
Towards QUIC debuggability
Robin Marx∗
Wim Lamotte

Hasselt University – tUL – EDM
Diepenbeek, Belgium

Jonas Reynders
Kevin Pittevils

Hasselt University – tUL
Diepenbeek, Belgium

Peter Quax
Hasselt University – tUL – Flanders

Make – EDM
Diepenbeek, Belgium

Figure 1: The QUICvis timeline-view, showing the parallel transfer of five resources.

ABSTRACT
QUIC has been called the mother of all web protocols, as it deeply
integrates aspects of TCP (reliability, flow control, congestion con-
trol, loss recovery), TLS (handshake, encryption keys) and HTTP/2
(streams, prioritization) together into one cross-layer implementa-
tion over UDP. However, such ambition comes at the cost of high
complexity, which in turn leads to misinterpretations, bugs and un-
wanted behaviour in implementations. This was also witnessed in
the recently standardized HTTP/2 protocol.

We posit that QUIC should thus take a proactive approach in
ensuring its testability and debuggability. To that end, this work
introduces the first version of a common logging format for QUIC
endpoints, called qlog. This format allows the capture of internal
QUIC state that is not visible on the network. It is easily deployable
and empowers the creation of reusable (visual) tools to aid in inter-
preting QUIC’s behaviour. We implement and evaluate three such
tools (a timeline, sequence diagram and congestion/flow control
graph) in the proposed QUICvis toolset and show their usefulness
in comparing behaviours across three competing QUIC implementa-
tions, as well as in performing root cause analysis on bugs and issues.
We hope this work will foster the discussion on QUIC debuggability
and that it will raise community awareness.

∗Robin Marx is a SB PhD fellow at FWO, Research Foundation Flanders, #1S02717N.
Contact:robin.marx@uhasselt.be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EPIQ’18, December 4, 2018, Heraklion, Greece
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6082-1/18/12. . . $15.00
https://doi.org/10.1145/3284850.3284851

CCS CONCEPTS
• Networks → Protocol testing and verification; Transport
protocols;Networkperformanceanalysis;Networkperformance
evaluation; Network measurement;

KEYWORDS
QUIC; Transport protocol; Logging; Interactive visualization

ACMReference Format:
Robin Marx, Wim Lamotte, Jonas Reynders, Kevin Pittevils, and Peter Quax.
2018.TowardsQUICdebuggability. InWorkshopon theEvolution, Performance,
and Interoperability of QUIC (EPIQ’18), December 4, 2018, Heraklion, Greece.
ACM,NewYork, NY, USA, 7 pages. https://doi.org/10.1145/3284850.3284851

1 INTRODUCTION
The QUIC protocol [10] is a complex beast. One of its goals is to
finally solve some of the long-term issues plaguing TCP (such as
Head-of-Line blocking due to packet loss, and low flexibility due to
ossification [16]). As such, it is essentially a reinterpretation of what
we typically think of as the features of a reliable and congestion con-
trolled transport layer, but on top of UDP. However, QUIC does not
stop there, as it aims to also incorporate best practices from security
andapplication-levelprotocols. Inpractice, thismeansa (partial) inte-
gration with the TLS/1.3 protocol (e.g., allowing 0-Round-Trip-Time
(RTT) connection setups) and a mapping of many of the concepts in
theHTTP/2 standard, as primitives such as streams aremoved down
into the QUIC transport layer [10]. To remain flexible and be able to
evolve quickly, the protocol is currently also fully implemented in
user-space and almost entirely end-to-end encrypted, leaking only
minimal information on the wire [16]. This all means that much ex-
isting functionality (e.g., reliability, congestion control, encryption
logic, compression, HTTP mapping) has to be implemented from
scratch, as little existing code can be re-used. Although Google has
shown that this is certainly possible in their original work onGoogle

1

Contact: robin.marx@uhasselt.be
https://doi.org/10.1145/3284850.3284851
https://doi.org/10.1145/3284850.3284851


EPIQ’18, December 4, 2018, Heraklion, Greece R. Marx et al.

QUIC (gQUIC)[16], the soon to be standardized IETF version (iQUIC
[10], which this work focuses on) introduces many changes and has
already led to 15+work-in-progress implementations [23], eachwith
their own idiosyncrasies.

With such an enormous undertaking, it is highly likely that there
will be various bugs and unexpected behaviours in the young iQUIC
implementations for some time to come [20]. Furthermore, as QUIC
will continue to evolve, adding capabilities such asmultipath [6], For-
wardErrorCorrection (FEC) [16] andmappings forother application-
layer protocols (e.g., WebRTC), implementations can undergo signif-
icant changes even after reaching initial maturity. In such a highly
dynamic environment, it is important that these implementations
can be easily tested and debugged, as many different actors will
attempt to figure out which implementation to use and/or how to
fine-tune that code for their specific use cases. Overall, makingQUIC
debuggable is not just useful in the early phases (e.g., initial imple-
mentations, first deployments), but also long afterwards (e.g., fine
tuning live deployments, testing new features, academic research,
live network operations).

However, as QUIC is a highly optimized, binary and end-to-end
encrypted protocol, proper tooling support is necessary for efficient
debugging. While some software is available that can help in an-
alyzing QUIC traffic (e.g., Wireshark), it is not focused on QUIC
specifically, nor does it cater for combining contextual information
across the various layers that QUIC integrates (transport, security
and application). This makes it difficult to understand complex in-
teractions (e.g., 0-RTT connection establishment combined with
HTTP Server Push). Additionally, much of QUIC’s internal state
used for decision making (e.g., congestion control state) is not ex-
plicitly communicated over the network. Given this state of affairs,
we posit that the time is right to start working towards a common,
standardized endpoint logging format (§3) and a set of shareable
and easily reusable visual tools (§4). We support our statement by
evaluating various iQUIC implementations (§5) and open source our
work at https://quic.edm.uhasselt.be.

2 BACKGROUNDANDRELATEDWORK
2.1 Amotivating analogue: HTTP/2
Much of our motivation for this work comes from our experience
with the HTTP/2 protocol, whose standardization trajectory was
very similar to QUIC’s (both evolving from work at Google [16]).
Even though HTTP/2 was already standardized in 2015, is concep-
tually much simpler than QUIC and various mature, interoperable
implementations exist, significant operational differences remain.
Unexpected issues and bugs keep popping up even now (e.g., Server
Push is inconsistent [12], prioritization support is lacking or faulty
[8, 9, 19, 33], dynamic HPACK compression is missing [32]) and few
implementations support the full specification (correctly) [13]. Find-
ing these implementation discrepancies can be complex in practice,
mainly due to a lack of a common logging format and specialized
tools. We posit that a more extensive focus on debuggability from
the early phases can help prevent long running issues in QUIC.

Packet traces (e.g., .pcap files,Wireshark) are useful in this regard,
but they only convey information that is actually put on the wire,
hiding certain details (e.g., whether the server actually adheres to
priority directives or not). Chrome is the only browser providing

easily accessibleHTTP/2 logs (at chrome://net-internals/#http2), but
only barely exposes additional state (e.g., whether a pushed stream
was successfully adopted or not). A proposal [2] was made for a
standard HTTP/2 server side debugging state format, but it exposes
only limited and fairly high-level information and is not currently
supported by all (commodity) web-server implementations.

We ourselves developed several visual tools to help with debug-
ging HTTP/2 subsystems. The H2vis project [5] has both a priority
tree visualization and a timeline on which individual TCP packets
are shown next to HTTP/2 frames, split out per-stream. These tools
have helped us to efficiently discover differences in various imple-
mentations and led to the uncovering of several bugs [33]. While
H2vis only uses packet traces, others developed similar tools based
on the chrome devtools output [25].We do not knowof any similarly
complex tools attempting to parse and display various server (debug)
log formats directly or even use the proposed standard format [2].
Instead, to gain deeper insights, we and other academic work have
had to turn to customor adjustedHTTP/2 implementations to obtain
additional debug output or test specific scenarios [13, 30, 33].

2.2 QUIC research
With regards to gQUIC, several papers have started to assess its inner
workings and performance. Even though there are only a handful of
up-to-date open source implementations, almost all previous publi-
cations focus on high-level performance gains or losses and perform
noroot causeanalysesof theobservedbehaviours [3, 4, 17].Anotable
exception is the work of Kakhki et al. [14], in which they had to rely
on custom tools and manual code instrumentation to generate state
transition diagrams for gQUIC’s congestion control algorithms. We
believe availability of diagnostic tools would encourage researchers
to go deeper, even for larger-scale studies [27].

Looking at iQUIC, there is still a lack of academic work, as the
implementations are not yet robust enough to be thoroughly (perfor-
mance) tested. Still, implementers have started using tools to assess
their progress. For example, the quic-tracker tool [20] runs confor-
mance tests against available experimental public iQUIC endpoints.
The tool mainly registers and displays .pcap data and basic client
logs. When a test fails, it often has to be re-run and the variously-
formatted corresponding server side logs are looked up manually
to determine the root cause. Similarly, when testing iQUIC cross-
implementation interoperability, developers often rely on direct chat
conversations and live, concerted debugging in a Slack group [24]
to diagnose problems, as it is difficult to interpret problem areas in
other people’s logs, which are often also lacking key information.
While this method may work in these early days, as the number of
developers, users and use cases [6, 7, 21] for iQUIC grows, a more
scalable approach will be needed.

2.3 Addingmeasurability to QUIC
Other work has also picked up on the (passive) measurability issues
with QUIC’s encrypted wire image. For example, Kazuho Oku pro-
posed a specialized METRICS packet [18], containing information
on number of packets sent and lost, smoothed RTTs and packet re-
ordering. In the proposal, on-path devices have to actively request
METRICS packets from the endpoints. A subsequent discussion on
the QUIC mailing list [22] showed that other stakeholders were

2

https://quic.edm.uhasselt.be
chrome://net-internals/#http2


Towards QUIC debuggability EPIQ’18, December 4, 2018, Heraklion, Greece

Listing 1: Simplified example of the qlog format in JSON, showing a packet being queued due to congestion control.
1 {"connectionid": "0x763f8eaf61aa3ffe84270c0644bdbd2b0d", "starttime": 1543917600,
2 "fields":
3 ["time","category", "type", "trigger", "data"],
4 "events": [
5 [50, "TLS", "0RTT_KEY", "PACKET_RX", {"key": ...}],
6 [51, "HTTP", "STREAM_OPEN", "PUSH", {"id": 0, "headers": ...}],
7 ...
8 [200, "TRANSPORT", "PACKET_RX", "STREAM", {"nr": 50, "contents": "GET /ping.html", ...}],
9 [201, "HTTP", "STREAM_OPEN", "GET", {"id": 16, "headers": ...}],
10 [201, "TRANSPORT", "STREAMFRAME_NEW", "PACKET_RX", {"id": 16, "contents": "pong", ...}],
11 [201, "TRANSPORT", "PACKET_NEW", "PACKET_RX", {"nr": 67, "frames": [16, ...], ...}],
12 [203, "RECOVERY", "PACKET_QUEUED", "CWND_EXCEEDED", {"nr": 67, "cwnd": 14600, ...}],
13 [250, "TRANSPORT", "ACK_NEW", "PACKET_RX", {"nr": 51, "acked": 60, ...}],
14 [251, "RECOVERY", "CWND_UPDATE", "ACK_NEW", {"nr": 51, "cwnd": 20780, ...}],
15 [252, "TRANSPORT", "PACKET_TX", "CWND_UPDATE", {"nr": 67, "frames": [16, ...], ...}],
16 ...
17 [1001, "RECOVERY", "LOSS_DETECTED", "ACK_NEW", {"nr": a, "frames": ...}],
18 [2002, "RECOVERY", "PACKET_NEW", "EARLY_RETRANS", {"nr": x, "frames": ...}],
19 [3003, "RECOVERY", "PACKET_NEW", "TAIL_LOSS_PROBE", {"nr": y, "frames": ...}],
20 [4004, "RECOVERY", "PACKET_NEW", "TIMEOUT", {"nr": z, "frames": ...}]
21 ]}

averse to this solution, as they would prefer passive instead of active
measurement. Nevertheless, they acknowledged the usefulness of
debugging modalities, especially at the application layer.

The consensus of the working group evolved towards two main
measurability provisions. Firstly, the so-called spinbit proposal [28],
which adds up to three [29] bits of information to QUIC’s packet
headers. By flipping these spinbits in predictable ways, on-path
observers can estimate RTTs between endpoints. However, even
this relatively simple signal caused pushback from stakeholders
reluctant to expose even this basic information on the network. At
the time of writing, the spinbit proposal is still pending further
applicability research. Secondly, Explicit Congestion Notification
(ECN) is integrated via the ACKmechanism [10], but this relies on
existing ECN functionality in the IP layer.

Parallel academic work proposes more generic approaches, the
leading example being thePLUSproject [15]. PLUSprepends anextra
headerwithmeasurement information (similar to the contents of the
METRICSpacket [18]) to select (UDP)packets, thus addinga separate
“path layer” between the network and transport layers. However,
even though the authors provide a PLUS implementation for gQUIC,
it is difficult to assess if and when this approach could be practically
deployed, as it requires large changes to existing infrastructure and
middleboxes, which could take a long time to find adoption.

Finally, the proposed measurement data in all these proposals
only covers a subset of the state needed to fully debug a protocol as
complex as QUIC. Recognizing the need for additional information
for gQUIC, in parallel to this work Google developed the quic-trace
utilitites [31], consisting of a logging format and basic visualizations.
Their approach focuses heavily on processing and rendering (very)
large traces, by using a binary logging format and optimizedOpenGL
renderer, while we opt for a human readable format (§3) and web-
based tooling (§4). It also mainly targets congestion-control related
metrics, while we include more application-layer information. We
believe our visions are complementary and can be combined and
grow together.

In conclusion, the short-term proposals (e.g., spinbit) are very
limited in scope, while the more extensive mechanisms (e.g., PLUS)
will probably take a longer time to find adoption in real networks.
As such, there is a need for an easily deployable, yet comprehensive
data gathering setup.

3 FLEXIBLE ENDPOINT LOGGING
As nor packet traces, nor existing proposals (§2.3) provide a com-
prehensive method for gathering QUIC debug data, this section
proposes the basis for an extensive QUIC endpoint logging format
named qlog. Using a single, standardized logging format enables
automated aggregation of results from a large amount of tests across
implementations (e.g., during a full-factorial evaluation) and the
creation of reusable toolsets (§4) and shareable (research) datasets as
well. It also opens up the possibility of easier post-hoc conformance
validation (as opposed to online testing [20]) and conformance test-
ing of internal server behaviour from client-side test setups.

As the iQUIC specification is not yet finalized, we are unable to
present a full schemadefinitionor specification for qloghere. Instead,
a “living document” schema for the qlog format, which will evolve
together with iQUIC, can be found on our website, together with
additional examples.

qlog is an incremental logging format, adding a new log entry
per event, thus leading to a complete ledger of all individual events.
Each event is accompanied by additional metadata, to allow quick
filtering on high-level contextual criteria (e.g., time period, category,
event type) and more detailed information is optionally added per
event. We also specify an additional “trigger” field, which indicates
the reason for a specific event occurring. This enables easy tracking
of high-level decisions, as the same event type can be triggered by
a variety of sources. This is different from normal logging, which
primarily dumps the packet contents and tools rely on heuristics to
interpret their meaning in-context [1]. It is also different from the
HTTP/2 standard loggingproposal [2],whichdoesnot incrementally
log events but instead gives a global state snapshot each time it is
requested, possibly leading to missing observations if the log fetch
frequency is low. With our approach, full endpoint state can be
reconstructed at all times.

An illustrative, non-exhaustive (i.e., not all possible entries are
shown) example of qlog, highlighting different event and trigger
types, can be seen in Listing 1. The center part (lines 8-15) shows
a new packet being blocked due to congestion (l12) and then fi-
nally sent after a received ACK frame enlarges the congestion win-
dows (CWND, l14). Lines 18-20 show how the same event type
(PACKET_NEW)canbe triggeredbythreedifferent lossdetection/pre-
ventionmechanisms.Lines6and9 in turnshowthatSTREAM_OPEN

3



EPIQ’18, December 4, 2018, Heraklion, Greece R. Marx et al.

can happen due to anHTTPGET request or a Server PUSH directive.
Alternately, lines 10, 11 and 13 show that a single trigger can lead to
multiple different events.

Our setup allows us to be very selective in what we log and when.
For example, by toggling categories and event types, the endpoint
itself can decide whether it logs everything, only transport-related
information, only the raw packets, only congestion/flow control,
whether it includes encryption keys in the logs, etc. We can also
selectively log only connections from certain clients or with given
connection IDs. This allows our setup to cater to a wide range of use
cases and helps limit the logging overhead.

To access the server side qlog output, we take inspiration from
the HTTP/2 proposal [2], which uses a well-known url (which, for
qlog, could be https://example.com/.well-known/hq/state) to ac-
cess the logs for the connection on which the state is requested.
We also allow retrieving information for any other single active
connection (e.g., /state?connid=XYZ), and provide a way to list all
available connections (e.g., /state/list), to make debugging larger
setups easier. As this might easily expose sensitive information to
unwanted parties, endpoints can decide not to expose the latter two
options or to mandate the request to be accompanied by a secret
token or password indicated in the server configuration file (e.g.,
/state?connid=XYZ&token=53CR3T). This prevents unwanted ac-
cess by an (on-path) attacker, as the request URL is encrypted on
the wire. Alternatively, the logs themselves could be encrypted. It
would be best practice, especially for commodity web servers, to
provide secure default settings (e.g., disabling TLS key logging) and
to enforce best practices when enabling logs, ensuring the server
administrator really intended to expose this information. A very sim-
ilar access method is possible on the client side (e.g., Google Chrome
already allows viewing logs via chrome://net-internals/#protocol).
Automated tests (e.g., using webpagetest.org) could easily gather
the qlog output from both the browser and server and visualize it.

The design of qlog adheres largely to the Principles for Measur-
ability by Allman et al. [1], excluding those that are precluded by
QUIC’s encryption-related design choices (e.g., in-band visibility
and co-operation with middleboxes). Firstly, the variety of event
types and indication of event triggers,makes the format very explicit.
Secondly, qlog is economic, as logging can be selectively enabled/dis-
abled. Finally, we grant the QUIC endpoints full control on which
data they expose and add security features to this effect.

qlog is quickly deployable at both client and server side and can
provide much needed support during the early days of iQUIC, while
other solutions (§2.3) can replace or complement our proposal later
on. To speed up adoption and aid implementers who do not wish to
write their own qlog codebase, we plan to provide an open source
library with bindings for multiple languages. We propose the use of
JSON as the carrier format, as it is human-readable and simplifies the
development of shareableweb-based tools, but othermore optimized
substrates are possible (e.g., protocol buffers, as used by quic-trace
[31]). However, this should not be needed for many use cases, as
JSON data can be incrementally streamed, parsed and potentially
aggregated to enable processing of larger datasets and it lends itself
well to (gzip) compression for storage and transfer. Some readability
could also be sacrificed for performance (e.g., by replacing strings
for categories, types, etc. with numerical ENUM references). These
decisions are pending community feedback.

4 INTERACTIVE VISUALIZATIONS
Whetherwe use heterogeneous logging formats or a single, common
format such as qlog (§3),we are still leftwith text-based artefacts that
can be difficult and tedious to interpret. Interactive (visual) tooling
can be employed to abstract, filter and contextualize this information.
Software such asWireshark does helpwith some information hiding
and making packet flows clearer, but more powerful visualizations
canmake this processmuchmore tangible and efficient. This section
discusses the merits of three such tools.

The sequence diagram (Figure 3) draws arrows between two
endpoints indicating individual packet transmission and reception
events. It is similar to the well-knownWireshark / tcptrace view, but
adds an indication of network latency by slanting the arrows. This
in turn highlights the usefulness of having a separate client- and
serverside log: as opposed to a single in-between trace, we can corre-
late events by packet number to calculate exact RTTs for each packet
(i.e., we know exactly the processing overhead that contributes to
the delay, which is hidden using the spinbit approach and which
QUIC’sACK frames only expose for a single packet via the ack_delay
field [10]). It also allows us to give more insight into packet reorder-
ing (clearly visible when arrows travelling in the same direction
cross each other, see Figure 3 X ). Lost packets (which otherwise
might remain invisible to an in-network observer, depending on its
location) are indicated as half-drawn lines, ending abruptly halfway
through (not shown in the image). Finally, re-transmits are high-
lighted and the original (lost) packet(s) are indicated in the sidebar
(also not shown in the image). This is useful as, unlike TCP, QUIC
uses a new packet number when re-sending lost data, and individual
frames from one lost packet can be re-distributed across multiple
newpackets. If the source log contains that information, a click on an
individual event displays additionalmetadata (e.g.,whya re-transmit
was triggered, flow control state at that time). This diagram helps
analysis of small packet flows (e.g., handshake), individual streams
and packet loss/re-ordering impact. While this type of graph is a
staple in various tools, the use of two independent logs increases its
usefulness and accuracy considerably.

The timeline (Figures 1 and 2) hides most smaller details and
allows the user to focus on the bigger picture, as individual packets
and frames are shown as small, (potentially overlapping) squares
(coloured based on their contents). Each UDP QUIC connection can
be expanded to individual streams and their frames (a conceptual
“control stream” groups connection-level and handshake data), see
Figure 1. The timeline further allows us to easily compare various
traces. For example, Figure 2 shows us client, server and packet logs
for two different implementations, all side-by-side. This makes it
easy to notice (large) differences between implementations, indi-
vidual runs or parallel separate connections. This comparison is
useful in debugging multipath setups, fairness of congestion control
algorithms or multiple concurrent QUIC connections. Especially
this type of analysis is difficult using tools likeWireshark.

The timeline can also help debug more specific issues. It provides
different operation modes that highlight or toggle context-sensitive
information. For example, in flow control mode, frames such as
MAX_STREAM_DATA are clearly highlighted. For compression

4

https://example.com/.well-known/hq/state
/state?connid=XYZ
/state/list
/state?connid=XYZ&token=53CR3T
chrome://net-internals/#protocol


Towards QUIC debuggability EPIQ’18, December 4, 2018, Heraklion, Greece

Figure 2: The QUICvis timeline, showing network interruption traces for 2 implementations. Legend: see Figure 1.

Figure 3: The QUICvis sequence diagram, showing duplicate
CONNECTION_CLOSE packets. ACK-only packets are not
shown for clarity.

mode, updates to QPACK’s dynamic table are added to the timeline
as markers. In congestion mode, endpoint estimates for goodput,
latency/jitter, loss rate etc. are shown at each chosen point in time.
Furthermore, selecting an ACK frame highlights the packet(s) it
acknowledges, as well as earlier lost versions of itself (if any). Finally,
the user can easily zoom and pan the timeline; clicking a square
provides detailed information about its contents, and packets across
different traces can easily be compared.

Therecoverygraph (Figure 4) helps show the complex interplay
of congestion control and flow control, as it is often unclear which
of these mechanisms is limiting data flow. The top part of the graph
focuses onflowcontrol, and shows theMAX_STREAM_DATA limits

per-stream, as well as STREAM frames sent and for which offsets in
that stream they carry data [10]. Equally coloured STREAM frames
occupying the same y-range are re-transmits, as they contain data
for the same byte offset within the stream, see Figure 4 R . When the
stacked frames reach the allowance lines, it means that the stream
was flow control limited (Figure 4 F ) and a MAX_STREAM_DATA
increase is needed (Figure 4 U ).

The bottom part focuses on congestion control (though it also
shows the connection-level MAX_DATA flow control variable). The
evolution of the congestion window (cwnd) is clearly visible, as well
as which proportion of said window is currently free to be used to
senddata. If this “data allowance” is zero (Figure 4 C ), the connection
is congestion control limited and the receipt of (an) ACK frame(s)
is needed to increase the cwnd and/or reduce bytes in flight. This
graph helps perform root cause analysis for slow data transfers. For
example, in Figure 4 L , streams 16 and 20 are delayed because of
congestion, not faulty flow control. This kind of cross-correlative
graph is often lacking from other tools.

5 EVALUATION
As the iQUIC specification is still in full flux, it is difficult to fully
develop or evaluate qlog and our visualizations at this time. Never-
theless, in the open source QUICvis (https://quic.edm.uhasselt.be)
project , we provide initial implementations of qlog and web-based
versions of the three discussed visualizations (§4). We currently
support loading .pcap files, a basic qlog format and also the cus-
tom logging formats from three iQUIC implementations (i.e., our
own Quicker (https://github.com/rmarx/quicker), Quant (https://
github.com/NTAP/quant) and Ngtcp2 (https://github.com/ngtcp2/
ngtcp2)) to assess the investment of work needed without a unified
format.

For our evaluation, we ran a variety of specification conformance
tests and simple fuzzing tests and determined the three QUIC im-
plementations’ robustness and compliance. This has led to several
deeper insights and unexpected findings. For example, the iQUIC
specification (we have evaluated its 11th draft [11]) disallows the

5

https://quic.edm.uhasselt.be
https://github.com/rmarx/quicker
https://github.com/NTAP/quant
https://github.com/NTAP/quant
https://github.com/ngtcp2/ngtcp2
https://github.com/ngtcp2/ngtcp2


EPIQ’18, December 4, 2018, Heraklion, Greece R. Marx et al.

Figure 4: The QUICvis recovery graph, showing five parallel streams with no packet loss (left) and 10% loss (right). (To prevent
overlapping, MAX_STREAM_DATA lines are offset vertically and STREAM frames horizontally, where necessary).

re-use of packet numbers and requires endpoints to ignore duplicate
packet numbers. One of the observed codebases instead explicitly
closes the connection with a PROTOCOL_VIOLATION error. Ironi-
cally, it repeatedly signals this with several CONNECTION_CLOSE
frames, each in its own individual packet, all of which share the same
packet number (see bottom of Figure 3).

A second test assessed the impact of a complete network interrup-
tion. Figure 2 compares client, server and network logs for twoQUIC
implementations. The top is the “normal” case: client and server
individually attempt to continue by re-transmitting packets (as no
timely ACKwas received). The bottom implementation is faulty: it
is too aggressive in re-sending the unACKed purple flow control
packet 2 (notice how the top implementation does have a proper
back-off period 1 ). Even worse, when the connection is restored,
it ignores congestion control and sends all pending data at once,
triggering flow control allowance requests (BLOCKED frames) 3 .

A third test downloaded five files simultaneously to assess how
stream data is multiplexed and how flow and congestion control is
performed in practice. Figure 4 F shows that one QUIC implementa-
tion sends asmuch data as possible for stream4until the flow control
allowance for that stream is reached, after which it switches to the
next stream. Only when the MAX_STREAM_DATA is increased by
the client, does the server send the next batch of data for stream 4
U . Streams 16 and 20 are delayed, but not because of flow control:
as the implementation employs a TCP NewReno-alike congestion
control approach [10], the congestion window (cwnd) is small in the
slow start phase. The three first streams completely fill the cwnd,
leaving no data allowance for streams 16 and 20 C . Only when the
cwnd doubles in size after receiving the first ACKs D , do streams 16
and 20 get bandwidth. Themiddle part of the qlog example in Listing
1 conceptually shows how this type of situation would appear in
the logs. The exact same scenario is also shown in the timeline in
Figure 1, where the stream-per-stream sending is clearly visible on
the x-axis. However, there it would have beenmore difficult to assess
the reasons for the per-stream bandwidth distribution, showing the
value in combining different visualizations. The same test is also
shown on the right side of Figure 4, but then on a link with 10%
packet loss. There, we clearly see the cwnd being halved after loss
(multiple times) H and streams 16 and 20 being delayed even longer
L , as the earlier streams get precedence. Note that a mechanism

such asHTTP/2 priorities can change how this bandwidth allocation
happens, and could allow streams 16 and 20 to send data earlier.

Various other tests were performed, among others looking at
packet coalescing behaviour, ACK generation delays and loss de-
tection timeouts, but are omitted here due to space limitations. We
conclude that most current iQUIC implementations will take consid-
erable time to become production ready. Further details and results
canbe found in JonasReynders’ thesis [26].Wehavenotyetevaluated
very large traces (e.g., several hours of a real-life deployment). How-
ever, our current implementations do combine data filtering/hiding
with flexible zooming/panning and offset overlapping data to allow
for easier interpretation and to improve tool interactivity. Additional
work will be needed though, especially to support fast web-based
comparisons of multiple long-running event logs.

6 DISCUSSIONANDCONCLUSION
A protocol as complex as QUIC will be challenging to debug, test,
deploy and evolve. Now is the ideal time to think about these issues,
as the first version of the specification is (almost) finished and imple-
mentations start to expand. We aim to kickstart the discussion by
proposing a unified logging format, qlog (§3), which can be easily
deployed and allows both high-level and low-level state tracking.
We believe a standardized logging format is important, as it allows
the creation of reusable tools that can be employed in large-scale,
full-factorial evaluations across QUIC implementations. We have
implemented several such tools (§4) and have used them to analyze
the results of various specification conformance tests (§5). The vi-
sualizations were a great help in assessing overall behaviour and
in performing root cause analysis for a variety of uncovered bugs
and behaviours.While qlog and our visualizations are not absolutely
necessary to reach similar conclusions, they significantly speed up
the process, especiallywhen analyzing and comparingmany or com-
plex traces. We have also shown the added value of having separate
client and server side logs, as opposed to a single (network) trace.
Finally, while tooling itself does not necessarily require a uniform
logging format, we remark that there are large discrepancies in the
details present in each observed individual format and that, if imple-
mentations aim to eventually support the same state information in
their logs, it makes sense to do this in a common way. We hope to
work towards this goal in co-operation with other contributors.

6



Towards QUIC debuggability EPIQ’18, December 4, 2018, Heraklion, Greece

REFERENCES
[1] Mark Allman, Robert Beverly, and Brian Trammell. 2017. Principles for Measura-

bility in Protocol Design. SIGCOMMComputer Communication Review 47, 2 (May
2017), 2–12. https://doi.org/10.1145/3089262.3089264

[2] Cory Benfield and Brad Fitzpatrick. 2016. HTTP/2 Implementation Debug State.
Internet-Draft. IETF Secretariat. http://www.ietf .org/internet-drafts/draft-
benfield-http2-debug-state-01.txt

[3] Divyashri Bhat, Amr Rizk, and Michael Zink. 2017. Not So QUIC: A Performance
Study of DASH over QUIC. In Proceedings of the 27thWorkshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV’17). ACM, 13–18.
https://doi.org/10.1145/3083165.3083175

[4] Sarah Cook, Bertrand Mathieu, Patrick Truong, and Isabelle Hamchaoui. 2017.
QUIC: Better For What And For Whom?. In IEEE International Conference on
Communications (ICC’17). IEEE. https://hal.archives-ouvertes.fr/hal-01565785

[5] DaanDeMeyer. 2017. H2vis. Online, https://github.com/rmarx/h2vis. (September
2017).

[6] Quentin De Coninck and Olivier Bonaventure. 2017. Multipath QUIC: Design
and Evaluation. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT’17). ACM, 160–166. https:
//doi.org/10.1145/3143361.3143370

[7] YufengDuan,MassimoGallo, Stefano Traverso, Rafael Laufer, and Paolo Giaccone.
2017. Towards a Scalable Modular QUIC Server. In Proceedings of the Workshop
on Kernel-Bypass Networks (KBNets ’17). ACM, 19–24. https://doi.org/10.1145/
3098583.3098587

[8] Erik Witt. 2018. Chrome’s Service Workers Break HTTP/2 Priorities.
Online, https://medium.baqend.com/chromes-service-workers-break-http-2-
priorities-649c4e0fa930. (August 2018).

[9] Fedor Indutny. 2017. spdy for NodeJS. Online, https://github.com/spdy-http2/
spdy-transport/blob/master/lib/spdy-transport/connection.js#L339. (May 2017).

[10] Jana Iyengar and Martin Thomson. 2018. QUIC: A UDP-Based Multiplexed and Se-
cure Transport. Internet-Draft 14. IETF Secretariat. http://www.ietf .org/internet-
drafts/draft-ietf-quic-transport-14

[11] Jana Iyengar and Martin Thomson. 2018. QUIC: A UDP-Based Multiplexed and Se-
cure Transport. Internet-Draft 11. IETF Secretariat. http://www.ietf .org/internet-
drafts/draft-ietf-quic-transport-11

[12] Jake Archibald. 2017. HTTP/2 Push. Online, https://jakearchibald.com/2017/h2-
push-tougher-than-i-thought/. (May 2017).

[13] Muhui Jiang, Xiapu Luo, Tungngai Miu, Shengtuo Hu, andWeixiong Rao. 2017.
Are HTTP/2 Servers Ready Yet?. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS’17). IEEE, 1661–1671. https://doi.org/
10.1109/ICDCS.2017.279

[14] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. 2017. Taking a Long Look at QUIC: An Approach for Rigorous
Evaluation of Rapidly Evolving Transport Protocols. In Proceedings of the 2017 In-
ternet Measurement Conference (IMC ’17). ACM, 290–303. https://doi.org/10.1145/
3131365.3131368

[15] Mirja Kühlewind, Tobias Bühler, Brian Trammell, Stephan Neuhaus, RomanMün-
tener, and Gorry Fairhurst. 2017. A path layer for the Internet: Enabling net-
work operations on encrypted protocols. In 2017 13th International Conference
on Network and Service Management (CNSM’17). 1–9. https://doi.org/10.23919/
CNSM.2017.8255973

[16] AdamLangley,AlistairRiddoch,AlyssaWilk,AntonioVicente,CharlesKrasic,Dan
Zhang, FanYang, FedorKouranov, Ian Swett, Janardhan Iyengar, JeffBailey, Jeremy
Dorfman, Jim Roskind, Joanna Kulik, PatrikWestin, Raman Tenneti, Robbie Shade,
RyanHamilton, VictorVasiliev,Wan-TehChang, andZhongyi Shi. 2017. TheQUIC
Transport Protocol: Design and Internet-Scale Deployment. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). ACM, 183–196. https://doi.org/10.1145/3098822.3098842

[17] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. 2016. How quick is QUIC?. In
IEEE International Conference on Communications (ICC’16). IEEE. https://doi.org/
10.1109/ICC.2016.7510788

[18] Kazuho Oku. 2018. Performance Metrics Subprotocol for QUIC. Internet-Draft.
IETF Secretariat. http://www.ietf .org/internet-drafts/draft-kazuho-quic-perf-
metrics-00.txt

[19] Patrick Meenan. 2018. Optimizing HTTP/2 prioritization with BBR and
tcp_notsent_lowat. Online, https://blog.cloudflare.com/http-2-prioritization-
with-nginx. (October 2018).

[20] Maxime Piraux. 2018. A test suite for QUIC. Master’s thesis. Ecole polytechnique
de Louvain, Université catholique de Louvain, Belgium. http://hdl.handle.net/
2078.1/thesis:14585

[21] Peng Qian, Ning Wang, and Rahim Tafazolli. 2018. Achieving Robust Mo-
bile Web Content Delivery Performance Based on Multiple Coordinated QUIC
Connections. IEEE Access 6 (2018), 11313–11328. https://doi.org/10.1109/
ACCESS.2018.2804222

[22] QUICwg. 2018. Mailinglist. Online, https://mailarchive.ietf .org/arch/browse/
quic/?q=quic-perf-metrics. (February 2018).

[23] QUICwg. 2018. QUIC implementations. Online, https://github.com/quicwg/base-
drafts/wiki/Implementations. (February 2018).

[24] QUICwg. 2018. Slack chat group. Online, https://quicdev.slack.com/archives/
C6ALXAB7A/p1535980138000100. (August 2018).

[25] Rebecca Murphey. 2016. chrome-http2-log-parser. Online, https://github.com/
rmurphey/chrome-http2-log-parser. (October 2016).

[26] Jonas Reynders. 2018. QUIC insight. Bachelor’s Thesis. Expertisecentre for Digital
Media, Hasselt University, Belgium. https://quic.edm.uhasselt.be

[27] Jan Rüth, Ingmar Poese, ChristophDietzel, and Oliver Hohlfeld. 2018. A First Look
at QUIC in the Wild. In International Conference on Passive and Active Network
Measurement (PAM’18). Springer, 255–268. https://doi.org/10.1007/978-3-319-
76481-819

[28] BrianTrammell, Piet Vaere, Roni Even,Giuseppe Fioccola, Thomas Fossati,Marcus
Ihlar, Al Morton, and Stephan Emile. 2018. Adding Explicit Passive Measurabil-
ity of Two-Way Latency to the QUIC Transport Protocol. Internet-Draft draft-
trammell-quic-spin-03. IETF Secretariat. http://www.ietf .org/internet-drafts/
draft-trammell-quic-spin-03.txt

[29] Piet De Vaere, Tobias Bühler, Mirja Kühlewind, and Brian Trammell. 2018. Three
Bits Suffice: Explicit Support for PassiveMeasurement of Internet Latency inQUIC
and TCP. In Internet Measurement Conference (IMC’18). https://mami-project.eu/
wp-content/uploads/2018/09/spinbit.pdf

[30] Jeroen van der Hooft, Stefano Petrangeli, TimWauters, Rafael Huysegems, Tom
Bostoen, and Filip De Turck. 2018. An HTTP/2 Push-Based Approach for Low-
Latency Live Streaming with Super-Short Segments. Journal of Network and
Systems Management 26, 1 (01 Jan 2018), 51–78. https://doi.org/10.1007/s10922-
017-9407-2

[31] Victor Vasiliev. 2018. QUIC trace utilities. Online, https://github.com/google/
quic-trace. (September 2018).

[32] Vlad Krasnov. 2016. HPACK, The silent killer feature of HTTP/2. Online,
https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/. (Novem-
ber 2016).

[33] Maarten Wijnants, Robin Marx, Peter Quax, and Wim Lamotte. 2018. HTTP/2
Prioritization and Its Impact onWeb Performance. In Proceedings of the 2018World
Wide Web Conference (WWW ’18). ACM, 1755–1764. https://doi.org/10.1145/
3178876.3186181

7

https://doi.org/10.1145/3089262.3089264
http://www.ietf.org/internet-drafts/draft-benfield-http2-debug-state-01.txt
http://www.ietf.org/internet-drafts/draft-benfield-http2-debug-state-01.txt
https://doi.org/10.1145/3083165.3083175
https://hal.archives-ouvertes.fr/hal-01565785
https://github.com/rmarx/h2vis
https://doi.org/10.1145/3143361.3143370
https://doi.org/10.1145/3143361.3143370
https://doi.org/10.1145/3098583.3098587
https://doi.org/10.1145/3098583.3098587
https://medium.baqend.com/chromes-service-workers-break-http-2-priorities-649c4e0fa930
https://medium.baqend.com/chromes-service-workers-break-http-2-priorities-649c4e0fa930
https://github.com/spdy-http2/spdy-transport/blob/master/lib/spdy-transport/connection.js#L339
https://github.com/spdy-http2/spdy-transport/blob/master/lib/spdy-transport/connection.js#L339
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-14
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-14
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-11
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-11
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
https://doi.org/10.1109/ICDCS.2017.279
https://doi.org/10.1109/ICDCS.2017.279
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.23919/CNSM.2017.8255973
https://doi.org/10.23919/CNSM.2017.8255973
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1109/ICC.2016.7510788
https://doi.org/10.1109/ICC.2016.7510788
http://www.ietf.org/internet-drafts/draft-kazuho-quic-perf-metrics-00.txt
http://www.ietf.org/internet-drafts/draft-kazuho-quic-perf-metrics-00.txt
https://blog.cloudflare.com/http-2-prioritization-with-nginx
https://blog.cloudflare.com/http-2-prioritization-with-nginx
http://hdl.handle.net/2078.1/thesis:14585
http://hdl.handle.net/2078.1/thesis:14585
https://doi.org/10.1109/ACCESS.2018.2804222
https://doi.org/10.1109/ACCESS.2018.2804222
https://mailarchive.ietf.org/arch/browse/quic/?q=quic-perf-metrics
https://mailarchive.ietf.org/arch/browse/quic/?q=quic-perf-metrics
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://quicdev.slack.com/archives/C6ALXAB7A/p1535980138000100
https://quicdev.slack.com/archives/C6ALXAB7A/p1535980138000100
https://github.com/rmurphey/chrome-http2-log-parser
https://github.com/rmurphey/chrome-http2-log-parser
https://quic.edm.uhasselt.be
https://doi.org/10.1007/978-3-319-76481-8_19
https://doi.org/10.1007/978-3-319-76481-8_19
http://www.ietf.org/internet-drafts/draft-trammell-quic-spin-03.txt
http://www.ietf.org/internet-drafts/draft-trammell-quic-spin-03.txt
https://mami-project.eu/wp-content/uploads/2018/09/spinbit.pdf
https://mami-project.eu/wp-content/uploads/2018/09/spinbit.pdf
https://doi.org/10.1007/s10922-017-9407-2
https://doi.org/10.1007/s10922-017-9407-2
https://github.com/google/quic-trace
https://github.com/google/quic-trace
https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/
https://doi.org/10.1145/3178876.3186181
https://doi.org/10.1145/3178876.3186181

	Abstract
	1 introduction
	2 Background and Related Work
	2.1 A motivating analogue: HTTP/2
	2.2 QUIC research
	2.3 Adding measurability to QUIC

	3 Flexible endpoint logging
	4 Interactive Visualizations
	5 Evaluation
	6 Discussion and conclusion
	References

