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Abstract: It is shown how a one-step semiparametric bootstrap procedure can be
applied to multiparameter models in different situations: for testing hypotheses,
for the construction of simultaneous confidence intervals based on local polyno-
mial smoothers and for improved estimation and bias correction. The method is
illustrated on models for clustered binary data.
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1 Introduction

The bootstrap is a well established statistical methodology nowadays. There
are several papers and books showing a multitude of examples where the
bootstrap can be implemented and applied succesfully, see e.g. Davison and
Hinkley (1997). Here we are interested in applying the bootstrap to clus-
tered binary data, typically modelled by multiparameter likelihood models.
There has been considerable interest in bootstrapping generalized linear
models (see e.g. Moulton and Zeger 1989) but, to our knowledge, there
are not many results on applying the bootstrap to multiparameter models
in general. Of course, for fully specified likelihood models, one can always
apply the parametric bootstrap. Such an approach has been generalized
to pseudolikelihood models and applied to clustered binary data in Aerts
and Claeskens (1999a). But often the “true likelihood" is unknown and one
might expect a parametric bootstrap to break down if the likelihood model
of the data is grossly misspecified. Therefore, a semiparametric bootstrap
approach might be preferable. Such a robust method is presented here and
it is shown how it can be applied to testing hypotheses, the construction
of confidence intervals and to multiparameter local likelihood models. It
should be stressed that although we focus attention to clustered binary re-
sponse data, the domain of application of these methods is much broader.
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2 A One-Step Bootstap Procedure

Let Y;, i =1,...,n be independent response variables of length m with
(unknown) joint density or discrete probability function (pdf) g(y;;x;)
where y; = (yi1,... ,¥im) and &; = (@1, ..., Tsp), the latter representing a

vector of p explanatory variables. In the context of clustered binary data,
m corresponds to the size of the cluster.

In general, parametric inference is based on an r dimensional score function
¥ (y; x,t), where the “true" parameter @ = (6y,...,0,) is defined as the
solution t to Y ;" | E[¢(Y;;x;,t)] = 0 where all expectations are w.r.t. the
true pdf g(y;; ;). Solving the system of equations Y. ;¥ (Y ;;z;,t) =0
leads to the estimator gn for 6.

Within classical maximum likelihood ¥ (y; x,t) = (9/0t) log f(y; x, t) and,
for clustered binary data, f(y;a,t) represents e.g. the beta-binomial dis-
tribution or the conditional model of Molenberghs and Ryan (1999) (MR-
model). Note that, in this setting, the assumed pdf f(y;,t) might not
contain the true structure g(y;x). Effects of likelihood misspecification
are examined in Molenberghs, Declerck and Aerts (1998). But ¥ (y;x,t)
might also represent the pseudolikelihood scores (see Geys, Molenberghs
and Ryan 1999) or generalized estimating equations.

We propose to resample the score and the differentiated score values. Based
on a linear approximation, we define a bootstrap replicate of 8,, as

6, = .- (Dp >) > i) 1

where (1#*(5”), 1/)? (5 )),i=1,...,nis asample with replacement from the
set {(dJ(Y“m“ n), (0/00) (Yi;:vi,b\n)) ,i=1,... ,n}. A similar lineari-
zation idea is used in simulation approaches for the bootstrap, as the linear
bootstrap and the one-step bootstrap. For linear models Y = X3 + €, the
idea of resampling scores has also been proposed by Hu and Zidek (1995).
Inspired by higher order approximations, the linear bootstrap (1) can be

considerably improved by a one-step quadratic bootstrap (see Aerts and
Claeskens 1999b).

3 Application 1: Hypothesis Testing

Although testing hypotheses is also of great interest in settings with clus-
tered binary data, bootstrap tests have never been studied and applied
extensively in this situation. One of the main reasons for this is that for
the bootstrap to work, data have to be generated under the restrictions
imposed by the specific null hypothesis. Aerts and Claeskens (1999b) show
how valid Wald and score tests can be based on the one-step bootstrap by
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.o~ ~(0) . - . . ~(0)
replacing 6,, by 6, in the rhs of definition (1). This null estimate 6,, " re-
flects the null hypothesis and the second term of (1) represents the random

fluctuation of the bootstrap replicate 52 around the estimator §n .

As an example, consider simulated data as they appear in developmental
toxicity studies with rodents. We selected dose levels 0, 0.25, 0.5, 1 and an
equal number of 15 litters, assigned to each dose group. 500 datasets were
generated from the beta-binomial distribution with logit(m(d)) = 619+611d,
FisherZ(p(d)) = 620 under the null hypothesis that Hy : 611 = 0 (no
dose effect). Here, for a pregnant rodent exposed to dose d, m(d) is the
probability that an individual fetus is malformed and p(d) represents the
intra-litter correlation. For each run, the scores are resampled 1000 times in
each dose group separately, denoted by By /D for the linear and By/D for
the quadratic one-step bootstrap method. Resampling the complete set of
scores is denoted by B;/A (i = 1, 2). Finally, B;;/D corresponds to resample
the data in each dose group. The data were fitted using the pseudolikelihood
model and the robust Wald and robust score statistics, testing for no dose
effect, were calculated. Some results are shown in Table 1 (* denotes the
proportion of significant tests (at 5%) which differs significantly from 5%).

610 X2 Bl/D BQ/D th/D B]_/A BZ/A

-4.0 W, 10.55* 10.76* 6.96 10.76* 9.28*  6.54
Sp 6.12 6.75 — — 5.70 —

-25 W, 7.80* 6.60 5.80 8.20* 6.00 5.20
S, 740" 5.60 — — 5.20 —

TABLE 1. Simulated type I errors (as %), significance level 0.05. Data are gen-
erated with the beta-binomial model (with 620 = 0.2) and fitted using the pseu-
dolikelihood model. Hy : 611 = 0.

4 Application 2: Bootstrapping Local Likelihood
Estimators

Aerts and Claeskens (1997) and Claeskens and Aerts (1999) studied local
polynomial likelihood in the context of clustered binary data. Definition (1)
can be modified by including kernel weights (K ((x; — x)/h) for p =1 and
K a density) and an extra term in the rhs representing a bias correction.
Details and consistency results for this local version of the one-step boot-
strap are given in Claeskens and Aerts (1999). There it is also indicated
how simulation of the bootstrap distribution allows for the construction of
simultaneous confidence intervals in a finite number of grid points.
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As an illustration, consider data from the Wisconsin diabetes study. Both
eyes of each of 720 younger onset diabetic persons were examined for the
presence of macular edema. See Klein, Klein, Moss, Davis, and DeMets
(1984) for more details. So the response data are y; = (ys1, ¥i2) With y;;
the binary response value of eye j = 1,2 of person ¢. We will study the
probability of macular edema as a function of the patient’s systolic blood
pressure, hereby taking the clustered nature of the data into account, as
indeed the response values of both eyes are likely to be correlated. The
simultaneous and pointwise 90% confidence intervals for the probability of
macular edema and for the intra-person correlation, are given in Figure 1.
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FIGURE 1. The Wisconsin diabetes data (top panel), Simultaneous and pointwise
90 % confidence intervals for the probability of macular edema (left bottom panel)
and the intra-person correlation (right bottom panel).

5 Application 3: Bias Correction and Double
Bootstrap

Although the ML estimator §n is asymptotically unbiased, the quadratic
one-step bootstrap procedure can be used for finite sample bias correction.
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In practical applications a large number, say B, resamples are taken, re-

~

* ~xB
sulting in a set of B bootstrap estimators @,, ,...,0,, . From this set a

~

. . . be ~ 1 B %
bias corrected estimator is defined as 8, =26, — 5> .;_, 6, .
Simulations show that this bias correction might even decrease the vari-
ance. Using a double bootstrap procedure, Aerts, Claeskens and Molen-

~be
berghs (1999) study the distribution of 8,, and define a bootstrap based

variance estimator for 6’:.

Table 2 shows that the quadratic one-step bootstrap slope estimator is
quite able to estimate the finite sample bias. The settings in this simulation
were as follows. We generated 2000 data sets of size n = 10 and n = 25,
for each value of z, from a logistic regression model logit{P(Y = 1)} =
Bo + Bz, with (Bo, 1) equal to (-1,-1), (-2.5, 1) or (-2.5, 2), and = =
0,0.25,0.5 and 1. For each of these 2000 data sets we constructed 1000
one-step quadratic bootstrap replicates, the latter were used to obtain the
bias corrected estimates (38¢, 32¢).

An important observation is that the bias correction even decreases the
variance, as the simulated standard deviation o(35°) and o(3°) are, for all
settings in this study, smaller than the corresponding simulated values of

U(BO) and a(ﬁl), respectively.

Bo=—1 Bo = —2.5 Bo = —2.5
pr=-1 pfr=1 B1=2
n=10 n=25 n=10 n=25 n=10 n=25
E(B1) -1.265 -1.070 0.889 1.027 2.152 2.096
E( Ai’c) -1.043  -0.988 0.852 1.001 1.959 2.022
U(Bl) 1.511 0.795 1.555 0.908 1.303 0.779
a( A’fC)A 1.314 0.747 1.297 0.836 1.119 0.735
MSE(B*) 0.734 0.875 0.701 0.846 0.728 0.878

MSE(B1)

TABLE 2. Simulated mean, standard deviation and mean squared error values
of original and bias corrected slope estimators.
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