
Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Towards Software-Defined Radio on Configurable Hardware

2017•2018

PROMOTOR :

Prof. dr. ir. Nele MENTENS

PROMOTOR :

dr. ir. Wim AERTS

BEGELEIDER :

De heer Jori WINDERICKX

Karel Bertrands
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Towards Software-Defined Radio on Configurable Hardware

2017•2018

PROMOTOR :

Prof. dr. ir. Nele MENTENS

PROMOTOR :

dr. ir. Wim AERTS

BEGELEIDER :

De heer Jori WINDERICKX

Karel Bertrands
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Acknowledgements

When I reached my Bachelors degree and had to choose a subject for my Masters thesis last year,

I for sure knew that I wanted to do something which was entirely new to me. This way I would

be able to expand my knowledge as an industrial engineer electronics-ICT. That is why I searched

for something which did not have any strong connections with the elective courses I followed this

year. When reading through all the available projects, only few really sparked my interest. It took

me a lot of effort to get familiarized with the provided hardware and all the used protocols. But

in the end, despite the thesis not being what I expected from it, I still learned a lot of new things

which will certainly help me further on in my career.

I would like to thank some people for supporting me during my thesis and helping me reach my

goals. First, I would like to thank prof. dr. ing. Nele Mentens for giving me the opportunity to

work on my thesis at the Embedded Systems and Security research group. Without her experience

and knowledge I would not have been able to accomplish this project. Then, I would like to thank

dr. ing. Wim Aerts for all the information and insight he has provided during this year. Without

his experience, it would definitely have been a lot harder to understand the concepts used in this

thesis. I also would like to thank ing. Jori Winderickx for helping me get worked in and providing

valuable insights.

Finally I would like to thank my parents, family and friends for their support and interest in my

research during my thesis. Special thanks go out to Michiel Darcis and Sander Denorme for their

encouragements and friendship we had during the 4 years we studied together.

i

Contents

List of Tables v

List of Figures viii

Acronyms ix

Abstract xi

Abstract in Dutch xiii

1 Introduction 1

1.1 Context and Problem Statement . 1

1.2 Objectives . 2

1.3 Method . 3

2 Literature Study 5

2.1 Software Defined Radio . 5

2.1.1 Receiver . 5

2.1.2 Transmitter . 6

2.1.3 Digital Signal Processing . 6

2.1.4 Ideal Software Defined Radio . 7

2.2 Internet of Things Protocols . 8

2.2.1 ZigBee . 8

2.2.2 6LoWPAN . 9

3 Materials and Method 11

3.1 BladeRF x115 . 11

3.2 Message Repeater . 12

3.2.1 Defaul Architecture . 12

3.2.2 Repeater Architecture . 13

3.3 ZigBee Transceiver Matlab/Simulink Simulation 14

3.3.1 Transmitter . 14

3.3.2 Receiver . 15

3.3.3 Simulink Implementation . 16

3.4 Xilinx ISE Simulation . 17

3.4.1 Bit to Symbol Conversion . 17

3.4.2 Direct-Sequence Spread Spectrum (DSSS) Lookup Table 18

3.4.3 De-interlace . 18

3.4.4 Serializer . 19

3.4.5 Pulse Shaping . 19

4 Results 21

iii

4.1 Message Repeater . 21

4.2 Simulink Simulation Results . 23

4.3 HDL Simulation Results . 25

4.3.1 Design Summary . 25

4.3.2 Simulation . 25

5 Conclusion and Future Work 29

5.1 Message Repeater and Simulations . 29

5.2 Future Work . 30

Bibliography 31

Appendices 33

A: Diagrams of VHDL modules . 35

iv

List of Tables

Table 1 Internet of Things (IoT) nodes installed by category (Millions of Units) . . . 1

Table 2 DSSS mapping table . 15

Table 3 End-to-end delays created by (de)modulation configurations 17

Table 4 Results of Matlab functions and LUT values 20

Table 5 Bit Error Rate (BER) results for Simulink configurations with DSSS and

Maximum Likelihood Estimator (MLE) . 23

Table 6 BER results for Simulink transceiver configurations without DSSS and MLE 23

v

List of Figures

Figure 1 Channels of IEEE 802.15.4 standard . 2

Figure 2 Topology of basic software defined radio receiver 5

Figure 3 Topology of basic software defined radio transmitter 6

Figure 4 Topology of ideal software defined radio . 7

Figure 5 Possible ZigBee network topologies . 8

Figure 6 ZigBee protocol stack . 9

Figure 7 6LoWPAN protocol stack . 9

Figure 8 6LoWPAN mesh topology . 10

Figure 9 BladeRF x115 device . 11

Figure 10 Diagram of default FPGA image . 12

Figure 11 Connection between tx sample fifo and rx sample fifo 13

Figure 12 Zoomed-in view of architecture message repeater 13

Figure 13 BladeRF x115 device settings for message repeater architecture 14

Figure 14 Simplified diagram of ZigBee transmitter 14

Figure 15 Simplified diagram of ZigBee receiver . 15

Figure 16 Simulink system ZigBee transmitter . 16

Figure 17 Simulink single rate ZigBee receiver system with integer values 16

Figure 18 Simplified Very High Speed Integrated Circuit Hardware Description Lan-

guage (VHDL) modulator system . 17

Figure 19 Results of testbench for DSSS module . 18

Figure 20 Results of testbench for De-interlace module 18

Figure 21 Results of testbench for serializer module 19

Figure 22 Half sine pulses generated by the Offset-Quadrature Phase Shift Keying

(OQPSK) modulator . 20

Figure 23 6LoWPAN messages sent by the Zolertia Z1 node 21

Figure 24 Retransmitted I- and Q-samples when Zolertia is deactivated 22

Figure 25 Retransmitted I- and Q-samples when Zolertia is activated 22

Figure 26 Retransmitted I- and Q-samples when Zolertia is activated, but Bluetooth

emitter interferes . 22

Figure 27 BER values of Simulink transceiver systems 24

Figure 28 Screenshot of design summary of ZigBee physical layer modulation simulation 25

Figure 29 First part of HDL simulation . 25

Figure 30 Part of HDL simulation that illustrates clock cycle delay 26

Figure 31 Entire HDL simulation of ZigBee physical layer modulator 26

Figure 32 Zoom of HDL simulation . 27

Figure 33 Part of simulation that displays two clock cycle delay introduced by bit to

symbol block . 27

vii

Figure 34 Possible solution to solve delays in modulator system 30

Figure 35 Diagram of bit to symbol block and its neighbors 35

Figure 36 Diagram of DSSS LUT block and its neighbors 35

Figure 37 Diagram of De-interlace block and its neighbors 35

Figure 38 Diagram of serializer block and its neighbors 36

viii

Acronyms

ADC Analog to Digital Converter. 5–7, 15

AP Access Point. 9

ASIC Application Specific Integrated Circuit. 6, 7

AWGN Additive White Gaussian Noise. 23, 29

BER Bit Error Rate. v, vii, xi, 14, 23, 24, 29

BLE Bluetooth Low Energy. 2, 9

BRAM Block Random Access Memory. 11, 25

CLI Command Line Interface. 13, 14, 29

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance. 9, 30

CSV Comma Separated Value. 21

DAC Digital to Analog Converter. 6, 7, 12, 15, 16, 19, 20, 26, 29

DDC Digital Down Converter. 5, 6

DSP Digital Signal Processor. 6

DSSS Direct-Sequence Spread Spectrum. iii, v, vii, viii, xi, xiii, 14–18, 23, 25, 29, 30, 35

DUC Digital Up Converter. 6

FFD Full Function Device. 8

FFT Fast Fourrier Transform. 6

FIFO First In, First Out. 12, 13, 17–19, 25, 26, 30

FIR Finite Impulse Response. 5

FPGA Field Programmable Gate Array. 3, 7, 11, 12, 14, 17, 24, 29

GPP General Purpose Processor. 6, 7

HDL Hardware Description Language. xi, xiii, 3, 11, 17, 29, 30

IETF Internet Engineering Task Force. 9

IF Intermediate Frequency. 5, 6

ix

IoT Internet of Things. v, xi, xiii, 1–3, 8, 9, 11, 13, 30

IP Intellectual Property. 17

IPv6 Internet Protocol version 6. 2, 9, 10

LE Logic Elements. 11

LoRa Long Range Radio. 2

LSB Least Significant Bits. 14

MAC Media Access Control. 8, 9, 13, 14

MLE Maximum Likelihood Estimator. v, xi, xiii, 16, 23, 29

MQTT Message Queue Telemetry Transport. 2

MSB Most Significant Bits. 14

NFC Near Field Communication. 2

OQPSK Offset-Quadrature Phase Shift Keying. vii, 15–20, 23, 26

OSI Open System Interconnection. 2, 3, 15, 17

PHY Physical. 8, 9, 13

PSDU Physcial layer Service Data Units. 30

RAM Random Access Memory. 2

RF Radio Frequency. 5, 7, 12

RFD Reduced Function Device. 8

SDR Software Defined Radio. xi, 2, 3, 5–7, 11, 21, 29

SNR Signal to Noise Ratio. 23, 29

SPI Serial Peripheral Interface. 12

UART Universal Asynchronous Receiver-Transmitter. 12

VHDL Very High Speed Integrated Circuit Hardware Description Language. vii, 3, 17, 24, 29,

30

WSN Wireless Sensor Network. 9

XMPP Extensible Messaging and Presence Protocol. 2

x

Abstract

The evergrowing amount of IoT devices induce the need for multi-protocol gateways in order to

create heterogeneous networks. Modern-day IoT gateways are able to handle vast amounts of data,

but are difficult to reconfigure when adding nodes which use a new communication standard. The

goal of this thesis is to take a look at the role of configurable hardware within software-defined

radio gateways.

The approach to this thesis is divided into three parts. First, the architecture of the provided

bladeRF x115 Software Defined Radio (SDR) is configured to receive and retransmit 6LoWPAN

messages. This way, its capabilities as an IoT gateway were explored. Then, four different

Simulink/Matlab simulations are constructed to mimic a ZigBee transceiver system. All their

BER values are determined when passing a distorted channel and compared to implementations

without DSSS and MLE. Finally, based on these results, a ZigBee physical layer modulator Hard-

ware Description Language (HDL) simulation is constructed and tested.

The HDL simulation is able to convert 32-bit input sequences into 12-bit signed half sine samples

within 14 system clock cycles. Although the design induces some delays, it meets the required

functionality and forms a foundation for further research. Based on all the test results, it can be

concluded that acceleration through configurable hardware will play a significant role within IoT

multi-protocol gateways.

xi

Abstract in Nederlands

De groeiende hoeveelheid IoT-apparaten leidt tot de behoeft aan multi-protcol gateways zodat he-

terogene netwerken gecreëerd kunnen worden. Huidige gateways kunnen grote hoeveelheden data

verwerken, maar zijn moeilijker te herconfigureren wanneer een node met een ongekend protocol

gëıntroduceerd wordt. Het doel van deze thesis is de rol van configureerbare hardware binnen

Software Defined Radio (SDR) gateways te verkennen.

De aanpak tot deze thesis is verdeeld in drie delen. Eerst wordt de architectuur van de voorziene

bladeRF x115 aangepast zodat hij een 6LoWPAN-bericht ontvangt en heruitzend. Zo worden zijn

mogelijkheden als IoT gateway verkend. Vervolgens worden er vier verschillende Simulink/Matlab-

simulaties samengesteld die een ZigBee transceiver systeem imiteren. Al hun BER waarden worden

bepaald nadat een boodschap verzonden wordt over een verstoord kanaal. Deze waarden worden

vergeleken met implementaties zonder DSSS en MLE. Ten slotte, wordt er op basis van deze re-

sultaten een ZigBee fysische laag modulator simulatie gebouwd.

De HDL simulatie kan 32-bit ingangssequenties converteren naar 12-bit halve sinus samples bin-

nen 14 systeemklokcycli. Ondanks de gëıntroduceerde vertraging zal het modulatorsysteem een

uitganspunt vormen voor verder onderzoek. Gebaseerd op alle testresultaten, kan er geconclu-

deerd worden dat versnelling via configureerbare hardware een belangrijke rol zal spelen binnen

IoT-multi-protocol gateways.

xiii

Chapter 1

Introduction

1.1 Context and Problem Statement

The worldwide digitalization has a big impact on the expansion of the internet. Thanks to the ever

growing amount of electronic smart devices, a new collection of technologies, called the Internet of

Things (IoT), has emerged. It enables everyday objects like washing machines, lamps, door locks,

etc. to communicate with each other over the internet without user interaction [14]. A multitude

of applications have emerged. Farmers, for example, are now able to equip their livestock with

sensors which monitor fertility, movement, behavior and even lactation. All this information will

then be automatically transferred to the farmer’s mobile device when he is within a 1 km range

[19]. In the medical world the IoT is also gaining interest. Hospitals are equipping their beds with

IoT nodes so that they can determine how many of them are occupied and where they are located

at the moment. Another example to decrease downtime of critical medical devices integrates

sensors, which constantly provide information about their status; allowing mechanics to anticipate

upcoming failures. To prevent staff from searching for certain supplies; all machines, drugs, etc.

will be located and listed on a personal mobile device. All these applications will lead to an increase

in the hospital’s efficiency and so limiting the wait time for the patients during their stay [12].

Besides these useful and possibly life-safing IoT projects, there are a lot of applications which are

created for entertainment value. Griffin, for example, manufactures a Bluetooth connected toaster

which is able to send a notification when the toast has reached its desired level of crispness [25].

Other collectors items are the connected comb, which improves your hair combing procedure or

the WiFi-connected wine bottle sleeve. It is inevitable that all these new inventions, whether they

are useful or not, will establish a substantial amount of new machine-to-machine like connections.

These will lead to a tripling of the internet’s size in the coming 5 years [7]. According to Gartner

[11], there will be a total of 20.4 billion connected ‘things’ by 2020 as depicted in Table 1, while

Statista [13] predicts an amount of 30.7 billion.

Table 1: IoT nodes installed by category (Millions of Units) [11]
Category 2016 2017 2018 2020
Consumer 3,963.0 5,244.3 7,036.3 12,863.0
Business: Cross-Industry 1,102.1 1,501.0 2,132.6 4,381.4
Business: Vertical-Specific 1,316.6 1,635.4 2,027.7 3,171.0
Grand Total 6,381.8 8,380.6 11,196.6 20,451.4

1

All these smart devices will not rely on one IoT standard to establish communication. To this day

there exist a substantial amount of communication standards, which all enable machine-to-machine

data exchange. Protocols that take care of the network access and physical layer (Open System

Interconnection (OSI) model) are for example: ZigBee, Bluetooth Low Energy (BLE), Long Range

Radio (LoRa), WiFi, Near Field Communication (NFC) and many more. Examples for the internet

layer are: 6LoWPAN and Internet Protocol version 6 (IPv6). At the application level Message

Queue Telemetry Transport (MQTT) or Extensible Messaging and Presence Protocol (XMPP)

can be used. Of course, companies, hospitals and households which aim to introduce Internet of

Things to their surroundings would like to use nodes from various manufacturers. These might all

use a different combination of IoT standards, causing interoperability problems and preventing the

formation of a heterogeneous IoT ecosystem [20]. The need for a central gateway which acts as a

translator between the different protocols is undeniable. This hub will need to be able to explore

different regions of the radio spectrum as not all the physical level IoT protocols work in the same

frequency band. ZigBee, for example, uses 16 channels between 2.4 GHz and 2.4835 GHz worldwide

and 10 channels between 902 MHz and 928 MHz in America as depicted in Figure 1. WiFi on the

other hand, which relies on IEEE 802.11, occupies 5 distinct frequency ranges: 2.4 GHz, 3.6 GHz,

4.9 GHz, 5.0 GHz and 5.9 GHz.

Figure 1: Channels of IEEE 802.15.4 standard [16]

Companies like DELL, IBM, Intel and many more provide configurable IoT gateways which enable

heterogeneous IoT networking by scanning a wide range of the radio spectrum. All of them

are powerful computers equipped with quad-core processors and a vast amount of Random Access

Memory (RAM) to ensure reliable and fast data exchange. But as the size of data-packets continues

to grow, due to the increasing complexity or the type of information that is being sent (e.g. video),

gateways will need to be able to handle this growing amount of information without loss of speed.

Manufacturers are of course able to upgrade their processors and so increase the performance of

their product. But this requires an entirely new design of the gateway architecture. It is clear that

other solutions to create IoT gateways have to be explored.

1.2 Objectives

The focus of this thesis lies on further exploring the role of Field Programmable Gate Arrays

(FPGA) within Software Defined Radios (SDR) and how they can can be used as a multi-protocol

IoT gateway to connect nodes, which employ different protocols, to each other. To achieve this

goal it is necessary to accomplish the following objectives:

• execute a literature study to gain further insight in the functioning of a SDR but also examine

several IoT protocols which can be implemented;

2

• get better acquainted with the provided hardware by examining the device architecture and

completing several Field Programmable Gate Array (FPGA) tutorials provided by the man-

ufacturer;

• create a simple message repeater, which forms the foundation for a more complex multi-

protocol SDR gateway;

• construct a HDL simulation, which mimics the functionality of a physical level ZigBee mod-

ulation system, based on a Matlab/Simulink model.

• determine which steps need to be taken to implement a fully functioning multi-protocol

gateway on the provided hardware. This is based on the results of both the Matlab/Simulink

and HDL simulations.

1.3 Method

This thesis will consist of two phases. First, there will be an extensive literature study to gain

insight in the structure and working of a SDR and what role a FPGA can play within this concept.

Furthermore, there will be a closer look at the existing IoT protocols and how their nodes are able

to exchange information with each other and their supervising edge routers. As the IoT offers such

a wide range of usable standards on all levels off the OSI model, only two of the most implemented

standards, ZigBee and 6LoWPAN, were studied.

In the second part of the thesis, the development stage, there will be a closer look at the provided

hardware and how it can be used to implement existing IoT protocols, such as ZigBee, on its FPGA.

HDL files, more specifically VHDL files, will be written to create a simple physical layer message

repeater, which is locked on a certain frequency. This is done to further understand the device

structure. Next, based on the literature study, a low level ZigBee modulation and demodulation

system is created in Matlab/Simulink. This makes the transition towards implementation of IoT

protocols on a FPGA enabled SDR easier. Finally, using HDL simulation tools (Xilinx ISE Project

Navigator), a Physical level modulation system is created in VHDL. Based on evaluations of this

design, there will be decided which further steps will need to be taken to create a multi-protocol

SDR gateway.

3

Chapter 2

Literature Study

2.1 Software Defined Radio

2.1.1 Receiver

A basic SDR receiver typically consist of five big building blocks: an antenna, a radio frequency

tuner, an Analog to Digital Converter (ADC), a Digital Down Converter (DDC) and a digital

signal processing block as depicted in Figure 2. The Radio Frequency (RF) tuner converts RF

signals, received from the antenna, to Intermediate Frequency (IF) signals. These are then fed

into the ADC, which changes the signal’s domain and provides digital samples at its output. Next,

the samples enter the DDC-block which has three smaller components: a digital mixer, a digital

oscillator and a Finite Impulse Response (FIR) Low-Pass filter. The digital mixer and oscillator

multiply the digitized cosine with the phase channel and the digitized sine with the quadrature

channel, this respectively results in the sum and difference frequency. Then, the FIR Low-Pass

filter is applied to both the phase and quadrature channels. This results in a frequency band

which is substantially reduced to its desired baseband, hereby retaining all its information [24].

Finally, the digital signal processing block demodulates and decodes the baseband signals so that

the embedded information is interpretable and ready to be handled.

Figure 2: Topology of basic software defined radio receiver [21]

5

2.1.2 Transmitter

A SDR transmitter basically consists of the same elements as the receiver. The ADC is replaced

by a Digital to Analog Converter (DAC) and the Digital Down Conversion block is replaced by a

Digital Up Converter (DUC). Moreover, the DUC consists of three blocks: an interpolation filter,

digital mixer and digital oscillator. Its purpose is to upscale the baseband samples coming from

the digital signal processing block to intermediate frequency (IF) signals, which are then fed into

the DAC, amplified and send out by the antenna. All this can be seen in Figure 3.

Figure 3: Topology of basic software defined radio transmitter [21]

2.1.3 Digital Signal Processing

As discussed earlier, both the transmitter and receiver respectively collect from or feed samples

to the digital signal processing block, which represents the main functionality of the SDR. It will

implement functions like (de)modulation, (de)coding, filtering and more. As its name suggests, a

Software Defined Radio needs to be reconfigurable. Therefore, when implementing a SDR, there

are multiple alternatives to choose from:

• an Application Specific Integrated Circuit (ASIC) is specifically developed for a certain

application, which means it is not (re-)programmable and contradicts with the basic principle

of a SDR. However, their economical advantage when produced in large numbers and low

power consumption has made them worth considering [23]. They are generally used for analog

to digital conversion, filtering and digital down conversion (DDC) as these modules require

a specialized hardware structure to operate in real-time;

• a General Purpose Processor (GPP) is mostly found in personal computers as it pos-

sesses the ability to process digital signals and so edit text, display multimedia, etc. Because

General Purpose Processors are not integrated with a specific programming languages nor

software, they are very flexible and easy to configure. In SDRs they are used to decode

received messages, perform Fast Fourrier Transform (FFT), make decisions or analyze data.

Compared to the ASICs, what GPPs lack in process intensity and energy efficiency, they

make up for in flexibility [23];

• a Digital Signal Processor (DSP) is a specialized microprocessor that is optimized for the

operational needs of digital signal processing. Although its flexibility is significantly lower

than the GPP’s, the DSP has a better performance when used in a SDR [23];

6

• a FPGA is mostly used when an application requires high computing power, which it acquires

through hardware parallelism, at a relatively low power consumption. Bhandari et al. [3] held

a case study comparing the size, power and cost of a Xilinx Virtex4-SX25 FPGA, a Power6

GPP and a Freescale SC8144 ASIC. The FPGA operated at a frequency of 500 MHz, has a

computation rate of 256 GMAC/s and power consumption of 4 W. Its total size of 726 mm2

is less compared to the 841 mm2 of the Freeschale SC8144, which operates at 1 GHz, has a

computation rate 16 GMAC/s and a power consumption of 4.5 W. The Power6 operates at

a frequency of 4.7 GHz and has a computation rate of 120 GFlop/s. Its power consumption

was not measured during the tests. Overall, the FPGA has a superior flexibility and power

consumption to computation rate. But, depending on the implementation a GPP or ASIC

may still be more suited [3].

2.1.4 Ideal Software Defined Radio

Most of the current radio communicating systems are hardware based. This implicates that their

radio functionalities are not reconfigurable and that they are limited to the wireless protocols that

were coded onto the device. In addition, one single failure in the software, hardware or firmware

would make the entire system unusable [21]. A software defined radio (SDR) is able to circumvent

these two complications because its physical layer functions are software determined. An ideal

SDR, depicted in Figure 4, would at the receiver side consist of an antenna and an Analog Digital

Converter (ADC). Likewise, the transmitter would contain a Digital to Analog converter (DAC)

and an antenna. A reprogrammable processor would handle all the signal processing functionalities

[9],[21]. Until today, however, no manufacturer has succeeded to create a functioning SDR that

meets these requirements because of the following reasons [9]:

Figure 4: Topology of ideal software defined radio

• the antenna of an ideal SDR should be able to explore the entire frequency spectrum (from

< 1 MHz to > 300 GHz). Designing such wideband-antenna is to this day still impossible;

• a key feature of the RF front end is to select the relevant signals and reject the interferers.

The electromechanical structures, used by the antennas and filters for channel selection, are

hard to tune dynamically. This is why the entire spectrum will be digitized. Nyquist’s crite-

rion, which states that the sample frequency must be twice the maximum signal frequency,

implicates that the performance of currently available analog to digital converters is nowhere

near;

• because the signal strength of the region of interest can be much lower than the strength

of interfering signals, power differences can be substantial (up to 120 dB) [9]. This makes it

nearly impossible to isolate the desired signal.

7

2.2 Internet of Things Protocols

As IoT nodes are constrained towards power consumption and processing power, the need for

dedicated communication protocols emerged. Nowadays, there are a multitude of Internet of

Things standards which are easily adopted by cloud service providers, software developers and

device manufacturers. All of the protocols differ in factors such as security, range, power demands,

etc. The following section will give an overview of two major communication technologies that are

being used to this day.

2.2.1 ZigBee

ZigBee is a short-range Internet of Things communication standard, developed by the ZigBee

Aliance. It is specially designed for low-power, low-cost and low-data-rate wireless networks which

occupy a wide range of battery-powered, low capability, low-cost sensors, actuators and controllers

[17]. These devices operate in 3 different frequency bands: 868 MHz, 915 MHz or 2.4 GHz [5],

[22]. Applications that might use this standard are home automation/monitoring and industry

control systems. ZigBee supports three types of network topologies: mesh, tree and star which

are depicted in Figure 5. Using the mesh topology results in higher reliability and a wider range

[5]. Every topology consists of a coordinator and a Full Function Device (FFD), which is the node

that creates the network, collects all the transmitted data and assigns addresses to newly added

devices. A router (FFD) acts as an intermediate device. It joins a network that already exists

and relays data from its ‘children’ to the coordinator and the other way around. The third and

final component of a ZigBee topology is an end device, Reduced Function Device (RFD) [22]. This

simple node is not able to have children nor able to forward packets.

Figure 5: Possible ZigBee network topologies [22]

Figure 6 depicts the ZigBee protocol stack, which consists of 4 layers: application, network, Me-

dia Access Control (MAC) and Physical (PHY). IEEE 802.15.4 defines the specifications for the

physical and medium access control layer, but it is not involved in higher networking layers. Ap-

plication, network and security layer related specifications are controlled by the ZigBee standard

[17]. Therefore, a ZigBee communication network conforms the IEEE 802.15.4 standard in order

to function efficiently.

8

Figure 6: ZigBee protocol stack [1]

2.2.2 6LoWPAN

6LoWPAN is, just like ZigBee, a low-cost, low-power, short range and low-data-rate Internet of

Things open standard. This protocol, created by the Internet Engineering Task Force (IETF),

provides IPv6 routing capabilities over a IEEE 802.15.4 Wireless Sensor Network (WSN) [15].

Figure 8 depicts an IPv6 enabled 6LoWPAN mesh network. An Access Point (AP) acting as a

IPv6 router provides an uplink to the internet. Typically it is connected to several devices such

as PC’s and servers. Communication between the IPv6 network and the 6LoWPAN network is

established by a 6LoWPAN edge router. Its main functions are: data exchange between locally

connected devices, data exchange between 6LoWPAN devices and the internet and maintenance

of the radio subnet [15]. Connections to other networks, such as ZigBee and BLE, are possible

through either IP routers or 6LoWPAN edge routers that forward IP datagrams to an IoT gateway,

which translates the messages. Within a 6LoWPAN network there are typically 2 devices included:

routers and hosts. Routers are able to collect and forward data to other nodes in the same network.

While hosts, also known as end devices, are not able to direct trafic. They are usually ‘sleeping’ and

so often check in with their parents for data [8]. Figure 7 depicts the structure of the 6LoWPAN

protocol stack.

Figure 7: 6LoWPAN protocol stack [15]

Just like ZigBee, 6LoWPAN adopts the IEEE 802.15.4 standard to take care of the Physical (PHY)

layer and Media Access Control (MAC) layer. The PHY layer defines a total of 27 available channels

which are allocated into 3 different frequency bands: 868 MHz, 915 MHz or 2.4 GHz. The tasks of

the MAC layer consist of Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA),

beacon generation and synchronization, etc. [8]. The 6LoWPAN standard is part of the data link

layer (OSI model). It takes care of the adaptation from IEEE 802.15.4 to IPv6 and the other way

9

around. During transmission it detects and corrects errors that may occur, this way it ensures a

reliable data exchange between two directly connected nodes. The upper tiers of the OSI model

such as the network, transport and application layer are respectively taken care of by the IPv6

standard, UDP/TCP and HTTP/COAP/MOTT/etc.

Figure 8: 6LoWPAN mesh topology [15]

10

Chapter 3

Materials and Method

After explaining the functioning of a SDR and how a FPGA can enhance its performance, the

first part of this section takes a look at the hardware that will be able to support a reconfigurable

IoT gateway. Next, section 3.2 describes the implementation of a simple message repeater on the

used hardware, shaping a clear image of its possibilities. Finally, section 3.3 and 3.4 explain how

a physical layer (de)modulation system can be constructed through use of Matlab/Simulink and

Xilinx ISE simulation tools. This design can form a base for a reconfigurable multi-protocol SDR

gateway.

3.1 BladeRF x115

The bladeRF x115, depicted in Figure 9, is a powerful, but yet affordable Software Defined Radio

manufactured by Nuand. It is able to detect frequencies ranging from 300 MHz up to 3.8 GHz

without the need for an external expansion board. The bladeRF is equipped with a LimeMicro

LMS6002D fully integrated RF transceiver, which is able to detect anything from simple FM

audio to 4G LTE. The fact that its transmitter and receiver sides are both separately configurable,

allows users to receive messages from one protocol node, process the information and retransmit the

data to a node using another protocol. At peak performance the bladeRf is capable of occupying

28 MHz of bandwidth, making it an ideal solution for reconfigurable, multi-protocol gateways. The

FPGA-chip equipped on the bladeRF x115 is an Altera Cyclone IV, which possesses 114,480 Logic

Elements (LE) and a total amount of 3,888 kbits Block Random Access Memory (BRAM) [6]. It

acts as an interface between the LMS front end and FX3 microcontroller and is capable of extensive

digital signal processing. All of the bladeRF libraries, utilities, firmware, schematics and platform

HDL are available online under an open source license. This makes it a suited tool for exploring

the implementation of IoT protocols on reconfigurable hardware.

Figure 9: BladeRF x115 device [6]

11

3.2 Message Repeater

3.2.1 Defaul Architecture

The FPGA includes an Altera NIOS II soft core processor which is clocked at 80 MHz for command

and control. The main purpose of the default FPGA image is to shuffle captured I/Q samples

between the LMS6002D transceiver and FX3 microconroller. Other occupations are:

• interacting with expansion boards,

• controlling SPDT RF switches lying between the LMS6002D transceiver and the SMA

RX/TX ports,

• configuring the LMS6002D via Serial Peripheral Interface (SPI) based on commands it

received from the FX3 microcontroller over Universal Asynchronous Receiver-Transmitter

(UART),

• controlling the Si5338 clock generator chip,

• controlling the VCTCXO DAC [4].

Figure 10 depicts a simplified diagram of the modules that the I/Q samples flow through in the

default image. At the LMS6002D block, I/Q samples consist of a 12 bit signed I-sample and a 12

bit signed Q-sample. When entering the FPGA, I/Q samples are sign extended to 16 bit, for ease

of use in the FX3 firmware. At the transmit side, samples are sent from the FX3 to the FPGA

over a bidirectional bus to the fx3 gpif module. This block handles the driving and releasing of

the received samples which are then fed into an asynchronous First In, First Out (FIFO) to realize

a clock domain crossing. Samples then pass the fifo reader block where they are split into the I-

and Q-samples. Corrections regarding DC offset or other imperfections are amended in the tx iq

correction module. Finally, to create a time-multiplexed output signal, the I- and Q-samples are

firstly sign contracted to 12 bits and then at alternating clock cycles fed into the LMS6002D chip.

Figure 10: Diagram of default FPGA image [4]

When samples are being received by the default image, they enter the FPGA as 16 bit sign extended

signals through the rx mux process. Based on the mode the FPGA is in, the multiplexer will pass

different signals. In RX MUX NORMAL mode, raw I- and Q-samples are passed. The RX MUX

12BIT COUNTER and RX MUX 32BIT COUNTER mode will pass 12-bit/32-bit counter signals

which are used to detect if samples are being lost in the USB connection. The blocks that follow

after the multiplexer are basically the reverse of the transmit side.

12

3.2.2 Repeater Architecture

The reason why a simple message repeater was created is to form a base for later implementation

of IoT protocols. In the default image, samples are being collected, shuffled and passed on to the

host computer which is controlling the bladeRF x115. When transmitting, samples are loaded

from a file onto the board via the FX3 microcontroller, shuffled and send out by the radio front

end. In a stand-alone, multi-protocol gateway, the bladeRF has to operate without the need for a

host computer which controls the center frequency, bandwidth, sample rate, etc. To come as close

as possible to this functionality some minor changes were made to the default architecture. First,

as depicted in Figure 10 the samples always pass through the fx3 gpif block and so communicate

with the host PC. Not all control signals are displayed on the diagram, but to limit computer

interaction both the sample data and meta data FIFOs are connected to each other. As depicted

Figure 11: Connection between tx sample fifo and rx sample fifo

in Figure 11, the data coming from the receiver side will be passed on to the transmit side when

both the rx sample fifo is not full and the tx sample fifo is not empty. Other signals, coming

from the FX3 module, are left untouched as they are needed to configure the bladeRF at startup

via the Command Line Interface (CLI). Blocks such as the fifo reader, tx iq correction, fifo

writer, rx iq correction and rx mux are still in use, as they are only responsible for I/Q

sample shuffling and splitting. Figure 12 depicts the changed subsection of the message repeater

architecture.

Figure 12: Zoomed-in view of architecture message repeater [4]

To test the functionality of the architecture, a programmable Zolertia Z1 node is configured to emit

a repetitive 6LoWPAN message. As mentioned in 2.2.2, 6LoWPAN relies on IEEE 802.15.4 for

the PHY and MAC layer. Worldwide, the available frequency spectrum for this standard ranges

from 2.4 GHz to 2.4835 GHz with 16 channels which are 2 MHz wide. For this test, channel 26

was selected. A simple script was written to tune the bladeRF x115 so that it is able to detect

13

and retransmit the messages. The center frequency and sample rate are respectively set to be

2480 MHz and 1 MHz. While trying to set the bandwidth to 2 MHz, as is required for an IEEE

802.15.4 channel, the CLI is not able to and clamps it to 2.5 MHz. Figure 13 summarizes the device

settings for the repeater architecture.

Figure 13: BladeRF x115 device settings for message repeater architecture

3.3 ZigBee Transceiver Matlab/Simulink Simulation

The transceiver is designed in Matlab/Simulink using multiple fundamental building blocks pro-

vided by all the available toolboxes (e.g. Communications system toolbox). This shows how a cost

effective and yet efficient radio transceiver can be constructed using complex modulation schemes.

All the used building blocks are provided with an extensive amount of documentation and so give

more insight in how a FPGA based solution can be created. This section will first explain what

the requirements for a physical layer ZigBee transmitter are and how they are realized in Simulink.

Then will be explained how a compatible physical layer ZigBee receiver is constructed. Finally,

the performance of the transceiver system is tested by calculating the BER.

3.3.1 Transmitter

Figure 14 depicts a simplified flow diagram of the ZigBee transmitter. The input bitstream coming

from the MAC-layer enters the transmitter at a rate of 250 kbps. It will first pass a bit to symbol

mapping block. Here, bytes are split into two 4-bit symbols, the 4 Most Significant Bits (MSB)

and 4 Least Significant Bits (LSB). Each 4-bit symbol then enters the symbol to chip block where

they will be spread to a certain 32-bit value. This technique is called DSSS. IEEE 802.15.4 uses a

predefined mapping table of sixteen pseudorandom noise 32-bit values to realize DSSS, as illustrated

in Table 2. Spreading is applied to improve the resistance to (un)intended jamming of the signal,

increase the frequency of the information signal to 2 kchips/s and improve the signal to noise ratio.

Figure 14: Simplified diagram of ZigBee transmitter

14

Table 2: DSSS mapping table [22]
Data Symbol (b3 b2 b1 b0) Chip Value (c31 c30 c29 c1 c0)
0000 01110100010010101100001110011011
0001 01000100101011000011100110110111
0010 01001010110000111001101101110100
0011 10101100001110011011011101000100
0100 11000011100110110111010001001010
0101 00111001101101110100010010101100
0110 10011011011101000100101011000011
0111 10110111010001001010110000111001
1000 11011110111000000110100100110001
1001 11101110000001101001001100011101
1010 11100000011010010011000111011110
1011 00000110100100110001110111101110
1100 01101001001100011101111011100000
1101 10010011000111011110111000000110
1110 00110001110111101110000001101001
1111 00011101111011100000011010010011

The 32-bit pseudorandom noise sequences then enter the OQPSK block where they are demulti-

plexed into an Inphase (I) signal and a Quadrature (Q) signal [10], [22]. These signals are then

used for half-sine pulse shaping. A chip ‘1’ is shaped into a positive half sine, while a chip ‘0’ is

shaped into a negative half sine according to the following formula [2]:

p(t) =

sin(π t
2Tc

) 0 ≤ t ≤ 2Tc

0 otherwise

To ensure a continuous phase change in the output signal the Q-samples are given an offset of half

a chip interval. The purpose of pulse shaping is to match the signal’s frequency spectrum to the

available channel bandwidth [10]. Finally, the OQPSK modulated I- and Q-samples are passed on

to the DAC where they are converted to an intermediate frequency and eventually send out by the

radio front end.

3.3.2 Receiver

Figure 15 illustrates a simplified diagram of a ZigBee receiver. Analog samples are captured by the

radio front end, digitized by the ADC and then fed into the OQPSK demodulator block to convert

half sine waves into chips. These chips are then grouped and used as input for the de-spreading

block. DSSS-despreading is realized by correlating the input values to 32-bit pseudorandom noise

sequences in a lookup table. Its output are 4-bit data samples, which are send to the higher layers

of the OSI model for further processing.

Figure 15: Simplified diagram of ZigBee receiver

15

3.3.3 Simulink Implementation

The input for the Simulink model is generated by a random integer generator with a sample

time of 1.25e-7 seconds (250 kbps). Its output type is set to binary because the ease of use in

further calculations. A simple buffer is used for bit to symbol mapping. It collects 4 samples and

outputs them as a frame to the bit to integer converter. This block creates an integer number

between 0 and 15, which serves as input for the DSSS lookup table (Table 2). Finally, the 32-

bit pseudorandom noise sequences are passed on to the OQPSK block, which is provided by

the Matlab communications system toolbox. Because the bladeRF has an on-board DAC, the

transmitter system stops here. The modulation delay of the entire system is directly correlated to

the setting of the OQPSK block. That is why four distinct transmitters, which all use the same

building blocks as depicted in Figure 16 but different OQPSK configurations, were constructed.

Their settings and respective delays are summarized in Table 3.

Figure 16: Simulink system ZigBee transmitter

The input for the ZigBee receiver model is the output of the transmitter system after it has passed

through a configurable AWGN channel. This, as the name implies, adds white Gaussian noise to

the data that is being transmitted. Upon entering the receiver system, data will first pass the

OQPSK demodulator block, which at its output provides a 32-bit pseudorandom noise sequence.

This value then enters one of four different modules to compensate the delay induced by the

modulation settings depicted in Table 3. As the AWGN channel adds noise to the received signal,

the OQPSK demodulator may provide a wrong ‘translation’ at its output. A MLE is implemented

to prevent the receiver system from using this wrong 32-bit pseudorandom noise sequence that does

not match one of the sixteen values in Table 2. In turn to find out the corresponding symbol, the

MLE block calculates the minimum hamming distance between each incoming 32-bit chip sequence

P and all the pseudorandom noise sequences PN. Hamming distance is the number of different

positions between two bit strings of equal length [22]. Finally, the output of the MLE is passed on

to the DSSS lookup table for chip to symbol conversion as illustrated on Figure 17.

Figure 17: Simulink single rate ZigBee receiver system with integer values

16

Table 3: End-to-end delays created by (de)modulation configurations
Rate Option Input/Ouput data type End-to-end delay (in samples)
Enforce single-rate Integer 1

Bit 2
Allow multi-rate Integer length data + 1 + 1

Bit length data + 2 + 2

3.4 Xilinx ISE Simulation

This section describes the transition from a simplified physical layer ZigBee transceiver to a func-

tioning VHDL simulation. By studying the Matlab/Simulink implementation and its used building

blocks, a better understanding of what an IEEE 802.15.4 OQPSK (de)modulator does and how it

functions was acquired. Although, Matlab provides conversion tools from Simulink to HDL code

(HDL-coder), none of the modules used were translatable. That is why every component used in

the simulation is either written from scratch or Intellectual Property (IP) provided by Xilinx. The

software tool used to generate the VHDL-files is the free Xilinx ISE WebPACK, which provides

full HDL synthesis, simulation, device fitting, implementation and JTAG programming. As the

embedded Cyclone IV FPGA, installed on the bladeRF, is manufactured by Intel (Altera), only

the synthesis and simulation tools can be explored. Intellectual property modules generated in the

project are of course not usable for implementation on the bladeRF x115, but to solve this problem

Intel provides similar IP blocks. Before constructing the entire modulator, the functionality of all

VHDL components was tested and validated by several testbenches which described different kind

of situations. To understand the flow of the created architecture this section first takes a look at the

entire modulator and then explains the role of each component individually. Figure 18 illustrates

a simplified diagram of the architecture. Not all control signals are included because they would

affect the readability of the chart.

Figure 18: Simplified VHDL modulator system

3.4.1 Bit to Symbol Conversion

Like in 3.3.1, the input signal needs to be converted to 4-bit sequences in order to enter the DSSS

block. The bit to symbol module takes a 32-bit signal coming from either the receiver side or a

higher layer of the OSI model. Because it takes multiple clock cycles to process one 32-bit signal,

a FIFO is needed to store all the input sequences. At every rising edge of the clock the bit to

symbol block checks whether the FIFO is empty or not. In case that the FIFO is not empty, the

block reads a 32-bit sequence and at every clock cycle it outputs a 4-bit symbols until the entire

word is processed. In the other case were the FIFO is empty, undefined values are passed through.

The entire duration of processing one 32-bit sequence is ten clock cycles. The first two are lost due

to the reason that the empty signal coming from the FIFO has to be read and the read signal

going to the FIFO has to be written. The other eight (32/4 = 8) cycles are dedicated to sending

17

out the 4-bit values. In order to prevent following blocks from using the undefined or zero values,

that are being passed through when the FIFO is empty, a valid signal is set to high when valid

4-bit symbols are vented. A more detailed schematic on how the FIFO is connected to the bit to

symbol block is depicted in figure 35 of Appendix A.

3.4.2 DSSS Lookup Table

Just like in the Matlab/Simulink simulation the DSSS lookup table is based upon Table 2. At every

rising clock edge this block will assign the output of the bit to symbol module to an internal

signal. This enters a case statement to output the right DSSS sequence. There is no noticeable

delay between input and output as is illustrated in Figure 19. The following 4-bit symbols are

loaded at successive rising edges of the clock: 1000, 1010, 0000, 0110. Their corresponding 32-

bit pseudorandom noise sequences are provided at the output within the same clock pulse. A

more detailed schematic on how the DSSS lookup table is connected to its neighboring modules is

depicted in Figure 36 of Appendix A.

Figure 19: Results of testbench for DSSS module

3.4.3 De-interlace

Although this block is not depicted in figure 18, it plays a significant role in the OQPSK modulation.

At every rising clock edge it takes the output coming from the DSSS block and separates the even

bits from the odd bits. This results in a 16-bit I-sample and a 16-bit Q-sample. These are send to

the pulse shaping module. The following example further explains the functionality:

• 32-bit input sequence: 10101010111111110011010100101000,

• 16-bit even (I-sample): 0000111101110000,

• 16-bit odd (Q-sample): 1111111101000110.

Figure 20 is the simulation result corresponding to the previous example. It is clearly visible that

there is no delay introduced from input to output. The odd and even values are calculated within

the same clock cycle as the input is set. Further details on how this block is connected to its

neighbors are depicted in Figure 37 of Appendix A.

Figure 20: Results of testbench for De-interlace module

18

3.4.4 Serializer

For the pulse shaping block to do its work, the incoming 16-bit I- and Q-samples need to be seri-

alized. Because it takes multiple clock cycles to process one 16-bit sequence, a FIFO is introduced

to store the incoming signals. At every rising clock edge the serialize block checks whether the

FIFO is empty or not. In case the FIFO is filled, the module reads a 16-bit value and releases one

bit every clock cycle until the entire sequence is processed. This outputting happens at a another

clock rate than the reading of the values in order for the OQPSK modulator to work, but this is

explained in 3.4.5. The different clocks are realized by implementing a clock divider which uses

the fastest clock as its input. At every rising edge it increases a counter until a certain value is

reached. It then sets its output to high and resets the counter. By receiving and sending out a

valid signal, pulse shaping of undefined or zero values is prevented. The duration of processing

an entire 16-bit sequence is eighteen clock cycles, as can be seen on figure 21, which depicts the

results of a testbench where 1010110011000111 is loaded in at the first clock cycle. For this test

the output clock period is set to 20 ns, while the input clock period was 10 ns. These values are

chosen just for test purposes and are not related to an OQPSK modulator in any way. The first

two cycles are lost due to the reason that the empty signal coming from the FIFO has to be read

and the read signal has to be written. Remaining cycles are dedicated to sending out the bits. As

indicated by the yellow markers on figure 21, the total time the validbit signal is high is 320 ns,

corresponding to 320 ns / 20 ns = 16 cycles. More information about how the serialize block is

connected to its neighbors is depicted in Figure 38 of Appendix A.

Figure 21: Results of testbench for serializer module

3.4.5 Pulse Shaping

This module is the last block of the OQPSK modulation system. A bit stream is received and

converted to half sine samples, which serve as input for the DAC. All this is done to limit the

occupied bandwidth of the effective transmission and keep intersymbol interference under control.

The pusle shaping module receives the serialized bits, coming from the previous module, at a

different clock rate than the entire architecture. Every incoming bit has to correspond with either

a negative half sine pulse when zero or a positive half sine pulse when one, as depicted in Figure

22. Because the bladeRF allows the sample rate to be a rounded plural of the symbol rate (62.5

ksymbols/s); instead of implementing the formula explained in 3.3.1, a simple lookup table can be

used.

19

Figure 22: Half sine pulses generated by the OQPSK modulator

The LUT contains eight different sine samples which all need to be outputted within a single clock

pulse. To alleviate this problem, the bits are supplied at a clock rate which is eight times the

system clock (clock period: 1
62.5ksymbols/s = 16ns). Following formulas determine the LUT values:x = [0 : 6π

49 : 6π
7]

y = sin(x)

Variable x forms an array of eight equidistant values between 0 and 6π
7 . By using these as input

for a sine, y is filled with eight equidistant values from the first half. The results of these simple

math equations are depicted in Table 4. Of course, these values need to be converted to usable bit

sequences. By looking at the provided documentation is deduced that the VCTCXO DAC needs a

12-bit signed value as input [18]. The maximum value of a 12-bit singed sequence (011111111111)

corresponds to 2047. Row two in Table 4 is transformed by multiplying every value with this

maximum and then converting it to a signed sequence. This is illustrated in row three and four

of Table 4. The penultimate step of the OQPSK modulation is to delay the odd half sine pulses

by half a symbol interval. By using a shift register which can store up to 4 (4samples
8samples/symbol = 0.5

symbol) sine samples this was realized. Finally, the I and Q sine samples enter a multiplexer to

connect them to the DAC. As mentioned in [4], the selection signal of this mux is clocked at two

times the sample rate in order to prevent the loss of I and Q samples. More information about

how the pulse shaping block is connected to its neighbors is depicted in figure 38 of Appendix

A.

Table 4: Results of Matlab functions and LUT values
x y y * 2047 signed LUT values

0 0 0 000000000000
0.3847 0.3753 768 001100000000
0.7694 0.6957 1424 010110010000
1.1541 0.9144 1872 011101010000
1.5387 0.9995 2046 011111111110
1.9234 0.9385 1921 011110000001
2.3081 0.7403 1515 010111101011
2.6928 0.4339 888 001101111000

20

Chapter 4

Results

4.1 Message Repeater

As stated in 3.2, the architecture is tested by configuring the SDR to receive a 6LoWPAN message

emitted by a Zolertia node. Using Putty, a software solution used for determining serial commu-

nication over a computer’s COM-ports, there can be checked what message was send. Based on

Figure 23, there can be concluded that the Zolertia Z1 node sends a 28-bit repetitive message.

The bladeRF x115 provides the possibility to cache the retransmitted analog I- and Q-samples

by storing them in Comma Separated Value (CSV) files. This is used to determine the quality of

the message repeater. Following three situations are simulated: the Zolertia node is deactivated,

the Zolertia node is activated and the Zolertia node is activated but a Bluetooth emitter disrupts

the send messages. Figures 24 depict the first situation where the node is inactive. Very noisy

samples, which have no structure whatsoever, are received and retransmitted. Figure 25 depicts

the situation where the node is activated and sending a repetitive message. Both the I- and Q-

samples are clearly less random than the previous situation. Of course, some minor interference

is inevitable, but the repetitive structure is clearly visible. Finally, Figure 26 depicts the received

and retransmitted I- and Q-samples when the Zolertia node is activated but a Bluetooth emitter

disturbs the received messages. The samples’ amplitude is significantly higher than in previous

situations. As a result of this, the repetitive messages are less distinguishable from the rest of

the signal. Based on all these results there can be concluded that the message repeater meets

its required functionality. It has potential to form a base for implementation of a multi-protocol

gateway on the bladeRF x115, but in order to achieve this more signal processing blocks need to

be added. These will have to filter unwanted signals send by nodes which are not connected to the

heterogeneous network.

Figure 23: 6LoWPAN messages sent by the Zolertia Z1 node

21

Figure 24: Retransmitted I- and Q-samples when Zolertia is deactivated

Figure 25: Retransmitted I- and Q-samples when Zolertia is activated

Figure 26: Retransmitted I- and Q-samples when Zolertia is activated, but Bluetooth emitter
interferes

22

4.2 Simulink Simulation Results

To test the performance of the four ZigBee transceiver systems, seven different Signal to Noise

Ratio (SNR) values for the Additive White Gaussian Noise (AWGN) signal are applied. This way

gradually more noise is introduced to the transmitted information. At the receiving end of the

systems, the BER is calculated to determine which design is most suited. BER of a modulation

technique means the number of bits corrupted to the total amount of transmitted bits. Each test

evaluates 1 million samples send over both an implementation with DSSS and maximum likelihood

detection and an implementation without these functionalities. This way the results, summarized

in Table 5 and Table 6 are comparable. The names of the ZigBee transceivers are based on the

fact if they employ single- or multi-rate and the input/output type (integer or bit). Single-rate

ensures that the model’s input and output employ the the same port sample time. In this mode

the output size of the OQPSK block is an integer multiple of the samples per symbol parameter,

in this case 4 ∗ 32-bits = 128-bits. Multi-rate processing allows the input and output port to have

disparate sampling periods. Its output sample time is equal to the symbol period divided by the

samples per symbol parameter.

Table 5: BER results for Simulink configurations with DSSS and MLE
SNR
(dB)

Single-rate
(Integer)

Single-rate
(Bit)

Multi-rate
(Integer)

Multi-rate
(Bit)

0 0 0 0 2.5e-5
-2 4.4e-5 1.8e-5 0.0002 0.0004
-4 0.0014 0.0007 0.0038 0.0047
-8 0.0655 0.0368 0.0902 0.0755

-16 0.3816 0.3321 0.3956 0.3643
-32 0.4913 0.4865 0.4922 0.4887
-64 0.5004 0.5002 0.5009 0.4998

Table 6: BER results for Simulink transceiver configurations without DSSS and MLE
SNR
(dB)

Single-rate
(Integer)

Single-rate
(Bit)

Multi-rate
(Integer)

Multi-rate
(Bit)

0 0.0336 0.0225 0.0627 0.0823
-2 0.0810 0.0556 0.1073 0.1111
-4 0.1447 0.1029 0.1669 0.1524
-8 0.2744 0.2122 0.2886 0.2479

-16 0.4224 0.3755 0.4273 0.3911
-32 0.4900 0.4797 0.4907 0.4823
-64 0.5001 0.4992 0.5002 0.4993

The results in Table 5 and Table 6 indicate that all four implementations, which use DSSS and

MLE, are able to circumvent the added white Gaussian noise fairly well until the SNR values come

close to −16 dB. From here on, the systems are less able to suppress the noise and chances they

‘translate ’ received data sequences to wrong symbols increase significantly. The implementations

without DSSS and MLE, which only use the OQPSK (de)modulator blocks, have considerably

more problems at low SNR values, as illustrated by both Table 6 and Figure 27. From −32 dB to

−64 dB all BER values start to stabilize towards 0.5. Although, the MLE block should prevent

wrong chip to symbol conversions from happening, there may be multiple PN sequences with the

same hamming distance to the corrupted 32-bit input signal. The system delays (modulation delay

and sample correction delay) of all four configurations with DSSS and MLE are:

23

• Single-rate (integer): 4 samples,

• Single-rate (bit): 4 samples,

• Multi-rate (integer): 12 samples,

• Multi-rate (bit): 12 samples.

Based on the these results and the BER values in Table 5, there is no clear answer on which

implementation is most suited. All of the BER values are approximately the same and the difference

in system delay is negligible. But knowing that the transition to VHDL requires the system to

employ different clock speeds in certain parts of the receiver and transmitter architecture, makes

the Multi-rate (Bit) configuration stand out. Starting from this implementation, a FPGA-based

solution is constructed as described in 3.4.

Figure 27: BER values of Simulink transceiver systems

24

4.3 HDL Simulation Results

4.3.1 Design Summary

Figure 28 depicts the design summary of the entire ZigBee physical layer modulation simulation.

The targeted device was a xa6slx4-3csg225 Spartan-6 FPGA, which has a significantly less available

resources than the Cyclon IV equipped on the bladeRF x115. This means that the architecture

can be further expanded without falling short on available BRAM, registers, phase locked loops,

etc.

Figure 28: Screenshot of design summary of ZigBee physical layer modulation simulation

4.3.2 Simulation

To test the performance of the created ZigBee physical level modulator system, the entire design

is simulated using the Xilinx ISE WeBPACK. To shorten the simulation time all used clocks are

scaled by a factor of 0.01. The situation that is analyzed goes as follows. First, to synchronize

all modules in the system, the reset signal is set to high after waiting for sixteen output clock

(1 MHz) periods. This causes the system clock to disappear for 1 cycle as it is invoked by a

clock divider which uses the output clock and the reset signal as inputs. After waiting for an-

other sixteen output clock cycles, reset is set to low and the system clock will ‘recover’ . Next, a

32-bit sequence (00000001001000110100010101100111) is loaded into the input FIFO by setting

the write input fifo signal to high for one system clock cycle. Then, another 32-bit sequence

(10001001101010111100110111101111) is stored by following the same procedure. Figure 29 de-

picts this first part of the simulation. Both the system clock and output clock are colored red. The

input data is colored white.

Figure 29: First part of HDL simulation

Once the 32-bit sequences are loaded into the modulator system, the FIFO pulls its empty signal

down to start the data processing. As described in 3.4, the data first passes the bit to symbol

module where it is converted to 4-bit symbols. Then, it enters the DSSS block. Here 4-bit symbols

25

are converted to 32-bit pseudorandom noise chips. Next, the de-interlace module separates the

even and odd bits into two 16-bit sequences (I- and Q-values), which thereafter enter a serialize

block to convert the 16-bit parallel data into bitstreams. Finally, these streams are used as input

for the pulse shaping LUT to output eight half sine samples in each symbol interval. The odd

sine samples are delayed by half a symbol interval as the OQPSK standard requires. By multi-

plexing both the I- and Q-values, they are send to the DAC at alternating output clock cycles.

As illustrated on figure 30, it takes the architecture around 2.24 ns or 14 system clock cycles to

produce an output starting from when the first sequence is loaded into the input FIFO. Some of

this delay is due to imperfections in the designed modulator, another reason is that all the signal

assignments are clocked.

Figure 30: Part of HDL simulation that illustrates clock cycle delay

Figure 31 depicts the entire simulation. It takes the modulator architecture 48.9650 µs to handle

the reset procedure and the two 32-bit sequences. After the data is processed, the architecture

emits zero values preventing the radio front end from sending out wrong messages. Of course, as

the control signals are all set manually and sometimes skip a clock period, it is possible to reduce

the overall simulation time by optimizing the control signal allocation. Figure 32 is zoomed in on

a part of the simulation to demonstrate that the modulator architecture actually outputs half sine

values. It is clearly visible that the output (illustrated in blue) is either the I-sample when the sel

signal is ‘1’ or the Q-sample when the sel signal equals ‘0’. This happens at a rate of 62.5 kHz

∗8 ∗ 2 = 1 MHz when upscaled by 10. The multiplication by eight is bound to the number of half

sine samples in the OQPSK lookup table, while the multiplication by two is to prevent the loss of

I- and Q-samples. Figure 33 illustrates the greatest shortcoming of the created ZigBee modulator

system. Every time a 4bit-symbol is processed, the system is paused for 0.32 ns or 2 clock cycles.

This is due to the bit to symbol block which has to respectively read and write the empty and

read signals. Solutions to this problem are provided in the section 5.2.

Figure 31: Entire HDL simulation of ZigBee physical layer modulator

26

Figure 32: Zoom of HDL simulation

Figure 33: Part of simulation that displays two clock cycle delay introduced by bit to symbol block

27

Chapter 5

Conclusion and Future Work

5.1 Message Repeater and Simulations

The message repeater created in 3.2 is able to tune to a certain frequency, bandwidth, sample

rate, etc. by loading a script onto the bladeRF x115 through the Nuand CLI. The SDR then

starts receiving I- and Q-samples. These are recombined to 32-bit data sequences and sent to

the transmitter side of the architecture. Here, the 32-bit samples pass all the standard modules

which will split them back to I- and Q-samples. These are retransmitted by the radio front-end.

Results indicate that the message repeater is able to receive and retransmit the messages sent by

the 6LoWPAN node despite interference of a Bluetooth transmitter. The architecture will form a

good base for a multi-protocol gateway which receives messages from one protocol, applies signal

processing to the data and retransmits to a node functioning on another standard. Multiple signal

processing blocks will have to be added in order to achieve this goal.

Example systems which could potentially be based on the message repeater are both the Simulink

and Xilinx ISE WeBPACK simulations. All four implementations buildt in Simulink were able to

mimic a physical layer ZigBee transceiver. They were tested by comparing the BER when messages

were sent over an AWGN channel with or without DSSS and MLE. The configurations with DSSS

and MLE functioned significantly better at low SNR values than the standard implementations,

but had similar performance at higher values. Based on these BER results, there was no clear

answer on which transceiver should form a foundations for the VHDL ZigBee modulator system.

Knowing that a HDL implementation would require multiple different clock rates within the same

architecture, the Multi-rate (Bit) transceiver was chosen.

The results from the Xilinx ISE WeBPACK simulation indicate that a fairly robust ZigBee physical

layer transmitter system was created. It is able to transform 32-bit input sequences into 12-bit

signed half sine samples. These eventually serve as input for the VCTCXO DAC embedded on

the bladeRF x115. Provided some changes to the created architecture, which are recommended

in the section 5.2, this simulation can from a base for a fully functioning ZigBee and possibly

multi-protocol gateway. All the tests and the literature study executed in this thesis imply that

FPGAs will have an important role within the future of both Software Defined Radio and the

Internet of Things. They allow to process larger amounts of data within fewer clock cycles, also

known as hardware acceleration. The bladeRF will form the ideal tool to explore this, as its cost

is reasonable yet its performance is powerful.

29

5.2 Future Work

As stated in the conclusion, the ZigBee physical layer modulation is far from optimized. The

system is on hold for one system clock cycle while the bit to symbol block checks whether its

accompanying FIFO is empty or not. Another clock cycle is ‘wasted’ on sending a read signal

to the FIFO. Now, the bit to symbol block tries to serially divide each 32-bit input sequence

into eight 4-bit symbols sequentially. A possible solution could be to temporally parallelize the

system from the bit to symbol to the De-interlace block, as depicted in figure 34. This reduces

the number of clock cycles to process an input sequence from ten to one. Of course, a block will

have to be implemented which serializes the eight DSSS chips, which are fed into the de-interlace

module. Another possible solution, which maintains the serialized nature of the architecture,

is to start looking whether the FIFO is empty when sending out the penultimate 4-bit symbol.

This way those two cycles will not matter as still two symbols have to be sent out. Modules

Figure 34: Possible solution to solve delays in modulator system

that can possibly be added to improve the system’s performance are: cyclic redundancy check,

encryption blocks, etc. To create a fully functioning multi-protocol gateway, a ZigBee physical

layer demodulation system will need to be constructed. Originally some VHDL files have been

designed to accomplish this, such as a maximum likelihood estimation and DSSS despreading. But

they were never implemented in a simulation due to lack of time. The promising thing about

the ZigBee modulator and demodulator architecture is that it, just like many other IoT protocols

(6LoWPAN, MiWi and Bluetooth Low Energy), is based on IEEE 802.15.4. So these blocks can be

reused when introducing other standards to the bladeRF x115. But for other IoT communication

protocols such as WiFi, which relies on IEEE 802.11, or Z-Wave, which uses an entirely different

modulation technique, new HDL files will need to be constructed in order to implement them.

Concrete, the next steps to achieve a multi-protocol gateway on the bladeRF x115 are:

• finishing the ZigBee physcial layer system by modeling a CSMA/CA module to optimize data

exchange and implement serveral block to (de)construct Physcial layer Service Data Units

(PSDU);

• implementing another IoT protocol, preferably one which also employs the IEEE 802.15.4

standard, otherwise the written HDL files can not be reused. In case another protocol was

chosen, an entirely new physical layer system has to be created;

• configuring the bladeRF x115 to scan the radio spectrum for multiple standards at the same

time and hereby deciding how to process the received data units;

• building a test network to prove the functionality of the heterogeneous IoT network.

30

Bibliography

[1] Koubaa A., Alves M., and Tovar E. IEEE 802.15.4: a Federating Communication Protocol

for TimeSensitive Wireless Sensor Networks. Tech. rep. Rua Dr. António Bernardino de

Almeida, 431 4200-072 Porto, Portugal: Polytechnic institute of Porto (ISEP-IPP), 2006.

[2] Rafidah A. et al. “Implementation of IEEE 802.15.4-Based OQPSK-Pulse-Shaping Block on

FPGA”. In: IEEE (2011), pp. 459–464.

[3] Lalge A.M., Karpe M.S., and Bhandari S.U. “Software Defined Radio Principles and Plat-

forms”. In: International Journal of Advanced Computer Research 3.3 (Sept. 2013), pp. 133–

138.

[4] Glod B. FPGA Development. https://github.com/Nuand/bladeRF/wiki/FPGA-Development.

2018.

[5] Wang X. Baek I. H. EE209 AS Project: Investigation on ”Design Transceiver for IEEE

802.15.4 using ZigBee Technology and Matlab/Simulink. Web page. 2017. url: https://

www.semanticscholar.org/paper/EE209AS-Project%3A-Investigation-on-%E2%80%

9DDesign-for-IEEE-Baek-Samueli/27b6e635cbdb678f9e50e4f142b3f4516eacfc3d?tab=

abstract.

[6] bladeRF. Nuand. 720 East Ave Suite 201 Rochester, NY 14607.

[7] Cisco Visual Networking Index: Forecast and Methodology, 2016–2021. Sept. 2017. url:

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking- index- vni/complete- white- paper- c11- 481360.html?CAMPAIGN=VNI+

2016 & COUNTRY _ SITE = us & POSITION = Press + Release & REFERRING _ SITE = Cisco + page &

CREATIVE=PR+to+VNI+White+Paper&_ga=1.14.

[8] Gee K. E. et al. “A review of 6LoWPAN routing protocols”. In: Proceeding of the Asia-Pacific

Advanced Network. Vol. 30. Apan. 2010, pp. 71–81.

[9] Grayver E. “Implementing Software Defined Radio”. In: Springer, 2013. Chap. 2, pp. 5–9.

[10] Kavya G. and Mani V. V. “Simulink Model for Zigbee Transceiver Using OQPSK Modulation

under Fading Channels”. In: IEEE (2015), pp. 220–224.

[11] Gartner Says 8.4 Billion Connected ”Things” Will Be in Use in 2017, Up 31 Percent From

2016. Feb. 2017. url: https://www.gartner.com/newsroom/id/3598917 (visited on

11/29/2017).

[12] How IoT is transforming healthcare – 5 new technologies that help make hospitals more hu-

man. Apr. 2017. url: https://blog.dimensiondata.com/2017/04/iot-transforming-

healthcare-5-new-technologies-help-make-hospitals-human/ (visited on 11/30/2017).

[13] Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in

billions). Nov. 2016. url: https://www.statista.com/statistics/471264/iot-number-

of-connected-devices-worldwide/.

31

[14] Morgan J. A simple explanation of ’The Internet Of Things’. May 2014. url: https://www.

forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-

that-anyone-can-understand/#49fee85c1d09.

[15] Olsson J. 6LoWPAN demystified. Tech. rep. Texas Instruments, Oct. 2014.

[16] Gutierrez J.A. et al. “Applying wireless sensor networks in industrial plant energy evaluation

and planning systems”. In: IEEE (2006).

[17] Ravikanth K. “Design of ZigBee transceiver for ieee 802.15.4 using Matlab/Simulink”. MA

thesis. National Institute of technology Rourkela, Odisha, 2011.

[18] LMS6002D. 1.1.0. Lime microsystems. Dec. 2012.

[19] Fildes N. Meet the “connected cow”. Oct. 2017. url: https://www.ft.com/content/

2db7e742-7204-11e7-93ff-99f383b09ff9 (visited on 11/30/2017).

[20] Gravina R. et al. “Integration, Interconnection, and Interoperability of IoT Systems”. In:

Springer, 2018. Chap. 3, pp. 211–213.

[21] Machado-Fernández J. R. “Software Defined Radio: Basic Principles and Applications”. In:

Revista Facultad de Ingenieŕıa (Fac. Ing.), Vol. 24 (2015), pp. 79–96.

[22] Li K. Shi G. “Signal Interference in WiFi and ZigBee Networks”. In: vol. 7. Springer, 2017.

Chap. 2, pp. 9–27.

[23] “Software defined radios - overview and hardware (1)”. In: Software defined radios. Vol. Vol.

182. Nov. 2004, pp. 58–61.

[24] Hollis T. and Weir R. “The Theory of Digital Down Conversion”. In: Hunt Engineering Vol

1.2 (June 2003), pp. 1–6.

[25] Akkerman W. De broodrooster van Griffin Technology werkt met bluetooth. Jan. 2017. url:

https://www.smarthomemagazine.nl/2017/01/broodrooster-griffin-technology-

werkt-bluetooth/ (visited on 11/30/2017).

32

Appendices

Appendix A: Diagrams of VHDL modules . 35

33

Appendix A: Diagrams of VHDL

modules

Figure 35: Diagram of bit to symbol block and its neighbors

Figure 36: Diagram of DSSS LUT block and its neighbors

Figure 37: Diagram of De-interlace block and its neighbors

35

Figure 38: Diagram of serializer block and its neighbors

36

Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:
Towards Software-Defined Radio on Configurable Hardware

Richting: master in de industriële wetenschappen: elektronica-ICT
Jaar: 2018

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de
Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt
behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -,
vrij te reproduceren, (her)publiceren of distribueren zonder de toelating te moeten
verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de
rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat
de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt
door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de
Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de
eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen
wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze
overeenkomst.

Voor akkoord,

Bertrands, Karel

Datum: 4/06/2018

