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Quartic Liénard equations with linear damping

Abstract

In this paper we prove that the quartic Liénard equation with linear
damping {ẋ = y, ẏ = −(a0 + x)y − (b0 + b1x + b2x

2 + b3x
3 + x4)} can

have at most two limit cycles, for the parameters kept in a small neigh-
borhood of the origin (a0, b0, b1, b2, b3) = (0, 0, 0, 0, 0). Near the origin in
the parameter space, the Liénard equation is of singular type and we use
singular perturbation theory and the family blow up. To study the limit
cycles globally in the phase space we need a suitable Poincaré–Lyapunov
compactification.

1 Introduction

A simplified version of Hilbert’s 16th problem deals with finding the maximum
number ln,m of limit cycles of a polynomial Liénard equation{

ẋ = y
ẏ = −y

∑n
j=0 ajx

j −
∑m
j=0 bjx

j ,
(1)

where (a0, . . . , an, b0, . . . , bm) ∈ Rn+m+2 and an, bm 6= 0. See e.g. [Sma00,
LMT10]. When m = 1 (resp. m > 1) we call (1) a classical Liénard equation
(resp. a generalized Liénard equation). In the classical case, we know that
l1,1 = 0, l2,1 = 1 (see [LdMP77]) and l3,1 = 1 (see [LL12]). In the generalized
case, we have l1,2 = 1 (see [Cop89]), l1,3 = 1 (see [DR90, DL96]), l2,2 = 1 (see
[DL97]) and l2,3 = 3 (see [WJ02]). As far as we know, only these low degree
cases have been completely solved. In our paper we show that l1,4 = 2, under
condition that (1) with (n,m) = (1, 4) is of singular type. (See the rest of this
section for details.)

To prove the uniform finiteness for the polynomial Liénard equations (1)
of type (n,m) (i.e., ln,m < ∞) one can follow the program formulated in
[DH99, Dum06, Rou07]. The program consists of a suitable compactification
of the phase space (see [DH99]) and the parameter space (see [Rou07] in the
classical case and [Dum06] in the generalized case), for each fixed (n,m), and
the determination of all possible limit periodic sets in the Liénard family of the
fixed type (n,m).

Using a scaling in the (x, y, t)-space we may assume that an = 1 for each
type (n,m) and bm = ±1 (resp. bm = 1) for m 6= 2n+ 1 with m odd (resp. m
even). When m = 2n+ 1 then bm 6= 0. Using a singular perturbation problem

XS
(A,B) : {ẋ = y, ẏ = −y

(∑n−1
j=0 Ajx

j+xn
)
−ε
(∑m−1

j=0 Bjx
j±xm

)
} and a Hamil-

tonian perturbation problem XH
(A,B) : {ẋ = y, ẏ = −δy

(∑n−1
j=0 Ajx

j + xn
)
−(∑m−1

j=0 Bjx
j ± xm

)
}, with δ ∼ 0, δ > 0, ε ∼ 0, ε > 0 and ‖(A,B)‖ = 1, we are
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now able to state the main result of [Dum06]. For a fixed type (n,m), after linear
conjugacy and multiplication by a positive constant, all possible phase portraits
of (1), with ‖(a0, . . . , an−1, b0, . . . , bm−1)‖ 6= 0, can be obtained by studying
XS

(A,B), X
H
(A,B) and (1) with 0 < c1 ≤ ‖(a0, . . . , an−1, b0, . . . , bm−1)‖ ≤ c2, where

c1 (resp. c2) is small enough (resp. large enough). Assume that m < 2n + 1.
Then we study XH

(A,B) if ‖(a0, . . . , an−1, b0, . . . , bm−1)‖ → 0 and XS
(A,B) if

‖(a0, . . . , an−1, b0, . . . , bm−1)‖ → ∞. When m > 2n+ 1 then we study XS
(A,B) if

‖(a0, . . . , an−1, b0, . . . , bm−1)‖ → 0 andXH
(A,B) if ‖(a0, . . . , an−1, b0, . . . , bm−1)‖ →

∞. When m = 2n + 1, then ε = |bm| and δ = 1√
|bm|

. For more details see

[Dum06]. When ‖(a0, . . . , an−1, b0, . . . , bm−1)‖ = 0, then (1) has one singularity
(x, y) = (0, 0) and no limit cycles (see also [Dum06]).

In this paper, our focus is on the quartic Liénard equation with linear damp-
ing {

ẋ = y
ẏ = −y(a0 + x)− (b0 + b1x+ b2x

2 + b3x
3 + x4),

(2)

where (a0, b0, b1, b2, b3) ∼ (0, 0, 0, 0, 0). As explained above, this system is of
singular type (4 > 2 · 1 + 1) and can be studied by using singular perturbation
theory and family blow up. In fact, the regular codimension m nilpotent singu-
larity in Liénard equations of type (1,m) with the parameters kept close to the
origin, for m ≥ 4, is of slow-fast type after a suitable blow-up. When m = 4,
the blow-up is explained in Section 2.1. For m ≥ 4, the desingularization of
the nilpotent singularity is similar and can be found in [Dum06], [DMD11] or
[Pan02]. The system (2), near the origin (x, y) = (0, 0), is a special case of the
so-called regular codimension four saddle-node bifurcations studied in [Huz17].
(When a0 = b0 = b1 = b2 = b3 = 0, then (2) has a nilpotent singularity
of saddle-node type at the origin.) It will easily follow from [Huz17] that the
Liénard equation (2), with (a0, b0, b1, b2, b3) ∼ (0, 0, 0, 0, 0), can produce at most
two limit cycles in a small (a0, b0, b1, b2, b3)-uniform neighborhood of the origin
in the phase space (see Section 2). Due to the length of the paper [Huz17], we
decided to prove the “global” version of this result in the present paper.

Theorem 1.1. There exists a small neighborhood V of the origin in the param-
eter space (a0, b0, b1, b2, b3) such that (2) has at most two limit cycles for each
(a0, b0, b1, b2, b3) ∈ V .

The proof of Theorem 1.1 consists essentially of two steps. First, using
appropriate linear conjugacy and multiplication by positive constant, proposed
in [Dum06], we bring (2) to a similar Liénard equation, but of slow-fast type
and with the parameters kept on the unit sphere. Then the slow-fast Liénard
equation can be studied in arbitrarily large compact sets (resp. near the infinity)
in the phase space by using the results of [Huz17] (resp. an appropriate Poincaré-
Lyapunov compactification). It will be clear from the proof that, besides the
two limit cycles Hausdorff close to (x, y) = (0, 0) found in [Huz17], system (2)
has no extra limit cycles. Theorem 1.1 will be proved in Section 2.

We also study the slow-fast quartic Liénard equation with linear damping{
ẋ = y
ẏ = −y(a0 + x)− ε(b0 + b1x+ b2x

2 + b3x
3 + x4),

(3)
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where ε ∼ 0, ε > 0 and (a0, b0, b1, b2, b3) ∼ (0, 0, 0, 0, 0). This slow-fast Liénard
equation, near the origin (x, y) = (0, 0), is a special case of the well known
slow-fast codimension four saddle-node bifurcations studied in [Huz17]. As a
simple consequence of Theorem 1.1 in [Huz17], (3) can generate at most two
limit cycles in a small (ε, a0, b0, b1, b2, b3)-uniform neighborhood of (x, y) = (0, 0)
(see Section 3). The following theorem is a global version of this local result:

Theorem 1.2. There exists a small ε0 > 0 and a small neighborhood V of the
origin in the parameter space (a0, b0, b1, b2, b3) such that (3) has at most two
limit cycles for each (ε, a0, b0, b1, b2, b3) ∈ [0, ε0]× V .

To prove Theorem 1.2 we use the result of [Huz17], the slow dynamics along
the slow curve {y = 0} of (3) and the same Poincaré-Lyapunov compactification
as that used in Section 2. We prove Theorem 1.2 in Section 3.

2 Proof of Theorem 1.1

2.1 Transforming the Liénard equation (2) to a slow-fast
system

We may assume that a0 = 0 in (2). Indeed, after the translation a0 + x → x,
(2) becomes {

ẋ = y
ẏ = −yx− (b0 + b1x+ b2x

2 + b3x
3 + x4),

(4)

with a new parameter (b0, b1, b2, b3) ∼ (0, 0, 0, 0). Now, it suffices to show that

there exists a small neighborhood Ṽ of (b0, b1, b2, b3) = (0, 0, 0, 0) such that (4)

has at most two limit cycles for each fixed (b0, b1, b2, b3) ∈ Ṽ . We denote the
system (4) by Xb0,b1,b2,b3 .

Using a linear coordinate change (x, y) = (εx̄, ε2ȳ), with ε > 0 and ε ∼ 0, we
convert the system Xε4B0,ε3B1,ε2B2,εB3

to{
˙̄x = εȳ
˙̄y = ε

(
− ȳx̄− ε(B0 +B1x̄+B2x̄

2 +B3x̄
3 + x̄4)

)
,

(5)

where (B0, B1, B2, B3) ∈ S3. After dividing (5) by the positive constant ε, we
conclude that Xε4B0,ε3B1,ε2B2,εB3

is (linearly) equivalent to{
˙̄x = ȳ
˙̄y = −ȳx̄− ε(B0 +B1x̄+B2x̄

2 +B3x̄
3 + x̄4),

(6)

where (B0, B1, B2, B3) ∈ S3. Thus, instead of studying systemXε4B0,ε3B1,ε2B2,εB3
,

with ε > 0 and (B0, B1, B2, B3) ∈ S3, we can study system (6) which is of sin-
gular type. When we vary ε > 0 and (B0, B1, B2, B3) ∈ S3, we completely
cover a small neighborhood of (b0, b1, b2, b3) = (0, 0, 0, 0) (excluding the ori-
gin) with (b0, b1, b2, b3) = (ε4B0, ε

3B1, ε
2B2, εB3). This implies that system

Xb0,b1,b2,b3 , with (b0, b1, b2, b3) ∼ (0, 0, 0, 0) and (b0, b1, b2, b3) 6= (0, 0, 0, 0), can
be studied by using singular perturbation problem (6) with ε > 0, ε ∼ 0 and
(B0, B1, B2, B3) ∈ S3. See also Section 4.2 in [Dum06].

When (b0, b1, b2, b3) = (0, 0, 0, 0), then system Xb0,b1,b2,b3 has no limit cycles
(see the end of Section 2 in [Dum06]).
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2.2 Slow-fast Liénard systems (6) in compact sets in the
phase space

Suppose that K is any compact set in the (x̄, ȳ)-plane and fix it. Using [Huz17],
in this section we prove that system (6) has at most two limit cycles in K, for
each fixed ε ≥ 0, ε ∼ 0 and (B0, B1, B2, B3) ∈ S3.

In Section 2.2.1 of [Huz17] the following slow-fast systems have been intro-
duced:

˙̄x = ȳ
˙̄y = −ȳx̄+ ε

(
B0 +B1x̄+B2x̄

2 +B3x̄
3 + x̄4 + ux̄5G(ux̄, λ)

)
+εȳ2H(ux̄, u2ȳ, λ),

(7)

where ε ≥ 0 is the singular perturbation parameter close to 0, (B0, B1, B2, B3) ∈
S3, u ≥ 0 is close to 0, λ is kept in an arbitrary compact subset Λ of Euclidean
space and G and H are arbitrary smooth functions. (System (7) originates from
regular codimension 4 saddle-node bifurcations. See Remark 1 for more details.)
It has been proved in Section 3 of [Huz17] that for given G and H there exist
small numbers ε0 > 0 and u0 > 0 such that system (7) has at most two limit
cycles inK, for each fixed (ε, u,B0, B1, B2, B3, λ) ∈ [0, ε0]×[0, u0]×S3×Λ. When
G ≡ 0 and H ≡ 0, system (7) represents a slow-fast Liénard equation of type (6).
Indeed, if we apply (x̄, B1, B3, t)→ (−x̄,−B1,−B3,−t) to (6) we obtain (7) with
G = H ≡ 0. Thus, we conclude that there exists a small ε0 > 0 such that (6) has
at most two limit cycles in K, for each fixed (ε, B0, B1, B2, B3) ∈ [0, ε0]× S3.

Γȳ

Figure 1: The dynamics of (6) or (7) for ε = 0, with indication of canard limit
periodic sets Γȳ which can produce limit cycles when ε > 0.

Remark 1. In [Huz17] one studies limit cycles, Hausdorff close to the origin
in the phase space, of regular codimension 4 saddle-node bifurcations: ẋ = y

ẏ = −yx+ (b0 + b1x+ b2x
2 + b3x

3 + x4 + x5G(x, λ))
+y2H(x, y, λ),

(8)

where (b0, b1, b2, b3) ∼ (0, 0, 0, 0), λ ∈ Λ and G and H are smooth. To show that
system (8) produces at most two limit cycles in a small (b0, b1, b2, b3, λ)-uniform
neighborhood of (x, y) = (0, 0) in the phase plane (see Theorem 1.1 of [Huz17]),
one uses the rescaling (b0, b1, b2, b3) = (ε4B0, ε

3B1, ε
2B2, εB3) in the parameter

space, like in Section 2.1, and blows up the origin (x, y, ε) = (0, 0, 0) using the
following family blow-up:

(x, y, ε) = (ux̄, u2ȳ, uε̄), u ≥ 0, u ∼ 0, ε̄ ≥ 0, (x̄, ȳ, ε̄) ∈ S2.
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Then one studies system (8) near (x, y, ε) = (0, 0, 0) in different charts. In the
family chart {ε̄ = 1} the blow-up formula becomes (x, y) = (εx̄, ε2ȳ) and system
(8) changes, after dividing by ε, into (7), with u = ε. The reason why one uses
this family blow-up is to reduce the codimension of the system; the codimension
of (7) is ≤ 3 because (B0, B1, B2, B3) ∈ S3. Due to the presence of general
functions G and H in (7), one studies (7) only in compact subsets K of the
(x̄, ȳ)-phase plane (see [Huz17]). There are two different types of limit periodic
sets in K, at level ε = 0, that can produce limit cycles in (7) (see Figure 1):
the nilpotent contact point (x̄, ȳ) = (0, 0) and the canard limit periodic set Γȳ,
with ȳ > 0, consisting of the fast orbit of (7) (with ε = 0) passing through the
point (0, ȳ) and the piece of the slow curve {ȳ = 0} between the α-limit set
and the ω-limit set of the fast orbit. Note that K shrinks to the origin in the
original (x, y)-phase plane as ε → 0. To obtain the cyclicity result in (8) in a
fixed neighborhood of (x, y) = (0, 0) one has to study the phase directional charts
{x̄ = ±1} and {ȳ = ±1}. For more details see [Huz17].

Since G = H ≡ 0 in our paper, we can study system (6) not only in K but
also at infinity in the phase plane (see Section 2.3).

2.3 Slow-fast Liénard systems (6) at infinity in the phase
space

Following [DH99], we can study the dynamics of (6) near infinity on the Poincaré-
Lyapunov disc of type (2, 5). Due to the presence of the small parameter ε > 0,
an additional family blow-up in the positive and negative x̄-direction is nec-
essary to completely desingularize (6) at infinity. From Sections 2.3.1–2.3.4 it
follows that the dynamics of (6) in a (B0, B1, B2, B3, ε)-uniform neighborhood
of the infinity is like in Figure 2.

2.3.1 Transformation of (6) in the positive x̄-direction

We introduce the coordinate change

(x̄, ȳ) = (
1

ρ2
,
Y

ρ5
),

where ρ > 0, ρ ∼ 0 and Y is kept in a large compact set. In the coordinates
(ρ, Y ), after multiplication by the positive factor ρ3, system (6) can be written
as: {

ρ̇ = − 1
2ρY

Ẏ = − 5
2Y

2 − ρY − ε
(
B0ρ

8 +B1ρ
6 +B2ρ

4 +B3ρ
2 + 1

)
.

(9)

When ρ = 0 and ε > 0, system (9) has no singularities. When ρ = ε = 0, the
singularity at Y = 0 of (9) is linearly zero. To desingularize (9) we use the
following blow-up at the origin in (ρ, Y, ε)-space:

(ρ, Y, ε) = (vρ̄, vȲ , v2ε̄), v ≥ 0, v ∼ 0, ε̄ ≥ 0, ρ̄ ≥ 0, (ρ̄, Ȳ , ε̄) ∈ S2.

It is convenient to use different charts.
The family chart {ε̄ = 1}. System (9) changes, after dividing by v, into{

˙̄ρ = − 1
2 ρ̄Ȳ

˙̄Y = − 5
2 Ȳ

2 − ρ̄Ȳ − 1 +O(v2)
(10)
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where ρ̄ ≥ 0 and (ρ̄, Ȳ ) is kept in a large compact set. When v = 0, system (10)
has no singularities.

The phase directional chart {ρ̄ = 1}. In the chart {ρ̄ = 1} system (9)
becomes, after dividing by v,

v̇ = − 1
2vȲ

˙̄ε = ε̄Ȳ
˙̄Y = −Ȳ − 2Ȳ 2 − ε̄

(
1 +O(v2)

)
,

(11)

where (v, ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and Ȳ is kept in a large compact set. When
v = ε̄ = 0, system (11) has a hyperbolic saddle at Ȳ = − 1

2 with eigenvalues
( 1

4 ,−
1
2 , 1) and a semi-hyperbolic singularity at Ȳ = 0 with the stable manifold

{v = ε̄ = 0} and a two dimensional center manifold transverse to the stable
manifold. Center manifolds are given by Ȳ = −ε̄

(
1 +O(v, ε̄)

)
and the dynamics

inside the center manifolds is given by {v̇ = 1
2vε̄
(
1 + O(v, ε̄)

)
, ˙̄ε = −ε̄2

(
1 +

O(v, ε̄)
)
}.

The phase directional chart {Ȳ = 1}. In this chart, system (9) changes, after
dividing by v, into v̇ = v

(
− 5

2 − ρ̄− ε̄(1 +O(v2))
)

˙̄ε = −2ε̄
(
− 5

2 − ρ̄− ε̄(1 +O(v2))
)

˙̄ρ = ρ̄
(
2 + ρ̄+ ε̄(1 +O(v2))

)
,

(12)

where (v, ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and ρ̄ ≥ 0 is kept in a large compact set.
When v = ε̄ = 0, system (12) has a hyperbolic saddle at ρ̄ = 0 with eigenvalues
(− 5

2 , 5, 2).
The phase directional chart {Ȳ = −1}. In this phase directional chart,

system (9) changes, after dividing by v, into v̇ = v
(

5
2 − ρ̄+ ε̄(1 +O(v2))

)
˙̄ε = −2ε̄

(
5
2 − ρ̄+ ε̄(1 +O(v2))

)
˙̄ρ = ρ̄

(
− 2 + ρ̄− ε̄(1 +O(v2))

)
,

(13)

where (v, ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and ρ̄ ≥ 0 is kept in a large compact set.
Besides the hyperbolic saddle found in the chart {ρ̄ = 1}, system (13) has an
extra hyperbolic saddle at (v, ε̄, ρ̄) = (0, 0, 0) with eigenvalues ( 5

2 ,−5,−2).

2.3.2 Transformation of (6) in the negative x̄-direction

We define now the coordinate change

(x̄, ȳ) = (
−1

ρ2
,
Y

ρ5
),

where ρ > 0, ρ ∼ 0 and Y is kept in a large compact set. In the coordinates
(ρ, Y ), after multiplication by the positive factor ρ3, system (6) can be written
as: {

ρ̇ = 1
2ρY

Ẏ = 5
2Y

2 + ρY − ε
(
B0ρ

8 −B1ρ
6 +B2ρ

4 −B3ρ
2 + 1

)
.

(14)

When ρ = 0 and ε > 0, system (14) has a hyperbolic and attracting node at

Y = −
√

2ε
5 and a hyperbolic and repelling node at Y =

√
2ε
5 . When ρ = ε = 0,
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the singularity at Y = 0 of (14) is linearly zero. Like in Section 2.3.1, we blow
up the origin (ρ, Y, ε) = (0, 0, 0) using

(ρ, Y, ε) = (vρ̄, vȲ , v2ε̄), v ≥ 0, v ∼ 0, ε̄ ≥ 0, ρ̄ ≥ 0, (ρ̄, Ȳ , ε̄) ∈ S2.

The family chart {ε̄ = 1}. System (14) changes, after dividing by v, into{
˙̄ρ = 1

2 ρ̄Ȳ
˙̄Y = 5

2 Ȳ
2 + ρ̄Ȳ − 1 +O(v2)

(15)

where ρ̄ ≥ 0 and (ρ̄, Ȳ ) is kept in a large compact set. When v = 0, system

(15) has one hyperbolic and attracting node at (ρ̄, Ȳ ) = (0,−
√

2
5 ) and one

hyperbolic and repelling node at (ρ̄, Ȳ ) = (0,
√

2
5 ).

The phase directional chart {ρ̄ = 1}. In the chart {ρ̄ = 1} system (14)
becomes, after dividing by v,

v̇ = 1
2vȲ

˙̄ε = −ε̄Ȳ
˙̄Y = Ȳ + 2Ȳ 2 − ε̄

(
1 +O(v2)

)
,

(16)

where (v, ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and Ȳ is kept in a large compact set.
If v = ε̄ = 0, then system (16) has a hyperbolic saddle at Ȳ = − 1

2 with
eigenvalues (− 1

4 ,
1
2 ,−1) and a semi-hyperbolic singularity at Ȳ = 0 with the Ȳ -

axis as the unstable manifold and a two dimensional center manifold transverse
to the unstable manifold. Center manifolds can be written as Ȳ = ε̄

(
1+O(v, ε̄)

)
,

with the following dynamics {v̇ = 1
2vε̄
(
1 +O(v, ε̄)

)
, ˙̄ε = −ε̄2

(
1 +O(v, ε̄)

)
}.

The phase directional chart {Ȳ = 1}. System (14) changes, after dividing
by v, into  v̇ = v

(
5
2 + ρ̄− ε̄(1 +O(v2))

)
˙̄ε = −2ε̄

(
5
2 + ρ̄− ε̄(1 +O(v2))

)
˙̄ρ = ρ̄

(
− 2− ρ̄+ ε̄(1 +O(v2))

)
,

(17)

where (v, ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and ρ̄ ≥ 0 is kept in a large compact
set. System (17) has a hyperbolic saddle at (v, ε̄, ρ̄) = (0, 0, 0) with eigenvalues
( 5

2 ,−5,−2).
The phase directional chart {Ȳ = −1}. System (14) changes, after dividing

by v, into  v̇ = v
(
− 5

2 + ρ̄+ ε̄(1 +O(v2))
)

˙̄ε = −2ε̄
(
− 5

2 + ρ̄+ ε̄(1 +O(v2))
)

˙̄ρ = ρ̄
(
2− ρ̄− ε̄(1 +O(v2))

)
,

(18)

where (v, ε̄) ∼ (0, 0), v ≥ 0, ε̄ ≥ 0 and ρ̄ ≥ 0 is kept in a large compact set.
Besides the hyperbolic saddle found in the chart {ρ̄ = 1}, we find an extra
hyperbolic saddle at (v, ε̄, ρ̄) = (0, 0, 0) of (18) with eigenvalues (− 5

2 , 5, 2).

2.3.3 Transformation of (6) in the positive ȳ-direction

We introduce the coordinate change

(x̄, ȳ) = (
X

ρ2
,

1

ρ5
),

7



where ρ > 0, ρ ∼ 0 and X is kept in a large compact set. In the coordinates
(ρ,X), after multiplication by the positive factor ρ3, system (6) can be written
as: ρ̇ = 1

5ρ
2X + ε

5

(
B0ρ

9 +B1Xρ
7 +B2X

2ρ5 +B3X
3ρ3 +X4ρ

)
Ẋ = 2

5X

(
ρX + ε

(
B0ρ

8 +B1Xρ
6 +B2X

2ρ4 +B3X
3ρ2 +X4

))
+ 1.

(19)
Besides the singularity in the negative x̄-direction there are no extra singularities
in the positive ȳ-direction. The dynamics of (19) points from the left to the right
along the X-axis.

2.3.4 Transformation of (6) in the negative ȳ-direction

We introduce the transformation

(x̄, ȳ) = (
X

ρ2
,
−1

ρ5
),

where ρ > 0, ρ ∼ 0 and X is kept in a large compact set. In the coordinates
(ρ,X), after multiplication by the positive factor ρ3, system (6) can be written
as: ρ̇ = 1

5ρ
2X − ε

5

(
B0ρ

9 +B1Xρ
7 +B2X

2ρ5 +B3X
3ρ3 +X4ρ

)
Ẋ = 2

5X

(
ρX − ε

(
B0ρ

8 +B1Xρ
6 +B2X

2ρ4 +B3X
3ρ2 +X4

))
− 1.

(20)
Besides the singularity in the negative x̄-direction there are no extra singularities
in the negative ȳ-direction. The dynamics of (20) points from the right to the
left along the X-axis.

(a) (b) (c)

Figure 2: Dynamics of (6) near infinity on the Poincaré-Lyapunov disc of type
(2, 5). (a) The case ε = 0 with the dynamics on the blow-up locus of the family
blow-up at (ρ, Y, ε) = (0, 0, 0) in the positive x̄-direction and the negative x̄-
direction. (b) The case ε = 0 after blowing down (a). (c) The case ε > 0.
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2.4 Conclusion

Theorem 1.1 will be proved if we show that there exists a small ε0 > 0 such
that system (6) has at most two limit cycles for each fixed (ε, B0, B1, B2, B3) ∈
[0, ε0] × S3. Following Section 2.2, this is true in any compact set K in the
(x̄, ȳ)-phase plane. Now it suffices to observe that there are no limit periodic
sets, containing pieces at infinity, which can generate limit cycles in (6) for
ε > 0. Indeed, Figure 2(c) indicates that any orbit O, containing pieces close to
infinity, for ε > 0 and ε ∼ 0, cannot be periodic (i.e. closed) because the α-limit
set of O is the repelling node at infinity or the ω-limit set of O is the attracting
node at infinity. This completes the proof of Theorem 1.1.

3 Proof of Theorem 1.2

Like in Section 2.1, we can suppose that a0 = 0 in (3). We show that there
exists a small ε0 > 0 and a small neighborhood V of (b0, b1, b2, b3) = (0, 0, 0, 0)
such that system{

ẋ = y
ẏ = −yx− ε(b0 + b1x+ b2x

2 + b3x
3 + x4)

(21)

has at most two limit cycles for each fixed (ε, b0, b1, b2, b3) ∈ [0, ε0]× V .

Following Theorem 1.1 of [Huz17], there exists a small ε0 > 0, a small
neighborhood V of (b0, b1, b2, b3) = (0, 0, 0, 0) and a small neighborhood W of
(x, y) = (0, 0) such that slow-fast codimension 4 saddle-node bifurcations ẋ = y

ẏ = −yx+ ε(b0 + b1x+ b2x
2 + b3x

3 + x4 + x5G(x, λ))
+εy2H(x, y, λ)

(22)

have at most two limit cycles in W , for each (ε, b0, b1, b2, b3, λ) ∈ [0, ε0]×V ×Λ,
with Λ, G and H introduced in Section 2.2. If we apply (x, t) → (−x,−t) to
(21), then (21) becomes a special case of (22). Thus, there exists a small ε0 > 0,
a small neighborhood V of (b0, b1, b2, b3) = (0, 0, 0, 0) and a small neighborhood
W of (x, y) = (0, 0) such that system (21) has at most two limit cycles in W ,
for each (ε, b0, b1, b2, b3) ∈ [0, ε0]× V .

The slow dynamics of (21) along the slow curve {y = 0} is given by

x′ = −b0 + b1x+ b2x
2 + b3x

3 + x4

x
, x 6= 0.

When (b0, b1, b2, b3) = (0, 0, 0, 0), the slow dynamics x′ = −x3 does not point
from the right to the left along the slow curve. This implies that canard cycles
Γȳ cannot produce limit cycles in (21), for ε > 0 and ε ∼ 0. See Figure 1.

To find the dynamics of (21) near infinity we use the same Poincaré-Lyapunov
compactification as that used in Section 2.3 and we get Figure 2. (Note that
(6) and (21) are of same type.) Thus, besides the two limit cycles Hausdorff
close to (x, y) = (0, 0), there are no extra limit cycles in (21). This completes
the proof of Theorem 1.2.
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