundabout (left-side); UAV view of 

the signalized intersection (right-side). 

A detailed flight planning process was carried out before the actual conduction of 

the flights. The UAV flights were conducted in order to capture the early-evening 

rush hour on a Friday afternoon. Importantly, the weather and wind conditions 

were perfect for the UAV flights i.e. mostly clear skies with gentle wind level 

(18km/hour, Beaufort scale 3). The Argus-One (from Argus-Vision) UAV, as shown 

in figure 8.3, was hovered i.e. maintaining a constant altitude with zero velocity, 

over the study area at 80m and 60m heights. The series of UAV flights resulted in 

a nearly 30-minute useful traffic video after trimming the take-off and landing 

maneuvers of the UAV.  

 

Figure 8.3 The Argus-one UAV: (left) take-off position, and (right) in-flight 

In order to extract various traffic parameters, the previously proposed UAV-based 

video processing and analysis framework was employed (Khan et al., 2017b). The 

collected UAV traffic data was processed and useful traffic information was 

obtained through the UAV videos. The extracted parameters were then used as 

an input for the development and calibration of microsimulation models for both 

case studies. It is also important to mention here that the analysis of UAV traffic 

videos was done on an Intel® Core™ i5-4210M CPU at 2.60 GHz, with 4-GB RAM.  
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8.6.2 Roundabout Model 

8.6.2.1 Base model development 

The base model development is the first and the foremost step for conducting a 

microsimulation study. For this purpose, a study area is defined for which the base 

model must be developed. The software used for base model development and 

this research is PTV VISSIM 8.0. To develop a base model, geometric data of the 

study area is required. The UAV-acquired imagery is useful for extracting the 

geometric data as well. This includes the number of lanes, pedestrian crossings, 

prominent permanent features etc. Using this information, the link-node diagram 

for the roundabout was developed as shown in figure 8.4. This is followed by 

vehicle inputs and routing procedure. In this step, vehicle volumes were assigned 

from each entry link. The observed volume data that was extracted via UAV traffic 

video processing and analysis framework (Khan et al., 2017b), was used as an 

input for the roundabout model.  

 

Figure 8.4 Base model for the studied roundabout (VISSIM) 

After the development of basic link-node diagram and assignment of traffic 

volumes, the next step is to make the model as close to reality as possible. For 

this purpose, priority rules and reduced speed areas were assigned to specific 

areas in and around the studied area. The priority rule helps in defining the vehicle 

crossing behavior, depending on minimum gap time and minimum headway. The 

default values for priority rules in VISSIM are; gap time = 3.0 sec and minimum 

headway = 5.0 m. Similarly, reduced speed areas (RSA) are used to replicate the 

actual conditions while approaching a junction or conflicting area. The speed of 

the vehicles are automatically reduced as per the defined desired speed (PTV 

VISSIM, 2011). The length of reduced speed areas used in this model was 5m, 

the desired speed distribution in these areas for cars was 30km/h and deceleration 

rate used was 2m/s² by default.  
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Data collection points are used to collect traffic data at any specified point. This 

can be helpful in estimating various traffic parameters e.g. speed, total queue, 

type of vehicle, acceleration, headway, vehicle length etc. However, these points 

are most important in roundabout as this feature helps in calculating the critical 

gap and follow-up headway for vehicles. Figure 8.5 below is showing the 

placement of data collection points on entry link and roundabout.  

 

Figure 8.5 Data collection points on roundabout base model 

In order to cater for the stochastic nature of microsimulation models, the 

developed base model has to be simulated for a number of runs. Therefore, it is 

critical to evaluate optimal number of simulations runs to get desired level of 

accuracy in the model. It is almost impossible to know about exact number of 

model runs in advance that are needed to get the desired value. Dowling et al. 

(2004) stated that an analyst can estimate the required number of simulations 

run to obtain valid result after performing few models runs. They have formulated 

an equation to compute the minimum required simulations run. 

𝐶𝐼1−𝛼 %   =  2 ∗  𝑡(1−𝛼 / 2),𝑁 −1  
𝑠

√𝑁
    (1) 

where: 

𝐶𝐼1−𝛼 %   = (1-alpha) % confidence interval for the true mean, where alpha equals 

the probability of the true mean not lying within the confidence interval  

𝑡(1−𝛼 / 2),𝑁 −1 = Student’s t-statistic for the probability of a two-sided error summing 

to alpha with N-1 degrees of freedom, where N equals the number of repetitions  

𝑠 = standard deviation of the model results 

N = number of iterations 

For this research, the above-mentioned equation was used to find out the optimal 

number of simulations run. For a 95% confidence interval, the optimal number of 
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runs was calculated to be 20. Therefore, the base model had to be simulated 20 

times for each setting, in order to achieve reliable outputs. 

8.6.2.2 Model Calibration & Validation 

Developing a good base model does not guarantee that the model will predict 

traffic performance correctly, therefore, calibration of working model is required. 

It is basically an adjustment of parameters used in model to replicate local driver’s 

behavior to improve the model. It is necessary because no single model can be 

accurate for all traffic conditions. As Dowling et al. (2004) mentioned “The 

objective of calibration is to improve the ability of the model to accurately 

reproduce local traffic conditions”. Every microsimulation software has its own set 

of parameters for calibrating the model to local conditions. 

After the base model was finalized, a number of simulation runs were conducted 

based on the following parameter settings: simulation period of 1800 sec (30 

minutes) at a resolution of 10-time steps per simulation second, keeping 

simulation speed at maximum. A warm-up time of 300 seconds (5 min) was 

included in each run to allow traffic to stabilize before collecting data between 300 

sec and 1800 sec (25 minutes). The input vehicle flow, assuming the peak hour, 

was converted from 5-min to 30-min data. In order to calibrate the developed 

base model, the values of 3 parameters were altered with 20 simulation runs on 

each setting, resulting in total 460 simulation runs for roundabout. 

In the existing literature, it was found that the capacity is an important and 

commonly used measure of effectiveness, particularly for roundabouts. The 

capacity of a roundabout gives an overview of the performance of the 

infrastructure. According to Highway Capacity Manual (Transportation Research 

Board, 2010), the capacity of a roundabout can be calculated as  

𝑞𝑒,𝑚𝑎𝑥 = 𝐴𝑒−𝐵𝑞𝑐       (2) 

 

where: 

𝑞𝑒,𝑚𝑎𝑥 = Capacity of critical lane (pcu/h) 

𝐴 =  
3600

𝑡𝑓
 

𝐵 =  
(0.5(𝑡𝑐 − 𝑡𝑓))

3600
 

𝑡𝑐 = Critical Gap 

𝑡𝑓 = Follow-up headway 
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𝑞𝑐 = 𝑣𝑐 = Conflicting flow (veh/h) 

As evident from equation(2), the capacity of a roundabout is dependent on 

conflicting flow, critical gap and follow-up headway. Conflicting flow is the number 

of vehicles circulating inside the roundabout at a particular time interval. Critical 

gap is defined as the minimum time between vehicles of major stream in which 

vehicle of minor stream can make a maneuver (Amin & Maurya, 2015). It can also 

be defined as minimum time in a circulating flow that allows intersection entry for 

one vehicle (Mahesh et al., 2016). However, in literature follow-up headway is 

defined as the time between the vehicles using the same major-street headway 

under the queuing on the roundabout entry (Macioszek, 2018). Brilon et al. (1999) 

highlighted that the estimation of critical gap is not an easy task as it cannot be 

measured directly. The only thing known is that the individual critical gap is larger 

than the rejected gap and shorter than the accepted gap.  

Although, there are several methods available for the estimation of critical gaps 

and follow-up headways, however, in this research, critical gaps were estimated 

by using Raff’s method. Raff explained that a critical gap is the time at the sum 

of cumulative number of accepted and rejected gaps (Amin & Maurya, 2015). To 

estimate the critical gap and follow-up headway, data collections points were 

marked as shown in figure in base model development section and timestamps 

difference between the points was used to calculate gaps. These calculated gaps 

were indexed chronologically. The characteristics of accepted gaps and rejected 

gaps were computed to find the estimates of critical gap. The critical gaps and 

follow-up headways were calculated for different values of various simulation 

parameters (minimum gap setting, deceleration rate and safety distance) and for 

each simulation run. The calculated values were compared with the observed 

values for critical gap, follow-up headway and conflicting flow. The observed 

values were 3.83 sec, 2.3 sec and 672 vehicles/hour respectively. The comparison 

showed that the parameter of minimum gap setting in priority rules was the best 

fit with the observed values at minimum gap of 4.5 sec. The simulated values of 

critical gap, follow-up headway and conflicting flow for this parameter setting were 

3.7 sec, 2.331 sec and 572 vehicles/h respectively. 

By putting these values in the above-mentioned equations, both the observed and 

simulated capacities were calculated as given in the table 8.1 below:  
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Table 8.1 Comparison of observed and simulated capacity 

 
Critical Gap 

(𝒕𝒄) 

Follow-up 

Headway (𝒕𝒇) 

Conflicting 

flow (𝒒𝒄) 

Capacity 

(𝒒𝒆,𝒎𝒂𝒙 =

𝑨𝒆−𝑩𝒒𝒄) 

Observed 3.83 2.3 672 1357 

Simulated 3.7 2.331 572 1385 

 

As evident from Table 8.1, the observed and simulated capacity of the roundabout 

are in close range. The mean absolute percentage error (MAPE) for the roundabout 

capacity was found to be 1.99%. This shows that the simulated model is close to 

reality. However, it is necessary to meet the calibration target for other measures 

of effectiveness as well as stated by (Dowling et al., 2004) that the calibration 

needs to be multi-faceted and iterative process. Though, the aim of calibration is 

to match the simulated outputs with observed values, there is a practical limit to 

the time and effort made to achieve close fit. There are several criteria and 

measures described in literature for calibration acceptance targets but for this 

research two targets were selected as calibration targets; difference between 

observed and simulated volume counts and GEH statistics. 

In achieving these targets, the simulated link volumes from various experiments 

with changed behavior parameters, were best-fitted with the observed link 

volumes. A comparison was made between observed and simulated volumes as 

shown in tables 8.2, 8.3 and 8.4. Maryland Department of Transportation State 

Highway Administration (MDOT SHWA, 2017) has published guidelines for VISSIM 

modelling and mentioned that the percentage difference between observed and 

simulated volume must not exceed 10% and GEH statistic must be <5. The GEH 

statistics was calculated as: 

𝐺𝐸𝐻 =  √
(𝐸−𝑉)2

(𝐸+𝑉)
2⁄
      (3) 

where: 

E = Estimated model volume 

V = Field count 

The following tables show the difference among observed and simulated volumes, 

and the calculated GEH statistics value for different parameter settings: 
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Table 8.2 Observed vs simulated volume having minimum gap settings of 3 sec 

Segment 

Volume Calibration (Min Gap 3 sec) 

Observed 

Volume 

(Vehicles) 

Simulated 

Volume 

(Vehicles) 

Differenc

e (%age) 

Differenc

e < 10%? 
GEH 

GEH 

< 5? 

Link 1 444 444.365 0.08 Yes 0.017 Yes 

Link 3 594 524.66 -11.67 No 2.931 Yes 

Link 7 432 434.2 0.51 Yes 0.105 Yes 

Link 9 270 258.785 -4.15 Yes 0.689 Yes 

Link 20 672 621.165 -7.56 Yes 1.999 Yes 

 

Table 8.3 Observed vs simulated volume having deceleration of 2.5m/sec² 

Segment 

Volume Calibration (Decel 2.5m/sec²) 

Observed 

Volume 

(Vehicles) 

Simulated 

Volume 

(Vehicles) 

Difference 

(%age) 

Difference 

< 10%? 
GEH GEH < 5? 

Link 1 444 444.22 0.05 Yes 0.010 Yes 

Link 3 594 529.09 -10.93 No 2.739 Yes 

Link 7 432 431.51 -0.11 Yes 0.023 Yes 

Link 9 270 259.69 -3.82 Yes 0.633 Yes 

Link 20 672 620.38 -7.68 Yes 2.030 Yes 
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Table 8.4 Observed vs simulated volume having additive and multiplicative safety distance 

value as 3 

Segment 

Volume Calibration (add 3 & multi 3) 

Observed 

Volume 

(Vehicles) 

Simulated 

Volume 

(Vehicles) 

Difference 

(%age) 

Difference 

< 10%? 
GEH GEH < 5? 

Link 1 444 444.09 0.02 Yes 0.004 Yes 

Link 3 594 524.56 -11.69 No 2.936 Yes 

Link 7 432 430.795 -0.28 Yes 0.058 Yes 

Link 9 270 254.27 -5.83 Yes 0.971 Yes 

Link 20 672 617.105 -8.17 Yes 2.162 Yes 

 

It is observed from above tables that GEH statistics for each link and volume is 

<5, which means one of the calibration targets achieved. However, the difference 

percentage of one link in each case is more than 10% but less than 15%. This is 

also an acceptable limit according to Wisconsin Department of Transport in which 

it is stated that the difference in observed and simulated volume of individual links 

must not exceed 15% (Jobanputra & Vanderschuren, 2012). Moreover, the graphs 

in figure 8.6 show the best-fit lines between the observed and simulated countsfor 

above mentioned tables. The R-squared values for all the cases is above 97% 

which indicates that the data does not have large variations.  
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Figure 8.6 Relationship between observed and simulated volumes 

8.6.3 Intersection Model 

8.6.3.1 Base model development 

Like roundabout, the base model of signalized intersection was finalized, and 

simulation parameters were set as discussed in previous section for simulation. 

For signalized intersection, the signal controllers were added in the base model. 

Figure 8.7 shows the base model for the studied signalized intersection. The signal 

timings obtained from the UAV-based traffic videos were used as an input to the 

model. Apart from this, queue counters and vehicle travel time detectors were 

also placed. The figure shows the base model for the studied intersection. A 

simulation period of 1800 sec (30 minutes) with a warm-up time of 300 seconds 

(5 min) was selected for the experimental simulations. The input vehicle flow, 

assuming the peak hour, was converted from 15-min to 30-min data as mentioned 

earlier. The number of optimal runs were determined at 95% confidence interval. 

As a result, 25 simulations were conducted for the signalized intersection model.  
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Figure 8.7 Base model for the studied signalized intersection (VISSIM) 

 

8.6.3.2 Model Calibration & Validation 

As discussed for the roundabout case, the main objective of model calibration is 

to achieve the best possible match of simulated values and field measurements 

of performance. As mentioned earlier in section 2, that there is no universal rule 

or any accepted procedure for model calibration and validation. However, the 

responsibility lies with modeler to implement such procedure that can provide 

appropriate level of confidence in achieving model results. The calibration goals 

for signalized intersection require to meet the following criteria for model 

estimates vs observed values: 

 Link volumes, speed and travel times must not exceed 10% difference 

with observed values 

 GEH statistics for link volumes must be less than 5 

 Mean absolute percentage error (MAPE) should be less than 5% 

The signalized intersection in this research is a 4-leg junction comprising two 

major roads (Link 5 & Link 10) and 2 minor roads (Link 1 & Link 3). Apparently, 

the huge amount of traffic flow was found on major roads. In contrast to this, very 

small amount flow was observed on minor roads. As mentioned earlier in this 

section that total 25 simulation runs were carried out. The simulated flow for all 

entry vehicles was calculated. Initially, the calibration showed 3 out of 4 links 

within the acceptable calibration goals except Link 5. It was observed through 

UAV-based traffic videos that Link 5 carried more heavy traffic as compared to 

other links. Therefore, a factor of 1.25 was assumed to cater the flow of heavy 

traffic. This resulted in achieving the desired calibration goals. Again, simulation 
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runs were performed to check the output. The following table 8.5 shows the 

results for the volume calibration of the signalized intersection: 

Table 8.5 Volume calibration (field count vs simulated count) 

Segment 

Volume Calibration 

Count 

Volume 

(Vehicles) 

Simulated 

Volume 

(Vehicles) 

Difference 

(%age) 

Difference < 

10%? 
GEH GEH < 5? 

Link 1 58 59.30 2.24 Yes 0.17 Yes 

Link 5 510 512.00 0.39 Yes 0.09 Yes 

Link 10 410 410.61 0.15 Yes 0.03 Yes 

Link 13 40 39.32 -1.70 Yes 0.11 Yes 

Total Flow 1018 1021.23 0.32 Yes 0.10 Yes 

 

It is evident from the above table that the difference percentage between 

observed and simulated volume is way less than 10% for each link which is an 

acceptable calibration target. Similarly, the GEH statistics also found to be less 

than 5 for each individual link, indicates that the volume calibration is achieved. 

Moreover, in the last row of table, total flow was calculated for both observed and 

simulated volumes and both difference percentage and GEH statistics values are 

less than 10% and 5 respectively. Figure 8.8 shows the linear relationship 

between both volumes and most important the value of R² is computed as 1, 

which means that data is best fitted in the regression. 

 

Figure 8.8 Observed vs simulated for volume calibration 
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As mentioned earlier, in this section that the signalized intersection is a 4-leg 

junction and it was observed that the maximum flow is at one leg (Link 5) of the 

junction. Therefore, for experimental purposes, only the critical approach is 

considered for travel time and speed calibration. For 25 simulations runs, the table 

8.6 shows the average observed and simulated travel time for vehicles travelling 

through Link 5. 

Table 8.6 Observed vs simulated travel time 

Segment 

Travel Time Calibration 

Observed 

Travel Time 

(sec) 

Simulated 

Travel Time 

(sec) 

Differenc

e < 10%? 

Difference 

< 10%? 

RMSE 

(sec) 

MAPE 

(%) 

Link 5 27.55 26.39 4.23 Yes 1.48 4.23 

 

The above table indicates the difference percentage between observed and 

simulated travel time, which is less than 10%. This is within the defined level of 

calibration targets. Moreover, root mean square error and mean absolute 

percentage error were calculated for travel time and these are also in acceptable 

limits for calibration. Figure 8.9 shows the box plot of observed and simulated 

travel times and it can be seen that the observed travel time falls in between 

mean value and upper limit value of simulated value.  

 

Figure 8.9 Box-plot of observed and simulated travel time 

 

Similarly, another measure of effectiveness i.e. speed was used for model 

calibration of signalized intersection. Again, the speed for the approach with the 

maximum volume was calibrated. The segment was divided into two sections; (i) 

approaching to signal (Link 5), and (ii) after the signal (Link 8). The individual 
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effect of both links was found to be more than 15%. However, by taking an 

average of both, as they combined to make a complete travel section of vehicles 

approaching and crossing the signal, the difference in percentage was found to be 

less than 10% and the mean absolute percentage error was also less than 5% as 

shown in table 8.7. Therefore, it was assumed that the acceptable calibration 

target was achieved. 

Table 8.7 Observed vs simulated speed 

Segment 

Speed Calibration 

Observed 

Speed 

(km/hour) 

Simulated 

Speed 

(km/hour) 

Difference 

(%age) 

Difference 

< 10%? 

MAPE 

(%) 

Link 5 24 19.70 -17.92 No 17.92 

Link 8 30 35.04 16.80 No 16.80 

Link 5 + Link 8 27 27.37 1.37 Yes 1.37 
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8.7 Discussion & Conclusion 

This paper aims to demonstrate and validate the applications of traffic data 

collected via small UAVs for the development and calibration of microsimulation 

models. The main objective was to examine the feasibility of microsimulation 

model development from UAV-based traffic data. For this purpose, two case 

studies comprising of a roundabout and a signalized intersection, have been 

presented based on the data collected via UAVs in Sint-Truiden, Belgium.  Based 

on the literature study, it was concluded that the microsimulation models require 

extensive input characteristics to develop and calibrate a model. Also, it was found 

that there is no universal rule for model calibration and the overall modelling 

process is dependent on project requirements and modeler’s judgement in order 

to achieve the desired level of confidence.  

Over the years, several data collection techniques have been employed for 

collecting inputs for microsimulation models. However, no existing research was 

found that employed UAV-based traffic data for microsimulation modelling. 

Therefore, the general microsimulation modelling and calibration methodology 

was adopted in order to incorporate the traffic information extracted from UAV 

collected data. The data required for the simulation was acquired by using 

unmanned aerial vehicle (UAV) for two different case studies; a roundabout and 

a signalized intersection in Belgium. The road geometry data and traffic 

parameters extracted from the UAV videos via previously proposed UAV video 

processing and analysis  framework (Khan et al., 2017b), were utilized for the 

microsimulation model development and calibration. To develop a base model of 

case studies, PTV VISSIM was selected as it provides a high level of detail with 

multiple features. An optimal number of simulation runs were conducted in order 

to achieve desired confidence level.  

The calibration process was based on various measures of effectiveness and 

validation parameters. In case of roundabout, capacity was used as a measure of 

effectiveness. In order of calculate capacity, critical gaps and follow-up headways 

were estimated for different behavior parameter settings.  The critical gaps were 

estimated based on accepted and rejected gaps by using the Raff’s method. The 

comparison of simulated and observed critical gaps helped in calibrating the 

model. The minimum gap setting of 4.5 seconds resulted in an error of 1.99% in 

the simulated and observed capacities. Apart from capacity, the entry volumes 

were also calibrated and validated. The calibration targets were defined and 

analysis was performed to check the percentage difference that must not exceed 

10% and GEH statistics must be less than 5. When the results were compared and 

GEH statistics was calculated, the model showed coherence among observed and 

simulated results. It was detected that difference between observed flow count 
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and simulated count was less than 10% and GEH statistics was also found to be 

less than 5. 

Similarly, in case of intersection, the vehicle flows, travel time and speed were 

taken as calibration goals to observe the difference between field counts and 

simulated counts. In this research, the  calibration criteria was set at maximum 

10% difference. However, in other researches or guidelines, difference within 15% 

and 20% are also considered to be good fit for the model. Like, previous case GEH 

statistics was also taken as calibration target. The simulation runs computed for 

this case was 23 but 25 simulation runs were performed. The base model needed 

only a few minor modifications in order to get the acceptable volume calibration 

results. Moreover, observed travel time and speed were also compared with 

simulated values. The root mean square error and mean absolute percentage error 

was calculated and was found to be in acceptable limits. 

After all the calibration and validation procedure, it can be concluded that traffic 

data obtained via UAVs can be used to develop and calibrate the microsimulation 

models. This also shows another application of the traffic parameters extracted 

via previously proposed UAV video processing and analysis framework. The UAVs 

provide data that contains useful information both in time and space domains. It 

can be confidently stated that in the coming year, UAVs will become a cheap and 

efficient alternative to traditional data collection equipment. The bird-eye view 

data provided by a single UAV can compete with the data obtained from a number 

of installed fixed cameras and sensors. Additionally, this research is the first step 

towards the usage of UAV data for microsimulation model development and 

calibration. It can serve as a reference for future studies.  

Even though model development and calibration were successfully performed, but 

still there are many more aspects that can be further investigated and improved. 

The current research was solely focused to examine the feasibility of UAV data for 

microsimulation model development and calibration. However, the future research 

will be consisting of a more in-depth analysis of the simulation parameters and 

measures of effectiveness. Moreover, various datasets will be used in future to 

further explore the practical applications of UAVs for microsimulation model 

development and calibration. These datasets may be from developing countries 

where modeling of intersection or roundabout can be more complex in nature. 
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Chapter 9 

9. Conclusions & Recommendations 
 

 

 

Motivated by the limitations of the traditional traffic data collection equipment and 

existing gaps or shortcomings in the applied use of small UAVs for traffic analysis, 

an unmanned aerial vehicle-based traffic analysis system has been developed in 

order to streamline the processes involved in the data collection, processing and 

analysis. One of the major contribution of this research is the presentation and 

description of 2 frameworks: (i) a universal guiding framework for the 

employment of UAVs for traffic-related studies , and (ii) a methodological 

framework for the processing of UAV videos. The proposed frameworks have been 

validated with the help of various case studies. The other contribution is the 

conduction of an in-depth traffic analysis on the collected experimental UAV data. 

Various types of infrastructural elements such as roundabout, signalized 

intersection, unsignalized T-intersection etc. have been analyzed. Additionally, the 

UAV-based traffic data is also utilized for the development and calibration of 

microsimulation models.  

As mentioned in the introduction (chapter 1), the study of traffic demands and 

travel behaviour is necessary in order to devise policies and measures for an 

efficient management of the network. In this regard, the traffic data plays a  

significant role for the development and calibration of various models and 

simulations. However, the collection of traffic data is not straight-forward and has 

been termed as a challenging task by experts. It is critical to maintain a balance 

between the costs and the quality of the data obtained. For this purpose, this 

research has aimed to demonstrate the applications of small rotary-winged UAVs 

for traffic data collection. UAVs provide a dynamic and bird-eye view of the traffic 

network, and can be utilized for example by traffic planners and management 

centers to determine the state of the traffic flow and manage congestion problems. 

This technology provides a cheap alternative to fixed cameras and sensors 

infrastructure as they are flexible and can be deployed anywhere (mobile). The 

mobility and flexibility are the key assets of this technology. 
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In order to demonstrate the traffic data collection and analysis applications of 

small UAVs, this research presented various frameworks and methodologies in 

order to effectively use the data acquired via small UAVs for traffic flow analysis. 

Firstly, chapter 2 presented a universal guiding framework for the conduction of 

UAV-based traffic study. The detailed framework covered all the aspects of using 

UAVs for traffic data collection and analytical purposes; ranging from ensuring a 

safe and efficient UAV flight execution to the analysis steps that follow the 

execution of a UAV flight. It provided a comprehensive guideline and gave an 

overview of the management in the context of the hardware and the software 

entities involved in the process. This was followed by another framework that was 

focused on efficient processing of the UAV traffic data. The objective was to ensure 

that the UAV data is converted into useful and reliable traffic information in a short 

period of time. A balance had to be maintained between the accuracy and 

processing time of the developed automated system. Chapter 3 described this 

methodological framework for automated UAV video processing. The main output 

of this framework was a series of trajectories of multiple vehicles at a particular 

road segment This chapter also gave a brief comparison of existing UAV studies 

based on either manual or semiautomatic processing techniques. The proposed 

framework was validated with the help of a field experiment conducted in the city 

of Sint-Truiden, Belgium. The data was processed and analyzed as per the 

modules of the framework, resulting in a series of vehicle trajectories. Chapter 4 

evaluated the accuracy and the overall performance of the developed vehicle 

detection and tracking system. 

In order to evaluate the accuracy of the developed system, various measures of 

performance were calculated for different UAV-based traffic videos. The outputs 

from the vehicle detection and tracking system were compared with the ground-

truth data. Performance indicators i.e. correctness, completeness and quality were 

estimated using the concept of true positives, false positives and false negatives. 

The results of the performance analysis conducted on 2 UAV-based experimental 

datasets indicated an overall accuracy level of more than 90%. Furthermore, the 

R-squared values of more than 98% also reflected the consistency between the 

automatic and ground-truth detections. It is also important to mention that the 

level of accuracy directly influences the processing times as well. This is due to 

the fact that less accurate detections and tracks need more post-processing and 

manual checks (Apeltauer et al., 2015). On the other hand, the processing or 

computation times are greatly dependent on the type of algorithms selected for 

the vehicle detection and tracking process. The semi-automatic techniques or such 

automated algorithms that require extensive pre-trained datasets, are not useful 

in cases where least processing times are highly desired. Therefore, it was critical 

to design a system that maintained a balance between the accuracy and the 

processing times. In this regard, the developed system performed well as the 
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algorithms were selected on the basis of minimal processing times and 

computational requirements. Additionally, the sensitivity of UAV flight altitude on 

the preciseness of the generated outputs was also tested. For this purpose, the 

experimental dataset with 2 different altitude levels was used to verify the 

significance of the UAV altitude. The results showed that the outputs are more 

consistent when the UAV flies at an altitude of 80 meters as compared to 60 

meters. The results also showed that the errors due to slight UAV movement are 

magnified at lower altitudes. Hence, indicating that the effects of errors (due to 

wind, vibration, shadows etc.) are sensitive to the UAV flight altitude. Moreover, 

the objects can be observed better from a greater height due to reduced 

obliqueness (better angle) and less occlusions . Overall, it can be concluded that 

the accuracy and preciseness of the object detection and tracking process is 

sensitive to the UAV flight altitude.  

After presenting the frameworks for UAV-based data collection and processing, 

the next task was to propose analytical methodologies focusing on the utilization 

of UAV-based traffic data for traffic flow analysis. For this purpose, the collected 

experimental datasets were used to conduct analysis for various types of 

infrastructural  elements i.e. signalized intersections, roundabouts, T-

intersections etc. The emphasis was also on the extraction of useful traffic 

information in a short period of time. Firstly, Chapter 5 explored the applications 

of data collected via small UAVs, for an in-depth traffic flow analysis at a signalized 

4-legged intersection. The analysis was basically a practical extension of the 

outputs generated from the UAV video processing framework. The generation of 

simplified trajectories, shockwaves, and fundamental diagrams help in analyzing 

the interrupted-flow conditions at a signalized four-legged intersection using UAV-

acquired data. The estimated parameters were found to be highly accurate after 

comparing them with the ground truth values. Similarly, chapter 6 focused on 

authenticating the application of small multirotor UAVs for traffic data collection 

and subsequent analysis of traffic streams at urban roundabouts. This chapter 

presented an analytical methodology to evaluate the performance of roundabouts 

by extracting various parameters and performance indicators. The performance 

evaluation methodology was based on: (i) determining traffic volume via OD 

matrices for each leg, and (ii) analyzing drivers’ behavior via gap-acceptance 

analysis. The study depicted the overall applicability of the UAV-based traffic 

analysis system. Furthermore, Chapter 7 further extended the traffic data 

collection applications of UAVs to mixed traffic situations in developing countries. 

In order to demonstrate the traffic analysis process, a case study based on data 

collected in Pakistan, was presented in this chapter. The extraction of various 

traffic parameters and measures of performance helped in highlighting the 

usefulness of UAVs for traffic analysis. The developing countries generally lack 

even in the basic infrastructure required for traffic monitoring and data collection. 
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In this scenario, UAVs can become a useful apparatus for traffic data collection in 

such regions. The results of the analysis at two study locations reflected the 

overall driving attitude and lack of implementation of traffic rules in developing 

countries, resulting in high congestion levels and serious safety concerns.  

Apart from traffic flow analysis, the UAV-based traffic data was also used to 

demonstrate the applications for microsimulation modelling. Chapter 8 presented 

a methodology to utilize the UAV-based traffic data for the development as well 

as for the calibration of microsimulation models. The main objective was to 

examine the feasibility of microsimulation model development from UAV-based 

traffic data. For this purpose, two case studies comprising of a roundabout and a 

signalized intersection, were presented based on the data collected via UAVs in 

Sint-Truiden, Belgium. The base models were developed using PTV VISSIM. The 

road geometry data and traffic parameters extracted from the UAV videos via 

previously proposed UAV video processing and analysis framework (Khan et al., 

2017b), were utilized for the microsimulation model development and calibration. 

The calibration process was based on various measures of effectiveness and 

validation parameters e.g. link volume, capacity, critical gaps etc. Acceptable 

calibration targets were defined for both roundabout and signalized intersection 

models. The results showed that the microsimulation models can be calibrated 

through traffic data collected via small UAVs. The study implied that UAVs can 

become a useful source of traffic data for the development and calibration of 

microsimulation models. 

Although, UAVs have been demonstrated to be highly effective in traffic 

applications, still there are some limitations attached with the current technology. 

This includes factors ranging from hardware and software to legal aspects, such 

as the limited flight time of small UAVs along with some other concerns regarding 

the safety of flight operations. The flight time of UAVs depends on internal, as well 

as external, factors. Internal factors include the size, payload, battery type, etc., 

whereas the external factors consist of weather conditions, wind conditions, status 

of GPS satellites, etc. Apart from limited flight times, the legal considerations, 

including the safety and privacy concerns, also limit the use of UAVs for practical 

applications. In particular, the current Belgian law restricts the small UAVs to fly 

directly above vehicles and population. Therefore, the UAV has to be hovered at 

an oblique angle to the traffic, thereby compromising the accuracy of extracted 

trajectories, as well as complicating the overall video processing. Nevertheless, 

all these concerns will eventually fade away with the development of more reliable 

and robust technology in the coming years. Additionally, some limitations also 

exist for the automated processing of the UAV videos. Various types of errors can 

occur in vehicle detection and tracking due to different reasons such as partial 

occlusions, shadows, objects in close proximity, false detections, etc. Therefore, 
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the resulting trajectories may contain some noise and errors which have to be 

dealt-with accordingly.  

This research is one of the pioneer studies that have employed the UAV-based 

traffic data for detailed traffic analysis. Although, various frameworks and several 

case studies to demonstrate the applications of UAVs, have been presented in this 

research work, still there are many aspects that can be improved and upgraded 

in the future research. Future research shall mainly focus on further optimization 

of the processing and analysis procedures by following the rapidly evolving field 

of video processing and employing improved state-of-the-art tools and 

technology. The hardware and software improvements might make the system 

more robust in all types of extreme conditions as well. The existing limitations of 

UAVs are bound to shrink in the coming years, hence increasing the overall 

efficiency of the data processing and analysis system. Additionally, the future 

research might lead to the real-time processing and analysis of the data 

transmitted directly by the UAV. This aspect has been kept in consideration in the 

current research work as well by developing the system capable of providing 

results in a short period of time. Apart from the technological aspects, future 

research shall also focus on studying the acceptability of general public and 

transportation professionals towards the use of UAVs. The results of such studies 

can help in spreading awareness as well as serving as a guideline for governments 

and policy makers. 

As mentioned before, the UAV technology is multi-dimensional and has vast 

applications. This research may serve as a benchmark for a wide range of future 

research projects involving the use of UAVs, particularly for traffic and 

transportation applications. However, the proposed frameworks can be improved 

in future research by incorporating rapidly improving tools and technologies. Road 

user classification can be termed as the immediate step that should be 

incorporated in the future extension. Additionally, machine learning algorithms 

can also be tested for their efficiency. The traffic analysis applications presented 

in this research can be extended by conducting more detailed analyses and by 

focusing on more complex traffic situations. In addition, the collection of larger 

datasets will also be necessary in order to increase the acceptability of UAVs for 

actual traffic studies. Prospects of utilizing a swarm of UAVs can also be explored 

in future for the purpose of collecting uninterrupted data for longer durations and 

also for covering larger areas simultaneously. Apart from the specific traffic flow 

analysis extensions, the existing research can be extended in various different 

directions. Some of the potential future projects that can be linked to this research 

are: 
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1. The development of UAV-based parking management system: The 

developed UAV video processing and analysis framework may be modified 

in future for parking space management and analysis. UAVs have the 

capability to be used to monitor the state of parking infrastructure. The 

UAV’s bird-eye view data can be accordingly used for analysis and 

modelling; thereby assisting in efficient operations and management.  

2. Traffic safety studies based on data acquired via UAVs: The UAV-based 

traffic data may be used to analyze traffic safety situation at a particular 

location. Specifically. the black spots in the network can be identified and 

studied in more detail using the UAV data. The frameworks proposed in 

this research may be extended in order extract safety-related parameters. 

The wide field-of-view provided by UAV videos provides another aspect to 

such studies by providing rich data that can be used to identify the source 

of conflicts. Apart from this, the UAVs may be used to study safety issues 

faced by pedestrians as well as cyclists. UAVs can play an important role 

by making the networks safer for non-motorized vehicles. 

3. UAV-based measurement of environmental pollutants: The UAV 

technology may be used in future to identify areas with higher pollution 

emission, hence various measures can be introduced to promote the use 

of sustainable transportation modes. The universal guiding framework for 

conducting UAV-based studies may prove to be helpful for these 

applications. 

4. Real-time traffic updates:  The UAVs may be used to transmit real-time 

status of the network directly to vehicles. This can provide a new 

dimension to the existing Advanced Traveler Information Systems, 

thereby helping in smooth network operations. With a drastic increase in 

the use of commercial UAVs expected in the coming years, this application 

has the potential to become a reality. The traffic management centers can 

make use of the collected data for traffic flow and safety analysis. In this 

scenario, the proposed frameworks may prove to be highly useful.    

5. Special Event/Incident flow management: This technology can also 

become useful in monitoring and analyzing the traffic situation in the 

scenario of special events or an unexpected incident. The future research 

can focus on real-time data transmission from UAV to Traffic management 

center, which can then utilize the data accordingly. 
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