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Abstract: Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous
system (CNS). The immune response in MS patients leads to the infiltration of immune cells in
the CNS and their subsequent activation. Immune cell activation induces a switch towards glycolysis.
During glycolysis, the dicarbonyl product methylglyoxal (MGO) is produced. MGO is a glycating
agent that can rapidly form advanced glycation endproducts (AGEs). In turn, AGEs are able to
induce inflammatory responses. The glyoxalase system is the endogenous defense system of the body
to reduce the burden of MGO thereby reducing AGE formation. This system consists of glyoxalase-1
and glyoxalase-2 which are able to detoxify MGO to D-lactate. We investigated whether AGE levels
are induced in experimental autoimmune encephalitis (EAE), an inflammatory animal model of
MS. Twenty seven days post EAE induction, MGO and AGE (Nε-(carboxymethyl)lysine (CML),
Nε-(carboxyethyl)lysine (CEL), 5-hydro-5-methylimidazolone (MG-H1)) levels were significantly
increased in the spinal cord of mice subjected to EAE. Yet, pyridoxamine treatment and glyoxalase-1
overexpression were unable to counteract AGE production during EAE and did not influence
the clinical course of EAE. In conclusion, AGEs levels increase during EAE in the spinal cord,
but AGE-modifying treatments do not inhibit EAE-induced AGE production and do not affect
disease progression.

Keywords: advanced glycation endproducts; pyridoxamine; glyoxalase-1; experimental autoimmune
encephalomyelitis; multiple sclerosis

1. Introduction

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system
(CNS) [1]. Worldwide, 2.5 million people are diagnosed with MS; mainly young adults as the disease
manifests between 20 and 40 years of age. These patients have a variety of symptoms including muscle
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weakness, paresthesias, ataxia, and visual disturbances, depending on the brain regions attacked by
the immune system [2]. Most MS patients, 85%, have the typical relapsing-remitting (RR) MS disease
course which results in periods of inflammatory events leading to relapses with clinical disability
followed by episodes of full recovery [2]. However, as the disease progresses, over half of the RR
MS patients enter a more progressive disease course called secondary progressive (SP) MS, which is
characterized by progressive disability without episodes of full recovery [1].

The exact etiology of MS remains unknown. However, there is consensus that MS is triggered by
environmental factors in genetically susceptible hosts. This leads to an immune response targeted at
the myelin sheaths surrounding the axons. Whether this immune response is initiated inside or outside of
the CNS is, to date, still unclear. Nevertheless, it is certain that both the innate immune system, comprised
of the CNS-resident microglia and the monocyte-infiltrated macrophages, and adaptive immune system,
consisting of cell such as the T-lymphocytes and B-lymphocytes play a key role [3]. Autoreactive
T-lymphocytes are recruited to the CNS by the secretion of chemokines by infiltrated macrophages and
CNS-resident microglia. Once in the CNS, autoreactive T-lymphocytes are reactivated by microglia and
infiltrated macrophages thereby promoting neuroinflammation and neurodegeneration [4]. To investigate
the development of MS and validate novel therapeutics, animal models of MS have been developed.
The experimental autoimmune encephalomyelitis (EAE) is the most widely accepted animal model of
MS [5]. Immunization of mice with self-antigens (e.g., myelin oligodendrocyte glycoprotein (MGO))
induces an autoimmune response of CD4+ and CD8+ T-lymphocytes, B-lymphocytes, and monocytes [6],
mimicking the immune response in MS patients. Subsequently, the autoimmune response leads to
neuroinflammation and demyelination, primarily in the spinal cord [7].

The activation of CNS-resident microglia and infiltrated macrophages can induce a switch in
metabolism in these cells promoting glycolysis over oxidative phosphorylation [8,9]. Increased
glycolysis can lead to the formation of the by-product methylglyoxal (MGO) and glyoxal
(GO). MGO and GO are potent glycating agents that, reacting with free amino acids, lead
to the formation of advanced glycation endproducts (AGEs) [10]. Interaction of MGO
with lysine and arginine leads to the formation of Nε-(1-carboxyethyl)lysine (CEL) and
Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) respectively, whereas interaction with
GO with lysine leads to the formation of Nε-(carboxymethyl)lysine (CML) [11]. However, whether
the pro-inflammatory environment of the CNS in MS leads to the increased formation of AGEs remains
to be elucidated. AGEs can contribute to inflammation by binding to their receptor for advanced
glycation endproducts (RAGE), resulting in the activation of downstream pathways including nuclear
factor-κB (NF-κB), which leads to the production of pro-inflammatory cytokines and oxidative
stress [12]. AGEs are known to be increased in diseases in which inflammation is a major component
such as atherosclerosis [13,14], obesity [15], non-alcoholic steatohepatitis [16], and diabetes [17].
Moreover, it has been shown that AGEs are present in neurodegenerative diseases such as Alzheimer’s
disease and Parkinson’s disease [18,19]. Furthermore, studies have also confirmed the presence of
AGEs in the brain and plasma of MS patients [20,21]. This could indicate that during MS, the formation
of AGEs may contribute to neuroinflammation, making them a possible therapeutic target.

To reduce the burden of MGO and AGEs, the body has defense mechanisms such as the glyoxalase
system. This system comprises of two enzymes: glyoxalase-1 (Glo-1) and glyoxalase-2 (Glo-2) which
are able to detoxify MGO into D-Lactate using glutathione (GSH) as a cofactor [22]. In addition to our
body’s defense mechanism, there are also pharmacological agents that are able to lower AGE levels
such as pyridoxamine. Pyridoxamine is one of the natural vitamin B6 analogues that scavenges MGO
thereby preventing AGE formation [23]. Therefore, both pyridoxamine and Glo-1 stimulating agents
are potential therapeutic targets that could be used to reduce AGEs.

In the current study, we investigated whether AGE levels are induced in the EAE animal model
of MS. Moreover, with pyridoxamine treatment and by the Glo-1 overexpression animal model we
aimed to reduce AGE levels in the plasma and CNS of mice subjected to EAE, thereby decreasing
the disease progression.
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2. Results

2.1. Experimental Autoimmune Encephalomyelitis Induces the Formation of Advanced Glycation Endproducts
in the Central Nervous System

To investigate whether the α-dicarbonyls MGO, GO and 3-deoxyglucosone (3DG) and AGEs
CML, CEL and MG-H1 are increased during EAE, we subjected mice to EAE and compared the levels
in the plasma, spinal cord and brain with levels of healthy age-matched control mice. MGO, GO and
3DG were significantly decreased in the plasma of mice subjected to EAE (Table 1). Yet, we observed
significantly increased levels of free MG-H1 in the plasma of mice subjected to EAE compared to
healthy controls (Table 1). Protein bound CML, CEL and MG-H1 were unchanged in the plasma of
EAE mice compared to the healthy controls (Table 1).

Table 1. Dicarbonyls and free advanced glycation endproducts (AGEs) in the plasma, spinal cord, and
brain of mice subjected to experimental autoimmune encephalitis (EAE) and healthy controls.

Substrate Product Healthy n = 8 EAE n = 8 p-Value

Plasma
Methylglyoxal (MGO) (nmol/L) 3268 ± 378 2160 ± 230 0.03

Glyoxal (GO) (nmol/L) 1414 ± 51 1205 ± 70 0.03
3-deoxyglucosone (3DG) (nmol/L) 2051 ± 123 1611 ± 152 0.04

Protein bound Nε-(carboxymethyl)lysine (CML)
(nmol/mmol Lysine) 25.6 ± 1 25.2 ± 1 0.83

Protein bound Nε-(1-carboxyethyl)lysine (CEL)
(nmol/mmol Lysine) 9.1 ± 0.7 8.4 ± 1 0.60

Protein bound
Nδ-(5-hydro-5-methyl-4-imidazolon-

2-yl)-ornithine (MG-H1) (nmol/mmol Lysine)
276.5 ± 19 285.6 ± 17 0.73

Free CML (nmol/L) 315.4 ± 17 283.6 ± 15 0.18
Free CEL (nmol/L) 98.1 ± 7 99.9 ± 9 0.88

Free MG-H1 (nmol/L) 59.6 ± 6 91.5 ± 6 0.002

Spinal cord
MGO (nmol/L) 1980 ± 169 3143 ± 419 0.02
GO (nmol/L) 1706 ± 250 2258 ± 165 0.09

Protein bound CML (nmol/mmol Lysine) 297.5 ± 116 187.2 ± 16 0.36
Protein bound CEL (nmol/mmol Lysine) 65.1 ± 16 37.4 ± 2 0.11

Protein bound MG-H1 (nmol/mmol Lysine) 159.4 ± 10 165.3 ± 14 0.73
Free CML (nmol/L) 61 ± 2 98.18 ± 8 0.0005
Free CEL (nmol/L) 14.6 ± 0.4 18.1 ± 1 0.01

Free MG-H1 (nmol/L) 3.4 ± 0.07 5.5 ± 0.8 0.01
Glo-1 activity (nmol/mg/min) 262.5 ± 9 198.9 ± 14 0.002

Brain
MGO (nmol/L) 1222 ± 162 2302 ± 299 0.01
GO (nmol/L) 1833 ± 169 2250 ± 89 0.05

Protein bound CML (nmol/mmol Lysine) 91.5 ± 5 98.7 ± 6 0.36
Protein bound CEL (nmol/mmol Lysine) 42.6 ± 2 43.7 ± 3 0.77

Protein bound MG-H1 (nmol/mmol Lysine) 129.5 ± 16 139.4 ± 19 0.70
Free CML (nmol/L) 55.6 ± 2 73.9 ± 3 <0.0001
Free CEL (nmol/L) 24.6 ± 0.8 25.3 ± 1 0.69

Free MG-H1 (nmol/L) 3.5 ± 0.2 4.0 ± 0.3 0.19
Glo-1 activity (nmol/mg/min) 147.9 ± 5 161.4 ± 3 0.04

Data presented as mean ± standard error of mean (SEM) and analyzed using unpaired t-test.

In the spinal cord, the major site of inflammation during EAE, MGO levels were significantly
increased and GO levels tended to be increased (p = 0.09) (Table 1). Free CML, CEL and MG-H1, but
not protein bound CML, CEL and MG-H1, were significantly increased in the spinal cord of mice
subjected to EAE (Table 1). To determine whether the main MGO detoxification enzyme is affected
during EAE, Glo-1 activity was determined in the spinal cord. Glo-1 activity was significantly reduced
in the spinal cord of mice subjected to EAE compared to their healthy wild type (WT) controls (Table 1).
Glo-2 activity was equal between the groups [24].

MGO and GO levels were also significantly increased in the brain of mice subjected to EAE
(Table 1). In addition, free CML was increased in the brain whereas free CEL and MG-H1 remained
unchanged. Protein bound CML, CEL and MG-H1 was also not altered in the brain of mice subjected
to EAE compared to healthy controls (Table 1). Glo-1 activity in the brain however was increased in
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the EAE mice (Table 1). Glo-2 activity between the two groups was not significantly altered due to
EAE [24].

2.2. Pyridoxamine Intervention did not Reduce Advanced Glycation Endproduct Levels in the Plasma and
Spinal Cord During EAE

To investigate whether inhibition of AGE formation attenuates disease progression in an animal
model of MS, mice were treated with 10 g/L pyridoxamine via oral gavage during EAE. Pyridoxamine
is described as a dicarbonyl scavenger, thereby reducing AGE levels [23]. The control group was
treated with vehicle. Analysis of plasma and spinal cord of mice treated with pyridoxamine and vehicle
showed that dicarbonyls, free AGEs and protein bound AGEs were not altered in the pyridoxamine
treated group compared to the vehicle treated group after EAE (Table 2). Glo-1 activity in the spinal
cord was not altered between the groups (Table 2). In line, pyridoxamine treatment did no lead to
differences in weight, and disease progression, measured by EAE score, compared to vehicle treated
controls (Figure 1A,B).

Table 2. Dicarbonyl and AGE levels in the plasma and spinal cord after daily oral vehicle or
pyridoxamine (10 g/L) treatment during EAE.

Substrate Product Vehicle n = 11 Pyridoxamine n = 10 p-Value

Plasma
MGO (nmol/L) 2270 ± 208 2488 ± 227 0.49
GO (nmol/L) 1447 ± 159 1391 ± 91 0.77
3DG (nmol/L) 1496 ± 89 1642 ± 44 0.17

Protein bound CML (nmol/mmol Lysine) 19.7 ± 1 20 ± 2 0.89
Protein bound CEL (nmol/mmol Lysine) 5.3 ± 0.4 4.7 ± 0.4 0.31

Protein bound MG-H1 (nmol/mmol Lysine) 217.0 ± 12 239.2 ± 15 0.25
Free CML (nmol/L) 364.5 ± 137 218.4 ± 10 0.32
Free CEL (nmol/L) 138.8 ± 70 71.6 ± 6 0.37

Free MG-H1 (nmol/L) 96.6 ± 37 63.6 ± 7 0.42

Spinal cord
MGO (nmol/L) 1976 ± 177 1977 ± 132 1.00
GO (nmol/L) 2117 ± 122 2207 ± 150 0.65

Protein bound CML (nmol/mmol Lysine) 97.6 ± 12 95.9 ± 12 0.92
Protein bound CEL (nmol/mmol Lysine) 50.2 ± 4 52.2 ± 5 0.75

Protein bound MG-H1 (nmol/mmol Lysine) 108.3 ± 11 132.1 ± 17 0.25
Free CML (nmol/L) 92.9 ± 5 97.3 ± 5 0.56
Free CEL (nmol/L) 17.6 ± 0.4 17.9 ± 0.5 0.59

Free MG-H1 (nmol/L) 4.5 ± 0.2 4.8 ± 0.3 0.43
Glo-1 activity (nmol/mg/min) 1614 ± 46 1572 ± 59 0.58

Data presented as mean ± SEM and analyzed using unpaired t-test.
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Figure 1. 10 g/L Pyridoxamine does not affect EAE disease outcome. Mice were immunized with
myelin oligodendrocyte glycoprotein (MOG) to induce EAE and treated with either vehicle or 10 g/L
pyridoxamine. Vehicle (n = 11) and 10 g/L pyridoxamine (n = 10) treated mice were weighed (a) and
scored (b) daily for 22 days after EAE induction. Closed circles ( ) represent vehicle treated mice and
open circles (#) represent 10 g/L pyridoxamine treated mice. Data is presented as mean ± SEM and
analyzed using two-way analysis of variance (ANOVA) with Sidak’s multiple comparisons post-test.

2.3. Human Glo-1 Overexpression Mouse Model did not Reduce Advanced Glycation Endproduct Levels in
the Plasma and Central Nervous System during EAE

10 g/L Pyridoxamine treatment was unable to reduce dicarbonyl and AGE levels in
the plasma and central nervous system. As an alternative mouse model to lower AGEs during EAE
development, the Glo-1 overexpression mouse model was used. In this mouse model, the human Glo-1
gene is inserted under the control of the beta-actin promoter, leading to a full body overexpression
of the Glo-1 enzyme. Wild-type litter mates were used as a control group. EAE was induced in both
Glo-1 overexpression mice and wild type mice.

Glo-1 activity was assessed in the CNS of the Glo-1 overexpression and wild type mice after
EAE. Glo-1 activity was 5.5 and 5.9 times increased in respectively the spinal cord and brain of Glo-1
overexpression mice compared to their wild type littermates (Table 3). However, dicarbonyl levels
and free and protein-bound AGE levels in the plasma, spinal cord, and brain were similar after EAE
(Table 3). In line with this, weight reduction and clinical EAE score were not altered in the Glo-1
overexpression mice compared to the wild type controls (Figure 2A,B).
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Table 3. Dicarbonyl and AGE levels in the plasma and central nervous system of full body Glo-1
overexpression mice and wild type littermates after EAE.

Substrate Product Wild Type n = 4 Glo-1 Overexpression n = 5 p-Value

Plasma
MGO (nmol/L) 1837 ± 578 3279 ± 432 0.08
GO (nmol/L) 1047 ± 44 1477 ± 339 0.30
3DG (nmol/L) 1690 ± 172 2125 ± 167 0.11

Protein bound CML (nmol/mmol Lysine) 25.9 ± 0. 8 26.9 ± 2 0.64
Protein bound CEL (nmol/mmol Lysine) 6.2 ± 1 8.8 ± 0.8 0.08

Protein bound MG-H1 (nmol/mmol Lysine) 307.9 ± 51 274.0 ± 15 0.50
Free CML (nmol/L) 251.1 ± 28 790.4 ± 523 0.39
Free CEL (nmol/L) 72.7 ± 15 330.4 ± 250 0.39

Free MG-H1 (nmol/L) 64.0 ± 8 169.1 ± 114 0.44

Spinal cord
MGO (nmol/L) 3865 ± 500 3382 ± 184 0.35
GO (nmol/L) 2794 ± 630 2517 ± 220 0.66

Protein bound CML (nmol/mmol Lysine) 108.4 ± 4 102.3 ± 8 0.54
Protein bound CEL (nmol/mmol Lysine) 41.9 ± 6 46.5 ± 9 0.69

Protein bound MG-H1 (nmol/mmol Lysine) 270.7 ± 25 305.4 ± 47 0.57
Free CML (nmol/L) 87.3 ± 9 92.9 ± 7 0.64
Free CEL (nmol/L) 17.1 ± 0.8 16.4 ± 0.5 0.53

Free MG-H1 (nmol/L) 4.4 ± 0. 8 3.7 ± 0.1 0.32
Glo-1 activity (nmol/mg/min) 66.6 ± 8 367.8 ± 6 <0.0001

Brain
MGO (nmol/L) 2906 ± 309 2836 ± 127 0.83
GO (nmol/L) 4086 ± 718 4291 ± 354 0.79

Protein bound CML (nmol/mmol Lysine) 63.9 ± 4 57.8 ± 7 0.50
Protein bound CEL (nmol/mmol Lysine) 40.6 ± 6 37.0 ± 2 0.55

Protein bound MG-H1 (nmol/mmol Lysine) 177.3 ± 16 179.4 ± 13 0.92
Free CML (nmol/L) 52.0 ± 5 51.2 ± 3 0.88
Free CEL (nmol/L) 25.4 ± 2 25.4 ± 1 0.97

Free MG-H1 (nmol/L) 3.3 ± 0.1 3.4 ± 0.2 0.69
Glo-1 activity (nmol/mg/min) 50.1 ± 2 296.1 ± 11 <0.0001

Data presented as mean ± SEM and analyzed using unpaired t-test.

Figure 2. Full body Glo-1 overexpression does not affect EAE disease outcome. Glo-1 overexpression
mice and wild type littermates were immunized with MOG to induce EAE. Wild type (n = 4) and Glo-1
overexpression (n = 5) mice were weighed (a) and scored (b) daily for 25 days after EAE induction.
Closed circles ( ) represent wild type littermates and open circles (#) represent Glo-1 overexpression
mice. Data is presented as mean ± SEM and analyzed using two-way ANOVA with Sidak’s multiple
comparisons post-test.
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3. Discussion

Our study shows that levels of dicarbonyls and AGEs are significantly increased in the CNS of
mice subjected to EAE. Moreover, Glo-1 activity in the spinal cord was significantly decreased whereas
Glo-1 is increased in the brain. Therapeutic approaches to reduce AGE levels using pyridoxamine
and human Glo-1 overexpression failed to reduce AGE levels in the plasma and CNS of EAE mice,
which was paralleled with unchanged neurological scores.

EAE progression leads to a decrease of plasma levels of MGO, GO and 3DG but an increase of
free MG-H1 compared to healthy controls. The decrease in dicarbonyl levels in the plasma could
indicate that plasma MGO, GO and 3DG are able to pass the blood-brain barrier and accumulate in
the spinal cord. Here, dicarbonyls are able to induce the formation of free CML, CEL and MG-H1
since GO and 3DG lead to the formation of CML, whereas MGO leads to the formation of CEL
and MG-H1. We have found increased levels of CML, CEL and MG-H1 in the spinal cord of mice
subjected to EAE. This suggests that plasma dicarbonyls enter the CNS and leads to a decrease in
the plasma and increased formation of AGEs in the CNS. Moreover, MGO, GO, free CML, CEL
and MG-H1 are increased in the spinal cord of EAE mice compared to healthy animals. We also
observed decreased Glo-1 activity levels in the spinal cord. The increase of AGEs in the spinal
cord may be due to the combination of infiltration and activation of immune cells and decreased
Glo-1 activity. The activation of microglia and infiltrated macrophages leads to an induction of
glycolysis [8,9], probably resulting in the formation of MGO and GO. Moreover, Bogie et al. showed
that phagocytosis of myelin by macrophages induces genes involved in glycolysis [25], also potentially
contributing to local MGO production. In addition, Hanssen et al. revealed that inflammatory cytokine
tumor necrosis factor (TNF) reduces Glo-1 activity in U937 monocytes in vitro [13], suggesting that
the pro-inflammatory environment in the spinal cord of EAE mice contributes to the decrease in Glo-1
activity and the concomitant increase in AGE levels.

In contrast to the spinal cord, in the brain only MGO, GO and CML were significantly increased
and Glo-1 activity was even increased compared to healthy controls. Since Glo-1 detoxifies MGO and
prevents the formation of MGO-derived AGEs such as CEL and MG-H1, this explains why CEL and
MG-H1 were not increased in the brain of EAE mice. In addition, inflammatory demyelinating lesions
are more abundant in the spinal cord compared to the brain of the EAE model [26]. It is therefore
conceivable that inflammation-induced AGE production is of more importance in the spinal cord
compared to the brain.

AGEs are known to bind to their receptor RAGE resulting in NF-κB activation and subsequent
production of pro-inflammatory cytokines [12]. Lowering of AGE levels in the spinal cord during
EAE could therefore reduce inflammation and neurological disease progression. Indeed, Yan et al.
have shown that prevention of RAGE activation by soluble RAGE (sRAGE) and inhibition of RAGE
activation on CD4+ T-cells leads to a decreased EAE disease progression [27]. These results suggest
that lowering RAGE ligands could ameliorate neuroinflammatory responses.

One potential AGE lowering substance is pyridoxamine. Pyridoxamine is one of the three
natural vitamin B6 vitamers along with pyridoxine and pyridoxal. Pyridoxamine is described to
lower AGEs by scavenging dicarbonyls such as MGO [28]. Food-derived pyridoxamine is absorbed
in the intestine by means of passive diffusion [29]. After uptake of pyridoxamine, pyridoxamine is
converted into pyridoxamine-5’-phosphate and further into pyridoxal-5’-phosphate in the intestine
and liver [30,31]. Sakurai et al. found that supplementation with higher concentrations of labelled
[3H]pyridoxamine (140 nmol) resulted in a significant amount of labelled pyridoxamine, pyridoxal
and pyridoxal-5’-phosphate in the plasma [30,31]. In our current study, we have administered 0.5 mL
of 10 g/L pyridoxamine via oral gavage twice daily which results in a concentration of 59.5 mmol
daily which is significantly higher compared to Sakurai et al. Moreover, van der Ham et al. developed
a UPLC MSMS (Ultra-performance liquid chromatography tandem mass spectrometry) method for
the quantification of the vitamin B6 vitamers pyridoxamine, pyridoxine, and pyridoxal and has proven
that pyridoxine supplementation increases the levels of all three vitamers including pyridoxamine in
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the cerebrospinal fluid of these persons [32], indicating that the free form of pyridoxamine, and also
pyridoxine and pyridoxal, are able to cross the blood-brain barrier thereby entering the cerebrospinal
fluid (CSF). Subsequently, brain cells are capable of active uptake of pyridoxamine and the other two
forms from the CSF [33]. Pyridoxamine supplementation for 24 weeks has been proven to reduce
AGE levels in clinical trials studying osteoarthritis and diabetic nephropathy [34,35]. Moreover, we
have previously shown that pyridoxamine treatment inhibits adipose tissue expansion and -induced
adipose tissue inflammation, indicating that pyridoxamine is capable to reduce inflammation in vivo
using a 5 times lower dose [36]. However, in this current study, we have found that pyridoxamine
was not capable to affect AGE levels in the plasma and spinal cord during EAE, which may be due to
the severity of the animal model of MS which possibly limits major decreases in AGE formation.

We found that Glo-1 activity is significantly reduced in the spinal cord of mice subjected to EAE
compared to healthy controls. Since Glo-1 is the major enzyme involved in the detoxification of MGO
and thereby preventing the formation of AGEs, we have used Glo-1 overexpression mice. The inserted
human Glo-1 is under the control of the β-actin promoter [37], and in the CNS, microglia are the main
cells with high β-actin transcription [38], suggesting that microglia have high overexpression of Glo-1
resulting in a high capacity to detoxify MGO and prevent AGE formation. Although we confirmed
that Glo-1 overexpressing mice have approximately 5.5–5.9 times higher Glo-1 activity in brain and
spinal cord compared to their wild type littermates, we observed equal dicarbonyl and AGE levels in
Glo-1 overexpressing and wild type littermates. The detoxification of MGO via the glyoxalase pathway
requires GSH as the initial step of the pathway [39]. It has previously been shown that GSH levels are
reduced in the acute phase of EAE [40,41]. It is therefore possible that, due to decreased availability of
GSH in the spinal cord of mice subjected to EAE, Glo-1 overexpression may not result in increased
Glo-1 activity in vivo.

In conclusion, we have revealed that dicarbonyl and AGE levels are increased in the experimental
animal model of MS. This may suggest that similar pathways are activated in MS patients, as recently
reviewed [42]. However, we were unable to reduce AGE levels by pyridoxamine treatment and a Glo-1
overexpression in the EAE model. This model is an acute model which mimics the initial response
in MS patients. Nevertheless, MS is a chronic disease with several disease phases and underlying
disease pathologies which are not all simulated in the acute EAE model. Therefore, we cannot exclude
the possibility that AGE lowering therapies could be beneficial for MS patients.

4. Materials and Methods

4.1. Animal Experiments

First, sixteen 9-week old female C57Bl/6JOlaHsd mice were purchased (Envigo, Venray,
The Netherlands) and randomly distributed over two groups (n = 8). Mice were left to acclimatize
for 9 days in the animal facility. Experimental autoimmune encephalomyelitis (EAE) was induced
according to manufacturer’s instructions (Hooke Laboratories, St. Lawrence, MA, USA) using 200 µg
myelin oligodendrocyte glycoprotein (MOG35–55) emulsified in 200 µL complete freund’s adjuvant
(CFA) containing 5 mg/mL Mycobacterium tuberculosis and 100 ng pertussis toxin. Mice were
weighed and scored for EAE disease progression using a scale for neurological symptoms: 0 = no
neurological symptoms, 0.5 = limp tail tip, 1 = complete limp tail, 1.5 = limp tail and hind leg inhibition,
2 = limp tail and weakness of both hind limbs, 2.5 = limp tail and dragging of hind limbs, 3 = limp tail
and complete paralysis of hind limbs, 3.5 = limp tail, complete paralysis of hind limbs and mouse is
unable to right itself when placed on the side, 4 = limb tail, complete hind limb and partial front limb
paralysis, mouse remains alert, 4.5 = limb tail, complete hind limb and partial front limb paralysis,
mouse is not alert, 5 = moribund or death due to EAE. After 27 days of EAE, mice were euthanized
with Nembutal (Val d’Hony-Verdifarm, Beringen, Belgium) and plasma, spinal cord and brain was
isolated for further analysis.
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Second, twenty-two 10-week old female C57Bl/6JOlaHsd mice were purchased (Envigo, Venray,
The Netherlands) and randomly distributed over two cages (n = 11). Mice were able to acclimatize for
7 days in the animal facility before the start of the intervention. To reduce AGE formation, the vitamin
B6 analogue pyridoxamine (10 g/L) was administered by 0.5 mL oral gavage twice daily. Pyridoxamine
was kindly provided by Prof. Miyata and functionality was tested in an in vitro setup. To prevent
any cage-effects, mice were randomly assigned to the intervention or control group in both cages.
Administration of vehicle or intervention was done blinded. After two days of intervention, EAE was
induced as described above. Mice continued with the twice daily intervention of pyridoxamine or
vehicle during EAE and were weighed and scored as described above. Mice received the last dose of
pyridoxamine via oral gavage 22 days after induction of EAE. Two hours after oral gavage, mice were
euthanized with Nembutal (Val d’Hony-Verdifarm, Beringen, Belgium) and plasma and spinal cord
was isolated for further analysis.

Finally, heterozygous C57Bl/6J mice with a universal overexpression of the human Glo-1 enzyme
were kindly provided by Prof. Miyata [37]. Female heterozygous Glo-1 overexpressing mice (n = 5)
and wild type littermates (n = 5) were used. At 11–13 weeks of age, EAE was induced as described
above. Mice were weighed and scored daily. After 25 days of EAE, mice were euthanized with
Nembutal (Val d’Hony-Verdifarm, Beringen, Belgium) and plasma, spinal cord and brain was isolated
for further analysis.

All experiments were approved by the local ethical committee for animal experiments of Hasselt
University and performed according to the institutional guidelines (201557 approved on 8-01-2016,
201557A1 approved on 29-04-2016, 201636 approved on 25-09-2016).

4.2. α-Dicarbonyl and AGE Measurements

Spinal cord and brain were used to make 5% protein homogenates in 0,1 M sodium phosphate
buffer (pH 6.8) supplemented with protease inhibitor (Roche, Basel, Switzerland) and 0.02% Triton-x.

The dicarbonyls methylglyoxal (MGO), glyoxal (GO) and 3-deoxyglucosone (3DG), and the free
and protein-bound form of AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL),
and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were analysed in the plasma, spinal
cord and brain of mice using ultra-performance liquid chromatography tandem mass spectrometry
(UPLC MSMS) as described previously [13,43].

4.3. Glyoxalase-1 Activity Assay

Glyoxalase-1 (Glo-1) activity was measured in protein homogenates of the spinal cord and brain
as previously described by McLellan et al. [44]. In short, Glo-1 activity was determined by measuring
the formation of S-D-Lactoylglutathione from MGO at an absorbance of 240 nm during 30 min using
a spectrophotometry analysis.

4.4. Glyoxalase-2 Activity Assay

Glyoxalase-2 (Glo-2) activity was measured in protein homogenates of the spinal cord and
brain as previously described by Arai et al. [45]. The activity assay mix consisted of 0.3 mM
S-D-Lactoylglutathione (Sigma-Aldrich, Saint Louis, MO, USA) diluted in a 50 mM Tris-HCl buffer
(pH 7.4). Using a spectrophotometry analysis, Glo-2 activity was determined as the degradation of
S-D-Lactoylglutathione measured at an absorbance of 240 nm during 30 min.

4.5. Statistical Analysis

Data is presented as mean ± standard error of the mean (SEM). Statistical analysis was performed
with GraphPad Prism version 7 (GraphPad Software, La Jolla, CA, USA). Data is analyzed using
unpaired t-test and two-way ANOVA with Sidak’s multiple comparisons post-test. A p ≤ 0.05 was
considered statistically significant.
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Abbreviations

3DG 3-deoxyglucosone
AGEs Advanced glycation endproducts
CEL Nε-(1-carboxyethyl)lysine
CFA Complete freund’s adjuvant
CML Nε-(carboxymethyl)lysine
CNS Central nervous system
CSF Cerebrospinal fluid
EAE Experimental autoimmune encephalomyelitis
Glo-1 Glyoxalase-1
Glo-2 Glyoxalase-2
GO Glyoxal
GSH Glutathione
MG-H1 Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine
MGO Methylglyoxal
MOG Myelin oligodendrocyte glycoprotein
MS Multiple sclerosis
NF-κB Nuclear factor-κB
RAGE Receptor for advanced glycation endproducts
RR MS Relapsing-remitting MS
SP MS Secondary progressive MS
sRAGE Soluble receptor for advanced glycation endproducts
UPLC MSMS Ultra-performance liquid chromatography tandem mass spectrometry

References

1. Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [CrossRef]
2. Ellwardt, E.; Zipp, F. Molecular mechanisms linking neuroinflammation and neurodegeneration in ms.

Exp. Neurol. 2014, 262, 8–17. [CrossRef] [PubMed]
3. Hemmer, B.; Kerschensteiner, M.; Korn, T. Role of the innate and adaptive immune responses in the course

of multiple sclerosis. Lancet Neurol. 2015, 14, 406–419. [CrossRef]
4. Bogie, J.F.; Stinissen, P.; Hendriks, J.J. Macrophage subsets and microglia in multiple sclerosis.

Acta Neuropathol. 2014, 128, 191–213. [CrossRef] [PubMed]
5. Mix, E.; Meyer-Rienecker, H.; Hartung, H.P.; Zettl, U.K. Animal models of multiple sclerosis–potentials and

limitations. Prog. Neurobiol. 2010, 92, 386–404. [CrossRef] [PubMed]
6. Procaccini, C.; De Rosa, V.; Pucino, V.; Formisano, L.; Matarese, G. Animal models of multiple sclerosis.

Eur. J. Pharmacol. 2015, 759, 182–191. [CrossRef] [PubMed]
7. Baker, D.; Amor, S. Experimental autoimmune encephalomyelitis is a good model of multiple sclerosis if

used wisely. Mult. Scler. Relat. Disord. 2014, 3, 555–564. [CrossRef] [PubMed]
8. Kelly, B.; O’Neill, L.A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity.

Cell Res. 2015, 25, 771–784. [CrossRef] [PubMed]
9. Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial m1/m2 polarization and metabolic states. Br. J. Pharmacol.

2016, 173, 649–665. [CrossRef] [PubMed]
10. Allaman, I.; Belanger, M.; Magistretti, P.J. Methylglyoxal, the dark side of glycolysis. Front. Neurosci. Switz.

2015, 9, 23. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S0140-6736(08)61620-7
http://dx.doi.org/10.1016/j.expneurol.2014.02.006
http://www.ncbi.nlm.nih.gov/pubmed/24530639
http://dx.doi.org/10.1016/S1474-4422(14)70305-9
http://dx.doi.org/10.1007/s00401-014-1310-2
http://www.ncbi.nlm.nih.gov/pubmed/24952885
http://dx.doi.org/10.1016/j.pneurobio.2010.06.005
http://www.ncbi.nlm.nih.gov/pubmed/20558237
http://dx.doi.org/10.1016/j.ejphar.2015.03.042
http://www.ncbi.nlm.nih.gov/pubmed/25823807
http://dx.doi.org/10.1016/j.msard.2014.05.002
http://www.ncbi.nlm.nih.gov/pubmed/26265267
http://dx.doi.org/10.1038/cr.2015.68
http://www.ncbi.nlm.nih.gov/pubmed/26045163
http://dx.doi.org/10.1111/bph.13139
http://www.ncbi.nlm.nih.gov/pubmed/25800044
http://dx.doi.org/10.3389/fnins.2015.00023
http://www.ncbi.nlm.nih.gov/pubmed/25709564


Int. J. Mol. Sci. 2018, 19, 1311 11 of 12

11. Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and
lipoxidation end products (ages and ales): An overview of their mechanisms of formation. Free Radic. Res.
2013, 47 (Suppl. S1), 3–27. [CrossRef] [PubMed]

12. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820.
[CrossRef] [PubMed]

13. Hanssen, N.M.; Wouters, K.; Huijberts, M.S.; Gijbels, M.J.; Sluimer, J.C.; Scheijen, J.L.; Heeneman, S.;
Biessen, E.A.; Daemen, M.J.; Brownlee, M.; et al. Higher levels of advanced glycation endproducts in
human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur. Heart J. 2014, 35,
1137–1146. [CrossRef] [PubMed]

14. Van Eupen, M.G.; Schram, M.T.; Colhoun, H.M.; Hanssen, N.M.; Niessen, H.W.; Tarnow, L.; Parving, H.H.;
Rossing, P.; Stehouwer, C.D.; Schalkwijk, C.G. The methylglyoxal-derived age tetrahydropyrimidine is
increased in plasma of individuals with type 1 diabetes mellitus and in atherosclerotic lesions and is
associated with svcam-1. Diabetologia 2013, 56, 1845–1855. [CrossRef] [PubMed]

15. Gaens, K.H.; Goossens, G.H.; Niessen, P.M.; van Greevenbroek, M.M.; van der Kallen, C.J.; Niessen, H.W.;
Rensen, S.S.; Buurman, W.A.; Greve, J.W.; Blaak, E.E.; et al. Nepsilon-(carboxymethyl)lysine-receptor for
advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine
expression and insulin resistance. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1199–1208. [CrossRef] [PubMed]

16. Gaens, K.H.; Niessen, P.M.; Rensen, S.S.; Buurman, W.A.; Greve, J.W.; Driessen, A.; Wolfs, M.G.; Hofker, M.H.;
Bloemen, J.G.; Dejong, C.H.; et al. Endogenous formation of nepsilon-(carboxymethyl)lysine is increased in
fatty livers and induces inflammatory markers in an in vitro model of hepatic steatosis. J. Hepatol. 2012, 56,
647–655. [CrossRef] [PubMed]

17. Stitt, A.W.; Li, Y.M.; Gardiner, T.A.; Bucala, R.; Archer, D.B.; Vlassara, H. Advanced glycation end products
(ages) co-localize with age receptors in the retinal vasculature of diabetic and of age-infused rats. Am. J.
Pathol. 1997, 150, 523–531. [PubMed]

18. Ahmed, N.; Ahmed, U.; Thornalley, P.J.; Hager, K.; Fleischer, G.; Munch, G. Protein glycation, oxidation and
nitration adduct residues and free adducts of cerebrospinal fluid in alzheimer’s disease and link to cognitive
impairment. J. Neurochem. 2005, 92, 255–263. [CrossRef] [PubMed]

19. Dalfo, E.; Portero-Otin, M.; Ayala, V.; Martinez, A.; Pamplona, R.; Ferrer, I. Evidence of oxidative stress in
the neocortex in incidental lewy body disease. J. Neuropathol. Exp. Neurol. 2005, 64, 816–830. [CrossRef]
[PubMed]

20. Sternberg, Z.; Hennies, C.; Sternberg, D.; Wang, P.; Kinkel, P.; Hojnacki, D.; Weinstock-Guttmann, B.;
Munschauer, F. Diagnostic potential of plasma carboxymethyllysine and carboxyethyllysine in multiple
sclerosis. J. Neuroinflammation 2010, 7, 72. [CrossRef] [PubMed]

21. Sternberg, Z.; Ostrow, P.; Vaughan, M.; Chichelli, T.; Munschauer, F. Age-rage in multiple sclerosis brain.
Immunol. Investig. 2011, 40, 197–205. [CrossRef] [PubMed]

22. Maessen, D.E.; Stehouwer, C.D.; Schalkwijk, C.G. The role of methylglyoxal and the glyoxalase system in
diabetes and other age-related diseases. Clin. Sci. 2015, 128, 839–861. [CrossRef] [PubMed]

23. Voziyan, P.A.; Hudson, B.G. Pyridoxamine: The many virtues of a maillard reaction inhibitor. Ann. N. Y.
Acad. Sci. 2005, 1043, 807–816. [CrossRef] [PubMed]

24. Wetzels, S. Department of Immunology and Biochemistry, Hasselt University, Hasselt, Belgium. Department
of Internal Medicine, Maastricht University, Maastricht, the Netherlands. Glyoxalase 2 activity in the spinal
cord and brain of healthy and mice subjected to EAE. 2018; Material not intended for publication.

25. Bogie, J.F.; Timmermans, S.; Huynh-Thu, V.A.; Irrthum, A.; Smeets, H.J.; Gustafsson, J.A.; Steffensen, K.R.;
Mulder, M.; Stinissen, P.; Hellings, N.; et al. Myelin-derived lipids modulate macrophage activity by liver x
receptor activation. PLoS ONE 2012, 7, e44998. [CrossRef] [PubMed]

26. Simmons, S.B.; Liggitt, D.; Goverman, J.M. Cytokine-regulated neutrophil recruitment is required for brain
but not spinal cord inflammation during experimental autoimmune encephalomyelitis. J. Immunol. 2014,
193, 555–563. [CrossRef] [PubMed]

27. Yan, S.S.; Wu, Z.Y.; Zhang, H.P.; Furtado, G.; Chen, X.; Yan, S.F.; Schmidt, A.M.; Brown, C.; Stern, A.;
LaFaille, J.; et al. Suppression of experimental autoimmune encephalomyelitis by selective blockade of
encephalitogenic t-cell infiltration of the central nervous system. Nat. Med. 2003, 9, 287–293. [CrossRef]
[PubMed]

http://dx.doi.org/10.3109/10715762.2013.815348
http://www.ncbi.nlm.nih.gov/pubmed/23767955
http://dx.doi.org/10.1038/414813a
http://www.ncbi.nlm.nih.gov/pubmed/11742414
http://dx.doi.org/10.1093/eurheartj/eht402
http://www.ncbi.nlm.nih.gov/pubmed/24126878
http://dx.doi.org/10.1007/s00125-013-2919-8
http://www.ncbi.nlm.nih.gov/pubmed/23620061
http://dx.doi.org/10.1161/ATVBAHA.113.302281
http://www.ncbi.nlm.nih.gov/pubmed/24723555
http://dx.doi.org/10.1016/j.jhep.2011.07.028
http://www.ncbi.nlm.nih.gov/pubmed/21907687
http://www.ncbi.nlm.nih.gov/pubmed/9033268
http://dx.doi.org/10.1111/j.1471-4159.2004.02864.x
http://www.ncbi.nlm.nih.gov/pubmed/15663474
http://dx.doi.org/10.1097/01.jnen.0000179050.54522.5a
http://www.ncbi.nlm.nih.gov/pubmed/16141792
http://dx.doi.org/10.1186/1742-2094-7-72
http://www.ncbi.nlm.nih.gov/pubmed/21034482
http://dx.doi.org/10.3109/08820139.2010.532267
http://www.ncbi.nlm.nih.gov/pubmed/21080832
http://dx.doi.org/10.1042/CS20140683
http://www.ncbi.nlm.nih.gov/pubmed/25818485
http://dx.doi.org/10.1196/annals.1333.093
http://www.ncbi.nlm.nih.gov/pubmed/16037308
http://dx.doi.org/10.1371/journal.pone.0044998
http://www.ncbi.nlm.nih.gov/pubmed/22984598
http://dx.doi.org/10.4049/jimmunol.1400807
http://www.ncbi.nlm.nih.gov/pubmed/24913979
http://dx.doi.org/10.1038/nm831
http://www.ncbi.nlm.nih.gov/pubmed/12598893


Int. J. Mol. Sci. 2018, 19, 1311 12 of 12

28. Voziyan, P.A.; Hudson, B.G. Pyridoxamine as a multifunctional pharmaceutical: Targeting pathogenic
glycation and oxidative damage. CMLS 2005, 62, 1671–1681. [CrossRef] [PubMed]

29. Hamm, M.W.; Mehansho, H.; Henderson, L.M. Transport and metabolism of pyridoxamine and
pyridoxamine phosphate in the small intestine of the rat. J. Nutr. 1979, 109, 1552–1559. [CrossRef] [PubMed]

30. Sakurai, T.; Asakura, T.; Mizuno, A.; Matsuda, M. Absorption and metabolism of pyridoxamine in mice. I.
Pyridoxal as the only form of transport in blood. J. Nutr. Sci. Vitaminol. 1991, 37, 341–348. [CrossRef] [PubMed]

31. Sakurai, T.; Asakura, T.; Mizuno, A.; Matsuda, M. Absorption and metabolism of pyridoxamine in mice.
II. Transformation of pyridoxamine to pyridoxal in intestinal tissues. J. Nutr. Sci. Vitaminol. 1992, 38, 227–233.
[CrossRef] [PubMed]

32. van der Ham, M.; Albersen, M.; de Koning, T.J.; Visser, G.; Middendorp, A.; Bosma, M.; Verhoeven-Duif, N.M.;
de Sain-van der Velden, M.G. Quantification of vitamin b6 vitamers in human cerebrospinal fluid by
ultra performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2012, 712, 108–114.
[CrossRef] [PubMed]

33. Surtees, R.; Mills, P.; Clayton, P. Inborn errors affecting vitamin b6 metabolism. Future Neurol. 2006, 1,
615–620. [CrossRef]

34. Garg, S.; Syngle, A.; Vohra, K. Efficacy and tolerability of advanced glycation end-products inhibitor in
osteoarthritis: A randomized, double-blind, placebo-controlled study. Clin. J. Pain 2013, 29, 717–724.
[CrossRef] [PubMed]

35. Williams, M.E.; Bolton, W.K.; Khalifah, R.G.; Degenhardt, T.P.; Schotzinger, R.J.; McGill, J.B. Effects of
pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy.
Am. J. Nephrol. 2007, 27, 605–614. [CrossRef] [PubMed]

36. Maessen, D.E.; Brouwers, O.; Gaens, K.H.; Wouters, K.; Cleutjens, J.P.; Janssen, B.J.; Miyata, T.;
Stehouwer, C.D.; Schalkwijk, C.G. Delayed intervention with pyridoxamine improves metabolic function
and prevents adipose tissue inflammation and insulin resistance in high-fat diet-induced obese mice. Diabetes
2016, 65, 956–966. [CrossRef] [PubMed]

37. Inagi, R.; Miyata, T.; Ueda, Y.; Yoshino, A.; Nangaku, M.; van Ypersele de Strihou, C.; Kurokawa, K. Efficient
in vitro lowering of carbonyl stress by the glyoxalase system in conventional glucose peritoneal dialysis
fluid. Kidney Int. 2002, 62, 679–687. [CrossRef] [PubMed]

38. Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.;
Caneda, C.; Ruderisch, N.; et al. An rna-sequencing transcriptome and splicing database of glia, neurons,
and vascular cells of the cerebral cortex. J. Neurosci. 2014, 34, 11929–11947. [CrossRef] [PubMed]

39. Rabbani, N.; Thornalley, P.J. Glyoxalase in diabetes, obesity and related disorders. Semin. Cell Dev. Biol. 2011,
22, 309–317. [CrossRef] [PubMed]

40. Dasgupta, A.; Zheng, J.; Perrone-Bizzozero, N.I.; Bizzozero, O.A. Increased carbonylation, protein
aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis.
ASN Neuro 2013, 5, e00111. [CrossRef] [PubMed]

41. Zheng, J.; Bizzozero, O.A. Accumulation of protein carbonyls within cerebellar astrocytes in murine
experimental autoimmune encephalomyelitis. J. Neurosci. Res. 2010, 88, 3376–3385. [CrossRef] [PubMed]

42. Wetzels, S.; Wouters, K.; Schalkwijk, C.G.; Vanmierlo, T.; Hendriks, J.J. Methylglyoxal-derived advanced
glycation endproducts in multiple sclerosis. Int. J. Mol. Sci. 2017, 18, 421. [CrossRef] [PubMed]

43. Hanssen, N.M.; Engelen, L.; Ferreira, I.; Scheijen, J.L.; Huijberts, M.S.; van Greevenbroek, M.M.; van der
Kallen, C.J.; Dekker, J.M.; Nijpels, G.; Stehouwer, C.D.; et al. Plasma levels of advanced glycation endproducts
nepsilon-(carboxymethyl)lysine, nepsilon-(carboxyethyl)lysine, and pentosidine are not independently
associated with cardiovascular disease in individuals with or without type 2 diabetes: The hoorn and codam
studies. J. Clin. Endocrinol. Metab. 2013, 98, E1369–E1373. [PubMed]

44. McLellan, A.C.; Phillips, S.A.; Thornalley, P.J. The assay of s-d-lactoylglutathione in biological systems.
Anal. Biochem. 1993, 211, 37–43. [CrossRef] [PubMed]

45. Arai, M.; Nihonmatsu-Kikuchi, N.; Itokawa, M.; Rabbani, N.; Thornalley, P.J. Measurement of glyoxalase
activities. Biochem. Soc. Trans. 2014, 42, 491–494. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00018-005-5082-7
http://www.ncbi.nlm.nih.gov/pubmed/15905958
http://dx.doi.org/10.1093/jn/109.9.1552
http://www.ncbi.nlm.nih.gov/pubmed/479950
http://dx.doi.org/10.3177/jnsv.37.341
http://www.ncbi.nlm.nih.gov/pubmed/1765838
http://dx.doi.org/10.3177/jnsv.38.227
http://www.ncbi.nlm.nih.gov/pubmed/1453233
http://dx.doi.org/10.1016/j.aca.2011.11.018
http://www.ncbi.nlm.nih.gov/pubmed/22177072
http://dx.doi.org/10.2217/14796708.1.5.615
http://dx.doi.org/10.1097/AJP.0b013e318272ebec
http://www.ncbi.nlm.nih.gov/pubmed/23354008
http://dx.doi.org/10.1159/000108104
http://www.ncbi.nlm.nih.gov/pubmed/17823506
http://dx.doi.org/10.2337/db15-1390
http://www.ncbi.nlm.nih.gov/pubmed/26718500
http://dx.doi.org/10.1046/j.1523-1755.2002.00488.x
http://www.ncbi.nlm.nih.gov/pubmed/12110033
http://dx.doi.org/10.1523/JNEUROSCI.1860-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25186741
http://dx.doi.org/10.1016/j.semcdb.2011.02.015
http://www.ncbi.nlm.nih.gov/pubmed/21335095
http://dx.doi.org/10.1042/AN20120088
http://www.ncbi.nlm.nih.gov/pubmed/23489322
http://dx.doi.org/10.1002/jnr.22488
http://www.ncbi.nlm.nih.gov/pubmed/20857508
http://dx.doi.org/10.3390/ijms18020421
http://www.ncbi.nlm.nih.gov/pubmed/28212304
http://www.ncbi.nlm.nih.gov/pubmed/23780372
http://dx.doi.org/10.1006/abio.1993.1229
http://www.ncbi.nlm.nih.gov/pubmed/8323036
http://dx.doi.org/10.1042/BST20140010
http://www.ncbi.nlm.nih.gov/pubmed/24646266
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Experimental Autoimmune Encephalomyelitis Induces the Formation of Advanced Glycation Endproducts in the Central Nervous System 
	Pyridoxamine Intervention did not Reduce Advanced Glycation Endproduct Levels in the Plasma and Spinal Cord During EAE 
	Human Glo-1 Overexpression Mouse Model did not Reduce Advanced Glycation Endproduct Levels in the Plasma and Central Nervous System during EAE 

	Discussion 
	Materials and Methods 
	Animal Experiments 
	-Dicarbonyl and AGE Measurements 
	Glyoxalase-1 Activity Assay 
	Glyoxalase-2 Activity Assay 
	Statistical Analysis 

	References

