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Background & Aims: Prevention of hepatitis C virus (HCV)
transmission among people who inject drugs (PWID) is critical
for eliminating HCV in Europe. We estimated the impact of cur-
rent and scaled-up HCV treatment with and without scaling up
opioid substitution therapy (OST) and needle and syringe pro-
grammes (NSPs) across Europe over the next 10 years.
Methods:We collected data on PWID HCV treatment rates,
PWID prevalence, HCV prevalence, OST, and NSP coverage from
11 European settings. We parameterised an HCV transmission
model to setting-specific data that project chronic HCV preva-
lence and incidence among PWID.
Results: At baseline, chronic HCV prevalence varied from <25%
(Slovenia/Czech Republic) to >55% (Finland/Sweden), and <2%

(Amsterdam/Hamburg/Norway/Denmark/Sweden) to 5% (Slove-
nia/Czech Republic) of chronically infected PWID were treated
annually. The current treatment rates using new direct-acting
antivirals (DAAs) may achieve observable reductions in chronic
prevalence (38–63%) in 10 years in Czech Republic, Slovenia,
and Amsterdam. Doubling the HCV treatment rates will reduce
prevalence in other sites (12–24%; Belgium/Denmark/Hamburg/
Norway/Scotland), but is unlikely to reduce prevalence in
Sweden and Finland. Scaling-up OST and NSP to 80% coverage
with current treatment rates using DAAs could achieve
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observable reductions in HCV prevalence (18–79%) in all sites.
Using DAAs, Slovenia and Amsterdam are projected to reduce
incidence to 2 per 100 person years or less in 10 years. Moder-
ate to substantial increases in the current treatment rates are
required to achieve the same impact elsewhere, from 1.4 to 3
times (Czech Republic and France), 5–17 times (France, Scot-
land, Hamburg, Norway, Denmark, Belgium, and Sweden), to
200 times (Finland). Scaling-up OST and NSP coverage to 80%
in all sites reduces treatment scale-up needed by 20–80%.
Conclusions: The scale-up of HCV treatment and other inter-
ventions is needed in most settings to minimise HCV transmis-
sion among PWID in Europe.
Lay summary:Measuring the amount of HCV in the population

of PWID is uncertain. To reduce HCV infection to minimal levels
in Europe will require scale-up of both HCV treatment and other
interventions that reduce injecting risk (especially OST and pro-
vision of sterile injecting equipment).
� 2017 European Association for the Study of the Liver. Published by
Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Chronic hepatitis C virus (HCV) infection is a leading cause of liver
disease and morbidity, causing more deaths than HIV in the
United States and other high-income countries.1–4 Preventing
HCV transmission among people who inject drugs (PWID) is crit-
ical for averting future liver disease in Europe and elsewhere5 and
new HCV infections in this group.6 Primary prevention through
opioid substitution therapy (OST) and high-coverage needle
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and syringe programmes (NSPs) can reduce HCV transmission
among PWID7,8 and averts new HCV infections,9 but substantial
reductions inHCVprevalence are unlikely to be achievedwithout
scaling-up HCV treatment.10–15

The arrival of highly effective and short-duration direct-
acting antivirals (DAAs) with cure rates (sustained viral
response [SVR]) above 90% for all genotypes has made HCV
‘‘treatment as prevention” more than a theoretical possibil-
ity.16,17,12 However, the current high cost of DAA regimes (often
>€30,000 per treatment regime in higher-income countries) is a
barrier to scaling-up treatment in most countries. European
guidelines previously recommended prioritising DAAs for
patients with advanced liver disease. Now, they suggest that
HCV treatment should also be provided to people with a risk
of transmitting HCV, such as PWID.18,19 A recent economic
model suggested that, in general, it is more cost effective to
delay treatment of a mild disease until more moderate stages
of fibrosis.20 However, when these individuals have an ongoing
transmission risk, they should be prioritised for early treatment
over other patient groups.21

In this paper, we estimate the current HCV treatment rates
and coverage of OST and NSP in PWID across 11 sites in Europe.
We assess the impact of these and scaled-up HCV treatment
rates and other primary prevention on HCV prevalence and inci-
dence over the next 10 years.

Materials and methods
Model
We used a dynamic deterministic mathematical model of HCV
transmission among PWID, stratifying PWID according to inter-
vention status (no OST or NSP, on OST, NSP, or both) alongside
HCV infection and treatment status (susceptible and never
infected, previously infected, chronically infected, on treatment,
and treatment failure9,10). In three sites (Czech Republic, Fin-
land, and Sweden), PWID are also stratified by drug type (opioid
or methamphetamine/amphetamine). PWID enter the model
through a constant rate that individuals initiate injecting. All
PWID are assumed initially susceptible to HCV infection
(Fig. 1A). Susceptible PWID can become infected at a per capita
rate proportional to the background prevalence of the disease,
which changes as HCV treatment increases. Transmission is
reduced by a fixed multiplicative cofactor dependent on OST
and NSP status (Fig. 1B). Once infected, PWID either transition

to the chronically infected group (Ab+, RNA+), or spontaneously
clear infection and transition to the previously infected group
(Ab+, RNA�). This previously infected group is assumed to be
reinfected and clear infection at the same rate as susceptible
PWID.11,22,23 Chronically infected PWID (both primary and rein-
fection) can be treated. If treatment is successful and SVR is
attained, PWID transition to the previously infected group.
However, if SVR is not attained, PWID transition to the treat-
ment-failure group. In the baseline model, treatment failures
cannot be retreated (Fig. 1A). Once treatment is switched to
DAAs, we assume that treatment failures can be retreated. PWID
leave the model through permanent cessation of injecting, or
drug-related or non-drug-related mortality. All PWID enter the
model with no coverage of OST or NSP, and transition between
the different intervention states (OST and/or NSP) at site-speci-
fic fixed per capita rates (Fig. 1B; Tables S1a–S1k). Further
details of the model, including model equations, are in the Sup-
plementary materials.

Model parameterisation and calibration
The model was parameterised to each of the 11 sites (see Table 1
and Tables S1a–S1l for site-specific information).

For sites with opioid injecting only, 2,500 model parameter
sets were randomly sampled from the parameter uncertainty
distributions (see Tables S1a–S1l). For each parameter set, the
model was fit to the PWID population size by varying the rate
that individuals initiate injecting, to OST and NSP coverage
levels by varying the recruitment rates onto OST and NSP, and
to either the chronic or antibody HCV prevalence at a site-
specific time point by varying the transmission rate. For Czech
Republic, Finland, and Sweden, the model was fit to more
parameters (see Supplementary materials for further details).
HCV incidence was estimated from model inputs assuming a
stable epidemic, except for Amsterdam where additional data
were available, suggesting a decreasing PWID population size
and declining incidence.15

In sites with opioid and methamphetamine/amphetamine
injecting, we assume that the baseline risk of HCV transmission
is the same for all PWID.24–26 There is an equal NSP coverage
across both types of injectors, but only opioid users can be
recruited into OST.

In all but four sites (Czech Republic, Finland, Sweden, and
Norway), HCV treatment of PWID was modelled only among
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Fig. 1. Schematics of HCV transmission, and OST and NSP interventions in the model. (A) Infection component of the model. (B) OST and NSP intervention
components of the model. HCV, hepatitis C virus; NSP, needle and syringe programme; OST, opioid substitution therapy; SVR, sustained viral response.
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Table 1. Parameter table.

Parameter Value

PWID population size*

Amsterdam 2,621 (1,946–3,374) in 2009
1,874 (1,341–2,455) in 2014

Belgium 9,080 (6,356–11,804)
Czech Republic 41,816–46,563

(Range, no point estimate available)
Denmark 16,500 (13,000–19,000)

15,611 (13,770–22,655)
80,000 (65,000–95,000)

8,492 (7,582–9,436)
15,500 (10,500–20,150)
16,000 (11,500–19,400)

6,000 (4,200–7,800)
8,021–26,550

(Maximum and minimum PWID population size estimates)

2.4
2.5
0.8
2.0
2.0
1.3
0.7
1.9
1.0
0.7
2.0

59.4 (54.8–64.0) in 2007
43.3 (34.3–52.4) in 2012
35.0 (31.6–38.5) in 2005
76.0 (72.4–79.4) in 2014

Research Article Viral Hepatitis
Finland
France
Hamburg
Norway
Scotland
Slovenia
Sweden

PWID mortality rate (% per year)y

Amsterdam
Belgium
Czech Republic
Denmark
Finland
France
Hamburg
Norway
Scotland
Slovenia
Sweden

HCV antibody prevalence among PWID (%) and year prevalence fit to�

Amsterdam
Belgium
Czech Republic
Finland
France
Hamburg
Scotland
Slovenia
Sweden

HCV chronic prevalence among PWID (%) and year prevalence fit to�

Denmark
Norway

Number PWID treated per year
Total treated in each site per year

Amsterdam§ 2005–2016: 15
Belgium§ 2004–2016: 30
Czech Republica 2002–2011: 370

2011–2016: 540
Denmark§ 2002–2014: 53

2014–2015: 50
2014–2016: 100

Finland§ 2006–2016: 5
France§ 2001–2016: 1,705 (923–3,148)

Hamburg§ 2005–2011: 60
2011–2016: 72
Norway 2009–2016: 100
Scotland§ 2005–2008: 60
2008–2009: 90

2009–2016: 150
Sloveniaa 1997–1999: 2

1999–2008: 5
2008–2016: 62

Swedena 1997–2016: 90
404 Journal of Hepatology 2
66.4 (60.3–71.9) in 2011
67.7 (62.3–72.8) in 2014

58.0 (55.8–60.2) in 2013/14
27.3 (19.1–35.5) in mid-2010

81.7 (79.6–83.6) in 2014

35.0–45.0 in 2014
45 (42.6–47.5) in 2007

Number treated per 1,000 PWID per year
2005–2016: 6.1–11.2
2004–2016: 5.7–10.6
2002–2011: 7.9–8.8

2011–2016: 11.6–12.9
2002–2014: 2.8–4.1
2014–2015: 2.6–3.8
2014–2016: 5.3–7.7

2006–2016: 0.06
2001–2016:10.5–43.3

(These are the calculated numbers treated based on the treatment
rate for people who have injected at least once in the last year)

2005–2011: 6.2–7.9
2011–2016: 7.6–9.5
2009–2016: 5.0–9.5

(70% treatments are amongst those on OST and 30%
treatments amongst those not on OST)

2005–2008: 3.1–5.2
2008–2009: 4.6–7.8

2009–2016: 7.7–13.0
1997–1999: 0.3–0.5
1999–2008: 0.6–1.2

2008–2016: 7.9–14.8
1997–2016: 3.4–11.2
018 vol. 68 j 402–411



those on OST for initial analyses, as in these sites only PWID on
OST are currently treated.

Model projections and analyses
Data on PWID treatment numbers for each site were scaled to
give a rate per 1,000 PWID, as well as the percentage of chronic
HCV infections treated in 2015/2016. By scaling to give a rate
based on the total PWID population size, we can easily compare
the current and projected future treatment numbers between
all sites. All known increases in treatment prior to 2015 were
included in the model.

We used the model to project the change in prevalence and
incidence between 2016 and 2026 if treatment is switched from
interferon-based therapies to new DAAs (SVR rate 90% [85–
95%]). Current treatment rates per 1,000 PWID either are main-
tained, doubled, or increased to 50 per 1,000 PWID treated annu-
ally. Impact projections either assumed that current coverages of
OST andNSP aremaintained, or OST andNSP are scaled-up to 80%
coverage (if not already achieved). We determined the annual
treatment number (expressed as a rate of treatment per 1,000
PWID) needed to reduce incidence to 2 per 100 person years
(pyr) by 2026. This is the number of treatments annually per
1,000 PWID and is, therefore, constant when projecting to 2026.

We estimated the z-score associated with the mean differ-
ence in chronic prevalence given the uncertainty in chronic

Model projections
Chronic HCV prevalence among PWID
At baseline in 2016, the projected chronic prevalence varied
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Fig. 2. Percentage of estimated PWID with chronic HCV infections treated
annually at baseline (2015/2016) for each site. Bars indicate the median and
interquartile range, and whiskers show the 95% credibility intervals. HCV,
hepatitis C virus; PWID, people who inject drugs.

The key parameters used in the modelling for each of the sites; mean (95% CI) is shown from PWID population size and prevalence estimates unless otherwise stated.
Mortality rates are given per year. The range for the number of PWID treated per 1,000 PWID is estimated using the number of treatments in each site and the PWID
population size.
HCV, hepatitis C virus; OST, opioid substitution therapy; PWID, people who inject drugs.
* All sampled from a normal distribution.
y All sampled from a Poisson distribution.
� All sampled from a normal distribution; in all cases, HCV antibody prevalence is adjusted to chronic prevalence by assuming a 26% (22–29%) spontaneous clearance rate.49
§ Only those on OST are initially eligible for treatment.
a All PWID can be treated. References are given in S1a–S1k in Supplementary materials.

JOURNAL 
OF HEPATOLOGY
HCV generated by the model. We categorised a z-score <0.5 as
a modest change (unlikely to be observed), between 0.5 and
1.5 as a moderate change (may be observable), and scores
greater than 1.5 or 3.0 as changes that are increasingly and
highly likely to be observed.

Uncertainty analysis
To consider the effect of uncertainty within the underlying
parameters, we performed a linear-regression analysis of
covariance on the relative decrease in HCV prevalence and inci-
dence between 2016 and 2026 when current treatment rates
are doubled. For each site, the proportion of the sum of squares
contributed by each parameter of each model outcome was cal-
culated to estimate the importance of each parameter to the
uncertainty.27

For further details regarding the materials used, please refer
to the CTAT table and Supplementary information.

Results
Baseline HCV treatment rates
HCV treatment of PWID started at different times across the
sites, ranging from 1997 (Slovenia) to 2009 (Norway) with very
few PWID having been treated in Finland. In Fig. 2, the percent-
age of chronic HCV prevalent cases among PWID that were trea-
ted in 2015/2016 based on data from each site is shown. They
vary from <0.1% in Finland to 0.5–2% in Sweden, Denmark, Bel-
gium, Norway, and Amsterdam, and to >5% in Czech Republic

and Slovenia.

Journal of Hepatology 2
from <25% in Czech Republic (20.9% [95% CI 18.2–23.8%]) and
Slovenia (16.2% [10.7–21.7%]) to >55% in Finland (56.1% [53.1–
59.4%]) and Sweden (60.0% [57.4–62.9%]). In Fig. 3, the projected
baseline and 10-year chronic HCV prevalence among PWID in
each setting for different levels of scale-up of HCV treatment
with new DAAs are shown. In Fig. 4, the same projections are
shown, but with scale-up in OST and NSP coverage to 80%.

Switching to DAAs with treatment rate maintained
In the majority (8/11) of the sites, the difference in projected
chronic HCV prevalence after 10 years if the current treatment
rates with DAAs remain constant is <5%. In these sites, the med-
ian absolute difference ranges from <1.5% in Finland, Sweden,
and Belgium up to 3–4% in Norway, Denmark, France, Hamburg,
and Scotland. This difference is substantially smaller than the
uncertainty in the baseline chronic HCV prevalence in the sites.
This equates to a relative decrease of <10% at each site (see Sup-
plementary materials).

In the remaining three sites (Amsterdam, Czech Republic,
and Slovenia), there is a much greater relative decrease in
chronic HCV prevalence between 2016 and 2026 from switching
to DAAs: 37.5% (26.6–51.8%) in Czech Republic and 49.3% (25.0–
98.0%) in Slovenia. In Amsterdam, the decreasing population
size and concurrent decrease in transmission contribute around
90% of the relative decrease of 51.8% (28.7–65.7%) in chronic
prevalence between 2016 and 2026. These sites have a z score
>3.0, indicating that an observable change in chronic prevalence
will likely occur by switching to DAAs with the current treat-
ment rates.
018 vol. 68 j 402–411 405
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Fig. 3. Baseline and projected 10-year chronic HCV prevalence among PWID in multiple sites in Europe for various treatment-intervention scenarios.
Baseline chronic prevalence (white boxes) and projected 10-year chronic prevalence if either current treatment rates continue with new DAAs (pale blue
boxes), treatment rates are doubled with new DAAs (mid-blue boxes), or increased to 50 per 1,000 PWID annually with new DAAs (dark blue boxes). Bars
indicate the median and interquartile range, and whiskers show the 95% credibility intervals. $, z-score <0.5 (unlikely to observe a difference, 2016–2026); +, z-
score 0.5–1.5 (may be able to observe a difference, 2016–2026); *, z-score 1.5–3 (increasingly likely to be able to observe a difference, 2016–2026); #, z-score >3
(highly likely to be able to observe a difference, 2016–2026). DAA, direct-acting antiviral; HCV, hepatitis C virus; PWID, people who inject drugs.
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If all sites switched to DAAs with the current treatment rates
and concurrently increased OST and NSP coverage to 80%, the
model projects a reduction in prevalence in all sites. This reduc-
tion is from <20% in Finland (17.6% [10.0–27.9%]) and Hamburg
(19.5% [11.7–27.6%]), 30–50% in Scotland, Sweden, France, Nor-
way, Denmark, and Belgium, to >50% in Czech Republic and
Amsterdam, and >75% in Slovenia. The differential benefit of
scaling-up OST and NSP alongside treatment on reducing
chronic HCV prevalence ranges from >10 to <1.5 times because
of baseline coverage. For example, in Finland, Sweden, and Bel-
gium, scaling-up OST and NSP with the current HCV treatment
rates reduces chronic HCV prevalence in 10 years by 17.1%,
31.1%, and 48.4%, respectively, compared to 0.1%, 1.8%, and
4.4% reduction without OST and NSP scale-up. In contrast, there
is only a small projected improvement in Amsterdam and Czech
Republic, which already have high coverage of OST and NSP
(Tables S1a–S1k). Other sites are projected to improve reduc-
tions in chronic HCV prevalence from two to three times (Slove-
nia, Hamburg, and Scotland) and five to six times in France,
Denmark, and Norway (Table S3).

Switching to DAAs with treatment rate doubled
For sites with high baseline chronic prevalence (>55% at base-
line) and low treatment rates (<1% of chronic infections treated
at baseline) (e.g. Sweden and Finland), doubling the DAA treat-
ment rates has little effect on the projected prevalence in 2026
(0.4% [0.3–0.6%] and 5.2% [3.3–10.4%] relative decrease, respec-
tively) if OST and NSP are maintained at current coverage. For
406 Journal of Hepatology 2
sites with moderate chronic prevalence (30–50% at baseline)
and <2.5% of chronic infections being treated annually in
2015/2016 (Belgium, Denmark, Hamburg, Norway, and Scot-
land), doubling the DAA treatment rates could reduce chronic
HCV prevalence from 11.6% relative decrease (Belgium) up to
23.5% (Scotland).

France has a moderate chronic prevalence (47.3%) at baseline
and high initial treatment rate (4.5% [2.4–8.3%] of all chronic
infections treated annually). When their treatment rate is dou-
bled with DAAs, this yields a greater relative decrease in chronic
prevalence than other sites with moderate prevalence (36.4%
[16.7–85.5%]). The credibility intervals are wide because of
uncertainty in the estimates of HCV treatment rates.

In Czech Republic and Slovenia, doubling the DAA treatment
rates is projected to reduce chronic prevalence by >90% (Fig. 3),
and in Amsterdam by 55.8% (32.8–69.6%).

Increasing OST and NSP to 80% coverage and doubling the
DAA treatment rates are projected to reduce chronic prevalence
between 17.9% (10.3–28.2%) in Finland and 99.5% (91.8–99.9%)
in Slovenia. In sites with high baseline treatment rates (Czech
Republic and Slovenia), the decrease in prevalence is primarily
caused by doubling treatment rates (97.3% and 91.6% decrease
in Czech Republic with and without scaled-up OST and NSP,
respectively, and 99.5% and 97.4% in Slovenia). For sites with
low baseline treatment rates and low coverage of OST and
NSP, it is the increase in OST and NSP that drives the decrease
in chronic prevalence rather than the doubling in treatment
rates. In Finland, the decrease changes from 0.4% to 17.9% when
018 vol. 68 j 402–411
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Fig. 4. Baseline and projected 10-year chronic HCV prevalence among PWID in multiple sites in Europe for various treatment-intervention scenarios
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additionally scaling-up OST and NSP, from 5.2 to 35.5% in Swe-
den, and from 11.6% to 55.6% in Belgium.

DAA treatment rate 50 per 1,000 PWID
Increasing the annual DAA treatment rates to 50 per 1,000
PWID with the current OST and NSP coverage leads to substan-
tial reductions in chronic HCV in all sites (Fig. 3). In the high-
prevalence sites of Finland and Sweden, chronic prevalence
reduces by about half by 2026. Conversely, chronic HCV preva-
lence decreases by 70% or more in most moderate-prevalence
sites (Belgium, Hamburg, Scotland, Norway, and Denmark). In
France, however, the decrease is smaller and more uncertain
(47.6% [21.7–73.8%]). In low-prevalence settings (Czech Repub-
lic and Slovenia), chronic prevalence is projected to decrease by
around 99% by 2026.

In projections with OST/NSP scale-up to 80%, prevalence
decreases by more than three quarters in all sites, with 7/11
sites (Scotland, Denmark, Norway, Belgium, Amsterdam, Czech
Republic, and Slovenia) projecting a decrease of >95%.

HCV incidence among PWID

acting antiviral; HCV, hepatitis C virus; NSP, needle and syringe programme;
Baseline projections of incidence before 2015 agree with
observed incidence estimates where data were available (Sup-

plementary materials). Projected changes in incidence from
2016 to 2026 are shown in Figs. S2 and S3, without and with
scale-up of OST and NSP to 80% coverage using DAAs. HCV inci-
dence is projected to remain largely unchanged with the current
Journal of Hepatology 2
OST and NSP coverage in all but three sites if the current HCV
treatment rates are maintained using DAAs. However, if OST
and NSP are scaled-up to 80% coverage, projections estimate a
relative decrease in incidence of over 35% at all sites.

The treatment number per 1,000 PWID required in
2016/2017 to reduce incidence to 2 per 100 pyr (2%) among
PWID by 2026 with and without scale-up of OST and NSP to
80% coverage is shown in Fig. 5. In Amsterdam, an incidence
of 2% (1–3%) was already estimated in 2016, and so just switch-
ing to DAAs ensured an incidence <2% by 2026 in 99% of model
runs. In Slovenia, just switching to the new DAAs and maintain-
ing the current treatment rates are likely to decrease incidence
to <2% by 2026 (projected by 78% of model fits), with an
increase in treatments rates by 20% being needed to ensure this
impact in the other 22% of model fits. In Czech Republic, switch-
ing to DAAs would achieve 2% incidence in <10% of model fits.
Increasing the current treatment rates by 43% over all model
runs would ensure the decrease. In all other sites, a substantial
increase in HCV treatment rates (in the absence of any increase
in OST and NSP coverage) is needed to reduce HCV incidence to
2%. This ranges from three to five times the current treatment
rates in France and Scotland, to between six and nine times in
Hamburg, Norway, Denmark, Belgium, 17 times in Sweden,
and 200 times in Finland. If OST and NSP are scaled-up to 80%
coverage, maintaining the current treatment rates is sufficient
to achieve an incidence of 2% in 2026 in Amsterdam and Slove-
nia (100% of model fits), may achieve this impact in Belgium and

ST, opioid substitution therapy; PWID, people who inject drugs.
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Czech Republic (84% and 50% of model fits), but is unlikely to
(<10% of model fits) in other settings. Alongside increased OST
and NSP, France, Denmark, Norway, Scotland, Hamburg, Swe-
den, and Finland would need to scale-up their baseline treat-
ment rates by 2.2-, 2.8-, 2.8-, 3.6-, 4.7-, 10.3-, and 159-fold,
respectively. This is 20–60% less than if OST and NSP had not
been scaled-up.

Uncertainty analysis
The sensitivity analysis indicates that, for most sites, uncer-
tainty in three main factors contributes to variation in the rela-
tive decrease in chronic prevalence and incidence between 2016
and 2026 when treatment rates are doubled, but with differing
levels of influence between the sites (Fig. S4). The PWID popu-
lation size contributes 34–63% of the variation in Finland, Bel-
gium, Scotland, Slovenia, and Norway, and 80% in Sweden,
whilst the prevalence estimates contribute 32–53% of the vari-
ation in five of the sites (Slovenia, Belgium, Czech Republic,
Denmark, and Hamburg). The duration of injection is most
important in Amsterdam, contributing 85% of the variation,
but also contributes 25–48% in Scotland, Hamburg, Denmark,
Norway, Belgium, and Finland. In France, the estimated treat-
ment rate contributes 80% of the variation.

Discussion
Main findings
Treatment scale-up is needed to achieve observable reductions
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PWID at baseline (2015/2016, pale blue) and required scale-up in number of t
and NSP coverage is maintained (mid-blue, median and 95% credibility interval
reduce incidence to 2 per 100 pyr (2%) by 2026. Based on data from the sites, w
all PWID, and 70% treatment to PWID on OST and 30% treatment to PWID not
PWID, people who inject drugs; pyr, person years.
in chronic HCV prevalence among PWID in most sites in Europe,
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even with new DAAs. Doubling the DAA treatment rates may
lead to observable reductions (12–24% decrease) in chronic
prevalence by 2026 in Belgium, Denmark, Hamburg, Norway,
and Scotland; but not in Finland or Sweden. Exceptions include
Czech Republic, Slovenia, and Amsterdam, which, at current
HCV treatment rates, are projected to reduce chronic HCV
prevalence from a third to a half by 2026. This is because of
the low or decreasing prevalence of infection in these settings.
Alternatively, increasing OST and NSP coverage to 80% with
the current HCV treatment rates would reduce chronic HCV
prevalence by 17–20% in Finland and Hamburg, and 30–79%
in all other sites. Reducing HCV incidence to <2% by 2026
requires little action in Amsterdam, Czech Republic, and Slove-
nia, whereas in Belgium, Denmark, Hamburg, Norway, and Scot-
land it will require at least a fivefold increase in the current HCV
treatment rates, or 1.8- to 4.7-fold if OST and NSP are scaled-up
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Number of treatments per 1,000 PWID at baseline (2015/2016)
Number of treatments per 1,000 PWID in 2016/2017 with current OST and NSP
Number of treatments per 1,000 PWID in 2016/2017 with 80% coverage pf OST and NSP

incidence to 2 per 100 pyr by 2026. Current number of treatments per 1,000
atments per 1,000 PWID initially needed per year (2016/2017) if current OST
hown in the figure), or if OST and NSP are scaled to 80% coverage (dark blue) to
have treatment initially given only to those on OST, treatment initially given to
n OST. NSP, needle and syringe programme; OST, opioid substitution therapy;
Strengths and limitations
Our model projections and their interpretation are influenced
strongly by uncertainty in the parameters and evidence base.
First, we collected information from a range of sources and
obtained data not routinely collected across Europe (e.g. number
of PWID treated for HCV).6,28 Unfortunately, data collection was
inconsistent across sites, particularly estimates of PWID popula-
tion size, which were used to estimate HCV treatment rates.
Reliable PWID population-size estimates are difficult to obtain.
Except for Amsterdam where evidence suggests a falling popu-
lation15,29 we had to assume stable populations.
018 vol. 68 j 402–411
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Second, uncertainty in the chronic HCV prevalence among
PWID contributed substantially to the uncertainty in our projec-
tions, with estimates generated from a diverse range of sources
and rarely (except for Scotland) from ongoing community-
based surveillance.6,30

Third, the duration of injecting drug use is difficult to esti-
mate precisely and contributed to model uncertainty. We sam-
pled the average injecting duration from a range extending
from 6 to over 20 years. In the absence of clear evidence, we also
assumed that opioid and methamphetamine injectors had simi-
lar durations. If the true duration is towards the higher end of
our ranges, scaling-up HCV treatment will have a greater impact
on transmission. If towards the lower end, scaling-up OST and
NSP will have a greater contribution on reducing transmission.10

Fourth, DAA SVRs for PWID in ‘‘real world” settings are yet to
emerge, and so we assumed a range of 85–95%.31,32 Given the
short treatment duration and early treatment of a predomi-
nantly mild disease, it is likely that SVRs will be very high. How-
ever, it is possible that, as treatment is scaled-up among more
vulnerable PWID, the SVR may reduce. In general, the impact
of HCV treatment in our projections is relatively robust to varia-
tions in SVR. However, an uncertainty in SVR becomes more

influential in settings with lower chronic prevalence and higher

HCV treatment rates. Furthermore, we assumed that PWID who
had either cleared HCV spontaneously or after successful treat-
ment had the same risk of re-infection as the susceptible popu-
lation of PWID i.e. the per capita transmission probability of re-
infection was the same as for primary infection. There is some

evidence to suggest that previous spontaneous clearance could

22
result in higher rates of clearance for subsequent reinfection.
However, similar data surrounding spontaneous clearance of
reinfections after SVR do not exist. Infrequent testing intervals
can contribute bias, as some reinfections may go unnoticed.22,33

Observational studies have reported that reinfection after SVR
can be of a similar, higher, or lower rate than the background
rate of infection,34–38 indicating uncertainty in the evidence.
However, if the reinfection risk was lower than the primary
infection for people achieving SVR, or the spontaneous clearance
is higher for reinfections, then our model projections represent
conservative estimates for the number of treatments needed to
reduce prevalence and incidence across the different sites.

Fifth, we recorded substantial differences in coverage of OST
and NSP between sites that are incorporated into the baseline
model. In subsequent intervention scenarios, we either consid-
ered no scale-up of these interventions, or assumed their
scale-up to 80% coverage. This optimistic scenario may overes-
timate the likely impact of what could be achieved from
scaling-up OST and NSP, although some of our sites demon-
strate such coverage is possible. However, even if this scale-up
is possible, it is unlikely that it would be achieved quickly,
and so these projections may overestimate the real reduction
in HCV that could be achieved from scaling-up OST and NSP.

Sixth, the model does not incorporate information on HCV
case-finding and any future difficulty in diagnosing and treating
PWID with chronic HCV when HCV transmission and prevalence
have fallen to low levels. However, this limitation will only
affect a small number of the most optimistic model projections.

Seventh, we have not modelled HIV co-infection, which var-
ies across Europe and may impact both on linkage to services
and morbidity outcomes.

Finally, we assume no change in injecting-risk behaviour fol-
lowing HCV treatment—apart from through exposure to OST
Journal of Hepatology 2
and NSP, which is also included prior to HCV treatment. If
injecting risk was reduced following treatment,39 our assump-
tion provides conservative projections of impact.

Implications and comparisons with other literature
Multiple studies in specific countries and across Europe have
used statistical and mathematical model projections to suggest
that new DAA treatments need to increase to reverse trends in
end-stage liver disease.40–44 However, to project impact on
HCV transmission, a dynamic transmission model that can track
both reinfection and prevention of future infections is required,
alongside information on the number and proportion of individ-
uals from key populations, like PWID treated for HCV infection.
Consequently, there are fewer analyses that project impact on
HCV transmission.

An earlier study revealed a two- to threefold difference in
chronic HCV prevalence and four- to fivefold difference in base-
line HCV treatment rates in seven cities in the UK.45 We also
found considerable heterogeneity between sites in Europe. For
example, the Czech Republic and Slovenia both have baseline
chronic prevalence of <30%,25,46,47 whilst in Finland and Sweden
it is over 55%. Treatment rates also varied two- to threefold. At
baseline, 8/11 sites had low treatment rates (<10/1,000 PWID
treated annually), whereas France had a much higher treatment
rate (21/1,000 PWID treated annually). This is a consequence of
the high access to HCV treatment in France compared to other
countries.41 In this study, a greater decrease in prevalence for
Amsterdam is shown than was projected in other studies.15,48

However, this could be caused by differences in modelling the
decreasing epidemic to achieve the incidence estimate, and dif-
ferences modelling the PWID population and transmission
dynamics.

The lack of ongoing surveillance data, including PWID preva-
lence and HCV treatment rates among PWID, in many European
settings and comparable indicators between countries is impor-
tant and a public health concern. Using our model projections, it
was shown that scaling-up OST and NSP combined with switch-
ing to DAAs with comparatively small increases in the number
of PWID treated could generate substantial observable reduc-
tions in HCV prevalence in several sites. However, robust HCV
surveillance data among PWID were not always available and
chronic HCV prevalence was uncertain. To ensure that empirical
evidence of the impact of HCV treatment as prevention can be
generated, it is important that more attention is given to estab-
lishing robust surveillance systems to reduce the uncertainty
surrounding chronic HCV prevalence among PWID. The poten-
tial and relative costs of introducing effective HCV surveillance
are trivial compared to the costs of HCV treatment, and need to
be encouraged across Europe.
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