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1. Introduction

In the current status model, the variable of interest is a survival variable X
with distribution function F0. However, instead of observing the exact survival
time X, a censoring variable T ∼ G is observed together with the indicator
Δ = 1X≤T . Such data arise naturally in clinical trials when a patient can only
be checked at one measurement due to destructive testing. A lot of research has
been published on the behavior of the maximum likelihood estimator (MLE) Fn

of the distribution function F0. The limiting distribution of n1/3(Fn(t)−F0(t))
is after scaling by the constant κ = {4F0(t)(1− F0(t))f0(t)/g(t)}1/3 given by

C = argmax
t

{
W (t)− t2

}
,

where W is a two-sided Brownian motion with W (0) = 0 (see [19]). Other esti-
mators with similar asymptotic properties are Chernoff’s estimator of the mode
([6]), the Grenander estimator ([10]) of a nonincreasing density, Manski’s max-
imum score estimator ([27]) and Rouseeuw’s least median of squares estimator
([29]). A general framework for cube-root n asymptotics is given in [25].
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In this paper we investigate the behavior of Efron’s nonparametric bootstrap
method ([9]) for constructing confidence intervals for smooth functionals of the
MLE. It is known that the nonparametric bootstrap is inconsistent for generat-
ing the limit distribution of the MLE. The authors of [2] prove that (conditional
on the data),

n1/3{4F0(t)(1− F0(t))f0(t)/g(t)}−1/3{F̂n(t)− Fn(t)}
D→ argmax

t
(W (t) + Ŵ (t)− t2)− argmax

t
(W (t)− t2),

where F̂n is the bootstrap MLE and W and Ŵ are two independent two-sided
Brownian motions originating at zero. A similar result is obtained in [26] and
in [31] for the Grenander estimator. The maximum score estimator of [27] is
another example of a cube-root n statistic with asymptotic distribution derived
in [25], where inconsistency of the nonparametric bootstrap for this estimator
is shown in [2].

Constructing asymptotic confidence intervals for the distribution function in
the current status model based on Chernoff’s distribution and the normalizing
constant κ is complicated by the need to compute the critical values of C and to
estimate the density f0 consistently. Since this turns out to be a rather difficult
task several alternative bootstrap methods have been proposed based on resam-
pling from a smooth estimate. [32] consider a smooth kernel estimate F̃ of F0

and resample the Δi from a Bernoulli distribution with probability F̃ (Ti), while
keeping the censoring variables Ti fixed and center the values of the bootstrap
samples by subtracting the smooth estimate of the distribution function. [26]
and [31] propose similar smooth respampling schemes for the Grenander esti-
mator and a model-based smoothed bootstrap procedure for making inference
on the maximum score estimator is developed in [28]. All methods result in
consistent estimation of the (suitably standardized) distribution C conditional
on the original data.

A drawback of this approach is that smoothness conditions of F0 are used
which allow faster than cube-root n estimation of F0. This raises the question
if one should really use confidence intervals based on the MLE instead of on a
faster converging estimate.

This latter procedure is followed in [14], where the authors consider con-
structing confidence intervals around the smoothed maximum likelihood esti-
mator (SMLE) of F0 in the current status model. The SMLE is a kernel es-
timate based on the MLE with an asymptotic normal distribution, instead of
Chernoff’s limiting distribution ([16]). The bootstrap method proposed in [14]
is however still based on the smooth bootstrap procedure described in [32] and
not on Efron’s nonparametric bootstrap. We show in this paper that the con-
struction of confidence intervals around the SMLE based on the nonparametric
bootstrap can also be proved to be valid, where one does not resample from
a smooth estimate of F0, but just resamples with replacement from the pairs
(Ti,Δi) in the original sample. This method already has been used without
proof in [17] and also in [18] and the present manuscript intends to fill the gap
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of the missing proofs here. An important difference with the smooth bootstrap
in [14] is that for the centering of the estimates in the nonparametric bootstrap
samples the SMLE of the original sample is used, whereas this will not work for
the resampling as proposed in [14]; in the latter case one needs to center the
estimates in the bootstrap samples by a kernel convolution of the SMLE in the
original sample. It is not clear which method is better, and the most striking
fact is the similarity of the results of the two methods in our simulations. An ad-
vantage of the purely nonparametric bootstrap, discussed in the present paper,
might be its conceptual simplicity and the absence of the need to center with a
convolution of the SMLE in the centering of the bootstrap samples instead of
the SMLE itself. An advantage of the smooth bootstrap, discussed in [14] might
be the fact that only the indicators Δi are being resampled, and that in this
sense one stays closest to the sample distribution of the observation times Ti,
which stay fixed in this procedure.

Although it is argued in [8] that the naive bootstrap will not work for their
goodness-of-fit test for monotone functions, based on the Grenander estimator,
no theoretical justification for this conjecture is given. Other examples where a
smooth bootstrap procedure is used, are the likelihood ratio type two-sample
test for current status data proposed by [11] and the test for equality of functions
under monotonicity constraints proposed by [7]. Both tests establish asymptotic
normality for the test statistic considered.

The paper is organized as follows: In Section 2 we introduce the current sta-
tus model and review some interesting properties of the MLE. The validity of
the nonparametric bootstrap is discussed in Section 3. In Section 4 we provide
two examples to illustrate the applicability of our result. In the first example
we construct pointwise confidence intervals based on the smoothed MLE in the
current status model. The second example deals with doing inferences for a finite
dimensional regression parameter in the current status linear regression model.
For both examples, the theoretical and finite sample behavior of the nonpara-
metric bootstrap is discussed. Section 5 presents some concluding remarks. The
proofs of our results are given in Section 6.

2. The current status model and the MLE

Let Z1 = (T1,Δ1), . . . , Zn = (Tn,Δn) be an i.i.d. sample from the probabil-
ity space ([0, R] × {0, 1},A, P ), where Δi = 1Xi≤Ti and R > 0. The Xi are
interpreted as (nonnegative) survival times with distribution function F0. In-
stead of observing X, a censoring variable T ∼ G is observed (with density g)
independent of X. One could say that in the current status model, each obser-
vation Zi represents the current status of the item i at time Ti. The density of
Zi with respect to the product of Lebesgue measure and counting measure on
[0, R]× {0, 1} is given by

pF0(t, δ) = [δF0(t) + (1− δ){1− F0(t)}] g(t).
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The maximum likelihood estimator Fn is defined as the maximizer of the log
likelihood given by (up to a constant not depending on F ),

�n(F ) = n−1
n∑

i=1

[Δi logF (Ti) + (1−Δi) log{1− F (Ti)}] , (2.1)

over all distribution functions F : [0,∞] �→ [0, 1]. [19] show that the MLE can
be characterized as the left-continuous slope of the greatest convex minorant of
a cumulative sum diagram consisting of the points (0,0) and⎛

⎝i,
∑
j≤i

Δ(j)

⎞
⎠ ,

where we let T(j) denote the jth order statistic of the Ti and Δ(j) be the Δi

corresponding to it (assuming no ties are present in the data). An important
property of the MLE is the so-called switch relation, see [17] p. 69. Let Gn be
the empirical distribution function of T1, . . . , Tn and define the process Vn by

Vn(t) = n−1
n∑

i=1

Δi1{Ti≤t}, (2.2)

and the process (in a) Un by

Un(a) = argmin{t ∈ R : Vn(t)− aGn(t)}. (2.3)

Then, taking a = F0(t), we get the switch relation:

Fn(t) ≥ a ⇐⇒ Un(a) ≤ t,

see also Figure 1.

Fig 1. The switch relation.

3. Bootstrapping the MLE

In this section we establish properties of the bootstrap MLE F̂n based on the
nonparametric bootstrap proposed by [9]. Our main concern is to show that
conditional on the data Z1, . . . , Zn, we have

E

{∥∥∥n1/3
{
F̂n − F0

}∥∥∥
p

∣∣∣ Z1, . . . , Zn

}
= Op(1), (3.1)
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and

sup
t∈[0,R]

E
{
n1/3

∣∣F̂n(t)− F0(t)
∣∣∣∣∣Z1, . . . , Zn

}
= Op(1). (3.2)

Denote the empirical probability measure of Z1, . . . , Zn by Pn. The bootstrap
empirical measure is

P̂n = n−1
n∑

i=1

Mni1Zi ,

where 1Zi denotes the points mass at Zi = (Ti,Δi) and

Mn = (Mn1, . . . ,Mnn) ∼ multinomial(n, n−1, . . . , n−1),

is a vector of multinomial weights, independent of Z1, . . . , Zn. The bootstrap
MLE F̂n is computed using the weighted cumulative sum diagram formed by
the point (0, 0) and ⎛

⎝ i∑
j=1

Mn(j),
i∑

j=1

Mn(j)Δ(j)

⎞
⎠ ,

where Mn(j) corresponds to the multinomial weight corresponding to T(j). The

bootstrap MLE F̂n is then calculated from the left-continuous slope of the convex
minorant of this cusum diagram.

To complete notation, we suppose that the vectors ((Z1, . . . , Zn),Mn), n =
1, 2, . . . are defined on the product space (([0, R]×{0, 1})∞×Z∞

+ ,B, PZM ), where
Z+ is the set of nonnegative integers and B is the collection of Borel sets, gen-
erated by the finite dimensional projections. We say that a real-valued function
Γn defined on the joint probability space is of order oPM

(1) in probability if for
all ε, η > 0:

P ∗ (PM |Z {|Γn| > ε} > η
)
→ 0 as n → ∞,

where P ∗ denotes outer probability and PM |Z is the conditional probability
measure w.r.t. the weights, given the sample Z1, . . . , Zn.

To establish (3.1), we need the following result, which is a bootstrap version
of Lemma 11.5 in [17].

Lemma 3.1. Suppose F0 has a continuous density f0 with support [0,R] that
satisfies,

0 < inf
t∈[0,R]

f0(t) < sup
t∈[0,R]

f0(t) < ∞.

Also suppose that the observation distribution G has a continuous derivative g
that stays away form zero and infinity on [0, R]. Let

U(a) = F−1
0 (a) 0 < a < 1,
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and define the process

Ûn(a) = argmin{t ∈ [0, R] : V̂n(t)− aĜn(t)} 0 < a < 1,

with processes V̂n and Ĝn defined by

V̂n(t) =

∫
u∈[0,t]

δ dP̂n(u, δ) and Ĝn(t) =

∫
u∈[0,t]

dP̂n(u, δ) t ∈ [0, R].

(3.3)

Then there are positive constants K1 and K2, such that, for all a ∈ (0, 1) and
for all large n:{

∃x ∈ [0, R] : PM |Z

{
n1/3

∣∣∣Ûn(a)− U(a)
∣∣∣ ≥ x

}
> K1e

−K2x
3/2
}
= op(1),

where {A} denotes the indicator 1A of the event A.

Lemma 3.1 implies that the probability that for all x ∈ [0, R], and a = F0(t),

PM |Z

{
n1/3

∣∣∣Ûn(a)− U(a)
∣∣∣ ≥ x

}
≤ K1e

−K2x
3/2

,

tends to 1 as n → ∞. The proof of Lemma 3.1 is given in Section 6. The proof
uses empirical process theory and results on tail probabilities for ‖√n(P̂n −
Pn)‖F for classes F with finite entropy integrals. Similar results are proved
using martingale theory in Section 11.2 of [17] for the original sample and in
[14] for a smooth bootstrap empirical process. Since

EM |Z

[
n1/3{F̂n(t)− F0(t)}+

]p
=

∫ ∞

0

PM |Z

{
n1/3{F̂n(t)− F0(t)} ≥ x

}
pxp−1dx,

where {F̂n(t)− F0(t)}+ denotes the positive part of {F̂n(t)− F0(t)} and since,

PM |Z

{
Ûn

(
a+ n−1/3x

)
≤ t
}

= PM |Z

[
n1/3

{
Ûn

(
a+ n−1/3x

)
− U

(
a+ n−1/3x

)}

≤ n1/3
{
t− U

(
a+ n−1/3x

)}]
,

it follows from Lemma 3.1 and the bootstrapped switch relation given by

PM |Z

{
n1/3{F̂n(t)− F0(t)} ≥ x

}
= PM |Z

{
Ûn

(
a+ n−1/3x

)
≤ t
}
,

that there exists a positive constant K > 0 such that,{
∃t ∈ [0, R] : EM |Z

∣∣∣F̂n(t)− F0(t)
∣∣∣p > Kn−p/3

}
= op(1).
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In particular, there exists a K1 > 0 such that:

P

{
sup

t∈[0,R]

EM |Z

∣∣∣F̂n(t)− F0(t)
∣∣∣ > K1n

−1/3

}
−→ 0, n → ∞,

and likewise there exists a K2 > 0 such that:

P
{
EM |Z

∥∥F̂n − F0

∥∥
2
> K2n

−1/3
}
−→ 0, n → ∞.

In the next section we show how (3.1) can be used to justify the bootstrap
validity for drawing inferences in models which can be estimated using smooth
functionals of the MLE. The proofs for deriving the asymptotic behavior of
these functionals are in general based on applications of the Cauchy-Schwarz
inequality and on showing asymptotic equicontinuity. Both steps involve calcu-
lating the L2-distance which can often be reduced to the L2-distance between
the MLE and the true underlying distribution function. Our main result given
in (3.1) is therefore important to show that the asymptotic properties of the
estimates obtained in the original sample are still valid in the bootstrap sample
conditionally on the data. The asymptotic behavior of the functionals does not
depend on the distribution function of the MLE, which is, as shown in The-
orem 5 of [2], not the same in the original sample and the bootstrap sample
(conditionally on the data). We note that the variances of the corresponding
asymptotic distributions however still have the same order n−2/3, just like our
squared Lp-distances in (3.1).

4. Applications

In this Section we illustrate the applicability of our bootstrap results. In our
first example we consider the current status model described in Section 2 and
estimate F0 by the SMLE. In the second example we consider estimating a
finite dimensional regression parameter for the current status model, where in
addition to observing the vector (T,Δ), also a covariate vector X is observed.

4.1. The Smoothed Maximum Likelihood Estimator (SMLE)

We estimate F0 by the SMLE F̃nh obtained by first estimating the MLE Fn and
then smoothing this using a smoothing kernel, i.e.,

F̃nh(t) =

∫
K ((t− x)/h) dFn(x), (4.1)

where K is an integrated kernel,

K(u) =

∫ u

−∞
K(x) dx,
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and where h is a chosen bandwidth. Here dFn represents the jumps of the
discrete distribution function Fn and K is one of the usual symmetric twice
differentiable kernels with compact support, used in density estimation. In our
computer experiments, we used the triweight kernel

K(u) =
35

32

(
1− u2

)3
1[−1,1](u).

For a constant c > 0 and h = cn−1/5, the SMLE has been proved to converge
at rate n−2/5 with asymptotic limit distribution,

n2/5
{
F̃nh(t)− F0(t)

}
D−→ N(β(t), σ2(t)),

where

β(t) =
c2f ′

0(t)

2

∫
u2K(u) du and σ2(t) =

F0(t){1− F0(t)}
cg(t)

∫
K(u)2 du.

(4.2)

(see [16]). The SMLE is often used in the smooth bootstrap procedures de-
scribed in Section 1 (see also the numerical example below). Let F̃ ∗

nh(t) be the
bootstrapped SMLE based on replacing Fn in (4.1) by the bootstrapped MLE
F̂n, then we have the following result,

n2/5
{
F̃ ∗
nh(t)− F̃nh(t)

}
D−→ N(0, σ2(t)), (4.3)

given the data (T1,Δ1), . . . , (Tn,Δn), in probability. Note that, in contrast to
the smooth bootstrap method described in [14], we do not need to estimate the
convolution SMLE (see (4.7) below).

To prove the asymptotic normality result for the nonparametric bootstrap,
given in (4.3), we prove (in Section 6) the following Lemma:

Lemma 4.1. Assume that the conditions of Lemma 3.1 are satisfied and that
g has a bounded derivative g′ on [0, R]. Let t be an interior point of [0, R] such
that f0 has a continuous derivative f ′

0 at t. If h ∼ cn−1/5 then,

F̃ ∗
nh(t) = F̃

(toy)∗
nh (t) + oPM

(n−2/5),

in probability, where

F̃
(toy)∗
nh (t) =

∫
K((t− u)/h) dF0(u) +

∫
K((t− u)/h) {δ − F0(u)}

hg(u)
dP̂n(u, δ).

(4.4)

Since

F̃nh(t) = F̃
(toy)
nh (t) + op(n

−2/5), (4.5)
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where F̃
(toy)
nh (t) is defined by (4.4) with P̂n replaced by Pn, we have by Lemma

4.1 that,

n2/5
{
F̃ ∗
nh(t)− F̃nh(t)

}
= n2/5

∫
K((t− u)/h) {δ − F0(u)}

hg(u)
d(P̂n − Pn)(u, δ)

+ oPM
(1),

in probability, which converges, conditional on the data (T1,Δ1), . . . (Tn,Δn) to
the same asymptotic limit as

n2/5

∫
K((t− u)/h) {δ − F0(u)}

hg(u)
d(Pn − P )(u, δ),

in probability (see e.g. [21] for more details about the use of the bootstrap for
kernel estimators). Finally, applying the central limit theorem on the expression
above proves the asymptotic normality result for the bootstrapped SMLE given
in (4.3). The proof of Lemma 4.1 is a generalization of the proof for the repre-
sentation of the SMLE F̃nh(t) as the “toy-estimator” defined in (4.5). The proof
is outlined in Section 11.3 of [17] and uses the result of Theorem 11.3 given in
Section 11.2 which is the analogue of our Lemma 3.1 in the original sample.

Remark 4.1. In practice, one should use a boundary correction to ensure
consistent estimation of F0 near the boundaries of the support [0, R]. In our
experiments we used the method of [30], see also p. 328 in [17]. It is straight-
forward to show that the nonparametric bootstrap method remains valid under
this boundary correction. Moreover, one should also take into account the bias
defined in (4.2) when constructing confidence intervals around the SMLE. The
bias issue is discussed in more details via a simulation study in Section 4.1.1.

In the remainder part of this Section, we show the applicability of this boot-
strap result (4.3) by constructing pointwise confidence intervals (CIs) around
the SMLE. We consider two different simulation models and a real data example
to illustrate the performance of these CIs.

In the first simulation study we compare our nonparametric bootstrap CIs
with (a) the smooth bootstrap CIs proposed in [14], (b) the likelihood ratio inter-
vals around the MLE Fn proposed in [4], (c) the smooth bootstrap MLE-based
intervals proposed in [32] and (d) Wald-type CIs, derived from the asymptotic
normality of the SMLE.

In a second simulation study, we discuss the difficulties with the construc-
tion of pointwise CIs around the SMLE that are not necessarily specific to the
bootstrap procedure but that have to be taken into account in order to obtain
good CIs around the SMLE under current status data. We first describe a band-
width selection procedure for choosing the bandwidth of the SMLE and we next
discuss the effect of the bias on the performance of the CIs. The algorithms to
produce the proposed CIs around the SMLE can be found in the R package
curstatCI.
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4.1.1. Simulation study 1: comparing CIs for the distribution function under
current status data

To illustrate the performance of the nonparametric bootstrap procedure for
constructing pointwise CIs of the distribution function, we consider a first sim-
ulation study based on N = 5, 000 simulation runs from a model where both X
and T have a Uniform(0,2) distribution. In this model the bias β(t) defined in
(4.2) is zero for all t ∈ [0, 2]. The 1− α bootstrap interval is given by[

F̃nh(t)−Q∗
1−α/2(t)

√
Snh(t), F̃nh(t)−Q∗

α/2(t)
√
Snh(t)

]
, (4.6)

where Q∗
α(t) is the αth quantile of B values of W ∗

nh(t) defined by

W ∗
nh(t) =

{
F̃ ∗
nh(t)− F̃nh(t)

}
/
√

S∗
nh(t),

where Snh(t) resp. S∗
nh(t) are estimates of the variance σ2(t) defined in (4.2)

(apart from the factor cg(t) which drops out in the Studentized bootstrap pro-
cedure) given by

Snh(t) =
1

n2

n∑
i=1

Kh(t− Ti)
2 (Δi − Fn(Ti))

2
,

S∗
nh(t) =

1

n2

n∑
i=1

MniKh(t− Ti)
2
(
Δi − F̂n(Ti)

)2
.

In Figure 2(a) we compare the proportion of times that F0(t) is not in the
95% bootstrap CIs for t = 0.02, 0.04, . . . , 2 with the corresponding proportions
obtained with (a) the smooth bootstrap procedure proposed in [14], (b) the like-
lihood ratio intervals around the MLE Fn proposed in [4] and (c) the smooth

Fig 2. Uniform samples: Proportion of times that F0(t), t = 0.02, 0.04, . . . is not in
the 95% CIs for the classical bootstrap CIs defined in (4.6) (black, solid) and (a) the
smooth bootstrap (blue, dashed) procedure in constructing CIs around the SMLE of
[14], (b) the likelihood ratio CIs of [4] (blue, dashed) and (c) the smooth MLE-based
CIs of [32] (blue, dashed). n = 1, 000, N = 5, 000, B = 1, 000 and h = 2n−1/5.
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bootstrap MLE-based intervals proposed in [32]. For samples of size n = 1, 000,
B = 1, 000 bootstrap samples were generated for both methods and the tri-
weight kernel is used for calculation of the SMLE with h = 2n−1/5, where the
constant c = 2 corresponds to the length of the support of the observation vari-
able T . For the smooth bootstrap procedures (a) and (c), first a bootstrap sam-
ple (T1,Δ

∗
1), . . . , (Tn,Δ

∗
n) is obtained by keeping the Ti in the original sample

fixed and by resampling the Δ∗
i from a Bernoulli distribution with probability

F̃nh(Ti), then the bootstrap MLE F̂n and SMLE F̃ ∗
nh are estimated based on the

(Ti,Δ
∗
i ), i = 1, . . . , n. The smooth bootstrap 1 − α intervals around the SMLE

proposed in [14] are then constructed via (4.6), except that the SMLE F̃nh(t)
in the definition of W ∗

nh(t) is replaced by the convolution SMLE given by

∫
Kh(t− u) dF̃nh(u), (4.7)

and that the variance estimate in the bootstrap sample is given by

1

n2

n∑
i=1

Kh(t− Ti)
2
(
Δ∗

i − F̂n(Ti)
)2

.

The convolution SMLE corresponds to the extra level of smoothing introduced
by the smooth bootstrap procedure and is hence not required for the nonpara-
metric bootstrap. The smooth bootstrap CIs of [32] around the MLE are given
by [

Fn(t)− Z∗
1−α/2(t), Fn(t)− Z∗

α/2(t)
]
,

where Z∗
α(t) is the αth quantile of B values of F̂n(t)− F̃nh(t), where again the

extra level of smoothing is introduced (since one subtracts F̃nh and not Fn) to
justify the smooth bootstrap procedure.

The performance of the SMLE-based CIs is comparable. The bootstrap inter-
vals based on the classical bootstrap procedure avoid however calculation of the
convolution SMLE defined in (4.7). The CIs in (b) and (c) have similar coverage
proportions in the middle of the interval [0, 2] but have a worse behavior near
the boundaries of the interval compared to the SMLE-based intervals.

Figure 3(a) shows the average length of both bootstrap intervals around the
SMLE in comparison with the average length of the likelihood ratio CIs of [4]
and the smooth MLE-based CIs of [32]. The latter intervals are constructed
around the MLE Fn instead of the SMLE F̃nh. The length of the MLE-based
intervals is larger than the length of the SMLE-based intervals due to the fact
that the MLE converges at the slower rate n1/3.

Instead of constructing the Studentized bootstrap intervals where the quan-
tiles of the limiting distribution of the SMLE are derived from the bootstrap
distribution, one can alternatively consider Wald-type confidence intervals us-
ing the quantiles of the normal distribution and an estimate of the asymptotic
variance.
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Fig 3. Uniform samples: average length of the bootstrap CIs defined in (4.6) (black,
solid) and (a) the smooth bootstrap CIs (blue, dashed-dotted) of [14], the likelihood
ratio CIs of [4] (red, dashed) and the smooth MLE-based CIs of [32] (green,dotted);
and (b) Wald-type CIs using the first estimate σ̂1,nh (red,dashed), the second estimate
σ̂2,nh (blue,dashed-dotted) and the third estimate σ̂3,nh (green,dotted). n = 1, 000, N =
5, 000, B = 1, 000 and h = 2n−1/5.

We compare three different estimates σ̂nh(t) for σ(t) defined in (4.2) and
construct CIs given by

[F̃nh(t)− z1−α/2(n
−2/5σ̂nh(t))− β(t)n−2/5; (4.8)

F̃nh(t)− zα/2(n
−2/5σ̂nh(t))− β(t)n−2/5],

where zα is the αth quantile of the standard normal distribution. In this sim-
ulation study β(t) defined in (4.2) is zero. The effect of β(t) on the behavior
of the intervals will be discussed in the second simulation study below. A first
estimate for σ̂nh(t) is given by

σ̂2
1,nh(t) =

Fn(t){1− Fn(t)}
cgnh(t)

∫
K(u)2 du, (4.9)

where gnh is a classical kernel estimate for the density g of the observation time
T ∼ U(0, 2), using again the triweight kernel with bandwidth h = 2n−1/5. A
second estimate for σ(t) is inspired by the fact that the SMLE is asymptotically
equivalent to the toy-estimator defined in (4.5), which has a sample variance

s2nh(t) =
1

n2

n∑
i=1

Kh(t− Ti)
2 (Δi − F0(Ti))

2

g(Ti)2
. (4.10)

This suggests taking the second estimate n−2/5σ̂2,nh(t) equal to the root of
(4.10) where F0 is replaced by the MLE Fn and g is replaced by the kernel
density estimate gnh.

Contrary to the bootstrap procedure for constructing CIs defined in (4.6),
both estimates σ̂1,nh(t) and σ̂2,nh(t) require estimating the density g. A boot-
strap based estimate for the variance, avoiding estimating g, is finally given
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Fig 4. Uniform samples: Proportion of times that F0(t), t = 0.02, 0.04, . . . is not in the
95% CIs for the bootstrap CIs defined in (4.6) (black, solid) and Wald-type CIs defined in
(4.8) using (a) the first estimate σ̂2

1,nh (blue, dashed), (b) the second estimate σ̂2
2,nh (blue,

dashed) and (c) the third estimate σ̂2
3,nh (blue,dotted). n = 1, 000, N = 5, 000, B = 1, 000

and h = 2n−1/5.

by

σ̂2
3,nh(t) =

1

B

B∑
b=1

(
F̃ ∗,b
nh (t)− F̃nh(t)

)2
, (4.11)

where F̃ ∗,b
nh (t) is the SMLE in the bth bootstrap run. Figure 4 compares the

coverage proportions between the bootstrap CIs in (4.6) with the Wald-type
CIs in (4.8) using the three different variance estimates described above. Point-
wise confidence bands for the variance estimates are illustrated in Figure 5. The
curves show the average variance estimate and the 5% and 95% empirical quan-
tiles of the variance estimates at points t = 0.02, 0.04, . . . , 2. The best results
for the Wald-type CIs are obtained with the second variance estimate σ̂2

2,nh(t)
but the coverage proportions and average lengths (shown in Figure 3(b)) are
inferior to the results obtained with the bootstrap CIs in (4.6). Estimating the
density g in σ̂1,nh(t) and σ̂2,nh(t) requires an additional bandwidth selection,
whereas the estimate σ̂3,nh(t) is straightforward to obtain and does not depend
on an estimate of g. The variance of the first estimate σ̂2

1,nh(t) is larger than

the variance of the second and third variance estimates σ̂2
2,nh(t) and σ̂2

3,nh(t) ,
especially near the boundaries of the support.

Although we have proven validity of the nonparametric bootstrap for con-
structing pointwise CIs around the SMLE, the performance of the CIs is often
influenced by several other aspects that are not specifically due to the nonpara-
metric bootstrap algorithm. In what follows we describe some of these issues
further and analyze the problems that can arise in the construction of the CIs.
In a second simulation study we investigate the bias effect. Estimation of the
bias defined in (4.2) is known to be a rather difficult task since it requires esti-
mating the derivative f ′

0 of the density f0 under current status data. Sufficiently
accurate estimates of the bias are hard to obtain by direct estimation of f ′

0. Be-
sides estimating the derivative directly we therefore also explore the effect of the
bandwidth choice on the performance of the pointwise CIs. We first describe a
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Fig 5. Uniform samples: True variance σ2 (black, solid), mean estimate (blue, dashed-dotted)
and the 5% and 95% empirical quantiles of the estimates (red, dashed) for (a) the first
estimate σ̂2

1,nh, (b) the second estimate σ̂2
2,nh and (c) the third estimate σ̂2

3,nh. n = 1, 000,

N = 5, 000, B = 1, 000 and h = 2n−1/5.

procedure for selecting the bandwidth and next examine the quality of (a) a
bootstrap based estimate of the bias, (b) a direct estimate of the bias using an
estimate of f ′

0 and (c) undersmoothing the bandwidth on the reduction of the
bias effect present in the pointwise CIs.

4.1.2. Bandwidth selection

In the previous simulation study, we considered taking the bandwidth equal to
h = 2n−1/5, where the factor 2 is based on the size of the support [0, 2] of the
density f0. This choice gave satisfactory results on the performance of the CIs
discussed above. A bad choice of the bandwidth can however seriously affect
the performance of the SMLE. It is therefore advisable to use an approach that
selects the bandwidth with respect to some optimization criteria. We apply the
method proposed in [20] to select the bandwidth which uses bootstrap subsam-
ples of smaller size from the original sample to estimate the pointwise mean
squared error (MSE) of the SMLE. The method works as follows: to obtain an
approximation to the optimal bandwidth minimizing the pointwise MSE, we
generate B bootstrap subsamples of size m = o(n) from the original sample
using the subsampling principle and take ct,opt as the minimizer of

M̂SE(c) = B−1
B∑

b=1

{
F̃ ∗,b
m,cm−1/5(t)− F̃n,c0n−1/5(t)

}2

, (4.12)

where F̃n,c0n−1/5 is the SMLE in the original sample of size n using an initial

bandwidth c0n
−1/5 for some constant c0. The bandwidth used for estimating

the SMLE is next given by h = ct,optn
−1/5 where ct,opt minimizes M̂SE(c) as a

function of c. In the simulation study below we show the results form = 50 when
generating subsamples from a sample of size n = 1, 000. Other subsample sizes
m = 30, 100 were considered as well which resulted in similar optimal bandwidth
choices. We used subsamples m = 100 resp. m = 250 when we generated data
sets of size n = 5, 000 resp. n = 10, 000 from the model.



3460 P. Groeneboom and K. Hendrickx

4.1.3. Simulation study 2: correcting the asymptotic bias

To investigate the effect of the bias on the construction of the pointwise CIs in
(4.6), we consider a second simulation study where the event times are generated
from a truncated exponential distribution on [0, 2] and the censoring times are
uniformly distributed on [0, 2]. The density of the event times is given by f0(t) =
exp(−t)/(1 − exp(−2))1[0,2](t) and therefore the bias β(t) defined in (4.2) will
influence the performance of the CIs.

Figure 6 compares the proportion of times that F0(t) is not in the 95%
bootstrap CIs for t = 0.02, 0.04, . . . , 2 with the corresponding proportions in
the bias corrected CIs given by

[F̃nh(t)−Q∗
1−α/2(t)

√
Snh(t)− β(t)n−2/5,

F̃nh(t)−Q∗
α/2(t)

√
Snh(t)− β(t)n−2/5], (4.13)

where Q∗
1−α/2(t) and Snh(t) are defined above and where β(t) is the true bias

of the SMLE at timepoint t defined in (4.2). The bandwidth of the SMLE is
selected by the procedure described in Section 4.1.2. The coverage proportions
of the uncorrected CIs are clearly smaller than the nominal 95%-level at the
left endpoint of the interval [0, 2] in correspondence to the region where β(t) is
largest and correcting for the bias effect is needed to obtain good CIs. Figure 6
suggests that the coverage proportions of the intervals will be satisfying if the
bias can be estimated sufficiently accurately. Estimation of the bias requires
estimating the density f0, which is a rather difficult task with current status

Fig 6. Exponential samples: Proportion of times that F0(t), t = 0.02, 0.04, . . . is not in
the 95% CIs for the bootstrap CIs defined in (4.6) (blue, dashed) and the bias corrected
CIs defined in (4.13) (black, solid). n = 1, 000, N = 5, 000, B = 1, 000,m = 50 and
h = ct,optn

−1/5.
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data. A kernel based estimate of f ′
0 using the MLE Fn is given by

f̃ ′
nh̄(t) = h̄−2

∫
K ′ ((t− x)/h̄

)
dFn(x), (4.14)

where the bandwidth h̄ ∼ n−1/9. In our experiments, we take the bandwidth of
the estimate f̃ ′

nh̄
(t) equal to h̄ = c̄t,optn

−1/9 where c̄t,opt is selected by the same
bootstrap-MSE approach discussed in Section 4.1.2, but with the SMLE replaced
by this derivative estimate. To obtain good estimates of f ′

0 near the boundaries
of the support, we consider the boundary correction method explained in Section
9.2 of [17]. A direct estimator of the actual bias is then obtained by first replacing
f ′
0(t) in (4.2) by the estimate f̃ ′

nh(t) and next multiplying with n−2/5, i.e. the
order of the actual bias that has to be taken into account when constructing
the CIs.

Similarly to the estimate of the pointwise MSE defined in (4.12), we can also
construct a bootstrap method for estimating the bias by using the subsampling

principle described in [20]. Our estimate B̂ias(t) of the actual bias β(t)n−2/5,
is given by

B̂ias(t) =

{
B−1

B∑
b=1

{
F̃ ∗,b
m,ct,optm−1/5(t)− F̃nc0n−1/5(t)

}}(m
n

)2/5
.

Figure 7 compares the average true bias effect β(t)n−2/5 and the average bias
estimates obtained by either the direct estimation approach or the bootstrap
based bias estimate for sample sizes n = 1000, 5000 and n = 10, 000. Note that,
since the bandwidth constant ct,opt used for estimating the SMLE is different
in each simulation run, the true bias (depending on ct,opt, see (4.2)) in each run
is also different and therefore the average true bias is shown in Figure 7. The
actual size of the bias decreases with increasing sample size.

Fig 7. Exponential samples: Average true bias (black solid) and average estimated
bias for the bootstrap based estimate (blue, dashed) and the direct estimate (red,
dashed-dotted) for samples (and subsamples) of size (a) n = 1, 000,m = 50, (b)
n = 5, 000,m = 100 and (c) n = 10, 000,m = 250. N = 5, 000, B = 1, 000 and
h = ct,optn

−1/5.
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Fig 8. Exponential samples without undersmoothing: Proportion of times that F0(t), t =
0.02, 0.04, . . . is not in the 95% CIs defined in (4.6) (black, solid) and the bias corrected
CIs defined in (4.13) with bootstrap based bias estimate (blue, dashed) and direct bias
estimate (red, dashed-dotted) for samples (and subsamples) of size (a) n = 1, 000,m =
50, (b) n = 5, 000,m = 100 and (c) n = 10, 000,m = 250. N = 5, 000, B = 1, 000 and
h = ct,optn

−1/5.

The proportion of times that F0(t) is not in the 95% bootstrap CIs, shown
in Figure 8, decreases if one corrects for the bias by one of the discussed bias
estimates. The results for the direct bias estimate using the estimate f̃ ′

nh̄
are

slightly better than the results for the bootstrap estimate of β(t)n−2/5. The
coverage proportions are however still anti-conservative for points at the left
end of the support. We also considered constructing the bias corrected CIs in
the uniform model used in Section 4.1.1 where the actual bias is zero (results
not shown). The results of the uncorrected CIs in (4.6) were slightly better and
estimating the bias in this model has a somewhat negative effect on the coverage
proportions of the pointwise CIs around the SMLE.

Similarly to the methods proposed in [14] we next investigate how the choice
of the bandwidth can affect the coverage proportions and average length of our
CIs. To this end, we consider the concept of undersmoothing proposed by [22]
and take ct,optn

−1/4 as the bandwidth used in constructing the CIs defined in
(4.6). The coverage proportions of the CIs for the exponential model, shown in
Figure 9, illustrate that the performance of the CIs around the SMLE improve
by undersmoothing. We also observed that if we considered a smaller bandwidth
choice h = (1/3)ct,optn

−1/5 , the coverage proportions even improve further and
give satisfactory results in the left end point of the support. This illustrates that
a smaller bandwidth choice can indeed correct for the bias in the CIs.

The results of the CIs in (4.6) in the uniform model with a bandwidth h =
ct,optn

−1/4 or h = (1/3)ct,optn
−1/5 are in line with the results obtained with a

bandwidth h = ct,optn
−1/5 and similar to the results shown in Figure 4. This

shows that undersmoothing in a model without bias has no negative effect on
the coverage proportions of our CIs.

By undersmoothing, the length of our SMLE-based CIs increases but the
average length of the CIs remains remarkably smaller than the average length
of the CIs around the MLE proposed by [4] and [32] (see Table 1).
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Fig 9. Proportion of times that F0(t), t = 0.02, 0.04, . . . is not in the 95% CIs defined
in (4.6) with h = ct,optn

−1/5 (black, solid), h = ct,optn
−1/4 (red, dashed-dotted) and

h = (1/3)ct,optn
−1/5 (blue, dashed) for samples (and subsamples) of size (a) n =

1, 000,m = 50, (b) n = 5, 000,m = 100 and (c) n = 10, 000,m = 250. N = 5, 000 and
B = 1, 000.

Table 1

Average length of the SMLE-based CIs defined in (4.6) for different bandwidth choices
(h ∼ n−1/5 and h ∼ n−1/4) and average length of the MLE-based CIs proposed by [4] and

[32] at timepoints t = 0.5, 1, 1.5.

Uniform Exponential
Method t = 0.5 t = 1 t = 1.5 t = 0.5 t = 1 t = 1.5

SMLE (h ∼ n−1/5) 0.064819 0.077020 0.064976 0.085540 0.087565 0.057716

SMLE (h ∼ n−1/4) 0.079671 0.092096 0.079757 0.085540 0.087565 0.057716
MLE ([4]) 0.164767 0.184590 0.165699 0.204079 0.161122 0.104002
MLE ([32]) 0.183982 0.202430 0.186452 0.225882 0.176159 0.118541

4.1.4. Rubella data

We also applied the bootstrap procedures to the Rubella data set described
by [24]. The data set contains 230 observations on the prevalence of rubella in
Austrian males. For the smooth bootstrap, CIs were calculated in [14] using the
bandwidth h = ct,optn

−1/4. Figure 10 shows the CIs obtained with the nonpara-
metric bootstrap and illustrates the applicability of our method in a real data
example. For comparison, we also show the CIs obtained by the methods of [4]
and [32]. The latter CIs were obtained by the Rcpp scripts in [13]. The non-
parametric bootstrap SMLE-based CIs, including the data-driven bandwidth
procedure, can be generated with the R package curstatCI.

4.2. The current status linear regression model

In the current status linear regression model we are interested in the esti-
mation of the regression parameter β0 based on observations (T1, X1,Δ1 =
1{Y1≤T1}), . . . (Tn, Xn,Δn = 1{Yn≤Tn}) from (T,X,Δ) where we assume that

Yi = β′
0Xi + εi i = 1, 2, . . .
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Fig 10. Rubella data: (a) SMLE (red, solid) and CI defined in (4.6) based on n = 230
observations using B = 1, 000 bootstrap samples and bandwidth h = ct,optn

−1/4 (ct,opt
obtained by subsampling with B = 1, 000 bootstrap samples of smaller size m = 50).
(b) MLE (red, solid) and CI obtained by the method of Banerjee and Wellner [4], (c)
MLE (red, solid) and CI obtained by the method of Sen and Xu [32] with B = 1, 000
‘smooth’ bootstrap samples from the SMLE with bandwidth h = 80n−1/5.

with i.i.d. random error terms εi, independent of (Ti, Xi) with unknown distri-
bution function F0.

In [15] a simple score estimator βn was introduced depending on the MLE
Fn,β for fixed β, defined as,

Fn,β
def
= argmax

F∈F

n∑
i=1

[Δi logF (Ti − β′Xi) + (1−Δi) log{1− F (Ti − β′Xi)}] ,

(4.15)

where F = {F : � �→ [0, 1] : F is a distribution function}. The estimator βn for
β0 is next defined as a zero-crossing (see Definition 4.1 in [15]) of

∑
Fn,β(Ti−β′Xi)∈[ε,1−ε]

Xi

{
Δi − Fn,β(Ti − β′Xi)

}
, (4.16)

for some fixed truncation parameter ε ∈ (0, 1/2). It is proved in [15] that√
n
{
βn−β0

}
is asymptotically normal with mean zero and variance V −1WV −1

where

V = Eε

[
f0(T − β′

0X) {X − E(X|T − β′
0X)} {X − E(X|T − β′

0X)}′
]
,

W = Eε

[
F0(T − β′

0X){1− F0(T − β′
0X)} {X − E(X|T − β′

0X)}×

{X − E(X|T − β′
0X)}′

]
,

where Eε(w(T,X,Δ)) =
∫
F0(t−β′

0x)∈[ε,1−ε]
w(t, x, δ) dP (t, x, δ) is the truncated

expectation of w(T,X,Δ) for some deterministic function w and where P de-
notes the probability measure of (T,X,Δ).
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A bootstrap version β̂n based on a bootstrap sample from Pn is then defined
as the zero-crossing of∑

F̂n,β(Ti−β′Xi)∈[ε,1−ε]

MniXi

{
Δi − F̂n,β(Ti − β′Xi)

}
= 0, (4.17)

where F̂n,β is the MLE in the bootstrap sample. A straightforward extension of
the results given in Section 3 shows that, as n tends to infinity,

EM |Z

∣∣∣n−1/3
{
F̂n,β(t− β′x)− Fβ(t− β′x)

}∣∣∣p ,
stays bounded in probability for all (t, x) ∈ {(t, x) : Fβ(t− β′x) ∈ [ε, 1− ε]} and
for all β in a neighborhood of β0 where Fβ is defined by

Fβ(u) = P
{
Δi = 1

∣∣ Ti − β′Xi = u
}
=

∫
F0(u+ (β − β0)

′x)fX|T−β′X(x|u) dx.
(4.18)

The validity of the bootstrap method follows from the fact that, in probability,
we have conditionally on the data (T1, X1,Δ1), . . . , (Tn, Xn,Δn) that,

−
√
nV (β̂n − βn) =

√
n

∫
F0(t−β′

0x)∈[ε,1−ε]

{x− E(X|T − β′
0X = t− β′

0x)}

· {δ − F0(t− β′
0x)} d(P̂n − Pn)(t, x, δ)

+ oPM
(1 +

√
n(β̂n − βn)), (4.19)

where the dominant term in the right-hand side of the display above is normally
distributed with mean zero and variance W conditional on (T1, X1,Δ1), . . . ,
(Tn, Xn,Δn).

Remark 4.2. The nonparametric bootstrap is also valid for the second esti-
mator of β0 proposed in [15] based on a different score function involving the
MLE F̂n,β and the derivative of the SMLE F̃nh,β (constructed by the procedure
described in Section 4.1).

To provide more insight into the finite sample behavior of the classical boot-
strap estimators, we show in Tables 2 and 3 the results of two simulation stud-
ies for a one-dimensional regression model Y = β0X + ε. In the first simu-
lation setting we take β0 = 0.5 and consider Uniform(0,2) distributions for
the variables T and X; for the distribution of the random error ε we take
f0(e) = 384(e − 3/8)(5/8 − e)1[3/8,5/8](e). A picture of the density and distri-
bution function of the random error in model 1 is shown in Figure 11. The
first model is also analyzed in [15]. In the second simulation model T,X and ε
are independently sampled from a standard normal distribution and β0 = 1. A
similar model was considered in [1].

With these simulations we want to point out that it is not necessary to use
smoothing techniques for doing inferences in the current status linear regres-
sion model. We compare the simple score estimator (SSE) described above with
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Table 2

Simulation model 1: mean, n times the variance and n times MSE. CP: coverage proportion
of 95% CIs (Wald-type intervals based on a kernel variance estimate and classical bootstrap
intervals) that contain the true parameter value β0 = 0.5, AL: Average length of the CIs, for

different samples sizes n based on N = 1, 000 simulation runs and B = 1, 000 bootstrap
samples. ε = 0.001. SSE = simple score estimator, MRCE = maximum rank correlation

estimator and ESE = efficient score estimator.

Estimate n mean n×var n×MSE Wald-type CI Bootstrap CI
CP AL CP AL

SSE 100 0.498943 0.310723 0.310968 0.978 0.265883 0.824 0.204163
500 0.499717 0.220885 0.220925 0.982 0.097457 0.897 0.080317
1000 0.500720 0.217415 0.217933 0.977 0.065837 0.924 0.055648
5000 0.499993 0.195111 0.195112 0.977 0.027159 0.945 0.024423

MRCE 100 0.497996 0.308180 0.308582 0.979 0.268731 0.821 0.205522
500 0.499761 0.251232 0.251260 0.978 0.098028 0.862 0.089143
1000 0.500553 0.246388 0.246693 0.973 0.063990 0.911 0.053129
5000 0.499876 0.208386 0.208462 0.965 0.027197 0.922 0.026987

ESE 100 0.500145 0.337755 0.337757 0.964 0.252687 0.824 0.223849
500 0.499671 0.217428 0.217482 0.978 0.094390 0.896 0.080003
1000 0.500742 0.207401 0.207953 0.973 0.063990 0.911 0.053129
5000 0.500228 0.185614 0.185874 0.972 0.026396 0.904 0.022285

Table 3

Simulation model 2: mean, n times the variance and n times MSE. CP: coverage proportion
of 95% CIs (Wald-type intervals based on a kernel variance estimate and classical bootstrap
intervals) that contain the true parameter value β0 = 1, AL: Average length of the CIs, for
different samples sizes n based on N = 1, 000 simulation runs and B = 1, 000 bootstrap
samples. ε = 0.001. SSE = simple score estimator, MRCE = maximum rank correlation

estimator and ESE = efficient score estimator.

Estimate n mean n×var n×MSE Wald-type CI Bootstrap CI
CP AL CP AL

SSE 100 0.935732 4.525330 4.938096 0.922 1.000283 0.855 0.79952
500 0.966217 4.676249 5.246881 0.926 0.399728 0.902 0.364210
1000 0.977799 5.032432 5.525339 0.933 0.279928 0.914 0.262449
5000 0.989466 4.580756 5.135616 0.945 0.124375 0.948 0.121388

MRCE 100 1.038510 8.500588 8.648890 0.925 1.125225 0.889 1.364034
500 1.006050 6.443404 6.461690 0.932 0.429007 0.912 0.473787
1000 1.002680 6.294143 6.301326 0.939 0.296537 0.903 0.320908
5000 0.998502 5.160694 5.171915 0.962 0.129512 0.954 0.136487

ESE 100 0.974199 5.722576 5.789144 0.768 0.604649 0.827 0.910229
500 0.998806 5.984291 5.985003 0.823 0.290297 0.902 0.430819
1000 1.005545 6.032743 6.063495 0.841 0.214280 0.928 0.302124
5000 1.002462 5.244373 5.274692 0.892 0.104281 0.951 0.131427

Han’s maximum rank correlation estimator ([23], MRCE) and with the efficient
score estimator (ESE) proposed in [15]. The asymptotic behavior of the MRCE
for the current status model, also obtained without any smoothing techniques,
is established in [1] where the author also proposes consistent kernel-based esti-
mates of the asymptotic variance of the MRCE. We use these variance estimates
to construct estimates for V,W and the almost (determined by the truncation
parameter ε) efficient variance of the SSE. For more details about the variance
estimation we refer to [1].
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Fig 11. The density f0 (left panel) and distribution function F0 (right panel) of the
random error ε in simulation model 1.

A summary of N = 1, 000 simulation runs from models 1 and 2 for different
sample sizes n is given in Tables 2 and 3. For each estimator, the mean, n times
the variance and n times the mean squared-error (MSE) is given in columns
3-5. The asymptotic variance of the estimators equals 0.193612 for the SSE,
0.158699 for the ESE and 0.192857 for the MRCE in model 1 using truncation
parameter ε = 0.001. The corresponding asymptotic variances in model 2 equal
5.046413, 4.994988 and 5.35448 respectively. The asymptotic variance of the SSE
without truncation (i.e. ε = 0) equals the asymptotic variance of the MRCE in
model 1. The efficient variances are 0.151706 in model 1 and 4.994987 in model
2. Note that the differences between the limiting variances for the different
estimation methods are tiny and that the effect of the truncation parameter
ε on the asymptotic behavior of the score estimators is small. Tables 2 and 3
show that n times the variance tends to converge to the asymptotic variance for
all estimators. The ESE performs worse for small sample sizes and the results
suggest to use the SSE for point estimation of the regression parameter β0.

We constructed Wald-type CIs, similar to the intervals proposed in [1], using
the asymptotic normal limiting distribution of the estimators and compared the
coverage proportion and average length of these intervals with bootstrap CIs
based on the nonparametric bootstrap described in this paper using B = 1, 000
samples from the original data. For the MRCE, the validity of the classical
bootstrap is proved in [33]. The Wald-type CIs remain anti-conservative for the
ESE in model 2.

We observed (result not shown) that, in both models, the bias in estimating
the efficient variance of the ESE remains larger than the bias of the asymptotic
variance estimates for the SSE and the MRCE. Tables 2 and 3 show that the
coverage proportion of the classical bootstrap CIs converges to the nominal
95%−level and the average length of the CIs obtained by resampling from the
original data is smaller than the corresponding length of the Wald-type CIs. We
also investigated the behavior of Studentized bootstrap CIs (results not shown)
based on the variance estimate used in the construction of the Wald-type CIs,
but no improvement was observed for the behavior of the bootstrap intervals.

Our results do not indicate better performances corresponding to smoothing
techniques and therefore suggest that smoothing should not be the primary con-
cern in inferences for the current status linear regression model. Note that the
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Wald-type CIs are constructed using smoothing kernel estimation for the vari-
ance estimate and that the only results obtained without any smoothing are the
bootstrap CIs for the SSE and the MRCE. It is noteworthy that the SSE tends
to perform better than the MRCE, which is not based on a nuisance parameter
that is not estimable at

√
n−rate. Based on these results, we recommend the

use of the SSE in combination with the nonparametric bootstrap procedure for
doing inference in the current status linear regression model.

5. Discussion

In this paper we studied the behavior of the nonparametric bootstrap in current
status models. Asymptotic results show that, given the data, the L2−distance
between the bootstrap MLE F̂n and the underlying distribution function F0 is
of order n−1/3. This result is noteworthy given the fact that the nonparametric
bootstrap is inconsistent for generating the distribution of the MLE. Despite
this negative result, we show that it is still possible to use the MLE while doing
inferences for certain functionals in the current status model. We illustrated the
effectiveness of this result by constructing pointwise confidence intervals around
the SMLE and proved the validity of interval estimation in the current status
linear regression model.

The result is applicable to several other nonparametric estimators depending
on a cube-root n convergence class. Because of its connection with the MLE,
applications of the nonparametric bootstrap involving the Grenander estimator,
such as the smoothed Grenander estimator used in [7] or the goodness-of-fit tests
described in [8], are worthy of study in further research.

Extensions to semiparametric models, where one considers bootstrapping a
finite dimensional parameter, are also possible such as the score estimator for
the semiparametric monotone single index model proposed by [3], which is sim-
ilar to the current status linear regression estimator discussed in Section 4.2. A
general bootstrap consistency result for semiparametric M-estimators is derived
in [5]. However, if computations are in first instance based on nonparametric
maximum likelihood estimators or least squares estimators of the infinite di-
mensional parameter, fixing temporarily the finite-dimensional parameter, the
use of local smooth functional theory is needed, where the remainder terms in-
volving the cube-root-n M-estimator of the nuisance parameter are shown to be
negligible by an application of a result of the type (3.1). The treatment of the
remainder terms in this local smooth functional theory is a highly non-trivial
matter. On the other hand, in [5], this negligibility is assumed to hold by their
condition SB3.

Furthermore, the results in [5] hold for a class of exchangeable bootstrap
weights of which the multinomial weights considered in this paper are a special
case. Although we did not investigate this in the present paper, extensions of
our nonparametric bootstrap results to the more general bootstrap resampling
schemes seem possible as well.

Another interesting extension of this research is the construction of confidence
bands for the distribution instead of the currently proposed pointwise confidence
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intervals. Note that our main result (3.2) does not imply:

E

{
sup

t∈[0,R]

n1/3
∣∣F̂n(t)− F0(t)

∣∣∣∣∣Z1, . . . , Zn

}
= Op(1). (5.1)

A bound on supt∈[0,R] n
1/3
∣∣F̂n(t)− F0(t)

∣∣∣∣∣ which no doubt would contain loga-

rithmic factors, would be needed for confidence bands instead of our pointwise
confidence intervals. The idea is that the process t �→ n1/3

{
F̂n(t) − F0(t)

}
will

fall apart into asymptotically independent pieces, and that we therefore expect
Gumbel-type distributions to enter, via the maximum of independent random
variables. The theory for this still has to be developed, however. What struck
us in the present simulation studies is how comparatively well the global be-
havior of our pointwise confidence intervals still was, indicating that the extra
logarithmic factors do not have such a very large impact.

Probably results similar to those presented in the current paper will follow for
the more challenging interval censoring, type II models where the development
of the local limit theory for the MLE has not yet been settled. It is reasonable
to believe that the nonparametric bootstrap also allows for inferences with the
maximum smoothed likelihood estimator studied in [12].

6. Appendix

6.1. Proof of Lemma 3.1

Before proving Lemma 3.1 we provide two technical lemmas.

Lemma 6.1. Let α > 0. There exist constants K1,K2 > 0 such that, for each
j ≥ 1, j ∈ N,

PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
:

∣∣∣∣∣
∫
u∈(U(a),U(a)+y]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

∣∣∣∣∣ ≥ α(j − 1)2n−2/3

}

≤ K1 exp
{
−K2(j − 1)3/2

}
, (6.1)

in probability.
Likewise, there exist constants K1,K2 > 0 such that, for each j ≥ 1, j ∈ N,

PM |Z

{
∃y ∈

[
−jn−1/3,−(j − 1)n−1/3

)
:

∣∣∣∣∣
∫
u∈(U(a)+y,U(a)]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

∣∣∣∣∣ ≥ α(j − 1)2n−2/3

}
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≤ K1 exp
{
−K2(j − 1)3/2

}
, (6.2)

in probability.

Proof. We only prove (6.1), since the proof of (6.2) is similar. Let Ft be the
(Vapnik-Cervonenkis) class of functions

Ft =
{
(δ − F0(v))1(U(a),U(a)+u](v) : u ∈ [0, t], δ ∈ {0, 1}

}
,

with envelope

Ft(v, δ) = 1(U(a),U(a)+t](v), v ∈ [0, t].

To prove (6.1), we use that an exponential tail bound can be derived from a
bounded Orlicz norm ‖ · ‖P,ψ, i.e., when taking ψ1(x) = exp(x) − 1, for x ≥ 0,
we get, for x > 0 the inequality

P (|X| > x) ≤ 2 exp {−x/‖X‖P,ψ1} , (6.3)

where

‖X‖P,ψ1 = inf

{
C > 0 : Eψ1

(
|X|
C

)
≤ 1

}
.

Using the second statement of Theorem 2.14.5 in [34], with p = 1, we get, the
following inequality:∥∥∥∥∥∥∥√n

(
P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,ψ1

�
∥∥∥∥∥∥∥√n

(
P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,1

+ n−1/2{1 + logn}‖Ft‖Pn,ψ1 , (6.4)

where ‖·‖∗Ft
denotes the so-called measurable majorant of ‖·‖Ft (see [34]). (Note

that we use temporarily the ”*” notation which is used for bootstrap variables
in the rest of the paper.)

Furthermore, we have by the rightmost inequality of Theorem 2.14.1 of [34]
that ∥∥∥∥∥∥∥√n

(
P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,1

� J (1,Ft) ‖Ft‖Pn,2
,

where J(δ,Ft) is defined by

J(δ,Ft) = sup
Q

∫ δ

0

√
1 + logN (ε‖F‖Q,2,Ft, L2(Q)) dε,

and where the supremum is over all discrete probability measure Q with ‖Ft‖Q,2

> 0. Since Ft ⊂ FR−U(a) for all t ∈ [0, R−U(a)], and since FR−U(a) is a Vapnik-
Cervonenkis class, J(δ,Ft) is bounded by a fixed constant for all t ∈ [0, R−U(a)],
and we get: ∥∥∥∥∥∥∥√n

(
P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,1

� ‖Ft‖Pn,2
,
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uniformly for all t ∈ [0, R− U(a)]. Note that

‖Ft‖2Pn,2
=

∫
u∈U(a),U(a)+t]

dPn(u, δ) =

∫
u∈U(a),U(a)+t]

dGn(u), (6.5)

t ∈ [U(a), R − U(a)]. We next evaluate the second term on the right-hand side
of (6.4). We have:∫

ψ1

(
Ft(u, δ)

c

)
dPn(u, δ) =

{
e1/c − 1

}∫
1(U(a),U(a)+t](u) dGn(u),

and {
e1/c − 1

}∫
1(U(a),U(a)+t](u) dGn(u) ≤ 1

⇐⇒ c ≥ 1

log
{
1 + 1/

∫
u∈U(a),U(a)+t]

dGn(u)
} .

Thus (6.4) becomes, using (6.5),∥∥∥∥∥∥∥√n
(
P̂n − Pn

)∥∥∥∗
Ft

∥∥∥∥
Pn,ψ1

≤ c1

{∫
u∈U(a),U(a)+t]

dGn(u)

}1/2

+
1 + log n

n1/2 log
{
1 + 1/

∫
u∈U(a),U(a)+t]

dGn(u)
} ,

(6.6)

for a constant c1 > 0. If t ≥ Kn−1/3 we get for the second term in probability,

1 + logn

n1/2 log
{
1 + 1/

∫
u∈U(a),U(a)+t]

dGn(u)
} � c1

{∫
u∈U(a),U(a)+t]

dGn(u)

}1/2

.

We have:∫
u∈[U(a),U(a)+t]

dGn(u)

=

∫
u∈[U(a),U(a)+t]

dG(u) +

∫
u∈[U(a),U(a)+t]

d
(
Gn −G

)
(u)

=

∫
u∈[U(a),U(a)+t]

dG(u) +Op

(
n−1/2

)
= O(t) +Op

(
n−1/2

)
= O(t) +OPM

(
n−1/2

)
,

in probability (since a term defined only on the probability space (X ,A, P ) of
order Op(1) is also of order OPM

(1) in probability). So we obtain, for j ≥ K in
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probability, conditioning on (T1,Δ1), (T2,Δ2), . . . using the inequality on Orlicz
norms on p. 96 or 239 of [34]:

PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
:

∣∣∣∣∣
∫
u∈(U(a),U(a)+y]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

∣∣∣∣∣ ≥ α(j − 1)2n−2/3

}

= PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
:

√
n

∣∣∣∣∣
∫
u∈(U(a),U(a)+y]

{δ−F0(u)} d
(
P̂n −Pn

)
(u, δ)

∣∣∣∣∣≥α(j− 1)2n−1/6

}

≤ 2 exp

⎧⎨
⎩−m(j − 1)2n−1/6/

∥∥∥∥∥
∥∥∥√n

(
P̂n − Pn

)∥∥∥∗
F

jn−1/3

∥∥∥∥∥
Pn,ψ1

⎫⎬
⎭

≤ 2 exp
{
−c2m(j − 1)3/2

}
,

for some c2 > 0. This proves the statement.

Lemma 6.2. For each ε > 0 and x ∈ [0, R− U(a)],∣∣∣∣∣
∫
u∈(U(a),U(a)+x]

{δ − F0(u)} d
(
Pn − P

)
(u, δ)

∣∣∣∣∣ ≤ εx2 +Op

(
n−2/3

)
.

Proof. As in the proof of Lemma 6.1, we consider the Vapnik-Cervonenkis col-
lection of functions:

Ft =
{
(δ − F0(v))1(U(a),U(a)+u](v) : u ∈ [0, t], δ ∈ {0, 1}

}
,

with envelope

Ft(v, δ) = 1(U(a),U(a)+t](v), v ∈ [0, t].

We have, using Theorem 2.14.1 of [34]:

EX

{
sup
f∈Ft

|Pn − P | (f)
}2

≤ Kn−1 ‖Ft‖2P,2 , (6.7)

for some K > 0. Since,

‖Ft‖2P,2 =

∫
u∈U(a),U(a)+t]

dP (u, δ) =

∫
u∈U(a),U(a)+t]

dG(u) = O(t),
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for t ∈ [U(a), R− U(a)], we get, by Markov’s inequality,

P

{
n2/3

∣∣∣∣∣
∫
u∈(U(a),U(a)+jn−1/3]

{δ − F0(u)} d
(
Pn − P

)
(u, δ)

∣∣∣∣∣ > A+ ε(j − 1)2

}

≤ Kj/
{
A+ ε(j − 1)2

}2
.

The result now easily follows, see, e.g., [25]. p. 201.

As a consequence of Lemma 6.1 and Lemma 6.2 we get the following result.

Lemma 6.3. Let V̂n and ˆ̄Vn be defined by

V̂n(t) =

∫
u∈[0,t]

δ dP̂n(u, δ),
ˆ̄Vn(t) =

∫
u∈[0,t]

F0(u) dĜn(u), t ∈ [0, R].

(6.8)

where the process Ĝn is defined in (3.3), and let D̂n = V̂n− ˆ̄Vn. Then there exist
constants K1,K2 > 0 such that, for each j ≥ 1, j ∈ N,

PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
: D̂n(U(a) + y)− D̂n(U(a))

≤ −
∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
dĜn(u)

}

≤ K1 exp
{
−K2(j − 1)3/2

}
, (6.9)

in probability. Likewise, there exist constants K1,K2 > 0 such that, for each
j ≥ 1, j ∈ N,

PM |Z

{
∃y ∈

[
−jn−1/3,−(j − 1)n−1/3

)
: D̂n(U(a) + y)− D̂n(U(a))

≤ −
∫ U(a)

U(a)+y

{
F0(u)− F0(U(a))

}
dĜn(u)

}

≤ K1 exp
{
−K2(j − 1)3/2

}
, (6.10)

in probability.

Proof. We again only prove (6.1), since the proof of (6.2) is similar. First note:

PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
: D̂n(U(a) + y)− D̂n(U(a))

≤ −
∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
dĜn(u)

}

≤ PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
:
∣∣∣D̂n(U(a) + y)− D̂n(U(a))

∣∣∣
≥
∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
dĜn(u)

}
.
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Furthermore:∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
dĜn(u)

=

∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
dGn(u)

+

∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
d
(
Ĝn −Gn

)
(u)

=

∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
dG(u)

+

∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
d
(
Gn −G

)
(u)

+

∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
d
(
Ĝn −Gn

)
(u), (6.11)

and for the dominant term on the right-hand side we get:∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
dG(u) ≥ m0

∫ U(a)+y

U(a)

{u− U(a)} dG(u)

≥ m0m1

∫ U(a)+y

U(a)

{u− U(a)} du = 1
2m0m1{y − U(a)}2,

where m0 = infu∈[U(a),R] f0(u) and m1 = infu∈[U(a),R] g(u). We therefore con-
sider the probability:

PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
:
∣∣∣D̂n(U(a) + y)− D̂n(U(a))

∣∣∣ (6.12)

≥ m(j − 1)2n−2/3
}
.

where

m = 1
2 min

{
inf

u∈[t0,R]
f0(u), inf

u∈[t0,R]
g(u)

}
.

We also have:

D̂n(U(a) + y)− D̂n(U(a)) =

∫
u∈(U(a),U(a)+y]

{δ − F0(u)} dP̂n(u, δ)

=

∫
u∈(U(a),U(a)+y]

{δ − F0(u)} d
(
P̂n − P

)
(u, δ)

=

∫
u∈(U(a),U(a)+y]

{δ − F0(u)} d
(
P̂n − Pn

)
(u, δ)

+

∫
u∈(U(a),U(a)+y]

{δ − F0(u)} d
(
Pn − P

)
(u, δ).
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By Lemma 6.2, we may assume that for x ∈ [0, R− U(a)],∣∣∣∣∣
∫
u∈(U(a),U(a)+x]

{δ − F0(u)} d
(
Pn − P

)
(u, δ)

∣∣∣∣∣ ≤ εx2 +Kn−2/3, (6.13)

for some K > 0 and 0 < ε < m/2. Considering sequences X = (T1,Δ1),
(T2,Δ2) . . . , satisfying (6.13), we get:

PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
:
∣∣∣D̂n(U(a) + y)− D̂n(U(a))

∣∣∣
≥ m(j − 1)2n−2/3

}

≤ PM |Z

{
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
:

∣∣∣∣∣
∫
u∈(U(a),U(a)+y]

{δ−F0(u)} d
(
P̂n −Pn

)
(u, δ)

∣∣∣∣∣ ≥ 1
2m(j− 1)2n−2/3

}

≤ K1 exp
{
−K2(j − 1)3/2

}
,

with probability tending to one, using Lemma 6.1.

We now prove Lemma 3.1.

Proof of Lemma 3.1. Suppose that n1/3|Ûn(a) − U(a)| > x for some x > 0,

then there exists a y such that, n1/3 |y − U(a)| > x and V̂n(y) − aĜn(y) ≤
V̂n(U(a))− aĜn(U(a)). Hence,

PM |Z

{
n1/3

∣∣∣Ûn(a)− U(a)
∣∣∣ ≥ x

}

≤ PM |Z

(
inf

y−U(a)≥n−1/3x
D̂n(y)− D̂n(U(a))

≤ −
∫ y

U(a)

{
F0(u)− F0(U(a))

}
dĜn(u)

)

≤
∞∑
j=i

PM |Z

(
∃y ∈

[
(j − 1)n−1/3, jn−1/3

)
: D̂n(U(a) + y)− D̂n(U(a))

≤ −
∫ U(a)+y

U(a)

{
F0(u)− F0(U(a))

}
dĜn(u)

)
,

where x ∈ [(i− 1)n−1/3, in−1/3]. By Lemma 6.3, this is bounded above by

∞∑
j=i

K1 exp
{
K2(j − 1)3/2

}
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= K1 exp
{
−K2(i− 1)3/2

} ∞∑
j=i

exp
{
−K2[(j − 1)3/2 − (i− 1)3/2]

}

≤ K ′
1 exp

{
K ′

2(i− 1)3/2
}
,

for constants K1,K
′
1,K2,K

′
2 > 0.

6.2. Proof of Lemma 4.1

We introduce notations Kh and Kh to denote the scaled versions of K and K

respectively:

Kh(u) = h−1K(u/h) and Kh(u) = K(u/h).

Proof. Define the function

ψt,h(u) =
Kh(t− u)

g(u)
.

Denote the points of jump of the MLE F̂n by τ̂1, . . . , τ̂m and define the piecewise
constant function ψ̄t,h with only jumps at τ̂1, . . . , τ̂m by

ψ̄t,h(u) =

⎧⎨
⎩

ψt,h(τ̂i), if F0(u) > F̂n(τ̂i), u ∈ [τ̂i, τ̂i+1),

ψt,h(s), if F0(u) = F̂n(s), for some s ∈ [τ̂i, τ̂i+1),

ψt,h(τ̂i+1), if F̃0(u) < F̂n(τi), u ∈ [τ̂i, τ̂i+1).

By the convex minorant interpretation of F̂n, we have∫
ψ̄t,h(u)(δ − F̂n(u))dP̂n(u, δ) = 0,

(see the discussion of the SMLE in [17], p. 332).

We can write

F̃ ∗
nh(t) =

∫
Kh(t− u) dF̂n(u)

=

∫
Kh(t− u) d(F̂n − F0)(u) +

∫
Kh(t− u) dF0(u)

=

∫
ψt,h(u)

{
F̂n(u)− F0(u)

}
dG(u) +

∫
Kh(t− u) dF0(u)

=

∫
ψt,h(u)

{
F0(u)− F̂n(u)

}
d(Ĝn −G)(u) +

∫
ψt,h(u) {δ − F0(u)} dP̂n(u, δ)

+

∫ {
ψt,h(u)− ψ̄t,h(u)

}{
F̂n(u)− δ

}
dP̂n(u, δ) +

∫
Kh(t− u) dF0(u)
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= F̃
(toy)∗
nh (t) +

∫
ψt,h(u)

{
F0(u)− F̂n(u)

}
d(Ĝn −G)(u, δ)

+

∫ {
ψt,h(u)− ψ̄t,h(u)

}{
F̂n(u)− δ

}
dP̂n(u, δ)

= F̃
(toy)∗
nh (t) +AI +AII .

We first evaluate AI and show that this term is oPM
(n−2/5) in probability, we

have:

AI =

∫
ψt,h(u)

{
F0(u)− F̂n(u)

}
d(Ĝn −G)(u, δ)

=

∫
ψt,h(u)

{
F0(u)− F̂n(u)

}
d(Ĝn −Gn)(u, δ)

+

∫
ψt,h(u)

{
F0(u)− F̂n(u)

}
d(Gn −G)(u, δ)

An argument similar to that of Lemma A.7 in [16] shows that∫
ψt,h(u)

{
F0(u)− F̂n(u)

}
d(Gn −G)(u, δ) = op(n

−2/5),

and hence,∫
ψt,h(u)

{
F0(u)− F̂n(u)

}
d(Gn −G)(u, δ) = oPM

(n−2/5),

in probability. Similarly to the proof of Lemma A.7 in [16], we can also show
that ∫

ψt,h(u)
{
F0(u)− F̂n(u)

}
d(Ĝn −Gn)(u, δ) = oPM

(n−2/5), (6.14)

in probability, such that,

AI = oPM
(n−2/5) in probability.

We now study the term AII . Using the same inequality for ψt,h − ψ̄t,h as used
in the second display after (11.49) on p. 333 of [17], we get for some constant
C > 0 that: ∣∣ψ̄t,h(u)− ψt,h(u)

∣∣ ≤ Ch−2
∣∣∣F̂n(u)− F0(u)

∣∣∣ , (6.15)

for all u such that f0 is positive and continuous in a neighborhood around u.
We decompose the term AII as follows,

AII =

∫ {
ψ̄t,h(u)− ψt,h(u)

}{
F̂n(u)− F0(u)

}
dP̂n(u, δ)

+

∫ {
ψ̄t,h(u)− ψt,h(u)

}
{F0(u)− δ} dP̂n(u, δ). (6.16)
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For the first term on the right-hand side of the above display we write,∫ {
ψ̄t,h(u)− ψt,h(u)

}{
F̂n(u)− F0(u)

}
dP̂n(u, δ)

=

∫ {
ψ̄t,h(u)− ψt,h(u)

}{
F̂n(u)− F0(u)

}
d(P̂n − Pn)(u, δ)

+

∫ {
ψ̄t,h(u)− ψt,h(u)

}{
F̂n(u)− F0(u)

}
dPn(u, δ)

≤
∫ {

ψ̄t,h(u)− ψt,h(u)
}{

F̂n(u)− F0(u)
}
d(P̂n − Pn)(u, δ)

+ Ch−2

∫ t+h

t−h

{
F̂n(u)− F0(u)

}2

dPn(u, δ), (6.17)

where we use (6.15) in the last inequality. The first term in the display above is
oPM

(n−2/5) in probability by (6.14) and (6.15). Since

EM |Z

{
F̂n(t)− F0(t)

}2

< Kn−2/3 ∀t ∈ (0, R),

in probability, we have by Markov’s inequality and Fubini’s theorem that,∫ t+h

t−h

{
F̂n(u)− F0(u)

}2

dPn(u, δ) = OPM

(
hn−2/3

)
in probability. (6.18)

Hence, for h � n−1/5, we get for the second term in (6.17):

Ch−2

∫ t+h

t−h

{
F̂n(u)− F0(u)

}2

dPn(u, δ)

= OPM

(
h−1n−2/3

)
= OPM

(
n−7/15

)
= oPM

(
n−2/5

)
,

in probability. For the second term of (6.16) we have∫ {
ψ̄t,h(u)− ψt,h(u)

}
{F0(u)− δ} dP̂n(u, δ)

=

∫ {
ψ̄t,h(u)− ψt,h(u)

}
{F0(u)− δ} d(P̂n − Pn)(u, δ)

+

∫ {
ψ̄t,h(u)− ψt,h(u)

}
{F0(u)− δ} d

(
Pn − P

)
(u, δ).

Similar to the arguments used in the treatment of term AI above, we get by
using again arguments similar to that of Lemma A.7 in [16] that:∫ {

ψ̄t,h(u)− ψt,h(u)
}
{F0(u)− δ} d

(
P̂n − Pn

)
(u, δ) = oPM

(n−2/5),

and ∫ {
ψ̄t,h(u)− ψt,h(u)

}
{F0(u)− δ} d

(
Pn − P

)
(u, δ) = oPM

(n−2/5),

in probability.
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6.3. The current status linear regression model: bootstrap validity

In this section we give a road map for the proof of the bootstrap validity in
the current status linear regression model. We assume that the assumptions
stated in Theorem 4.1 of [15] hold. Since the proof is very similar to the proof
of Theorem 4.1 in [15], we leave the details to the interested reader. Consider
the bootstrap score function

ψ̂(ε)
n (β) =

∫
F̂n,β(t−β′x)∈[ε,1−ε]

x{δ − F̂n,β(t− β′x)} dP̂n(t, x, δ), (6.19)

for some fixed truncation parameter ε ∈ (0, 1/2).

The main idea is to show that

ψ̂(ε)
n (β̂n) = V (β̂n − β0) +

∫
F0(t−β′

0x)∈[ε,1−ε]

{x− E(X|T − β′
0X = t− β′

0x)}

· {δ − F0(t− β′
0x)} d(P̂n − Pn)(t, x, δ)

+

∫
F0(t−β′

0x)∈[ε,1−ε]

{x− E(X|T − β′
0X = t− β′

0x)}

· {δ − F0(t− β′
0x)} d(Pn − P )(t, x, δ)

+ oPM
(n−1/2 + (β̂n − β0)), (6.20)

in probability, where E denotes the unconditional expectation. As in [15] we
can work with the definition

ψ̂(ε)
n (β̂n) = 0,

for the score estimator β̂n. Since by the proof of Theorem 4.1 in [15],

−
√
nV (βn − β0)

=
√
n

∫
F0(t−β′

0x)∈[ε,1−ε]

{x− E(X|T − β′
0X = t− β′

0x)}

· {δ − F0(t− β′
0x)} d(Pn − P )(t, x, δ)

+ op(1 +
√
n(βn − β0)),

we get that,

−
√
nV (β̂n − βn)

=
√
n

∫
F0(t−β′

0x)∈[ε,1−ε]

{x− E(X|T − β′
0X = t− β′

0x)}

· {δ − F0(t− β′
0x)} d(P̂n − Pn)(t, x, δ)

+ oPM
(1 +

√
n(β̂n − β0)).
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The validity of the bootstrap then follows by the arguments given in Section 4.2.
Very important in the proof of (6.20) is the conditional bootstrapped L2-result,

sup
β

∫ {
F̂n,β(t− β′x)− Fβ(t− β′x)

}2

dPn(t, x, δ) = OPM

(
n−2/3

)
, (6.21)

in probability, where Fβ is defined in (4.18).
Let φ̄β̂n,F̂n,β̂n

be a (random) piecewise constant version of φβ̂n
, where

φβ
def
= E {X|T − β′X = u} ,

and where, for a piecewise constant distribution function F with finitely many
jumps at τ1 < τ2 < . . . , the function φ̄β,F is defined in the following way.

φ̄β,F (u) =

⎧⎨
⎩

φβ(τi), if Fβ(u) > F (τi), u ∈ [τi, τi+1),
φβ(s), if Fβ(u) = F (s), for some s ∈ [τi, τi+1),
φβ(τi+1), if Fβ(u) < F (τi), u ∈ [τi, τi+1).

(6.22)

Similar to the proof of Theorem 4.1 in [15], we get that,

‖φβ̂n
(u)− φ̄β̂n,F̂n,β̂n

(u)‖ ≤ K|F̂n,β̂n
(u)− Fβ̂n

(u)|, (6.23)

for some constant K > 0 not depending on β. By the definition of the MLE
F̂n,β̂n

as the slope of the greatest convex minorant of the corresponding cusum
diagram, we can write:

ψ̂(ε)
n (β̂n)

=

∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
x− φβ̂n

(t− β̂′
nx)
}{

δ − F̂n,β̂n
(t− β̂′

nx)
}
dP̂n(t, x, δ)

+

∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
φβ̂n

(t− β̂′
nx)− φ̄β̂n,F̂n,β̂n

(t− β̂′
nx)
}

·
{
δ − F̂n,β̂n

(t− β̂′
nx)
}
dP̂n(t, x, δ)

= I + II,

For the second term, we have:

II =

∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
φβ̂n

(t− β̂′
nx)− φ̄β̂n,F̂n,β̂n

(t− β̂′
nx)
}

·
{
δ − F̂n,β̂n

(t− β̂′
nx)
}
d(P̂n − Pn)(t, x, δ)

+

∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
φβ̂n

(t− β̂′
nx)− φ̄β̂n,F̂n,β̂n

(t− β̂′
nx)
}

·
{
δ − F̂n,β̂n

(t− β̂′
nx)
}
dPn(t, x, δ)

= IIa + IIb
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It is shown in the proof of Theorem 4.1 in [15] that

IIb = op(n
−1/2 + (β̂n − β0)),

and therefore

IIb = oPM
(n−1/2 + (β̂n − β0)) in probability.

Using similar arguments as in in the proof of Theorem 4.1 in [15] we can also
show that

IIa = oPM
(n−1/2) in probability.

Hence, we get:

ψ̂(ε)
n (β̂n)

=

∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
x− φβ̂n

(t− β̂′
nx)
}{

δ − F̂n,β̂n
(t− β̂′

nx)
}
dP̂n(t, x, δ)

+ oPM
(n−1/2 + (β̂n − β0)),

in probability. We now write,∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
x− φβ̂n

(t− β̂′
nx)
}{

δ − F̂n,β̂n
(t− β̂′

nx)
}
dP̂n(t, x, δ)

=

∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
x− φβ̂n

(t− β̂′
nx)
}

·
{
δ − F̂n,β̂n

(t− β̂′
nx)
}
d(P̂n − Pn)(t, x, δ)

+

∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
x− φβ̂n

(t− β̂′
nx)
}{

δ − F̂n,β̂n
(t− β̂′

nx)
}
dPn(t, x, δ)

It follows from the proof of Theorem 4.1 in [15] that there exists a random

variable Rn of order op(n
−1/2+β̂n−β0) (and hence of order oPM

(n−1/2+β̂n−β0)
in probability) such that,∫

F̂n,β̂n
(t−β̂′

nx)∈[ε,1−ε]

{
x− φβ̂n

(t− β̂′
nx)
}{

δ − F̂n,β̂n
(t− β̂′

nx)
}
dPn(t, x, δ)

=

∫
F0(t−β′

0x)∈[ε,1−ε]

{
x− φ0(t− β′

0x)
}{

δ − F0(t− β′
0x)
}
d(Pn − P )(t, x, δ)

+ ψ′
1,ε(β0)(β̂n − β0) +Rn. (6.24)

where φ0 ≡ φβ0 . Therefore, (6.20) follows if we can show that,∫
F̂n,β̂n

(t−β̂′
nx)∈[ε,1−ε]

{
x−φβ̂n

(t− β̂′
nx)
}{

δ− F̂n,β̂n
(t− β̂′

nx)
}
d(P̂n −Pn)(t, x, δ)

=

∫
F0(t−β′

0x)∈[ε,1−ε]

{
x− φ0(t− β′

0x)
}{

δ − F0(t− β′
0x)
}
d(P̂n − Pn)(t, x, δ)

+ oPM
(n−1/2 + (β̂n − β0)). (6.25)
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Equality (6.25) follows by similar arguments used in the proof of (6.24) based on
asymptotic equicontinuity using the closeness of F̂n,β to Fβ and using entropy

results for the functions u �→ F̂n,β(u) and the simpler parametric functions
u �→ Fβ(u) and u �→ φβ(u), parametrized by the finite dimensional parameter β.
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