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Abstract10

In previous work [13] we introduced a new box dimension method for11

computation of the number of limit cycles in planar slow-fast systems,12

Hausdorff close to balanced canard cycles with one breaking mechanism13

(the Hopf breaking mechanism or the jump breaking mechanism). This14

geometric approach consists of a simple iteration method for finding one15

orbit of the so-called slow relation function and of the calculation of the16

box dimension of that orbit. Then we read the cyclicity of the balanced17

canard cycles from the box dimension. The purpose of the present paper18

is twofold. First, we generalize the box dimension method to canard cycles19

with two breaking mechanisms. Second, we apply the method from [13]20

and our generalized method to a number of interesting examples of canard21

cycles with one breaking mechanism and with two breaking mechanisms22

respectively.23

1 Introduction24

The (generic) Hopf breaking mechanism [7] is considered to be one of the most25

important mechanisms for generating limit cycles, Hausdorff close to so called26

canard cycles, in planar slow-fast systems (see also [1, 6, 9, 15]). A typical27

example of such generic Hopf breaking mechanisms is the following smooth28

slow-fast Liénard equation:29 {
ẋ = y − 1

2x
2

ẏ = ε
(
b0 − x+ x2H(x, µ)

)
,

(1)

where ε ≥ 0 is the singular perturbation parameter, b0 is the breaking parameter,30

µ ∈ Rm, for some m ≥ 0, and H is a smooth function (i.e., C∞-smooth). We31

denote the (ε, b0, µ)-family (1) by Lε,b0,µ. The fast subsystem L0,b0,µ of Lε,b0,µ32
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consists of fast regular horizontal orbits and a curve of singularities {y = 1
2x

2},1

called the critical curve. See Fig. 1. All singularities of the critical curve2

are normally hyperbolic, attracting when x > 0 and repelling when x < 0,3

except the origin where we deal with a nilpotent contact point. The dynamics4

of Lε,b0,µ, with ε > 0 and ε ∼ 0, near the critical curve, away from the contact5

point, is given by the well known slow dynamics x′ = −1 + xH(x, µ) (see6

e.g. [13]). Since the slow dynamics points from the attracting part to the7

repelling part of the critical curve near x = 0 (note that x′ < 0 for x ∼ 0), the8

following two questions arise naturally: Under what conditions can Lε,b0,µ have9

limit cycles close in the Hausdorff sense to the limit periodic set Γy0 , y0 > 0,10

consisting of the fast horizontal orbit of L0,b0,µ through the point (x, y) = (0, y0)11

and the part of the critical curve between the points (x, y) = (−
√

2y0, y0) and12

(x, y) = (
√

2y0, y0)? How do we obtain a sharp upper bound for the number of13

limit cycles which can bifurcate from Γy0 , for (ε, b0, µ) ∼ (0, 0, µ0)? The limit14

periodic set Γy0 is often called a slow-fast cycle because it contains (fast) orbits15

of the fast subsystem and parts of the critical curve. Moreover, we can say that16

the slow-fast cycle Γy0 is canard, since it contains both attracting and repelling17

parts of the critical curve. We call limit cycles of Lε,b0,µ, Hausdorff close to18

slow-fast cycles, relaxation oscillations. See e.g. [10, 15].19

Figure 1: The fast subsystem L0,b0,µ.

The above questions have been answered in [2, 7], in the case of regular slow20

dynamics, and in [3], in the presence of the slow dynamics with singularities21

(located away from the contact point). Let us focus on the regular slow dy-22

namics (i.e., −1 + xH(x, µ0) < 0 for all x ∈ [−
√

2y0,
√

2y0]). Following [2, 7],23

a bound on the number of relaxation oscillations, Hausdorff close to Γy0 , can24

be obtained by studying zeros of the slow divergence integral along the critical25

curve [−
√

2y,
√

2y]:26

I(y, µ) :=

∫ √2y

−
√

2y

ρdρ

−1 + ρH(ρ, µ)
, (y, µ) ∼ (y0, µ0). (2)

(Note that the divergence of L0,b0,µ along the critical curve {y = 1
2x

2} is equal27

to −x.) The canard cycle Γy0 can generate at most (1+ the multiplicity of zero28

of I(y, µ0) at y = y0) limit cycles for (ε, b0, µ) ∼ (0, 0, µ0).29

A recently introduced method, called box dimension method (see [13]), pro-30

vides a new tool for studying the cyclicity of Γy0 near µ = µ0 in the family31
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Lε,b0,µ, without computing directly the slow divergence integral I. The box di-1

mension method is based on the fractal analysis [11, 17] of the so called slow2

relation function and consists essentially of two steps (see Theorem 2 of [13]):3

1. Choose any real number y1, with y1 ∼ y0 and y1 6= y0, and generate the4

orbit O := {y1, y2, y3, . . . } of y1 by using the following recursive formula:5 ∫ √2yn

−
√

2yn+1

ρdρ

−1 + ρH(ρ, µ0)
= 0, n ≥ 1.

We suppose that yn → y0 (under this assumption Γy0 is a balanced canard6

cycle at level µ = µ0, i.e. I(y0, µ0) = 0). For more details about the7

convergence of (yn)n≥1 see [13].8

2. Compute the box dimension dimB O ∈ {0, 1
2 ,

2
3 ,

3
4 , . . . } ∪ {1} of the orbit9

O. If dimB O < 1, then the cyclicity of Γy0 near µ = µ0 is bounded by10

2−dimB O
1−dimB O . Roughly speaking, the box dimension measures the density of11

the orbit O near y = y0; the bigger the box dimension of the orbit O,12

the more relaxation oscillations can be created near Γy0 , for (ε, b0, µ) ∼13

(0, 0, µ0). For a precise definition of the box dimension see Section 2.14

The reason for using the box dimension method is twofold. First, the method can15

be used when it is difficult to compute the slow divergence integral. We point out16

that the box dimension method has been developed in a more general framework17

of [13] (hence not only in the case of the Liénard system (1)), and therefore we18

can expect the slow divergence integral to be difficult from a computational19

point of view. Furthermore, the box dimension of the orbit O is independent20

of the choice of the initial point y1. This is a simple consequence of (7) in21

Theorem 1 because O represents the orbit of y1 generated by the (smooth) slow22

relation function that plays the role of the smooth function g in the statement of23

Theorem 1. (y0 is a fixed point of the slow relation function; for more details we24

refer to [13].) Thus, it suffices to generate one orbit O and to compute dimB O.25

In Section 5, we apply the box dimension method to a number of polynomial26

Liénard equations of form (1) and we can easily obtain a sharp upper bound27

for the number of relaxation oscillations, Hausdorff close to Γy0 , by computing28

numerically the box dimension dimB O in Mathematica. To compute the box29

dimension, we use Tricot method [18] explained in the proof of Theorem 1.30

We point out that the notion of Hausdorff dimension, closely related to the31

notion of box dimension, is not suitable for the study of canard cycles due to32

its countable stability property (the Hausdorff dimension of O is trivial). See33

e.g. [12].34

The principal purpose of the present paper is to generalize the box dimension35

method to canard cycles with two breaking parameters, studied in [10, 16], and36

to apply it to a number of polynomial Liénard (and non-Liénard) equations. See37

Fig. 2. For the sake of readability we have chosen to present the method in a38

special framework of smooth planar slow-fast systems of the following (Liénard)39

form:40

Xε,a0,b0,µ :

{
ẋ = y − F (x, a0, µ)
ẏ = εG(x, b0, µ),

(3)
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where F andG are smooth, ε ≥ 0 is a singular perturbation parameter, (a0, b0) ∼1

(0, 0) are two breaking parameters and µ is kept in a compact subset of Rm,2

with m ≥ 0. (When m = 0, we don’t have the parameter µ.) A model similar3

to (3) has been used in [10] (with m = 0) and in [16] (with m ≥ 1). Since the4

results obtained in [10, 16] are valid for a larger class of planar slow-fast sys-5

tems, the fractal analysis [11, 17] can be applied not only to the Liénard model6

(3) but also to a broader class of planar slow-fast systems with two breaking7

parameters.8
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Figure 2: Canard cycles with two breaking parameters, at level ε = 0. (a)
One jump breaking mechanism, with two jump points C1

1 and C2
1 , and one Hopf

breaking mechanism with a turning point C2. (b) Two Hopf mechanisms with
turning points C1 and C2.

Let µ0 ∈ Rm be fixed. Following [10, 16], if we want to observe limit cycles9

of Xε,a0,b0,µ ((ε, a0, b0, µ) ∼ (0, 0, 0, µ0)), in the Hausdorff sense close to canard10

cycles with two breaking mechanisms, the smooth functions F and G should11

meet the following conditions.12

1. The functions F and G are well defined for (a0, b0, µ) ∼ (0, 0, µ0) and for13

x ∈ [−x̃, x̃], with x̃ > 0.14

2. (Jump mechanism) The function F (x, a0, µ), µ ∼ µ0, has two maxima of15

Morse type at x = x1 = x1(a0, µ) and x = x2 = x2(a0, µ) (−x̃ < x1 < 0 <16

x2 < x̃) such that F (x1(0, µ), 0, µ)− F (x2(0, µ), 0, µ) = 0, for all µ ∼ µ0.17

See Fig 2(a). We suppose that the point Ci1 = (xi(0, µ0), F (xi(0, µ0), 0, µ0))18

is a jump point for i = 1, 2 (i.e. G(xi(0, µ0), 0, µ0) 6= 0 for i = 1, 2). Fur-19

thermore, we suppose that the parameter a0 is a breaking parameter for20

the jump mechanism (C1
1 , C2

1) (i.e. ∂
∂a0

(F (x1, a0, µ)−F (x2, a0, µ)) 6= 0 for21

a0 = 0). This means that the connection between C1
1 and C2

1 becomes22

broken in a regular way as we vary a0 ∼ 0.23

3. (Hopf mechanism) We suppose that F (0, a0, µ) = 0 and that F (x, 0, µ)24

has a minimum of Morse type at x = 0. Moreover, the point C2 = (0, 0)25

is a (generic) turning point (i.e. G(x, 0, µ) has a simple zero at x = 0 for26

each µ ∼ µ0) and we assume that b0 is a breaking parameter for the Hopf27

mechanism (i.e. ∂G
∂b0

(0, 0, µ) 6= 0).28

4. (Regular slow dynamics) The critical curve {y = F (x, a0, µ)} of X0,a0,b0,µ29

is hyperbolically attracting when x < x1 or x ∈]0, x2[ (i.e. ∂F
∂x (x, 0, µ0) >30

4



0, for x ∈ [−x̃, x1(0, µ0)[∪]0, x2(0, µ0)[) and hyperbolically repelling if x ∈1

]x1, 0[ or x > x2 (i.e. ∂F
∂x (x, 0, µ0) < 0, for all x ∈]x1(0, µ0), 0[∪]x2(0, µ0), x̃]).2

Now, we can define the slow dynamics of Xε,a0,b0,µ along the critical curve,3

away from the contact points C1,2
1 and C2:4

x′ =
G(x, 0, µ)
∂F
∂x (x, 0, µ)

.

We suppose that the slow dynamics is regular (i.e. G(x, 0, µ) < 0 for x > 05

and G(x, 0, µ) > 0 for x < 0).6

A typical example of such a slow-fast system Xε,a0,b0,µ is {ẋ = y− (a0x+ 1
2x

2−7

1
4x

4), ẏ = ε(b0 − x + O(x2))}, for a suitably chosen function O(x2). For more8

details see [10, 16] and Section 5.9

Under the above assumptions, we can detect a canard cycle in Xε,a0,b0,µ, at10

level (ε, a0, b0, µ) = (0, 0, 0, µ0). See Fig 2(a). First, we assume that vertical11

section S (resp. T ) is parametrized by the y-coordinate denoted by z (resp. w).12

The canard cycle Γz0,w0
consists of: (a) the fast orbit that cuts S at level y = z013

(the α-limit set (resp. the ω-limit set) of that orbit is denoted by (xα1 , z0) (resp.14

(xω1 , z0))); (b) the attracting part of the critical curve between (xω1 , z0) and the15

jump point C1
1 ; (c) the fast orbit connecting C1

1 and C2
1 ; (d) the repelling part of16

the critical curve between C2
1 and the α-limit set of the fast orbit cutting T at17

level y = w0, denoted by (xα2 , w0); (e) the fast orbit at level y = w0, defined in18

(d); (f) the attracting part of the critical curve between the ω-limit set (xω2 , w0)19

of the fast orbit from (e) and the turning point C2; (g) and the repelling part of20

the critical curve between C2 and (xα1 , z0).21

To each part of the critical curve contained in Γz0,w0
we attach a slow diver-22

gence integral defined near (z, w, µ) = (z0, w0, µ0) (see Fig 2(a)):23  I1(z, µ) := −
∫ x1(0,µ)

xω1 (z,µ)

( ∂F∂x (x,0,µ))2

G(x,0,µ) dx, I2(w, µ) := −
∫ x2(0,µ)

xα2 (w,µ)

( ∂F∂x (x,0,µ))2

G(x,0,µ) dx

I3(z, µ) := −
∫ 0

xα1 (z,µ)

( ∂F∂x (x,0,µ))2

G(x,0,µ) dx, I4(w, µ) := −
∫ 0

xω2 (w,µ)

( ∂F∂x (x,0,µ))2

G(x,0,µ) dx

(4)
Observe that Assumption 4 implies that Ii < 0, i = 1, 2, 3, 4, and24

∂I1
∂z

,
∂I2
∂w

> 0,
∂I3
∂z

,
∂I4
∂w

< 0. (5)

25

One crucial assumption in [13] is that the canard cycle Γy0 in (1) is balanced26

along one breaking mechanism. In the present paper, we assume that the canard27

cycle Γz0,w0
is balanced along two breaking mechanisms, at level µ = µ0 (i.e.28

I1(z0, µ0)−I2(w0, µ0) = 0 and I3(z0, µ0)−I4(w0, µ0) = 0). A simple consequence29

of (5) is that there exist unique smooth functions S1(z, µ) and S2(z, µ) such30

that w0 = S1(z0, µ0) = S2(z0, µ0), I1(z, µ) = I2(S1(z, µ), µ) and I3(z, µ) =31

I4(S2(z, µ), µ) for all (z, µ) ∼ (z0, µ0). We call S1 and S2 slow relation functions32

(see e.g. [7]).33

The main goal of our paper is to prove the following box-dimension method34

for finding out how many limit cycles of Xε,a0,b0,µ can be born for (ε, a0, b0, µ) ∼35

(0, 0, 0, µ0), Hausdorff close to the balanced canard cycle Γz0,w0
(see Theorem36

2).37
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1. Take any real number z1, with z1 ∼ z0 and z1 > z0, and generate the orbit1

Õ := {z1, z2, z3, . . . } of z1 by using the following recursive formula:2

zn+1 = zn − (w2
n − w1

n), n ≥ 1,

where w1
n ∼ w0 and w2

n ∼ w0 are unique numbers with the property3

I1(zn, µ0) = I2(w1
n, µ0) and I3(zn, µ0) = I4(w2

n, µ0). In other words, one4

has win = Si(zn, µ0) for i = 1, 2.5

2. Compute the box dimension dimB Õ ∈ {0, 1
2 ,

2
3 ,

3
4 , . . . }∪{1}. If dimB Õ <6

1, then Γz0,w0 can produce at most 3−2 dimB Õ
1−dimB Õ

limit cycles, for (ε, a0, b0, µ) ∼7

(0, 0, 0, µ0) (we break both mechanisms (a0, b0)).8

This algorithm works under the assumption that the function z → S2(z, µ0)−9

S1(z, µ0) fulfils the following conditions of Theorem 1 on [z0, z0 + η[, with η ∼ 010

and η > 0: S2 − S1, with µ = µ0, is a smooth function on [z0, z0 + η[,11

positive and nondecreasing on ]z0, z0 + η[, S2(z0, µ0) − S1(z0, µ0) = 0 and12

S2(z, µ0) − S1(z, µ0) < z − z0, for each z ∈]z0, z0 + η[. Under this assump-13

tion, the sequence (zn)n≥1 (resp. (zn − zn+1)n≥1) tends monotonically to z014

(resp. 0) and therefore we can use the Tricot method to compute dimB Õ (see15

the proof of Theorem 1). Note that Õ is the orbit of z1 ∈]z0, z0 + η[ by the16

function id− (S2 − S1), for µ = µ0.17

Let k ≥ 1 be the multiplicity of z0 of the function S2−S1, with µ = µ0. We18

point out that the above assumption is not restrictive, since either the function19

S2 − S1 or the function S1 − S2 fulfils the conditions of Theorem 1, at least20

when 1 < k < ∞. When k = 1, the derivative of S2 − S1 is nonzero, for21

(z, µ) = (z0, µ0):22

∂(S2 − S1)

∂z
(z0, µ0) =

∂I2
∂w (w0, µ0)∂I3∂z (z0, µ0)− ∂I4

∂w (w0, µ0)∂I1∂z (z0, µ0)
∂I2
∂w (w0, µ0)∂I4∂w (w0, µ0)

. (6)

In this case, we call Γz0,w0
a generic balanced canard cycle (see e.g. [10, 7]).23

When (6) is between −1 and 1, the function S2 − S1 (or S1 − S2) fulfils the24

conditions of Theorem 1. If k =∞, then dimB Õ = 1 (see Theorem 1).25

Like in [13], the box dimension dimB Õ is independent of the initial point26

z1. Thus, if we want to find the cyclicity of Γz0,w0
near µ = µ0, it suffices to27

compute the box dimension of one orbit that we generate by using the equations28

{I1(z, µ0) = I2(w, µ0)} and {I3(z, µ0) = I4(w, µ0)}.29

In Section 2 we define the box dimension and recall the fractal analysis30

[11, 17] in one-dimensional ambient space. In Section 3 we state our main results.31

The cyclicity results for Γz0,w0
are obtained in terms of the box dimension and32

they depend on how many breaking parameter mechanisms we break. We prove33

our main results in Section 4. In Section 5 we apply our box dimension methods34

to (balanced) canard cycles with one or two breaking parameters. We find the35

box dimension of the canard cycles using Mathematica.36

2 Minkowski content and box dimension of bounded37

sets38

First we recall the notions of Minkowski content and box dimension of a bounded39

set in Rn. For more details, we refer the interested reader to [12, 14, 18].40
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We denote by Uδ the δ-neighborhood of a bounded set U ⊂ Rn (Uδ = {x ∈1

Rn | d(x, U) ≤ δ}). Let |Uδ| be the Lebesgue measure of Uδ. The density of2

accumulation of the set U in Rn is closely related to the rate at which |Uδ|3

decreases when δ → 0, and it is typically measured by the box dimension and4

the Minkowski content of U . The lower s-dimensional Minkowski content of U5

(resp. the upper s-dimensional Minkowski content of U), 0 ≤ s ≤ n, is defined6

by7

Ms
∗(U) = lim inf

δ→0

|Uδ|
δn−s

(
resp. M∗s(U) = lim sup

δ→0

|Uδ|
δn−s

)
.

The lower box dimension of U (resp. the upper box dimension of U) is now8

defined as follows:9

dimBU = inf{s ≥ 0 | Ms
∗(U) = 0}

(
resp. dimBU = inf{s ≥ 0 | M∗s(U) = 0}

)
.

If dimBU = dimBU , then we denote it by dimB U . We call dimB U the box10

dimension of U . We refer the reader to [12] for properties of Minkowski content11

and box dimension. In the rest of this section we focus on one-dimensional12

ambient space (n = 1) and recall an interesting result of [11, 17] establishing the13

bijective correspondence between the multiplicity of an isolated fixed point of a14

smooth function and the box dimension of any orbit of the function accumulating15

at the fixed point. The box dimension of the orbits near a hyperbolic fixed point16

is equal to 0 and the box dimension of the orbits near nonhyperbolic fixed point17

is positive (see Theorem 1).18

Suppose that f is a smooth nondecreasing function on [0, η[, with η ∼ 0 and19

η > 0, f(0) = 0 and 0 < f(x) < x, for each x ∈]0, η[. We define20

g(x) := x− f(x)

and Ogx0
:= {xn = gn(x0) | n ∈ N}, where x0 ∈]0, η[. Ogx0

represents the orbit of21

x0 by g and it tends monotonically to zero, the fixed point of g. Since the box22

dimension dimB Ogx0
is independent of the initial point x0 (see [11] or Theorem23

1), we can define the box dimension of g: dimB g := dimB Ogx0
, for any x0 ∈]0, η[.24

25

The multiplicity of the fixed point 0 of the smooth function g is equal to k26

if x = 0 is a zero of multiplicity k of f , i.e. f(0) = · · · = f (k−1)(0) = 0 and27

f (k)(0) 6= 0. We write mfix
0 (g) = k. Furthermore, the multiplicity of the fixed28

point 0 of g is ∞ if f (k)(0) = 0, for each k ∈ N.29

Suppose that f1(x) and f2(x) are two positive functions defined for x > 030

and x ∼ 0. Then we write f1(x) ' f2(x) as x→ 0 if Af2(x) ≤ f1(x) ≤ Bf2(x),31

where A and B are two positive constants, x > 0 and x ∼ 0.32

Theorem 1 ([11, 17]). Let f be a smooth function on [0, η[, positive and non-33

decreasing on ]0, η[ and f(0) = 0. Put U = Ogx0
, with g = id−f and x0 ∈ [0, η[.34

If 1 < mfix
0 (g) <∞ (i.e. g has a nonhyperbolic fixed point at 0), then35

|Uδ| ' δ
1

m
fix
0 (g) , as δ → 0.

7



If mfix
0 (g) = 1 and f(x) < x on ]0, η[ (i.e. g has a hyperbolic fixed point at1

0), then2

|Uδ| '

{
δ(− log δ), f ′(0) < 1(the “standard” hyperbolic case),

δ log(− log δ), f ′(0) = 1(the “degenerate” hyperbolic case),
as δ → 0.

For 1 ≤ mfix
0 (g) <∞, a bijective correspondence holds3

mfix
0 (g) =

1

1− dimB g
. (7)

If mfix
0 (g) =∞, then dimB g = 1.4

Proof. The proof of Theorem 1 can be found in [11] or [17]. The proof has been5

given in [13] in two special cases: 1. f(x) = x − x2 (the hyperbolic case), 2.6

f(x) = x2 (the nonhyperbolic case). For the sake of completeness we repeat it7

here.8

In both cases, for every δ ∼ 0 and δ > 0, we decompose the δ-neighborhood9

Uδ of U = Ogx0
into two parts, the nucleus Nδ and the tail Tδ (see Fig. 3).10

This method of estimating the length of the δ-neighborhood as δ → 0 by de-11

composing it into tail and nucleus is taken from [18]. The tail Tδ is the union12

of δ-neighborhoods of the points x0, x1, . . . , xnδ−1. The index nδ ∈ N is the13

smallest index such that the δ-neighborhood of xnδ and the δ-neighborhood14

of xnδ+1 have non-empty intersection. The index nδ is well-defined, and the15

δ-neighborhood of xn and the δ-neighborhood of xn+1 have non-empty intersec-16

tion for each n ≥ nδ, because the sequence (xn − xn+1)n∈N = (f(xn))n∈N tends17

monotonically to zero. Thus, we have |Uδ| = |Tδ|+ |Nδ|, |Tδ| = nδ2δ ' nδδ, as18

δ → 0, and |Nδ| = xnδ + 2δ.19

1. f(x) = x − x2. Thus g(x) = x2, mfix
0 (g) = 1 and f ′(0) = 1. Moreover,20

we have xn = g(xn−1) = x2n

0 , n ≥ 0.21

To estimate nδ and xnδ as δ → 0, we use 2δ ' (xnδ − xnδ+1) = f(xnδ) =22

xnδ − x2
nδ
' xnδ = x2nδ

0 , as δ → 0. This implies that nδ ' log(− log δ) and23

xnδ ' δ, as δ → 0. Thus, we obtain24

|Tδ| ' δ log(− log δ), |Nδ| ' δ, δ → 0.

Now it can be easily seen that |Uδ| ' δ log(− log δ), as δ → 0, and dimB g = 0.25

Note that the estimates above and the box dimension do not depend on the26

choice of the initial point x0 of the orbit.27

2. f(x) = x2. Then g(x) = x − x2 and mfix
0 (g) = 2. That is, f ′(0) =

0, f ′′(0) > 0. First, by solving formally the difference equation xn+1 = g(xn) =
xn − x2

n, we estimate the asymptotic behavior xn ' n−1, n→∞. To estimate
the asymptotic behavior of nδ, as δ → 0, we use, as above, the relation 2δ '
(xnδ − xnδ+1

). Since xn − xn+1 = f(xn) = x2
n ' n−2, we get that nδ ' δ−1/2,

as δ → 0. Consequently, xnδ ' δ1/2. we now have

|Tδ| = 2δnδ ' δ1/2, |Nδ| = xnδ + 2δ ' δ1/2, δ → 0.

Therefore, |Uδ| ' δ1/2, δ → 0, and dimB g = 1
2 . All calculations are independent28

of the initial point x0.29

8



x0x1x2. . .xnδ−1xnδxnδ+10

2δ2δ2δ2δ2δ2δ2δ

TδNδ

Figure 3: Uδ has two parts: the nucleus Nδ, and the tail Tδ. The tail Tδ contains
all (2δ)-intervals of Uδ before they start to overlap at the point xnδ .

Remark 1. It follows from (7) that dimB g is trivial, if g has a hyperbolic fixed1

point at 0 (the orbit Ogx0
tends exponentially fast to 0), or positive (dimB g ∈2

{ 1
2 ,

2
3 ,

3
4 , . . . }∪{1}), if g has a nonhyperbolic fixed point at the origin. Note that3

the box dimension is trivial in both standard and degenerate hyperbolic case,4

though Ogx0
in the degenerate hyperbolic case tends to 0 faster than Ogx0

in the5

standard hyperbolic case. See e.g. [17] for more details.6

3 Statement of the results7

In this section we consider a smooth slow-fast Liénard system Xε,a0,b0,µ, given8

in (3), and state our main results under Assumptions 1–4 of Section 1. The9

cyclicity of a canard cycle Γz0,w0
in the family Xε,a0,b0,µ is bounded from above10

by M ∈ N if we can find ε0 > 0, a Hausdorff neighborhood V of Γz0,w0 and a11

neighborhood W of (0, 0, µ0) in (a0, b0, µ)-space such that Xε,a0,b0,µ generates12

at most M limit cycles inside V, for all (ε, a0, b0, µ) ∈ [0, ε0]×W. (We call the13

smallest M with this property the cyclicity of Γz0,w0
in the family Xε,a0,b0,µ.)14

Following [10, 7, 16], we distinguish between 3 different types of “creation”15

of limit cycles near Γz0,w0
: (a) we break both mechanisms (see Assumptions 216

and 3 of Section 1); (b) we break precisely one of the two mechanisms; (c) both17

mechanisms remain unbroken. If we break both mechanisms in Xε,a0,b0,µ, we18

obtain a sharp upper bound for the cyclicity of Γz0,w0 in the family Xε,a0,b0,µ.19

Theorem 2. Let Xε,a0,b0,µ be defined in (3) and suppose that Γz0,w0
is a bal-20

anced canard cycle for µ = µ0. Furthermore, suppose that the smooth function21

f(z) = S2(z, µ0) − S1(z, µ0), defined in Section 1, satisfies the conditions of22

Theorem 1 on [z0, z0 + η[, with η > 0 and η ∼ 0. Let Ogz1 be the orbit of23

z1 ∈]z0, z0 + η[ by g = id − f . Then dimB Ogz1 is independent of the initial24

point z1 and, if dimB Ogz1 < 1, the cyclicity of Γz0,w0
in the family Xε,a0,b0,µ is25

bounded by
3−2 dimB Ogz1
1−dimB Ogz1

.26

As we will see in Section 4.1, Theorem 2 is a direct consequence of Corollary27

6 in [16] and Theorem 1.28

Remark 2. The box dimension method for canard cycles with two breaking29

parameters, introduced in Section 1, follows from Theorem 2.30

When at least one of the two breaking mechanisms remains unbroken, our31

model Xε,a0,b0,µ fits into the framework of [7], and we can easily study the32

number of limit cycles near Γz0,w0
by using the same box dimension method.33

The only difference with the box dimension method based on Theorem 2 lies in34

the number of limit cycles near Γz0,w0
: if precisely one of the two mechanisms35

9



remains unbroken (resp. both mechanisms remain unbroken), it decreases by1

one (resp. two) the upper bound.2

Theorem 3. Suppose that Γz0,w0
is a balanced canard cycle for µ = µ0 in3

the family Xε,a0,b0,µ, and suppose that the smooth function f(z) = S2(z, µ0) −4

S1(z, µ0) satisfies the conditions of Theorem 1 on [z0, z0 + η[, with η > 0 and5

η ∼ 0. Let Ogz1 be the orbit of z1 ∈]z0, z0 + η[ by g = id− f . Then dimB Ogz1 is6

independent of the initial point z1 and the following statements are true:7

1. (one mechanism remains unbroken) If dimB Ogz1 < 1, then there8

exist smooth functions a0 = A0(ε, b̄0, µ) ∼ 0 and b̄0 = B̄0(ε, a0, µ) ∼ 09

(b̄0 := b0√
ε
) such that the systems Xε,A0(ε,b̄0,µ),

√
εb̄0,µ and Xε,a0,

√
εB̄0(ε,a0,µ),µ10

contain at most
2−dimB Ogz1
1−dimB Ogz1

limit cycles Hausdorff close to Γz0,w0
, for each11

(ε, a0, b̄0, µ) ∼ (0, 0, 0, µ0) and ε > 0.12

2. (both mechanisms remain unbroken) If dimB Ogz1 < 1, then there13

exist smooth functions a0 = A0(ε, µ) ∼ 0 and b̄0 = B̄0(ε, µ) ∼ 0 such that14

Xε,A0(ε,µ),
√
εB̄0(ε,µ),µ contains at most 1

1−dimB Ogz1
limit cycles Hausdorff15

close to Γz0,w0
, for each (ε, µ) ∼ (0, µ0) and ε > 0.16

Theorem 3 will be proved in Section 4.2.17

In the rest of this section, we focus on the case where the box dimension18

is trivial (i.e. dimB Õ = 0). As we know from [13], the trivial box dimension19

dimB O in (1) leads to a saddle-node bifurcation of limit cycles when we vary20

the breaking parameter b0 ∼ 0 in (1) (see Theorem 3 of [13]). If we deal with21

canard cycles with two breaking mechanisms, then the trivial box dimension22

gives rise to a cusp-catastrophy of limit cycles.23

Theorem 4. Let Γz0,w0 be a balanced canard cycle for µ = µ0 in the family24

Xε,a0,b0,µ. Suppose the smooth function f(z) = S2(z, µ0) − S1(z, µ0) satisfies25

the conditions of Theorem 1 on [z0, z0 + η[, with η > 0 and η ∼ 0. If Ogz1 is the26

orbit of z1 ∈]z0, z0 + η[ by g = id − f and if dimB Ogz1 = 0, then a limit cycle27

of codimension 2 bifurcates from Γz0,w0
generically unfolded by the parameter28

(a0, b0) ∼ (0, 0), for ε > 0 small enough. The cyclicity of Γz0,w0 in the family29

Xε,a0,b0,µ is equal to 3.30

Theorem 4 follows from Theorem 1 and [10] (see Section 4.3). We will apply31

Theorem 4 to the following slow-fast Liénard system:32 {
ẋ = y − (a0x+ 1

2x
2 − 1

4x
4)

ẏ = ε
(
b0 − x− 0.05(x2 − x4 + x6 − 0.5x8)

)
,

with (ε, a0, b0) ∼ (0, 0, 0), and we will detect 3 hyperbolic limit cycles near a33

suitably chosen balanced canard cycle. It will be proved numerically that the34

box dimension of one orbit Õ, obtained by using the box dimension algorithm35

introduced in Section 1, is equal to 0 (see Section 5).36

When the breaking parameter b0 in (1) remains unbroken, then the system37

(1) has a unique (hyperbolic) limit cycle (Hausdorff) close to the balanced ca-38

nard cycle Γy0 if dimB O = 0 (for more details see Theorem 3 of [13]). Thus, if39

we have k balanced canard cycles Γy10 , . . . ,Γyk0 , at which dimB O = 0, then (1)40

has at least k hyperbolic limit cycles, for ε > 0 small enough and b0 unbroken.41

We obtain similar results when canard cycles have two breaking parameters.42
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Theorem 5. Suppose that Γz0,w0
is a balanced canard cycle for µ = µ0 in1

the family Xε,a0,b0,µ, and suppose that the smooth function f(z) = S2(z, µ0) −2

S1(z, µ0) satisfies the conditions of Theorem 1 on [z0, z0 + η[, with η > 0 and3

η ∼ 0. Let Ogz1 be the orbit of z1 ∈]z0, z0 + η[ by g = id − f . If dimB Ogz1 = 0,4

then the following statements are true:5

1. (one mechanism remains unbroken) There exist smooth functions6

a0 = A0(ε, b̄0, µ) ∼ 0 and b̄0 = B̄0(ε, a0, µ) ∼ 0 (b̄0 := b0√
ε
) such that the7

systems Xε,A0(ε,b̄0,µ),
√
εb̄0,µ and Xε,a0,

√
εB̄0(ε,a0,µ),µ with fixed µ ∼ µ0, ε > 08

and ε ∼ 0 contain a saddle-node bifurcation of limit cycles (Hausdorff)9

close to Γz0,w0
.10

2. (both mechanisms remain unbroken) There exist smooth functions11

a0 = A0(ε, µ) ∼ 0 and b̄0 = B̄0(ε, µ) ∼ 0 such that Xε,A0(ε,µ),
√
εB̄0(ε,µ),µ12

with fixed µ ∼ µ0, ε > 0 and ε ∼ 0 has a unique limit cycle that is13

hyperbolic and (Hausdorff) close to Γz0,w0 .14

Theorem 5 follows from Theorem 1 and [7] (see Section 4.4). Theorem 5.215

can be useful when we want to construct slow-fast (Liénard) systems with more16

limit cycles than one would expect (see e.g. [8, 4, 5]). When we do not break17

the parameter (a0, b0), each balanced canard cycle Γz0,w0 with the trivial box18

dimension generates one hyperbolic limit cycle.19

4 Proofs of Theorem 2–Theorem 520

The results stated in Section 3 can be easily proved by combining Theorem 121

and the results of [10, 7, 16]. In this section we give a sketch of the proof of22

Theorem 2–Theorem 5. As mentioned in Section 1, the cyclicity results from23

Section 3 enable us to develop an efficient algorithm for the study of limit cycles24

that on one hand works with a minimum amount of information (we need only25

one orbit of the function z → z − (S2(z, µ0)− S1(z, µ0)) but on the other hand26

uses a recently developed “geometric” approach from the fractal analysis (we27

compute the box dimension of the orbit). See Section 5.28

4.1 Proof of Theorem 229

Since Γz0,w0 is a balanced canard cycle of (3) for µ = µ0, we have S2(z0, µ0)−30

S1(z0, µ0) = w0 − w0 = 0. We also have by definition of S1 and S2 that31

I1(z, µ) = I2(S1(z, µ), µ) and I3(z, µ) = I4(S2(z, µ), µ) for each (z, µ) ∼ (z0, µ0).32

Suppose that the smooth function f(z) := S2(z, µ0)− S1(z, µ0) satisfies the33

following conditions of Theorem 1 on [z0, z0 +µ[, with µ > 0 and µ ∼ 0: f(z0) =34

0 (this is true because Γz0,w0
is balanced), f is positive and nondecreasing on35

]z0, z0 + µ[, and f(z) < z − z0 for all z ∈]z0, z0 + µ[. If we denote by Ogz1 the36

orbit of z1 ∈]z0, z0 + η[ by g = id − f and if dimB Ogz1 < 1, then the function37

f has a zero of multiplicity l := 1
1−dimB Ogz1

= 1
1−dimB g

< +∞ at z = z038

(see (7)). In [16], this number l is called the intersection multiplicity of the39

curves {I1(z, µ0) − I2(w, µ0) = 0} and {I3(z, µ0) − I4(w, µ0) = 0} at the point40

(z0, w0). The following theorem plays a crucial role in the proof of Theorem 241

(see Corollary 6 of [16]):42
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Theorem 6. Let’s suppose that the curves {I1(z, µ0) − I2(w, µ0) = 0} and1

{I3(z, µ0) − I4(w, µ0) = 0} have an intersection multiplicity l < +∞ at the2

point (z, w) = (z0, w0). Then the cyclicity of Γz0,w0
in the family (3) is bounded3

by l + 2.4

Since l = 1
1−dimB Ogz1

, Theorem 6 implies that the cyclicity of Γz0,w0
in the5

family (3) is bounded by
3−2 dimB Ogz1
1−dimB Ogz1

.6

4.2 Proof of Theorem 37

Let conditions of Theorem 3 be satisfied. Following Theorem 1, the function8

f has a zero of multiplicity l = 1
1−dimB Ogz1

< +∞ at z = z0. See also Section9

4.1. Theorem 3.1 (resp. Theorem 3.2) follows now from Theorem 5.2(2) (resp.10

Theorem 5.2(1)) of [7]. Theorem 5.2(2) of [7] (resp. Theorem 5.2(1) of [7])11

implies that Γz0,w0
generates at most l + 1 limit cycles (resp. at most l limit12

cycles) if we break one of the two mechanisms (resp. both mechanisms remain13

unbroken).14

4.3 Proof of Theorem 415

Let conditions of Theorem 4 be satisfied. Following Theorem 1, the multiplicity16

of f is equal to 1 at the point z = z0 because dimB Ogz1 = 0. From this together17

with (6) it follows that18

∂I2
∂w

(w0, µ0)
∂I3
∂z

(z0, µ0)− ∂I4
∂w

(w0, µ0)
∂I1
∂z

(z0, µ0) 6= 0.

We can define the total slow divergence integral of Γz0,w0
as follows (see [10]):19

IT (z, w, µ) := I1(z, µ)− I2(w, µ) + I4(w, µ)− I3(z, µ), (z, w, µ) ∼ (z0, w0, µ0).

The following theorem has been proved in [10] (Theorem 1.1):20

Theorem 7. Suppose that IT (z0, w0, µ0) = 0, I1(z0, µ0) − I2(w0, µ0) = 0 and21

∂I2
∂w (w0, µ0)∂I3∂z (z0, µ0) − ∂I4

∂w (w0, µ0)∂I1∂z (z0, µ0) 6= 0. Then a codimension 2 re-22

laxation oscillation bifurcates from Γz0,w0
, for ε > 0 small enough and µ ∼ µ0.23

This degenerate limit cycle is generically unfolded by the breaking parameter24

(a0, b0) ∼ (0, 0), for ε > 0 small enough and µ ∼ µ0, producing systems having25

3 hyperbolic limit cycles (Hausdorff) close to Γz0,w0
.26

Now it suffices to notice that the condition {IT (z0, w0, µ0) = I1(z0, µ0) −27

I2(w0, µ0) = 0} is equivalent to {I1(z0, µ0)−I2(w0, µ0) = I3(z0, µ0)−I4(w0, µ0) =28

0}.29

4.4 Proof of Theorem 530

Let conditions of Theorem 5 be satisfied. Since dimB Ogz1 = 0, Theorem 131

implies that the function f has a zero of multiplicity 1 at z = z0. Theorem 5.132

(resp. Theorem 5.2) follows now from Theorem 5.1(3) (resp. Theorem 5.1(2)) of33

[7]. Indeed, if f has a simple zero at z = z0 and if we break exactly one breaking34

parameter, then for each µ ∼ µ0, ε ∼ 0 and ε > 0 (3) contains a saddle-node35

12



bifurcation of limit cycles (Hausdorff) close to Γz0,w0
, as we vary the broken1

parameter (see Theorem 5.1(3) of [7]). On the other hand, if f has a simple2

zero at z = z0 and if both mechanisms remain unbroken, then Γz0,w0
generates3

exactly one (hyperbolic) limit cycle (see Theorem 5.1(2) of [7]).4

5 Applications5

In this section we apply the box dimension method for balanced canard cycles6

with one breaking parameter (see Sections 5.3 and 5.4) and the box dimension7

method for balanced canard cycles with two breaking parameters (see Section8

5.5) to slow-fast (polynomial) Liénard equations. We generate for each example9

several orbits of the balanced canard cycles, and we compute the box dimension10

of that orbits. We use Wolfram Mathematica.11

We choose such Liénard equations for which we can find exact values of12

the box dimension such that we can compare it with our numerical estimates.13

Indeed, we can find the multiplicity of y0 of the slow divergence integral (2)14

or the intersection multiplicity of the curves {I1(z, µ0) − I2(w, µ0) = 0} and15

{I3(z, µ0)− I4(w, µ0) = 0} at the point (z0, w0), and obtain the box dimension16

from (7).17

5.1 Numerical computation of the box dimension18

For a given system (1), which is chosen by prescribing parameter µ0, we first19

compute numerically a zero y0 of the slow divergence integral (2). In the case of a20

system (3), having canard cycles with two breaking parameters, we numerically21

compute z0 and w0 such that slow divergence integrals (4) satisfy I1(z0, µ0) −22

I2(w0, µ0) = 0 and I3(z0, µ0)− I4(w0, µ0) = 0.23

For each example system (11), (12) and (13), we numerically compute five24

different orbits Oi := {yi1, yi2, yi3, . . . }, i = 1, . . . , 5, using recursive formula in-25

volving slow divergence integrals, as described in Section 1. For the initial value26

yi1, we use the value of y0 multiplied by a factor κi depending on a test case,27

see Table 1. So for each example system we present five test cases involving28

different initial values yi1 = y0 · κi. Idea is to demonstrate the independence of29

the box dimension of the choice of the initial point yi1.30

test case i 1 2 3 4 5

factor κi 1− 10−16 1− 10−8 1− 10−4 1− 10−2 1− 10−1

Table 1: Factors κi.

We first normalize orbits Oi. For each Oi we define normalized orbit Õi :=31

{xi1, xi2, xi3, . . . }, using xin = y0 − yin. Notice that dimB Õi = dimB Oi, as box32

dimension of a set is invariant to any isometric map (in our case to translation33

and reflection). Orbit Õi tends monotonically to zero from the right side.34

For calculating the box dimension, we use the formula from [18],35

dimB Õi = lim
δ→0

(
1− log |U iδ|

log δ

)
, (8)
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where by putting U i = Õi, the value |U iδ| is the Lebesgue measure of U iδ, that is1

the δ-neighborhood of orbit Õi. It is easy to see that |U iδ| viewed as a real func-2

tion of variable δ, where δ > 0, is a continuous function. Now, define sequence3

(δin)n with δin = (xin−xin+1)/2 > 0. Sequence (δin)n tends monotonically to zero4

(see the proof of Theorem 1), so from (8) follows that5

dimB Õi = lim
n→∞

1−
log
∣∣∣U iδin ∣∣∣

log δin

 . (9)

The problem is in the numerical calculation of the limit in the formula (9),
as n→∞. Notice that, as we are numerically computing the orbit Õi, we can
always only calculate some finite number M , of points xin in the orbit Õi. To
compute |U iδin |, we follow idea from the proof of Theorem 1, derived from [18],

about decomposing δ-neighborhood into tail and nucleus. We compute∣∣∣U iδin ∣∣∣ =
∣∣∣T iδin ∣∣∣+

∣∣∣N i
δin

∣∣∣ = 2δinn+ (xin+1 + 2δin) = (n+ 1)xin − nxin+1,

see Fig. 3, respecting that in this chapter sequence (xn)n is indexed starting6

with 1. Finally, to numerically estimate the box dimension of orbit Oi, which is7

equal to dimB Õi, we approximate the limit from (9). There, we take n = M−1,8

so we get formula9

dimB Oi ≈ 1−
log
(
MxiM−1 − (M − 1)xiM

)
log
((
xiM−1 − xiM

)
/2
) . (10)

5.2 Implementation details10

Regarding Wolfram Mathematica implementation, we use a combination of func-11

tions ’NIntegrate’ for numerical integration and ’FindRoot’ for root-finding us-12

ing Newtons method. Although, slow divergence integrals could be symbolically13

evaluated in the case where functions H, F and G are polynomials, in regard14

to robustness of our numerical method, we choose to exclusively use numerical15

integration.16

Sufficient precision in all numerical calculations is very important, since val-17

ues in orbits Oi can converge exponentially fast. It means that in formula (10),18

values of xiM−1 and xiM can get very close. To get a meaningful numerical esti-19

mate of the box dimension, precision significantly greater than standard double20

precision is needed. That is why we used Mathematica’s ability to perform ar-21

bitrary precision calculation. Increased precision nonlinearly increases the time22

needed for numerical integration and root-finding. To make calculations last no23

longer than a few hours on a desktop computer, we managed to calculate only24

first 500 to 10000 values in orbits Oi, depending on a specific example. This25

proved to be sufficient to calculate numerical estimates of box dimensions, only26

to a few percent difference than our theoretical expectation (see Table 2).27

Also take into consideration that because of simplicity of presentation, all28

numerical values written in this paper are given only up to 6 decimal digits of29

precision. This remark is especially important in Section 5.4.30
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5.3 Slow-fast Liénard equation of type (2,4)1

We consider the slow-fast system2 {
ẋ = y − 1

2x
2

ẏ = ε(b0 − x− 0.5x2 + x4),
(11)

where (ε, b0) ∼ (0, 0), and using the box dimension method we prove:3

• For each ε > 0 and ε ∼ 0, system (11) contains a saddle-node bifurcation4

of limit cycles when we vary the breaking parameter b0 ∼ 0.5

The slow dynamics of (11) along the critical curve {y = 1
2x

2}, given by x′ =6

−1−0.5x+x3, is strictly negative for all x ∈]−x0, x0[, where x0 > 0 is the simple7

zero of the slow dynamics. Following Theorem 3 of [13], it suffices to detect a8

balanced canard cycle Γy0 with the trivial box dimension, where y0 ∈]0, 1
2x

2
0[.9

Thus, we generate an orbit O = {y1, y2, y3, . . . } of y1 (y1 ∼ y0 and y1 6= y0) by10

using the following equation:11 ∫ √2yn

−
√

2yn+1

ρdρ

−1− 0.5ρ+ ρ3
= 0, n ≥ 1,

and numerically compute dimB O, see Table 2 and Figure 4. Trivial box dimen-12

sion induces exponential convergence of orbit, so we had to use arbitrary preci-13

sion calculations of up to 170 decimal digits, and with only the first M = 50014

values calculated.15

example system (11) (12) (13)

theoretical box dim. 0 1/2 0

num. of digits of prec. 170 60 150

computed orbit size M 500 10000 2000

test case 1 box dim. 0.019946 0.499413 0.031357

test case 2 box dim. 0.021066 0.498836 0.033703

test case 3 box dim. 0.021675 0.521252 0.035013

test case 4 box dim. 0.021993 0.532500 0.035706

test case 5 box dim. 0.022166 0.532658 0.036062

Table 2: Numerically computed box dimensions.

5.4 Slow-fast Liénard equation of type (2,6)16

Let’s consider now the following slow-fast Liénard equation of degree 6:17 {
ẋ = y − 1

2x
2

ẏ = ε(b0 − x+ µ2x
2 + µ3x

3 + µ4x
4 + µ5x

5 + x6),
(12)

where (ε, b0) ∼ (0, 0) and (µ2, µ3, µ4, µ5) ∼ (1.004468, 0,−2.189363, 0). Like in18

Section 5.3, we use the box dimension algorithm, and we show that:19

• System (12) has at most 3 limit cycles Hausdorff close to Γy0 , for all y0 ∼20

0.767488, ε > 0, ε ∼ 0, b0 ∼ 0 and (µ2, µ3, µ4, µ5) ∼ (1.004468, 0,−2.189363, 0).21

15



100 200 300 400 500

0.05

0.10

0.15

0.20

Figure 4: The numerical estimate of the box dimension depending on the number
of calculated orbit values M , in system (11) and test case 3.

It suffices to prove that the box dimension of Γy0 is equal to 1
2 , for y0 =1

0.767488 and (µ2, µ3, µ4, µ5) = (1.004468, 0,−2.189363, 0) (see Theorem 2 of2

[13]). First, note that the slow dynamics of (12) is negative for all x ∈ [−1.4, 1.4]3

and (µ2, µ3, µ4, µ5) = (1.004468, 0,−2.189363, 0). We generate one orbit O =4

{y1, y2, y3, . . . } of y1 (y1 ∼ 0.767488 and y1 6= 0.767488) by using the following5

equation:6 ∫ √2yn

−
√

2yn+1

ρdρ

−1 + 1.004468ρ− 2.189363ρ3 + ρ5
= 0, n ≥ 1,

and we numerically compute dimB O, see Table 2 and Figure 5. Here it was7

sufficient to use arbitrary precision calculations of up to 60 decimal digits, which8

proved to be fast enough for the first M = 10000 orbit values calculated. Notice9

that given numerical values in this example are not exact, but merely approx-10

imations up to the first 6 decimal places. Before attempting to recreate our11

numerical box dimension results, values of µ2, µ4 and y0 should be recalculated12

up to sufficient precision.13

5.5 Slow-fast Liénard equation of type (4,8)14

In this section we focus on a slow-fast Liénard equation of degree 8 with cubic15

damping:16 {
ẋ = y − (a0x+ 1

2x
2 − 1

4x
4)

ẏ = ε
(
b0 − x− 0.05(x2 − x4 + x6 − 0.5x8)

)
,

(13)

where (ε, a0, b0) ∼ (0, 0, 0). Our goal is to prove the following statement by using17

the box dimension method for canard cycles with two breaking parameters:18

• System (13) undergoes a cusp-catastrophy of relaxation oscillations for19

each ε > 0 and ε ∼ 0.20

16
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Figure 5: The numerical estimate of the box dimension depending on the number
of calculated orbit values M , in system (12) and test case 3.

Suppose that (a0, b0) = (0, 0). The critical curve of (13) is given by {y =1

1
2x

2 − 1
4x

4}. The critical curve has two maxima of Morse type at x = −12

and x = 1, and it can be easily seen that the points (x, y) = (−1, 1
4 ) and3

(x, y) = (1, 1
4 ) form a jump breaking mechanism (see Assumption 2 in Section4

1). Furthermore, the critical curve has a minimum of Morse type at x = 05

and the origin is a slow-fast Hopf point with the breaking parameter b0 (see6

Assumption 3 in Section 1). The slow dynamics of (13) along the critical curve,7

away from the contact points, is given by8

x′ =
−1− 0.05(x− x3 + x5 − 0.5x7)

1− x2
.

It can be easily seen that the slow dynamics is regular on the interval [−
√

2,
√

2]\9

{±1}, i.e. −1 − 0.05(x − x3 + x5 − 0.5x7) < 0 for all x ∈ [−
√

2,
√

2] (see10

Assumption 4). Note that x = ±
√

2 are two simple zeros of y = 1
2x

2 − 1
4x

4.11

The section S = {x = −1} (resp. T = {x = 1}) is parametrized by z ∈]0, 1
4 [12

(resp. w ∈]0, 1
4 [)13

Following Theorem 4, we have to find a balanced canard cycle Γz0,w0
of (13)14

with the trivial box dimension, for some (z0, w0) ∈]0, 1
4 [×]0, 1

4 [. We define (see15

(4))16 
I1(z) :=

∫ −1

−
√

1+
√

1−4z
Ψ(x)dx, I2(w) := −

∫√1+
√

1−4w

1
Ψ(x)dx

I3(z) :=
∫ 0

−
√

1−
√

1−4z
Ψ(x)dx, I4(w) := −

∫√1−
√

1−4w

0
Ψ(x)dx,

where (z, w) ∈]0, 1
4 [×]0, 1

4 [ and Ψ(x) = x(1−x2)2

1+0.05(x−x3+x5−0.5x7) . Now, we generate17

one orbit Õ = {z1, z2, z3, . . . } of z1 (z1 ∼ z0 and z1 > z0) by using the recursive18

formula zn+1 = zn − (w2
n −w1

n), n ≥ 1, where w1
n, w

2
n ∼ w0 are unique numbers19

with the property that I1(zn) = I2(w1
n) and I3(zn) = I4(w2

n). We numerically20

compute dimB Õ, see Table 2 and Figure 6. Again, as we have trivial box21

17
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Figure 6: The numerical estimate of the box dimension depending on the number
of calculated orbit values M , in system (13) and test case 3.

dimension, exponential convergence of the orbit happens, so arbitrary precision1

needed is 150 decimal digits. We calculated the first M = 2000 values of the2

orbit O.3
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