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Slow divergence integral on a Möbius band

Abstract

The slow divergence integral has proved to be an important tool in the
study of slow-fast cycles defined on an orientable two-dimensional man-
ifold (e.g. R2). The goal of our paper is to study 1–canard cycle and
2–canard cycle bifurcations on a non-orientable two-dimensional mani-
fold (e.g. the Möbius band) by using similar techniques. Our focus is
on smooth slow-fast models with a Hopf breaking mechanism. The same
results can be proved for a jump breaking mechanism and non-generic
turning points. The slow-fast bifurcation problems on the Möbius band
require the study of the 2–return map attached to such 1– and 2–canard
cycles. We give a simple sufficient condition, expressed in terms of the
slow divergence integral, for the existence of a period-doubling bifurcation
near the 1–canard cycle. We also prove the finite cyclicity property of
“singular” 1– and 2–homoclinic loops (“regular” 1–homoclinic loops of
finite codimension have been studied by Guimond).

1 Introduction

In the study of limit cycles appearing in slow-fast vector fields on an orientable
2-manifold, one typically uses the notion slow divergence integral attached to the
first iterate of the Poincaré map (i.e. the 1–return map). See e.g. [DR96, KS01,
DMD08, DMDR11]. The purpose of our paper is to initiate the study of limit
cycles in slow-fast vector fields on the Möbius band involving the slow divergence
integral related to the second iterate of the Poincaré map (often called the second
return map or the 2–return map). To see how the 2–return map comes into play,
let’s consider a simple planar slow-fast system Xε,b (depending possibly on an
extra finite dimensional parameter):{

ẋ = y
ẏ = −xy + ε

(
b− x+O(x2)

)
+O(εy2)

(1)

where ε ≥ 0 is a singular perturbation parameter and b ∼ 0 is a breaking
parameter. (Xε,b represents a normal form for a slow-fast Hopf point (see e.g.
[Dum11, DMDR11]).) The fast subsystem X0,b of (1) consists of the line of
singularities {y = 0} (often called the critical curve or the slow curve) and fast
orbits, given by parabolas y = − 1

2x
2 + c. See Figure 1(a). All singularities of

the critical curve are normally hyperbolic (attracting when x > 0 and repelling
when x < 0), except the origin where we deal with a nilpotent contact point.
We distinguish between two types of limit periodic sets, at level ε = 0, that can
produce limit cycles after perturbations: the contact point (x, y) = (0, 0) and
canard cycles, consisting of a fast orbit and the part of the critical curve between
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(b)(a)

Figure 1: A fast subsystem defined on the Möbius band with indication of the
1–canard cycle turning around the Möbius band. (b) The two ends in (a) are
glued together with a halftwist.

the α–limit set and the ω–limit set of the fast orbit. The canard cycles are slow-
fast cycles that contain both attracting and repelling parts of the critical curve.
To find the cyclicity of a canard cycle, one studies fixed points of the 1–return
map, or, equivalently, zeros of a difference map, defined using two transition
maps, one related to the attracting part of the critical curve and the other
to the repelling part (see e.g. [DMD05, Dum11]). We suppose that the slow
dynamics of Xε,b along the critical curve, given by x′ = −1 + O(x), has no
singularities (i.e., x′ < 0). This implies that the slow divergence integral of Xε,b

along the critical curve is well-defined (see e.g. [Dum11] or Section 2).

Our model (1) can provide much richer dynamics if we consider it on the
Möbius band (see Figure 1(b)). (We glue the two ends in Figure 1(a) together
with a halftwist). Besides the contact point and the canard cycles we also detect
a so-called 1–canard cycle consisting of a fast orbit, turning around the Möbius
band, and the part of the critical curve between the α-limit set and the ω-limit
set of the fast orbit. An n-limit cycle is a limit cycle, with ε > 0, in a tubular
neighborhood of the 1–canard cycle, which intersects a section, transversal to
the 1–canard cycle, n times (see Section 2). A simple geometric argument shows
that in our model at most one 1–limit cycle can be created and that n–limit
cycles, with n > 2, are not possible. See Section 2 for more details. If the
slow divergence integral, computed along the slow part of the 1-canard cycle,
is nonzero, then 2–limit cycles are not possible; a 1-limit cycle can be created
if we vary b ∼ 0 (see Theorem 2.2). We show, under the condition that the
slow divergence integral has a simple zero, that a 2-limit cycle can be created
by a period-doubling bifurcation as we vary the breaking parameter b ∼ 0 (see
Theorem 2.3). Using an idea of Khovanskii (see [Kho91, MR12]) we also prove
that under the same condition on the slow divergence integral at most one 2–
limit cycle can be created in a small ε-uniform tubular neighborhood of the
1–canard cycle (see Theorem 2.4). The case of higher multiplicity zeros in the
slow divergence integral is a topic of further study.

We call a 1-canard cycle a singular 1–homoclinic loop if one endpoint of
its slow part is a hyperbolic saddle of the slow dynamics. The singular 1–
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Figure 2: A fast subsystem defined on the Möbius band with indication of the
1–canard cycle turning around the Möbius band.

homoclinic loop is a singular variant of the well-known 1–homoclinic loop on
the Möbius band, studied in [Gui99] (see also Section 3). In [Gui99], studying
a 2-return map, an explicit bound for the cyclicity of the 1–homoclinic loop for
all finite codimensions is given (like in our model, only 1– and 2–limit cycles are
possible). Studying the 2-return map, we prove that the cyclicity of the singular
1–homoclinic loop is equal to one: one 1-limit cycle can be created by varying
the breaking parameter b ∼ 0, and the 2–limit cycles are not possible. See
Theorem 2.5. Due to the presence of a hyperbolic saddle in the slow dynamics,
the slow divergence integral is not well-defined and we have to study the so-
called full divergence integral near the hyperbolic saddle (for more details see
Section 3.6).

Roughly speaking, a 2–canard cycle is a limit periodic set on the Möbius
band which contains attracting and repelling parts of the critical curve and
turns around the Möbius band twice (for a precise definition see Section 2).
When the slow dynamics is regular, we use the slow divergence integral to study
2–limit cycles near the 2–canard cycle (see Theorems 2.6 and 2.7). Like in the
case of the 1-canard cycle, we focus on the slow divergence integral with zeros of
multiplicity 0 or 1. We can also define a singular 2–homoclinic loop and prove
the finite cyclicity property of such a limit periodic set on the Möbius band (see
Section 2 and Theorem 2.8).

In Section 2.1 we define the framework within which we study 1– and 2–
canard cycles. For the sake of readability, our focus is on the generic turning
point (i.e. the generic Hopf breaking mechanism). The methods we present in
our paper in this special framework can be used in a more general framework
of non-generic turning points and jump breaking mechanisms (for more details
see Section 4). We state our main results in Section 2.2. We prove the results
in Section 3.
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2 Definitions and statement of results

2.1 Definitions on the smooth Möbius band

Denote by M a smooth Möbius band (“smooth” means C∞-smooth). Let
(ε, µ) ∼ (0, 0) ∈ R × Rl, with ε ≥ 0, and let Xε,µ : M → TM be a smooth
(ε, µ)-family of vector fields on M (TM is the tangent bundle of M). We sup-
pose Xε,µ has a slow-fast structure, with a singular perturbation parameter ε
and with a generic turning point (or equivalently, a slow-fast Hopf point) p ∈M
for (ε, µ) = (0, 0). More precisely, we suppose that there exists a local chart on
M around p in which the vector field Xε,µ is locally expressed, up to smooth
equivalence, as:{

ẋ = y
ẏ = −xy + ε

(
b(µ)− x+ x2g(x, ε, µ)

)
+ εy2H(x, y, ε, µ),

(2)

for some smooth functions g and H, b(0) = 0 and for a smooth submersion b
at µ = 0. Using the local submersion theorem we can suppose that µ = (b, λ)
where we call the parameter b := b(µ) ∼ 0 a breaking parameter (see e.g.
[Dum11]). The generic turning point p ∈ M is represented by (x, y) = (0, 0)
in the local coordinates. We further assume that X0,µ has a smooth µ-family
of one dimensional embedded manifolds mµ containing singularities of X0,µ (in
the local coordinates, mµ is given by {y = 0}), and that m0 = m− ∪ {p} ∪m+,
where m− (resp. m+) is normally attracting (resp. normally repelling). See
Figure 3. In the local coordinates, m− (resp. m+) is given by {x > 0, y = 0}
(resp. {x < 0, y = 0}). We suppose that the slow dynamics is nonzero on
m− ∪m+, pointing towards p on m− and away from p on m+.

We assume that the family mµ of slow curves is located in an open orientable

submanifold M̃ of M such that we can directly use the results [DMD05, DMD08,
Dum11, DMDR11] for slow-fast vector fields defined on a two-dimensional smooth
orientable manifold. Working with such an orientable submanifold, we can
choose a volume form and define the divergence of (the restriction of) the vec-
tor field Xε,µ. As we will see in later sections, the divergence integral along
orbits of Xε,µ, near the slow curves, is closely related to the slow divergence
integral along the slow curves. The slow divergence integral is independent of
the chosen volume form and the local chart (see e.g. [DMD08]).

Before we give a precise definition of the slow divergence integral, let us
define:

Definition 1 (1– and 2–canard cycles). Let Σ+,Σ− ⊂ M̃ ⊂ M be sections
transverse to the fast orbits of X0,µ, with µ ∼ 0 (see Figure 3). We parametrize
Σ+ (resp. Σ−) by a local coordinate u (resp. v). Suppose that all points u of Σ+

lie in the basin of attraction of m− and in the basin of repulsion of m+, when
ε = 0. We denote by α(u, µ) (or shortly α(u)) the α-limit on m+ of the fast
orbit of X0,µ, characterized by u ∈ Σ+, and we denote by ω(u, µ) (or shortly
ω(u)) the ω-limit on m− of the fast orbit of X0,µ through u ∈ Σ+ and turning
around the Möbius band M . We define:

(a) Let u0 ∈ Σ+. For (ε, µ) = (0, 0), we define a limit periodic set Lu0
as

follows: Lu0
consists of the fast orbit of X0,0 through u0 and the piece of

the slow curve m0 between ω(u0) and α(u0), including ω(u0), α(u0) and
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the turning point p. (The fast orbit through u0 turns around M , intersects
Σ− in v0 and tends to ω(u0).) See Figure 3(a). We call Lu0

1–canard
cycle.

(b) Let u0, u1 ∈ Σ+ and u0 < u1. For (ε, µ) = (0, 0), we define a limit periodic
set Lu0,u1 as follows: Lu0,u1 consists of the fast orbit of X0,0 through u0,
turning around M and intersecting Σ− in v0, the piece of the slow curve
m0 between ω(u0) and α(u1), the fast orbit of X0,0 through u1, turning
around M and intersecting Σ− in v1, and the piece of the slow curve m0

between ω(u1) and α(u0). See Figure 3(b). We call Lu0,u1
a 2–canard

cycle.

Definition 2 (1 and 2–periodic orbits). Let Lu0 and Lu0,u1 be 1– and 2–canard
cycles introduced in Definition 1.

(a) Let V ⊂ M be a small tubular neighborhood of Lu0
. Let O ⊂ V be a

periodic orbit of Xε,µ, with ε > 0. We call O a 1–periodic orbit if O
intersects the section Σ+ only once. Isolated 1–periodic orbits are called
1–limit cycles.

(b) Let V ⊂M be a small tubular neighborhood of Lu0 or Lu0,u1 . Let O ⊂ V
be a periodic orbit of Xε,µ, with ε > 0. We call O a 2–periodic orbit if
O intersects the section Σ+ twice. Isolated 2–periodic orbits are called
2–limit cycles.

Definition 3. Let Xε,µ be a smooth (ε, µ)-family of vector fields on M , defined
above, and let Lu0 and Lu0,u1 be the limit periodic sets introduced in Definition
1. The cyclicity of Lu0

(resp. Lu0,u1
) in the family Xε,µ is bounded from above

by N ∈ N if there exists ε0 > 0, δ0 > 0 and a neighborhood W of 0 in the µ-space
such that Xε,µ, with (ε, µ) ∈ [0, ε0]×W , generates at most N limit cycles, lying
each within Hausdorff distance δ0 of Lu0

(resp. Lu0,u1
). We call the smallest

N with this property the cyclicity of Lu0 (resp. Lu0,u1) in the family Xε,µ, and
denote it by Cycl(Xε,µ, Lu0) (resp. Cycl(Xε,µ, Lu0,u1)).

Using simple topological arguments, we see that Lu0 can produce at most
one 1–periodic orbit (two 1–periodic orbits would have an intersection point, see
Remark 4). We also see that Lu0

and Lu0,u1
cannot produce n–periodic orbits,

with n > 2. From this and Lemma 2.1 follows that the cyclicity (see Definition
3) of Lu0

(resp. Lu0,u1
) is the number of 2–limit cycles +1 (resp. the number

of 2–limit cycles).

Lemma 2.1. Suppose that Xε,µ has a 2–periodic orbit intersecting Σ+ in two
points: ū and ũ (ū < ũ). Then Xε,µ also has one 1–periodic orbit intersecting
Σ+ in a point u′ ∈]ū, ũ[.

Lemma 2.1 will be proved in Section 3.2.

The slow dynamics of Xε,µ along the slow curve mµ ⊂ M̃ , away from the
turning point, is given by

x′ = f(x, µ), µ ∼ 0,

where f is a smooth function and mµ is parametrized by a regular parameter
x. We suppose that m− (resp. m+) is parametrized by x > 0 (resp. x < 0),
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Figure 3: Canard cycles on the Möbius band M turning around M , at level
(ε, µ) = (0, 0). (a) 1–canard cycles intersect Σ+ only once. (b) 2–canard cycles
intersect Σ+ twice.

and x = 0 represents the turning point p. Let us recall that the slow dynamics
describes the dynamics of Xε,µ, along the slow curve, when ε > 0 and ε ∼ 0 (for
more details see e.g. [DMD08]). Since the slow dynamics is nonzero and points
from m− to m+ by supposition, we have f < 0. Now we can define the slow
divergence integral I±(u, µ) along m±:

I+(u, µ) :=

∫ 0

α(u)

divX0,µdx

f(x, µ)
< 0, I−(u, µ) :=

∫ 0

ω(u)

divX0,µdx

f(x, µ)
< 0, u ∈ Σ+,

(3)
where α(u) < 0 and ω(u) > 0. (The slow divergence integral along a slow curve
between two points p1 and p2 is the integral of the divergence of the vector field
X0,µ along the slow curve from p1 to p2 w.r.t. the slow time dx

f(x,µ) .) Note that

α′(u) > 0, ω′(u) < 0 and ∂I±
∂u > 0 due to the chosen parameterization of Σ+

(as u increases, the points on Σ+ are closer to the turning point). For example,
the slow dynamics of (2) along {y = 0} is given by x′ = −1 + xg(x, 0, µ), and

the slow divergence integrals I± of (2) are given by I+(u, µ) =
∫ 0

α(u)
−xdx

−1+xg(x,0,µ)

and I−(u, µ) =
∫ 0

ω(u)
−xdx

−1+xg(x,0,µ) .

It turns out that the slow divergence integrals in (3) play a crucial role in
the study of limit cycles of Xε,µ bifurcating from Lu0 and Lu0,u1 (see Section
2.2).

2.2 Statement of results

2.2.1 Limit cycle bifurcations Hausdorff-close to Lu0

Let u0 ∈ Σ+ be arbitrary but fixed. For (u, µ) ∼ (u0, 0), the slow divergence
integral along the slow curve from ω(u) ∈ m− to α(u) ∈ m+ is given by:

I(u, µ) = I−(u, µ)− I+(u, µ) (4)
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where I± are defined in (3). When I is nonzero near (u, µ) = (u0, 0), we have
the following result:

Theorem 2.2. Suppose Xε,µ satisfies conditions of Section 2.1 and suppose
that I(u, µ) is nonzero near (u, µ) = (u0, 0). Then Cycl(Xε,µ, Lu0) = 1 and
Xε,µ has no 2–periodic orbits Hausdorff-close to Lu0

. In case I(u0, 0) < 0 (resp.
I(u0, 0) > 0) any 1–limit cycle bifurcating from Lu0

is hyperbolically attracting
(resp. hyperbolically repelling).

Theorem 2.2 will be proved in Section 3.3. Let us note that a similar result
(i.e. at most one hyperbolic limit cycle) holds also for a canard cycle of (1),
under the condition that the slow divergence integral along the slow part of the
canard cycle is nonzero (for more details see e.g. [Dum11]).

If the function u→ I(u, 0) has a simple zero at u = u0, then for λ ∼ 0, ε ∼ 0
and ε > 0 the b-family Xε,µ = Xε,b,λ undergoes, Hausdorff-close to Lu0

, a period
doubling bifurcation, giving rise to a 2–limit cycle. In this case we do not need
the parameter λ.

Theorem 2.3. Let the family Xε,b,λ be as defined in Section 2.1 and let us
suppose that the function u→ I(u, 0) has a simple zero at u = u0 (i.e. I(u0, 0) =
0 and ∂I

∂u (u0, 0) 6= 0). Then there are continuous functions u(ε, λ) and b(ε, λ)
defined for ε ≥ 0, ε ∼ 0 and λ ∼ 0, smooth for ε > 0, with u(0, 0) = u0 and
b(0, λ) = 0, such that for each ε > 0, ε ∼ 0 and λ ∼ 0 the b-family Xε,b,λ

undergoes a period doubling bifurcation at (u(ε, λ), b(ε, λ)).
More precisely, for each ε > 0, ε ∼ 0 and λ ∼ 0 the system Xε,b(ε,λ),λ has a 1–

limit cycle intersecting Σ+ at u = u(ε, λ), with eigenvalue −1. Fixing (ε, λ) ∼
(0, 0), with ε > 0, there is a smooth curve of 1–limit cycles of Xε,b,λ passing
through (u(ε, λ), b(ε, λ)), changing the stability at (u(ε, λ), b(ε, λ)), and a smooth
curve γε,λ passing through (u(ε, λ), b(ε, λ)) such that γε,λ \ {(u(ε, λ), b(ε, λ))} is
a union of hyperbolic 2–limit cycles of Xε,b,λ and such that γε,λ has a quadratic
contact with the line {b = b(ε, λ)} at (u(ε, λ), b(ε, λ)). In case ∂I

∂u (u0, 0) < 0

(resp. ∂I
∂u (u0, 0) > 0) the 2-limit cycle is repelling (resp. attracting).

We prove Theorem 2.3 in Section 3.4. As a direct consequence of Theorem
2.3, if u → I(u, 0) has a simple zero at u = u0, then Cycl(Xε,µ, Lu0) ≥ 2
(there is one 1–limit cycle coexisting with one 2–limit cycle created by the
period doubling bifurcation). To prove that, under the same condition on I,
Cycl(Xε,µ, Lu0

) ≤ 2, we use a method introduced in [MR12], based on the idea
of Khovanskii [Kho91].

Theorem 2.4. Let the family Xε,µ be as defined in Section 2.1 and let us
suppose that u→ I(u, 0) has a simple zero at u = u0. Then Cycl(Xε,µ, Lu0) = 2.

Theorem 2.4 will be proved in Section 3.5.

Remark 1. In fact we will prove the following more general (global) result in
Section 3.5. Let ū, ũ ∈ Σ+, with ū < ũ, be arbitrary but fixed. Let the family
Xε,µ be as defined in Section 2.1 and let us suppose that the function u →
I(u, 0) has precisely one zero in [ū, ũ] and that ∂I

∂u (u, 0) 6= 0 for all u ∈ [ū, ũ].
Then Cycl(Xε,µ,∪u∈[ū,ũ]Lu) = 2. Thus, Xε,µ has at most one 2–limit cycle
intersecting the piece of the section Σ+ parametrized by u ∈ [ū, ũ].
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We supposed in Theorems 2.2–2.4 that the slow dynamics is nonzero (f < 0).
We call the 1–canard cycle Lu0

a singular 1–homoclinic loop if the slow dynamics
has a hyperbolic saddle at precisely one corner point for µ = 0: “f(ω(u0), 0) =
0, ∂f∂x (ω(u0), 0) 6= 0” or “f(α(u0), 0) = 0, ∂f∂x (α(u0), 0) 6= 0”. We prove that such
a limit periodic set can produce at most one limit cycle.

Theorem 2.5. Let the family Xε,µ be as defined in Section 2.1 and let us

suppose that f(ω(u0), 0) = 0, ∂f∂x (ω(u0), 0) 6= 0 and f(x, 0) < 0 for all x ∈
[α(u0), ω(u0)[. Then Cycl(Xε,µ, Lu0) = 1 and Xε,µ has no 2–periodic orbits
Hausdorff-close to Lu0 . When a 1–limit cycle exists, it is hyperbolic and at-
tracting.

A similar result is true in the case f(α(u0), 0) = 0, ∂f∂x (α(u0), 0) 6= 0 and
f(x, 0) < 0 for all x ∈]α(u0), ω(u0)]. A 1–limit cycle bifurcating from Lu0

is
hyperbolic and repelling.

Theorem 2.5 will be proved in Section 3.6.

2.2.2 Limit cycle bifurcations Hausdorff-close to Lu0,u1

Let u0, u1 ∈ Σ+, with u0 < u1, be arbitrary but fixed. For (u, ũ, µ) ∼ (u0, u1, 0),
we define the so-called total slow divergence integral of Lu0,u1

:

T (u, ũ, µ) = I−(u, µ)− I+(ũ, µ) + I−(ũ, µ)− I+(u, µ), (5)

with I± defined in (3). If T is nonzero near (u, ũ, µ) = (u0, u1, 0), then Lu0,u1

produces at most one (2–)limit cycle the stability of which depends on the sign
of T .

Theorem 2.6. Suppose Xε,µ satisfies conditions of Section 2.1 and suppose
that T is nonzero near (u, ũ, µ) = (u0, u1, 0). Then Cycl(Xε,µ, Lu0,u1

) ≤ 1. In
case T (u0, u1, 0) < 0 (resp. T (u0, u1, 0) > 0) any 2–limit cycle bifurcating from
Lu0,u1

is hyperbolically attracting (resp. hyperbolically repelling).

Theorem 2.6 will be proved in Section 3.7. The condition {T (u0, u1, 0) 6=
0} does not necessarily imply the existence of a limit cycle Hausdorff-close to
Lu0,u1

. When the slow divergence integral along [α(u1), ω(u1)] is nonzero (i.e.
I(u1, 0) 6= 0), Lu0,u1

cannot produce limit cycles (see Theorem 2.7.1).

Theorem 2.7. Let the family Xε,µ be as defined in Section 2.1. The following
statements are true:

1. If I−(u1, 0) − I+(u1, 0) 6= 0, then there exists ε0 > 0, δ0 > 0 and a
neighborhood W of 0 in the µ-space such that system Xε,µ, with (ε, µ) ∈
[0, ε0]×W , has no limit cycles lying within Hausdorff distance δ0 of Lu0,u1

.

2. If I−(u1, 0) − I+(u1, 0) = 0 and I−(u0, 0) − I+(u0, 0) 6= 0 (this implies
T (u0, u1, 0) 6= 0), then we have that Cycl(Xε,µ, Lu0,u1) ≤ 1. In case
I−(u0, 0) − I+(u0, 0) < 0 (resp. I−(u0, 0) − I+(u0, 0) > 0) any 2–limit
cycle bifurcating from Lu0,u1

is hyperbolic and attracting (resp. repelling).

Moreover, if ∂(I−−I+)
∂u (u1, 0) 6= 0, then Cycl(Xε,µ, Lu0,u1) = 1.

3. If I−(ui, 0)− I+(ui, 0) = 0 for i = 0, 1 (this implies T (u0, u1, 0) = 0) and
∂(I−−I+)

∂u (ui, 0) 6= 0 for i = 0, 1, then Cycl(Xε,µ, Lu0,u1
) ≤ 2.
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Theorem 2.7 will be proved in Section 3.8.

We suppose in Theorems 2.6–2.7 that the slow dynamics is nonzero. We
allow now the slow dynamics to have a hyperbolic saddle at precisely one corner
point, ω(u0) or α(u0), for µ = 0 (note that α(u0) < α(u1) < 0 < ω(u1) < ω(u0)):
“f(ω(u0), 0) = 0, ∂f∂x (ω(u0), 0) 6= 0” or “f(α(u0), 0) = 0, ∂f∂x (α(u0), 0) 6= 0”. In
this case we call Lu0,u1 a singular 2–homoclinic loop.

Theorem 2.8. Let the family Xε,µ be as defined in Section 2.1 and let us

suppose that f(ω(u0), 0) = 0, ∂f
∂x (ω(u0), 0) 6= 0 and that f(x, 0) < 0 for all

x ∈ [α(u0), ω(u0)[. Then Cycl(Xε,µ, Lu0,u1
) ≤ 1. Any 2–limit cycle bifurcating

from Lu0,u1
is hyperbolic and attracting.

A similar result is true in the case f(α(u0), 0) = 0, ∂f
∂x (α(u0), 0) 6= 0 and

f(x, 0) < 0 for all x ∈]α(u0), ω(u0)]. Any 2–limit cycle bifurcating from Lu0,u1

is hyperbolic and repelling.

We prove Theorem 2.8 in Section 3.9.

3 Proofs of Theorem 2.2–Theorem 2.8

3.1 Transition maps

In this section we study two transition maps, one along the flow of Xε,µ from
Σ+ to a section Σp, transverse to the slow curve at the turning point p, and the
other along the flow of −Xε,µ from Σ+ to Σp (for a precise definition of Σp, see
below). This will enable us to study 2–periodic orbits Hausdorff close to Lu0 or
Lu0,u1

.

We define the section Σp as follows. It is well known that the passage near
the generic turning point p, from the attracting part m− to the repelling part
m+, can occur only if (ε, b) = (ε̄2, ε̄B) where ε̄ ≥ 0, ε̄ ∼ 0 is a new singular
perturbation parameter and B ∼ 0 is the so called regular breaking parameter.
For more details see [DR96, Dum11]. Then we include the parameter ε̄ in the
following family blow-up at (x, y, ε̄) = (0, 0, 0) (in the local coordinates (x, y),
p ∈ M is given by (x, y) = (0, 0)): (x, y, ε̄) = (ρx̃, ρ2ỹ, ρε̃), where (x̃, ỹ, ε̃) ∈ S2,
ε̃ ≥ 0, ρ ≥ 0 and ρ ∼ 0. In the family chart {ε̃ = 1}, we define Σp = {x̃ = 0}.
We parametrize Σp by ỹ, kept in a large compact set. The section Σp is thus
located on the top of the blow-up locus transversally cutting the heteroclinic
orbit on the blow-up locus, at level B = 0, connecting m− and m+. (For B = 0,
the dynamics on the blow-up locus is of center type with the center located
above the heteroclinic orbit.) This connection becomes broken for B 6= 0 in a
regular way. See e.g. [DMD05, Dum11] or Theorem 3.1. To prove the results
stated in Section 2, it suffices to deal with Xε̄2,ε̄B,λ.

We define now the following transition maps for (ε̄, B, λ) ∼ (0, 0, 0):

1. the forward transition map ∆− : Σ+ → Σp along the flow of Xε̄2,ε̄B,λ;

2. the backward transition map ∆+ : Σ+ → Σp along the flow of −Xε̄2,ε̄B,λ.

The map ∆± includes a passage near m±.
For a fixed (B, λ, ε̄) ∼ (0, 0, 0), ε̄ > 0, the system Xε̄2,ε̄B,λ has a 1–periodic

orbit passing through the point u ∈ Σ+ if and only if the following holds:

∆−(u,B, λ, ε̄) = ∆+(u,B, λ, ε̄). (6)
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Similarly, fixing (B, λ, ε̄) ∼ (0, 0, 0), with ε̄ > 0, the system Xε̄2,ε̄B,λ has a 2–
periodic orbit passing through the points u, u′ ∈ Σ+, with u 6= u′, if and only if
the following holds:

∆−(u,B, λ, ε̄) = ∆+(u′, B, λ, ε̄) and ∆−(u′, B, λ, ε̄) = ∆+(u,B, λ, ε̄). (7)

Remark 2. Note that system of equations (7) is symmetric: if (u, u′) is a
solution of (7), then (u′, u) is also solution of (7). These two solutions represent
the same 2-periodic orbit. When u = u′, (7) reduces to (6).

Instead of working with (7), it is sometimes more convenient to use the
equation for the fixed points {PB,λ,ε̄ ◦ PB,λ,ε̄(u) = u}, where PB,λ,ε̄(u) = ∆−1

+ ◦
∆−(u) is the 1–return map, or to use the difference equation {∆B,λ,ε̄(u) = 0}
where ∆B,λ,ε̄(u) = PB,λ,ε̄(u)−P−1

B,λ,ε̄(u). Note that if Xε̄2,ε̄B,λ, with ε̄ > 0, has a

2–periodic orbit then PB,λ,ε̄ (and P−1
B,λ,ε̄) is well-defined in the closed invariant

region bounded by the 2–periodic orbit (Xε̄2,ε̄B,λ has no singularities in that
region). This fact will be used in Sections 3.3, 3.6, 3.7 and 3.9.

We say that a function f(ξ, ε̄) is ε̄-regularly smooth (resp. ε̄-regularly Ck)
in ξ if f is continuous in (ξ, ε̄), including ε̄ = 0, and all partial derivatives of f
w.r.t. ξ (resp. all partial derivatives of f w.r.t. ξ up to order k) exist and are
continuous in (ξ, ε̄), including ε̄ = 0 (see [Dum11]).

3.1.1 Transition maps with the regular slow dynamics

For a regular slow dynamics, the study of the transition maps relies on [DMD05,
Dum11]. The following theorem gives the structure of ∆±.

Theorem 3.1. There exist ε̄-regularly smooth functions Ī± in (u,B, λ) and ε̄-
regularly smooth functions f± in (B, λ) such that Ī±(u,B, λ, 0) = I±(u, 0, λ),
with I± defined in (3), and such that

∆±(u,B, λ, ε̄) = f±(B, λ, ε̄)± exp

(
Ī±(u,B, λ, ε̄)

ε̄2

)
. (8)

Furthermore, f(0, λ, 0) = 0 and ∂f
∂B (0, λ, 0) 6= 0 where f(B, λ, ε̄) := f−(B, λ, ε̄)−

f+(B, λ, ε̄)

Proof. Since the slow dynamics is regular along the repelling part m+ and the
passage from Σ+ to Σp in backward time can be studied by using −Xε̄2,ε̄B,λ

restricted to the two-dimensional orientable manifold M̃ ⊂M , the expression for
∆+, given in (8), follows directly from [Dum11] or [DMD05]. The sign in front
of the exponential term in ∆+ is positive due to the chosen parameterizations
of Σ+ and Σp.

Let us now consider the forward transition map ∆−. We split up ∆− into
two parts (see Figure 3):

1. The regular transition map ∆1 defined by following the orbits of Xε̄2,ε̄B,λ

(in forward time) from Σ+ to Σ−, around the Möbius band M . Since
Xε̄2,ε̄B,λ is smooth, ∆1 is smooth in (u,B, λ, ε̄), and ∂∆1

∂u > 0 due to the
chosen parameterizations of Σ±.

10



2. The transition map ∆2 defined by following the orbits of Xε̄2,ε̄B,λ (in
forward time) from Σ− to Σp. Like in the case of ∆+, since the slow
dynamics is regular along the attracting part m−, [Dum11] implies:

∆2(v,B, λ, ε̄) = f−(B, λ, ε̄)− exp

(
Ĩ−(v,B, λ, ε̄)

ε̄2

)
, (9)

where f− and Ĩ− are ε̄-regularly smooth in (B, λ) and (v,B, λ), respec-
tively, and Ĩ−(v,B, λ, 0) = I−(v, 0, λ) (ω(v) in definition of I−(v, 0, λ) is
the ω-limit of the fast orbit through v ∈ Σ−). We have the negative sign
in front of the exponential term in (9) due to the chosen parameterizations
of Σ− and Σp.

Using (9) and ∆− = ∆2 ◦∆1 we find the expression for ∆− given in (8).
The properties of f follow from e.g. [Dum11] (B is the breaking parameter).

Using Theorem 3.1, the equation (6) can be written as:

exp

(
Ī−(u,B, λ, ε̄)

ε̄2

)
+ exp

(
Ī+(u,B, λ, ε̄)

ε̄2

)
= f(B, λ, ε̄), (10)

and the system (7) can be written as:
exp

(
Ī−(u,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u′,B,λ,ε̄)

ε̄2

)
= f(B, λ, ε̄)

exp

(
Ī−(u′,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,B,λ,ε̄)

ε̄2

)
= f(B, λ, ε̄).

(11)

Remark 3. For the sake of readability, we sometimes write I±+o(1) instead of
Ī± where the term o(1) is ε̄-regularly smooth in (u,B, λ) (or in (u′, B, λ)) and
tends (u,B, λ)-uniformly (or (u′, B, λ)-uniformly) to zero as ε̄ → 0. We write
I±(·) = I±(·, 0, λ).

Remark 4. From (10) and Rolle’s theorem we have that the system Xε̄2,ε̄B,λ

can produce at most one 1–limit cycle. Indeed, the derivative of the left-hand
side of (10) w.r.t. u, given by

exp

(
I− + o(1)

ε̄2

)
+ exp

(
I+ + o(1)

ε̄2

)
,

is positive, for ε̄ > 0 and ε̄ ∼ 0, where the o(1)-terms have the properties given

in Remark 3. We used the fact that ∂I±
∂u > 0 and ε̄2 ln ε̄ = o(1).

The expression in (10) also gives a necessary condition for the existence of
1–limit cycles: f > 0. The condition “f > 0” is also necessary condition for
the existence of 2–limit cycles (see (11)). Using Theorem 3.1 and the Implicit
Function Theorem, applied to (10), we find a unique ε̄-regularly smooth function
B = B0(u, λ, ε̄) in (u, λ) such that B0(u, λ, 0) = 0 and such that Xε̄2,ε̄B0(u,λ,ε̄),λ

has 1–periodic orbit passing through the point u ∈ Σ+ (B is the breaking param-
eter).
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3.1.2 Transition maps with a hyperbolic saddle in the slow dynamics

If we have a hyperbolic saddle in the slow dynamics, then we can use results
from [DMD08]. Let us suppose that the slow dynamics has a hyperbolic saddle
at ω(u0) ∈ m− at level µ = 0. (A similar study can be done for a hyperbolic
saddle at α(u0) ∈ m+.) Near ω(u0), we have a smooth curve C of hyperbolic
saddles of Xε̄2,ε̄B,λ+ 0 ∂

∂ε̄ , and we denote the union of stable manifolds at points
of C by MS . Let ρ be small and positive. We define the set U− = {(u,B, λ, ε̄) :
u(B, λ, ε̄) < u < u0 + ρ, (B, λ, ε̄) ∼ (0, 0, 0), ε̄ > 0} where u(B, λ, ε̄) ∼ u0 is the
smooth intersection of MS , turning around M , and the section Σ+ at the level
ε̄ ≥ 0. Note that u(0, 0, 0) = u0. The following theorem gives the structure of
the transition map ∆−.

Theorem 3.2. For all k > 0 there exists ε̄k > 0 so that ∆− is C∞ on U−∩{ε̄ ≤
ε̄k} and has a Ck-extension to the closure of U− ∩ {ε̄ ≤ ε̄k}. Furthermore,

∂∆−
∂u

(u,B, λ, ε̄) = − exp

(
I−(u,B, λ, ε̄)

ε̄2

)
, (u,B, λ, ε̄) ∈ U− ∩ {ε̄ ≤ ε̄k}, (12)

where I− is ε̄-regularly Ck in (u,B, λ), I−(u,B, λ, ε̄) → −∞ as (u,B, λ, ε̄) →
(u0, 0, 0, 0) and ∂I−

∂u (u,B, λ, ε̄) > 0.
A similar result is true for the transition map ∆+ in the presence of the

hyperbolic saddle α(u0) (with the + sign in front of the exponential term in
(12)).

Proof. Using the notation and the chosen parameterizations from the proof of
Theorem 3.1, we have

∂∆−
∂u

(u) =
∂∆2

∂v
(∆1(u))

∂∆1

∂u
(u).

It suffices to observe that ∆1 is smooth, ∂∆1

∂u > 0 and ∂∆2

∂v (v) has a form similar
to (12), with the same smoothness properties (see [DMD08]).

3.2 Proof of Lemma 2.1

Assume that Xε̄2,ε̄B,λ, ε̄ > 0, has a 2–periodic orbit intersecting Σ+ in two points
ū and ũ, with ū < ũ, i.e. ∆−(ū, B, λ, ε̄) = ∆+(ũ, B, λ, ε̄) and ∆−(ũ, B, λ, ε̄) =
∆+(ū, B, λ, ε̄). Then we have:

∆−(ū, B, λ, ε̄)−∆+(ū, B, λ, ε̄) > 0 and ∆−(ũ, B, λ, ε̄)−∆+(ũ, B, λ, ε̄) < 0,

due to the chosen parameterizations of Σ+ and Σp. Now, since the function
u→ ∆−(u,B, λ, ε̄)−∆+(u,B, λ, ε̄) is continuous for each ε ∼ 0 and ε > 0, there
exists u′ ∈]ū, ũ[ such that ∆−(u′, B, λ, ε̄) = ∆+(u′, B, λ, ε̄). Thus, Xε̄2,ε̄B,λ

has one 1–periodic orbit, passing through u′ ∈ Σ+, which coexists with the
2–periodic orbit.

3.3 Proof of Theorem 2.2

The second part of Remark 4 implies Cycl(Xε,µ, Lu0
) ≥ 1.

Let I, given in (4), be nonzero near (u, µ) = (u0, 0, 0) (i.e. I−(u0, 0, 0) 6=
I+(u0, 0, 0)). Let us suppose that for (B, λ, ε̄) ∼ (0, 0, 0), ε̄ > 0, Xε̄2,ε̄B,λ has
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a 2–periodic orbit intersecting Σ+ in two points ū ∼ u0 and ũ ∼ u0, with
ū < ũ. Then ∆B,λ,ε̄(ū) = ∆B,λ,ε̄(ũ) = 0, PB,λ,ε̄(ū) = ũ, PB,λ,ε̄(ũ) = ū and
PB,λ,ε̄([ū, ũ]) = [ū, ũ], where the maps ∆B,λ,ε̄ and PB,λ,ε̄ are introduced in Re-
mark 2. Using Theorem 3.1 the derivative of ∆B,λ,ε̄ can be written as:

∆′B,λ,ε̄(u) =
∆′−(u)

∆′+(PB,λ,ε̄(u))
−

∆′+(u)

∆′−(P−1
B,λ,ε̄(u))

= − exp

(
I−(u)− I+(PB,λ,ε̄(u)) + o(1)

ε̄2

)
+ exp

(
I+(u)− I−(P−1

B,λ,ε̄(u)) + o(1)

ε̄2

)
,

for all u ∈ [ū, ũ]. This implies that the equation {∆′B,λ,ε̄ = 0} is equivalent, for
ε̄ > 0 and u ∈ [ū, ũ], to the following equation:

I−(u)− I+(PB,λ,ε̄(u)) + I−(P−1
B,λ,ε̄(u))− I+(u) + o(1) = 0, (13)

for a new o(1)-term. Since I± are smooth and u, PB,λ,ε̄(u), P−1
B,λ,ε̄(u) ≈ u0 for

all u ∈ [ū, ũ], we have:

I−(u)− I+(PB,λ,ε̄(u)) + I−(P−1
B,λ,ε̄(u))− I+(u)

≈ I−(u0)− I+(u0) + I−(u0)− I+(u0)

= 2(I−(u0)− I+(u0)) 6= 0,

for u ∈ [ū, ũ]. From this and the fact that the o(1)-term is (u,B, λ)-uniformly
small for ε̄ ∼ 0 follows that (13) has no solutions in u ∈ [ū, ũ], or equivalently,
∆′B,λ,ε̄(u) 6= 0, for all u ∈ [ū, ũ]. This is a clear contradiction with the fact that
there exists u′ ∈]ū, ũ[ such that ∆′B,λ,ε̄(u

′) = 0 (Rolle’s theorem). Thus, Xε̄2,ε̄B,λ

has no 2–periodic orbits Hausdorff close to Lu0 , i.e. Cycl(Xε,µ, Lu0) = 1.
Suppose Xε̄2,ε̄B,λ has a 1–limit cycle passing through u1 ∈ Σ+, Hausdorff

close to Lu0
(i.e. u1 ∼ u0), at level (B, λ, ε̄), with ε̄ > 0. Then PB,λ,ε̄(u1) = u1

and

P ′B,λ,ε̄(u1) = − exp

(
I−(u1)− I+(u1) + o(1)

ε̄2

)
.

Now, if I−(u0) − I+(u0) < 0 (resp. I−(u0) − I+(u0) > 0), then the 1–periodic
orbit is hyperbolically attracting (resp. hyperbolically repelling) because −1 <
P ′B,λ,ε̄(u1) < 0 (resp. P ′B,λ,ε̄(u1) < −1).

3.4 Proof of Theorem 2.3

Let I(u0, 0, 0) = 0 and ∂I
∂u (u0, 0, 0) 6= 0. To prove that a 2–periodic orbit of

Xε̄2,ε̄B,λ, Hausdorff close to Lu0
, can be created by a period doubling bifurcation,

we show that the 1–return map PB,λ,ε̄ fulfils the conditions of the following
theorem (Theorem 3.5.1 in [GH83]), for each fixed (λ, ε̄) ∼ (0, 0), ε̄ > 0:

Theorem 3.3 (period doubling bifurcation). Let pB : R→ R be a smooth one-
parameter family of mappings such that pB0

has a fixed point x0 with eigenvalue
−1. Assume
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(PD1) ∂p
∂B

∂2p
∂x2 + 2 ∂2p

∂x∂B 6= 0 at (x,B) = (x0, B0);

(PD2) a := 1
2

(
∂2p
∂x2

)2
+ 1

3
∂3p
∂x3 6= 0 at (x,B) = (x0, B0).

Then there is a smooth curve of fixed points of pB passing through (x0, B0), the
stability of which changes at (x0, B0). There is also a smooth curve γ passing
through (x0, B0) so that γ \ {(x0, B0)} is a union of hyperbolic period 2 orbits.
The curve γ has a quadratic tangency with the line B = B0 at (x0, B0). If a is
positive (resp. negative), the period 2 orbits are attracting (resp. repelling).

The expression in (PD1) is the derivative of ∂p
∂x w.r.t. B along the curve of

the fixed points at (x0, B0), multiplied by 2.
The derivative of PB,λ,ε̄ w.r.t. u is given by

∂PB,λ,ε̄
∂u

(u) =
∂∆−
∂u (u,B, λ, ε̄)

∂∆+

∂u (PB,λ,ε̄(u), B, λ, ε̄)
, (14)

with
∂∆±
∂u

(u,B, λ, ε̄) = ± exp

(
Î±(u,B, λ, ε̄)

ε̄2

)
where functions Î± are ε̄-regularly smooth in (u,B, λ) and Î±(u,B, λ, 0) =
I±(u, 0, λ) (see Theorem 3.1). Since the function u → I−(u, 0, 0) − I+(u, 0, 0)
has a simple zero at u = u0, f(0, 0, 0) = 0 and ∂f

∂B (0, 0, 0) 6= 0, with f defined
in Theorem 3.1, we can apply the Implicit Function Theorem to the following
ε̄-regularly smooth in (u,B, λ) system{

∆−(u,B, λ, ε̄)−∆+(u,B, λ, ε̄) = 0

Î−(u,B, λ, ε̄)− Î+(u,B, λ, ε̄) = 0,

and find a solution (λ, ε̄) → (u(λ, ε̄), B(λ, ε̄)), ε̄-regularly smooth in λ, with
u(0, 0) = u0 and B(0, 0) = 0. From this and (14) follows

PB(λ,ε̄),λ,ε̄(u(λ, ε̄)) = u(λ, ε̄) and
∂PB(λ,ε̄),λ,ε̄

∂u
(u(λ, ε̄)) = −1,

for all (λ, ε̄) ∼ (0, 0) and ε̄ > 0. Thus, for each (λ, ε̄) ∼ (0, 0) and ε̄ > 0,
PB(λ,ε̄),λ,ε̄ has a fixed point u(λ, ε̄) with eigenvalue −1.

Let us write P (u) = PB,λ,ε̄(u) and ∆±(u) = ∆±(u,B, λ, ε̄). Using (14) we
have:

∂2P

∂u2
(u) =

∂2∆−
∂u2 (u)

∂∆+

∂u (P (u))
−
(∂∆−
∂u (u)

)2 ∂2∆+

∂u2 (P (u))(∂∆+

∂u (P (u))
)3 (15)

and

∂3P

∂u3
(u) =

∂3∆−
∂u3 (u)

∂∆+

∂u (P (u))
− 3

∂∆−
∂u (u)∂

2∆−
∂u2 (u)∂

2∆+

∂u2 (P (u))(∂∆+

∂u (P (u))
)3

−
(∂∆−
∂u (u)

)3 ∂3∆+

∂u3 (P (u))(∂∆+

∂u (P (u))
)4 + 3

(∂∆−
∂u (u)

)3(∂2∆+

∂u2 (P (u))
)2(∂∆+

∂u (P (u))
)5 . (16)
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Since ∂∆+

∂u (P (u)) = −∂∆−
∂u (u) and P (u) = u at (u,B) = (u(λ, ε̄), B(λ, ε̄)), from

(15) and (16) follows that

∂2P

∂u2
(u) = −

∂2(∆−−∆+)
∂u2 (u)
∂∆−
∂u (u)

, at (u,B) = (u(λ, ε̄), B(λ, ε̄)), (17)

and

∂3P

∂u3
(u) =−

∂3(∆−+∆+)
∂u3 (u)
∂∆−
∂u (u)

+ 3
∂2∆−
∂u2 (u)∂

2∆+

∂u2 (u)−
(∂2∆+

∂u2 (u)
)2(∂∆−

∂u (u)
)2 (18)

at (u,B) = (u(λ, ε̄), B(λ, ε̄)). Using (17) and (18) we find the quantity a in
(PD2):

a =
3
(∂2∆−
∂u2 (u)

)2 − 3
(∂2∆+

∂u2 (u)
)2 − 2∂∆−

∂u (u)∂
3(∆−+∆+)

∂u3 (u)

6
(∂∆−
∂u (u)

)2 (19)

where (u,B) = (u(λ, ε̄), B(λ, ε̄)).
Using ∆+ ◦ P = ∆− we find

∂P

∂B
(u) =

∂∆−
∂B (u)− ∂∆+

∂B (P (u))
∂∆+

∂u (P (u))
, (20)

and then, using (14) and (20), we get

∂2P

∂u∂B
(u) =

∂2∆−
∂u∂B (u)

∂∆+

∂u (P (u))
−

∂∆−
∂u (u)∂

2∆+

∂u∂B (P (u))(∂∆+

∂u (P (u))
)2

−
∂∆−
∂u (u)∂

2∆+

∂u2 (P (u))
(∂∆−
∂B (u)− ∂∆+

∂B (P (u))
)(∂∆+

∂u (P (u))
)3 . (21)

Since ∂∆+

∂u (P (u)) = −∂∆−
∂u (u) and P (u) = u at (u,B) = (u(λ, ε̄), B(λ, ε̄)), from

(20) and (21) follows that

∂P

∂B
(u) = −

∂(∆−−∆+)
∂B (u)
∂∆−
∂u (u)

, (u,B) = (u(λ, ε̄), B(λ, ε̄)), (22)

and

∂2P

∂u∂B
(u) =−

∂2(∆−+∆+)
∂u∂B (u)
∂∆−
∂u (u)

+
∂2∆+

∂u2 (u)∂(∆−−∆+)
∂B (u)(∂∆−

∂u (u)
)2 (23)

at (u,B) = (u(λ, ε̄), B(λ, ε̄)). Combining (17), (22) and (23) we get the quantity
(PD1):

∂(∆−−∆+)
∂B (u)∂

2(∆−+∆+)
∂u2 (u)− 2∂∆−

∂u (u)∂
2(∆−+∆+)
∂u∂B (u)(∂∆−

∂u (u)
)2 , (24)

where (u,B) = (u(λ, ε̄), B(λ, ε̄)).
To further simplify the quantities given in (19) and (24) and to show that

they are nonzero, we use the following simple but important lemma:
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Lemma 3.4. Let m ∈ N, m ≥ 1. Then we have:

ε̄2m
∂m+1∆±
∂um+1

(u) = ±
((∂I±

∂u
(u)
)m

+ o(1)

)
exp

(
Î±(u,B, λ, ε̄)

ε̄2

)
,

where Î±(u,B, λ, ε̄) are defined after (14), I±(u) = I±(u, 0, λ) and the o(1)-term
is ε̄-regularly smooth in (u,B, λ) and tends uniformly to zero as ε̄→ 0.

Since Î−(u,B, λ, ε̄) = Î+(u,B, λ, ε̄) at (u,B) = (u(λ, ε̄), B(λ, ε̄)), Lemma 3.4
implies 

ε̄2m∂m+1∆−
∂um+1 (u) =

((
∂I−
∂u (u)

)m
+ o(1)

)
∂∆−
∂u (u)

ε̄2m∂m+1∆+

∂um+1 (u) = −
((

∂I+
∂u (u)

)m
+ o(1)

)
∂∆−
∂u (u),

(25)

at (u,B) = (u(λ, ε̄), B(λ, ε̄)). As a simple consequence of (25), (19) can be
written as:

a =

(
∂I−
∂u (u)

)2

−
(
∂I+
∂u (u)

)2

+ o(1)

6ε̄4
, (u,B) = (u(λ, ε̄), B(λ, ε̄)).

Since ∂I±
∂u > 0, the quantity a is positive (resp. negative) if ∂I−

∂u (u0, 0, 0) −
∂I+
∂u (u0, 0, 0) > 0 (resp. ∂I−

∂u (u0, 0, 0)− ∂I+
∂u (u0, 0, 0) < 0), for each fixed (λ, ε̄) ∼

(0, 0), ε̄ > 0.
Similarly, using (25), the quantity (24) becomes:

∂(∆−−∆+)
∂B (u)

(
∂I−
∂u (u)− ∂I+

∂u (u)
)

+ o(1)

ε̄2 ∂∆−
∂u (u)

, (26)

where (u,B) = (u(λ, ε̄), B(λ, ε̄)). Since ∂(∆−−∆+)
∂B is nonzero (see Theorem

3.1), (26) is nonzero, for each fixed (λ, ε̄) ∼ (0, 0), ε̄ > 0. Thus, putting
all the informations together, we have proved that for each fixed (λ, ε̄) ∼
(0, 0), ε̄ > 0, the B-family Xε̄2,ε̄B,λ undergoes a period doubling bifurcation
at (u,B) = (u(λ, ε̄), B(λ, ε̄)). This implies that for each fixed ε > 0, ε ∼ 0
and λ ∼ 0 the b-family Xε,b,λ undergoes a period doubling bifurcation at
(u, b) = (u(λ,

√
ε),
√
εB(λ,

√
ε)). Since the functions (λ, ε̄) → u(λ, ε̄), B(λ, ε̄)

are ε̄-regularly smooth in λ, the functions (λ, ε) → (u(λ,
√
ε),
√
εB(λ,

√
ε) are

ε-regularly smooth in λ.

3.5 Proof of Theorem 2.4

Let ū, ũ ∈ Σ+, with ū < ũ, be arbitrary but fixed, and let us suppose that
the function u → I(u, 0, 0) has one zero (counting multiplicity) in [ū, ũ], and
∂I
∂u (u, 0, 0) 6= 0 for all u ∈ [ū, ũ]. In this section we prove that for each fixed
(B, λ, ε̄) ∼ (0, 0, 0), with ε̄ > 0, the system (11) has at most 3 solutions (counted
without their multiplicity) in (u, u′) ∈ [ū, ũ]×[ū, ũ]. From this and the symmetry
of (11), explained in Remark 2, follows that Xε,µ has at most one 2–limit cycle,
intersecting the piece of the section Σ+ parametrized by u ∈ [ū, ũ]. This implies,
using Lemma 2.1, that Cycl(Xε,µ,∪u∈[ū,ũ]Lu) ≤ 2. On the other hand, Theorem
2.3 implies Cycl(Xε,µ,∪u∈[ū,ũ]Lu) ≥ 2. Thus, Cycl(Xε,µ,∪u∈[ū,ũ]Lu) = 2. As a
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special case we obtain Theorem 2.4 (under the conditions of Theorem 2.4, we
choose ū, ũ ∼ u0 such that ū < u0 < ũ).

Instead of studying the number of solutions of (13) when the slow diver-
gence integral I has a simple zero, it is more convenient to study the number of
solutions of system (11) by using a method introduced in [MR12]. The paper
[MR12] is devoted to the study of the number of limit cycles bifurcating from ca-
nard cycles with two breaking parameters, and a system containing exponential
functions, similar to (11), has been studied in [MR12].

The main difficulty lies in the fact that the limit ε̄ = 0 of the system (11)
is degenerate. Our goal is, therefore, to replace (11) with a new system, non-
singular for ε̄ = 0, as explained in [MR12]. Let us first recall results from
[MR12], which we will use in our proof.

• Regular pair of foliations. Let us suppose that Ψ(u, u′) and Φ(u, u′)
are two smooth functions defined on a rectangle R = [Ū1, Ũ1] × [Ū2, Ũ2]
and let us suppose that ∂Ψ

∂u , ∂Ψ
∂u′ ,

∂Φ
∂u and ∂Φ

∂u′ are nonzero for all (u, u′) ∈ R.
We further assume that the equation {det(Ψ,Φ)(u, u′) = 0} for contact
points is equivalent on R to an equation {E(u, u′) = 0}, where E is a
smooth function on R, and where ∂E

∂u and ∂E
∂u′ are nonzero for all (u, u′) ∈

R. (Equivalent means det(Ψ,Φ) = F.E, where the factor F is a smooth
nowhere zero function on R.) Now we can define a regular pair of foliations

(Ψ̃, Φ̃) on R as follows: the curves {Ψ(u, u′) = α} (resp. {Φ(u, u′) = β})
are the leaves of foliation Ψ̃ (resp. Φ̃). Each leaf and the curve {E(u, u′) =
0} are simple connected curves. For more details see [MR12].

Let γ1 and γ2 be two smooth simple curves in R2 and let q ∈ γ1 ∩ γ2.
We say that γ1 and γ2 have intersection multiplicity k ≥ 1 at q if and
only if γ1 and γ2 are graphs of smooth functions x → y = f1(x) and
x → y = f2(x) in a neighborhood of q (in local coordinates (x, y), q is
given by (x, y) = (0, 0)) such that the function x → f1(x) − f2(x) has a
zero of multiplicity k ≥ 1 at x = 0. If q /∈ γ1 ∩ γ2, then we say that the
intersection multiplicity at q is zero. See e.g. Definition 2 in [MR12].

The following proposition relates the number of intersection points (count-
ing multiplicity) of two leaves {Ψ(u, u′) = α} and {Φ(u, u′) = β} in
R with the number of intersection points (counting multiplicity) of the
curve {E(u, u′) = 0} and one of these two leaves in R (see Proposition 23
in [MR12]).

Proposition 3.5. Let (Ψ̃, Φ̃) be a regular pair of foliations on R as de-
fined above and let α, β ∈ R be arbitrary but fixed. Let N (α, β) be the
number of intersection points of {Ψ(u, u′) = α} with {Φ(u, u′) = β} in R,
counting multiplicity, and let N (β) be the number of intersection points of
{E(u, u′) = 0} with {Φ(u, u′) = β} in R, counting multiplicity. If N (β)
is finite, then

N (α, β) ≤ N (β) + 1. (27)

The same result is true if we use the number of intersection points N (α)
of {E(u, u′) = 0} with {Ψ(u, u′) = α}.

To find at most 3 solutions of (11) in [ū, ũ]×[ū, ũ], for each (B, λ, ε̄) ∼ (0, 0, 0),
with ε̄ > 0, we use Proposition 3.5 twice. The system (11) is a special case of
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the more general system
exp

(
Ī−(u,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u′,B,λ,ε̄)

ε̄2

)
= α

exp

(
Ī−(u′,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,B,λ,ε̄)

ε̄2

)
= β

(28)

where α, β ∈ R, and it suffices to prove that (28) has at most 3 solutions in
[ū, ũ]× [ū, ũ], for each fixed (B, λ, ε̄) ∼ (0, 0, 0), with ε̄ > 0, and α, β ∈ R.

We denote by ΨB,λ,ε̄(u, u
′),ΦB,λ,ε̄(u, u

′) the functions on the left-hand side
of (28) and we prove that they define a regular pair of foliations on [ū, ũ]× [ū, ũ],

for each fixed (B, λ, ε̄) ∼ (0, 0, 0), with ε̄ > 0. Since ∂I±
∂u > 0, the first order

partial derivatives of ΨB,λ,ε̄ and ΦB,λ,ε̄ w.r.t. u and u′ are not zero for all
(u, u′) ∈ [ū, ũ]× [ū, ũ]. Further we have:

det(ΨB,λ,ε̄,ΦB,λ,ε̄) =
∂ΨB,λ,ε̄

∂u

∂ΦB,λ,ε̄
∂u′

− ∂ΨB,λ,ε̄

∂u′
∂ΦB,λ,ε̄
∂u

= exp

(
I−(u) + o(1)

ε̄2

)
exp

(
I−(u′) + o(1)

ε̄2

)
− exp

(
I+(u′) + o(1)

ε̄2

)
exp

(
I+(u) + o(1)

ε̄2

)
= exp

(
I−(u) + I−(u′) + o(1)

ε̄2

)
− exp

(
I+(u) + I+(u′) + o(1)

ε̄2

)
.

This implies that the equation {det(ΨB,λ,ε̄,ΦB,λ,ε̄)(u, u
′) = 0} of the contact

points between the two foliations Ψ̃B,λ,ε̄ and Φ̃B,λ,ε̄ is equivalent for ε̄ > 0 to
{EB,λ,ε̄(u, u′) = 0} with

EB,λ,ε̄(u, u
′) = I−(u)− I+(u′) + I−(u′)− I+(u) + o(1),

where the o(1)-term is ε̄-regularly smooth in (u, u′, B, λ). Since

∂(I− − I+)

∂u
(u, 0, 0) 6= 0

for all u ∈ [ū, ũ], the first order partial derivatives of EB,λ,ε̄ w.r.t. u and u′ are

not zero for all (u, u′) ∈ [ū, ũ]× [ū, ũ]. Thus, (Ψ̃B,λ,ε̄, Φ̃B,λ,ε̄) is a regular pair of
foliations.

We define the following system: EB,λ,ε̄(u, u
′) = I−(u)− I+(u′) + I−(u′)− I+(u) + o(1) = 0

ΦB,λ,ε̄(u, u
′) = exp

(
Ī−(u′,B,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,B,λ,ε̄)

ε̄2

)
= β.

(29)

Following Proposition 3.5, if we denote by NB,λ,ε̄(α, β) (resp. NB,λ,ε̄(β)) the
number of solutions of (28) (resp. (29)), counting multiplicity, in [ū, ũ]× [ū, ũ],
then

NB,λ,ε̄(α, β) ≤ 1 +NB,λ,ε̄(β).
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We have

det(EB,λ,ε̄,ΦB,λ,ε̄) =
∂EB,λ,ε̄
∂u

∂ΦB,λ,ε̄
∂u′

− ∂EB,λ,ε̄
∂u′

∂ΦB,λ,ε̄
∂u

=

(
∂I−
∂u

(u)− ∂I+
∂u

(u) + o(1)

)
exp

(
I−(u′) + o(1)

ε̄2

)
−
(
∂I−
∂u

(u′)− ∂I+
∂u

(u′) + o(1)

)
exp

(
I+(u) + o(1)

ε̄2

)
.

Clearly, the equation {det(EB,λ,ε̄,ΦB,λ,ε̄)(u, u
′) = 0} is equivalent for ε̄ > 0 to

{ĒB,λ,ε̄(u, u′) = 0} where

ĒB,λ,ε̄(u, u
′) = I−(u′)− I+(u) + o(1),

where the o(1)-term is ε̄-regularly smooth in (u, u′, B, λ). (We used the fact that

the derivative ∂(I−−I+)
∂u has a fixed sign on the segment [ū, ũ].) Since EB,λ,ε̄ and

ΦB,λ,ε̄ define a regular pair of foliations on [ū, ũ]× [ū, ũ] (∂I±∂u > 0), Proposition
3.5 implies that

NB,λ,ε̄(β) ≤ 1 +NB,λ,ε̄,

where NB,λ,ε̄ is the number of solutions (counting multiplicity) of the system
{I−(u) − I+(u′) + I−(u′) − I+(u) + o(1) = 0, I−(u′) − I+(u) + o(1) = 0} in
[ū, ũ]× [ū, ũ], or equivalently the system{

I−(u)− I+(u′) + o(1) = 0
I−(u′)− I+(u) + o(1) = 0.

(30)

Thus, we have proved that

NB,λ,ε̄(α, β) ≤ 2 +NB,λ,ε̄,

for each (B, λ, ε̄) ∼ (0, 0, 0), with ε̄ > 0, and α, β ∈ R. Now, it suffices to
show that NB,λ,ε̄ = 1. Denote by u0 ∈ [ū, ũ] the simple zero of I(u, 0, 0). Since
∂I±
∂u (u0, 0, 0) > 0 and ∂I

∂u (u0, 0, 0) 6= 0, the Implicit Function Theorem implies
that the system (30) has one solution (u, u′) = (U(B, λ, ε̄), U ′(B, λ, ε̄)) (count-
ing multiplicity) in a small (B, λ, ε̄)-uniform neighborhood of (u0, u0), where
functions U(B, λ, ε̄), U ′(B, λ, ε̄) are continuous and U(0, 0, 0) = U ′(0, 0, 0) = u0.
There are no other solutions of (30):

1. I−(u, 0, 0)− I+(u, 0, 0) 6= 0, for all u ∈ [ū, ũ] and u 6= u0 (besides u0 there
are no extra zeros of I(u, 0, 0) in [ū, ũ]);

2. when u < u′ (resp. u′ < u), we have I−(u, 0, 0)−I+(u′, 0, 0) < I−(u′, 0, 0)−
I+(u, 0, 0) (resp. I−(u′, 0, 0) − I+(u, 0, 0) < I−(u, 0, 0) − I+(u′, 0, 0)) be-
cause the functions u→ I±(u) are strictly increasing.

3.6 Proof of Theorem 2.5

Assume that f(ω(u0), 0) = 0, ∂f∂x (ω(u0), 0) 6= 0 and f(x, 0) < 0 for all x ∈
[α(u0), ω(u0)[. First, let us prove that Cycl(Xε,µ, Lu0) ≤ 1, i.e. there are no
2-periodic orbits Hausdorff close to Lu0 . Suppose, on the contrary, that for
(B, λ, ε̄) ∼ (0, 0, 0), ε̄ > 0, Xε̄2,ε̄B,λ has a 2–periodic orbit intersecting Σ+ in two
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points ū ∼ u0 and ũ ∼ u0, with u(B, λ, ε̄) < ū < ũ, where u(B, λ, ε̄) is defined
in Section 3.1.2. Then Rolle’s theorem implies the existence of u′ ∈]ū, ũ[ such
that ∆′B,λ,ε̄(u

′) = 0 where ∆B,λ,ε̄ is defined in Remark 2 (see also Section 3.3).
On the other hand, we have for u ∈ [ū, ũ]:

∆′B,λ,ε̄(u) =
∂∆−
∂u (u)

∂∆+

∂u (PB,λ,ε̄(u))
−

∂∆+

∂u (u)
∂∆−
∂u (P−1

B,λ,ε̄(u))

=− exp

(
I−(u,B, λ, ε̄)− I+(PB,λ,ε̄(u)) + o(1)

ε̄2

)
+ exp

(
I+(u)− I−(P−1

B,λ,ε̄(u), B, λ, ε̄) + o(1)

ε̄2

)
,

where ∂∆−
∂u is given in Theorem 3.2 and we get ∂∆+

∂u from (8) (note that the
slow dynamics is regular along the repelling part m+ of the critical curve). Since
u, PB,λ,ε̄(u), P−1

B,λ,ε̄(u) ∼ u0 for u ∈ [ū, ũ], I+ and o(1) are bounded functions
and I−(u,B, λ, ε̄) → −∞ as (u,B, λ, ε̄) → (u0, 0, 0, 0), the exponents of the
above exponential functions have opposite signs. Thus, ∆′B,λ,ε̄ is nonzero for all
u ∈ [ū, ũ]. This is a contradiction with ∆′B,λ,ε̄(u

′) = 0.
Since I−(u,B, λ, ε̄) − I+(u) is negative, any 1-limit cycle bifurcating from

Lu0 is hyperbolically attracting (see Section 3.3). We have Cycl(Xε,µ, Lu0) ≥ 1
due to the presence of the breaking parameter B (for more details see Section
3.8.5 of [HDMD13]).

We use a similar proof in the case f(α(u0), 0) = 0, ∂f∂x (α(u0), 0) 6= 0 and
f(x, 0) < 0 for all x ∈]α(u0), ω(u0)].

3.7 Proof of Theorem 2.6

Let u0, u1 ∈ Σ+, with u0 < u1, be arbitrary but fixed, and let us suppose
that T (u0, u1, 0) 6= 0, where T is the total slow divergence integral defined in
(5). Suppose, on the contrary, that for (B, λ, ε̄) ∼ (0, 0, 0), ε̄ > 0, Xε̄2,ε̄B,λ has
two 2–periodic orbits, one intersecting Σ+ in two points ū ∼ u0 and ũ ∼ u1,
and the other in ¯̄u ∼ u0 and ˜̃u ∼ u1. Then we have ū < ¯̄u < ˜̃u < ũ or
¯̄u < ū < ũ < ˜̃u. Suppose without loss of generality that ū < ¯̄u < ˜̃u < ũ. Then
∆B,λ,ε̄(ū) = ∆B,λ,ε̄(¯̄u) = 0, PB,λ,ε̄(ū) = ũ, PB,λ,ε̄(¯̄u) = ˜̃u, PB,λ,ε̄([ū, ¯̄u]) = [˜̃u, ũ]
and P−1

B,λ,ε̄([ū, ¯̄u]) = [˜̃u, ũ]. Using Rolle’s theorem we find u′ ∈]ū, ¯̄u[ such that
∆′B,λ,ε̄(u

′) = 0. On the other hand we get (see Section 3.3):

∆′B,λ,ε̄(u) =− exp

(
I−(u)− I+(PB,λ,ε̄(u)) + o(1)

ε̄2

)
+ exp

(
I+(u)− I−(P−1

B,λ,ε̄(u)) + o(1)

ε̄2

)
,

where u ∈ [ū, ¯̄u]. The equation {∆′B,λ,ε̄(u) = 0} is equivalent for ε̄ > 0 and
u ∈ [ū, ¯̄u] to an equation given in (13). Since T (u0, u1, 0) 6= 0, u ∼ u0,
PB,λ,ε̄(u), P−1

B,λ,ε̄(u) ∼ u1 for all u ∈ [ū, ¯̄u], (13) has no solutions w.r.t. u ∈ [ū, ¯̄u].
This is a contradiction with ∆′B,λ,ε̄(u

′) = 0. Thus, Cycl(Xε,µ, Lu0,u1
) ≤ 1.

Using the above expression for ∆′B,λ,ε̄ it can be easily seen that any 2–limit
cycle bifurcating from Lu0,u1

is hyperbolic and attracting (resp. repelling) when
T (u0, u1, 0) < 0 (resp. T (u0, u1, 0) > 0).
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3.8 Proof of Theorem 2.7

Let u0, u1 ∈ Σ+, with u0 < u1, be arbitrary but fixed.

Proof of Theorem 2.7.1. Suppose that (u, u′) ∼ (u0, u1) is a solution of
the system (11) for (B, λ, ε̄) ∼ (0, 0, 0) and ε̄ > 0. Then (11) implies

exp

(
Ī+(u′, B, λ, ε̄)

ε̄2

)
− exp

(
Ī+(u,B, λ, ε̄)

ε̄2

)
= exp

(
Ī−(u′, B, λ, ε̄)

ε̄2

)
− exp

(
Ī−(u,B, λ, ε̄)

ε̄2

)
. (31)

The expression (31) can be written as:

exp

(
I+(u′) + o(1)

ε̄2

)(
1− exp

(
I+(u)− I+(u′) + o(1)

ε̄2

))
= exp

(
I−(u′) + o(1)

ε̄2

)(
1− exp

(
I−(u)− I−(u′) + o(1)

ε̄2

))
, (32)

where we write Ī±(., B, λ, ε̄) = I±(.) + o(1) (see Remark 3). Since u < u′ and
the functions u→ I±(u) are strictly increasing, we have I±(u)− I±(u′) < 0 and
we can write (32) as

exp

(
I+(u′) + o(1)

ε̄2

)(
1 + o(1)

)
= exp

(
I−(u′) + o(1)

ε̄2

)(
1 + o(1)

)
,

or equivalently, as

exp

(
I+(u′) + o(1)

ε̄2

)
= exp

(
I−(u′) + o(1)

ε̄2

)
(33)

for new o(1)-functions. The equation (33) is equivalent for ε̄ > 0 to

I−(u′)− I+(u′) + o(1) = 0. (34)

(All the o(1)-terms in the above expressions are ε̄-regularly smooth in (u, u′, B, λ)
and tend uniformly to zero as ε̄ → 0.) Thus, each solution (u, u′) ∼ (u0, u1) of
(11) satisfies (34). From this, the assumption I−(u1, 0)−I+(u1, 0) 6= 0 and u′ ∼
u1 follows that (11) has no solutions (u, u′) ∼ (u0, u1) when (B, λ, ε̄) ∼ (0, 0, 0)
and ε̄ > 0. Thus, there are no 2-periodic orbits Hausdorff close to Lu0,u1

.

Proof of Theorem 2.7.2. Assume that I−(u1, 0) − I+(u1, 0) = 0 and
I−(u0, 0) − I+(u0, 0) 6= 0. Then T (u0, u1, 0) = I−(u0, 0) − I+(u0, 0) 6= 0 and
from Theorem 2.6 it follows the first part of Theorem 2.7.2.

Moreover, suppose that ∂(I−−I+)
∂u (u1, 0) 6= 0. Our goal is to show that

Cycl(Xε,µ, Lu0,u1
) = 1. Using the Implicit Function Theorem, we find a function

B = B0(λ, ε̄), ε̄-regularly smooth in λ, such that B0(λ, 0) = 0 and

f(B0(λ, ε̄), λ, ε̄) = 0,

where f is introduced in Theorem 3.1. This implies that

f(B, λ, ε̄) = l(B, λ, ε̄).(B −B0(λ, ε̄))
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where l(0, 0, 0) 6= 0 (without loss of generality we can take l(0, 0, 0) > 0). If we
define an adapted breaking parameter B̄ = B−B0(λ, ε̄) ∼ 0 (see e.g. [Dum11]),
then the system (11) can be written as:

exp

(
Ī−(u,B̄,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u′,B̄,λ,ε̄)

ε̄2

)
= B̄

exp

(
Ī−(u′,B̄,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,B̄,λ,ε̄)

ε̄2

)
= B̄,

(35)

where the new functions Ī± are ε̄-regularly smooth in (u, B̄, λ) or in (u′, B̄, λ)
and Ī±(·, B̄, λ, 0) = I±(·). Since the partial derivative of the functions on the
left-hand side of (35) w.r.t. B̄ is flat in ε̄, using the Implicit Function Theorem
in each equation of (35) we can change (35) to

exp

(
Ī−(u,u′,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u′,u,λ,ε̄)

ε̄2

)
= B̄

exp

(
Ī−(u′,u,λ,ε̄)

ε̄2

)
+ exp

(
Ī+(u,u′,λ,ε̄)

ε̄2

)
= B̄,

(36)

where the functions Ī± are ε̄-regularly smooth in (u, u′, λ) and Ī±(u, u′, λ, 0) =
I±(u) and Ī±(u′, u, λ, 0) = I±(u′). The advantage of working with system (36)
is that the breaking parameter B̄ does not appear in the left-hand terms of (36).
We can write (36) as

Θλ,ε̄(u, u
′) = (Θ1

λ,ε̄(u, u
′),Θ1

λ,ε̄(u
′, u)) = (B̄, B̄), (u, u′) ∼ (u0, u1).

Like in the proof of Theorem 2.7.1, we can show that the equation {Θ1
λ,ε̄(u, u

′) =

Θ1
λ,ε̄(u

′, u)}, with (u, u′) ∼ (u0, u1), is equivalent for ε̄ > 0 to

I−(u′)− I+(u′) + o(1) = 0, (u, u′) ∼ (u0, u1), (37)

where the term o(1) is ε̄-regularly smooth in (u, u′, λ) and tends uniformly to zero

as ε̄ → 0. Since I−(u1, 0)− I+(u1, 0) = 0 and ∂(I−−I+)
∂u (u1, 0) 6= 0, the Implicit

Function Theorem implies existence of a function u′ = U(u, λ, ε̄), ε̄-regularly
smooth in (u, λ), such that U(u0, 0, 0) = u1 and such that u′ = U(u, λ, ε̄) is the
solution of (37). Thus, we have

Θ1
λ,ε̄(u,U(u, λ, ε̄)) = Θ1

λ,ε̄(U(u, λ, ε̄), u), for all (u, λ, ε̄) ∼ (u0, 0, 0), ε̄ > 0.

This implies that Xε̄2,ε̄B,λ has a 2-periodic orbit intersecting Σ+ in the points
(u,U(u, λ, ε̄)) ∼ (u0, u1), for each fixed (u, λ, ε̄) ∼ (u0, 0, 0), ε̄ > 0, and for
B̄ = Θ1

λ,ε̄(u,U(u, λ, ε̄)) ∼ 0 (B = B̄ +B0(λ, ε̄)). Thus, Cycl(Xε,µ, Lu0,u1
) = 1.

Proof of Theorem 2.7.3. Assume that I−(ui, 0) − I+(ui, 0) = 0 and
∂(I−−I+)

∂u (ui, 0) 6= 0 for i = 0, 1. To show that Cycl(Xε,µ, Lu0,u1) ≤ 2, we
use the idea of Khovanskii explained in Section 3.5. First, we choose a small

rectangle R = [u1
0, u

2
0]× [u1

1, u
2
1] such that u1

i < ui < u2
i and ∂(I−−I+)

∂u (u, 0) 6= 0
for all u ∈ [u1

i , u
2
i ], i = 0, 1. Now we follow the same steps as in Section 3.5,

working in (u, u′) ∈ R. The above condition on the derivative guarantees that
in each step we deal with a regular pair of foliations. We show that (28) has
at most two solutions in R, for each fixed (B, λ, ε̄) ∼ (0, 0, 0), with ε̄ > 0, and
(α, β) ∈ R.
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More precisely, suppose first that ∂(I−−I+)
∂u (u0, 0) and ∂(I−−I+)

∂u (u1, 0) have
the same sign. Following Section 3.5, it suffices to prove that the system (30)
has no solutions in R, under the same conditions on the parameters. Since
I−(u0, 0) − I+(u1, 0) < I−(u1, 0) − I+(u0, 0) (u0 < u1 and u → I±(u) are
strictly increasing), (30) has no solutions in R, up to shrinking R if necessary,
uniformly in (B, λ, ε̄) ∼ (0, 0, 0). Thus, Cycl(Xε,µ, Lu0,u1) ≤ 2.

Suppose now that ∂(I−−I+)
∂u (u0, 0) and ∂(I−−I+)

∂u (u1, 0) have the opposite sign.
Then the equation {det(EB,λ,ε̄,ΦB,λ,ε̄)(u, u

′) = 0} in Section 3.5 can be written
in R as

exp

(
I−(u′) + o(1)

ε̄2

)
+ exp

(
I+(u) + o(1)

ε̄2

)
= 0,

where the o(1)-terms are ε̄-regularly smooth in (u, u′, B, λ) and tend uniformly
to zero as ε̄→ 0. Since the left-hand side of the above equation is strictly positive
for all (u, u′) ∈ R, (B, λ, ε̄) ∼ (0, 0, 0) and ε̄ > 0, the equation is equivalent on
R to

ĒB,λ,ε̄(u, u
′) := (u− u0) + (u′ − u1) + 1 = 0,

where ĒB,λ,ε̄ is strictly positive on R, up to shrinking R if necessary. (The first
order partial derivatives of ĒB,λ,ε̄ w.r.t. u and u′ are not zero for all (u, u′) ∈ R.)
This implies that the equation {ĒB,λ,ε̄(u, u′) = 0} has no solutions in R, i.e.
there are no intersection points of {ĒB,λ,ε̄(u, u′) = 0} with {EB,λ,ε̄(u, u′) = 0}.
Thus, Cycl(Xε,µ, Lu0,u1

) ≤ 2.

3.9 Proof of Theorem 2.8

Assume that f(ω(u0), 0) = 0, ∂f
∂x (ω(u0), 0) 6= 0 and that f(x, 0) < 0 for all

x ∈ [α(u0), ω(u0)[. Like in Section 3.7, we suppose that for (B, λ, ε̄) ∼ (0, 0, 0),
ε̄ > 0, Xε̄2,ε̄B,λ has two 2–periodic orbits: (ū, ũ) ∼ (u0, u1) and (¯̄u, ˜̃u) ∼ (u0, u1).

We have u(B, λ, ε̄) < ū < ¯̄u < ˜̃u < ũ or u(B, λ, ε̄) < ¯̄u < ū < ũ < ˜̃u where the
function u(B, λ, ε̄) ∼ u0 is defined in Section 3.1.2. Assume that ū < ¯̄u < ˜̃u < ũ.
Then ∆B,λ,ε̄ and PB,λ,ε̄ have the properties on [ū, ¯̄u] given in Section 3.7. On
the other hand, we have for all u ∈ [ū, ¯̄u]:

∆′B,λ,ε̄(u) =
∂∆−
∂u (u)

∂∆+

∂u (PB,λ,ε̄(u))
−

∂∆+

∂u (u)
∂∆−
∂u (P−1

B,λ,ε̄(u))

=− exp

(
I−(u,B, λ, ε̄)− I+(PB,λ,ε̄(u)) + o(1)

ε̄2

)
+ exp

(
I+(u)− I−(P−1

B,λ,ε̄(u)) + o(1)

ε̄2

)
,

where ∂∆−
∂u (u) is given in Theorem 3.2 and functions ∂∆+

∂u (u), ∂∆+

∂u (PB,λ,ε̄(u))

and ∂∆−
∂u (P−1

B,λ,ε̄(u)) are obtained from (8) (the slow dynamics is regular along
the segment [α(u0), ω(u1)]). Since I−(u,B, λ, ε̄)→ −∞ as (u,B, λ, ε̄)→ (u0, 0, 0, 0)
(see Theorem 3.2) and I± are bounded, we have

I−(u,B, λ, ε̄)− I+(PB,λ,ε̄(u)) < I+(u)− I−(P−1
B,λ,ε̄(u))

for u ∈ [ū, ¯̄u]. Thus, ∆′B,λ,ε̄(u) is nonzero for all u ∈ [ū, ¯̄u] (ε̄ > 0). This is a
contradiction with Rolle’s theorem. This implies that Cycl(Xε,µ, Lu0,u1

) ≤ 1.
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Using the expression for ∆′B,λ,ε̄ and the above inequality it can be easily seen
that any 2–limit cycle is hyperbolic and attracting.

We use a similar proof in the case f(α(u0), 0) = 0, ∂f∂x (α(u0), 0) 6= 0 and
f(x, 0) < 0 for all x ∈]α(u0), ω(u0)].

4 Discussion

Theorems 2.2–2.4 and Theorems 2.6-2.7 can also be proved in a more general
framework when we have a non-generic turning point in smooth vector fields,
defined on a two-dimensional smooth orientable submanifold M̃ of M , which
satisfy Assumptions T0-T6 of [DMD05]. A typical example of non-generic turn-
ing points is {ẋ = y, ẏ = −x2n−1y + ε(b − x2n−1 + O(x2n))}, where n ≥ 1,
ε ≥ 0 is a singular perturbation parameter and b ∼ 0 is a breaking parame-
ter. When n = 1, we deal with a generic turning point (see (2)). The slow
dynamics along the slow curve {y = 0} is given by x′ = −1 + O(x). As in
Section 3.1, we can define a new (regular) breaking parameter B ∼ 0 using
the rescaling (ε, b) = (ε̄2n, ε̄2n−1B), and then blow up the origin in the (x, y, ε̄)
space: (x, y, ε̄) = (ρx̃, ρ2nỹ, ρε̃), where (x̃, ỹ, ε̃) ∈ S2, ε̃ ≥ 0, ρ ≥ 0 and ρ ∼ 0.
When B = 0, one finds a heteroclinic orbit on the blow-up locus, connecting
the attracting part and the repelling part of the slow curve. This connection
breaks for B 6= 0 in a regular way (see [DMD05]). When the slow dynamics is
regular along the slow curve, i.e. nowhere zero (this is included in Assumptions
T0–T6), then the slow divergence integral along the slow curve is well defined
and we can prove a result for the transition maps similar to Theorem 3.1. We
point out that Theorem 3.1 plays a crucial role in our paper and it follows from
Theorem 4 in [DMD05] which has been proved in the above general framework.

A result similar to Theorem 3.1 can also be proved if we replace the Hopf
breaking mechanism at p ∈M with a jump breaking mechanism defined in e.g.
[Dum11]. See [Dum11] for more details.

If we deal with a non-generic turning point or a jump mechanism and if we
allow a hyperbolic saddle in the slow dynamics, away from the turning point,
then we can use a well known framework presented in [DMD08] and we can
also prove Theorem 2.5 and Theorem 2.8 in this more general framework. Let
us recall that [DMD08] is a natural continuation of [DMD05] where the slow
dynamics has isolated singularities, away from the contact point. Theorem
3.2, used in the proof of Theorem 2.5 and Theorem 2.8, follows directly from
[DMD08] and a similar result can be proved if we deal with the non-generic
turning point. See [DMD08] for more details.

In Theorem 2.5 and Theorem 2.8, we suppose that the slow dynamics has
a hyperbolic saddle at precisely one corner point. The case when the slow
dynamics has hyperbolic saddles at both corner points, or more generally a
finite number of singularities, away from the contact point, is more difficult and
it is a topic of further study. The techniques developed in [DMD08] can be used.
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