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ABSTRACT 

 

GOMES, M .M. Spatial crash prediction models: an evaluation of the impacts of enriched 

information on model performance and the suitability of different spatial modeling 

approaches. São Carlos, 2018, 168 p. Doctorate thesis – Double degree between School of 

Engineering of São Carlos at University of São Paulo and Instituut voor Mobiliteit (Universiteit 

Hasselt) 

 

The unavailability of crash-related data has been a long lasting challenge in Brazil. In addition to the 

poor implementation and follow-up of road safety strategies, this drawback has hampered the 

development of studies that could contribute to national goals toward road safety. In contrast, 

developed countries have built their effective strategies on solid data basis, therefore, investing a 

considerable time and money in obtaining and creating pertinent information.  In this research, we 

aim to assess the potential impacts of supplementary data on spatial model performance and the 

suitability of different spatial modeling approaches on crash prediction. The intention is to notify the 

authorities in Brazil and other developing countries, about the importance of having appropriate data. 

In this thesis we set two specific objectives: (I) to investigate the spatial model prediction accuracy at 

unsampled subzones; (II) to evaluate the performance of spatial data analysis approaches on crash 

prediction. Firstly, we carry out a benchmarking based on Geographically Weighted Regression (GWR) 

models developed for Flanders, Belgium, and São Paulo, Brazil. Models are developed for two modes 

of transport: active (i.e. pedestrians and cyclists) and motorized transport (i.e. motorized vehicles 

occupants). Subsequently, we apply the repeated holdout method on the Flemish models, introducing 

two GWR validation approaches, named GWR holdout1 and GWR holdout2. While the former is based 

on the local coefficient estimates derived from the neighboring subzones and measures of the 

explanatory variables for the validation subzones, the latter uses the casualty estimates of the 

neighboring subzones directly to estimate outcomes for the missing subzones. Lastly, we compare the 

performance of GWR models with Mean Imputation (MEI), K-Nearest Neighbor (KNN) and Kriging with 

External Drift (KED). Findings showed that by adding the supplementary data, reductions of 20% and 

25% for motorized transport, and 25% and 35% for active transport resulted in corrected Akaike 

Information Criterion (AICc) and Mean Squared Prediction Errors (MSPE), respectively. From a practical 

perspective, the results could help us identify hotspots and prioritize data collection strategies besides 

identify, implement and enforce appropriate countermeasures. Concerning the spatial approaches, 



 
 
 

 
 

GWR holdout2 outperformed all other techniques and proved that GWR is an appropriate spatial 

technique for both prediction and impact analyses. Especially in countries where data availability has 

been an issue, this validation framework allows casualties or crash frequencies to be estimated while 

effectively capturing the spatial variation of the data.  

 

Keywords: Crash Prediction Models, Geographically Weighted Regression, Road Safety, 

Geostatistics, Spatial Prediction Models, Repeated Holdout. 

 

  



 
 
 

 
 

RESUMO 

 

GOMES, M. M. Modelos espaciais de previsão de acidentes: uma avaliação do desempenho 

dos modelos a partir da incorporação de informações aprimoradas e a adequação de 

diferentes abordagens de modelagem espacial. São Carlos, 2018, 168 p. Duplo diploma entre 

Escola de Engenharia de São Carlos (Universidade de São Paulo) e Instituut voor Mobiliteit 

(Universiteit Hasselt) 

 

A indisponibilidade de variáveis explicativas de acidentes de trânsito tem sido um desafio 

duradouro no Brasil. Além da má implementação e acompanhamento de estratégias de segurança 

viária, esse inconveniente tem dificultado o desenvolvimento de estudos que poderiam contribuir com 

as metas nacionais de segurança no trânsito. Em contraste, países desenvolvidos tem construído suas 

estratégias efetivas com base em dados sólidos, e portanto, investindo tempo e dinheiro consideráveis 

na obtenção e criação de informações pertinentes. O objetivo dessa pesquisa é avaliar os possíveis 

impactos de dados suplementares sobre o desempenho de modelos espaciais, e a adequação de 

diferentes abordagens de modelagem espacial na previsão de acidentes. A intenção é notificar as 

autoridades brasileiras e de outros países em desenvolvimento sobre a importância de dados 

adequados. Nesta tese, foram definidos dois objetivos específicos: (I) investigar a acurácia do modelo 

espacial em subzonas sem amostragem; (II) avaliar o desempenho de técnicas de análise espacial de 

dados na previsão de acidentes. Primeiramente, foi realizado um estudo comparativo, baseado em 

modelos desenvolvidos para Flandres (Bélgica) e São Paulo (Brasil), através do método de Regressão 

Geograficamente Ponderada (RGP). Os modelos foram desenvolvidos para dois modos de transporte: 

ativos (pedestres e ciclistas) e motorizados (ocupantes de veículos motorizados). Subsequentemente, 

foi aplicado o método de holdout repetido nos modelos Flamengos, introduzindo duas abordagens de 

validação para GWR, denominados RGP holdout1 e RGP holdout2. Enquanto o primeiro é baseado nas 

estimativas de coeficientes locais derivados das subzonas vizinhas e medidas das variáveis explicativas 

para as subzonas de validação, o último usa as estimativas de acidentes das subzonas vizinhas, 

diretamente, para estimar os resultados para as subzonas ausentes. Por fim, foi comparado o 

desempenho de modelos RGP e outras abordagens, tais como Imputação pela Média de dados 

faltantes (IM), K-vizinhos mais próximos (KNN) e Krigagem com Deriva Externa (KDE). Os resultados 

mostraram que, adicionando os dados suplementares, reduções de 20% e 25% para o transporte 

motorizado, e 25% e 35% para o transporte ativo, foram resultantes em termos de Critério de 



 
 
 

 
 

Informação de Akaike corrigido (AICc) e Erro Quadrático Médio da Predição (EQMP), respectivamente. 

Do ponto de vista prático, os resultados poderiam ajudar a identificar hotspots e priorizar estratégias 

de coleta de dados, além de identificar, implementar e aplicar contramedidas adequadas. No que diz 

respeito às abordagens espaciais, RGP holdout2 teve melhor desempenho em relação a todas as outras 

técnicas e, provou que a RGP é uma técnica espacial apropriada para ambas as análises de previsão e 

impactos. Especialmente em países onde a disponibilidade de dados tem sido um problema, essa 

estrutura de validação permite que as acidentes sejam estimados enquanto, capturando efetivamente 

a variação espacial dos dados.  

 

Palavras-chave: Modelos de Previsão de Acidentes, Regressão Geograficamente Ponderada, 

Segurança no Trânsito, Geoestatística, Modelos Espaciais de Predição, Holdout repetido. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 
 

 
 

SAMENVATTING 

 

GOMES, M .M. Ruimtelijke ongevalspredictiemodellen: een evaluatie van de impact van 

verrijkte informatie op modelperformantie en de geschiktheid van verschillende ruimtelijke 

modelleertechnieken. São Carlos, 2018, 168 p. Double degree tussen Engenharia de São Carlos 

(Universidade de São Paulo) en Instituut voor Mobiliteit (Universiteit Hasselt) 

 

De onbeschikbaarheid van ongevalsgerelateerde data  is al geruime tijd een uitdaging in Brazilië. In 

combinatie met het gebrekkig implementeren en opvolgen van verkeersveiligheidstrategieën heeft dit 

nadeel ervoor gezorgd dat het ontwikkelen van studies die kunnen bijdragen aan nationale 

doelstellingen met betrekking tot verkeersveligheid werden belemmerd. Anderzijds hebben 

ontwikkelde landen tijd en financiële middelen vrijgemaakt om data te verzamelen en te valideren 

zodat effectieve strategieën op basis van deze data konden worden ontwikkeld. In dit onderzoek 

bestuderen we de potentiële impact van supplementaire data op de performantie van ruimtelijke 

modellen en de geschiktheid van verschillende ruimtelijke modellen om voorspellingen van ongevallen 

te doen. Het is de bedoeling om de autoriteiten in Brazilië en andere ontwikkelingslanden het belang 

van kwaliteitsvolle data te doen inzien. In deze thesis zetten we twee specifieke doelstellingen voorop: 

(I) onderzoeken hoe accuraat de voorspellingen van ruimtelijke modellen zijn op subzones die geen 

deel uitmaken van de steekproef (II) de performantie van ruimtelijke data analyse methodes op het 

voorspellen van ongevallen evalueren. Ten eerste voeren we een vergelijking uit gebaseerd op 

Geographically Weighted Regression (GWR) modellen die ontwikkeld zijn voor Vlaanderen, België en 

São Paulo, Brazilië. De modellen zijn ontwikkeld voor twee transportmodi: actief (voetgangers en 

fietsers) en gemotoriseerd transport (inzittenden van gemotoriseerde voertuigen). Vervolgens passen 

we de repeated holdout methode toe op de Vlaamse modellen; zo introduceren we twee GWR 

validatietechnieken, namelijk GWR holdout1 en GWR holdout2. Terwijl de eerste methode gebaseerd 

is op de schattingen van lokale coëfficiënten die zijn afgeleid van naburige subzones en de waardes 

van verklarende variabelen voor de validatie subzones, gebruikt de tweede methode 

slachtofferschattingen van naburige subzones om uitkomsten voor ontbrekende subzones 

rechtstreeks te schatten. Tenslotte vergelijken we de performantie van GWR modellen met Mean 

Imputation (MEI), K-Nearest Neighbor (KNN) en Kriging with External Drift (KED). Resultaten tonen aan 

dat door toevoeging van additionele data, reducties van 20 tot 25% voor gemotoriseerd transport en 

25 tot 35% voor actief transport bekomen worden voor de gecorrigeerde Akaike Information Criterion 

(AICc) en Mean Squared Prediction Errors (MSPE). Vanuit een praktisch standpunt kunnen de 



 
 
 

 
 

resultaten helpen om gevaarlijke locaties te identificeren en om dataverzamelingsstrategiën te 

prioritiseren, alsook om tegenmaatregelen te identificeren, implementeren en op te leggen. Met 

betrekking tot de ruimtelijke technieken presteerde de GWR holdout2 beter dan alle andere 

technieken en bewijst dit dat GWR een gepaste ruimtelijke techniek is voor zowel voorspellings- als 

impactanalyse. Voornamelijk in landen waar beschikbaarheid van data een struikelblok is, levert dit 

validatieframework een methode om slachtoffers of ongevalsfrequenties te schatten en tegelijkertijd 

de ruimtelijke variatie in de data effectief te vatten.  

 

Sleutelwoorden: Ongevalsvoorspellingsmodellen, Geographically Weighted Regression, 

Verkeersveiligheid, Geostatistiek, Ruimtelijke voorspellingsmodellen, Repeated Holdout. 
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1 INTRODUCTION 

 

 

 

Despite the efforts toward road safety, an estimated 1.25 million victims of road crashes still 

die every year, imposing a heavy burden on households and national economies. Developing 

countries, which have low and middle incomes, account for 90 percent of this number (World 

Health Organization [WHO], 2015), which is likely to rise even more if proper safety 

countermeasures and investments are not foreseen. 

 

Among countries struggling to prevent road fatalities, Brazil alone is responsible for up to fifty 

thousand deaths and five hundred thousand injured every year. They are casualties of over 

one million crashes per year in the country (WHO, 2015). Unfortunately, associations between 

Brazil and high rates of road fatalities are commonplace in safety reports (such as in WHO, 

2015; Job et al., 2015; AMBEV, 2017). As in other developing countries, this problem has been 

attributed to an insufficient development of supportive road infrastructure, policy changes 

and enforcement, which have not taken into account urban intensification and the steady 

increase in vehicle use. In spite of the growing awareness on the urgency to reverse these 

trends and efforts put into programs and campaigns toward road safety, the country's 

performance remains below expectations leading to an exponential rise in the number of 

casualties. 

 

Road safety has long been a priority in developed nations, commonly ranked as “high road 

safety-performing countries”. In addition to ongoing efforts regarding the implementation 

and good practice of successful countermeasures involving infrastructure, vehicle and road 

user behaviors, developed countries have invested a great amount of time and money 

strengthening their road safety strategies at the planning level, e.g. by collecting and making 

comprehensive sources of reliable data available. Specifically in Europe, these strategies at 

both safety-planning and operational levels have led to a steady reduction in the number of 

deaths in most countries, therefore allowing the European fatality rates to decrease far below 
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the global average (9.3 per 100,000 population, relative to the global rate of 17.4) (WHO, 

2015).  

 

In developing countries, data unavailability has impaired model performance still at the 

planning level and, consequently, the tradeoff between input and outcomes. Unfortunately, 

this challenging condition has discouraged researchers and policy makers, restricting Crash 

Prediction Models (CPM) to data availability. However, even considering efforts made in 

associating crashes with the available explanatory variables in such circumstances, this 

drawback leads to higher modelling errors, and thus unreliable predictions. Besides being not 

statistically reliable, they fail in terms of impact analysis that could further help to implement 

appropriate safety countermeasures. One explanation could be the correlation among 

variables, i.e. multicollinearity and the existence of omitted variable bias, which in particular 

plays an important role in the reliability of CPM, generating biased and inconsistent estimates 

and coefficient signs (Washington, Karlaftis, & Mannering, 2010; Mitra & Washington, 2012). 

Besides, the spatial dependence of the data could be an important factor and must be 

considered. The investigation of different spatial data analysis approaches on crash prediction 

is desirable as it can lead to improvements toward safety-planning studies, and help policy 

makers target the best suitable techniques. 

 

 

1.1 AIM AND MOTIVATION 

 
In view of the above, this thesis aims to assess the potential improvements of supplementary 

data on spatial model performance, therefore highlighting the importance of a more diverse 

and comprehensive set of explanatory variables for crash modelling in both, prediction and 

impact analysis.  Moreover, the suitability of different spatial modeling approaches is also 

evaluated. Hence, two specific objectives and five Research Questions (RQ) have been 

established, as follows: 

 

I. To investigate the spatial model accuracy at unsampled subzones; 

II. To evaluate the performance of spatial data analysis approaches on crash prediction.  
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RQ1. Based on a benchmarking exercise, what potential improvements in spatial model 

performance can be obtained by including additional explanatory variables? 

 

RQ2. What are the statistical individual contributions of variables to the developed models? 

 

RQ3. Are these models reliable? 

 

RQ4. In case of data unavailability, would the produced models be suitable to estimate 

unsampled unit of areas? 

 

RQ5. Considering geostatistics, by means of Kriging with External Drift (KED), what is the most 

suitable method to explore the spatial dependence of crash data and solve issues involving 

missing information? 

 

Spatial CPM are a critical component in safety planning considering both prediction and 

impact analysis purposes. This argument is valid as CPM enable the estimation of values while 

providing an insight of the spatially varying relationship between crashes and several related 

factors (Kononov, 2002; Yau, 2004; Elvik, 2007). Specifically for researchers and planners from 

Brazil and other developing countries, this task still at the planning-level, has been a long 

lasting challenge as essential data is often unavailable. This drawback has restrained potential 

studies that could help to scrutinize the phenomena, for instance by identifying potential 

hotspots and influential factors, or by turning macro into local-level investigations, and 

thereby prioritizing countermeasures. Therefore, a study highlighting the importance of 

appropriate modelling techniques and input information, hence exploring both statistical and 

practical considerations of data within spatial model performance, is desirable toward road 

safety analysis and promotion.   

 

In order to accomplish the established goals, analyses are firstly conducted based on a case 

study with crash/fatality-related available information from São Paulo (Brazil) and Flanders 

(Belgium). This enables us characterize the differences found in terms of road safety planning 

aspects in developing and developed countries. Macro-level CPM are developed within the 
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GWR framework with Poisson distribution of errors (GWPR). Subsequently, models are 

developed based on the Flemish dataset only, accounting for different multivariate spatial 

data analysis approaches, i.e. Mean Imputation (MEI), K-nearest neighbor (KNN) imputation 

and KED. Section 1.2 provides a brief overview of how this thesis is structured. 

 

 

1.2 THESIS STRUCTURE 

 

After contextualizing the problem about “road unsafety” and outlining the objectives and 

motivation for writing this manuscript, this introductory chapter ends by presenting the thesis 

structure (Figure 1.1). Hence, Chapter 2 gives a brief overview of spatial data analysis methods 

and crash-related information commonly used to develop CPM. In Chapter 3, we describe the 

study areas and data, as well as the proposed method framework. Chapters 4, 5 and 6 address 

the core chapters of this thesis, in which the in-depth analysis involving the specific objectives 

and corresponding research questions are put forward. Our conclusions and suggestions for 

future studies are drawn in Chapter 7.  
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Figure 1.1 – Thesis structure 
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2 LITERATURE REVIEW  

 

This chapter describes the theoretical basis related to the main topics and spatial statistics 

models used in this thesis.  

 

 

2.1 SPATIAL STATISTICS METHODS ON CRASH PREDICTION 

 

Crash Prediction Models (CPM) play a significant role in traffic safety analysis, enabling for 

instance the identification of hotspots and sites where implementing countermeasures should 

be a priority. In this context, thanks to the scientific and technological advances and the 

availability of geocoded information, spatial analysis has emerged, leading to great prospects 

towards road safety. 

 

 On account of the first law of geography, which states that “Everything is related with 

everything else, but closer things are more related than distant things” (Tobler, 1970), spatial 

models have enabled a better understanding of the spatially varying relationship between 

road crashes and potential related information. Some of these models have also appealed as 

powerful tools to estimate values of an attribute at unsampled sites, accounting for known 

information only. In this respect, the appropriate choice of the triplet: modelling technique, 

Geographic Information Systems (GIS) and input information, are crucial tasks, as they directly 

affect the model performance, thus playing a significant role in planning, risk assessment and 

decision-making. Particularly concerning the modelling technique, Geographically Weighted 

Regression (GWR) outstands other approaches, which are based on the inherent spatial 

autocorrelation characteristics of the geographic observations only (e.g., kernel density 

interpolation, inverted distance weighted interpolation and univariate kriging interpolation 

methods). In this respect, GWR addresses both inherent characteristics of spatial data: spatial 

autocorrelation and spatial heterogeneity, thus accounting for the fact that variables are also 

correlated in the feature space (Fotheringham, Brunsdon, & Charlton, 2002). In contrast, 

geostatistical tools (e.g. kriging) by means of their intrinsic characteristics (e.g. 

semivariogram), are able to provide the Best Linear Unbiased Predictors (BLUP), meaning 
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estimates with minimum error and variance (Journel & Huijbregts, 1978; Matheron, 1963; 

Stein, 1999). Hence, implementing a geostatistical multivariate method could be a potential 

alternative to GWR and other spatial multivariate methods.  

 

Geostatistical tools are usually applied to data with apparent spatial continuity, e.g. 

temperature, rainfall and land composition, in the fields of geology (Lee, Carle,  & Fogg, 2007; 

Orton, Pringle, & Bishop, 2016; Tamayo-Mas, Mustapha, & Dimitrakopoulos, 2016), hydrology 

(Guven & Kitanidis, 1988; Goovaerts, 2000) and mining (Coburn, 2012), for example. However, 

over the last decades, its implementation on spatially discrete data (Goovaerts, 2006; 

Goovaerts, 2008) has proven to be a potential alternative when adapted to such spatial 

continuity problems. Therefore, geostatistics has become increasingly explored in different 

fields, e.g. health studies, where kriging techniques have been used for instance to identify 

areas of contamination or risk of mortality (Goovaerts, 2004, 2005, 2006, 2008, 2009). In 

transportation studies, its implementation has been explored in studies on traffic engineering 

(Ciuffo, Punzo, & Quaglietta, 2011; Mazzella, Piras, & Pinna, 2011; Zou, Yue, Li, & Yeh, 2012; 

Zhang & Wang, 2013), vehicle emission gases (Pearce, Rathbun, Aguilar-Villalobos, & Naeher, 

2009; Kassteele & Velders 2006; Kassteele & Stein, 2006), and, more recently, to travel 

demand forecasting problems (Pitombo, Salgueiro, Costa, & Isler, 2015; Lindner, Pitombo, 

Rocha, & Quintanilha, 2016; Gomes, Pitombo, Rocha, & Salgueiro, 2016; Lindner & Pitombo, 

2018). Specifically in traffic data, geostatistical tools have been implemented to analyze the 

spatial structure of the data under explanatory purposes (Majumdar, Noland, & Ochieng, 

2004; Mcmillan, Hanson, & Lapham, 2007; Lascala, Johnson, & Gruenewald, 2001) or toward 

confirmatory analysis (Manepalli & Bham, 2011; Matsumono & Flores, 2013; Gundogdu, 2014; 

Molla, Stone, & Lee 2014).  

 

In the next subsections, we provide a more detailed overview of these spatial approaches, 

together with a literature review addressing the input variables commonly implemented when 

estimating crashes. 
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2.1.1 GEOGRAPHICALLY WEIGHTED REGRESSION  

 
GWR was developed by Fotheringham et al. (2002) intending to address the non-stationary 

relationship between variables found in Generalized Linear Models (GLM). In essence, GWR 

models capture this spatial variation by fitting a regression model, using a series of distance-

related weights at each sample point. The result of this process is a set of local spatial 

parameters, described by Equation 2.1, varying over space, thus independent spatial error 

terms. 

 

𝑙𝑛[𝐸(𝐶)(𝑙𝑖)] = 𝑙𝑛(𝛽0(𝑙𝑖)) + 𝛽1(𝑙𝑖)𝑙𝑛(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒) + 𝛽2(𝑙𝑖)𝑥1 + ⋯ + 𝛽𝑛(𝑙𝑖)𝑥𝑛             (2.1) 

 

Where E(C) is the expected crash frequency, β0, β1, β2, and βn are model parameters for a 

determined location li. Exposure is the exposure variable, and x1 and xn correspond to other 

explanatory variables.  

 

Motivated by Tobler’s assumption, GWR assumes that the closer the observed data is from 

the location from the location of the parameter to be estimated, the greater the influence on 

the estimation of β at location i compared to those that are far from it. This influence is 

determined based on geographic weights, which are assigned in function of all neighboring 

observations using a kernel function (Fotheringham et al., 2002), e.g., Gaussian (Equation 2.2) 

and bi-square (Equation 2.3), which are the two most common choices (Hadayeghi, Shalaby, 

&  Persaud, 2010).  

 

                                                                               𝑊𝑖𝑗 =  𝑒−0.5(
𝑤𝑖𝑗

𝑏
)2

                                              (2.2) 

 

𝑊𝑖𝑗 = {(1 − (
𝑑𝑖𝑗

𝑏
)2)2    𝑖𝑓 𝑑𝑖𝑗 < 𝑏                                 

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
              (2.3) 

 
Where 𝑊𝑖𝑗 is the measure of contribution of location j when calibrating the model for location 

i. 𝑑𝑖𝑗 is the Euclidian distance between locations i and j, and b is the bandwidth size defined 

by a distance metric measure.  
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In GWR, the bandwidth controls the size of the kernel, i.e. the number of observations around 

each data point, and the rate at which weights decay with increasing distances. Thus, similar 

to the weighting scheme, the choice of the bandwidth size plays an important role in the 

performance of the GWR models, as it involves a trade-off between bias and variance. The 

size of the bandwidth is optimized either by distance (fixed kernel), or by the number of 

neighboring observations (adaptive kernel) (Fotheringham et al., 2002; Guo, Ma, & Zhang,  

2008; Hadayeghi et al., 2010).  

 

An optimum bandwidth can be found by minimizing the Cross-Validation (CV) score 

(Cleveland, 1979; Bowman, 1984) or the Akaike Information Criterion (AIC) (Akaike, 1973). 

Hence, a corrected version of the AIC (AICc) can be used, which unlike basic AIC is a function 

of sample size (Hurvich, Simonoff, & Tsai, 1998). While CV is given by the difference between 

observed and estimated values, AICc additionally to the statistical goodness-of-fit, rewards 

the complexity of the model, by imposing a penalty for increasing the number of estimated 

parameters (Fotheringham et al., 2002), expressed by the formulation in Equation (2.4). 

 

𝐴𝐼𝐶𝑐 = 𝐷(𝑏) + 2𝐾(𝑏) + 2 
𝐾(𝑏)(𝐾(𝑏)+1)

𝑛−𝐾(𝑏)−1
                                                (2.4) 

 
Where D and 𝐾 denote the deviance and the effective number of parameters in the model 

with bandwidth b, respectively. And 𝑛 denotes the number of observations.  

 

 

2.1.2 GEOSTATISTICS  

 

Geostatistics refers to a set of spatial statistical methods, which enables the estimation of a 

variable value in locations where it is unknown. Developed by Matheron (1963), geostatistics 

is based on the theory of Regionalized Variables (RV) (Matheron, 1971; Wackernagel, 2003), 

which consists of a spatial structured and random component (Matheron, 1971). In general, 

geostatistics is better described by the following three procedures: (1) variographic analysis, 

(2) cross validation and (3) kriging, which are discussed as follows.  
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2.1.2.1 VARIOGRAPHIC ANALYSIS 

 

The main motivation of the variographic analysis is to study the spatial structure of the RV. 

This inspection is conducted based on two key points: calculating the experimental 

semivariogram and adjusting the theoretical model.  

 

In this respect, the primary task is to construct the semivariogram for the graphical 

representation of the spatial structure of the RV. The semivariogram function is defined as the 

arithmetic average of all squares of the differences between the pair’s values separated by a 

distance h and a direction (Journel & Huijbregts, 1978), given by Equation 2.5. 

 

𝛾(ℎ) =  
1

2𝑁(ℎ)
∑ [𝑧 (𝑥𝑖) − 𝑧 (𝑥𝑖 + ℎ)]2 

𝑛(ℎ)
𝑖=1                                              (2.5) 

 
Where 𝑁(ℎ) the set of all pairwise data values 𝑧 (𝑥𝑖) and 𝑧 (𝑥𝑖 + ℎ) at spatial locations 𝑖 and 

𝑖 + ℎ, respectively (Matheron, 1963).  

 

Therefore, the set of semi-variances derived from the function 𝛾(ℎ) is plotted as a function 

of ℎ (i.e. experimental semivariogram calculation). In order to calculate the experimental 

semivariogram, the establishment of some graphical aspects (e.g. lag distance, cut distance, 

lag tolerance and angular direction) is required (Matheron, 1971), for which: 

 

 lag distance: distance between neighboring samples; 

 cut distance (h): the value of the distance at which the semivariogram is calculated, 

meaning that from that distance on, pairs of points are not considered. As a rule of 

thumb, the value adopted is generally half of the greatest distance between points in 

the sample; 

 lag tolerance (Δh): values within the limits (h + Δh) and (h - Δh) are considered within 

h; 

 angular direction (Ɵ): direction at which semivariograms represent the better spatial 

variability of the RV. Semivariograms may be calculated accounting for specific 

directions or not. In the first case, a semivariogram with an anisotropic structure implies 
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in different spatial variability in different directions, and a main direction, in which the 

variability is higher, compared to the others (Clark, 1979). In the second case, if there 

is isotropy, the experimental semivariograms are similar for all directions, thus 

“omnidirectional”. 

 
Thereafter, from the experimental semivariogram, a theoretical model is fitted enabling the 

representation of the continuous regional variability, which describes the overall trend. This 

practice is possible by manual or automatic fitting. However, while in the former the choice of 

the best model is usually given by the visual appearance of the experimental semivariograms, 

the latter, accounts for analytical methods. These methods can be summarized in two 

categories: (1) Maximum likelihood methods, e.g. Restricted Maximum Likelihood (REML); 

and (2) Least Square methods, e.g. Ordinary Least Squares (OLS), Weighted Least Squares 

(WLS), Generalized Least Squares (GLS) and others to mention (Cressie, 1985, 1993; 

Wackernagel, 2003).   

  

From the various theoretical models for adjustment of the experimental semivariograms, the 

most frequently used are Spherical, Gaussian and Exponential. Such models can be described 

based on the following important parameters: nugget effect (Co), partial sill (C) and range (r), 

illustrated on Figure 2.1 and described as follows (Matheron, 1963, 1971; Wackernagel, 2003, 

Lindner & Pitombo, 2018).  

 
Figure 2.1 - Graphical parameters of a semivariogram  

 

 

 

 

 

 

 

 

(Lindner & Pitombo, 2018 adapted from Wackernagel, 2003) 
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By definition, the nugget effect reflects the residual of the variance of sampling errors and the 

spatial variance at short distances. The point at which the increasing function of the 

semivariogram stabilizes is called Sill, equivalent to the sample variance. Hence, the value of 

the distance at which the sill is reached is called range and it represents the average distance 

around a point, to which there is still some degree of spatial autocorrelation, thus from that 

point on, values are no longer spatially correlated (Wackernagel, 2003; Li & Heap, 2008; 

Duarte, Calvo, Borges, & Scatoni, 2015). Thereafter, the defined values of C0, C1, and range for 

the theoretical semivariograms are used in the weighting scheme, at the geostatistical 

modelling step where the interpolations are carried out. 

 

 

2.1.2.2 CROSS VALIDATION 

 

Cross Validation (CV) compares various assumptions, either concerning the model (e.g. type 

of function to be adjusted, variogram parameters) or the data. In the cross validation 

procedure, each sample value 𝑍(𝑥𝑖) is removed in turn from the dataset and a value 𝑧∗(𝑥𝑖) at 

the location is estimated using the remaining 𝑛 − 1 samples. The difference between a data 

value and the estimated value (𝑍(𝑥𝑖) − 𝑍∗(𝑥𝑖)) gives an indication of how well the data value 

fits into the neighborhood of the surrounding data values (Journel & Huijbregts, 1978; 

Wackernagel, 2003). 

 

 

2.1.2.3 KRIGING ESTIMATION 

 
Kriging is the interpolation method used in geostatistics to estimate one or more variables, 

appealing to provide the BLUP for variables that have the tendency to vary over space (Journel 

& Huijbregts, 1978; Matheron, 1963). Kriging presupposes that points that are spatially close 

tend to have values that are more similar to points, which are far apart. Such influence is 

determined on account of geographic weights, which are produced based on the graphical 

parameters of the theoretical semivariograms, within an area established by an ellipsoid with 

radii determined by the ranges of the major and minor directions (Matheron, 1971; 

Wackernagel, 2003). Such kriging estimators are defined by Equation 2.6 as follows:  
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�̂� (𝑥0) =  ∑ 𝜆𝑖𝑧(𝑥𝑖)
𝑁
𝑖=1                                                        (2.6) 

 

Where �̂� is the estimated value of an attribute at the point of interest 𝑥0, 𝜆𝑖 are the weights 

and 𝑧 is the observed value at the sample point 𝑥𝑖. In order to ensure unbiasedness of the 

estimators, the sum of the weights must be 1 (Webster & Oliver, 2007), expressed in Equation 

2.7. 

 

∑ 𝜆𝑖 = 1 𝑛
𝑖=1                                                                (2.7) 

  

Simple Kriging (SK) and Ordinary Kriging (OK) are the most usual univariate kriging methods. 

SK is used when the average is assumed to be statistically constant in the sample area, and OK 

for the contrary (Goovaerts, 1997; Armstrong, 1998). Considering the purposes of the analyses 

stated in this thesis, we implement a multivariate interpolation tool, namely Kriging with 

External Drift (KED). KED enables the use of a secondary variable to co-estimate a correlated 

one.  Hence, considering the integration of two correlated variables (Z(x) and Y(x)), which 

express the same attribute, estimates at new locations are made as a function of the linear 

function in Equation 2.8 (Armstrong, 1998; Wackernagel, 2003). 

 

𝐸[𝑍(𝑥0)] = 𝑎0 + 𝑏1𝑌(𝑥0)                                                 (2.8) 

 

Where 𝑌(𝑥0) is the external drift function to estimate the primary variable 𝑍(𝑥0) based on 

the estimated values 𝑥0. The variance of the estimation and their corresponding weights are 

enabled by the matrix shown in Equation 2.9 (Wackernagel, 2003).  

 

[
𝐶 1 𝑌
1𝑇 0 0
𝑌𝑡 0 0

] [
𝜆

−𝜇
−𝜇

] = [
𝐶0

1
𝑌0

]                                                  (2.9) 

 

Where C is the covariance function, and µ is the Lagrange multiplier that minimizes the 

variance of the estimation and both constraints in Equations 2.6 and 2.7.  
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2.2 CRASH-RELATED EXPLANATORY VARIABLES 

 

Besides estimation purposes, spatial CPM are powerful tools able to provide a full 

understanding of the spatially varying relationship of crashes and related variables across the 

study area. Therefore, selecting a comprehensive and correct set of independent variables is 

a crucial task and has been a particular concern to decision makers and researchers. As a 

result, road crashes can be attributed to six major groups of risk factors (Kononov, 2002; 

Valent et al., 2002; Yau, 2004; Shankar, Mannering, & Barfield, 1995; Delen, Sharada, & 

Bessonov, 2006; Elvik, 2007): 

 
 human factors (driver behavior) - commonly associated to driver behavior (e.g. alcohol 

and drug use, negligent and careless operation of the vehicle, failure to properly use 

protection devices, use of telephone or texting while driving and fatigue) (see Petridou 

& Moustaki, 2000; Odgen, 1996; Redelmeier & Tibshirani, 1997; Movig et al., 2004); 

 vehicle related factors - refers to the characteristics of the vehicle and safety design 

standards for its performance, e.g. Active (activated before the road crash takes place, 

so that they could avoid accidents) and Passive Vehicle Safety Systems (used to avoid 

or mitigate injuries and their severity), such as air bags and safety belts (see Harvey & 

Durbin, 1986; Robertson, 1996; Langley, Mullin, Jackson, & Norton, 2000; Bédard, 

Guyatt, Stones, & Hirdes, 2002; Richter, Pape, Otte, & Krettek, 2005); 

 traffic volumes - commonly represented by the Average Annual Daily Traffic (AADT) or 

the Vehicle Miles Traveled (VMT). Both parameters are often used as exposure 

variables in CPM (see Hauer, 1995; Zhou & Sisiopiku, 1997; Martin, 2002; Qin, Ivan, & 

Ravishanker, 2004; Pei, Wong, & Sze, 2012; Xu, Liu, Wang, & Li, 2012; Ahmed, Abdel-

Aty, & Yu, 2012; Pirdavani, Brijs, Bellemans, Kochan, & Wets 2013); 

 road design (geometry) – refers to road geometries and roadside conditions.  Variables 

within this group are commonly related to the forgiving and self-explanatory character 

of roads (Brookhuis et al., 2006; Lotz et al., 2006; Wiethoff et al., 2012) such as 

appropriate road categorization, well-designed curves and grades, wide lanes, 

adequate sight distance, appropriate design speeds, clearly visible striping, flared 

guardrails, good quality shoulders, roadsides free of obstacles, well-located crash 

attenuation devices and well-planned use of traffic signals (Miaou, 1994; Taylor, Lynam, 
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Baruya, 2000; Amundsen & Ranes, 2000; Kloeden, Ponte, & McLean, 2001; Karlaftis & 

Golias, 2002; Nilsson, 2004; Aarts & van Schagen, 2006; Rengarasu, Hagiwara, & 

Hirasawa, 2007); 

 environmental related factors - weather and light conditions, for example (see Shankar 

et al., 1995; Andrey & Knapper, 2003; Golob & Recker, 2003; Ahmed et al., 2012; Brijs, 

Karlis, & Wets, 2008); 

 time factors – related to the season of the year, the month of the year, weekdays and 

the time of crash occurrence (see Doherty, Andrey, & MacGregor, 1998; Qin, Ivan, & 

Ravishanker, 2006; Hao, Kamga, & Wan, 2016). 

 

On account of this and given the challenges to obtain most of these variables, the following 

recommendations have been suggested in previous literature and can help to provide an 

adequate model. According to Elvik (2007), CPM should include variables that:  

 

 have been found in previous studies;  

 have a major influence on the dependent variable;  

 are not correlated to other variables in the dataset;   

 that can be measured in a valid and reliable way;  

 are not endogenous; 

 and above all, consider what people are exposed to that could result in an accident as 

absence of an exposure variable can lead to biased results, since other variables, 

correlated with exposure will suffer from omitted variable bias. This supports previous 

findings in the literature (Carroll, 1971, Chapman, 1973; Hauer, 1982, 1995; Hauer, Ng, 

& Lovell, 1996; Qin et al., 2004, de Guevara, Washington, & Oh, 2004; Elvik, 2007). 

Examples of traffic crash risk exposure measures are AADT or Vehicle Kilometers 

Traveled (VKT), commonly used in CPM (Miaou, Song, & Mallick, 2003; Fristrøm, Ifver, 

Ingebrigtsen, Kulmala, & Thomsen, 1995; Jovanis & Chang, 1986; Ahmed et al., 2012; 

Pirdavani, Brijs, Bellemans, Kochan, & Wets, 2012; Pirdavani et al., 2013a). 

 

Certainly, detailed variables, such as those related to driving data (e.g. acceleration, braking 

and steering information, driver response to stimuli), if incorporated in the models would help 
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to better identify cause and effect relationships regarding crash occurrence (Lord & 

Mannering, 2010). However, the meticulous details of these variables make them expensive 

to collect and obtain. As a result, these variables are hardly available for consultation, thus 

rarely implemented in CPM. In this context, crash analysis has been performed at different 

levels of aggregation, depending on their purposes, e.g. microscopic, for a specific road 

segment or intersection, or at macroscopic-level for a larger area, such as a municipality 

(Pirdavani, Daniels, van Vlierden, Brijs, & Kochan, 2017). We suggest Huang et al. (2016) for 

more detailed information concerning both aggregation levels. Specifically for macro-level 

analysis, efforts have been made to associate crashes and predictive variables that have 

macro-level characteristics, such as socioeconomic, exposure and network variables (e.g. area, 

population, traffic volume variables, for instance AADT and VMT, road length, ratio or number 

of vehicles, degree of urbanization, speed limit, income, gender, level of education, age, trip 

generation, employment rate, poverty, etc.). A more compiled review of these variables can 

be found in Pulugurtha, Duddu and Kotagiri (2013) and Rhee, Kim, Lee and Ulfarsson (2016).  

 

In order to support the findings and arguments in this research, we conducted a search of the 

scientific literature from the last decades. Results of this investigation are presented below 

together with a description of variables and methods, which have been used to predict road 

crashes. 

 

Golob and Recker (2003) applied linear and nonlinear multivariate statistical analyses to relate 

crashes on freeways in Southern California to traffic flow, weather and lighting conditions. 

Principal Component Analysis (PCA) was used to identify the most significant variables from a 

set of original traffic flow variables, and a Canonical Correlation Analysis (CCA) was used to 

relate the identified principal components to weather and lighting conditions. Findings include 

associations between left lane collisions and dry roads during day light, while off road to 

driver’s right collisions were associated to wet road at night. Moreover, results emphasized 

the relationship between type of collision and variations in speed for left and interior lanes. 

Concerning the severity of crashes, results indicated a higher influence of volume, rather than 

speed, when controlling weather and lighting conditions.  

https://www.sciencedirect.com/science/article/pii/S1877042813046065#bbib0065
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Hadayeghi, Shalaby and Persaud (2003) developed a series of macro-level prediction models 

to estimate the number of accidents in 463 Traffic Analysis Zones (TAZs) in the city of Toronto 

as a function of zonal characteristics. Firstly, the authors used a GLM (Negative Binomial) 

separately for total accidents and for severe (fatal and non-fatal injury) accidents as a function 

of socioeconomic/demographic, traffic demand and network data variables. Subsequently, 

authors used GWR to explore the spatial variations in the estimated parameters from the 

zones. Results revealed that the number of accidents per zone in a year increased as the zonal 

VKT, major and minor road kilometers, total employed labor force, household population and 

intersection density increased, and decreased with higher posted speed and higher congestion 

in the zone.  

 

Aguero-Valverde & Jovanis (2006) related both fatal and injury crash data from Pennsylvania 

to socioeconomic, transportation infrastructure-related and environmental related factors. In 

the models developed for fatal crashes, only three transportation related variables were 

found to be significant: Daily Vehicle-Miles Traveled (DVMT), percentage of travel on federal 

aid roads, and infrastructure mileage. The first two were found to have a negative correlation 

with crash frequency, while infrastructure mileage was found to have a positive correlation. 

Concerning the socioeconomic variables, information regarding area deprivation, percentage 

of population under poverty, as well as persons younger than 15 years were found to be 

significant and positively correlated with crash frequency. Within the environmental variables, 

only precipitation was found to be significant, and positively correlated. In the models 

developed for the total injury crashes, four transportation-related variables were found to be 

significant, i.e. DVMT, infrastructure mileage, mileage density and percentage of federal aid 

roads. In these models, only DVMT was found to have a negative correlation with the 

dependent variable, therefore suggesting an increasing risk of injury crashes at a decreasing 

rate.  

 

Caliendo, Guida and Parisi (2007) modelled crash frequency on multilane roads in Italy as a 

function of traffic flow, infrastructure geometry, pavement surface and rainfall information. 

Authors used Poisson, Negative Binomial (NB) and Negative Multinomial regression models, 

which were applied separately to tangents and curves. Analyses included both total crashes 
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and injury crashes including fatalities and were conducted based on results of a 5-year 

monitoring period on a four lane median-divided highway.  

 

Brijs et al. (2008) studied the effect of weather conditions on daily crash counts using a 

discrete time-series model (Poisson Integer-Valued Autoregressive - INAR). Analyses were 

made for three large cities in the Netherlands (Dordrecht, Haarlemmermeer and Utrecht). 

Thereafter, the authors compared the results of model performance to classical models 

(Poisson regression and negative binomial regression). The influence of weather conditions 

on road crashes, can also be found in Andrey & Knapper (2003).  

 

Quddus (2008) associated crashes with variables related to traffic and road characteristics, 

and socio-demographic factors. Ward-level casualty data were splitted by severity of 

casualties (i.e. fatalities, serious injuries and slight injuries) and by severity of the casualties 

related to various road users. Their spatial units of analysis were the 633 census wards from 

the Greater London metropolitan area. Based on non-spatial negative binomial models and 

spatial Bayesian hierarchical models at census ward level, results revealed that households 

with no cars and total employment were statistically significant variables to predict crashes. 

Results from the Bayesian hierarchical modeling showed they were more consistent with the 

literature and more coherent in all cases. Findings from this analysis also include a positive 

association found between traffic flow and casualties.     

 

Hadayeghi et al. (2010) developed GWPR models to investigate the local spatial variations in 

the relationship between the number of zonal collisions for total and severe (i.e. fatal and 

injury) collisions and potential transportation planning predictors such as traffic volume, road 

network characteristics, socioeconomic and demographic features, land use, dwelling unit and 

employment type. Thereafter, the authors compared the accuracy of these models to that of 

GLMs. VKT was used as the exposure variable in all the models. Results revealed positive 

correlations between VKT and the dependent variables in most subzones and models, for both 

categories. Positive correlations were also found for the number of schools, total arterial road 

kilometers, total expressway road kilometers, total collector kilometers, total number of 
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signalized intersections, while negative correlations were found for total rail kilometers and 

total local road kilometers, for example.  

 

Matkan, Mohaymany, Mirbagheri and Shahri (2011) used GWPR to develop a local safety 

model for Mashhad, Iran. Models were developed with trip production and attraction 

information, as well as VKT, considered as the exposure variable. Subsequently, authors 

compared the goodness of fit of these models to those obtained with GLM. Findings indicated 

positive correlations between crashes and the three variables for most of the 253 TAZs 

included in the analyses. 

 

Ahmed et al. (2012) investigated the impact of geometrical, traffic and weather variables on 

the occurrence of crashes on a mountainous freeway in Colorado (United States). A Bayesian 

logistic regression model was used. The modelling results revealed that the geometric factors 

were significant during the dry and snowy seasons, but that during the snow season, low 

visibility, high precipitation and speed variation increased the likelihood of accidents while for 

the dry season low average speeds and low visibility increased the odds of an accident.  

 

Pirdavani et al. (2012) developed CPM to associate the number of injury crashes with different 

exposure, network, and sociodemographic variables at the zonal level for 2,200 TAZs in 

Flanders, Belgium. To this, NB models were developed within the GLM framework, on the 

basis of different measures of exposure used as independent variables, i.e. Number of Trips 

(NOTs), Vehicle Hours Traveled (VHT) and VKT. Models were categorized into the following 

groups: (a) flow-based models, (b) trip-based models, and (c) a combination of the two. 

Results revealed that, the models that contained the combination of two exposure variables 

outperformed the models calibrated with only one of the exposure variables.   

 

Xu et al. (2012) used conditional logistic regression models to examine the relationships 

between crash risks and traffic characteristics (termed by the authors as traffic states). Results 

of that investigation revealed that traffic flow parameters had different effects on safety for 

every traffic state. For instance, the average downstream occupancy seemed to reduce 
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accident risk in two traffic states (in congested traffic, as well as in transition from free flow 

to congested flow) but caused an increase in the overall model. 

 

Li, Wang, Liu, Bigham and Ragland (2013) used GWPR models to capture spatially varying 

relationships between fatal crashes and traffic patterns, road network attributes, and socio-

demographic characteristics of 58 counties in California (United States). Thereafter, the 

performance of GWPR was compared to a traditional GLM. Findings revealed negative 

correlation between the risk of fatal crashes in most subzones, for the percentage of freeway 

mileage, road density, traffic intensity, percentage of urban traffic. On the contrary, positive 

correlations were found for population density and percentage of truck and trailers.  

 

Pulugurtha et al. (2013) developed NB count models (with log-link) at TAZ level. Models were 

developed as a function of several land use variables, based on land use characteristics (e.g. 

mixed use development, urban residential, single-family residential, multi-family residential, 

business and office districts) from the city of Charlotte, Mecklenburg County, North Carolina 

(United States). Except for the single-family residential area, positive correlations were found 

between land use characteristics and the total number of crashes. According to the authors, 

such a negative correlation, was possibly due to different behaviors adopted by drivers (such 

as cautious driving) or lower travel speed in these areas. 

 

Shariat-Mohaymany, Shahri, Mirbagheri and Matkan (2015) related the total number of 

crashes to other traffic volume, network characteristics and trip generation variables of 253 

TAZs in Mashhad (Iran). GWPR and GLM approaches were carried out in that investigation. 

The spatial models suggested positive correlation for all variables, which were included in the 

models in most subzones. These variables were VKT (used as the exposure variable in its 

logarithm form), total main street length, NOTs and number of non-signalized intersections.  

 

Lee, Abdel-Aty, Choi and Huang (2015) used Bayesian Poisson Lognormal Simultaneous 

Equations Spatial Error Model (BPLSESEM) to identify the contributing factors for “pedestrian 

crashes per crash location ZIP code area” and “crash-involved pedestrians per residence ZIP”. 

The set of variables included information of population, VMT, income, proportion measures 
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of high-speed roads, children for a specific group age, people working at home, households 

without a vehicle and households below poverty level, and other facility/attraction 

information.  

 

Rhee et al. (2016) used GWR to identify factors related to crashes in Seoul, Korea. Traffic, road 

networks, demographic and socioeconomic information were used. Findings showed that 

increasing ratio of a central bus-only has the major contribution to the number of crashes. 

Moreover, results revealed a decrease in crash frequency for an increase of roads with speed 

limits below 30 km/h. 

 

Xu, Huang, Dong and Wong (2017) investigated the spatially varying relationships between 

crash frequency and related risk factors using a fully Bayesian approach. Explanatory variables 

included road and traffic-related factors, such as the DVMT, trip production and attraction, 

intersections and road segment lengths with various speed limits, and a number of factors 

reflecting the demographic and socioeconomic features. The authors conducted a case study 

using a three-year crash dataset from the Hillsborough County, Florida (United States). DVMT, 

NOTs and population were included as exposure variables in the model. Results revealed that 

the coefficients were all significantly positive, implying that more severe crashes were 

expected in zones with higher concentrations of traffic volumes, travel demand and residents. 

These findings were in line with other previous studies, as reported by Huang et al. (2016), 

Pirdavani et al. (2012) and Lee et al. (2015).  

 

Table 2.1 details the explanatory variables and techniques, which were investigated in the 

above mentioned previous studies. Based on this investigation, it was possible to identify 

some research gaps, which helped us outline the goals of this thesis. We noted, for instance, 

the predominance of micro-level studies. Few studies have tended to focus on the relationship 

between crashes and explanatory variables at a more aggregated level. Especially for 

countries where data availability is an issue, the development of macro-level models (e.g. 

zonal and municipal), could assist in a long-term transportation planning processes by the 

identification of potential hotspots together with their major influential factors. This practice 

could be useful, as it would help policy makers to prioritize hot zones and data collection 
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simultaneously. Moreover, there is a considerable amount of studies on the performance of 

spatial models (e.g. GWR) over tradition non-spatial models (e.g. GLM). In light if the evident 

spatial character of road crashes, we believe that research on the spatial correlation of the 

data is needed. Furthermore, there has been little discussion on spatial data analysis 

approaches, other than GWR, for example. Lastly, we were able to identify some typical 

variables used at macro-level models, and which were found to be significant predictors of 

crashes (e.g. traffic volume, VHT, VKT, population, employment, level of income, urbanization 

degree, traffic intensity, number of intersections and intersection density, speed, and road 

length). This helped us later on support the findings and arguments in this research.   
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Table 2.1 - Summary of explanatory variables used in the CPM of the previous studies 

Study Techniques Explanatory variables 

Golob and Recker (2003) PCA and CCA  Traffic flow (e.g. variation in volume and occupancy of 
the lanes), weather (dry or wet weather), lighting 
conditions (daylight, darkness, and dusk–dawn) 

Hadayeghi et al. (2003)

  

GLM (NB) and GWR Socioeconomic and demographic (total population, 
population density, number of households, household 
density, full-time employed, part-time employed, total 
employed, employment density, number of vehicles, 
number of vehicles per household); network or supply 
(number of intersections, intersection density, major 
road kilometers, minor road kilometers, total road 
kilometers, area); traffic demand (e.g. speed, vehicles 
flow, VKT) 

Aguero-Valverde & 
Jovanis (2006)  

 

Full Bayes (FB) 
hierarchical spatial 
models and 
Traditional NB 

Socioeconomic (population accounting for age, sex, level 
of poverty and level of drunk driving); transportation-
related (e.g. daily VMT - DVMT, road, road density); 
environment-related (precipitation, number of rainy 
days, snowfall, number of days with snow) 

Caliendo et al. (2007)  Poisson, 
Negative Binomial 
and Negative 
Multinomial 
regression models 

Infrastructure geometry: horizontal alignment (tangent 
or curve), vertical alignment (upgrade or downgrade), 
weather and pavement surface conditions (dry or wet), 
number of vehicles and persons involved, and a short 
description of the accident dynamics 

Brijs et al. (2008) Discrete time-series 
model and GLM 
(Poisson regression 
and NB regression) 

Weather (Precipitation, temperature, sunshine, city 
specific dummies); traffic (daily vehicle counts, VKT)  

Quddus (2008) Non-spatial NB 
models and Spatial 
Bayesian hierarchical 
models  

Traffic (traffic flow, speed); road characteristics (link 
length); sociodemographic (age, employment 
population and car ownership) 

Hadayeghi et al. (2010) GWR and GLMs with 
Negative Binomial 
and Poisson error 
structures 

Traffic (speed, VKT, average volume over capacity); road 
network (number of rail stations, total rail kilometer, 
number of schools, total arterial kilometers, total 
expressway kilometers, total collector kilometers, total 
collector kilometers, total local road kilometers, total 
ramp kilometers, number of signalized intersections); 
employment types (full and part time employees, 
number of not employed, employment sector); 
demographic (age, gender, in possession of driver’s 
license or not, in possession of a transit pass or not); 
land use (commercial, governmental, institutional, 
residential, open area, parks and recreation, resource 
and industrial, water body), dwelling unit (number of 
houses, number of apartments, and number of 
townhouses) 

 Continue 
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Conclusion 

Study Techniques Explanatory variables 

Matkan et al. (2011) GWR and GLM Traffic (trip production and attraction information, VKT) 

Ahmed et al. (2012) Bayesian logistic 
regression model 

Geometrical (grade, degrees of curvature, width); traffic 
(speed); weather (visibility) 

Pirdavani et al. (2012) GLM (NB)  Exposure (VKT, VHT, NOTs); road network (speed, 
capacity, number of intersections, TAZ in urban or 
suburban area); sociodemographic (income level, 
population) 

Xu et al. (2012) Conditional logistic 
regression models 

Traffic (number of vehicles, speed and traffic occupancy) 

Li et al. (2013) GWR and GLM Traffic (DVMT, traffic intensity, percentage of urban 
DVMT, percentage of trucks and trailers); road network 
(percentage of freeway mileage, road density); 
sociodemographic (population density, age, income) 

Pulugurtha et al. (2013) Negative binomial 
(with log-link) 

Land use (e.g. mixed use development, urban 
residential, industrial, business, single-family residential, 
multi-family residential, office districts, institutional, 
neighborhood service development, right-of-way, 
commercial center, innovative, planned unit 
development, research district) 

Shariat-Mohaymany et al. 

(2015) 

GWR and GLM Traffic and road network (VKT, total main street length, 
NOTs and number of non-signalized intersections 

Lee et al. (2015) Bayesian Poisson 
lognormal 
simultaneous 
equations spatial 
error model 
(BPLSESEM) 

Demographic (population, proportion of children for an 
specific age); roadway/traffic (VMT; proportion of high-
speed roads); commute (proportion of people working 
at home); socioeconomic (proportion of households 
without available vehicle, proportion of households 
below poverty level, income); facility/attraction ( 
number of rail and bus stations, number of hotels, 
motels, and guest houses, number of marina/ferry 
terminals, number of schools)  

Rhee et al. (2016) GWR Traffic (VKT); road network (speed limits, number of 
subways stations and bus stops, ratio of length of central 
bus lane versus total road length, number of access 
points with over 30 km/h absolute difference in posted 
speed limit); demographic (population age); 
socioeconomic and neighborhood information (income, 
number of elementary and lower schools, mixed use of 
land, ratio of large condominium/apartment complexes)  

Xu et al. (2017) Fully Bayesian 
approach 

Road and traffic-related (DVMT, trip production and 
attraction, intersections and road segment lengths with 
various speed limits; demographic and socioeconomic 
(total population, population for specifics age groups, 
income, travel mode) 
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3  MATERIALS AND METHOD 

 

This chapter provides an overview of both study areas, and the data and software packages 

used to construct the prediction models. Moreover, the methodological framework to achieve 

the aims of this thesis is presented. 

 

 

3.1  STUDY AREAS  

 
São Paulo (SP) is one of the 26 states that comprises the Federative Republic of Brazil. Located 

in the southeast region of the country, São Paulo has a total of 645 municipalities and the 

greatest population in the country. In the last census, in 2010, statistics pointed to around 41 

million inhabitants in a land area close to 248,000 square kilometers. However, in 2017, this 

number had already exceeded 45 million (IBGE, 2018). In terms of road networks, the state 

has more than 35,000 kilometers of roads that transport thousands of passengers and freight 

vehicles every day. Unfortunately, in 2015, more than six thousand people died in São Paulo, 

who were victims of road crashes on these roads, (IBGE, 2018; DATASUS, 2018). Figure 3.1 

shows the division of Brazil by states (in the upper-left), as well as the study area (in the upper-

right).  

 

Figure 3.1 – Study area in Brazil 
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No scale 
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As can be seen in Figure 3.2, Belgium is divided in three regions (i.e. Flanders, Wallonia and 

Brussels). Subsequently, the Flemish and the Walloon regions are each subdivided in five 

provinces. 

 

Figure 3.2 – Administrative regions and provinces in Belgium 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, Crash Prediction Models (CPM) for Belgium are developed based on available 

information of Flanders, which is a Dutch-speaking region in northern Belgium (Figure 3.3). 

Compared to São Paulo, Flanders is considerably smaller in population and size, with a 

population of 6.5 million (about 60% of the population of the country) in a land area of 

approximately 14,000 square kilometers (VLAANDEREN, 2018). However, in terms of road 

networks, due to its central location in Europe, Flanders is recognized for having one of the 

densest road networks worldwide (5.08 km per square km). From a total of 71,500km, 883km 

are highways, and 6,040km comprise regional roads. 

 

 

 

No scale 
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Figure 3.3 - Study area in Belgium   

 

 

 

 

 

 

 

 

 

 

 

 

 

In the next subsection, a brief overview of the prospect of road crashes in Brazil and Belgium 

is given, adding to a better understanding of the historical evolution of road safety in both 

regions of study and their linkages with the statistics nowadays. More detailed information 

can be found in the road safety reports made available by WHO (2015) and OECD (2016), in 

which major information used in this research was collected.  

 

 

3.1.1 PROSPECT OF ROAD CRASHES AND SAFETY IN BRAZIL  

 

 “Road unsafety” has long been a huge problem in Brazil. Despite the growing awareness 

concerning the urgency to reverse trends and put efforts into programs and campaigns toward 

road safety promotion, the country has not managed to lessen the number of road fatalities, 

showing even increasingly higher numbers (WHO, 2015; Job et al., 2015; AMBEV, 2017).  

 

In general, up to fifty thousand people die and five hundred thousand are injured every year, 

who are victims of the more than one million accidents on Brazilian roads (WHO, 2015). 

Flanders 

No scale 
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Historically, this began after World War II when motorized vehicles were introduced on to 

Brazilian roads, and thereafter it was reinforced by a rapid economic growth. In addition to 

this, in the 1960s, Brazil experienced important political and social changes, which granted 

rapid industrial expansion and agricultural modernization of the country. As a consequence, 

several million people left the rural fields and moved to urban areas, leading to rapid urban 

intensification. In 1990, there were only 20.6 million vehicles in Brazil, including 1.5 million 

motorcycles (IBGE, 2018; DENATRAN, 2018). From the 1990s, encouraged by the federal 

government, manufacturing, acquisition and use of motorized vehicles increased, especially 

motorcycles, given the fact that they were inexpensive and versatile. Since then, motorization 

rates have not stopped increasing, shifting the mobility pattern of Brazil’s low and middle-

income populations from public to private transport. 

 

Unfortunately, infrastructural developments, policy changes and level of enforcement have 

not kept pace with vehicle use, and it has led to a chaotic situation. The number of fatalities 

involving motorcyclists, for instance, which was 725 in 1996, increased to 12,604 in 2014, 

meaning an increase of approximately 1640%. Fatalities involving passenger car occupants 

had an increase of 166%, approximately, for the same period (DATASUS, 2018), as presented 

in Table 3.1 below.  

 

Table 3.1 - Road fatalities by road user group 

 
1996 2000 2010 2013 2014 

2014 % change from 

2013 2010 2000 1996 

Cyclists 326 789 1513 1348 1357 0.67 -10.31 71.99 316.26 

Tricycle occupants 22 27 69 57 48 -15.79 -.30.43 77.78 118.18 

Motorcyclists 725 2465 10825 11983 12604 5.18 16.43 411.32 1638.48 

Passenger car occupants 3778 5266 9059 9757 10084 3.35 11.31 91.49 166.91 

Pedestrians 12952 8696 9944 8220 8082 -1.68 -18.72 -7.06 -37.60 

Others 473 791 1282 1318 1402 6.37 9.36 77.24 196.41 

Total 17950 18034 32692 32683 33577 2.74 2.71 86.19 87.06 

Adapted from DATASUS (2018) 
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As a consequence of the sharp increase in motorcycle production and sales, motorcyclists 

have long been placed at the top of the list of fatalities by group user. As can be seen in Figure 

3.4, in 2014, they were responsible for 38% of the total number of fatalities, followed by 30% 

of fatalities involving car occupants, 24% involving pedestrians, and 8% involving cyclists and 

other types of vehicles.  

 

Figure 3.4 - Road fatalities in 2014 by group user in percentage  

 

Adapted from BRSNR (2016) 

 

Assuming the evolution of the production of motorized vehicles in Brazil, over the last 

decades, this number shifted around 215%, from 2000 to 2016, and around 160% assuming 

the production only in the state of São Paulo, shown in Figure 3.5 (DENATRAN, 2018). 

 

 

 

 

 

 

 

 

30%

24%

4%

4%

38%

Passenger car occupants

Pedestrians

Others incl. unkown

Cyclists

Motorcyclists



56 
 

 
 

Figure 3.5 - Evolution of the production of motorized vehicles in Brazil and São Paulo state  
 

 

 

 

 

 

 

 

 

 

 

 

 Adapted from DENATRAN (2018) – Sistema Nacional de Registro de veículos - RENAVAM 

 
In terms of fatality rate per 100, 000 population, it increased 14% assuming the period from 

2004 to 2012 (WHO, 2015), shown in Figure 3.6.  

 

Figure 3.6 - Trends in reported road traffic deaths in Brazil 

 
WHO (2015) 
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3.1.2 PROSPECT OF ROAD CRASHES AND SAFETY IN BELGIUM 

 

Contrary to increasingly high statistics in Brazil, the number of road traffic fatalities in Belgium 

has significantly dropped over the last decades. In spite of a period of stagnation, in the late 

1990s, after the first national assembly on road safety (Etats Généraux de la Sécurité 

Routière/Staten-Generaal van de Verkeersveiligheid) in 2001, road safety became an issue of 

public interest. Strategies discussed in that convention contributed to improvements in 

infrastructure, enforcement and education, and since then, the number of fatalities in Belgium 

has mostly dropped, as shown in Figure 3.7. Some small variations are attributed to changes 

in the economic situation (decrease in 2008) or meteorological conditions (2010 – 2011, 2014) 

(WHO, 2015). 

 
Figure 3.7 - Trends in reported road fatalities in Belgium 

 
WHO (2015) 

 

Compared to 1990, in 2014 the number of fatalities, seriously injured and injury crashes had 

already decreased by more than 60%, 75% and 30%, respectively. In terms of rates, in the 

same period, decreases of more than 65% and 80% were found for the road traffic mortality 

rate (expressed by deaths per 100,000 population) and risks (expressed in deaths per number 

of vehicles), respectively, as presented in Table 3.2.   
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Table 3.2 - Reported road safety data in Belgium 

 
1990 2000 2010 2013 2014 

2014 % change from 

2013 2010 2000 1990 

Fatalities 1976 1470 840 724 727 0.4 -13.5 -50.5 -63.2 

Injury crashes 62446 49065 45927 41279 41481 0.5 -9.7 -15.5 -33.6 

Injured persons hospitalized 17479 9847 5984 4947 4502 -9.0 -24.8 -54.3 -74.2 

Deaths per 100, 000 
inhabitants 

19.9 14.4 7.7 6.5 6.5 0.0 -16.3 -54.8 -67.3 

Deaths per 100, 000 
registered vehicles 

4.3 2.6 1.3 1.0 1.0 0.8 -22.5 -62.0 -77.4 

Deaths per billion vehicle 
kilometers 

28.1 16.3 8.5 7.1 na  

Adapted from OECD (2016) 

 

In terms of traffic statistics, the distance traveled by motorized users and the number of 

vehicles has considerably increased, by more than 45% and 54%, respectively, in relation to 

1990 (OECD, 2016), as shown in Table 3.3.  

 
Table 3.3 - Traffic data in Belgium 

 

1990 2000 2010 2013 2014 
2014 % change from 

2013 2010 2000 1990 

Registered vehicles 
(thousands) 

4594 5735 6689 6994 7076 1.2 5.8 23.4 54 

Vehicles kilometers 
(millions) 

70276 90036 98678 102423 Na  

Registered vehicles per 
1,000 inhabitants 

462 560 617 627 632 0.8 2.4 12.8 36.8 

Adapted from OECD (2016) 

 
Some strategies adopted in Belgium that has contributed to the progress of the country 

toward road safety include (OECD, 2016): 

 

 enforcement of lower speed limits on many rural roads and stricter control of speed 

limits on other roads; 

 black-spot treatment; 
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 improvements toward infrastructure; 

 improvements in safety systems in car and trucks;  

 better road safety awareness through campaigns and educational measures. 

 

Since 1990, these countermeasures have helped to reduce the number of fatalities of all road 

user groups (OECD, 2016). Especially among pedestrians, cyclists, moped users and passenger 

car occupants, fatality figures reduced by 60% to 85%, approximately, in relation to 2014 

(Table 3.4). If we assume the trends over the last decade, in the period between 2010 and 

2014, road fatalities reduced by 13.5%.  

 

Table 3.4 - Road fatalities by road user group  

 
1990 2000 2010 2013 2014 

2014 % change from 

2013 2010 2000 1990 

Cyclists 196 134 70 73 76 4.1 8.6 -43.3 -61.2 

Moped users 110 64 22 13 17 30.8 -22.7 -73.4 -84.5 

Motorcyclists 106 118 102 102 85 -16.7 -16.7 -28.0 -19.8 

Passenger car occupants 1181 922 444 342 381 11.4 -14.2 -58.7 -67.7 

Pedestrians 301 142 106 99 106 7.1 0.0 -25.4 -67.8 

Others 82 90 96 95 62 -34.7 -35.4 -31.1 -24.4 

Total 1976 1470 840 724 727 0.4 -13.5 -50.5 -63.2 

Adapted from OECD (2016) 

 
In 2014, passenger car occupants were responsible for 52% of the total number of fatalities 

(Figure 3.8). In that year, the major number of fatalities (around 37%) occurred on rural roads, 

26% in urban areas and 13% on motorways (the remaining 24% of fatalities took place on 

unknown roads). Since 1991, the greatest reduction in fatalities has occurred on rural roads (-

74%), followed by urban areas, where the reductions are around 70% (OECD, 2016).  
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Figure 3.8 - Road fatalities in 2014 by group user 

 

Adapted from OECD/IT (2016) 

 

 

3.1.3 ROAD SAFETY STRATEGIES, TARGETS AND LEGISLATION – BRAZIL VS. BELGIUM  

 
In response to the rising numbers of road fatalities worldwide and aiming to guide efforts at 

national and local levels, the World Health Organization (WHO) and the United Nations 

regional commissions, in cooperation with the United Nations Road Safety Collaboration and 

other stakeholders developed a global plan of action, including guidelines and targets for road 

safety promotion in the current decade (WHO, 2015).  

 

In March 2010, the United Nations General Assembly resolution 64/255 proclaimed that 2011-

2020 would be the “Decade of Action for Road Safety”. In this plan, both the Brazilian and the 

Belgium governments set the ambitious target of reducing the number of road deaths by half 

by 2020 (WHO, 2015), implying less than 420 road fatalities in Belgium and approximately 10 

thousand in Brazil. In order to achieve this, the federal minister for mobility in Belgium has 

made additional efforts and taken measures in terms of monitoring and legislation, for 

instance by enforcing more severe penalties. While predictions based on past developments, 

show that Belgium will be able to get close to the imposed target, in Brazil, this has been 

questioned.  

52%
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Table 3.5 compiles some traffic decrees and enforcement, which have been applied in both 

countries. We gathered such information from WHO (2015) and CONTRAN (2007). 

 

Table 3.5 - Legislation according to the traffic decrees in Belgium and Brazil 

 Belgium Brazil 

Maximum speed limits 
authorized 

 Urban roads: 30-50km/h 
 Rural roads: 70-90km/h 
 Highways: 120km/h  

 Urban roads: 80km/h 
  Rural roads: 60km/h 
  Highways: 110km/h 

Maximum authorized 
blood alcohol content 

  General population: 0.5 g/l 
  Professional drivers: 0.2 g/l  

Zero tolerance 

Use of hand-held 
phones while driving 

Forbidden Forbidden 

Use of hands-free 
devices while driving 

Authorized Authorized 

Seat-belt  Mandatory for both, front and rear 
seats since 1975 and 1991, 
respectively  

Mandatory for both, front and rear 
seats, since 1997 
 

Child restraint system Mandatory for passengers under 
18 and smaller than 135 cm (since 
2006).  
They can travel either in the front or 
rear seat if the child restraint system 
conforms to the latest European 
standards 

Since 2008, the Brazilian traffic 
decree specifies that: 
 Passengers under 10 must 

travel in the rear seat  
  Passengers under 1 are 

obligated to travel in an 
adapted child restrain device 
specific for their age  

  Passengers older than 1 and 
under 4 are obligated to travel 
in an adapted child restrain 
device specific for this age 
group 

  Passengers older than 4 and 
under 7.5 are obligated to 
travel in an adapted child 
restrain device specific for this 
age group 

Helmet-use law    Required for all riders of 
motorized two-wheelers  

  Motorcyclists (> 50 cc) also 
have to wear gloves, boots that 
protect the ankle and long 
sleeved/legged jacket and 
trousers 

  There is no mandatory helmet-
use law for cyclists 

  Required for all riders of 
motorized two-wheelers  

  There is no mandatory helmet-
use law for cyclists 
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Other key points involve, for instance, the enforcement of more severe penalties for the non-

use of seat belts. Despite the fact that seat belts are mandatory in the front and rear seats, 

wearing-rates in Brazil are still low. According to Household Survey National Research (PNAD), 

this number was 73% and 37% in 2008 for front and rear seats, respectively. In contrast to 

Brazil, in Belgium, the seat belt wearing rate observed in the front seats was around 80% in 

2008. In 2015, this number had already exceed 92% and 85% for front and rear seats, 

respectively (Lequeux, 2016).  Moreover, according to the Belgian Institute for Road Safety - 

Road Safety Knowledge Centre, the helmet-wearing rate in 2012 was 99% for drivers and 

passengers, while in Brazil this number was 81% in the same year (WHO, 2015). 

 

The objective here is not to compare Brazil and Belgium or the study regions, São Paulo and 

Flanders. Nevertheless, we believe that developed countries, such as Belgium, should be taken 

as examples. Their ongoing efforts toward steady improvements, even when their 

performance has been better than so many other nations, should be used as a motivation for 

countries, such as Brazil to put more efforts into changing their trends. Moreover, such a 

comparison would not be suitable for the purposes of this research. This argument is valid  

given the differences found in the dependent variables (fatalities associated to travel mode in 

São Paulo, and casualties associated to travel mode in Flanders), and the aggregation levels 

(municipalities for models developed in São Paulo, and subzones for models developed in 

Flanders). As previously mentioned, the main objective of this study involving the two regions, 

is to assess the potential impacts of enriched information on spatial model performance, and 

herewith emphasize the necessity of a more diverse and complete dataset to predict road 

crashes. Thus, the reporting of the information that could improve the Flemish models could 

at most be interesting suggestions for extra data collection in Brazil.  

 

 

3.2 DATA PREPARATION 

 

Spatial macro-level CPM were developed based on geographical available information of 

crashes, road-networks, socioeconomic and demographic variables for both regions of study. 

Casualties and fatalities, as the response variables in the models developed for Flanders and 
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São Paulo, respectively, were divided into two sets based on the mode of transport, called 

Active Transport (AT) and Motorized Transport (MT). Causalities/fatalities for active transport 

included pedestrians and cyclists, while for motorized transport they were associated with 

motorized vehicle occupants. Moreover, records from a period of three years were used to 

produce the dependent variables.  

 

 

3.2.1 SÃO PAULO DATABASE 

 

Information collected from São Paulo was geographically aggregated to each of 644 

municipalities that are comprised by the state (São Paulo city itself was not included in the 

analyses given its atypical values, which are far higher than the ones for other cities). 

 

Police and hospitals are two common sources of crash and casualty data, in Brazil. However, 

none of them is able to provide a full and effective data source of the accidents and fatalities 

in the country. Furthermore, there is no link between their databases, thus affecting the 

consistency of the data, and making their collection a challenge (Job et al., 2015). With respect 

to the coverage of the data, the best national one comes from the Health Ministry Database 

(DATASUS), which has the official records of road deaths, in Brazil (Job et al., 2015). Yet, the 

official numbers are understated by 20% (WHO, 2013).  

 

In view of the above, fatality figures for São Paulo, were collected from the Mortality 

Information System (Sistema de Informações de Mortalidade – SIM), which is a public source 

created by DATASUS (DATASUS, 2018). Fatalities, as the response variable, was developed 

based on the total number of deaths for the period between 2009 and 2011. Since 1996, road 

fatalities have been coded using the International Classification of Diseases in its 10th revision 

(ICD-10) as recommended by WHO. They are classified under the V-codes in different groups, 

according to the mode and cause. In this research, fatalities for active transport mode, 

included the concerning information within the codification between V01-V19, while for 

motorized transport we included the information within the codification between V20-V79. 

Table 3.6 presents the classification per groups. This information is provided in detail in 

Appendix A.  
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Table 3.6 - Transportation accident codes according to ICD-10  

Code Category 

V01 - V09 Pedestrian injured in transport accident  

V10 - V19 Cyclist injured in transport accident 

V20 - V29 Motorcycle rider injured in transport accident 

V30 - V39 Occupant of three-wheeled motor vehicle injured in transport accident 

V40 - V49 Car occupant injured in transport accident 

V50 - V59 Occupant of pick-up truck or van injured in transport accident 

V60 - V69 Occupant of heavy transport vehicle injured in transport accident 

V70 - V79 Bus occupant injured in transport accident 

DATASUS (2018) 

 

Corresponding socioeconomic and demographic information was gathered from the last 

census index of 2010, made available by the Brazilian Institute for Geography and Statistics 

(IBGE, 2018). In spite of a great amount of available information within these categories, 

during the exploratory analysis, most pieces of information collected were found to be 

correlated with each other, therefore presenting high degrees of multicollinearity. In this 

context, only the information regarding the number of inhabitants, which revealed to be the 

most significant variable in these categories, was included in the spatial CPM.   

 

Given the limitations to obtain road features information, we used the road network of São 

Paulo provided by OpenStreetMap (OSM, 2018), as it provides a user-friendly interface and a 

database rich in information about road characteristics. Available information of link length 

was included as a proxy variable of the road network. The link length for motorized transport 

included information of trunk, highway, primary, secondary and tertiary roads, as well as link 

length of residential and living streets. For active transport, we used the same road features, 

although highways and respective trunk length information were replaced by cycle path and 

link length information of other roads designed only for pedestrians. Table 3.7 and 3.8 present 

the list of variables that have been collected for the municipalities in the state of São Paulo, 

together with their definition and descriptive statistics. Variables, which were included in the 

final Brazilian models, are marked in bold.  
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Table 3.7 - Description of the variables collected for São Paulo  

 Variable Description 

Active transport  Total number of fatalities of active transport mode users over 3 
years 

Motorized transport  Total number of fatalities of motorized transport mode users 
observed over 3 years 

Link length of active transport Total link length of active transport in a municipality (km) 

Link length of motorized transport Total link length of motorized transport in a municipality (km) 

Population Total number of inhabitants in a municipality 

Area Total surface area in a municipality (km2) 

Male population Total number of male inhabitants in a municipality 

Female population Total number of female inhabitants in a municipality 

Population density Total population per square kilometers in a municipality 

AAGR Average Annual Growth Rate 2000-2010 (%) in a municipality 

Percentage male population Percentage of male inhabitants in a municipality 

Percentage female population Percentage of female inhabitants in a municipality 

Percentage proportion population Rate between the number of men and woman in a municipality 

Urban population Total number of inhabitants in the urban zone of a municipality 

Rural population Total number of inhabitants in the rural zone of a municipality 

HDI Human Development Index of a municipality 

GNP Gross National Product in a municipality  

Employed people Total number of inhabitants with income in a municipality 

Occupied people 
Total number of inhabitants who perform some activity (with 
income or not) in a municipality 

Motorcycle Total fleet of motorcycles and tricycles in a municipality 

Microbus Total fleet of microbuses in a municipality 

Car Total fleet of cars in a municipality 

Truck Total fleet of trucks in a municipality 

Bus Total fleet of buses in a municipality 

Total number of vehicles Total number vehicles in a municipality 

Gasoline  Total gasoline consumption  in a municipality 

Diesel oil  Total diesel oil consumption in a municipality 

Fuel oil  Total fuel oil consumption in a municipality 

GLP Total liquefied petroleum gas consumption in a municipality  

Ethanol  Total ethanol consumption in a municipality 
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Table 3.8 - Descriptive statistics of variables collected for São Paulo  

 Variable Average Min Max SDa 

Fa
ta

lit
y Active transport  7.34 0 295 23.428 

Motorized transport  11.88 0 317 28.716 

N
e

tw
o

rk
 Link length of active transport 141.13 5.04 2626.15 210.95 

Link length of motorized 
transport 

153.04 5.29 2831.03 227.25 

Area 383.03 5.4 1977 317.07 

So
ci

o
e

co
n

o
m

ic
 a

n
d

 d
em

o
gr

ap
h

ic
 

Population 46597.35 805 1221979 108465.83 

Male population 22902.55 422 595043 52538.13 

Female population 23694.81 383 626936 55938.55 

Population density 291.13 3.73 12519.10 1166.18 

AAGR 1.03 -2.15 10.92 1.25 

Percentage male population 50.52 45.76 81.09 2.52 

Percentage female population 49.48 18.91 54.24 2.52 

Percentage proportion 
population 

102.97 84.36 428.86 17.88 

Urban population 44150.48 627 1221979 107468.51 

Rural population 2446.88 0 46284 3609.38 

HDI 0.739 0.639 0.862 0.032 

GNP 22501.11 7131.54 287646.17 18418.14 

Employed people 12678.37 155 405980 35725.41 

Occupied people 14931.77 211 471267 41144.02 

V
e

h
ic

le
 f

le
e

t 

Motorcycle 4744.68 24 100831 10938.16 

Microbus 90.76 0 3544 264.87 

Car 13536.09 133 487044 38052.31 

Truck 705.21 11 18144 1544.29 

Bus 135.84 3 4445 330.34 

Total of vehicles 19212.58 220 612097 50296.09 

Fu
e

l c
o

n
su

m
p

ti
o

n
b
 Gasoline (liters) 7961187.11 0 256246033 21723939.41 

Diesel oil (liters) 15343179.63 0 295769873 32673917.02 

Fuel oil (liters) 822438.64 0 44127640 3078410.70 

GLP (liters) 2304087.98 0 62823861 5948082.76 

Ethanol (liters) 9746540.07 0 342168947 25378940.38 

aSD: Standard Deviation; bFuel consumption in liters 

 

 

The descriptive statistics for São Paulo including São Paulo city is available in Appendix B.   
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3.2.2 FLEMISH DATABASE 

 

Spatial CPM for Flanders were developed at zonal level, comprising 2,198 Traffic Analysis 

Zones (TAZs), considered as the unit of analysis in the Flemish models. The average size of 

TAZs is 6.09 square kilometers with a standard deviation of 4.78 kilometers, and an average 

number of inhabitants equal to 2,416 persons (MOBIEL VLAANDEREN, 2018). 

 

Casualties, as the response variable, consisted of the concerning information for the period of 

three years from 2010 to 2012. Information on the Flemish models were collected with the 

Flemish Ministry of Mobility and Public Works (MOBIEL VLAANDEREN, 2018). Likewise for São 

Paulo, we used the link length information, provided by OMS (2018). The same road features 

used in that case, were considered in the Flemish models.  

 

The Flemish dataset, in addition to significant information related to socio-economic, socio-

demographic and road networks provided foremost diverse and suitable exposure variables, 

i.e., Number of Trips (NOTs), vehicles flow and Vehicle Kilometers Traveled (VKT). Table 3.9 

displays a list of variables that have been collected for Flanders and included in the final 

Flemish models (marked in bold). Table 3.10 summarizes their descriptive statistics.  
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Table 3.9 - Description of the variables collected for Flanders 

Variable Description 

Active transport Total  number of casualties of active transport mode users in a TAZ over 3 years 

Motorized transport Total number of casualties of motorized transport mode users in a TAZ over 3 
years 

Capacity Hourly average capacity of links in a TAZ (Passenger car per direction/h) 

Link length of active 
transport  

Total link length of active transport in a TAZ (km) 

Link length of motorized 
transport  

Total link length of motorized transport in a TAZ (km) 

Intersection density  Number of intersections per square kilometer 

NOTs of active transport  
Average daily number of trips originating/destined from /to a TAZ involving 
active mode 

NOTs of motorized 
transport 

Average daily number of trips originating/destined from /to a TAZ involving 
motorized transport 

VKT - Highway  Total vehicles kilometers traveled on highways in a TAZ 

VKT - Other roads  Total vehicles kilometers traveled on roads other than highways in a TAZ 

Car ownership Car ownership per household in a TAZ 

School children Total number of children living in a TAZ that attend some school 

Population  Total number of inhabitants in a TAZ 

Speed Average speed limit in a TAZ (km/h) 

Area Total surface area of a TAZ (km2) 

Link density Total link length in a TAZ (km2) 

Intersection Total number of intersection in a TAZ 

Highway Presence of a highway in a TAZ described as: “No” represented by 0, “Yes” by 1 

Urban Is the TAZ in the urban area ? “No” represented by 0, “Yes” represented by 1 

Suburban Is the TAZ in the suburban area? “No” represented by 0, “Yes” represented by 1 

Households Total number of households in a TAZ 

Employees Total number of employed people in a TAZ 

Income level 
Average income of residents in a TAZ described as: “Monthly salary less than 
2249 euro” represented by 0, “Monthly salary more than 2250 euro” 
represented by 1 
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Table 3.10 - Descriptive statistics of variables collected for Flanders 

  Variable Average Min Max SDa 
C

as
u

al
ti

e
s Active transport  

 
15.04 0 298 25.06 

Motorized transport  45.36 0 500 53.83 

N
e

tw
o

rk
 

Capacity  1790.10 1200 7348 554.60 

Link length of active transport 14.85 0 88 10.31 

Link length of motorized 
transport 

15.87 0.39 87.95 10.80 

Intersection density  1.75 0 50.63 3.37 

Speed 69.40 31 120 10.91 

Area 6.09 0 45 4.78 

Link density 3.37 0 20.44 2.41 

Intersection 5.80 0 40 5.90 

Highway  0 1  

Urban  0 1  

Suburban  0 1  

Ex
p

o
su

re
 

NOTs of active transport  1103.40 0 8630 1316.12 

NOTs of motorized transport 2750.09 0 22650 2642.17 

VKT - Highway  27471.82 0 946153 84669.53 

VKT - Other roads  26662.85 0 303238 28133.04 

So
ci

o
e

co
n

o
m

ic
 a

n
d

 

d
e

m
o

gr
ap

h
ic

 

Car ownership 1.13 0 14.00 0.47 

School children 364.09 0 92.45 772.59 

Population 2614.53 0 15803 2582.60 

Households 1091.15 0 8062 1177.90 

Employees 888.73 0 16286 1575.31 

Income level  0 1  

aSD: Standard Deviation 
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3.3 SOFTWARE PACKAGES 

 

Spatial CPM and related tasks concerning the proposed analyses of this research were carried 

out using the software packages listed and described in Table 3.11 as follows.  

 

Table 3.11 - Software packages used in the research 

Software Application 

IBM SPSS 24 Non-spatial statistics (characterization of the database through 
descriptive measures, histograms, hypothesis test) 

GWR 4.0  Construction of CPM 

Geostatistical 
Modelling Software - 
geoMS – version 1.0 

Construction of CPM, visualization of the point’s map, adjustment of 
experimental variograms, kriging and cross validation 

ArcGIS 10.1 Preparation of the themed and kriging maps 

QGIS 2.18.23 Preparation of the themed maps 

TransCAD Preparation of the themed maps 

 

 

3.4 METHODOLOGICAL FRAMEWORK  

 

The proposed methodological framework was structured attempting to answer the five 

Research Questions (RQ) that together form the general and specific objectives of this 

research. Taking this into account, the core of the thesis lies in Chapters 4, 5 and 6 at which 

we addressed these objectives and corresponding RQ. Figure 3.9 presents an overview of this 

investigation. Subsequently, we briefly describe the tasks concerning the investigations in 

each chapter.  
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Figure 3.9 – General objective and research questions 

General objective: 

To assess the potential impacts of supplementary data on spatial model performance and 

the suitability of different spatial modeling approaches 

Research questions: 

RQ1. Based on a benchmarking exercise, what potential improvements in spatial model 

performance can be obtained by including additional explanatory variables? 

RQ2. What are the statistical individual contributions of variables to the developed models? 

RQ3. Are these models reliable? 

RQ4. In case of data unavailability, would the produced models be suitable to estimate 

unsampled unit of areas? 

RQ5. Considering geostatistics, by means of Kriging with External Drift (KED), what is the 

most suitable method to explore the spatial dependence of crash data and solve issues 

involving missing information? 

 

In Chapter 4, analyses allowed us assess the potential impacts of enriched information on 

spatial model performance (RQ1 and RQ2) and verify the reliability of the produced GWPR 

models (RQ3). To this end, casualties were firstly associated with all available variables for São 

Paulo and the corresponding ones for Flanders. Models developed at this stage were called 

“basic models”. In the next step, prediction models were developed only for Flanders 

considering all the available information in the Flemish dataset. These models were called 

“improved models”. Due to data unavailability we could not conduct this exercise for São 

Paulo. Secondly, a sensitivity analysis was carried out to identify the individual statistical 

contribution of the input information in the casualty prediction. Lastly, model accuracy was 

assessed by the corresponding goodness of fit obtained with a pre-determined validation 

sample. This was possible by adjusting the Flemish improved models within the repeated 

holdout method. In this respect, prediction models were developed using only part of the data 

and a different part to validate them. Since GWR models are local models, each subzone has 

its own prediction model with its unique coefficient estimates. Unlike Generalized Linear 
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Models (GLM) models where you create a single model and can easily feed it with the input 

data to validate the constructed model, in GWR we possess several local models to be 

validated. Therefore, it was a challenge to validate these models. This validation exercise is of 

great importance especially when we would like to use the existing models to estimate the 

expected crash frequency of zones with missing data or even zones without any information. 

In this investigation, we carried out the analysis in the following order and called it “GWR 

holdout1”: 

 

1. GWR models are developed for 70% of the subzones. 

2. A Distance Weighted Function (DWF) is used to create local coefficient estimates for 

each of the missing subzones (i.e. validation subzones).  

3. Input data (i.e. measures of the explanatory variables) of the validation subzones are 

used to estimate casualties in these subzones. 

4. Casualty estimates obtained in step 3 are compared with observed number of 

casualties to validate these models. 

 

Aiming to investigate the spatial model prediction accuracy at unsampled subzones (RQ4), in 

Chapter 5, we extended the empirical evaluation in the previous chapter and took one-step 

further. This time we estimated casualties of the missing subzones based on the casualty 

estimates produced for 70% of the data. Here we tried to test the following hypothesis: for 

subzones without any information, would it be better to use the casualty estimates of the 

neighboring subzones instead of using their coefficient estimates? This implies that, we not 

only used weighted coefficient estimates of the surrounding subzones, but also used input 

information of the neighboring, inspired by the first law of geography stating that “everything 

is related to everything else, but near things are more related than distant things”. We named 

this approach “GWR holdout2” and performed the analysis in the following order: 

 

1. GWR models are developed for 70% of the subzones. 

2. Expected casualties are calculated for these subzones. 
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3. A DWF is used to create an estimated casualty for each of the missing subzones (i.e. 

validation subzones).  

4. Casualty estimates (from step 3) are compared with observed number of casualties to 

validate these models. 

 

Additionally and , in order to verify the validity of this novel GWR validation approach, results 

of model performance were compared to those obtained with two missing data imputation 

approaches, i.e. Mean imputation (MEI) and K-nearest neighbor (KNN) imputation. Models 

within these approaches were developed based on the mean of the observed values (MEI), 

and the observed values of the explanatory variables itself (KNN). In other words, while the 

former was given by the imputation of one single value for each explanatory variable, the 

latter, was given by the imputation of the observed values for each validation sample.  

 

Figure 3.10 summarizes the tasks and outcomes for the GWR holdout and imputation 

approaches. Tasks that were carried out for model estimation are marked in blue, and tasks 

that were carried out for model validation, thus taking into account the nearest neighbors, are 

market in yellow. 
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Figure 3.10 - Approaches’ overview 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, in Chapter 6, we evaluated the performance of GWR (by means of GWR holdout 1 and 

GWR holdout2) in relation to Geostatistics (by means of KED), and the two missing data 

imputation approaches, i.e. MEI and KNN. This enabled us to answer the last research question 

of this thesis (RQ5).  

 

Figure 3.11 summarizes the methodological framework and tasks concerning the 

investigations at analytical chapters. Detailed information concerning the methodological 

framework is meticulously provided in each chapter. Subsequently, in the next subsection, we 

describe the repeated holdout method.  

 

 

GWR holdout1 GWR holdout2 MEI KNN 
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Figure 3.11 - Methodology framework 
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3.4.1 Repeated Holdout Framework 

 

In order to test the accuracy of the developed Flemish spatial models (questioned in the three 

core chapters in the RQ3, RQ4 and RQ5), we adjusted these models within the Holdout 

Method. In this respect, model accuracy was assessed by the corresponding goodness of fit 

obtained with a pre-determined validation sample. This means that part of the data was used 

for estimate the models (70%) and a different part for validating (30%). Therewith, casualty 

estimates were compared to the observed information, at the validation subzones, by means 

of Mean Squared Prediction Error (MSPE) and Pearson Correlation Coefficient (PCC). 

 

Subsequently, aiming to improve the reliability of estimates, we repeated the holdout method 

five times. This practice is called Random Sub sampling or Repeated Holdout Method (by 

repeating the holdout method k-times). This means that analyses, in this study, were carried 

out for five subsamples with 100% of the data, however with random sets of 70/30 percent. 

Figure 3.12 illustrates how this process was followed.  

 

Finally, the overall accuracy of models in the validation samples was determined by the 

average of the performance measures (i.e. MSPE and PCC) obtained for the five interactions 

with the 70/30 subsamples. This was applied for both motorized and active transport modes. 

Furthermore, taking into account the proposed comparison of model performance for all 

multivariate spatial data analysis approaches implemented in this research, we used the same 

five subsamples with 70/30 percent to construct the empirical casualty prediction models in 

Chapters 4, 5 and 6, therefore, addressing RQ3, RQ4 and RQ5.  
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Figure 3.12 - Segregation of the database within the Repeated Holdout Method 
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4 STUDY OF THE IMPACTS OF ENRICHED 

INFORMATION ON SPATIAL MODEL PERFORMANCE 

 

Analyses in this chapter attempt to answer the following research questions:  

RQ1. Based on a benchmarking exercise, what potential improvements in spatial model 

performance can be obtained by including additional explanatory variables? 

RQ2. What is the statistical individual contribution of variables to the produced models? 

RQ3. Are these models reliable? 

Therefore, this chapter is subdivided into four main sections. In the first section, the 

improvements in the performance of Geographically Weighted Poisson Regression (GWPR) 

models by enhancing the explanatory variables are outlined. This investigation is carried out 

based on available information of Flanders and São Paulo, for 100% of the data. Data on 

casualties and fatalities are used as dependent variables in the models developed for Flanders 

and São Paulo, respectively. In the next section, a sensitivity analysis is carried out to identify 

the statistical individual contribution of the input information in the casualty prediction. 

Moreover, in order to verify the reliability of these models, in the third section, we frame them 

within the repeated holdout method, by randomly subsampling the entire database into two 

sets with 70% and 30% of the data, five times. Therewith, we suggest an approach to fit 

Geographically Weighted Regression (GWR) within the concept of model validation and model 

estimation, called GWR holdout1. Finally, the last section ends this chapter drawing the 

conclusions found at each stage. 

 

 
4.1 IMPROVEMENTS IN SPATIAL MODEL PERFORMANCE: CASE STUDIES IN SÃO PAULO 

AND FLANDERS 

 

In order to demonstrate the potential improvements in the performance of spatial prediction 

models by enhancing the potential explanatory variables, a case study was carried out based 

on available fatal and injury crash-related information from São Paulo (Brazil) and Flanders 

(Belgium). Given the attributes of the variables collected for both regions of study,  
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information concerning the number of fatalities per municipality was used as the dependent 

variable for models developed for São Paulo, and casualties per subzone, as the dependent 

variable for models developed for Flanders. For both regions, models were produced for active 

and motorized transport mode users, and using 100% of the data. Hence, the methodological 

procedure was divided into two main stages.  

 

In the first stage, GWPR models were developed for São Paulo and Flanders, by only taking 

into account the same explanatory variables available in both datasets. Given the limitations 

of the Brazilian dataset, the results of this stage would reveal the best we could do with the 

available information of São Paulo, while there would be plenty of room yet to improve the 

Flemish models. In the second stage, in order to highlight the importance of having data which 

is as complete as possible, GWPR models were developed for Flanders only, by considering all 

available variables in the Flemish dataset.  

 

At both stages, a multicollinearity test was conducted prior to the spatial modelling steps, 

enabling us to assess the suitability that variables would have in the models and select the 

most significant ones to compose the final models for each dependent variable. As common 

practice, the Variance Inflation Factor (VIF) was used to quantify how much the variance of 

the estimated regression coefficients increased if predictors were correlated. As a common 

rule of thumb, 10 was defined as a cut off value, meaning that if VIF was higher than 10, then 

multicollinearity was high (Kutner, Nachtsheim, & Neter, 2004) and, therefore, variables with 

high VIF measures should not be present in the model simultaneously. After excluding 

variables with high VIF, the remaining ones were used to produce the GWPR models. At the 

end of this stage, models, for which we used the minimum data, were developed and called 

basic models.  

 

In the second stage, the affluence of available information in the Flemish dataset enabled us 

to produce distinct GWPR models with different combination of explanatory variables, thus 

selecting the ones with the best overall fit for each dependent variable. This exercise was 

carried out by having the intercept term as our starting point and analytically combining 

variables with a VIF lower than 10. Hereafter, due to the greater complexities of the GWR 
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estimation procedure that conceivably causes interrelationships among local coefficient 

estimates when there is no collinearity among the explanatory variables (Gue et al., 2008; 

Hadayeghi et al., 2010; Pirdavani, Bellemans, Brijs, & Wets, 2014), at this stage, evidence of 

multicollinearity among the produced local coefficient estimates was also verified. Thus, 

among all the Crash Prediction Models (CPM) developed, the most adequate for each 

dependent variable, was selected as it met the criteria of non-multicollinearity among 

variables and local coefficient estimates, and subsequently based on the lowest corrected 

Akaike Information Criterion (AICc) value. As a common rule-of-thumb, the difference 

between the models was considered significant when the difference of AICc values between 

two models was higher than 4 (Charlton & Fotheringham, 2009). At the end of this stage, 

models, for which we used the most significant information in the Flemish dataset, were 

developed and called improved models.  

 

Finally, the performance of the improved models was compared with the basic models by 

means of AICc, Mean Squared Prediction Error (MSPE) and the Pearson Correlation Coefficient 

(PCC). Results of both stages, are presented in the next subsections, for both active and 

motorized transport. 

 

 

4.1.1 GEOGRAPHICALLY WEIGHTED REGRESSION BASIC MODELS – SÃO PAULO 

 

In spite of a great amount of available information in Brazil, most of it was limited to socio-

economic and demographic variables. As result, most of the pieces of information collected 

(e.g., area, number of inhabitants, population by gender, urban and rural population, fuel 

consumption, vehicle fleet, employed population, occupied population, Gross National 

Product, Human Development Index, etc.), were found to be correlated with each other, 

therefore presenting high VIF values. Hence, produced basic models were limited to 

information concerning the link length and population only. VIF values among the variables of 

the basic models are shown in Table 4.1. At this stage, the population was used as the 

exposure variable in its Natural Logarithm (ln) form, for active and motorized transport. The 

ln was taken so that in case of having zero exposure no crash would be expected. In this 
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respect, the choice of using population as the exposure variable was given by its model 

outperformance compared to link length, and based on the assumption that this  information 

is a better and a more meaningful proxy of exposure. 

 

Table 4.1 - VIF values among variables – Basic Models – São Paulo 

Parameters Motorized Transport Active Transport 

Ln Population 2.241 2.217 

Link length 2.241 2.217 

 

Table 4.2 shows the local parameter estimates for both dependent variables. This information 

is described by five number summaries: minimum, maximum (lower, median and upper 

quartile), tabulated in this format and sequence. Moreover, the information concerning model 

performance is also presented.  

 

Table 4.2- Local parameter estimates and model performance - Basic Models – São Paulo 

Parameters Active Transport Motorized Transport 

Intercept 
-24.094, 15.716 

(-13.546, -10.626, -8.081) 
-16.228, 0.031 

(-8.576, -6.837, -4.896) 

Ln Population 
-2.249, 2.463 

(0.874, 1.155, 1.438) 
0.019, 1.898 

(0.672, 0.871, 1.053) 

Link length 
-0.006, 0.038 

(-7.8e-04, 1.5e-04, 1.2e-03) 
-0.009, 0.010 

(2.2e-04, 4.4e-04, 1.4e-03) 

GWPR AICc 1754.804 3095.810 

Global AICc 2178.477 4940.469 

MSPE 50.49 94.99 

PCC 0.953 0.941 

 

Despite the impressive results of model performance for the Brazilian basic models, this is not 

particularly surprising in light of the “large” aggregation level of the data (i.e. municipalities) 

and differences in the areal units of analysis. These effects of the scale (large aggregation) are 
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related to Modifiable Areal Unit Problem (MAUP) and can lead to inaccurate estimation 

(Openshaw & Taylor, 1979, 1981; Openshaw, 1984; Cressie, 1996).  

 

Figure 4.1 shows maps of the local coefficient estimates as well as their significance at 0.05 

level, for motorized and active transport in São Paulo. In order to determine where 

relationships were significant (in blue) and where they were not (in brown), we computed the 

t-statistics.  

 

Figure 4.1 - Maps for motorized transport - Basic model – São Paulo 
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Figure 4.2 shows maps with the observed and predicted number of fatalities, for motorized 

transport, and a map of errors with the local differences found between these values. 

Subsequently, Figures 4.3 and 4.4 show the respective maps for active transport.  

 

Figure 4.2 - Observed and predicted number of fatalities 

(Motorized transport - Basic model – São Paulo) 
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Figure 4.3 - Maps for active transport - Basic model – São Paulo 
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Figure 4.4 - Observed and predicted number of fatalities 
(Active transport - Basic model – São Paulo) 
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4.1.2 GEOGRAPHICALLY WEIGHTED REGRESSION BASIC MODELS – FLANDERS 
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Table 4.3 - VIF values among variables – Basic Models – Flanders 

Parameters Motorized Transport Active Transport 

Ln Population 1.262 1.224 

Link length 1.262 1.224 

 
 

Table 4.4 - Local parameter estimates and model performance - Basic Models - Flanders 

Parameters Active Transport Motorized Transport 

Intercept 
-8.890, 11.749 

(0.153, 1.813, 2.966) 
-5.981, 8.582 

(1.894, 3.336, 4.246) 

Ln Population 
-1.646, 1.668 

(-0.046, 0.130, 0.365) 
-1.252, 1.307 

(-0.063, 0.077, 0.267) 

Link length 
-0.264, 0.130 

(-0.038, -0.012, 0.010) 
-0.149, 0.139 

(-0.031, 0-0.008, 0.009) 

GWPR AICc 29345.571 60993.481 

Global AICc 50570.229 102673.889 

MSPE 384.87 1786.66 

PCC 0.629 0.626 

 
Figure 4.5 presents the local coefficient estimates, as well as their significance maps at 0.05 

level. Subsequently, Figure 4.6 shows maps of observed and predicted number of casualties,  

and the local errors obtained for motorized transport, in Flanders. The corresponding maps 

for active transport are presented in Figures 4.7 and 4.8.  
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Figure 4.5 - Maps for motorized transport - Basic model – Flanders 
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Figure 4.6 - Observed and predicted number of casualties 

(Motorized transport - Basic model – Flanders) 
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Figure 4.7 - Maps for active transport - Basic model – Flanders 
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Figure 4.8 - Observed and predicted number of casualties 

(Active transport - Basic model – Flanders) 
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After carrying out the VIF test among variables and produced coefficient estimates, the final 

improved models for active and motorized transport modes comprised the following 

information: NOTs, number of children attending school (school children), road capacity 

(capacity), intersection density, car ownership, and VKT. At this stage, we used VKT as the 

exposure variable in its logarithm form. VIF values among the variables and local coefficient 

estimates for the final set of variables are shown in Tables 4.5 and 4.6. Subsequently, Table 

4.7 presents the respective local coefficient estimates found for each explanatory variable in 

the five number summary format, together with the information concerning model 

performance.  

 

Table 4.5 - VIF values – motorized transport – Flanders 

Parameters Among variables  Among local coefficient estimates 

NOTs 2.945 3.077 

School children 2.226 3.276 

Capacity 1.613 1.370 

Intersection Density 1.305 1.542 

Car ownership 1.405 1.076 

VKT 1.997 1.651 

 

 

Table 4.6 -VIF values – active transport – Flanders 

Parameters Among variables  Among Coefficient Estimates 

NOTs 3.003 3.098 

School children 2.274 2.914 

Capacity 1.047 1.131 

Intersection Density 1.389 1.306 

Car ownership 1.050 1.035 

VKT 1.280 1.232 
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Table 4.7 - Local parameter estimates and model performance - Improved Models - Flanders 

Parameters Active Transport Motorized Transport 

Intercept 
-14.835, 13.933 

(-0.928, 1.580, 4.068) 
-7.604, 11.041 

(1.585, 3.312, 4.973) 

NOTs 
-0.002, 0.005 

(-2.78-04, 4.8e-05, 4.4-04) 
-9.4e-04, 0.001 

(-1.04e-04, 2e-05, 1.23e-04) 

School children 
-0.007, 0.003 

(-9.16-04, -2.33e-04, 3.4e-04) 
-0.004, 0.003 

(-5.74e-04, -1.43e-04, 2.33e-04) 

Capacity 
-0.008, 0.007 

(-3.46e-04, 7.3e-05, 5.47e-04) 
-0.007, 0.005 

(-3.89-04, 1.5e-05, 4.5-04) 

Intersection 
density 

-4.183, 1.686 
(-0.139, 0.023, 0.152) 

-1.441, 1.171 
(-0.086, 0.025, 0.131) 

Ln VKT 
-0.653, 1.486 

(-0.054, 0.128, 0.306) 
-0.666, 0.888 

(-0.092, 0.076, 0.246) 

Car Ownership 
-7.378, 6.584 

(-1.649, -0.375, 0.445) 
-6.763, 4.722 

(-1.084, -0.128, 0.456) 

GWPR AICc 22553.607 49525.611 

Global AICc 45486.734 94634.071 

MSPE 261.17 1354.12 

PCC 0.771 0.738 

 

Figure 4.9 presents the respective local coefficient estimates and significance maps, for 

motorized transport. 
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Figure 4.9 - Maps for motorized transport - Improved model – Flanders 
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Figure 4.10 shows the produced maps of observed and predicted number of casualties, and 

the corresponding local errors. Figures 4.11 and 4.12 present the corresponding maps for 

active transport.  

 

Figure 4.10 - Observed and predicted number of casualties 

(Motorized transport - Improved model – Flanders) 

 

 

 

Observed number of casualties Predicted number of casualties 

 
 
 
 
 
 

Local errors 

 

 

 

 

 

 

 

 

 

 

 

 

0 to 11 
11 to 28 
28 to 59 
59 to 1000 

 

0 to 11 
11 to 28 
28 to 59 
59 to 1000 

 

No scale 



96 
 

 
 

Figure 4.11 - Local coefficient estimates and significance maps 
(Active transport - Improved model – Flanders) 
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Figure 4.12 - Observed and predicted number of casualties 

(Active transport - Improved model – Flanders) 
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One explanation for these counterintuitive signs could be that some variables, at some 

locations, are locally correlated while no global multicollinearity is observed among them 

(Wheeler & Calder, 2007; Guo et al., 2008; Hadayeghi et al., 2010; Pirdavani et al., 2014). Such 

local correlation has been attributed as the major reason for problems with counterintuitive 

signs. In order to address this issue, at the second stage, we excluded variables at which high 

VIF values were found among the produced coefficient estimates. The limitation of variables 

within the basic models, restrained us from conducting this exercise at the first stage, 

therefore corroborating with the importance of a more diverse set of explanatory variables. 

 

Such counterintuitive signs could also be a result of the omission of important variables, which 

leads to omitted variable bias. Although not thoroughly explored in this study, one could 

assume the correlation of link length and other road features or exposure variables that were 

omitted, therefore producing bias. The exclusion of such essential variables, specially an 

exposure variable, could systematically invalidate further conclusions that could be derived 

from the results (Washington et al., 2010; Mitra & Washington, 2012). A more in-depth 

investigation concerning this problem could help to provide a better insight of the direction 

of these effects, which in this study, remains speculative.  

 

From a statistical point of view, the improved Flemish models (not surprisingly) outperformed 

the basic models for both dependent variables. In the model developed for motorized 

transport, reductions of proximately 20% and 25% were observed compared to the basic 

model, for AICc and MSPE respectively (Table 4.8). Likewise for the active mode, 25% and 35% 

reductions were obtained for AICc and MSPE, respectively (Table 4.9). 

 
Table 4.8 - Model parameters for motorized transport in Flanders 

 Basic Model Improved Model 

GWPR AICc 60993.481 49525.611 

Global AICc 102673.889 94634.071 

MSPE 1786.66 1354.12 

PCC 0.626 0.738 
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Table 4.9 - Model parameters for active transport in Flanders 

 Basic Model Improved Model 

GWPR AICc 29345.571 22553.607 

Global AICc 50570.229 45486.734 

MSPE 384.87 261.17 

PCC 0.629 0.771 

 
Moreover, results of a more diverse dataset, especially including an exposure variable enabled 

the development of coherent coefficient estimates and signs. Results of this study revealed 

positive associations with casualties, in most TAZs, for intersection density, capacity, NOTs and 

VKT. These results are consistent with findings in previous studies (such as Hadayeghi et al., 

2003; Aguero-Valverde & Jovanis, 2006; Pirdavani et al., 2013a, 2013b; Shariat-Mohaymany 

et al., 2015; Xu et al., 2017).  

 

Casualties were found to have a negative correlation with the number of children attending 

school and car ownership, in a large number of TAZs. This negative association with other 

social standing variables, e.g., income level, has been found in other previous studies (such as 

in Li, Wang, Liu, Bigham, & Ragland, 2013; Pirdavani et al., 2013a, 2013b; Pirdavani et al., 2014; 

Pirdavani et al., 2016). One could assume that, less casualties are expected to occur in more 

affluent areas (in this study, where car ownership is higher). Yet, particularly concerning the 

negative association of casualties and car ownership, it could be that, land-use might have an 

influence on the speed limits, and therefore on the event. Especially in Flanders, car ownership 

is generally larger in suburban and rural zones and lower in urban zones and city centers, 

where more alternative means of transportation are available, for example. In suburban and 

rural zones, speed limits on the road are typically higher compared to those allowed in the 

urban areas and city centers. Hence, such negative association, might be explained by the fact 

that car ownership is a proxy variable of the average speed limit in the TAZ. Given the negative 

association of casualties and children attending school, we would assume that school children 

might be a proxy variable of the presence of schools in the TAZ, as well as speed limit and 

human factors associated to the driver’s behavior, might have an influence on the event. Since 
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the introduction of lower speed limits, i.e. 30km/h, near schools, speed limits in such TAZs are 

lower than in those without a school.   

 

In order to corroborate these assumptions, and enable us to better understand the 

interactions between variables, such a macro-level analysis could be used as a basis for local 

investigations. This could help to enforce appropriate countermeasures, especially in areas at 

which higher estimates were found. For instance, at subzones where casualties were found to 

have a positive association with school children, micro-level analysis could suggest changes in 

the speed limits or signalizing intersections. This could be identified as the major contribution 

of having a more complete and diverse dataset. In spite of more reliable models, they would 

allow policy makers to prioritize hot zones, and depending on the targets, specific TAZs could 

be used to investigate the interaction between variables, both within and outside of the 

models. 

 

 

4.2 SENSITIVITY ANALYSIS  

 

In spite of the large body of research, which have enabled researchers and policy makers to 

associate crashes to other variables (discussed in Chapter 2), they are limited in their scope to 

assess the influence of the predictor variables on crash occurrence. Especially for policy 

makers, an insight into the statistical contribution of these variables concerning the prediction 

models could also contribute in the decision-making process, by helping policy makers outline 

data collection priorities. Besides the financial and practical considerations it might have, such 

an investigation is justifiable as to the best of our knowledge, this practice has only been 

explored in terms of microscopic-level analysis, focusing on the influence of the Highway 

Safety Manual (HSM) data variables (AASHTO, 2010) on safety predictions. Some approached 

found in previous studies include the fractional factorial method (Akgüngör & Yıldız, 2007), 

Boosted Regression Trees (BRT) (Saha, Alluri, & Gan, 2015) and the “change one-factor-at-a-

time” approach, which is the most commonly used sensitivity method in the literature (Alluri 

& Ogle, 2012; Findley, Zegeer, Sundstrom, Hummer, & Rasdorf, 2012; Jalayer & Zhou, 2013, 

Williamson, Jalayer, Zhou, & Pour-Rouholamin, 2015).  
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In the present study, we conducted such investigation by a step-wise approach, and 

accounting for variables used in the improved Flemish models. To this end, we analytically 

added each variable to the prediction models, altering the other ones and evaluating their 

statistical contribution of each variable one at a time and their interactions, thus accounting 

for simultaneous variations of the input variables. To this end, the intercept term was used as 

a starting point. Hence, explanatory variables were analytically added to the prediction 

models and ranked according to their contribution in the model’s performance. This 

contribution was measured by means of the AICc variations (%), where the larger reduction in 

AICc by the inclusion of a variable, the greater its contribution to the model performance. 

Subsequently, this process was repeated with the remaining variables, but taking into account 

their interactions. Thereupon, variables were tabulated according to their relative percentage 

of influence on the models in relation to the intercept term, namely Relative I, and in relation 

to its previously best fitted model composition, namely Relative II. Tables 4.10 and 4.11 show 

these improvements in model performance by means of the percentage reductions found on 

AICc, for motorized and active transport, respectively.  

 

The results show that road capacity has the highest statistical contribution in the performance 

of CPM, for both active and motorized transport modes, suggesting that this information has 

priority over others. Secondly, VKT statistically contributes more to motorized transport 

models, while car ownership contributes more to active transport models, and so on. This 

practice could be useful as it would help policy makers prioritize data collection, for instance 

by targeting variables that add higher statistical contributions to one specific travel mode or 

both, thus reducing costs with data collection. This statement is supported in this study, for 

instance by the fact that road capacity has shown to bring major statistical contributions 

within the models, especially in relation to NOTs, which often have priority in data collection. 

However, the results of this investigation revealed that this information would not bring such 

significant contributions to the models, neither for active, nor for motorized transport. 
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Table 4.10 - Sensitivity analysis for motorized transport casualties 

Variables AICc Relative I Relative II 

Intercept 69996.705 - - 

    

Intercept + Capacity 65149.59 -6.92 -6.92 

Intercept + LN VKT 65345.234 - 6.65  

Intercept + Inters. density 66067.506 -5.61  

Intercept + Car ownership 66100.094 -5.57  

Intercept + School children 66106.673 -5.56  

Intercept + NOTs 67022.431 -4.25  

Intercept + Capacity + LN VKT 61120.219 -12.68 -6.18 

Intercept + Capacity + School children 61573.189 -12.03  

Intercept + Capacity + Inters. density 61696.957 -11.86  

Intercept + Capacity + Car ownership 61675.121 -11.89  

Intercept + Capacity + NOTs 62728.751 -10.38  

Intercept + Capacity + LN VKT + School children 57616.189 -17.69 -5.73 

Intercept + Capacity + LN VKT + Inters. density 58050.529 -17.07  

Intercept + Capacity + LN VKT + Car ownership 58261.013 -16.77  

Intercept + Capacity + LN VKT + NOTs 58963.854 -15.76  

Intercept + Capacity + LN VKT + Schoolchildren + Inters. density 53909.947 -22.98 -6.43 

Intercept + Capacity + LN VKT + School children + Car ownership 54620.406 -21.97  

Intercept + Capacity + LN VKT + School children + NOTs 54711.502 -21.84  

Intercept + Capacity + LN VKT + School children + Inters. Density + 
Car ownership 

51521.459 -26.39 -4.43 

Intercept + Capacity + LN VKT + Schoolchildren + Inters. Density + 
NOTs 

51676.283 -26.17  

Intercept + Capacity + LN VKT + Schoolchildren + Inters. Density + Car 
ownership + NOTs 

49525.611 -29.25 -3.87 
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Table 4.11 - Sensitivity analysis for active transport casualties 

Variables AICc Relative I Relative II 

Intercept 33593.505 - - 

Intercept + Capacity 33593.505 -6.65 -6.65 

Intercept + + Inters. density 31409.097 -6.50  

Intercept + LN VKT 31428.144 -6.45  

Intercept + Car ownership 31518.198 -6.18  

Intercept + School children 31746.727 -5.50  

Intercept + NOTs 32294.599 -3.87  

Intercept + Capacity + Car ownership 29132.765 -13.28 -7.10 

Intercept + Capacity + Inters. density 29266.078 -12.88  

Intercept + Capacity + School children 29512.963 -12.15  

Intercept + Capacity + LN VKT 29658.326 -11.71  

Intercept + Capacity + NOTs 30345.477 -9.67  

Intercept + Capacity + Car ownership + Inters. density 27310.697 -18.70 -6.25 

Intercept + Capacity + Car ownership + NOTs 28226.467 -15.98  

Intercept + Capacity + Car ownership + School children 31255.628 -6.96  

Intercept + Capacity + Car ownership + LN VKT 31696.386 -5.65  

Intercept + Capacity + Car ownership + Inters. Density + School 
children 

25276.683 -24.76 -7.45 

Intercept + Capacity + Car ownership + Inters. Density + LN VKT 25981.055 -22.66  

Intercept + Capacity + Car ownership + Inters. Density + NOTs 26308.823 -21.68  

Intercept + Capacity + Car ownership + Inters. Density + School 
children + NOTs 

23876.451 -28.93 -5.54 

Intercept + Capacity + Car ownership + Inters. Density + School 
children + LN VKT 

31556.101 -6.06  

Intercept + Capacity + Car ownership + Inters. Density + School 
children + LN VKT 

22553.608 -32.86 -5.54 

  

 

4.3 MODEL VALIDATION 

 

Analyses at this subsection were carried out aiming to check the validity of the produced 

Flemish GWPR models. This included empirical work where model accuracy was assessed by 

the corresponding goodness of fit obtained with a pre-determined validation sample. Taking 

this into account, we implemented the concept within the holdout framework, meaning that 
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part of the available dataset was used for model estimation (70%) and a different part for 

validating (30%) the model. However, the basis of the GWR approach is to generate local 

specific models, which implies that validation with GWR cannot be accomplished by 

conventional methods. To overcome this limitation, we developed, and propose in the next 

subsection a GWR validation framework. Yet, in order to improve the reliability of estimates 

within the validation samples, we repeated the process within the holdout method for five 

random subsamples containing each 70% and 30% of the data. This enabled us to average the 

performance measures of these different interactions, thus yielding an overall goodness of fit. 

This concept, also known as the repeated holdout, was detailed in Chapter 3, and is discussed 

in the next subsection along with the proposed GWR validation framework.  

 

 

4.3.1 PROPOSAL OF A HOLDOUT METHOD WITH GWR  

  

In order to improve the reliability of casualty estimates and enable appropriate inferences 

regarding the proposed methodology, we adopted the concept of repeated holdout. Analyses 

were conducted on five different Sub-Samples (SS), each with 100% of the data used in the 

Flemish improved models. Each SS was randomly split into two disjoint parts, i.e. 70% was 

used for model estimation and 30% was used for validating the models on unseen data. Such 

approach is illustrate in Figure 4.13, followed by a description of the procedure and results of 

model performance.   
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Figure 4.13 - GWR holdout method (GWR holdout1) 
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 Bandwidth size: defined by the optimal number of nearest neighbors chosen by the 

software used, for the primary analysis with the whole dataset; 

 Bandwidth selection criteria: AICc; 

 Kernel type: bi-square, given by the Equation 4.1.  

 

𝑊𝑖𝑗 = {
(1 − 𝑑𝑖𝑗

2/𝑏2)2    if 𝑑𝑖𝑗 < 𝑏                                      

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (4.1)   

 

Where 𝑊𝑖𝑗 is the measure of contribution of location j when calibrating the model for location 

i. 𝑑𝑖𝑗 represents the distance between locations i and j and b is the bandwidth.  

 
Hence, produced local weights were normalized and assigned in the validation samples to the 

nearby coefficient estimates produced with GWR with 70% of the data. This exercise was 

carried out separately for each explanatory variable. Then, produced weighted coefficient 

estimates for the neighboring subzones were consolidated and used to compose the local 

regressions. Hereafter, these regressions were adjusted with the observed information in the 

validation samples, and upon that yielding the final estimates. At the end of this process, GWR 

models, for which we used the weighted coefficient estimates and observed values of the 

explanatory variables, were developed and called “GWR holdout1”. Finally, casualty estimates 

with GWR holdout1 were compared to the observed information, at the validation areas, by 

means of MSPE and PCC. Table 4.12 shows the results of the model performance for both 

dependent variables.  

 
Table 4.12 - Model performance (GWR holdout1) 

 SS1 SS2 SS3 SS4 SS5 Average 

Motorized 
Transport 

PCC 0.371 0.389 0.446 0.399 0.333 0.39 

MSPE 2281.07 1975.39 2028.31 2115.43 2228.11 2125.66 

Active 
Transport 

PCC 0.353 0.342 0.288 0.263 0.445 0.34 

MSPE 417.07 471.95 799.87 682.8 508.12 575.96 

 

Results of model performance enables us to confirm the suitability of the GWPR improved 

models and the proposed GWR holdout method. Such an approach would enable future 
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studies to adjust the local features of GWR within the concept of model estimation and model 

validation datasets, and explore other potentialities of such a powerful tool. 

 

 

4.4 CHAPTER DISCUSSIONS AND CONCLUSIONS  

 

The difficulty in obtaining crash-related information in Brazil, and its consequences in terms 

of model performance and development of potential studies that could help to understand 

the crash phenomena and enforcement of appropriate countermeasures were the major 

motivations to carry out this investigation. Although some data can be found in different road 

departments, police, health and census online sources (i.e. DATASUS, IBGE and DENATRAN), 

there is no link between their databases, and none of them is able to provide a full and 

effective data source with regard to road casualties. Therefore, the absence of a 

comprehensive and complete database hampered the evaluation and follow-up of national 

road safety programs, as well as the development of studies that could contribute to national 

goals toward road safety.   

 

Particularly concerning the explanatory variables, most available information is restricted to 

socioeconomic and demographic variables. In spite of their merits, socioeconomic and 

demographic variables are often highly correlated with each other, and are not appropriate 

for safety-planning purposes, e.g. implementation of safety countermeasures. As Brazil, other 

developing countries have faced these challenges, and this drawback has unfortunately led to 

the use of poor and unreliable CPM to promote road safety in these countries. Whereas the 

limitation of prediction models to socioeconomic variables leads to failures in terms of 

countermeasures, unreliable and omitted information are disadvantages as this lack has a 

negative impact on the models in statistical terms.  

 

In view of the foregoing and answering RQ1, this investigation aimed to demonstrate the 

potential improvements in the performance of spatial crash prediction models by means of a 

more diverse dataset, including some additional potential explanatory variables. To this end, 

benchmarking was carried out based on macro-level CPM developed with available 

fatality/crash-related information from São Paulo and Flanders.  
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In contrast to developing countries, European countries such as Belgium have invested a great 

deal of time and money in obtaining crash-related information and make them available 

through public channels and to academia. This practice has led to outcomes such as new 

strategies and studies, and this trade-off has brought improvements in traffic safety by 

reducing number of casualties.  

 

Contrary to the Brazilian case, the Flemish dataset, in addition to significant information 

related to socioeconomic, sociodemographic and road network provided foremost diverse 

and suitable exposure variables. From a statistical perspective, this convenience contributed 

to the outperformance of the improved models, for both dependent variables (active and 

motorized transport). In the model developed for motorized transport, reductions of 

approximately 20% and 25% were observed compared with the basic model, for AICc and 

MSPE respectively. Likewise for the active mode, 25% and 35% reductions were found for AICc 

and MSPE. Moreover, Flemish models at the second stage, presented a powerful set of 

coefficient estimates together with suitable coefficient signs. One potential outcome of the 

resulting macro-level CPMs could be the identification of hot zones together with their major 

influence factors. Such results could be used as a reference to microscopic investigations, and 

the implementation of suitable safety countermeasures’ enforcement in a long-term 

transportation planning processes, therefore helping road safety planners to prioritize data 

collection, besides its financial consideration.  

 

Above all, this investigation highlighted the strong dependency of spatial CPMs on suitable 

and more diverse input information, enabling these models to perform as a “powerful tool”, 

as is usually found in the literature and properly explore the spatial dependence of crash data. 

Crashes are caused by multiple factors that vary locally, and this complexity implies that 

ideally, casualties are best predicted through a set of appropriate predictive variables, 

including, at least, one potential exposure variable. 

 

By modelling casualties in Flanders, based on the equivalent available data in São Paulo, 

results were found not to be suitable. Apart from producing unreliable coefficient estimates, 

they would also not be useful for safety planning and practical aspects. In other words, despite 
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the efforts to improve the statistical fit of the crash prediction models and associate crashes 

with the available explanatory variables in such circumstances, these models fail to 

comprehensively explain road casualties and, therefore, diminish the ability of applying 

suitable safety countermeasures. On the contrary, by modelling casualties based on the entire 

available data in Flanders, a better model overall fit for active and motorize transport modes 

was obtained. This suggests that a more diverse set of appropriate explanatory variables, 

including a relevant exposure variable, helps perhaps to address problems with 

counterintuitive signs and omitted variable bias. Moreover, in the ideal scenario, it could help 

policy makers to determine local appropriate countermeasures toward safety promotion (e.g. 

by altering the speed limits and intensifying local speed enforcement, improving intersections, 

installing traffic management and control systems, implementing crosswalks, etc.).  

 

It is also worth mentioning that variables included in the Flemish models, besides having been 

found to be significant in previous studies as well as in the present one, are more accessible 

than those used in microscopic analysis (e.g., driving data, braking and steering information 

or variables related to weather conditions). Moreover, they are just examples of other 

potential information that could be used to develop those predictive/descriptive models. 

Variables that are used in the models developed for Flanders, could be interesting suggestions 

for extra data collection in Brazil, as other local variables could also play a significant role, 

other than those included in the Flemish models.  

 

Subsequently, a sensitivity analysis was carried out allowing us to assess the statistical 

contribution of each variable in the prediction model performance, thus answering RQ2. 

Especially for countries where data is limited, either because of the lack of financial resources 

or other imposed conditions, this practice could also empower policy makers and responsible 

offices to prioritize data collection. For instance, results revealed that, the information 

concerning road capacity would signify a major statistical contribution for models, for both 

dependent variables. This is different from NOTs, for instance, which often have priority in 

data collection, but as revealed in this study, would not bring such a significant contribution 

to the Flemish models, neither for active, nor for motorized transport. 
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This investigation could have more value if similar analyses were carried out in different 

regions, based on their available information. The consolidation of the produced results would 

enable, for instance, the development of a solid benchmark and, therefore, validating the 

priorities outlined in this study and helping to determine the importance of different variables 

to model performance in different areas. In addition to this, for future studies, we suggest a 

more in-depth investigation addressing problems, such as omitted variable bias and 

endogeneity, as they could help to verify the validity of the assumptions of this study. One 

possible investigation could be for instance, to perform micro-level analysis in the identified 

hot zones, therefore assessing model performance by adding and removing variables to the 

models.  

 

Finally, results obtained within a GWR holdout framework confirmed the suitability of the 

GWPR models, thus answering RQ3 and validating the proposed method.   
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5 INVESTIGATION OF SPATIAL MODEL PREDICTIONS 

ACCURACY AT UNSAMPLED SUBZONES  

 

Data unavailability is a challenge often faced by researchers and policy makers in Brazil and 

many other developing countries. Unfortunately, this drawback has increasingly discouraged 

academia, and thus potential studies that could contribute toward road safety promotion. 

Taking this into account, in this chapter, we aim to test the accuracy of Geographically 

Weighted Regression (GWR) to predict casualties in locations where data is incomplete (e.g. 

due to lack of resources, procedures, political will, etc.). This helps us to answer “RQ4: In case 

of data unavailability, would the produced models be suitable to estimate unsampled unit of 

areas?”. To this end, we extend the empirical evaluation discussed in Chapter 4 and estimate 

casualties of the missing subzones based on the casualty estimates produced for 70% of the 

data. This implies that, we not only use weighted coefficient estimates of the surrounding 

subzones, but also the input information of the neighboring. At the end of this process, a novel 

GWR validation approach within the framework of repeated holdout is proposed and called 

GWR holdout2. Yet, in order to verify the validity of the suggested procedure, two missing-

data imputation approaches are carried out, enabling us to assess models’ performance and 

draw the conclusive inferences.   

 

 

5.1 GWR INTERPOLATION APPROACH INTO THE HOLDOUT FRAMEWORK  

 
Likewise for the validation procedure proposed in Chapter 4 (See subsection 4.3.1), the 

concept of repeated holdout was used at this stage. Considering this, Sub-Samples (SS) used 

in that investigation for model estimation (70%) and model validation (30%) were reproduced 

at this stage with equal geographical weighting scheme. However, in this investigation, we 

modeled casualties based on the casualty estimates produced for 70% of the data with GWR, 

and omitted the available information at the validation samples. This implies that analyses 

were performed based on the information of the nearest neighboring, only. Models 

developed at this stage were called GWR holdout2. 
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In GWR holdout2, distance weights derived from the normalized kernel function, i.e. Distance 

Weighted Function (DWF) were assigned to the produced GWR local estimates with the 

validation dataset. Thereafter, the consolidation of the produced local weighted estimates, 

for the neighboring subzones, resulted in our final estimates at the validation samples. Hence, 

casualty estimates with GWR holdout2 were compared to the observed number of casualties 

at the validation subzones, by means of Mean Squared Prediction Error (MSPE) and Pearson 

Correlation Coefficient (PCC). Figure 5.1 presents the employed approach followed by the 

results of model performance in Table 5.1.  

 

Figure 5.1 - GWR validation approach (GWR holdout2) 
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Table 5.1 - Model performance (GWR holdout2) 

  SS1 SS2 SS3 SS4 SS5 Average 

Motorized 
Transport 

PCC 0.413 0.39 0.493 0.445 0.431 0.43 

MSPE 2079.39 1893.99 1816.74 188.76 1877.31 1909.64 

Active 
Transport 

PCC 0.374 0.296 0.491 0.411 0.458 0.41 

MSPE 390.14 484.61 606.13 551.76 504.51 507.43 

 

Results of model performance confirmed the suitability of the proposed procedure fitting 

GWR into a cross-validation framework. Compared to GWR holdout1, GWR holdout2 

outperformed, presenting improvements between 10% and 20% for both explanatory 

variables in terms of PCC and MSPE. In order to corroborate with these inferences and test 

the validity of the proposed method, two missing-data imputation approaches were carried 

out. Subsequently, we compared their performance to the results obtained here. These 

methods and their outcomes are discussed in the next subsection.  

 

 

5.2 MISSING-DATA IMPUTATION 

 

In this investigation, prediction models were framed into two common imputation methods, 

i.e. Mean imputation (MEI) and K-nearest neighbor (KNN) imputation. In order to carry out 

analyses as close as possible to the previous GWR holdout approaches, casualties at 

unsampled subzones were estimated based on the information of the nearest neighboring 

and geographical weighting scheme, previously employed. This allowed us to compare the 

produced models fairly. Thereafter, these approaches were handled under different 

systematics as follows.  

 

In the models developed with MEI, local regressions at validation samples were adjusted with 

the mean of the observed values from the database with 70% of the data. This means that, 

one single value for each explanatory variable was imputed for all cases.  Hence, weights, 

derived from the normalized kernel function, were assigned to the local coefficient estimates 

produced with GWR for 70% of the data. This process was held separately, for each 
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explanatory variable. Thereupon, weighted outcomes were averaged and the produced mean 

values were used to compose the local regressions. Finally, casualty estimates were compared 

to the observed number of casualties at the validation subzones, by means of MSPE and PCC. 

Figure 5.2 presents a schema of the methodology adopted. 

 

Figure 5.2 - Figure 5.2 - Holdout method based MEI 
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Relying on the k nearest neighbors for a given missing value, in KNN, distance weights were 

assigned to the observed values of the explanatory variables for the nearest neighboring. 

Then, produced values were assigned to the local GWR coefficient estimates. Subsequently, 

the consolidation of these local weighted estimates for the neighboring subzones and 

explanatory variables resulted in our final estimates at the validation samples. Hence, casualty 

estimates were compared to the observed number of casualties, by means of MSPE and PCC. 

Figure 5.3 illustrates how this process was followed.  

 

Figure 5.3 - Figure 5.3 - Holdout method based – KNN 
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Tables 5.2 and 5.3 show the results of model performance, for motorized and active transport.  

 
Table 5.2 - Data imputation model performance for motorized transport 

  SS1 SS2 SS3 SS4 SS5 Average 

MEI 
PCC 0.381 0.363 0.397 0.365 0.354 0.37 

MSPE 2172.81 1935.77 2016.83 2031.87 2003.41 2032.14 

KNN 
PCC 0.416 0.386 0.497 0.434 0.427 0.43 

MSPE 2108.71 1902.86 1839.89 1920.76 1875.51 1929.55 

 

Table 5.3 - Data imputation model performance for active transport 

  SS1 SS2 SS3 SS4 SS5 Average 

MEI 
PCC 0.371 0.301 0.42 0.291 0.359 0.35 

MSPE 392.67 408.3 662.27 614.17 567.57 543.60 

KNN 
PCC 0.383 0.307 0.485 0.387 0.425 0.4 

MSPE 385.15 481.78 634.29 578.7 535.84 523.15 

 

Results of the data imputation approaches, revealed an outperformance of the KNN method 

for both dependent variables. Improvements approximately to 15% and 5% were found 

respectively for PCC and MSPE, suggesting that preserving the original data and its structure 

led to a lower distortion of the distribution of the imputed data. 

 

As it can be seen in Table 5.4, our GWR cross validation approach (GWR holdout2) 

outperformed the imputation models, therefore confirming the validity of our approach and 

the inferences drawn from its application. For both dependent variables, higher PCC and lower 

MSPE were found by accounting for the produced estimates of the nearest neighboring.   
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Table 5.4 - General view of model performance 
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  SS1 SS2 SS3 SS4 SS5 Average 

MEI 
PCC 0.381 0.363 0.397 0.365 0.354 0.37 

MSPE 2172.81 1935.77 2016.83 2031.87 2003.41 2032.14 

KNN 
PCC 0.416 0.386 0.497 0.434 0.427 0.43 

MSPE 2108.71 1902.86 1839.89 1920.76 1875.51 1929.55 

GWR 
holdout2 

PCC 0.413 0.39 0.493 0.445 0.431 0.43 

MSPE 2079.39 1893.99 1816.74 188.76 1877.31 1909.64 
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 MEI 

PCC 0.371 0.301 0.42 0.291 0.359 0.35 

MSPE 392.67 408.3 662.27 614.17 567.57 543.60 

KNN 
PCC 0.383 0.307 0.485 0.387 0.425 0.4 

MSPE 385.15 481.78 634.29 578.7 535.84 523.15 

GWR 
holdout2 

PCC 0.374 0.296 0.491 0.411 0.458 0.41 

MSPE 390.14 484.61 606.13 551.76 504.51 507.43 

 

 

5.3 CHAPTER DISCUSSION AND CONCLUSIONS 

 

Analyses in this chapter were carried out aiming to test the accuracy of GWR to predict road 

casualties in locations where data is incomplete. To enable this investigation, we used the 

models produced in Chapter 4, and omitted part of the available information in the modelling 

process. In order to assess the accuracy of the models, analyses were held in the repeated 

holdout framework, taking into account the nearest neighboring information only. In this 

context, a new GWR cross-validation approach was developed, and validated, by comparing 

its overall fit in relation to two common imputation methods. We chose using MEI and K-

nearest neighbor, given their friendly interface and attributes, which could be easily adapted 

to both GWR validation procedures suggested in this manuscript, thus enabling a fair 

comparison between them. While in MEI, the mean of the observed values of the explanatory 

variables was the value which was imputed, in KNN, this process relied on the observed values 

of the explanatory variables itself.   
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Results showed that our novel GWR validation approach – GWR holdout2 (slightly) 

outperformed other competing ones in its overall accuracy. Moreover, this finding enabled us 

to confirm the effectiveness of the approach in relation to our previously suggested one (GWR 

holdout1), thus answering the RQ4 (In case of data unavailability, would the produced models 

be suitable to estimate unsampled unit of areas?). In particular, four findings are noteworthy 

from this investigation: 

 
(1) Results of model performance give an indication of the overall reliability of GWR in the 

holdout framework to estimate unsampled subzones, thus answering the main 

question of this investigation. Moreover, results showed GWR as an effective tool, and 

confirmed the suitability of the modelling attributes selected by the software used to 

foresee other domain; 

 

(2) Our proposed GWR validation approach is suitable to estimate road casualties at 

unsampled areas (i.e. zones with missing information), based on the nearest 

neighboring information only. GWR holdout2 outperformed common imputation 

methods to fill out missing information. Although advantageous by their simplicity, and 

acceptable if the variation of the data is low, these methods are just approximations, 

thus yielding different kind of bias, especially for MEI. Nonetheless, it could be the case 

that these models result in apparent satisfactory results;  

 

(3) Findings with GWR holdout2 corroborated the assumption of Tobler (1970), i.e. first 

law of geography, suggesting that directly using casualty estimates of the neighboring 

subzones to estimate outcomes for the missing subzones is less sensitive to model 

inaccuracy compared to GWR holdout1. 

 

(4) As we would expect, KNN gives the best trade-off between imputation errors and data 

structure, when compared to MEI, meaning that preserving the original data is a better 

option.   
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6 EVALUATION OF SPATIAL DATA ANALYSIS 

APPROACHES ON CRASH PREDICTION  

 

Investigations in this chapter are carried out aiming to evaluate the performance of 

multivariate spatial data analysis approaches, based on Geostatistics and Geographically 

Weighted Regression (GWR) to estimate road casualties. To this end, Flemish improved 

models are adjusted in the repeated holdout framework by means of Kriging with External 

Drift (KED). Thereafter, possible linkages between GWR and KED are discussed, as well as their 

advantages and disadvantages toward road safety. This enables us to answer the last Research 

Question (RQ5) of this thesis: “Considering geostatistics, by means of KED, what is the most 

suitable method to explore the spatial dependence of crash data and solve issues involving 

missing information?”   

 

 

6.1 KRIGING WITH EXTERNAL DRIFT (KED) 

 

As previously discussed in Chapter 2, Geostatistics can be very powerful in crash modelling 

processes, therefore assisting road safety-planning studies. Despite the fact that in the past, 

Geostatistics was mostly linked to spatially continuous problems, such as geology and earth 

sciences, the technological advances and the availability of geocoded information has enabled 

its adoption in different fields. As a result, geostatistics is now commonly applied to natural 

and social sciences (Goovaerts, 1997). Specifically for transportation planning studies, 

Geostatistics by means of its intrinsic characteristics, has enabled advantageous outcomes, 

therefore supporting its application on crash data, which we believe to be a potential line of 

research.  

 

In this study, Geostatistics is performed by means of KED as it uses secondary information to 

assist in the interpolation. In relation to univariate geostatistical and non-geostatistical 

methods, KED is advantageous as it incorporates the local trend within the neighborhood 

search window as a linear function of some explanatory variables, rather than the coordinates 
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(Goovaerts, 1997). Hence, the primary variable is estimated based on the secondary one, as 

both are highly correlated.  

 

Taking this into account, in this study, the primary variable was defined as the observed 

number of casualties in a TAZ. Given the inherent characteristics of the KED estimator and 

aiming to compare its model performance to GWR, the secondary variable was defined as the 

values estimated through a Generalized Linear Model (GLM). GLMs, in turn, were constructed 

based on the same explanatory variables used in the previous Flemish improved models (in 

Chapters 4 and 5), i.e. Number of Trips (NOTs), number of children attending school (school 

children), road capacity (capacity), intersection density, car ownership, and Vehicle Kilometers 

Traveled (VKT), as the exposure variable. 

 

Considering the above, the method framework adopted to estimate casualties in Flanders, can 

be summarized in a two-step method, comprising: (1) non-spatial approach, by means of GLM; 

and (2) spatial approach, through the application of the KED taking into account casualty 

estimates obtained from a GLM. Analyses with empirical models were carried out within the 

repeated holdout framework. This means that, in the first step, the equation resulting from 

the GLM calibrated with 70% of the data, for each subsample (SS), was used to estimate the 

secondary variable for the remaining 30% (for each SS). Likewise, in the second step, 

experimental and theoretical semivariograms were adjusted for 70% of the data (for each SS) 

and reproduced in the validation subsamples. Figure 6.1 illustrates this systematic, followed 

by a detailed overview of the tasks and outcomes at each stage. In order to provide a better 

insight of these tasks, we subdivided them in seven main procedures, which are featured in 

the schema and discussed as follows:  

 

1. Random segregation of the complete dataset (100%) into two sets used for model 

estimation (70%) and validation (30%). 

2. Random subsampling of the holdout method (k=5, meaning 5 complete subsamples 

with 100% of the information, randomly divided in 70/30). 

 

Thereafter, for each of these subsamples: 
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3. Estimation of the GLM model for the 70% dataset; 

3A. Estimation of the secondary variable (70%).                                      

4. Validation of the GLM model (process 3) for the 30% dataset;                    

4A. Estimation of the secondary variable (30%).                                      

5. Verification of correlation between primary variable, i.e. observed casualties, and 

secondary variable, i.e. estimates produced in process 4A (30%). 

6. Experimental semivariograms calculation and adjustment of theoretical 

semivariograms for the secondary variable, (70% outcome from process 3A). 

7. KED (30%). 

 

Figure 6.1 - Two-step procedure within the repeated holdout framework 
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Firstly, the complete database of the improved Flemish models (discussed in Chapter 4 and 

namely here as SS1), was randomly segregated into two sets with 70% and 30% of the data, 

respectively for model estimation and validation. Subsequently, a random subsampling was 

carried out five times (each time with 100% of the data), resulting in five random subsets, each 

with 70% of data, and five random subsets, each with 30% of data. Aiming to compare and 

evaluate the performance of all multivariate spatial data analysis approaches, which were 

used in this research, we performed the analyses in this chapter with the same five 

subsamples (70/30) used to produce the empirical models in Chapters 4 and 5. Hence, the 

two-step procedure was carried out as follows.   

 

 

6.1.1 STEP 1: GENERALIZED LINEAR MODELS  

 

The first procedure within the non-spatial approach, concerns the construction of GLMs to 

estimate the secondary variable. GLMs were estimated for the model estimation subsamples, 

based on the set of independent variables used to construct the previous GWR Flemish 

models, in Chapters 4 and 5. Two outcomes are produced as results of this process: (a) casualty 

estimates for 70% of the data, which later was used to calculate the experimental 

semivariograms, and (b) the calibrated equation used to estimate the secondary variable for 

the set of 30% of the data, expressed in Equation 6.1. The global parameters estimates (β), 

which were used to calibrate the equations for active and motorized transports, at each 

subsample, are presented in Table 6.1.   

 

𝑙𝑛[𝐸(𝐶)] = 𝛽0 + 𝛽1 ln(𝑥1) + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6                       (6.1)            

 

Where: 

E(C): expected casualties; 

β0, β1, β2, β3, β4, β5 and β6: model parameters; 

x1: exposure variable (i.e. VKT); 

x2, x3, x4, x5 and x6: other explanatory variables (i.e. NOTs, school children, capacity, 

intersection density and car ownership, respectively). 
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Table 6.1 - Global model parameter estimates 
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Explanatory variables SS1* SS2 SS3 SS4 SS5 

Intercept  2.828 2.846 2.800 2.816 2.864 

NOTs** 0.000057 0.000069 0.000077 0.000068 0.000077 

School children  -0.00011 -0.00011 -0.00012 -0.00011 -0.00013 

Capacity  0.000096 0.000068 0.000066 0.000096 0.000068 

Intersection density  0.034 0.032 0.031 0.030 0.028 

Car ownership  -0.105 -0.106 -0.077 -0.138 -0.093 

Ln VKT  0.071 0.073 0.072 0.073 0.069 
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Intercept  1.200 1.384 1.021 1.413 1.178 

NOTs  0.00015 0.00016 0.00016 0.00015 0.00019 

School children  -0.00015 -0.0017 -0.000089 -0.00012 -0.00019 

Capacity  0.00023 0.00024 0.00021 0.00024 0.00020 

Intersection density  0.036 0.034 0.028 0.034 0.032 

Car ownership  -0342 -0.522 -0.296 -0.456 -0.296 

Ln VKT***   0.128 0.127 0.143 0.113 0.128 

SS*: Subsample; NOTs**: Number of Trips; VKT***: Vehicles Kilometers Traveled 

 

The second procedure concerns the verification of correlation between the primary and 

secondary variables. In addition to this, the performance of the GLMs was verified. Table 6.2 

presents the results of model performance, by means of Pearson Correlation Coefficient (PCC) 

and Mean Squared Prediction Error (MSPE). These statistics metrics were calculated based on 

the observed and estimated casualties through GLMs models and the 30% validation samples. 

 

Table 6.2 - Model performance by means of GLMs 

  SS1 SS2 SS3 SS4 SS5 Average 

Motorized 
Transport 

PCC 0.375 0.339 0.368 0.301 0.316 0.34 

MSPE 2179.43 1974.26 2065.48 2128.63 2067.49 2083.06 

Active 
Transport 

PCC 0.373 0.285 0.381 0.304 0.359 0.34 

MSPE 386.90 482.03 657.39 599.93 551.41 535.53 
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6.1.2 STEP 2: GEOSTATISTICS BY MEANS OF KED 

 

Casualty estimates, which were the product of the previous stage (estimated casualties 

through GLMs models), were used as the input data for the geostatistical modeling 

(variographic analysis, validation and kriging). Therefore, the first procedure within the spatial 

approach concerns the experimental semivariograms calculation and adjustment of model 

parameters of the theoretical semivariograms within the secondary variable.  

 

Variographic Analysis  

 

Firstly, atypical values were detected and omitted from the variographic analysis. This exercise 

was carried out aiming a better representation of the spatial behavior of the Regionalized 

Variable (RV). This process was adopted based on the Inter-Quartile Range (IQR) given by the 

difference between the third and first quartile (IQR=3Q-1Q), meaning that any observation 

that was more than 1.5xIQR above the third quartile or below the first quartile, was 

considered an outlier (Turkey, 1977), and was thus omitted from the variographic analysis. 

Table 6.3 shows the obtained values of the quartiles and IQR found for each subsample, for 

the primary (observed number of causalities) and secondary variables (estimated casualties 

through GLMs models).  

 
Hence, experimental semivariograms for the five model estimation subsamples were 

calculated and adjusted by the theoretical curves. Subsequently, experimental 

semivariograms of the primary variables were developed, for the validation subsamples, 

taking into account the: 

 
 IQR values; 

 attributes of calculation of the experimental semivariograms (e.g. lag distance, 

tolerance, cut distance, direction); 

 modeling parameters for adjustment of the experimental semivariograms to the 

theoretical ones, e.g. nugget (C0), sill (C), range and model structure. 

 
 
 



125 
 

 
 

Table 6.3 - Percentiles and interquartile range 

  Primary variable Secondary variable 
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 1Q 3Q IQR 1Q 3Q IQR 

SS1 11 58 18.5 36 49 68.5 

SS2 11 60 133.5 36 50 71 

SS3 11 59 131 36 50 71 

SS4 11 58 128.5 36 50 71 

SS5 11 58 128.5 36 50 71 
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 SS1 2 17 39.5 11 17 26 

SS2 2 17 39.5 11 17 26 

SS3 2 17 39.5 11 17 26 

SS4 2 17 39.5 11 16 23.5 

SS5 2 17 39.5 11 16 23.5 

 
 

Initially, the development of the experimental semivariograms and their directions proceeded 

from the angle 0° (North to South) to 90° (East to West), according to the standardization of 

axes of geoMS. Experimental semivariograms were generated with test angles ranging from 

15° to 15°, and angular tolerance of 1°. We used 100 lags, which is the maximum allowed by 

the employed software. For all cases (primary and secondary variables for motorized and 

active transport of all subsamples), the size of the lag (h) adopted was 1.100 meters, and the 

cutting distance, 110 kilometers. This distance was adopted based on half of the maximum 

length that covers the region from East to West. Hence, the spatial structure of the RVs for 

active and motorized transport was found to be the same in all directions, thus showing an 

isotropic behavior, and depending only of the magnitude of the lag vector, h. As a result, 

semivariograms for all cases, and secondary variables were described as omnidirectional. 

Based on this, semivariograms were calculated with angular tolerance of 1800 (maximum 

angular aperture). Table 6.4 shows the parameters that best described the spatial structure 

of the samples for the primary and secondary variables, and both travel modes. 
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Table 6.4 - Parameters of the experimental semivariograms (for all cases) 

Direction Omnidirectional 

Lag (m) 1.100 

Tolerance  1800 

Number of lags 100 

Cut distance (km) 110 

 

Hence, the adjustment of the experimental semivariograms to a general function was carried 

out by visual inspection. For all cases, the Spherical theoretical model was the one that gave 

the best fit for the points of the experimental semivariograms. Table 6.5 summarizes the 

graphical parameters obtained by the adjusted experimental semivariograms. These 

parameters were the ones that best described the spatial structure of the RV, for each case.  

 

Table 6.5 - Graphical parameters of the theoretical semivariograms 

  Primary variable Secondary variable 
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  C0* C** Range C0 C Range 

SS1 96.717 738.765 43780.4 4.194 70.777 61283.74 

SS2 8.383 910.995 48155.295 15.136 72.392 48149.032 

SS3 10.932 852.728 39812.17 12.894 76.055 64844.778 

SS4 8.823 840.367 37966.501 3.646 89.337 65661.394 

SS5 6.136 822.199 43784.431 8.098 79.059 91935.014 

A
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 SS1 3.251 80.101 30664.344 1.38 14.395 56908.739 

SS2 1.075 81.419 52530.326 3.339 13.898 48149.674 

SS3 2.948 79.92 52532.52 1.034 15.414 39398.802 

SS4 9.386 73.254 65669.934 2.126 11.133 39396.369 

SS5 1.273 84.658 48157.752 3.87 8.979 61289.821 

*nugget effect; **partial sill  

 

Figures 6.2 and 6.3 present the final theoretical semivariograms obtained after adjusting them 

for both, primary and secondary variables and travel modes (active and motorized). The 

semivariograms produced for the validation subsamples are available in Appendix C.  
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Figure 6.2 - Theoretical semivariograms for motorized transport (model estimation) 
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Figure 6.3 - Theoretical semivariograms for active transport (model estimation) 

  

Primary Variable (Subsample 1) Secondary Variable (Subsample 1) 
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Cross validation 

 
In order to obtain estimated values for the samples, we proceeded with cross validation. 

Subsequently, estimated values were compared with the observed ones in the validation 

subsamples, by means of Pearson Correlation Coefficient (PCC) and Mean Squared Prediction 

Errors (MSPE). Table 6.6 presents the results of the adjusted semivariograms performance 

together with the goodness of fit of the approaches described in the previous chapters of this 

thesis.  

Table 6.6 - General view of spatial model performance 
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  SS1 SS2 SS3 SS4 SS5 Average 

GWR  
holdout1 

PCC 0.371 0.389 0.446 0.399 0.333 0.39 

MSPE 2281.07 1975.39 2028.31 2115.43 2228.11 2125.66 

GWR  
holdout2 

PCC 0.413 0.39 0.493 0.445 0.431 0.43 

MSPE 2079.39 1893.99 1816.74 1880.76 1877.31 1909.64 

MEI 
PCC 0.381 0.363 0.397 0.365 0.354 0.37 

MSPE 2172.81 1935.77 2016.83 2031.87 2003.41 2032.14 

KNN 
PCC 0.416 0.386 0.497 0.434 0.427 0.43 

MSPE 2108.71 1902.86 1839.89 1920.76 1875.51 1929.55 

KED 
PCC 0.317 0.326 0.373 0.297 0.283 0.32 

MSPE 2339.29 2055.2 2127.45 2233.21 2388.02 2228.63 
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GWR  
holdout1 

PCC 0.353 0.342 0.288 0.263 0.445 0.34 

MSPE 417.07 471.95 799.87 682.8 508.12 575.96 

GWR  
holdout2 

PCC 0.374 0.296 0.491 0.411 0.458 0.41 

MSPE 390.14 484.61 606.13 551.76 504.51 507.43 

MEI 
PCC 0.371 0.301 0.42 0.291 0.359 0.35 

MSPE 392.67 408.3 662.27 614.17 567.57 543.60 

KNN 
PCC 0.383 0.307 0.485 0.387 0.425 0.4 

MSPE 385.15 481.78 634.29 578.7 535.84 523.15 

KED 
PCC 0.38 0.338 0.419 0.374 0.301 0.36 

MSPE 386.11 480.74 652.24 603.79 637.43 552.06 
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From a statistical point of view, results revealed that GWR holdout2 (proposed in Chapter 5) 

outperformed all other spatial approaches, for active and motorized transport mode users.  

 

 

 Kriging  

 

Finally, the last spatial modeling procedure concerns the kriging. The theoretical 

semivariogram parameters were used at the intrinsic weighting scheme of the interpolation 

method. The product of this process were estimates for the primary variable (casualties), 

which is represented by continuous surface maps in Figures 6.4 and 6.5 (for motorized and 

active transport, respectively), together with its corresponding variance estimation maps. The 

maps presented here, correspond to SS1, which was the one used as basis for the preliminary 

analyses in Chapter 4.  

 

Although it is not the focus of this investigation, results of the continuous surface maps 

enabled us to identify some spatial patterns in the number of casualties, in Flanders. For 

instance, the majority of casualties for motorize transport were estimated in the regions 

surrounding Brussels, which is Belgium’s capital. In addition to the great amount of people 

employed in Brussels, that live outside the city limits, in its surrounding is located the “Brussels 

ring”, which crosses the three regions of Belgium: Flanders, Wallonia, and Brussels, thus 

resulting on high flow of vehicles on the highways. High estimates were also observed in the 

North of the Flemish provinces (i.e. West-Flanders, East-Flanders, Antwerp and Limburg), 

where the daily flow of vehicles is also high, especially in the highways that make their 

connection.  
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Figure 6.4 - Kriging and variance of estimation maps for motorized transport 

 

 

 

 

 

 

 

Kriging map of casualties for motorized transport – Subsample 1 

 

 

 

 

Variance of estimation map for motorized transport – Subsample 1 

 

 

Concerning the spatial distribution of casualty estimates for active transport, results revealed 

different patterns, moreover emphasizing the differences between the northern and the 

southern part of Flanders. In the North, cycling is more popular than in the rest of the region, 

especially for utilitarian purposes, e.g. work and studies. Besides the cultural aspects, that 

might be involved, this could be explained by the amount of facilities available for this group, 

and companies/universities, which are greater in the Flemish area, therefore leading a greater 

number of users and their risk of being involved in a road crash.  

 

 

 

No scale 

No scale 
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Figure 6.5 - Kriging and variance of estimation maps for active transport 

 

 

 

 

 

 

 

Kriging map of casualties for active transport – Subsample 1 

 

 

 

 

Variance of estimation map for active transport – Subsample 1 

 

 

Moreover, results with the continuous surface maps of casualty estimates were consistent 

with the ones obtained for the improved Flemish models, through GWR, in Chapter 4 

(subsection 4.1.3). For both active and motorized transport, the variance of estimation 

presented a pattern trend distributed in the space. Therefore, lower accuracy of inference was 

seen in areas where casualty estimates were also low, thus corroborating with the 

assumptions of areas identified as hot zones. Other remarks of the spatial estimation 

performance together with the conclusions of this chapter are presented in the next 

subsection.   

 

 

No scale 

No scale 
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6.2 CHAPTER DISCUSSION AND CONCLUSIONS 

 

Investigations in this chapter aimed to evaluate the performance of different multivariate 

spatial interpolation tools, based on geostatistics and GWR to estimate casualties. The choice 

of working with spatial models only, was given by the clear spatial dependence of the data. 

This was observed in the global and local corrected Akaike Information Criterion (AICc) values, 

obtained with the empirical models developed in Chapter 4, thereafter confirmed by other 

statistical tests.   

 

From the statistical point of view, results with KED were in line with those from GWR, MEI and 

KED. KED outperformed GWR (GWR holdout1), by means of PCC and MSPE for active 

transport. Concerning the results for motorized transport, GWR outperformed, but without 

compelling differences. Additionally, KED, by means of its intrinsic processes (e.g. spatial 

prediction, smoothing of maps, identification of hotspots, assessment of uncertainty by 

means of the kriging variance, and the comprehension of the spatially structure of the RV by 

means of the semivariogram) helped us to demonstrate the potential of geostatistical tools to 

be applied to spatial problems, other than interpolation. Furthermore, this investigation 

enabled us to observe that such complexity of kriging methods requires more attention from 

the analyst, and not appropriate choices of spatial structure of the data (isotropy or 

anisotropy), data transformation, semivariogram and model parameters, kriging estimator, 

interpolation grid, etc. can lead to model bias, therefore skewing prediction results. This 

means that, cross validation results are directly influenced by the fitting parameters defined 

for the theoretical semivariograms.  

 

In this study, we used a package at which theoretical semivariograms were manually fitted by 

trial-and-error of models, and the best ones were selected by the visual appearance of the 

experimental semivariograms. Therefore, in spite of our efforts to fit the optimal 

semivariograms, it does not necessarily mean that those were the best-fitted ones. As outlined 

in the literature review, alternatively, there are tools at which process are automated, and 

automatic fit theoretical semivariograms to experimental ones, e.g. Maximum likelihood 

methods and weighted least squares (Cressie, 1985, 1993; Wackernagel, 2003). However, it is 
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also worth mentioning that an automatic fit does not necessarily will provide the optimal 

semivariogram, neither that they are more advantageous in relation to manual fit. Both 

approaches are useful under different aspects. Particularly concerning the manual fit, if on the 

one hand it requires more attention and experience from the analyst concerning the spatial 

structure of the data, on the other hand, it enables a better understanding of the data and its 

spatial distribution.   

 

In contrast to KED, GWR is advantageous as it provides a set of local parameters, i.e. coefficient 

estimates, standard errors and pseudo t-values, which can be mapped in the geographic space 

to represent the non-stationarity of the data. Taking this into account, GWR outcomes 

enabled us a better understanding of the nature of varying relationships between variables 

across space. Particularly for the modelling process, a more detailed review of the linkages, 

advantages and disadvantages with both approaches can be found in Harris, Brunsdon and 

Fotheringham (2011). In Table 6.7, we summarize some key points highlighted in this 

investigation that meet the ones found in that study.  

 

In particular, the following findings are noteworthy from this investigation: 

 
(1) Geostatistical tools enable the estimation of a value at any point in the space. 

Therefore, in case of data unavailability, it can be more advantageous in relation to 

other spatial tools, and an alternative approach to GWR to estimate values at a specific 

road or site. In addition to this, resulting surface maps could help identify regional 

hotspots or local sites where casualty incidences are higher, for instance, at a specific 

highway. 

 

(2) GWR is a more appropriate spatial technique considering both crash prediction and 

impact analysis simultaneously. GWR provides a set of local parameters, which enables 

a full understanding of the nature of varying relationships between variables across 

space. In addition to hot zones, it can help by identifying the most influential factors 

and direction of their effects. Especially for long-term safety planning, this can help 

implement and enforce appropriate safety countermeasures.  
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Table 6.7 - Comparison between GWR and KED 

 GWR KED 

Secondary 
information 

  Possibility of more than 
one variable to be entered in the 
model  

  Explanatory variables are 
accounted for in the same process  

 

  Limited to one secondary 
variable (which is expected to be 
highly correlated with the primary 
one) 

  Particularly in this study, 
we used a two-step method for 
the generation and modeling of 
the secondary variable.  

Model calibration 
  Kernel function  

(Directly weights data) 
  Semivariogram function 

Irregular unit 
areas 

- 

  Assumption of equal areas 
(homogeneous geometric 
supports) 

Modelling 
process 

 Friendly interface 

In GWR spatial patterns are 
modelled through variations in 
regression coefficients, thus using 
more parameters to describe the 
mean structure than KED does 
(Harris et al., 2011) 

  Complex 

As a more complex model, KED 
requires more attention, 
especially for the graphical 
parameters 

Modelling 
outcomes 

  Local coefficient 
estimates, standard errors, 
pseudo t-values and estimated 
values 

  Estimated values and 
variances of estimation 

 

Maps of 
estimates 

  Associated to the pre-
defined geographic coordinate  

  Continuous surface 

 
 

Therefore, answering the last RQ of this thesis, we conclude that both GWR and KED have 

their merits and are suitable to explore the spatial dependence of crash data. However, the 

choice of one or another approach implies in gain or losses from one or another aspect (e.g. 

toward prediction or impact analysis). This could be solved if KED and GWR were combined, 

for example. One suggestion could be starting the analyses with KED (e.g. by estimating values 

at any point in the space, having the BLUP aspect) and extending to GWR.  
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7 CONCLUSIONS AND RECOMMENDATIONS 

 

 

This research aimed to assess the potential improvements of supplementary data on spatial 

model performance and the suitability of different spatial modelling approaches on crash 

prediction. In this investigation, we set two specific objectives and five Research Questions 

(RQ). Responses to these questions were given in the corresponding chapters and are 

summarized herein. Subsequently, we present our conclusions and suggestions for future 

research.  

 

The first set of analysis, in which RQ1 was addressed, revealed that a more diverse and 

comprehensive dataset led to reductions of corrected Akaike Information Criterion (AICc) and 

Mean Squared Prediction Error (MSPE) by 20% and 25% for motorized transport, and by 25% 

and 35% for active transport, respectively. In addition, this trade-off led to a set of reliable 

coefficient estimates, and minimized possible problems due to the omission of important 

variables. Considering the practical aspects, these coefficients would have important 

implications for long-term strategies (e.g. identifying, designing and executing appropriate 

road safety countermeasures). In particular, the following possibilities are noteworthy: 

 
 identifying local influential factors and their impacts, in terms of effect size and 

direction. This could be helpful by suggesting changes in traffic regulations and 

signalization, e.g. by altering the speed limits, intensifying local speed enforcement, 

improving junctions, implementing crosswalks to make it safer for pedestrians,  

implementing signalized intersections, installing traffic management and control 

systems, etc.; 

 

 identifying hotspots together with their major influencing factors, and extend the 

macro to microscopic-level analysis. This could possibly help road safety planners 

better define and pursue data collection. For instance, in a region in the study area in 

which high values of casualties were estimated, intersection density has found to be a 

great contributing factor. Hence, further local investigations could include information 
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of signalized intersections, existence or nonexistence of appropriate crossing lanes, to 

name a few. Alternatively, at Traffic Analysis Zones (TAZs) where casualties were found 

to have a positive association with the number of children attending a school in that 

TAZ, micro-level analysis could suggest changes in the speed limits or specific 

signalization around the school environment. 

 
Subsequently, we carried out a sensitivity analysis. This enabled us to identify the statistical 

contribution of each variable in the prediction models and, therefore, find an answer to the 

RQ2. Especially in countries where data availability has been an issue (e.g. due to the lack of 

financial resources or because of other imposed conditions), this practice could be a useful to 

prioritize data collection strategies. Furthermore, results of this investigation could serve as a 

foundation for future investigation (e.g. by investigating the interaction between variables in 

the identified hot zones, both within and outside the models). 

 

Together, results for RQ1 and RQ2 has further strengthened our confidence that the quality 

and attributes of the data play a significant role in the tradeoff between input information and 

modelling outcomes. Especially for the impact analysis, considerable attention must be paid 

to aspects involving multicollinearity, measurement error, omitted variables, etc. Other 

aspects, such as the statistical contribution of variables in the models, , parsimony between 

variables (i.e. models that are not overfitted and provide the best model performance), their 

implications to one or more travel modes, etc., could also help policy makers prioritize data 

collection. Variables included in the Flemish models are just an example of a variety of other 

potential information that could be used to develop more efficient models under both, 

predictive and explorative aspects. Nonetheless, these variables could be interesting 

suggestions for extra data collection in Brazil, alongside any other interesting variable.  

 

Further investigations based on the GWR modeling attributes, enabled us to verify the 

accuracy of the Flemish models in casualty estimation at unsampled subzones and their 

performance over other interpolation methods, i.e. Mean Imputation (MEI), k-nearest 

neighbor (KNN) and Kriging with External Drift (KED). To this end, we applied the repeated 

holdout method in the Flemish models, introducing two GWR validation approaches. While, 

GWR holdout1 was based on the local coefficient estimates derived from the neighboring 
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subzones and measures of the explanatory variables for the validation subzones, GWR 

holdout2 used the casualty estimates of the neighboring subzones directly to estimate 

outcomes for the missing subzones. This original scheme would enable future studies to adjust 

the local features of GWR within the concept of model estimation and validation datasets and, 

therefore, exploring other advantages of such powerful tool. Besides confirming the suitability 

of the GWPR models (queried in RQ3), results of this investigation accentuated the suitability 

of GWR technique as an advantageous predictive tool for unsampled areas (i.e. zones with 

missing information) (RQ4). Especially in countries where data availability is an issue, such a 

GWR validation framework would allow casualties or crash frequencies to be estimated while 

effectively capturing the spatial variation of the data. Furthermore, results with GWR holdout2 

corroborated the assumption of Tobler (1970), which states that “everything is related to 

everything else, but near things are more related than distant things” (i.e. first law of 

geography). This suggests that directly using casualty estimates of the neighboring subzones 

to estimate outcomes for the missing subzones is less sensitive to model inaccuracy compared 

to any other tested approach in this thesis. 

 

The last step of this research was the application of KED to estimate casualties. Our intention 

was to present geostatistics as an alternative approach to crash prediction analysis with GWR. 

Results of this investigation enabled us to answer the last research question - RQ5, and 

confirm the suitability of KED in crash prediction. Additionally, our study provided further 

evidence for selecting GWR over KED when impact analysis is a criterion. Particularly for 

safety-planning purposes, it is essential to understand the spatially varying relationship 

between the input and output variables, and that was not possible with KED. In contrast, the 

ability of KED to estimate values at any point in the space, suggests that this tool could be an 

interesting alternative to GWR when data availability is an issue.  Especially when we do not 

have explanatory variables (e.g. when only the values of crashes are known), the univariate 

methods of kriging could be an alternative for crash prediction. In view of these results, some 

consideration are noteworthy, and could help planners and researchers choose between 

these available tools as follows: 
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Compared with KED, GWR: 

 

 is more appropriate considering both prediction and impact analysis;  

 provides a set of local parameters for each variable included in the models; 

 is more suitable for data within different spatial unit of analysis; 

 is less computationally demanding (considering the software used) and, therefore, a 

less time consuming approach; and 

 
In comparison to GWR, KED: 

 

 enables the estimation of a value at any point in the space; 

 provides the Best Linear Unbiased Predictor (BLUP), meaning estimates with minimum 

error and variance;  

 provides continuous surface maps; and 

 on the one hand is more complex/time consuming and, therefore, requires more 

attention for the graphical parameters. On the word hand, it enables the analyst to 

better understand the data and their spatial distribution. 

 

This investigation has led us to conclude that KED could be a potential alternative to GWR, for 

prediction purposes, when data availability is an issue. Furthermore, KED could complement 

GWR prediction and impact analysis by estimating the missing values for a variable or subzone. 

This would enable planners and researchers to explore the potential and intrinsic 

characteristics of both tools and, therefore, overcoming the gaps found in one or another.  

 

 

7.1 CONCLUSIONS 

 
Although the awareness about the importance of spatial crash prediction modeling exists, the 

implementation and follow-up of road safety strategies has been hampered by the lack of 

essential information. Especially in developing countries where data availability has been an 

issue, this has discouraged researchers and policy makers, as they often find themselves in 

situations where they have to choose between doing nothing or restricting models to the 
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existing data. In particular, this drawback has suppressed the development of potential studies 

that could contribute to national goals that are related to road safety.  

 

Our research underlined the importance of appropriate data for crash prediction. Results of a 

benchmarking provided us evidences to conclude that in spite of the merits of socio-economic 

and demographic variables, attention must be paid when models are developed for safety-

planning purposes. In our case, this information fails to provide a full and effective 

understanding of the crash phenomena. In addition to the modelling inaccuracy, and thus 

unreliable predictions, those inappropriate models are prone for issues such as 

multicollinearity, omitted variable bias and endogeneity. Furthermore, most of the available  

variables in the Brazilian database are not appropriate for exploratory purposes. Hence, 

models are limited in their scope to identify, implement and enforce appropriate 

countermeasures.  

 

Another important implication of this research is the introduction of the two GWR validation 

approaches (GWR holdout1 and GWR holdout1). These novel concepts can be interesting 

solutions to optimize GWR analyses and make use of the existing modeling framework to 

estimate crash frequency of the zones with missing or even without any information. Findings 

with this investigation has further strengthened our conviction that in addition to the data 

quality, the choice and soundness of the spatial tools, play an important role in spatial data 

analysis process and model performance.  

 

Our research has led us to conclude that in order to improve the road safety evaluation 

process, efforts must be made in effective strategies. Following the example of developed 

countries, this could start by facilitating and encouraging the development of potential 

research by means of some straightforward changes, such as those identified along this 

research: 

 
 promoting room for cooperative work between authorities and academia; 

 collecting a broader range of potential data for both prediction and exploratory 

analysis; 

 making  the information available through public channels and to the academia; 
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 creating solid data basis; 

 addressing the lack of data on exposure; 

 prioritizing and suggesting data collection strategies based on their significance in 

improving prediction model performance; 

 expanding the spatial methods used and opting for the most suitable one; 

 harmonizing and integrating the different data sources and moreover, solving 

problems with underreporting crash data. 

 

We believe that there should be no room neither for thousands of other unsuccessful road 

safety programs and campaigns, nor to keep “sugar-coating things” (expression commonly 

used in Brazil). In other words, hundreds of thousands of people will be injured or become 

victims of traffic crashes in Brazil, if proper safety countermeasures and investments are not 

implemented and realized. Finally, we hope that our research will be valuable in notifying the 

authorities and other stakeholders in developing counties about the importance of collecting 

and making appropriate data available, as well as processing this information within pertinent 

tools. Furthermore, our results are encouraging and make us believe that further work could 

contribute to enhance the quality of future analysis in road safety. 

 

 

7.2 SUGGESTIONS FOR FUTURE RESEARCH 

 
During the development of this research, some gaps and challenges within methodological 

aspects were identified, creating room for future studies. Hence, for future investigations, we 

suggest the following considerations:  

 
 investigating the impact caused by the omission of variables, e.g. endogeneity and 

omitted variable bias. In this respect, one possible investigation could be micro-level 

analysis in the identified hot zones so as to assess the model performance by adding 

and removing variables into the models; 

 problems involving spatial change of support for regional data taking into account that 

TAZs are irregular and geostatistics assumes homogeneity of supports. Techniques as 
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the semivariogram deconvolution (see Goovaerts, 2008) may be of interest to the 

application of geostatistics in crash modeling with aggregated data;  

 considering the automatic fit of the theoretical semivariograms by means of maximum 

likelihood or weighted least squares methods;  

 investigating other geostatistical tools that incorporate secondary information; 

 extending the sensitivity analysis to other regions;  

 investigating financial aspects, for instance identifying costs with data collection, 

indicating those which are more cost efficient and, therefore, providing the pros and 

cons while accounting for their costs; 

 in line with results found in Chapter 6, we recommend future studies to explore the 

combination of GWR and KED on casualty prediction and, therefore, making the most 

of both approaches together. 
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APPENDIX A 

 

 

Table A.1 - Detailed codification for pedestrian fatalities 

Code Description  

V01 Pedestrian injured in collision with pedal cycle 

V02 Pedestrian injured in collision with two-or-three wheeled motor vehicle 

V03 Pedestrian injured in collision with car, pick-up truck or van  

V04 Pedestrian injured in collision with heavy transport vehicle or bus 

V05 Pedestrian injured in collision with railway train or railway vehicle 

V06 Pedestrian injured in collision with non-motor vehicle  

V09 Pedestrian injured in other and unspecified transport accidents 

 

 

Table A.2 - Detailed codification for cyclist fatalities 

Code Description  

V10 Pedal cyclist injured in collision with pedestrian or animal  

V11 Pedal cyclist injured in collision with other pedal cycle  

V12 Pedal cyclist injured in collision with two-or-three wheeled motor vehicle 

V13 Pedal cyclist injured in collision with car, pick-up truck or van 

V14 Pedal cyclist injured in collision with heavy transport vehicle or bus 

V15 Pedal cyclist injured in collision with railway train or railway vehicle 

V16 Pedal cyclist injured in collision with non-motor vehicle 

V17 Pedal cyclist injured in collision with fixed or stationary object  

V18 Pedal cyclist injured in non-collision transport accident  

V19 Pedal cyclist injured in other and unspecified transport accidents 
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Table A.13- Detailed codification for motorcycle rider fatalities 

Code Description  

V20 Motorcycle rider injured in collision with pedestrian or animal  

V21 Motorcycle rider injured in collision with pedal cycle  

V22 Motorcycle rider injured in collision with two-or-three wheeled motor vehicle 

V23 Motorcycle rider injured in collision with car, pick-up truck or van 

V24 Motorcycle rider injured in collision with heavy transport vehicle or bus 

V25 Motorcycle rider injured in collision with railway train or railway vehicle 

V26 Motorcycle rider injured in collision with non-motor vehicle 

V27 Motorcycle rider injured in collision with fixed or stationary object  

V28 Motorcycle rider injured in non-collision transport accident  

V29 Motorcycle rider injured in other and unspecified transport accidents 

 

 

Table A.14 - Detailed codification for occupant of three-wheeled motor vehicle fatalities 

Code Description  

V30 
Occupant of three-wheeled motor vehicle injured in collision with pedestrian or 
animal  

V31 Occupant of three-wheeled motor vehicle injured in collision with pedal cycle  

V32 
Occupant of three-wheeled motor vehicle injured in collision with two-or-three 
wheeled motor vehicle 

V33 
Occupant of three-wheeled motor vehicle injured in collision with car, pick-up truck 
or van 

V34 
Occupant of three-wheeled motor vehicle injured in collision with heavy transport 
vehicle or bus 

V35 
Occupant of three-wheeled motor vehicle injured in collision with railway train or 
railway vehicle 

V36 
Occupant of three-wheeled motor vehicle injured in collision with non-motor 
vehicle 

V37 
Occupant of three-wheeled motor vehicle injured in collision with fixed or 
stationary object  

V38 Occupant of three-wheeled motor vehicle injured in noncollision transport accident  

V39 
Occupant of three-wheeled motor vehicle injured in other and unspecified 
transport accidents 
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Table A.5 - Detailed codification for car occupant fatalities 

Code Description  

V40 Car occupant injured in collision with pedestrian or animal  

V41 Car occupant injured in collision with pedal cycle  

V42 Car occupant injured in collision with two-or-three wheeled motor vehicle 

V43 Car occupant injured in collision with car, pick-up truck or van 

V44 Car occupant injured in collision with heavy transport vehicle or bus 

V45 Car occupant injured in collision with railway train or railway vehicle 

V46 Car occupant injured in collision with non-motor vehicle 

V47 Car occupant injured in collision with fixed or stationary object  

V48 Car occupant injured in non-collision transport accident  

V49 Car occupant injured in other and unspecified transport accidents 

 

 

Table A.6 - Detailed codification for occupant of pick-up truck or van fatalities 

Code Description  

V50 Occupant of pick-up truck or van injured in collision with pedestrian or animal  

V51 Occupant of pick-up truck or van injured in collision with pedal cycle  

V52 
Occupant of pick-up truck or van injured in collision with two-or-three wheeled 
motor vehicle 

V53 Occupant of pick-up truck or van injured in collision with car, pick-up truck or van 

V54 
Occupant of pick-up truck or van injured in collision with heavy transport vehicle or 
bus 

V55 
Occupant of pick-up truck or van injured in collision with railway train or railway 
vehicle 

V56 Occupant of pick-up truck or van injured in collision with non-motor vehicle 

V57 Occupant of pick-up truck or van injured in collision with fixed or stationary object  

V58 Occupant of pick-up truck or van injured in non-collision transport accident  

V59 
Occupant of pick-up truck or van injured in other and unspecified transport 
accidents 
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Table A.7 - Detailed codification for occupant of heavy transport vehicle fatalities 

Code Description  

V60 Occupant of heavy transport vehicle injured in collision with pedestrian or animal  

V61 Occupant of heavy transport vehicle injured in collision with pedal cycle  

V62 
Occupant of heavy transport vehicle injured in collision with two-or-three wheeled 
motor vehicle 

V63 
Occupant of heavy transport vehicle injured in collision with car, pick-up truck or 
van 

V64 
Occupant of heavy transport vehicle injured in collision with heavy transport 
vehicle or bus 

V65 
Occupant of heavy transport vehicle injured in collision with railway train or railway 
vehicle 

V66 Occupant of heavy transport vehicle injured in collision with non-motor vehicle 

V67 
Occupant of heavy transport vehicle injured in collision with fixed or stationary 
object  

V68 Occupant of heavy transport vehicle injured in non-collision transport accident  

V69 
Occupant of heavy transport vehicle injured in other and unspecified transport 
accidents 

 

 

Table A.8 - Detailed codification for bus occupant fatalities 

Code Description  

V70 Bus occupant injured in collision with pedestrian or animal  

V71 Bus occupant injured in collision with pedal cycle  

V72 Bus occupant injured in collision with two-or-three wheeled motor vehicle 

V73 Bus occupant injured in collision with car, pick-up truck or van 

V74 Bus occupant injured in collision with heavy transport vehicle or bus 

V75 Bus occupant injured in collision with railway train or railway vehicle 

V76 Bus occupant injured in collision with non-motor vehicle 

V77 Bus occupant injured in collision with fixed or stationary object  

V78 Bus occupant injured in non-collision transport accident  

V79 Bus occupant injured in other and unspecified transport accidents 
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APPENDIX B 

 

Table B.1 - Descriptive statistics of variables collected for São Paulo (including São Paulo) 

 Variable Average Min Max SDa 

Fa
ta

lit
ie

s 

Active transport  10.71 0 2179 88.656 

Motorized transport  14.95 0 1991 83.042 

N
e

tw
o

rk
 Link length for AT 155.67 5.04 9523.95 425.35 

Link length for MT 168.35 5.29 10026.43 450.22 

Area 384.8 5.4 1977 319.99 

So
ci

o
e

co
n

o
m

ic
 a

n
d

 d
em

o
gr

ap
h

ic
 

Population 63972.4 805 11253503 454386.49 

Male population 31128.49 422 5328632 215407.9 

Female population 32843.92 383 5924871 238986.98 

Population density 302.13 3.73 12519.10 1198.31 

AAGR 1.03 -2.15 10.92 1.25 

Percentage male 
population 

50.52 45.76 81.09 2.52 

Percentage female 
population 

49.48 18.91 54.24 2.52 

Percentage proportion 
population 

102.97 84.36 428.86 17.88 

Urban population 61372.48 627 11152344 45374.2 

Rural population 2599.92 0 101159 5302.31 

HDI 0.739 0.639 0.862 0.032 

GNP 22531.58 7131.54 287646.17 18420.10 

Employed people 20563.82 155 5098791 203422.19 

Occupied people 24054.99 211 5899412 235320.29 

V
e

h
ic

le
 f

le
e

t 

Motorcycle 5973.61 24 797405 33069.35 

Microbus 138.98 0 31192 1252.88 

Car 20674.22 133 4617635 185230.73 

Truck 903.51 11 128606 5267.19 

Bus 196.71 3 39397 1580.75 

Total of vehicles 27887.03 220 5614235 225963.56 

Fu
e

l c
o

n
su

m
p

ti
o

n
 Gasoline (liters) 11484135.92 0 2276740223 91999934.82 

Diesel oil (liters) 17933402.11 0 1686036682 73439737.11 

Fuel oil (liters) 880143.13 0 44127640 3407289.73 

GLP (liters) 2854920.32 0 357590947 5199613.25 

Ethanol (liters) 12859838.16 0 2017823810 83035134.79 

aSD: Standard Deviation 
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APPENDIX C 
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Figure C.1 - Theoretical semivariograms for motorized transport (model validation) 

  

Primary Variable (Subsample 1) Secondary Variable (Subsample 1) 

  

Primary Variable (Subsample 2)  Secondary Variable (Subsample 2) 

  

Primary Variable (Subsample 3) Secondary Variable (Subsample 3) 

  

Primary Variable (Subsample 4) Secondary Variable (Subsample 4) 

 

 

 

Primary Variable (Subsample 5) Secondary Variable (Subsample 5) 
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Figure C.2 - Theoretical semivariograms for active transport (model validation) 

  

Primary Variable (Subsample 1) Secondary Variable (Subsample 1) 

 

 

 

 

Primary Variable (Subsample 2)  Secondary Variable (Subsample 2) 

  

Primary Variable (Subsample 3) Secondary Variable (Subsample 3) 
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