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Summary
Completeness means that any measurable function of a sufficient statistic that has
zero expectation for every value of the parameter indexing the parametric model
class, is the zero function almost everywhere. The property is satisfied in many sim-
ple situations in view of parameters of direct scientific interest, such as in regression
models fitted to data from a random sample with fixed size. A random sample is
not always of a fixed, a priori determined size. Examples include sequential sam-
pling and stopping rules, missing data, and clusters with random size. Often there
then is no complete sufficient statistic. A simple characterization of incompleteness
is given for the exponential family in terms of the mapping between the sufficient
statistic and the parameter, based upon the implicit function theorem. Essentially
this is a comparison of the dimension of the sufficient statistic to the length of the
parameter vector. This results in an easy verifiable criterion for incompleteness,
clear and simple to use, even for complex settings as is shown for missing data and
clusters of random size.

This tutorial exemplifies the (in)completeness property of a sufficient statistic,
thereby illustrating our proposed characterization. The examples are organized from
more classical, simple examples to gradually more advanced settings.

Key words: Ancillarity, censoring, incomplete data, joint modeling, random cluster size, se-
quential trial.

1 Introduction

The simplest statistical designs involve the collection of a univariate or multivariate outcome,

often with an accompanying vector of covariates, for a number of independent study units.
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This number, the sample size, is classically fixed a priori. However, many designs frequently

deviate from this in important ways. One consequence is that complete sufficient statistics

may no longer exist. Completeness implies that any function of a sufficient statistic that

has zero expectation for every value of the parameter indexing the parametric model class,

is the zero function almost everywhere. The relevance of complete sufficient statistics has

been established through two theorems, Lehman-Scheffé theorem and Basu’s theorem. Com-

pleteness, combined with regularity conditions, provides a basis for estimators with desirable

properties, such as unbiasedness and optimality, discussed further. Note, this paper confines

to the (in)completeness of sufficient statistics, excluding statistics that are not sufficient.

In sequential designs (Wald, 1945) one incorporates a data-driven rule to potentially stop

the trial before reaching the maximal sample size. Such methods are well established in

clinical trials (Armitage, 1975). While the statistical aspects of sequential methods have been

carefully studied (Lehman and Stein, 1950), the lack of completeness has led to disagreement

and confusion, regarding appropriate (point and interval) estimation following such trials,

leading to many ad hoc proposals. Liu and Hall (1999) and Liu et al. (2006), building upon

Emerson and Fleming (1990), explored this aspect. Molenberghs et al. (2014) and Milanzi

et al. (2014, 2015) studied the issue in a wider framework, encompassing stochastic stopping

rules and completely random sample sizes. They demonstrated that, somewhat contrary to

intuition and in spite of incompleteness, the ordinary sample average remains a viable estimator

(because of consistency, asymptotic normality, and high efficiency), even though it no longer

has all properties that it enjoys in the conventional, fixed sample size setting. We elaborate

on this in Section 2.1. Another setting without complete sufficient statistics is that of clusters

of unequal size. Such designs include longitudinal, multilevel, spatial, and multi-stage survey

designs. A counterexample is a longitudinal study where each one of the subjects is measured

exactly the same number of times, at an a priori fixed set of measurement occasions. Then, N ,

the number of subjects, and n, the amount of measurements, are design constants. However,

such “clean” designs are the exception rather than the norm. A variety of ad hoc methods has

been proposed for the random cluster size setting. Other settings without complete sufficient

statistics are missing data, censored time-to-event data, random visit times, and joint modeling
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of longitudinal and time-to-event data.

Although the definition of a complete sufficient statistic is clear, its constructive verification

in a given situation often involves tedious algebra. This is especially true in sequential trials,

except for the simplest situation of two possible sample sizes only; such calculations are,

quite literally, convoluted. Likewise, when completeness does not hold, the construction of

counterexamples may or may not be straightforward. Nevertheless, a clear, simple, and easily

verifiable criterion for completeness, of a constructive rather than an existential nature, would

be welcome. For example, in a normal univariate sample with fixed sample size, a minimal

sufficient statistic for the population mean is the sample sum, in contrast to the random sample

case for which it is the sample sum and the realized (random) sample size. The parameter

remains one-dimensional, but the minimal sufficient statistic is two-dimensional, and eventually

leading to incompleteness. A general criterion can be formulated that starts from, but moves

beyond, the length of a vector.

To ensure completeness of the minimal sufficient statistics Lehmann (1981, pp. 142–143),

Brown (1986, pp. 42–44) and Boos and Stefanski (2013, pp. 103–104) formulated theorems,

based on appropriate restrictions placed on the canonical form of the exponential family.

Brown (1986) proves incompleteness using complex analytic properties and refers to the unique

determination of a standard family by its Laplace transform. In this paper, however, the latter

is more explicitly used and a result, both general and easy to use, follows. Boos and Stefanski

(2013) and Lehmann (1981) base their theorems on the fact that the family is minimal and

the parameter space contains a rectangle, thereby requiring that the family is of full rank. The

characterization of incompleteness given in this paper is also related to a property of curved

exponential models (Van Garderen, 1997; Keener, 2010). These have the property that the

dimension of the minimal sufficient statistic is larger than the number of parameters in the

model. Van Garderen (1997) establishes a theorem that allows a straightforward comparison

between the dimension of the minimal sufficient statistic and the number of parameters to

determine when a model is a curved exponential model. Keener (2010) points out that curved

exponential models arise naturally with data from sequential experiments and in applications

to contingency table analysis.
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In Section 2, two commonly encountered settings are presented, where minimal sufficient statis-

tics are incomplete. Known results leading up to the characterization of complete sufficient

statistics are briefly reviewed in Section 3. The key result, our characterization, is presented

in Section 4. To highlight the ease of use of the criterion, it is applied and shown to work

for two more complex data settings, i.e., clusters of random size and missing data. Section 5

illustrates and further clarifies our findings for clustered data. Section 6 considers partially

unobserved contingency tables, extends these results to other missing-data settings and shows

why seemingly unrelated settings, all have led to incomplete sufficient statistics.

2 Motivating Settings

2.1 Sequential Trials

Group sequential trials are in common use and have been well studied (e.g., Wald, 1945; Ar-

mitage, 1975; Whitehead, 1997; Jennison and Turnbull, 2000). The corresponding design and

hypothesis testing machinery is well developed. Nevertheless, issues still surround estimation

following a sequential trial (Siegmund, 1978; Hughes and Pocock, 1988; Todd, Whitehead,

and Facey, 1996; Whitehead, 1999). Several authors have reported that standard estimators

such as the sample average are biased. In response to this, various proposals have been made

to remove or alleviate this bias and its consequences (Tsiatis, Rosner, and Mehta, 1984; Rosner

and Tsiatis, 1988; Emerson and Fleming, 1990). An early suggestion was to use an estimator

(Blackwell, 1947) that conditions on the stopping event.

The origin of the problem was understood at an early stage of the development. Lehman

and Stein (1950) showed that it originates from incompleteness of the sufficient statistics,

generally implying the non-existence of a minimum variance unbiased linear estimator. Liu

and Hall (1999) and Liu et al. (2006) explored this incompleteness in group sequential trials,

and Molenberghs et al. (2014) and Milanzi et al. (2014, 2015) embedded the problem in the

broader class of random sample size, which also includes, missing data, completely random

sample sizes, censored time-to-event data, and random cluster sizes. Their main findings were:
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(1) the sample average, although asymptotically unbiased has finite sample bias; (2) apart from

the exponential distribution setting, there is no finite-sample optimal linear estimator, although

the sample average is asymptotically optimal (i.e., uniform minimum variance unbiased); (3)

the validity (i.e., consistency and asymptotic normality) of the sample average also follows from

standard ignorable likelihood theory (Little and Rubin, 2002); we will return to ignorability in

Section 6; (4) there exists a maximum likelihood estimator that conditions on the realized

sample size, which is finite sample unbiased, but has slightly larger variance and mean square

error.

2.2 Clusters of Unequal Size

While given less attention, there is an extensive literature on what is often called ‘informa-

tive cluster size,’ taken to mean that the cluster size contains some information about the

parameters of scientific interest, which should be contrasted with the use of the term ‘infor-

mative’ in the missing-data and event-time literatures. Even when the cluster size contains no

information about the scientific parameters, there are issues resulting from lack of a complete

sufficient statistic.

One family of approaches is based on restricted moment estimators obtained through the use

of generalized estimating equations (Liang and Zeger, 1986; Liang, Zeger, and Qaqish, 1991).

Pseudo-likelihood, or composite likelihood, estimators have also been proposed (Lindsay, 1988;

Arnold and Strauss, 1991; le Cessie and van Houwelingen, 1994; Geys, Molenberghs, and

Lipsitz, 1998; Aerts et al., 2002). In these, the full likelihood is simplified and replaced

by a more manageable function (Geys, Molenberghs, and Lipsitz, 1998). Various authors

have studied weighted and unweighted approaches, whereas (non-)informative cluster sizes

(Williamson, Datta, and Satten, 2003; Benhin, Rao, and Scott, 2005; Hofman, Sen, and

Weinberg, 2001; Cong, Yin, and Shen, 2007; Chiang and Lee, 2008; Wang, Kong, and Datta,

2011).
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3 (In)complete Sufficient Statistics and Some Known Results

The property of central interest is that of completeness (Casella and Berger, 2001, pp. 285–

286). A statistic k(Y ), a measurable function of a random variable Y and with Y belonging to

a family Pθ, is complete if, for every measurable function g(·), independent of θ, the property

E[g{k(Y )}] = 0 for all θ, implies that Pθ[g{k(Y )} = 0] = 1 for all θ. The relevance of

completeness rests on two follow-up theorems. First, the Lehman-Scheffé theorem (Casella

and Berger, 2001) states that, if a statistic is unbiased, complete, and sufficient for a parameter

θ, then it corresponds to the best mean-unbiased estimator for θ. Second, the connection with

ancillarity follows from Basu’s theorem (Basu, 1955): a statistic that is both bounded complete

and sufficient is independent of any ancillary statistic (Casella and Berger, 2001, p. 287). The

theorems are implications rather than equivalences. For example, in the sequential trial context

there exist estimators with very good properties, despite lack of completeness (Molenberghs

et al., 2014).

Liu and Hall (1999) established incompleteness of the sufficient statistic for a clinical trial with

a stopping rule, for the case of normally distributed outcomes. Liu et al. (2006) generalized

this result to the exponential family. Molenberghs et al. (2014) and Milanzi et al. (2014)

broadened it further to a stochastic stopping rule, encompassing the important case of a

completely random sample size. In the latter case, even though sample size and data are

unrelated, completeness no longer holds.

Tables 1 and 2 contain a number of illustrative examples where the sufficient statistics are

found to be (in)complete. In Table 1, continuous and categorical outcomes are considered.

Positive outcomes (continuous times and counts) are the subject of Table 2. Some of these

models are based upon Chakraborty (2015). Precise formulations and details can be found

in Supplementary Materials A. Examples 1 and 2, a univariate sample with either known

or unknown variance, have complete sufficient statistics. Example 3, a univariate normal

sample with coupled mean and variance, does not; here, unlike in the previous examples,

the sufficient statistic is of higher dimension than the parameter. When the mean-variance

coupling parameter τ 2 is unknown (Example 3a), the sufficient statistic and the parameter are
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again of the same dimension and completeness holds, unlike when τ 2 is known (Example 3b).

If the statistic is restricted to either the sample sum or the sum of squared sample units,

then it is no longer sufficient. This last situation occurs also in Example 4, a sequential trial,

where the sufficient statistic consist not only of the data collected, but also of the sample size

realized, i.e., a one-dimensional parameter needs a two-dimensional sufficient statistic. These

developments emphasize that the establishment of either completeness or its converse requires

tedious, situation-specific calculations when using the definition. It is therefore convenient to

derive a simple criterion based on the dimensions of the parameter vector and the sufficient

statistic, to be established next.

4 A Characterization of Incompleteness

We turn to a general characterization of incompleteness, in the exponential family with a

vector-valued parameter and minimal sufficient statistic. Group the outcomes Yi into a vector

Y , with vector-valued parameter θ and write the exponential family in the form

f(y|θ) = h̃(y) exp {η(θ)′k(y)− A(θ)} , (1)

where the sufficient statistic K ≡ K(Y ). Consider first the situation where the function η

is everywhere of full rank. Examples 1 and 2 fall into this category. Because θ and η are in

1-to-1 relationship, we can use θ, without loss of generality. The score equation corresponding

to (1) is S(θ) = ∂η/∂θ ·K − ∂A/∂θ = 0. If the transformation, η(θ), is of full rank, then

it follows that

K =

(
∂η

∂θ

)
−1

∂A

∂θ
. (2)

Taking expectations, the right hand side of Equation (2) equals E(K). In the above situation,

the sufficient statistic is complete. To see this, assume that there is a function g(k) with

expectation zero for all values of θ. It then satisfies

∫
g(k)h(k) exp {θ′k − A(θ)} dk = 0, (3)
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Table 1: Examples with complete and incomplete sufficient statistics (continuous and cate-

gorical outcomes)

Ex. Setting Parameter(s) Sufficient statistic(s)

Settings with complete sufficient statistics

1 Yi ∼ N(µ, σ2), i = 1, . . . , n with µ un-
known and σ2 known

µ K1

2 Yi ∼ N(µ, σ2), i = 1, . . . , n with µ and
σ2 unknown

(µ, σ2) (K1,K2)

3a Yi ∼ N(µ, τ2µ2), i = 1, . . . , n with µ
and τ2 unknown

(µ, τ2) (K1,K2)

6 Yi ∼ N(µ, µ), i = 1, . . . , n µ K2

7a Yi ∼ N(µ, µ2λ), i = 1, . . . , n and λ = 0
or 1/2

µ K1 or K2

8 M1×M2 contingency table with φ(k1 |
k2) and π(k2)

ϕ(k1|k2), π(k2)

15 Fully observed 2× 1 contingency table p Z21

Settings with incomplete sufficient statistics

3b Yi ∼ N(µ, τ2µ2), i = 1, . . . , n with µ
unknown and τ2 known

µ (K1,K2)

4 Sequential trial with stochastic stop-
ping rule

µ (K3, N)

5 Bivariate parameter, one of which
known (cf. Ex. 2)

µ (K1,K2)

7b Yi ∼ N(µ, µ2λ), i = 1, . . . , n and λ 6= 0
and 6= 1/2

µ K1, K2

9 Yi ∼ N(µ, 1), sample size N , 1 ≤ N ≤
n with πN

µ (K3, N)

10 Y ∼ N(µ1N , σ2IN + τ2JN ) (µ, σ2) (K3,K4,K5, N)

11 Vector-valued data and parameter,
with completely random sample size

π(N |k) (K3, N)

12 N clusters of completely random size [K = K {(Y i)} ;

N = N {(Ni)}]

13 Y ∼ N(µ1N , σ2IN + τ2JN ), i =
1, . . . , N

(µ, σ2, τ2) (S1ℓ, S2, S3ℓ, S4ℓ)

14 General clustered-data setting with
random cluster sizes

θ

16 Partially missing 2× 1 contingency ta-
ble

p (Z21, Z1)

17 Partially missing 2× 1 contingency ta-
ble

pjk (Z2jk, Z1j)

K1 =
∑n

i=1 Yi; K2 =
∑n

i=1 Y
2
i ; K3 =

∑N
i=1 Yi; K4 = Y ′Y ; K5 = Y ′JNY .

S1ℓ =
∑cℓ

i=1

∑nℓ

j−1 Y
(ℓ)
ij ; S2 =

∑L
ℓ=1

∑cℓ
i=1

∑nℓ

j−1

(
Y

(ℓ)
ij

)2
; S3ℓ =

∑cℓ
i=1

(∑nℓ

j−1 Y
(ℓ)
ij

)2
; S4ℓ = cℓ.
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Table 2: Examples with complete and incomplete sufficient statistics (outcomes on [0,+∞[)

Ex. Setting Parameter(s) Sufficient statistic(s)

Settings with complete sufficient statistics

18 Yi ∼ Poisson(λ) λ K1

19 Yi ∼ Exponential(λ) λ K1

20 Yi ∼ Integrated Exponential(λ) λ K1

Settings with incomplete sufficient statistics

21 Yi ∼ Integrated Weibull(λ, ρ) (λ, ρ) Y1, . . . , Yn

K1 =
∑n

i=1 Yi.

with obvious notation, similar to Equation (1) but h̃ expressed as function of k rather than

y. Applying Fubini’s theorem (Rudin, 1974), we can write Equation (3) as

0 =

∫
dkph(kp)e

θpkp

∫
dkp−1h(kp−1|kp)e

θp−1kp−1 . . .

∫
dk1g(k1, . . . , kp)h(k1|k2, . . . , kp)e

θ1k1 .

This leads to a telescopic series of Laplace transforms:

Fθ1(k2, . . . , kp) = Lθ1 {g(k1, . . . , kp)h(k1|k2, . . . , kp)} , (4)

Fθ2(k3, . . . , kp) = Lθ2 {Fθ1(k2, . . . , kp)h(k2|k3, . . . , kp)} , (5)

...

Fθp = Lθp

{
Fθp−1

(kp)h(kp)
}
= 0, (6)

with obvious notation. Moving step-by-step from Equations (6) to (4), the sequence of Fθj

is zero a.e. for j running down from p − 1 to 1 and then eventually g(k1, . . . , kp) = 0 a.e.,

establishing completeness. Looking to the bivariate Examples 2 and 5, the same is seen for

Example 2, but a different result occurs for Example 5 where one of the two parameters is

known. Then, the sufficient statistic is incomplete.

Proposition 1. (Characterization of a complete sufficient statistic.) Provided the pa-

rameter space is rectangular, a sufficient statistic k is complete for a parameter θ in a
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exponential family model if and only if θ cannot be transformed to a parameterization η

with a proper subset η1 such that η = (η′

1,η2(η1)
′)′.

Proof. The proof is based upon a more general version of Example 5.

Let η(θ) be a function to match the minimal sufficient statistic K that is not of full rank.

This can be decomposed, using the implicit function theorem, assuming the functions

involved are continuously differentiable, and then mapped as follows:

η(θ) =


 η1

η2(η1)


 ←→ K =


 K1

K2


 . (7)

Incompleteness of the sufficient statistic would follow if a function g(k1,k2) could be found

satisfying:

0 =

∫
dk2h2(k2)e

η
2
(η

1
)′k2

∫
dk1h1(k1|k2)g(k1,k2)e

η
1
k1, (8)

0 =

∫
dk2h2(k2)e

η
2
(η

1
)′k2Lη

1
{h1(k1|k2)g(k1,k2)} , (9)

0 =

∫
h2(k2)F (k2,η1)e

η
2
(η

1
)′k2dk2. (10)

Now, (10) is not a Laplace transform. Therefore, we can choose a function F (k2,η1) that

satisfies the equation and then use the inverse Laplace transform to derive g(k1,k2). To

see that such a function can easily be found, choose:

F (k2,η1) = e−η2
(η

1
)′k2F̃ (k2).

With this choice, condition (10) simplifies to:

0 =

∫
h2(k2)F̃ (k2)dk2.

In other words, we need a function F̃ (k2) ⊥ h2(k2).
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Notice the similarity between the characterization and earlier work of Lehmann (1981), Brown

(1986) and Boos and Stefanski (2013). However, our characterization leads to more general

result and easy to use criterion. Also Van Garderen (1997) and Keener (2010) have already

pointed out this relationship between the dimension of the sufficient statistic and the number

of parameters for curved exponential models. Evidently, their focus is different from ours.

With this characterization all examples of Tables 1 and 2 can be verified solely by counting

the dimensions of the parameter vectors and sufficient statistic. The proposition explains why

Examples 1 and 2 have complete sufficient statistics. This is trivial in Example 1 because the

parameter and sufficient statistic are scalar. In Example 2, the parameter θ = (µ, σ2)′ consists

of two functionally independent components. Example 3 has a bivariate sufficient statistic,

like Example 2, and a bivariate parameter θ = (µ, τ 2µ2)′. Write η1 = µ and η2(η1) = τ 2η21,

which explains why this is an incomplete case when τ 2 is known. For Example 4, consider two

sample sizes n and 2n. The minimal sufficient statistic is (K3, N), and both are governed by

a distribution with sole parameter µ, trivially establishing incompleteness. This result relates

to Shao (1999, p. 110). In their Proposition 2.1, they consider the exponential family case,

of full rank, for a sufficient statistic that is complete and sufficient. Their proof is in terms of

the positive and negative parts of the normalizing function, rather than Laplace transforms.

Corollary 1. (Non-linearity of the function η2(η1).) For complete minimal sufficient

statistics, the function η2(η1) cannot be linear.

Proof. To see this, assume there is such a linear function. The correspondence becomes:

η(θ) =



 η1

Lη1



 ←→ K =



 K1

K2



 .

The inner product of these vectors is η′

1 {K1 + L′K2}, implying that K1 + L′K2 is a

minimal sufficient statistic of a smaller dimension, which is impossible. This establishes

that η2(η1) must be non-linear.

This corollary explains why in Example 3 the parameter is θ = (µ, τ 2µ2)′ and not, for example
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(µ, µ)′. The latter case is studied in Example 6, a univariate normal sample with mean equal

to the variance. The convenience of Proposition 1 is seen by generalizing Examples 3 and 6

to Examples 7 and 8, respectively. The first one is a univariate normal with coupled mean and

variance, for which it is very difficult to find a function g(k) that establishes incompleteness,

with the use of the criterion is straightforward. Example 8 is a 2 × 2 contingency table with

unconstrained parameterisation, leading to a complete sufficient statistic. Similar logic will be

used in the next section, to illustrate a simple yet generic clustered-data setting. Details can

be found in Appendix A.

5 Illustration: Clusters Following a Compound-Symmetry Model

First, consider univariate outcomes with random sample size. Example 9 is a univariate normal

with unknown mean, unit variance, and random sample size. The sufficient statistic is then

incomplete. In Example 10 this is extended to normal compound-symmetry vectors, where

incompleteness evidently also applies. In Example 11 the same is seen to be true for the

entire exponential family. In Example 12 the clusters are further allowed to be of variable

size. The sufficient statistic is then still incomplete. In Example 13, this general result is

applied to normal compound-symmetry data with clusters of unequal size, not allowing for

a complete sufficient statistic. In Example 14, we allow for both random cluster sizes and a

general exponential model formulation.

The use of Proposition 1 is trivial in this context. There are three model parameters, θ =

(µ, σ2, τ 2)′, but the sufficient statistic is necessarily of higher dimension, as soon as there are

at least two different cluster sizes. This route is easier than the explicit construction of a

function (39). Even though this was still practicable, the computations for Example 4 are

much more complex. This is because in Example 4 the stopping rule depends on the data, in

contrast to in our most recent Examples 3–19, where the cluster sizes are completely random.

In summary, because η(θ) will generally be such that the dimension of η is higher than that

of θ, Proposition 1 applies. The qualification ‘generally’ is needed, because there are obvious

(trivial) counterexamples. In Example 13 the sufficient statistic for σ2 is one-dimensional, as an
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exception to the rule. When this would hold for all parameters, then completeness would hold.

Such an example may be difficult to construct though. Another situation is when the cluster

members are independent. Then the cluster sizes become irrelevant. If, in this special case,

further
∑

i Ni, the overall sample size, would be constant, then such a clustered-data example

reduces to a conventional univariate sample with fixed sample size, and completeness follows,

establishing a counterexample. Apart from such pathological cases, virtually all practically

relevant clustered data applications have incomplete minimal sufficient statistics.

6 Missing Data in Contingency Tables and Beyond

First consider the simple yet generic setting of missing data in contingency tables. We then

turn to general missing data settings and end this section by bringing out commonality between

seemingly disparate settings, considered earlier in this manuscript, that all lead to incomplete

sufficient statistics.

In Example 15 a fully observed 2 × 1 contingency table is considered, which allows for a

complete sufficient statistic. When data are partially missing (Example 16), this is no longer

true. Example 16 and function (40) are reminiscent of Example 3, where function (17) exists

because τ 2 is known. In spite of the similarity, there is an important difference as well: q is an

unknown constant that nevertheless does not need to be estimated, because of ignorability.

Admittedly, Examples 15–16 are very simple and therefore it is hard to see the generality

of the result. Thus consider a 2 × 2 contingency table with supplemental margins as well

(Example 17), then no complete sufficient statistic exists.

In the above examples, there is nothing particular about the use of contingency tables, nor

about the parameterization used for the counts, leading to the following proposition.

Proposition 2. Proposition 2 (Incomplete sufficient statistics with ignorable likelihood.)Let

an exponential family model f(Y |θ) admit a complete sufficient statistic when data are

fully observed, then the same model does not admit a complete sufficient statistic under

ignorable likelihood when data are partially missing.
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It is interesting to reflect upon the nature of this result. When data are partially missing,

the data are effectively stratified, with one stratum grouping the fully observed trials and the

other stratum the remaining trials. Still, the parameters of p-type (Example 16–17) describe

both strata simultaneously. Because of ignorability, it is sensible to formulate a model where

the parameter vector is of the same length as it would be when data were complete, but the

stratification nevertheless implies that the length of the vector of sufficient statistics increases.

This leads to the conclusion that this same phenomenon also occurs in other settings, including

many non-missing-data settings. In Example 13, the strata are defined by the different cluster

sizes occurring in the data. In that example, completeness could be restored by assuming

that for every one of the cluster sizes nℓ occurring, there is a separate parameter vector

(µl, σ
2
ℓ , τ

2
ℓ ), together with a multinomial vector (π1, . . . , πL) describing the probabilities with

which the various cluster sizes occur.

Other examples can now be reconsidered. In Example 9, completeness would be established by

estimating a separate parameter for each of the cluster sizes that can occur. The parameter

would then be (µ1, . . . , µn; π1, . . . , πn). Obviously, in this particular example, this consideration

is of theoretical interest only, for two reasons. First, the parameters µN may not be of direct

scientific value. Second, from a given experiment, we can estimate only one of them, and

which one it will be is random in itself. This is different in Example 13, where typically more

than one cluster size is observed in a given experiment. The fact that the parameter depends

on the cluster size is then not a theoretical consideration, but a well studied problem often

indicated by the term informative cluster size (Chiang and Lee, 2008; Aerts et al., 2011). It

is different, too, in the missing-data examples: allowing for a different parameter in different

strata (also called patterns of missingness), brings us to the so-called pattern-mixture model

(Molenberghs and Kenward, 2007).

While an informal statement only, it is useful to see that many estimands do not allow complete

sufficient statistics because the corresponding parameters are estimated from data where this

same parameter describes two or more natural strata simultaneously. By ‘natural strata,’ we

mean strata that lead to separate sufficient statistics for the same parameter, without the

opportunity to combine these into a single one. Looking at this from a different angle, it
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provides a basis for the following, existing, procedure. First, estimate separate copies of the

parameter for every one of the strata. Second, combine these using appropriate weights. This

procedure was studied by Hermans et al. (2016), based upon work by Molenberghs, Verbeke,

and Iddi (2011).

7 Concluding Remarks

In this paper, building upon the work reported in Liu and Hall (1999), Liu et al. (2006),

Molenberghs et al. (2014), and Milanzi et al. (2014, 2015), we have provided an easy-to-

use criterion for incompleteness of minimal sufficient statistics in univariate and multivariate

exponential family models. Earlier work has typically studied incompleteness directly by means

of the definition. This either implies that the existence of a non-trivial zero-expectation

function needs to be falsified, or that such a function needs to be constructed. Our result

essentially requires checking the dimension of a minimal sufficient statistic relative to the

length of the parameter vector. This turns the assessment of incompleteness into a feasible

task, whereas the definition can be daunting to use and requires ad hoc construction of

distributions of minimal sufficient statistics.

We have shown that clustered data designs with non-constant cluster sizes (random or oth-

erwise) do not admit complete sufficient statistics. The term ‘clustered data’ has to be

understood in the broadest sense; it encompasses longitudinal studies, multilevel designs, etc.

On the one hand, longitudinal studies can have variable cluster sizes by design, while on the

other, their cluster sizes can vary because of missing data.

The incompleteness of minimal sufficient statistics leads to the loss of some desirable prop-

erties, such as unbiasedness and optimality. But as shown in Molenberghs et al. (2014) and

Milanzi et al. (2014, 2015), this does not need to be a serious problem in practice. For exam-

ple, it is very well-known that, when data are missing, likelihood and Bayesian inferences can

be based on the observed-data likelihood, without any correction for the variable cluster size,

i.e., without any correction for the missing-data mechanism. Importantly, though, such meth-

ods cannot, in general, by default be claimed to be optimal, given that the Lehman-Scheffé
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theorem (Casella and Berger, 2001) does not apply. The consequences for the case of random

cluster sizes, in particular informative cluster sizes, are not widely understood. When cluster

sizes follow a random mechanism (in the sense of missing at random), it is thus possible to

simply use the observed-data likelihood without ad hoc corrections. However, one cannot

claim that such an approach is ‘uniformly better’ than any of the dedicated corrections. Ar-

guably, it is prudent to investigate candidate methods’ operational characteristics in settings

relevant for the application at hand.

In the absence of complete sufficient statistics, some interesting philosophical issues appear.

As discussed in Milanzi et al. (2015), some estimators will depend on the fact that more data

could have been collected or that some data are available that, with certain probability, might

not have been collected. They illustrated this using so-called generalized sample averages in

sequential studies. When excluding such esoteric estimators, often only intuitively appealing

estimators, such as the ordinary sample average, remain, even though there is no complete

sufficient statistic, and in spite of some small-sample bias. Note, this shows great similarity

with earlier work of Liu and Hall (1999) and Liu et al. (2006).

Our focus has been on characterizing incompleteness and, in particular, its consequences

for point estimators. There obviously are important implications for hypothesis testing and

interval estimation as well. An early reference is Anscombe (1949) and the topic, especially in

the context of sequential designs, has received thorough treatment in Govindarajulu (1981),

Barndorff-Nielsen and Cox (1984), and Barndorff-Nielsen and Cox (1994). More recently,

members of the author team have studied the impact of incomplete sufficient statistics on

estimation and hypothesis testing (Milanzi et al., 2015), and the implications thereof for

sequential designs (Milanzi et al., 2014).
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Supplementary Materials

A Examples

Example 1 (Univariate normal sample with known variance). Let Yi ∼ N(µ, σ2), i =

1, . . . , n, with µ unknown and σ2 known. Then K1 =
∑n

i=1 Yi is a complete sufficient

statistic for µ.

Clearly, K1 ∼ N(nµ, nσ2). Suppose that there is a function g(k1) such that E{g(k1)} = 0

for all values of µ. Then

∫
g(k1)

1
√
nσ2

√
2π

exp

{
−
1

2

(k1 − nµ)2

nσ2

}
dk1 = 0,

implying that ∫
g(k1) exp

{
−
1

2

k2
1σ

2

nσ4
+

k1
σ2

µ

}
d

(
k1
σ2

)
= 0.

With a simple change of variables, this can be written as

∫
g(tσ2)e−

1

2

t2σ2

n etµdt = L
{
g(tσ2)e−

1

2

t2σ2

n

}
= 0,
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where L(·) denotes the two-sided Laplace transform. This, in turn, implies that the argument

must be equal to zero almost everywhere (a.e.). Because of the exponential factor, this forces

g(tσ2) = 0 a.e. Hence, g(k1) = 0 a.e.

Example 2 (Univariate normal sample with unknown variance). Let Yi ∼ N(µ, σ2),

i = 1, . . . , n, with µ and σ2 unknown. Then (K1, K2) with K1 as in Example 1 and

K2 =
∑n

i=1 Y
2
i is a complete sufficient statistic for (µ, σ2).

The kernel of the log-likelihood, i.e., the terms of the log-likelihood that are functions of the

parameters (Mccullagh and Nelder, 1989), is

ℓ = −
n

2
lnσ2 −

1

2σ2

n∑

i=1

(yi − µ)2

= −
n

2
lnσ2 −

1

2σ2

n∑

i=1

y2i +
µ

σ2

n∑

i=1

yi −
nµ2

2σ2
. (1)

The sufficient statistic (K1, K2) immediately follows. K1 is normally distributed as in Exam-

ple 1 and K2 has a non-central chi-squared distribution. K1 and K2 are independent. Assume

a function g(k1, k2) with zero expectation for all values of the pair (µ, σ2).

Even though we have a bivariate statistic, we can start from the derivations in Example 1.

Write the kernel of the density of Km (m = 1, 2) as hm(km) exp(θmkm), then the condition

on g(k1, k2) is:

0 =

∫ ∫
g(k1, k2)h1(k1)h2(k2) exp(θ1k1 + θ2k2)dk1dk2 (2)

=

∫
dk2h2(k2) exp(θ2k2)

∫
dk1g(k1, k2)h1(k1) exp(θ1k1) (3)

=

∫
dk2h2(k2) exp(θ2k2)Lθ1 {g(k1, k2)h1(k1)} (4)

= Lθ2 [h2(k2)Lθ1 {g(k1, k2)h1(k1)}] , (5)

where Lθ1 is a two-sided and Lθ2 a one-sided Laplace transform. This implies that

h2(k2)Lθ1 {g(k1, k2)h1(k1)} = 0 a.e. and thus, because h2(k2) > 0 over the support, that

Lθ1 {g(k1, k2)h1(k1)} = 0 a.e. This, in turn, implies that g(k1, k2)h1(k1) = 0 a.e. For a

2



reason similar to that used above, it follows that g(k1, k2) = 0 a.e. Note that a two-sided, or

bilateral, Laplace transform is unique only, i.e., one-to-one onto its inverse, when not only the

function but also the region of convergence is specified (Poularikas and Seely, 2000). However,

in our case, because of the use of exponential family functions, the region of convergence is

not restricted, hence this subtle issue does not apply here. In fact, an unrestricted region of

convergence is a regularity condition: it is violated, for example, in the case of a deterministic

stopping rule, but not when a stochastic stopping rule is used.

This derivation is quite general. Clearly, the argument can be extended to a vector of arbitrary

length. Note however that we have used the fact that K1 and K2 are independent. While this

is true for the mean and the variance related sufficient statistics for normal samples, it is not

true in general. However, the extension to dependent sufficient statistics is almost trivial: we

can replace h1(k1) by h1(k1|k2) in (2)–(5). Furthermore, a univariate version of this argument

generalizes Example 1.

The multivariate extension of this argument will be used in Section 4. It is not true however,

that such an argument can cover all situations, for example, for the sequential trial case. A

simple but instructive counterexample is provided next.

Example 3 (Univariate normal sample with coupled mean and variance). Let Yi ∼

N(µ, τ 2µ2), i = 1, . . . , n, with µ unknown. In the case that τ 2 is known, there is no

complete sufficient statistic for µ. On the other hand, when τ 2 is unknown, there is a

complete sufficient statistic for (µ, τ 2).

The kernel of the log-likelihood immediately follows from (1), upon equating σ2 = τ 2µ2:

ℓ = −
n

2
(ln τ 2 + 2 lnµ)−

1

2τ 2µ2

n∑

i=1

y2i +
1

τ 2µ

n∑

i=1

yi −
n

2τ 2
. (6)

Assume τ 2 known and consider the function

g(k1, k2) =
k2
1

τ 2 + n
−

k2
τ 2 + 1

. (7)

Because E(K2
1) = n2µ2 + nτ 2µ2 = nµ2(τ 2 + n) and E(K2) = nµ2(τ 2 + 1), it readily follows
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that the expectation of g(K1, K2) is zero, while the function is non-trivial. Function g(k1, k2)

satisfies the definition of incompleteness only because τ 2 is a known constant.

The score equation for (6) can be written as:

nµ2 +
K1µ

τ 2
−

K2

τ 2
= 0,

with solution

µ̂ =
−K1 ±

√
K1 + 4nτ 2

2nτ 2
.

Clearly, µ̂ + g(K1, K2) would provide another estimator with the same expectation, for every

non-trivial function g(k1, k2) with expectation zero. The derivations above show that this

type of function exists. Adding such a function comes down to reweighing the amount of

information taken from K1 relative to that from K2.

This counterexample is interesting because, at first sight, it is close to Examples 1 and 2.

However, in both of these earlier examples, the sufficient statistic and the parameter are of

the same dimension, while here, the statistic is by necessity two-dimensional. If it is restricted

to either K1 or K2, then it is no longer sufficient.

But when τ 2 is unknown, the sufficient statistic and the parameter are again of the same

dimension as in Example 2. The score for τ 2 leads to:

τ 2 =
2

n

(
K2

2µ2
−

K1

µ
+

n

2

)

and to solutions:

µ̂ =
K1

n
, τ̂ 2 =

nK2

k2
1

− 1.

This example, with τ 2 known, is similar to the sequential-trial case where the sufficient statistic

consists not only of the data collected, but also of the sample size realized, i.e., a one-

dimensional parameter needs a two-dimensional sufficient statistic. The following example

sets this out in some generality. It is based on developments in Milanzi et al. (2015). In this,

a group sequential trial was considered with an arbitrary number of looks L and exponential
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family distributed outcomes. It generalizes the results of Milanzi et al. (2014), who only

considered a trial with two possible sample sizes, n and 2n.

Example 4 (Sequential trial with stochastic stopping rule). Consider a sequential trial

with L pre-specified looks, with sample sizes n1 < n2 < · · · < nL. Assume that there

are nj i.i.d. observations Y1, . . . , Ynj
, from the jth look that follow an exponential family

distribution with density

fθ(y) = h(y) exp {θy − a(θ)} , (8)

for θ the natural parameter, a(θ) the mean generating function, and h(y) the normalizing

constant. There is no complete sufficient statistic for the mean µ or, equivalently, for the

natural parameter θ.

Subsequent developments are based on a generic data-dependent stochastic stopping rule,

which we write as:

π(N = nj |knj
) = F

(
knj

∣∣ψ) = F
(
knj

)
, (9)

where knj
=
∑nj

i=1 yi is a realisation from an exponential family density:

fnj
(k) = hnj

(k) exp
{
θknj

− nja(θ)
}
. (10)

While we do not need to provide an explicit expression for the stopping rule at this point, as

our developments apply to a broad class, it is useful to note that Milanzi et al. (2014) studied

in detail the behaviour of stopping rules taking the form F
(
α + βknj

/nm
j

)
, for some power

m and some cumulative distribution function F (·). Our inferential target is the parameter θ,

or a function thereof.

In a sequential setting, a convenient minimal sufficient statistic is (K3, N), withK3 =
∑N

i=1 Yi.

Following the developments in the above papers, the joint distribution for (K3, N) is:

p(K3, N) = f0(K3, N) F (KN), (11)

f0(kn1
, n1) = fn1

(kn1
), (12)

f0(knj
, nj) =

∫
f0(knj−1

, nj−1)fnj−nj−1
(knj

− knj−1
)
[
1− F (knj−1

)
]
dknj−1

. (13)
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If (K3, N) were complete, then there would exist a function g(K3, N) such that E [g(K3, N)] =

0 if and only if g(K3, N) = 0, implying that

0 =

∫
g(kn1

, n1)fn1
(kn1

)F (kn1
)dkn1

+

L−2∑

j=2

∫
g(knj

, nj)H(knj
)F (knj

)dknj

+

∫
g(knL

, nL)H(knL
)F (knL

)dknL
, (14)

with

H(knj
) =

∫
. . .

∫

︸ ︷︷ ︸
j−1

f0(knj−1
, nj−1)fnj−nj−1

(knj
− knj−1

)
[
1− F (knj−1

)
]
dkn1

. . . dknj−1
.

Substituting the general exponential form (10) into (14), and applying properties of exponential

family probability distributions, gives

0 =

∫
hnL−n1

e(θkn1
)

∫
g(kn1

, n1)F (kn1
)hn1

(kn1
) exp(θkn1

)dkn1

+

L−2∑

j=2

∫
hnL−nj

e(θknj
)

∫
g(knj

, nj)H̃(knj
) exp(θknj

− nj)F (knj
)dknj

+

∫
g(knL

, nL)H̃(knL
) exp(θknL

)F (knL
)dknL

, (15)

where

H̃(knj
) =

[∫
. . .

∫

︸ ︷︷ ︸
j−1

j−1∏

i=1

hn1
(kn1

)hni+1−ni
(kni+1

− kni
) [1− F (kni

)]dkn1
. . . dknj−1

]
.

Upon noting that the right hand side is a convolution and making use of properties of linearity

and uniqueness of the Laplace transform it can be shown that:

g(knL
, nL)H̃(knL

) = −
L−1∑

j=1

∫
g(zj, nj)H̃(zj)F (zj)dzj,

g(knL
, nL) =

∑L−1
j=1

∫
g(zj, nj)H̃(zj)F (zj)dzj

H̃(knL
)

.
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Note that the Laplace transform is unique in both the unilateral as well as the bilateral case. In

the unilateral case, this property is straightforward. In the bilateral case, the additional require-

ment needs to be added that this uniqueness holds over the region of absolute convergence.

As mentioned earlier, this region of convergence is not restricted as a stochastic stopping

rule is applied. Assigning, for example, arbitrary constants to g(n1, kn1
), . . . , g(nL−1, knL−1

),

a value can be found for g(nL, knL
) 6= 0, contradicting the requirement for (K3, N) to be

complete, hence establishing incompleteness. From applying the Lehmann-Scheffé theorem,

no best mean-unbiased estimator is guaranteed to exist. The practical consequence of this is

that even estimators as simple as a sample average need careful consideration and compari-

son with alternatives. To do this, we embed the sample average in a broader class of linear

estimator, and also study it from a likelihood perspective.

Consider the special case of L = 2, n1 = n, and n2 = 2n, a normally distributed endpoint

with mean µ and variance 1, and probit probability of stopping after the first look equal

to Φ(α + βk/n), where Φ(·) is the standard normal cumulative distribution function. Then,

following Molenberghs et al. (2014), incompleteness is established by constructing a non-trivial

function g(K3, N) (where K3 is the sample sum and N is the realized sample size, i.e., N can

take values n and 2n), satisfying for all µ:

g(k, 2n) · p0(2n, k) = −

∫
φn(k − z) · g(z, n) · φn(z) · Φ

(
α +

β

n
z

)
dz, (16)

where φ(·) is the standard normal density. Molenberghs et al. (2014) gave two examples of

such a function, one of which being:

g(k, n) =
λ

Φ
(
α + β

n
k
) , (17)

g(k, 2n) = −
λ

1− Φ

(
α+βk

2n
√

2n+β2

2n

,

) , (18)

with λ 6= 0 an arbitrary constant.

7



Example 5 (Known parameter). Consider the bivariate case studied in Example 2 but

now such that θ2 is known.

The requirement for an expectation-zero function is:

∫
dk2h2(k2)e

−A(θ2)eθ2k2
∫

dk1g(k1, k2)h1(k1|k2)e
−A(θ1,k2)eθ1k1 = 0. (19)

Choose g(k1, k2) = g(k2). Condition (19) becomes:

e−A(θ2)

∫
dk2h2(k2)e

θ2k2g(k2)

∫
dk1h1(k1|k2)e

−A(θ1,k2)eθ1k1

= e−A(θ2)

∫
dk2h2(k2)e

θ2k2g(k2) = 0. (20)

Hence, we merely need to satisfy:

∫
g(k2)h2(k2)e

θ2k2dk2 = 0. (21)

Importantly, because θ2 is known, the left hand side of (21) is not a Laplace transform.

Interpreting (21) as an inner product, we need only find a function g(k2) ⊥ h2(k2)e
θ2k2 , which

is straightforward.

Example 6 (Univariate normal sample with identical mean and variance). Let Yi ∼

N(µ, µ), i = 1, . . . , n. Then K2 =
∑n

i=1 Y
2
i is a complete sufficient statistic for µ.

This example is surprisingly different from Example 3, because now the kernel of the log-

likelihood is:

ℓ = −
n

2
lnµ−

1

2µ

n∑

i=1

y2i −
nµ

2
,

so K1 disappears. We clearly have a scalar sufficient statistic, and completeness is trivial.

Note that the score equation takes the simple form

µ2 + µ =
K2

n
,

8



leading to the maximum likelihood estimator:

µ̂ =

√
4K2/n+ 1− 1

2
.

In Example 4, the conditional likelihood accommodating both K3 and N has a non-linear

correction term relative to the ordinary least squares solution to the likelihood equations in the

standard case of a fixed sample size (Molenberghs et al., 2014; Milanzi et al., 2014, 2015).

Example 7 (Univariate normal sample with general coupling of mean and variance). Let

Yi ∼ N(µ, µ2λ), i = 1, . . . , n. Then there is a complete sufficient statistic for µ only for

λ = 0 or λ = 1/2.

When λ = 0, Example 1 is recovered. Example 6 follows for λ = 1/2. In all other cases, the

sufficient statistic is bivariate, which follows from the kernel of the log-likelihood:

ℓ(µ) ∝ −nλ lnµ−
K2

2µ2λ
+

K1

µ2λ−1
−

n

2µ2λ−2
.

Given thatK1 ∼ N(nµ, nµ2λ) and K2 ∼ χ2
nµ2λ , it follows that E(K1) = nµ, E(K2) = 2nµ2λ,

and E(K2
1 ) = n2µ2 + nµ2λ. Consider a function

g(k1, k2) = αk1 + βk2
1 + γk2. (22)

The expectation is

E {g(K1, K2)} = αnµ+ βn2µ2 + (βn+ 2γn)µ2λ.

When λ = 1 every choice γ = −β(n+1)/2 produces a non-zero function with zero expectation.

For λ 6= 1, in addition to being different from 0 and 1/2 as well of course, there is no non-

trivial solution. However, from Proposition 1, we know that for all λ 6= 0, 1/2, the sufficient

statistic is incomplete. So it is seen that it is not because the posited function (22) fails to

provide a counterexample that there exists none. We now know there are such functions, but

the proposition obviates the need to explicitly construct one.

9



Next, we provide an additional example, using a contingency table.

Example 8 (Bivariate contingency table). Consider an M1 ×M2 contingency table with

conditional row probabilities ϕ(k1|k2) and marginal column probabilities π(k2).

First, assume that all probabilities are unknown and to be estimated. Assume that there is a

function g(k1, k2) with zero expectation. Then

M1∑

k1=1

M2∑

k2=1

g(k1, k2)ϕ(k1|k2)π(k2) = 0, (23)

with sum constraints on the parameters:
∑M2

k2=1 π(k2) = 1 and
∑M1

k1=1 ϕ(k1|k2) = 1, for every

value of k2. Because (23) should hold for all values of the parameters, g(k1, k2) = 0 follows

immediately from algebraic results on polynomials.

Second, assume that π(k2) is given and choose g(k1, k2) = g(k2). Then, (23) simplifies to

M1∑

k1=1

M2∑

k2=1

g(k2)ϕ(k1|k2)π(k2) =

M2∑

k2=1

g(k2)π(k2) = 0.

Because the vector π is given, we merely need a set of constants g such that g ⊥ π.

Example 9 (Univariate outcomes with random sample size). Consider Yi ∼ N(µ, 1),

with sample size N , with 1 ≤ N ≤ n and the probability of realizing sample size N equal

to πN . The sufficient statistic for µ is incomplete.

The sufficient statistic is (K3, N) with K3 =
∑N

i=1 Yi and N the usual sample size. Assume

that all πN > 0, for N = 1, . . . , n; this simplifies the calculations without loss of generality.

Choose a function g(k,N) = aN . It then follows that

E {g(K3, N)} =

∫ n∑

N=1

g(k,N)πNφ(k;Nµ,N)dk

=

n∑

N=1

aNπN

∫
φ(k;Nµ,N)dk

=

n∑

N=1

aNπN .

10



This expectation equals zero if a vector a ⊥ π is chosen. Choosing (a1, . . . , an−1) freely, then

an = −
1

πn

n−1∑

N=1

aNπN

satisfies the requirement. In the next example, we consider clustering between the outcomes.

Example 10 (Correlated outcomes with compound-symmetry structure and random

sample size). The setting is similar to that of Example 9, except that the vector Y ∼

N(µ1N , σ
2IN + τ 2JN), with 1N a vector of ones of length N , IN the N-dimensional iden-

tity matrix, and JN an N × N matrix of ones. The sufficient statistic for (µ, σ2, τ 2) is

incomplete.

The sufficient statistic is (K3 =
∑N

i=1 Yi, K4 = Y
′Y , K5 = Y

′JNY , N), as will be clear from

Example 13. By choosing a function g(k1, k2, k3, N) = aN the same solution a ⊥ π follows.

This result does not depend in any way on this particular normality assumption, as can be

formalized in the next example.

Example 11 (Vector-valued data and parameter, with completely random sample size).

Assume an exponential family structure f(k, N) = fN(k)π(N |k)
notation

= fN(k)πN (k).

The sufficient statistic is incomplete.

Choose g(k, N) = gN(k) = aN/πN(k) for πN (k) 6= 0 and 0 otherwise. Then

E {g(K3, N)} =

n∑

N=1

∫
fN(k)πN (k)gN(k)dk =

n∑

N=1

aN

∫
fN(k)dk =

n∑

N=1

aN = 0

for any zero-sum sequence.

Of course, by using the term clustered data we do imply that N clusters of sizes Ni (i =

1, . . . , m) are sampled. We have not considered this level of generality yet. Example 11 will

be generalized next.

Example 12 (N clusters of completely random size). Consider N clusters of sizes Ni

(i = 1, . . . , N), with sufficient statistics [K =K {(Y i)} ;N =N {(Ni)}]. The sufficient

statistic is incomplete.

11



This result has the same form as in the in the previous example, with gN(k) = aN/πN (k)

this time, and
∑

N

aN = 0.

Example 13 (Compound-symmetry clusters of random size). Consider clustered data

Y i ∼ N(µ1Ni
, σ2INi

+ τ 2JNi
), for i = 1, . . . , N . The sufficient statistic for (µ,σ2,τ 2) is

incomplete.

The terms in the log-likelihood that are data-dependent, and hence produce the sufficient

statistic, follow from

N∑

i=1

−
1

2
(Y i − µ1Ni

)′(σ2INi
+ τ 2JNi

)−1(Y i − µ1Ni
)

=

N∑

i=1

−
1

2
(Y i − µ1Ni

)′
(
INi

−
τ 2

σ2 +Niτ 2
JNi

)
(Y i − µ1Ni

)

=
N∑

i=1

µ

σ2 +Niτ 2

(
Ni∑

j=1

Yij

)
−

1

2σ2

(
N∑

i=1

Ni∑

j=1

Y 2
ij

)

+
N∑

i=1

τ 2

2σ2(σ2 +Niτ 2)

(
Ni∑

j=1

Yij

)2

. (24)

The three terms in (24) are qualitatively different. Indeed, the middle one corresponds to a

single sufficient statistic, the sum of all squares across clusters, while the first and last split

into as many sufficient statistics as there are unique cluster sizes. To properly formalize this,

assume that there are L different cluster sizes, and that there are cℓ clusters among the data

of size nℓ. Evidently, m =
∑L

ℓ=1 cℓ. Based on (24) and the multiplicity of the cluster sizes,

12



the sufficient statistics are:

S1ℓ =

cℓ∑

i=1

nℓ∑

j−1

Y
(ℓ)
ij , (25)

S2 =

L∑

ℓ=1

cℓ∑

i=1

nℓ∑

j−1

(
Y

(ℓ)
ij

)2
, (26)

S3ℓ =

cℓ∑

i=1

(
nℓ∑

j−1

Y
(ℓ)
ij

)2

, (27)

S4ℓ = cℓ, (28)

where the superscript (ℓ) is used to indicate that the summation is restricted to data from

clusters of size nℓ. The conditional and marginal expectations of (25)–(28) are:

E(S1ℓ|cℓ) = cℓnℓµ,

E(S1ℓ) = mµπℓnℓ,

E(S2|cℓ) =
L∑

ℓ=1

cℓnℓ(σ
2 + τ 2 + µ2),

E(S2) = N(σ2 + τ 2 + µ2)

L∑

ℓ=1

πℓnℓ,

E(S3ℓ|cℓ) = cℓ
{
nℓ(σ

2 + τ 2 + µ2) + nℓ(nℓ − 1)(τ 2 + µ2)
}
,

E(S3ℓ) = mπℓnℓ

{
(σ2 + τ 2 + µ2) + (nℓ − 1)(τ 2 + µ2)

}
,

E(S4ℓ) = mπℓ.

Group all sufficient statistics into S and define a function

g(s) =
L∑

ℓ=1

λℓ

s1ℓ
s4ℓ

. (29)

Then,

E {g(S|S4)} =
L∑

ℓ=1

λℓ

E(S1ℓ|S4ℓ)

S4ℓ

= µ
L∑

ℓ=1

λℓnℓ,
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and hence

E {g(S)} = µ
L∑

ℓ=1

λℓnℓ.

Once again, every solution λ ⊥ n, where n = (n1, . . . , nL)
′, provides a counterexample,

establishing incompleteness.

Example 14 (General clustered-data setting with random cluster sizes). Consider clus-

tered data Y i of size Ni, for i = 1, . . . , N , following an exponential family with data- and

cluster-size components f(yi|θ, Ni) and f(Ni|ψ). Whenever Ni can take more than one

value, the sufficient statistic for θ is generally incomplete.

Example 15 (Fully observed 2 × 1 contingency table). Consider a binomial experiment

based on a binary variable Yi taking values 1 and 2, with n trials and parameter p (i =

1, . . . , n). Denote the number of 1s and 2s by Z21 and Z22, respectively, such that Z21 +

Z22 = n. The sufficient statistic for p is complete.

(The first of the double index is redundant in this example, but is needed in the following

one.) Because of the sum constraint, the sufficient statistic is Z21 (or Z22), and the MLE is

p̂ = Z21/n. The result is obvious. Now turn to the same setting where not all observations

are made.

Example 16 (Partially missing 2×1 contingency table). Consider a binomial experiment

based on a binary variable Yi taking values 1 and 2, with n trials and parameter p (i =

1, . . . , n). Denote the number of 1s and 2s by Z21 and Z22, respectively, and let the number

of trials with unobserved outcome be Z1. Then, Z21 + Z22 + Z1 = n. Assume that the

missing data are missing at random. The sufficient statistic is incomplete if ignorable

likelihood is used.

In the above, missing at random means that the missing data mechanism does not depend

on unobserved information, given observed information. Under missingness at random, mild

regularity conditions, and drawing likelihood inferences, it is well-known that the missing-data

mechanism can be ignored. For details, see Little and Rubin (2002).
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Let Ri = 1 if Yi is observed and Ri = 0 otherwise. Further, let q = P (Yi = 1). Full

likelihood means that p and q are both estimated from the data. It is easy to show that

p̂ = Z21/(Z21 + Z22) and q̂ = (Z21 + Z22)/n. When both parameters are estimated, the

sufficient statistic (because of the sum constraint) and the parameter vector are both two-

dimensional, establishing completeness. However, under missingness at random the likelihood

factors into a factor containing p only and a factor with only q. It is then common practice to

ignore the factor containing q and to restrict efforts to estimation of p. This leads to the same

estimator for p. The sufficient statistic remains two-dimensional: both Z21 and Z22, because

their sum is random as well, unlike in the non-missing-data case. It is then easy to construct

a function g(z21, z22), such that E[g(Z21, Z22)] = 0 for every value of p:

g(z21, z22) =
Z21 + Z22

q
−

Z1

1− q
. (30)

Example 17 (Partially missing 2 × 2 contingency table). Consider a contingency table

with supplemental margin, cross-classifying two binary outcomes (Yi1, Yi2), (i = 1, . . . , n),

and with counts Z2jk and Z1j (j, k = 1, 2). Unless the supplemental margin is empty,

the sufficient statistic for the response profile probabilities pjk under ignorable likelihood

is incomplete.

Under ignorability, only the probabilities pjk are estimated (subject to their sum being one),

and not the missingness probabilities qj , where qj is the probability of observing the second

outcome Yi2 for a subject with Yi1 = j. Because E(Z2jk) = npjkqj and E(Z1j) = npj+(1−qj),

where the + sign instead of k indicates summation over k, it follows that the functions

E[gj(Z2j1, Z2j2)] = (1− qj)(Z2j1 + Z2j2)− qjZ1j,

(j = 1, 2), have zero expectation.

Example 18 (Standard exponential distribution for continuous times). Consider Yi (i =

1, . . . , n) i.i.d. with exponential density f(yi) = λe−λyi. The parameter is λ, the sufficient

statistic K1 is complete.
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The first derivative of the log-likelihood based on the above model is

∂ℓ

∂λ
=

n

λ
−K1,

from which it clearly follows that the dimension of both parameter and minimal sufficient

statistic are equal to one.

Example 19 (Standard Poisson distribution for count data). Consider Yi (i = 1, . . . , n)

i.i.d. with Poisson probability P (yi) =
1
yi!
λyie−λ. The parameter is λ, the sufficient statistic

K1 is complete.

The first derivative of the log-likelihood is

∂ℓ

∂λ
=

1

λ
K1 − n,

from which it follows also here that the dimension of both parameter and minimal sufficient

statistic are equal to one.

Example 20 (Integrated exponential probabilities for counts). Consider Yi (i = 1, . . . , n)

i.i.d. with probabilities following from integrating the exponential density between two sub-

sequent integer values: P (yi) = e−λyi(1− e−λ). The parameter is λ, the sufficient statistic

K1 is complete.

The first derivative of the log-likelihood is

∂ℓ

∂λ
= −K1 + n

e−λ

1− e−λ
,

from which it follows once more that the dimension of both the parameter as well as the

minimal sufficient statistics are equal to one.

Note that, while in Examples 18–19 the estimators for λ are equal to the sample average

λ̂ = Y = K1/n, for Example 20 the estimator is

λ̂ = − ln

(
Y

1 + Y

)
.
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Of course, this difference is inconsequential for the completeness result.

Example 21 (Integrated Weibull probabilities for counts). Consider Yi (i = 1, . . . , n)

i.i.d. with probabilities following from integrating the Weibull density between two subse-

quent integer values:

P (yi) = e−λy
ρ
i − eλ(yi+1)ρ .

The parameter is (λ, ρ), representing location and shape, but no reduction in statistics is

possible, i.e., it consists of all individual values (Yi)i.

The log-likelihood derivatives are:

∂ℓ

∂λ
=

n∑

i=1

−e−λy
ρ
i yρi + e−λ(yi+1)ρ(yi + 1)ρ

e−λy
ρ
i − eλ(yi+1)ρ

,

∂ℓ

∂ρ
=

n∑

i=1

−e−λy
ρ
i yρi ln(yi) + e−λ(yi+1)ρ(yi + 1)ρ ln(yi + 1)

e−λy
ρ
i − eλ(yi+1)ρ

.

Clearly, no dimension reduction of the data is possible: the parameter is two-dimensional, but

the sufficient statistic is of length n. Upon noting that

E(yi) =
+∞∑

n=0

e−λnρ

− 1 = α,

(α is used for notational purposes) it follows that a function

g (y1, . . . , yn) =

n∑

i=1

βiyi,

has expectation

E [g (y1, . . . , yn)] = α

n∑

i=1

βi,

which is equal to zero for any zero-sum (contrast) vector (β1, . . . , βn)
′.
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