
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Analytical solution of safety stock determination in case of uncertain

uni-modal lead-time demand

Peer-reviewed author version

JANSSENS, Gerrit K.; VERDONCK, Lotte & RAMAEKERS, Katrien (2018) Analytical

solution of safety stock determination in case of uncertain uni-modal lead-time

demand. In: Information Technology and Management Science, 21, p. 75-80.

DOI: 10.7250/itms-2018-0012

Handle: http://hdl.handle.net/1942/27613



The header is left blank 

1 

 

Analytical Solution of Safety Stock Determination in 

Case of Uncertain Unimodal Lead-Time Demand 

Gerrit K. Janssens1, Lotte Verdonck2, Katrien Ramaekers3 
1–3 Hasselt University, Belgium 

Abstract – As companies state that a delivery service is 

important to their customers, an out-of-stock is considered 

harmful and therefore they keep safety stock in case of uncertain 

demand. For decision making on the level of safety stock a 

complete formulation of the distributional form of the demand 

during lead time is required. In practice, this information may not 

be available. In such a case, only partial information on the 

distribution might be available, such as the range, the mode, the 

mean or the variance. Given a value for a service performance 

measure, the decision maker, in this case, is not confronted with a 

single value for the safety stock but rather with an interval. The 

present research shows how upper and lower bounds of the safety 

stock are obtained in an analytical way, given a pre-specified 

service level using a service performance measure, called 

‘expected number of units short’. The technique is also illustrated 

and compared within the framework of the research. 

 

Keywords – Inventory management, uncertain demand, safety 

stock, unimodal distributions. 

I. INTRODUCTION 

In the business world, investment in inventories might be 

very high. Furthermore, companies are confronted with 

fluctuations in inventories in time and with uncertainties both 

in demand and supply, which directly influence decisions on 

inventories. Logistics managers use sophisticated systems for 

inventory management that enable them to take correct and 

timely decisions. Software implements decision models, which  

concentrate on the determination of inventory replenishment 

quantities based on relevant costs, such as order costs or storage 

costs. Most of these models assume deterministic demand 

patterns. But in real life uncertainties may appear both in 

demand and in supply or even in the quality of the delivered 

goods. The present research investigates in detail a specific case 

of inventory management decisions in the case of demand 

uncertainty. 

The decisions are made on the basis of optimisation models 

taking a performance measure into consideration, which might 

be cost-oriented or service-oriented. Performance measures of 

the service-oriented type may be expressed relatively as a 

probability of a stock-out during a certain replenishment period, 

or may be expressed absolutely in terms of the number of units 

short, which is a direct indication for lost sales. These types of 

measures do not explicitly include a cost for additional 

paperwork or transport cost or loss of goodwill as, in practice, 

experience shows that these costs are hard to determine. Both 

in the cost-oriented and in the service-oriented performance 

evaluation, a specific integral plays an important role in the 

decision-making process. This integral is defined by Silver et 

al. [1, p. 258] as the expected shortage per replenishment cycle 

(ESPRC):  

= ( ) ( ) ,
t

ESPRC x t f x dx


  (1) 

in which it is assumed that the demand x  in a replenishment 

lead time has a probability density function )(xf  and an order 

is placed at some time when the inventory position is at level t
. If ordered per quantity Q , the fraction backordered is equal 

to QESPRC/  and a performance measure, indicated as 2P , is 

defined as (see [1]):  

./1=2 QESPRCP    (2) 

In classical textbooks, the decision on the level of safety stock 

is based on the expected value and the standard deviation of the 

lead-time demand. Furthermore, it is assumed that the demand 

follows a Normal distribution, so that, given a service level and 

the knowledge about the first two moments, the required safety 

stock can be determined. However, normality of the distribution 

is sometimes violated. Assuming normality, when there is not 

true distribution behind the data, it might lead to either a 

degraded service level or an increase in the storage cost. 

Regarding the violation of the normality assumption, the 

scientific literature is contradictory. Naddor [2] finds that false 

assumptions about the distribution may lead to higher cost in 

the case of extreme distributions, but, with realistic 

distributions, only the first and second moments are essential. 

On the other hand, Bartezzaghi et al. [3] show a significant 

impact of the shape of the demand distribution on the service 

level, based on a large set of experiments. Their analysis 

demonstrates that the shape of the distribution is a primary 

factor in the determination of inventories. Lau and Zaki [4] note 

that mean and variance are not sufficient for safety stock 

calculation, since skewness and kurtosis should also be 

accounted for. Furthermore, Käki et al. [5] show the impact of 

the demand distribution shape on replenishment, based on 

experiments with qualitative shape characteristics (normal, 

positively skewed, negatively skewed, and bimodal). In 

Janssens and Ramaekers’ research [6], an approach has been 

developed to obtain the reorder point based on the knowledge 

of the range, mean and variance of the demand distribution 

only, which is the same information as required for the use of 

the normal distribution (as many times used in commercial 

software). 

Given a mean and a standard deviation, and without 

knowledge of the real probability distribution behind the data, 

many distributions are candidate distributions. Each of them 

would lead to a different safety stock, given a preset service 

level. A conservative approach would be to determine the safety 
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stock in the worst case distribution. In case only partial 

information on the probability density function is available 

(such as range, mean or variance), it is possible to determine the 

worst-case distribution. The mathematical development, 

however, shows that the worst-case distributions (in case mean 

and variance are known) are discrete distributions, in which the 

mass is concentrated in two points. This property has already 

been described by Scarf [7]. 

It might be argued that this approach is too conservative for 

practical purposes. Let us think of convincing a logistics 

manager to determine the safety of stock of a specific product 

based on the idea that the demand distribution has mass only in 

two points. A manager certainly will agree that some 

probability distribution, including uncertainty, has to be taken 

into account, but the distribution does not have extreme shapes. 

A manager can believe in asymmetry of the distribution, but it 

is rather uncommon that the manager will believe that the 

distribution is not unimodal. This means that the ‘conservative’ 

approach should be modified to a less conservative one, in 

which the ‘worst case’ distributions have a unimodal shape. 

The present paper aims at investigating how such a 

distribution can be determined and which techniques are 

available to achieve it. It would be outstanding if a set of 

analytical formulas were available to determine the safety 

stock, given the knowledge of range, mean and variance of the 

demand during lead time, with the constraint that the resulting 

distribution should be unimodal. However, up to now, this 

simple solution is not available and other methods need to be 

explored. In the following section, solution methods first are 

explored in the case of knowledge of range, mean and variance 

but without constraints on unimodality. Afterwards, it is 

investigated which of these methods can be used with the 

constraint of unimodality. Illustrations, opportunities and 

limitations of the use of the methods are provided for the 

unimodal case.  

II. SOLUTIONS FOR THE CASE WITHOUT CONSTRAINT ON 

UNIMODALITY 

In this section, the incomplete information on the demand 

during lead time includes the finite range of the distribution, and 

the first and second moments. Let the size of the demand X  

for a specific product in a finite period have a distribution F  

with first two moments 1 = ( )E X  and 
2

2 = ( )E X . The 

distribution F  is defined on the finite interval ],[ ba . 

From a mathematical point of view, the problem is to find the 

following bounds:  

),()(sup
0

xdFtx
F










 (3) 

where   is the class of all distribution functions F  which 

have moments 1  and 2 , and which have support in 
 . 

Let further 
2 2

2 1=   . We assume t  to be strictly 

positive. 

The domain of the parameters is  
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Further the following abbreviations are used: 
2

1

22 )( tt   
and )(

2
1 bac  . 

It has been shown that the upper bound corresponds to a 2-

atomic distribution, i.e., the probability mass is concentrated in 

two points (see Heijnen and Goovaerts [8] and Janssen, 

Haezendonck and Goovaerts [9]). Given a reorder point, the 

upper bound on the expected number of units short is given in 

Table I. 

TABLE I 

UPPER BOUNDS FOR THE EXPECTED NUMBER OF UNITS SHORT 

Conditions Upper bounds Atoms of solution 
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While Table I has all ingredients to determine the reorder 

point (and by this the safety stock), the decision problem is 

different from what the table offers. The table provides the 

upper bound on the expected number of units short given a 

value of t, but the decision problem is looking for a value of t, 

given a maximum value of the expected number of units short. 

There are several solutions proposed to solve the decision 

problem: 

- if an analytical equation exists, the equation for t 

should be solved in an analytical or numerical way 

(Method 1); 

- if an analytical solution exists, the equation should be 

solved by a one-dimensional search procedure 

(Method 2); 

- if no analytical procedure exists, a linear program 

should be constructed to find an approximative 

solution and use a one-dimensional search procedure 

(Method 3). 

 

As can be noticed from Table I, the equations (listed in the 

second column called ‘Upper bounds’) are non-linear but not 

hard non-linear functions. Thus, for this illustrative example, 

the first of the three solution methods is used. This means, as 

the conditions (in the first column) cannot be checked in 

advance, all four equations need to be solved and the solutions 

need to be validated with the conditions. The conditions are 

mutually exclusive, so no confusion can exist. The solutions can 

be found by any non-linear equation solver, including 

spreadsheets like Microsoft Excel, using the Solver. Let us 

illustrate this way of working by the following example. 
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The parameters of the problem are: a = 0, b = 50, 
1 =30, 

2

= 1200, so c = 25, 
2 = 300 and 2

t = 325. Let us put the upper 

bound of the expected number of units short equal to 12. The 

solutions of the four equations are listed in Table II. 

 

 

 

TABLE II 

SOLUTION BY METHOD 1 

Condition Solution Validity 

atct t  ,  
24.02 Yes 

atct t  ,  
24.00 No 

tbct t  ,  
24.03 No 

tbct t  ,  
No solution No 

 

The function, describing the upper bound, is a decreasing 

function in t. That makes it easy to apply Method 2, given that 

t = 0 offers the expected value (30 in the example) and t = 50 

offers zero. The procedure of cutting the relevant range into 

halves offers an efficient way of finding the solution. The 

pseudocode of the procedure is shown below. Target refers to 

the required value of the expected number of units short. 

Required_precision refers to the precision required on the value 

of t. Running_t refers to the running value of t as it changes 

during the procedure. Precision refers to the running value of 

the precision, calculated as the difference between the previous 

and current value of upper_bound. Upper_bound refers to the 

value of the upper bound as calculated from Table I. Interval  

refers to the size of the interval, which is used for adapting the 

value of t. 

 

Parameters target, precision_required, a, b 

interval := (b-a) / 2 

running_t := a + interval 

precision := b-a 

while precision ≥ precision_required do 

case 

condition atct t  ,  : 

upper_bound := )(
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1
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endcase 

interval := interval / 2 

precision := abs(upper_bound – target) 

if upper_bound ≤ target 

running_t := running_t – interval 

else 

running_t := running_t + interval 

endif 

endwhile 

The example is worked out in Table III. A number of steps 

in the procedural computations are shown. The procedure stops 

whenever the required precision is obtained. 

TABLE III 

SOLUTION BY METHOD 2 

t Upper 

bound 

t Upper 

bound 

25 11.51 23.4375 12.54 

12.5 21.06 24.21875 12.02 

18.75 15.94 24.609375 11.76 

21.875 13.63 24.414063 11.89 

 

The third method will be illustrated in the unimodal case (in 

section III). 

III. SOLUTIONS FOR THE CASE WITH A CONSTRAINT ON 

UNIMODALITY 

Sometimes it is considered difficult to observe or to estimate 

both first and second moments, but experts have an opinion on 

the unimodality of a demand distribution, either with or without 

additional knowledge on the expected value. This idea has been 

common in expert opinion on the duration of activities in a 

project, where experts estimate three values: an optimistic, a 

most likely (or modal) and a pessimistic duration [10]. 

Let I  be an interval on the real line  . A fixed point 

Im  is called the mode. A m-unimodal density function is a 

density function increasing (not necessarily strict) at the left of 

m  and decreasing (not necessarily strict) at the right of m . Let 

us consider first the case in which the range, expected value and 

mode are known. The domain of the parameters is:  

𝑎 ≤ 𝑚 ≤ 𝑏,
1

2
(𝑎 + 𝑚) ≤ 𝜇 ≤

1

2
(𝑏 + 𝑚).  In this case, 

analytical upper bounds exist [11, Chapter 5]. The bounds are 

shown in Table IV. 

TABLE IV 

UPPER BOUNDS FOR THE EXPECTED NUMBER OF UNITS SHORT IN THE 

UNIMODAL CASE 

Condition Solution 

𝑚 ≤ 𝑡 
(𝜇

1
−

𝑎 + 𝑚

2
)

(𝑏 − 𝑡)2

(𝑏 − 𝑚)(𝑏 − 𝑎)
 

𝑚 ≥ 𝑡 1

2

(𝑏 − 𝑡)2

𝑏 − 𝑎
+ (𝜇

1
− 𝑐) (1 −

(𝑡 − 𝑎)2

(𝑏 − 𝑎)(𝑚 − 𝑎)
) 

 

Method 1 is also applicable in this case. With the same data 

(but no variance known), let us add the additional information 

of the mode m = 10. The result of the application of Method 1 

is shown in Table V. 

TABLE V 

SOLUTION BY METHOD 1 
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Condition Solution Validity 

𝑚 ≤ 𝑡 19.02 Yes 

𝑚 ≥ 𝑡 18.00 No 

 

The type of distributions that correspond to the extreme 

distributions leading to the upper bound are distributions, which 

consist of rectangular parts. The probability density in the left 

part (between 0 and the mode on the x-axis) is smaller than the 

density on the right part (between the mode and the upper bound 

of the range). In the example, the probability density is given 

by 𝑓(𝑥) = 0  if 0 ≤ 𝑥 ≤ 10  and 𝑓(𝑥) = 1/40  if 10 < 𝑥 ≤
50. 

Method 2 is also applicable in the case of unimodal 

distributions with a known mode. In Table VI, a number of 

steps in the procedural computations are shown. The procedure 

is similar to the pseudocode as presented in Section III: the 

‘case’ component has only two choices, i.e., related to the 

conditions mentioned in Table IV. 

TABLE VI 

SOLUTION BY METHOD 2 

t Upper 
bound 

t Upper 
bound 

25 7.8125 20.3125 11.01685 

12.5 17.57813 19.53125 11.60431 

18.75 12.20703 18.945313 12.05492 

21.875 9.887695 19.04297 11.97922 

 

In case, more constraints are involved, it is hardly possible to 

find analytical solutions and, therefore, to find the way to obtain 

the best value of safety stock or reorder point. In this situation, 

the authors of the present paper propose using a search 

procedure based on a linear programming approach. This 

corresponds to Method 3 mentioned in Section I. The method is 

elaborated and illlustrated for the case of a unimodal 

distribution with mode known but, additionally to the 

knowledge of the expected value, also the constraint of a known 

variance is included. A separate section is dedicated to this 

topic. 

IV. LINEAR PROGRAMMING SOLUTION FOR THE CASE WITH A 

CONSTRAINT ON UNIMODALITY 

Let 1f , 2f ,..., nf  be functions on  . For any 

,),...,(= 1

11



  n

nzzz  we consider the primal 

maximisation problem:  

,)(|)( )(sup=)(
0 



 






 FIxdFtxzP

F 

 (4) 

 where )(FI  is a set of integral equality constraints of the type 

1)1,...,=(,=)()(  nizxdFxf ii  and  )(= txfn . In 

our application, the constraints are moment constraints, i.e., the 

first and second moment equalities and the obvious constraint 

because any member of   is a probability distribution.  

2

1 2( ) = 1, ( ) = , ( ) = ,dF x xdF x x dF x      

 which means that: 

n  = 3  

xxf =)(1   

2

2 =)( xxf   

 )(=)(3 txxf   

1 1=z    

2 2=z   

First, let us introduce the method for the case of the problem 

with two moments known. The extreme distributions for the 

supremum problem has been shown to be a two-point 

distribution. The integral (4) may be approximated by a sum 

making use of finite masses ip  in a large number of points ix

. Its formulation looks like this:  

( ) . ,i i

i

Max x t p  (5) 

 subject to  

1,=i

i

p  (6) 

∑ 𝑥𝑖 .𝑖 𝑝𝑖 = 𝜇1  (7) 

 

∑ 𝑥𝑖
2. 𝑝𝑖𝑖 = 𝜇2,  (8) 

and ip 0, 
ia x b  . However, any refinement in 

granularity (more values of xi) leads to an increased number of 

variables both in the objective function (5) and in the  

constraints (6)–(8). This phenomenon does not guarantee any 

convergence towards the exact upper bound.  

The optimisation problem (4) has a dual program of the type: 

 

1 1 2 2 3 1 1 2 2 3 3

^ ^ ^
( ) = inf | ( ) ( ) ( )

( ),

Q z y m y m y y f y f y f

J

  



 
      

 
 



 (9) 

where the infimum is over all y  = ( 321 ,, yyy ) 
3  

satisfying the constraints indicated after the slash and J is a non-

void subset of I. The functions )(
^
if  ( ni 1,...,= ) are 

defined on J . In the situation for the family of distributions on 

a finite interval ][0,b , where b  is a fixed positive number, the 

three functions are:  

 

).(0)(=)(
^

,=)(
^

,=)(
^

3

2

21 bxfff   

 (10) 

Mostly the set J  is infinite, so the number of linear constraints 

on y  is infinite. The idea is to replace J  with a large finite 

subset of J  and then to solve the obtained linear program. 
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Through a careful selection of the  -values, convergence to the 

supremum is guaranteed as exemplified by Janssens & 
Ramaekers (2008). The optimisation problem (9) can thus be 

approximated by the problem 
AQ :  

 

 2

1 1 2 2 3 1 2 3
3

( ) = | ( ) ,inf

= * , = 0,..., ) .

A

i i j
y

j

Q z y m y m y y y y t

b
j j k

k

  






      

 
 
 

(11) 

A numerical example demonstrates the use of bounds on the 

expected number of units short. The following information on 

demand during the replenishment period is known: the first 

moment 
1  = 25, the second moment 

2  = 725 and the range 

of demand is [0, 50]. The upper bounds on the number of stock-

out units are presented in Table VII for different values of t  

and varying sizes k  of the evaluation point set. The exact 

values for the upper bounds are 16.37931 for t  = 10, 5.0 for t  

= 25 and 1.37931 for t  = 40. 

TABLE VII 

SOLUTIONS OF THE LP APPROXIMATION METHOD 

 

 

 

 

 

In case the constraint of a unimodal distribution with a 

known mode m is introduced, the functions 𝑓(. ) take a different 

form: 

𝑓1̂ =
1

2
(𝜃 + 𝑚) 

𝑓2̂ =
1

3
(𝑚2 + 𝑚𝜃 + 𝜃2) 

𝑓3̂ =
1

2

(𝜃 − 𝑡)+
2

𝜃 − 𝑚
 

With the same data, and additional values for the mode m, the 

problem (9) can be formulated. The upper bounds on the 

expected number of units short are presented in Table VIII. 

TABLE VIII 

SOLUTIONS OF THE LP APPROXIMATION METHOD: UNIMODAL CASE 

 k=10 k=20 k=40 k=80 

t=10 (m = 5) 17.7778 17.7778 17.7778 17.7778 

t=25 (m = 15) 8.9286 8.9286 8.9286 8.9286 

 

Note that the number of constraints is linear in terms of the 

granularity k. This keeps the solution effort of the linear 

programs tractable. From the tables, it can be seen that with a 

reasonable value of k a very good approximation can be 

obtained. The effort is higher than the one required for Methods 

1 and 2. But for these methods an analytical solution of the 

integral, given the value of t, is required. 

V.  CONCLUSION 

The research aims at proposing methods for obtaining a safety 

stock, given a customer service level, in a situation where the 

demand during lead time is not completely known. The 

incomplete information may include the range, first and second 

moments, unique mode, or tail probability. In some special 

cases, the expected number of units short can be expressed in 

an analytical way. In these cases, the incomplete information 

can be used to obtain an upper bound on the safety stock given 

a pre-described service level. Two methods are explained in the 

case of two moments known and in the case with a unique mode 

and the mean known. In most other cases, no analytical 

formulae exist on which our methods are based. For these 

situations, a linear programming approach is presented. The 

situation is more complex, but also leads to a good 

approximation of the required solution.  
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