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Low back pain represents an important medical and socio-economic problem [Hoy et al. 2012]. 
Currently, treatments provide modest short-term success due to insufficient knowledge of the 
mechanisms of non-specific low back pain [Costa et al. 2013]. Impaired sensorimotor control is 
suggested as a likely mechanism of developing and/ or sustaining low back pain [van Dieën et al. 
2013, Claeys et al. 2015]. Until recently, most studies focused on the “end organ dysfunction”, i.e. on 
the structural and functional abnormalities within the musculoskeletal system [Robinson & Apkarian 
2009]. However, patients with low back pain might also have structural and functional changes within 
the central nervous system. Moreover, clinical interventions increasingly aim to drive neuroplasticity 
with treatments to improve sensorimotor function and pain. 
This short communication comprises three parts. The first section briefly defines neuroplasticity in 
relation to spinal control & low back pain but also argues the finite potential of the system to adapt. 
The second part explores the different research approaches to neuroplasticity & low back pain and 
succinctly reviews the structural and functional brain changes as it relates to non-specific low back 
pain and sensorimotor function. The final section presents the clinical implications. 
 

1. Defining neuroplasticity in relation to spinal control & low back pain 

Neuroplasticity refers to the capacity of the nervous system to undergo functional and structural 
change modulated by activity and reinforcement [Chang 2014]. The adult nervous system retains an 
enormous capacity to change and these changes may underpin adaptations in the sensory system, 
the motor system and the widespread changes in neural processes associated with the low back pain 
experience. Neuroplasticity could underpin the development of spinal control changes that precede 
low back pain, or could underpin changes after the development of low back pain.  
On the other hand, neuroplasticity is an old concept and so broad that it is almost meaningless, 
differentiating an alive neuron or nervous system from a dead one (Lindley 1897). Therefore, 
functional neuroelasticity, referring to condition and time dependent characteristics of the brain, could 
be more preferable, whereby the brain can be considered as a mass of neural networks- “neurotags” 
that compete for influence. Subsequently, influence is determined by the number of neurons (mass) 
and inhibitory interneurons (precision). These neural representations, or neurotags, refer to the idea 
that networks of brain cells, distributed across multiple brain areas, work in synergy to produce outputs 
such as movement or pain [Wallwork et al. 2016]. All together, we have to exercise caution interpreting 
results of brain studies considering the huge complexity of the central nervous system and despite the 
enormous capacity of the brain to adapt this system has no infinite potential. 
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2. Different research approaches to low back pain & neuroplasticity and the structural 
& functional brain changes in patients with low back pain 

In the last decade a vast body of knowledge is developed on structural and functional brain changes in 
patients with chronic low back pain. However, one should know that in these studies chronic low back 
pain is used as a persistent pain model to study pain processing. For instance, to perform data 
analysis of fMRI brain imaging often a priori region of interest has to be selected. This selection is 
determined by the experimental hypothesis (e.g. pain matrix versus sensorimotor network) and 
consequently will differ between the research interests (e.g. pain processing versus sensorimotor 
control). 
Structural gray and white matter alterations have been observed in e.g. the dorsolateral prefrontal 
cortex, temporal lobes, insula, primary somatosensory cortex, corpus callosum and internal capsule. 
Functional connectivity during rest seems to be altered with an enhanced activation of medial 
prefrontal cortex, cingulate cortex, amygdala, insula and sensorimotor integration regions, together 
with a disrupted functional connectivity in the default mode network [Baliki et al. 2012, Apkarian et al. 
2013, Hashmi et al. 2013, Mansour et al. 2013]. 
For excellent reviews on chronic low back pain and changes in the “pain matrix” and the “emotional 
brain”, the reader is referred to Apkarian et al. 2011, Baliki & Apkarian 2015, Vachon-Presseau et al. 
2016. 
In contrast to the vast body of literature on chronic low back pain and changes in the “pain matrix” and 
more recently the “emotional brain”, few neuroimaging studies exists on low back pain as a symptom 
of a functional spinal control/ sensorimotor impairment [see Wand et al. 2011, Kregel et al. 2015]. For 
instance, Flor et al. [1997] showed a reorganization of the primary somatosensory cortex in patients 
with chronic LBP based on tactile stimuli. More specifically, a shift of the back area in medial and 
inferior direction and an expansion of the sensorimotor cortical representation of the leg were 
demonstrated. Other studies showed a loss of discrete cortical organization of the back muscles in 
patients with recurrent LBP compared to healthy controls, more specifically a posterior and lateral shift 
of motor cortical representation of trunk muscles and an overlap of the longissimus erector spinae and 
deep multifidus [Tsao et al. 2008, 2011, Schabrun et al. 2015]. In addition, manually applied posterior- 
anterior pressure to the lumbar spine revealed a blurring of the somatotopic representation of the 
lumbar spine in secondary somatosensory cortex in patients with chronic low back pain [Hotz-
Boendermaker et al. 2016]. Motor imagery driven activity showed reduced brain activation within the 
left supplementary motor area and the right superior temporal gyrus and sulcus while the functional 
connectivity within the motor imagery network was enhanced in patients with chronic low back pain 
compared to healthy individuals [Vrana et al. 2015]. 
Our research group demonstrated a relation between a reduced white matter integrity of the superior 
cerebellar peduncle and a weak proprioceptive weighting capacity for standing postural control in 
patients with recurrent low back pain [Pijnenburg et al. 2014]. Furthermore, a significant reorganization 
of the sensorimotor resting-state network is shown in individuals with recurrent low back pain 
compared to healthy controls. In addition, patients with recurrent low back pain were observed to have 
decreased functional connectivity in brain areas related to the integration and processing of sensory 
and motor signals for adequate movement. This decreased functional connectivity of the sensorimotor 
network was associated with the slower performance of a dynamic sensorimotor task (i.e. five times 
sit-to-stand-to-sit task) [Pijnenburg et al. 2015]. Moreover, we have shown a disrupted network 
organization of white matter networks in patients with recurrent low back pain, which may contribute to 
their persistent pain and sensorimotor impairments [Pijnenburg et al. 2016a]. Lastly, patients with 
recurrent low back pain showed alterations of cortical thickness in brain regions that play an important 
role in the cognitive regulation of pain, as well as an impaired sit-stand-to-sit performance compared to 
healthy controls. Cortical thickening was associated with increased pain intensity in these individuals. 
In addition, slower sit-stand-to-sit performance on unstable support surface was correlated with 
decreased cortical thickness of the rostral anterior cingulate cortex [Pijnenburg et al. 2016b]. 
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Figure 1. Participant is placed supine and head-first in the fMRI scanner. Air-driven fMRI-compatible 
muscle vibrators are attached to the back at lumbar level L5 and at the ankle muscles.  

At this moment, preliminary fMRI scans with muscle vibration have been performed in three patients 
with low back pain who have a dominant ankle-steered postural control strategy during standing 
(Figure 1). The preliminary results show that several sensorimotor and higher-order processing brain 
areas are involved in the processing of muscle spindle afferent signals (p< 0.05 FWE-corrected) 
(Figure 2). During ankle muscle spindle stimulation, increased activation was found bilaterally in the 
primary somatosensory cortices, superior parietal lobules, inferior frontal gyri, middle and superior 
frontal gyri, including orbitofrontal cortices and cerebellar lobules VI and VIII. Moreover, activation was 
found in the right primary motor cortex, supplementary motor area, basal ganglia (putamen and 
caudate nucleus) and parahippocampal gyrus and in the left insula. In contrast, back muscle spindle 
stimulation elicited less activation than ankle muscle vibration, more specifically activation was 
observed bilaterally in middle and superior frontal gyri and in inferior frontal gyri. Right-sided activation 
was found in the cingulate motor area, cerebellar lobule VI, insula and basal ganglia (putamen and 
caudate nucleus), whereas left-sided activity was seen in the primary somatosensory and motor cortex 
and in cerebellar crus II. 

 

Figure 2. More brain activation during ankle muscle (left) compared to back muscle (right) spindle 
stimulation in three patients with low back pain (p< 0.05, FWE-corrected). 

Perhaps the most important message here is that, in spite of the expanding body of knowledge of 
structural and functional brain changes in patients with recurrent and chronic low back pain, again we 
have to be very careful interpreting neuroimaging results and further longitudinal studies are 
warranted. 
 

3. Clinical implications and conclusions 

Depending on the point of view on low back pain: i.e., as a persistent pain processing problem versus 
a symptom of an underlying sensorimotor impairment, respectively, different interventions and 
modalities are suggested. 
Cortical pain processing can be changed from emotional motivational (anterior insula) to sensory 
discriminative (posterior insula) in patients with chronic low back pain by extinction training. Visual 



4 |   P a g e
 

feedback of one’s own back may reduce the perceived intensity of acute nociceptive pain stimuli 
applied to this site and reduces habitual pain [Diers et al. 2016]. 
On the other hand, treatment of patients with low back pain may focus not on distraction and 
analgesia but on precisely encoding the painful event by reducing the influence of protective 
neurotags, through eliminating danger cues and differentiating safe cues and by increasing the 
influence of performance neurotags [Moseley & Vlaeyen 2015, Wallwork et al. 2016]. 
Involvement of corticolimbic (central dopaminergic) circuits in low back pain chronification may be 
targeted by a combination of L-DOPA and NSAID treatment [Vachon-Presseau et al. 2016]. 
Neuromodulatory therapies such as transcranial direct current stimulation and peripheral electrical 
stimulation may be utilized to enhance a priming mechanism that ameliorates pain sensitivity, 
normalizes cortical organization and improves posturomotor control in patients with low back pain 
[Massé-Alarie et al. 2013, Schabrun et al. 2014, Pelletier et al. 2015]. 
Specific motor control training can reverse reorganization of neuronal networks of the motor cortex in 
people with recurrent low back pain while general exercise such as walking does not [Tsao et al. 
2010]. 
So, neuroplastic changes may be addressed by top-down cognitive-based interventions (such as 
education, cognitive-behavioral therapy, motor imagery) and bottom-up physical interventions (such as 
sensorimotor learning, peripheral sensory stimulation, manual therapy). An integrated contemporary 
neuroscience and clinical approach may combine intensive pain neuroscience education with 
cognition-targeted sensorimotor control training [Hodges et al. 2013]. 
 
In conclusion, people with recurrent and chronic low back pain have been observed to have both 
functional and structural changes in the “pain matrix”, the “emotional brain’, but also in the 
“sensorimotor networks”. Addressing these neuroplastic changes more specifically may lead to better 
outcomes in patients with recurrent and chronic low back pain. 
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