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 13 
Abstract:  14 

While high road safety performing countries base their effective strategies on reliable data, in developing countries the 15 
unavailability of essential information makes this task challenging. As a result, this drawback has led researchers and 16 
planners to face dilemmas of “doing nothing” or “doing ill”, therefore restricting models to data availability, often limited 17 
to socio-economic and demographic variables. Taking this into account, this study aims to demonstrate the potential 18 
improvements in spatial crash prediction model performance by enhancing the explanatory variables and modelling 19 
casualties as a function of a more comprehensive dataset, especially with an appropriate exposure variable. This includes 20 
experimental work, where models based on available information from São Paulo, Brazil, and Flanders, the Dutch 21 
speaking area of Belgium, are developed and compared with each other. Prediction models are developed within the 22 
framework of Geographically Weighted Regression with the Poisson distribution of errors. Moreover, casualties and 23 
fatalities as the response variables in the models developed for Flanders and São Paulo, respectively, are divided into two 24 
sets based on the transport mode, called active (i.e., pedestrians and cyclists) and motorized transport (i.e., motorized 25 
vehicle occupants). In order to assess the impacts of the enriched information on model performance, casualties are firstly 26 
associated with all available variables for São Paulo and the corresponding ones for Flanders. In the next step, prediction 27 
models are developed only for Flanders considering all the available information in the Flemish dataset. Findings showed 28 
that by adding the supplementary data, reductions of 20% and 25% for motorized transport, and 25% and 35% for active 29 
transport resulted in AICc and MSPE, respectively. Considering the practical aspects, results could help identify hotspots 30 
and relate most influential factors, suggesting sites and data, which should be prioritized in future local investigations. 31 
Besides minimizing costs with data collection, it could help policy makers to identify, implement and enforce appropriate 32 
countermeasures.  33 
 34 
 35 
Keywords: Crash prediction models, Geographically Weighted Regression, Road safety, Enriched data  36 

 37 
1. Introduction 38 

Despite efforts to improve road safety, an estimated 1.25 million victims of road crashes worldwide still die every 39 

year.  Developing countries, which have low and middle incomes, account for 90 percent of this number (WHO, 2015), 40 

which is likely to rise even more if proper safety countermeasures and investments are not made.  41 

Among the countries attempting to prevent road fatalities, Brazil alone is responsible for up to fifty thousand deaths 42 

and five hundred thousand injured people every year. They are casualties of over one million crashes per year in the 43 

country (DATASUS, 2014; WHO, 2015). As in other developing countries, this problem has been attributed to an 44 

insufficient development of supportive road infrastructure, policy changes and enforcement which have not taken into 45 

account urban intensification and the steady increase in vehicle use. In spite of the growing awareness on the urgency to 46 
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reverse these trends and efforts toward road safety programs and campaigns, the country's performance remains below 47 

expectations leading to an exponential rise in the number of casualties.  48 

Road safety has long been a priority in developed countries. In addition to ongoing efforts regarding the 49 

implementation and good practice of successful countermeasures involving infrastructure, vehicle and road user behavior, 50 

developed countries have invested a great amount of time and effort developing their road safety strategies at the planning 51 

level, for instance by collecting and making comprehensive sources of reliable data available. Specifically in Europe, 52 

these strategies at both safety-planning and operational levels have led to a steady reduction in the number of deaths, 53 

therefore allowing the European fatality rates to decrease far below the global average (9.3 per 100,000 population, 54 

relative to the global rate of 17.4) (WHO, 2015).  55 

In this context, spatial Crash Prediction Models (CPM) are a critical component in terms of safety planning 56 

considering both prediction and impact analysis purposes. This argument is valid as CPMs enable the estimation of values 57 

while providing an insight of the spatially varying relationship between crashes and related factors. Hence, an appropriate 58 

set of potential explanatory variables is crucial. As suggested in the literature, it should include variables that have a 59 

major influence on the dependent variables in previous studies, which can be measured in a valid and reliable way, are 60 

not endogenous (Elvik, 2007), and above all, consider what people are exposed to that could result in a crash (Carroll, 61 

1971; Chapman, 1973; Hauer, 1982; Hauer, 1995; Hauer et al, 1996; Stewart, 1998; Qin et al, 2004; de Guevara et al., 62 

2004; Elvik, 2007), such as the fact that absence of an exposure variable can lead to biased results (Jovanis and Chang, 63 

1986; Fristrøm et al., 1995; Miaou et al., 2003). In this respect, there are six major groups of influential factors, namely: 64 

human, vehicle related, road design, environmental, time and traffic related factors (Kononov, 2002; Valent et al., 2002; 65 

Yau, 2004; Shankar et al., 1995; Delen et al., 2006; Elvik, 2007).   66 

Human factors are commonly associated to driver behavior, e.g., alcohol and drug use, negligent and careless vehicle 67 

operations, failure to properly use protection devices, using cell phones or texting while driving, fatigue, etc. (Petridou 68 

and Moustaki, 2000; Odgen, 1996; Redelmeier and Tibshirani, 1997; Movig et al., 2004). Vehicle related factors refer to 69 

the characteristics of the vehicle such as its safety design standards, i.e., active and passive vehicle safety systems (Harvey 70 

and Durbin, 1986; Robertson, 1996; Langley et al., 2000; Bédard et al., 2002; Richter et al., 2005). Traffic related volumes 71 

are commonly represented by the Average Annual Daily Traffic (AADT) or the Vehicle Miles Travelled (VMT), and are 72 

both commonly used as exposure variables in prediction models (Hauer, 1995; Zhou and Sisiopiku, 1997; Martin, 2002; 73 

Qin et al., 2004; Pei et al., 2012; Xu et al., 2012; Ahmed et al., 2012; Pirdavani et al., 2013a). Road design refers to the 74 

road geometry and roadside conditions, such as well-designed curves and grades, wide lanes, adequate sight distance, 75 

clearly visible striping, appropriate design speeds and road categorization, flared guardrails, roadsides free of obstacles, 76 
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well-located crash attenuation devices, and well-planned use of traffic signals (Miaou, 1994; Taylor et al., 2000; 77 

Amundsen and Ranes, 2000;  Kloeden et al., 2001; Karlaftis and Golias, 2002;  Nilsson, 2004; Aarts and van Schagen, 78 

2006; Rengarasu et al., 2007). Environmental related factors are weather and light conditions, for example (Shankar et 79 

al., 1995; Andrey and Knapper, 2003; Golob and Recker, 2003; Ahmed et al., 2012; Brijs et. al., 2008). Finally, time 80 

factors are related to the season or month of the year, weekends or weekdays, or the time of crash occurrence (Doherty 81 

et.al, 1998; Qin et al., 2006; Hao et al., 2016). 82 

In spite of the scientific and technological advances toward safety promotion, unfortunately there is a gap between 83 

research and practice. Especially in developing countries where data availability has been an issue, this has discouraged 84 

researchers and policy makers, as they often find themselves in situations where they have to choose between doing 85 

nothing or restricting CPM to data availability. However, even considering efforts made in associating crashes with the 86 

available explanatory variables in such circumstances, this drawback leads to modelling errors, and thus unreliable 87 

predictions. Besides not being statistically reliable, they fail in terms of impact analysis that could further help to 88 

implement appropriate safety countermeasures. One explanation could be the existence of omitted variable bias, which 89 

in particular plays an important role in CPM reliability, generating biased and inconsistent estimates and coefficient signs 90 

(Washington et al., 2010; Mitra and Washington, 2012).  91 

In order to highlight the importance of a comprehensive set of explanatory variables within CPM, this study aims to 92 

assess the potential impacts of enriched information on model performance, scrutinizing their improvements in terms of 93 

statistical and practical contributions. This includes empirical work, where models based on crash-related available 94 

information from São Paulo, Brazil, and Flanders, the Dutch speaking area of Belgium, are developed and compared. 95 

CPMs are developed within the framework of Geographically Weighted Regression (GWR) with the Poisson distribution 96 

of errors (GWPR).  97 

Subsequently, GWPR models followed by a sensitivity analysis allow us to identify the statistical contribution of all 98 

information that was entered in the prediction models. To the best of our knowledge, this practice has only been explored 99 

in terms of microscopic-level analysis, focusing on the influence of the Highway Safety Manual (HSM) data variables 100 

on safety predictions. Some approaches found in previous studies include the Fractional Factorial Method (Akgüngör 101 

and Yıldız, 2007), Boosted Regression Trees (BRT) (Saha et al., 2015) and the “change one-factor-at-a-time” approach, 102 

which is the most commonly used sensitivity method in literature (Alluri and Ogle, 2012; Findley et al., 2012; Jalayer 103 

and Zhou, 2013, Williamson et al., 2015). In the present study, this investigation is conducted by analytically adding each 104 

variable to the prediction models, altering the other ones and evaluating the statistical contribution of each variable one 105 

at a time and their interactions, thus accounting for simultaneous variation of the input variables. 106 
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 107 

2. Study area and data 108 

Spatial CPMs were developed based on available information of crashes, road networks and socio-economic and 109 

demographic variables from the state of São Paulo and Flanders. In the models developed for São Paulo, this information 110 

was geographically aggregated to the centroids of 644 municipalities out of 645 that are comprised by the state. São Paulo 111 

city itself was not included in the analyses, given its atypical values, which are far higher than the ones for other cities. 112 

Flemish models were produced at a zonal level, comprising 2,198 Traffic Analysis Zones (TAZs). The average size of a 113 

TAZ is 6.09 square kilometers with a standard deviation of 4.78 kilometers, and an average number of inhabitants equal 114 

to 2,416 persons.  115 

For both regions, casualties and fatalities as the response variables in the models developed for Flanders and São 116 

Paulo, respectively, were divided into two sets based on the transport mode, called active transport and motorized 117 

transport. Casualties/fatalities for active transport included pedestrians and cyclists, while for motorized transport they 118 

were associated with motorized vehicle occupants. Moreover, records from a period of three years were used to produce 119 

the dependent variable for São Paulo (2009-2011) and Flanders (2010-2012).  In the Brazilian models, this information 120 

was gathered from the Mortality Information System (Sistema de informações de Mortalidade – SIM), which is a public 121 

source created by DATASUS (2014). For the Flemish models, this and the remaining information were provided by the 122 

Ministry of Mobility and Public Works (MOBIEL VLAANDEREN).  123 

Other socio-economic and demographic information from São Paulo was gathered from the last census index of 2010, 124 

made available by the Brazilian Institute for Geography and Statistics (IBGE, 2014). Given the limitations to obtain road 125 

feature information in Brazil, we included a “link length” as a proxy variable of the road network. To this end, we used 126 

the available road network available in OPENSTREETMAP. For both regions, the link length for motorized transport 127 

included information concerning trunk, highway, primary, secondary and tertiary roads, as well as the link length of 128 

residential and living streets. For active transport, the same road features were implemented, although highways and 129 

respective trunk length information were replaced by cycle paths and link length information of other roads designed 130 

only for pedestrians (e.g., footway), according to the OPENSTREETMAP classification.  131 

Tables 1 and 2 show a list of variables of all the variables collected for São Paulo and Flanders, respectively, together 132 

with their definition and descriptive statistics. Variables that were included in the final CPM developed for both regions 133 

of the study are marked in bold in the tables.   134 
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Table 1: Descriptive statistics of variables collected for São Paulo  135 

 Variable Description Average Min Max SD* 

Fa
ta

lit
y 

Active transport  
 

Total number of fatalities of active 
transport mode users over 3 years 7.34 0 295 23.428 

Motorized transport  
 

Total number of fatalities of 
motorized transport mode users 
over 3 years 

11.88 0 317 28.716 

N
et

w
or

k 
 Link length of active 

transport 
Total link length of active 
transport in a municipality (km) 141.13 5.04 2626.15 210.95 

Link length of 
motorized transport 

Total link length of motorized 
transport in a municipality (km) 153.04 5.29 2831.03 227.25 

Area Total surface area in the 
municipality (km2) 383.03 5 1977 317.07 

So
ci

o-
ec

on
om

ic
 a

nd
 d

em
og

ra
ph

ic
 

Population Total number of inhabitants in the 
municipality 46597.35 805 1221979 108465.83 

Male population Total number of male inhabitants in 
the municipality 22902.55 422 595043 52538.13 

Female population Total number of female inhabitants 
in the municipality 23694.81 383 626936 55938.55 

Population density Total population per square 
kilometers per municipality 291.13 3.73 12519.10 1166.18 

AAGR Average Annual Growth Rate 2000-
2010 (%) in the municipality 1.03 -2.15 10.92 1.25 

Percentage male 
population 

Percentage of male inhabitants in the 
municipality 50.52 45.76 81.09 2.52 

Percentage female 
population 

Percentage of female inhabitants in 
the municipality 49.48 18.91 54.24 2.52 

Percentage proportion 
population 

Rate between the number of men 
and woman in the municipality 102.97 84.36 428.86 17.88 

Urban population Total number of inhabitants in the 
urban zone of the municipality 44150.48 627 1221979 107468.51 

Rural population Total number of inhabitants in the 
rural zone of the municipality 2446.88 0 46284 3609.38 

HDI Human Development Index  0.739 0.639 0.862 0.032 
GNP Gross National Product 22501.11 7131.54 287646.17 18418.14 

Employed people Total number of inhabitants with 
income 12678.37 155 405980 35725.41 

Occupied people 
Total number of inhabitants who 
perform some activity (with income 
or not) 

14931.77 211 471267 41144.02 

V
eh

ic
le

 fl
ee

t 

Motorcycle Total fleet of motorcycles and 
tricycles  4744.68 24 100831 10938.16 

Microbus Total fleet of microbuses  90.76 0 3544 264.87 
Car Total fleet of cars  13536.09 133 487044 38052.31 
Truck Total fleet of trucks  705.21 11 18144 1544.29 
Bus Total fleet of buses  135.84 3 4445 330.34 
Total number of 
vehicles 

Total number of vehicles  19212.58 220 612097 50296.09 

Fu
el

 c
on

su
m

p.
**

 Gasoline  Total gasoline consumption  7961187.11 0 256246033 21723939.41 
Diesel oil  Total diesel oil consumption  15343179.63 0 295769873 32673917.02 
Fuel oil  Total fuel oil consumption  822438.64 0 44127640 3078410.70 

GLM  Total liquefied petroleum gas 
consumption  2304087.98 0 62823861 5948082.76 

Ethanol  Total ethanol consumption  9746540.07 0 342168947 25378940.38 

       *SD: Standard deviation; **Fuel consumption in liters 136 
 137 
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Table 2: Descriptive statistics of variables collected for Flanders 138 

  Variable Description Average Min Max SD* 

C
ra

sh
  

Active transport 
 

Total number of casualties of active 
transport mode users observed in a 
TAZ over 3 years 

15.04 0 298 25.06 

Motorized 
transport  

Total number of casualties of 
motorized transport mode users 
observed in a TAZ over 3 years 

45.36 0 500 53.83 

N
et

w
or

k 
 

Capacity  
Hourly average capacity of links in 
a TAZ (Passenger car per 
direction/h) 

1790.10 1200 7348 554.60 

Link length of 
active transport   

Total link length of active transport 
in a TAZ (km) 14.85 0 88 10.31 

Link length of 
motorized 
transport  

Total link length of motorized 
transport in a TAZ (km) 15.87 0.39 87.95 10.80 

Intersection 
density  

Number of intersections per square 
kilometer 1.75 0 50.63 3.37 

Speed Average speed limit in a TAZ (km/h) 69.40 31 120 10.91 
Area Total surface area of a TAZ (km2) 6.09 0 45 4.78 
Link density Total link length in a TAZ (km2) 3.37 0 20.44 2.41 
Intersection Total number of intersection in a TAZ 5.80 0 40 5.90 

Highway Presence of a highway in a TAZ, described as:  
“No” represented by 0 and “Yes” by 1 0 1  

Urban Is the TAZ in the urban area?  
“No” represented by 0 and “Yes” by 1 0 1  

Suburban Is the TAZ in the suburban area?  
“No” represented by 0 and “Yes” by 1 0 1  

E
xp

os
ur

e 

Number of trips of 
active transport  

Average daily number of trips 
originating/destined from/to a TAZ 
involving active mode 

1103.40 0 8630 1316.12 

Number of trips of 
motorized 
transport 

Average daily number of trips 
originating/destined from/to a TAZ 
involving motorized transport 

2750.09 0 22650 2642.17 

Vehicle Kilometers 
travelled (VKT) - 
Highway  

Total VKT on highways in a TAZ 
27471.82 0 946153 84669.53 

VKT - Other 
roads  

Total VKT on roads other than 
highways in a TAZ 26662.85 0 303238 28133.04 

So
ci

o-
ec

on
om

ic
 a

nd
 d

em
og

ra
ph

ic
 Car ownership Car ownership per household in a 

TAZ 1.13 0 14.00 0.47 

School children Total number of children living in a 
TAZ that attend some school 364.09 0 92.45 772.59 

Population  Total number of inhabitants in a 
TAZ 2614.53 0 15803 2582.60 

Households Total number of households in a TAZ 1091.15 0 8062 1177.90 

Employees Total number of employed people in a 
TAZ 888.73 0 16286 1575.31 

Income level Average income of residents in a TAZ 
described as below:     

 “Monthly salary less than 2249 euro” 
represented by 0  0 1  

 “Monthly salary more than 2250 
euro” represented by 1  0 1  

*SD: Standard deviation  139 
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3. Methodology 140 

Geographically Weighted Regression 141 

The spatially varying impacts of different risk factors across the study areas were explored within the framework of 142 

the local modelling approach, Geographically Weighted Regression (GWR) (see Brunsdon et al., 1996, Fotheringham et 143 

al., 1996, Fotheringham et al., 1997; Fotheringham et al., 2002) using the GWR 4.0 software package (Nakaya et al., 144 

2005). Given that the number of casualties and fatalities as the response variables were the count data with discrete and 145 

non-negative integer values, GWR models were performed using the Poisson distribution error (GWPR).  146 

Developed by Fotheringham and Brunsdon (Fotheringham et al., 2002), GWR models intend to address the non-147 

stationary relationship between variables found in Generalized Linear Models (GLM). These models capture this spatial 148 

variation by fitting a regression model at each sample point. The result of this process is a set of local spatial parameters, 149 

described by Equation (1). 150 

 151 

𝑙𝑙𝑙𝑙[𝐸𝐸(𝐶𝐶)(𝑙𝑙𝑖𝑖)] = 𝑙𝑙𝑙𝑙�𝛽𝛽0(𝑙𝑙𝑖𝑖)� + 𝛽𝛽1(𝑙𝑙𝑖𝑖)𝑙𝑙𝑙𝑙(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) + 𝛽𝛽2(𝑙𝑙𝑖𝑖)𝐸𝐸1 + ⋯+ 𝛽𝛽𝑛𝑛(𝑙𝑙𝑖𝑖)𝐸𝐸𝑛𝑛                                               (1) 152 

 153 

Where E(C) is the expected crash frequency, β0, β1, β2 and βn are model parameters for determined location li, 154 

Exposure is the exposure variable, and x1 and xn correspond to other explanatory variables.  155 

One of the assumptions behind GWR is motivated by the First Law of Geography from Tobler (1970), which argues 156 

that “everything is related to everything else but closer things are more related to each other”. The closer the observed 157 

data is from the location of the parameter to be estimated, the greater the influence on the estimation of β at location i 158 

compared to those that are far from it. Hence, this influence is determined based on geographic weights, which are 159 

assigned in function of all neighboring observations using a kernel function (Fotheringham et al., 2002), e.g., Gaussian 160 

(Equation 2) and bi-square (Equation 3), which are the two most common choices of weighting schemes (Hadayeghi et 161 

al., 2010).  162 

 163 

Gaussian function: 164 

𝑊𝑊𝑖𝑖𝑖𝑖 =  𝐸𝐸−0.5(
𝑤𝑤𝑖𝑖𝑖𝑖
𝑏𝑏 )2                                                                 (2) 165 

 166 

 167 
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Bi-square function: 168 

 169 

𝑊𝑊𝑖𝑖𝑖𝑖 = �(1 − (𝑑𝑑𝑖𝑖𝑖𝑖
𝑏𝑏

)2)2    if 𝑑𝑑𝑖𝑖𝑖𝑖 < 𝑏𝑏
0                      𝐸𝐸𝑜𝑜ℎ𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝐸𝐸𝐸𝐸

                                           (3) 170 

 171 

Where 𝑊𝑊𝑖𝑖𝑖𝑖 is the measure of contribution of location j when calibrating the model for location i. 𝑑𝑑𝑖𝑖𝑖𝑖  is the Euclidian 172 

distance between locations i and j and b is the bandwidth size defined by a distance metric measure.  173 

In GWR, the bandwidth controls the size of the kernel (number of observations around each data point) and the rate 174 

at which weights decay with increasing distances. Thus, similar to the weighting scheme, the choice of the bandwidth 175 

size plays an important role in the performance of the GWR models, as it involves a trade-off between bias and variance. 176 

The size of the bandwidth is optimized either by distance (fixed kernel), or by the number of neighboring observations 177 

(adaptive kernel) (Fotheringham et al., 2002; Guo et al., 2008; Hadayeghi et al., 2010). In this study, GWR was performed 178 

using the bi-square form with an adaptive bandwidth, such that the bandwidth varies according to the data density, and 179 

the number of areas included in the kernel is kept constant.  180 

Within different approaches to select the optimal bandwidth, minimizing cross validation (CV) or the corrected 181 

Akaike Information Criterion (AICc) are the most widely used (Pirdavani et al., 2014). However, while the former is 182 

given by the difference between observed and estimated values, the latter, additionally to the statistical Goodness-of-fit, 183 

rewards the complexity of the model, by imposing a penalty for increasing the number of estimated parameters 184 

(Fotheringham et al., 2002), expressed by the formulation in Equation (4). 185 

 186 

𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴 = 𝐷𝐷(𝑏𝑏) + 2𝐾𝐾(𝑏𝑏) + 2 𝐾𝐾(𝑏𝑏)(𝐾𝐾(𝑏𝑏)+1)
𝑛𝑛−𝐾𝐾(𝑏𝑏)−1

                                     (4) 187 

 188 

Where D and 𝑘𝑘  denote the deviance and the effective number of parameters in the model with bandwidth b, 189 

respectively. Moreover, 𝑙𝑙 denotes the number of observations. In this study, the bandwidth is calculated by means of 190 

AICc. 191 

 192 

Methodological procedure 193 

In order to demonstrate the potential improvements in the performance of spatial prediction models by enhancing the 194 

potential explanatory variables, the methodological procedure was divided into two main stages. 195 
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In the first stage, GWPR models were developed for São Paulo and Flanders, by only taking into account the same 196 

explanatory variables available in both datasets. Given the limitations of the Brazilian dataset, the results of this stage 197 

would reveal the best we could do with the available information of São Paulo, while there would be plenty of room yet 198 

to improve the Flemish models. In the second stage, and in order to highlight the importance of having data which is as 199 

complete as possible, GWPR models were developed for Flanders only, by considering all available variables in the 200 

Flemish dataset.  201 

At both stages, a multicollinearity test was conducted prior to the modelling steps, enabling us to select the most 202 

significant variables to compose the final models. As a common practice, the Variance Inflation Factor (VIF) was used 203 

to quantify how much the variance of the estimated regression coefficients increased if predictors were correlated. As a 204 

common rule of thumb, 10 was defined as a cut off value, meaning that if VIF was higher than 10, then multicollinearity 205 

was high (Kutner et al., 2004) and, therefore, these variables should not be present in the model simultaneously. 206 

Subsequently, at the end of the first stage, models, for which we used the minimum data, were developed which were 207 

called basic models.  208 

In the second stage, the affluence of available information in the Flemish dataset enabled us to develop various distinct 209 

models, and choose the one with the best overall fit. This exercise was conducted by having the intercept term as our 210 

starting point and analytically combining variables with a VIF lower than 10. Hereafter, due to the greater complexity of 211 

the GWR estimation procedure that conceivably causes interrelationships among local coefficient estimates when there 212 

is no collinearity among the explanatory variables (Hadayeghi et al., 2010; Pirdavani et al., 2013b), at this stage, evidence 213 

of multicollinearity among the produced local coefficient estimates was also observed. Hence, among all developed 214 

CPMs, the best-fitted one was selected as it met the criteria of non-multicollinearity among variables and produced local 215 

coefficient estimates, and subsequently based on the lowest AICc value. As a common rule-of-thumb, the difference 216 

between the models was considered significant when the difference of AICc values between two models was higher than 217 

4 (Charlton and Fotheringham, 2009). At the end of this stage, two models were developed for Flanders, which were 218 

called improved models.  219 

Finally, the performance of the improved models was compared with the basic models by means of AICc, Mean 220 

Squared Prediction Error (MSPE), and the Pearson Correlation Coefficient (PCC).  221 

 222 

Sensitivity Analysis 223 

Flemish GWPR models followed by a sensitivity analysis helped us identify the statistical contribution of each 224 

variable in the casualty prediction. In previous studies, this practice was commonly associated with micro-level analysis, 225 
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focusing on the influence of the HSM data variables on safety predictions. This exercise was held by altering the value 226 

of one predictor variable at its maximum, minimum, and/or average, hence estimating the change in output relative to the 227 

output generated from using the actual values of the variable. Therefore, the most influential variables were identified as 228 

those that produced meaningful changes in the predicted values for the frequency of crashes (Saha et al., 2015). 229 

In our study, this investigation was conducted by analytically adding each variable to the prediction models while 230 

altering the other ones, and evaluating their statistical contribution by themselves and by their interactions, thus 231 

accounting for simultaneous variations of the input variables. To this end, the intercept term was used as a starting point. 232 

Hence, explanatory variables were analytically added to the prediction models and ranked according to their contribution 233 

in terms of the model’s performance. This contribution was measured by means of the AICc variations (%), where the 234 

larger the reduction in AICc by the inclusion of a variable, the greater its contribution on the model performance. 235 

Subsequently, this process was repeated with the remaining variables, but taking into account their interactions. 236 

Thereupon, variables were tabulated according to their relative percentage of influence on the models in relation to the 237 

intercept term, namely Relative I, and in relation to its previously best fitted model composition, namely Relative II.   238 

 239 

4. Results  240 

In the next sections, the results of the modelling practices for both case studies will be explained and discussed. 241 

However, due to the limit of space in this paper, maps of significance and coefficient estimates are limited to motorized 242 

transport in Flanders. Moreover, although it is not the main aim of this paper, we will briefly discuss the effect sizes in 243 

relation to prior literature. 244 

 245 

Results of modelling – Stage 1, Basic Models 246 

In spite of a great amount of available information in Brazil, most of it was limited to socio-economic and 247 

demographic variables. As a result of this, most of the pieces of information collected were found to be correlated with 248 

each other, therefore presenting high VIF values. Hence, produced basic models were limited to information concerning 249 

the link length and population only. At this stage, the population was used as the exposure variable in its Natural 250 

Logarithm (ln) form.  251 

Table 3 shows the local parameter estimates of the basic GWPR models, for both dependent variables in São Paulo 252 

and Flanders. This information is described by five number summaries: minimum, maximum (lower quartile, median 253 

quartile and upper quartile), tabulated in this format and sequence.  254 
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Table 3:  Local parameter estimates - Basic Models  255 
  Active Transport Motorized Transport 

Parameters Brazil Flanders Brazil Flanders 
Intercept -24.094, 15.716 

(-13.546, -10.626, 
 -8.081) 

-8.890, 11.749 
(0.153, 1.813, 2.966) 

-16.228, 0.031 
(-8.576, -6.837,  

-4.896) 

-5.981, 8.582 
(1.894, 3.336, 4.246) 

Ln Population -2.249, 2.463 
(0.874, 1.155, 1.438) 

-1.646, 1.668 
(-0.046, 0.130, 0.365) 

0.019, 1.898 
(0.672, 0.871, 1.053) 

-1.252, 1.307 
(-0.063, 0.077, 0.267) 

Link length -0.006, 0.038 
(-7.8e-04, 1.5e-04,  

1.2e-03) 

-0.264, 0.130 
(-0.038, -0.012, 

0.010) 

-0.009, 0.010 
(2.2e-04, 4.4e-04,  

1.4e-03) 

-0.149, 0.139 
(-0.031, -0.008, 

0.267) 
256 

Figure 1 shows maps of the local coefficient estimates as well as their significance at 0.05 level, for motorized 257 

transport in Flanders. In order to determine where relationships were significant (in blue) and where they were not (in 258 

brown), we computed the t-statistics. Thus, t-statistics between -1.96 and 1.96 were considered insignificant at 0.05 level, 259 

and values beyond this scale were considered significant at 0.05 level.  Subsequently, Figure 2 shows maps with observed 260 

and predicted number of casualties. 261 

 262 

 

 
Intercept coefficient estimates Intercept significance map 

 

 
Ln Population coefficient estimates Ln Population significance map 

 

 
Link length coefficient estimates Link length significance map 

Figure 1: Local coefficient estimates and significance maps (Motorized transport - Basic model - Flanders). 263 
 264 

 

 
Observed number of casualties Predicted number of casualties 

Figure 2: Observed and predicted number of casualties (Motorized transport - Basic model - Flanders). 265 
 266 

Results of model performance at this stage revealed a negative correlation between casualties and both explanatory 267 

variables in a large number of TAZs, which in turn were significant at 0.05 confidence level.  Given their rather direct 268 

association with exposure, we would expect that both explanatory variables were likely to have a positive correlation 269 

with casualties in most TAZs of this study, as also found in Wang et al. (2009 and Pirdavani et al. (2013b), for example.  270 
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One explanation for these counterintuitive signs could be that some variables, at some locations, are locally correlated 271 

while no global multicollinearity is observed among them (Guo et al., 2008; Hadayeghi et al., 2010; Pirdavani et al., 272 

2014). Such local correlation has been attributed as the major reason for problems with counterintuitive signs. In order 273 

to address this issue, at the second stage, we excluded variables at which high VIF values were found among the produced 274 

coefficient estimates.  The limitation of variables within the basic models restrained us from conducting this exercise at 275 

the first stage. This drawback highlights the importance of a more diverse set of explanatory variables. Evidence in favor 276 

of this assumption is shown in the second stage. 277 

Such counterintuitive signs could also be a response to the omission of important variables, which leads to omitted 278 

variable bias.  Although not thoroughly explored in this study, one could assume the correlation of link length and other 279 

road features or exposure variables that were omitted, therefore producing bias. This argument is valid as the exclusion 280 

of essential variables, especially an exposure variable, could systematically invalidate further conclusions that could be 281 

derived from the results (Washington et al., 2010; Mitra and Washington, 2012). A more in-depth investigation 282 

concerning this problem could help to provide a better insight of the direction of these effects, which in this study, remains 283 

speculative.   284 

 285 

Results of modelling – Stage 2, Improved Models 286 

The Flemish dataset, in addition to significant information related to socio-economic, socio-demographic and road 287 

networks (i.e., income level, speed, capacity, number of links, links and intersection density, presence of highways, 288 

urbanization degree, to name a few) provided foremost diverse and suitable exposure variables, i.e., number of trips 289 

(NOTs), vehicles flow and VKT. This enabled us to produce different models with different combinations of variables, 290 

and choose the best fitted one.  291 

After carrying out the VIF tests among variables and produced coefficient estimates, the final improved models for 292 

active and motorized transport modes comprised the following information: NOTs, children attending school (school 293 

children), road capacity (capacity), intersection density, car ownership, and VKT which was used as our exposure 294 

variable. The respective coefficient estimates found for each explanatory variable are presented in Table 4 in the five 295 

number summary format, and are followed in Figure 3 by their local coefficient estimates and significance maps. 296 

Subsequently, Figure 4 presents the obtained maps for the observed and predicted number of casualties. 297 

  298 
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Table 4: Local parameter estimates - Improved Models (Flanders) 299 

Parameters Active Transport Motorized Transport 
Intercept -14.835, 13.933 (-0.928, 1.580, 4.068) -7.604, 11.041 (1.585, 3.312, 4.973) 
NOTs -0.002, 0.005 (-2.78-04, 4.8e-05, 4.4-04) -9.4e-04, 0.001 (-1.04e-04, 2e-05, 1.23e-04) 
School children -0.007, 0.003 (-9.16-04, -2.33e-04, 3.4e-04) -0.004, 0.003 (-5.74e-04, -1.43e-04, 2.33e-04) 
Capacity -0.008, 0.007 (-3.46e-04, 7.3e-05, 5.47e-04) -0.007, 0.005 (-3.89-04, 1.5e-05, 4.5-04) 
Intersection density  -4.183, 1.686 (-0.139, 0.023, 0.152) -1.441, 1.171 (-0.086, 0.025, 0.131) 
Ln VKT -0.653, 1.486 (-0.054, 0.128, 0.306) -0.666, 0.888 (-0.092, 0.076, 0.246) 
Car Ownership -7.378, 6.584 (1.649, -0.375, 0.445) -6.763, 4.722 (-1.084, -0.128, 0.456) 

300 
 301 

      
Intercept coefficient estimates Intercept significance map 

     
NOTs coefficient estimates NOTs significance map 

      
School children coefficient estimates School children significance map 

   
Capacity coefficient estimates Capacity significance map 

   
Intersection density coefficient estimates Intersection density significance map 

    
Car ownership coefficient estimates Car ownership significance map 

    
Ln VKT coefficient estimates Ln VKT significance map 

Figure 3: Local coefficient estimates and significance maps (Motorized transport - Improved model - Flanders). 302 
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Observed number of casualties Predicted number of casualties 

Figure 4: Observed and predicted number of casualties (Motorized Transport - Improved model - Flanders). 304 
 305 

In general, results at this stage revealed a better performance in terms of overall model fit (see Table 5). From a 306 

statistical point of view, the improved models outperformed the basic models for both dependent variables. In the model 307 

developed for motorized transport, reductions of approximately 20% and 25% were observed compared to the basic 308 

model, for AICc and MSPE respectively. Likewise for the active mode, 25% and 35% reductions were obtained for AICc 309 

and MSPE, respectively.  310 

 311 

Table 5: Comparison of parameters between basic and improved models (Flanders) 312 

Parameters Active Transport Motorized Transport 
Basic Improved Basic Improved 

GWPR AICc 29345.571 22553.607 60993.481 49525.611 
Global AICc 50570.229 45486.734 102673.889 94634.071 
MSPE 384.87 261.17 1786.66 1354.12 
PCC 0.629 0.771 0.626 0.738 

 313 

Moreover, results of a more diverse dataset, especially including an exposure variable, enabled the development of 314 

coherent coefficient estimates and signs. In this study, positive associations with casualties were found in most subzones, 315 

for intersection density, capacity, NOTs and VKT (likewise in Hadayeghi et al., 2003; Aguero -Valverde and Jovanis, 316 

2006; Pirdavani et al., 2013a; Pirdavani et al., 2013b; Shariat-Mohaymany et al., 2015; Xu et al., 2017). On the contrary, 317 

casualties were found to have a negative correlation with school children and car ownership, in a large number of TAZs. 318 

This negative association with other social standing variables, i.e., income level, has been found in other previous studies 319 

(see Li et al., 2013; Pirdavani et al., 2013a; Pirdavani et al., 2013b; Pirdavani et al., 2014; Pirdavani et al., 2016), meaning 320 

that less casualties are expected to occur than in more affluent areas (in this study, where car ownership is higher). Given 321 

the negative association of casualties and school children, we would assume that speed limit and human factors associated 322 

to the driver’s behavior, might have an influence.  323 

In order to corroborate these assumptions and enable us to better understand the interactions between variables, such 324 

a macro-level analysis could be used as a basis for local investigations. This could help to enforce appropriate 325 

countermeasures, especially in areas where higher estimates were found. For instance, at subzones where casualties were 326 

found to have a positive association with school children, micro-level analysis could suggest changes in the speed limits 327 
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or signalizing intersections. This could be identified as the major contribution of having a more complete and diverse 328 

dataset. In spite of more reliable models, they would allow policy makers to prioritize subzones, and depending on the 329 

targets, specific TAZs could be used to investigate the interaction between variables, both within and outside of the 330 

models.  331 

Subsequently, GWPR improved models followed by a step-wise approach helped us identify the statistical 332 

contribution of each variable in the crash prediction performance. The improvements in model performance by means of 333 

the percentage reductions found on AICc, for motorized transport, are shown in Figure 5. We considered the percentage 334 

difference by means of AICc in relation to the intercept term, namely Relative I, and in relation to its previously best 335 

fitted model composition, namely Relative II. In this illustration, we included part of the sensitivity analysis, for which 336 

capacity, for instance, showed the highest reduction by means of AICc in relation to the other variables, becoming the 337 

chosen variable with the intercept term. Subsequently, the improvements in model performance for active transport are 338 

shown in Table 6. 339 

   340 

Model No. Variables AICc Relative I (%) Relative II (%) 

1 Intercept 69996.71 - - 

2 Model 1 + capacity 65149.59 -6.92 -6.92 

3 Model 2 + VKT 61120.22  -12.68 -6.18 

4 Model 3 + school children 57616.19  -17.69  -5.73 

5 Model 4 + intersection density 53909.95  -22.98 -6.43 

6 Model 5 + car ownership 51521.46 -26.39 -4.43 

7 Model 6 +  NOTs 49525.61 -29.25 -3.87 

     

 Variables AICc %  

 Intercept 69996.71 -  

 Intercept + capacity 65149.59 -6.92  

 Intercept + VKT 65345.23 -6.65  

 Intercept + intersection density 57616.19 -5.61  

 Intercept + car ownership 53909.95 -5.57  

 Intercept + school children 51521.46 -5.56  

 Intercept +  NOTs 67022.43 -4.25  

 341 
Figure 5: Ranking of variables according to their contribution in the model for motorized transport.   342 
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Table 6: Ranking of variables according to their contribution in the model for active transport  343 

Model No.  Variables AICc Relative I (%) Relative II (%) 

1 Intercept 33593.51 - - 

2 Model 1 + capacity 31360.08 -6.65 -6.65 

3 Model 2 + car ownership 29132.76 -13.28 -7.10 

4 Model 3 + intersection density 27310.70 -18.70 -6.25 

5 Model 4 + school children 25276.7 -24.76 -7.45 

6 Model 5 + NOTs 23876.5 -28.93 -5.54 

7 Model 6 +  VKT 22553.61 -32.86 -5.54 

 344 
The results show that road capacity has the highest statistical contribution in the performance of CPM for active and 345 

motorized transport modes, suggesting that this information has priority over others. Secondly, VKT statistically 346 

contributes more to motorized transport models, while car ownership contributes more to the active transport models, 347 

and so on. This practice could be useful as it would help policy makers prioritize data collection, for instance by targeting 348 

variables that add higher statistical contributions to one specific travel mode or both, thus reducing costs with data 349 

collection. 350 

 351 

5. Discussion and conclusions  352 

The difficulty in obtaining crash-related information in Brazil, and its consequences in terms of model performance 353 

and development of potential studies that could help understand the crash phenomena and enforcement of appropriate 354 

countermeasures were the major reasons for carrying out this study. Although some data can be found in  different road 355 

departments, police, health and census online sources (i.e., DATASUS, IBGE, DENATRAN), there is no link between 356 

their databases, and none of them are able to provide a full and effective data source with regard to accidents and fatalities 357 

in the country. Therefore, the absence of a comprehensive and complete database hampered the evaluation and follow-358 

up of national road safety programs, as well as the development of studies that could contribute to national goals toward 359 

road safety.  360 

Particularly concerning the explanatory variables collected in this study, most available information was restricted to 361 

socio-economic variables. In spite of their merits, socio-economic variables are often highly correlated with each other, 362 

and are not appropriate for safety-planning purposes, e.g., implementing safety countermeasures. Other developing 363 

countries have faced the same challenges, and this drawback has unfortunately led to the use of poor and unreliable CPMs 364 

to promote road safety in these countries.  365 
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In view of the above, this study aimed to demonstrate the potential improvements in the performance of spatial crash 366 

prediction models by means of a more diverse dataset, including some potential explanatory variables. To this end, 367 

benchmarking was carried out based on macro level CPMs developed with available fatality/crash-related information 368 

from São Paulo and Flanders. In contrast to developing countries, European countries such as Belgium and other high 369 

road safety performing countries have invested a great deal of time and money in obtaining crash-related information and 370 

make them available through public channels and to academia. This practice has led to outcomes such as new strategies 371 

and studies, and this trade-off has brought improvements in traffic safety by reducing the number of crashes, injuries and 372 

fatalities.  373 

Whereas the Brazilian dataset in this study was mostly limited to socio-economic variables, the Flemish dataset, in 374 

addition to significant information related to socio-economic, socio-demographic and road networks, provided foremost 375 

diverse and suitable exposure variables. As a result of this, improved models revealed lower values of AICc and MSPE, 376 

for both dependent variables. Moreover, Flemish models at the second stage, presented a significant set of coefficient 377 

estimates together with suitable coefficient signs. One potential outcome of the resulting macro-level CPMs could be the 378 

identification of hotspots together with their major influence factors. Such results could be used as a reference to 379 

microscopic investigations, and the implementation of suitable safety countermeasures’ enforcement in a long term 380 

transportation planning process.  381 

Above all, this study addressed the strong dependence of CPMs on suitable and diverse input information, enabling 382 

these models to perform as a “powerful tool”, as is usually found in literature. Crashes are caused by multiple factors that 383 

vary locally, and this complexity implies that ideally casualties are best predicted through a set of appropriate predictive 384 

variables, including at least one potential exposure variable. By modelling casualties in Flanders based on the equivalent 385 

available data in São Paulo, results were found not to be suitable. Apart from producing unreliable coefficient estimates, 386 

they would also not be useful for safety planning and practical aspects. In other words, despite the efforts to improve the 387 

statistical fit of the crash prediction models and associate crashes with the available explanatory variables in such 388 

circumstances, these models fail to comprehensively explain the road casualties and, therefore, diminish the ability of 389 

applying suitable safety countermeasures.  390 

On the contrary, by modelling casualties based on the entire available data in Flanders, results revealed a better model 391 

overall fit for both active and motorized transport modes. This suggests that a more diverse set of appropriate explanatory 392 

variables, including a relevant exposure variable, is advantageous as it could address problems with counterintuitive signs 393 

and omitted variable bias. In the ideal scenario, it could help policy makers determine local appropriate countermeasures 394 
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toward safety promotion (e.g., by altering the speed limits and intensifying local speed enforcement, improving 395 

intersections, installing traffic management and control systems, implementing crosswalks, etc).  396 

It is also worth mentioning that variables included in the Flemish models, besides having been found to be significant 397 

in previous studies as well as in the present one, are less expensive and more accessible than those used in microscopic 398 

analysis (e.g., driving data, braking and steering information or variables related to weather conditions). Moreover, they 399 

are just examples of other potential information that could be used to develop those predictive/descriptive models. 400 

Variables that are used in the models developed for Flanders could at most be interesting suggestions for extra data 401 

collection in Brazil, as other local variables could also play a significant role, other than those included in the Flemish 402 

models.  403 

Last but not least, a sensitivity analysis was carried out allowing us to assess the statistical contribution of each 404 

variable in the prediction model performance. Especially for countries where crash data is limited, either because of the 405 

lack of financial resources or other imposed conditions, this practice could empower policy makers and responsible 406 

offices to prioritize data collection. For instance, results revealed that data regarding road capacity would signify a major 407 

statistical contribution for models, for both dependent variables. This is different from NOTs, for instance, which often 408 

have priority in data collection, but as revealed in this study, would not bring such a significant contribution to the Flemish 409 

models, neither for active, nor for motorized transport. 410 

This investigation could have more value if similar analyses were carried out in different regions, based on their 411 

available information. The consolidation of the produced results would enable, for instance, the development of a solid 412 

benchmark, therefore, validating the priorities outlined in this study and helping to determine the importance of different 413 

variables to model performance, in different areas.  414 

In addition to this, for further studies, we suggest a more in-depth investigation addressing problems, such as 415 

endogeneity and omitted variables to model performance, as they could help to verify the validity of the assumptions of 416 

this study. One possible investigation could be for instance, to perform micro-level analysis in the identified hot zones, 417 

therefore assessing model performance by adding and removing variables to the models.   418 
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