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Abstract The focus in the field of process mining, and

process discovery in particular, has thus far been on ex-

ploring and describing event data by the use of models.

Since the obtained models are often directly based on

a sample of event data, the question whether they also

apply to the real process typically remains unanswered.

As the underlying process is unknown in real-life, there

is a need for unbiased estimators to assess the system-

quality of a discovered model, and subsequently make

assertions about the process. In this paper, an experi-

ment is described and discussed to analyze whether ex-

isting fitness, precision and generalization metrics can

be used as unbiased estimators of system-fitness and

system-precision. The results show that important bi-

ases exist, which makes it currently nearly impossible to

objectively measure the ability of a model to represent

the system.

Keywords Process Mining · Process discovery ·
Process quality · Fitness · Precision · Generalization ·
Exploratory data analysis · Confirmatory data analysis

1 Introduction

Organizations are nowadays storing huge amounts of

data related to various business processes. Process min-

ing provides different methods and techniques to ana-

lyze and improve these processes, allowing companies

to gain a competitive advantage. Initiated with the dis-

covery of work-flow models from event data [3,9,10],

the process mining field has evolved over the past 20

years into a broad and diverse research discipline.

The results of process discovery and consecutive

analyses are often directly based on a sample of event

Address(es) of author(s) should be given

data that may not have captured all possible/actual be-

havior correctly or completely. However, the question

whether they also apply to the real, underlying process

typically remains unanswered. In order to solve this,

there is a need for unbiased estimators of the quality

of a discovered model as a representation of the un-

derlying process. The adequacy of the established qual-

ity dimensions fitness, precision and generalization is

typically only demonstrated using a limited set of spe-

cial cases, such as flower models or models enumerating

one or more traces [23,29]. Hence, a critical analysis of

these classical dimensions, both on theoretical and em-

pirical grounds, is missing and certainly necessary for

process discovery to evolve towards a mature research

discipline.

In this paper, we extend the established distinc-

tion between exploratory and confirmatory data anal-

ysis from traditional statistics to process discovery. As

a result,

– we propose a new paradigm to quantify the quality

of discovered process models, depending on the type

of analysis and discuss its necessity,

– we inventorize the state of the art quality metrics

and relate them to the proposed perspectives, and

– we empirically analyze the difference between the

perspectives and investigate possible biases when

using metrics for a different purpose than the one

they were designed for.

In the next section we discusses some related work,

whereafter the distinction between exploratory and

confirmatory analysis is made, both in its traditional

context and in a process discovery context. Section 4

takes this distinction further to introduce different sets

of measures for quality measurement in process discov-

ery. This section also introduces the problem statement

Blinded Manuscript Click here to view linked References
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underlying the empirical experiment described in the

remainder of the paper. The existing quality metrics

are discussed in more detail in Section 5. Subsequently,

an empirical study has been conducted, of which the

methodology is laid out in Section 6, the results shown

in Section 7, and its implications are discussed in Sec-

tion 8. Section 9 concludes the paper.

2 Related work

The quality of discovered process models is typically

characterized by four dimensions: fitness, precision,

generalization and simplicity [27]. While the first three

dimensions all compare the behavior of the event log

with the model, simplicity only takes into account the

model. Consequently, simplicity will not be considered

in the remainder of this paper.

By far the most studied quality dimension is fitness

[11,15,22,26,30–32]. A model with a good fitness allows

for the behavior seen in the event log. A good fitness

is often regarded as a primary requirement, before con-

sidering the other metrics.

Secondly, a model is precise if it does not allow for

too much unrecorded behavior. Precision also received

a reasonable amount of attention in literature [2,14,20,

30].

Finally, a model should generalize and not restrict

behavior to the examples seen in the event log. In con-

trast to fitness and precision, only limited work on gen-

eralization is available [26,30]. Furthermore, the pre-

cise definition of the concept is still unclear, as there

are multiple interpretations which differ in slight but

important ways [1,4,30].

Over the last decades, several metrics have been im-

plemented to measure these quality dimensions. For a

comprehensive overview of these metrics, we refer to

Table 1 and [8]. The state-of-the-art metrics will be

further introduced in Section 5.

The dimensions were first introduced in [22] and

their adequacy has since received limited critical con-

sideration. In [1], the focus is on the relation between

modeled and recorded behavior. Although the paper

emphasizes that process discovery aims to tell some-

thing about the unknown real process, it states that fit-

ness and precision metrics measure the fit between the

model and the event log, while generalization quantifies

the quality of these metrics as estimators of fit between

system and event log. Unfortunately, the discussion in

[1] is restricted to a theoretical one and is not experi-

mentally validated.

A recent comparative study of process metrics [8]

shows that the role of generalization in measuring con-

formance is extremely ambiguous. The generalization

metrics were found to be uncorrelated, with one of them

appearing to be related to fitness.

A quite different approach is undertaken in [21]. In

this study, the authors acknowledge that neither log nor

model (be it discovered or designed) provide an accu-

rate description of the underlying process. In order to

find a representation of the latter, both log and model

are modified by taking into account a certain trust in

each of them. However, as the approach uses the ex-

isting metrics for fitness, precision and generalization,

the accuracy of the result will depend on the quality

of these metrics. As the approach is only validated on

real-life event logs (where the underlying process is un-

known), it is not clear whether the approach succeeds

at finding the system.

It is frequently conjectured that the four quality di-

mensions should not be optimized simultaneously, but

that trade-offs exist between the metrics which have to

be resolved based on the objective of the analysis [5].

However, there do not exist any guidelines on how this

trade-off should be solved in a given situation.

In the remainder of this paper, we aim to cast a new

light upon these dimensions and metrics by making an

analogy with the difference between exploratory and

confirmatory analysis within traditional statistics.

3 Exploratory and confirmatory analysis

3.1 Traditional data science

The data science field largely originated from the dis-

cipline of statistics during the last decades of the 20th

century [25]. Within statistics, the emphasis has his-
torically been on confirmatory analysis, relying on the

well known paradigms of testing and estimation [13], to

confirm or reject a stated hypothesis. However, confir-

matory techniques are not designed to find hypotheses.

Only when one has a certain clearly formed idea or hy-

pothesis and data which can be exploited to elucidate

that idea, one can use confirmatory statistics to inves-

tigate whether or not the idea is justified in light of the

evidence [12].

With the arrival of more computational power,

and the increase of readily available data, the field

of exploratory data analysis (EDA) emerged [24]. Ex-

ploratory analyses are typically the starting point for a

line of research, when no specific statistical hypotheses

are specified. It mainly encompasses methods to plot

your data and transform it. Even when the question

to be answered is perfectly clear, the analysis can ben-

efit from exploratory analysis to test whether under-

lying assumptions for the confirmatory tests are met

and by highlighting and subsequently neutralizing other
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Table 1: Overview of Existing Quality Metrics for Fitness (F), Precision (P) and Generalization (G). Based on [8].

Metric Author Date Range Model Input type Included

F Parsing measure Weijters et al. [32] 2006 [0, 1] Heuristics Net

Continuous parsing method Weijters et al. [32] 2006 [0, 1] Heuristics Net

Completeness Greco et al. [15] 2006 [0, 1] Workflow Schema

Partial fitness - complete Alves de Medeiros [11] 2007 [−∞, 1] Heuristics Net

Token-based fitness Rozinat et al. [23] 2008 [0, 1] Petri Net •
Proper completion Rozinat et al. [23] 2008 [0, 1] Petri Net

Negative event recall vanden Broucke et al. [30] 2009 [0, 1] Petri Net •
Behavioral profile conformance Weidlich et al. [31] 2011 [0, 1] Petri Net

Alignment-based fitness van der Aalst et al. [26] 2012 [0, 1] Petri Net •
P Soundness Greco et al. [15] 2006 [0, 1] Workflow Schema

(Advanced) Behavioral appropriateness Rozinat et al. [23] 2008 [0, 1] Petri Net

Behavioral specificity Goedertier et al. [14] 2009 [0, 1] Petri Net

ETC-Precision Munoz-Gama et al. [20] 2010 [0, 1] Petri Net

Alignment-based precision van der Aalst et al. [26] 2012 [0, 1] Petri Net •
Negative event precision vanden Broucke et al. [30] 2014 [0, 1] Petri net •
One align precision Adriansyah et al. [2] 2015 [0, 1] Petri Net •
Best align precision Adriansyah et al. [2] 2015 [0, 1] Petri Net •

G Alignment-based generalization van der Aalst et al. [26] 2012 [0, 1] Petri Net •
Frequency of use Buijs et al. [4] 2014 [0, 1] Process Tree

Negative event generalization vanden Broucke et al. [30] 2014 [0, 1] Petri Net •

variables which might have an impact on the question

asked.

Exploratory and confirmatory methods are not each

other’s competitors, but rather go hand in hand. Ex-

ploratory analysis will both lead to new ideas to be

tested, and perhaps new data to be collected. Moreover,

it will form the groundwork for the confirmatory analy-

sis. In confirmatory analysis, it is investigated whether

the insights learned from the sample can be applied to

the population as a whole. While confirmatory analy-

sis can be seen as the work conducted in a law court to

determine guilt based on evidence, exploratory analysis

can be seen as the indispensable detective work that has

to be performed in advance. Through exploring data,

one wants to find clues, get ideas and follow up on them

in search for new hypotheses [12]. It is clear that one

cannot exist without the other, but they are compli-

mentary, and can be used in alternation or parallel.

3.2 Exploring and confirming within process discovery

Process mining started to emerge at the end of the

last century, with pioneering works on the discovery

of control-flow from event logs [3,9,10]. Sources for the

emergence of this discipline were the accelerating boost

of the data science field and the availability of event-

based data, which together have the potential to deliver

a highly competitive edge in the process-centric compa-

nies of the 21th century.

The concept of a sample from statistics finds its

equivalent in process mining as the event log L. On the

Model M

System S

Event log L

Fig. 1: Venn diagram representing the behavior in the

Model M , Event log L and System S [4].

other hand, we define a system S [4] as the popula-

tion of process behavior. The system thus refers to the

underlying process, the way work is done. Just as in

traditional statistics, the system and event log are not

equal, as the event log is only a sample and can contain

noise, i.e. measurement errors and inaccuracies. This is

shown conceptually in Figure 1, originally introduced

in [4].

In Figure 1, the process modelM is also represented.

This can be either a model designed by the process own-

ers or discovered from event data. But even when the

model is learned from the event log, both are typically

not equivalent. In order to quantify the quality of a pro-

cess model to represent a process, different quality di-

mensions and associated measures implementing these

dimensions have been defined. However, Figure 1 points

out that the quality of a model can have different in-

terpretations. Given the fact that we can approach the

event log as a sample and the system as the population,
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we can distinguish between an exploratory and confir-

matory approach.

When a confirmatory analysis is intended, it is im-

portant that the model used is a correct representation

of the system, i.e. M = S. For a descriptive, exploratory

analysis, this is not the case. In the latter situation, the

model used for analysis should have a close fit with the

data, i.e. M = L.

Just as with traditional exploratory and confirma-

tory analysis, these two perspectives on the quality of

a discovered process model do not need to be in com-

petition with each other. Nevertheless, each of them re-

quires a different conformance checking approach. The

next section will thus introduce different quality per-

spectives for process discovery, each with their own spe-

cific metrics.

4 Quality perspectives for process discovery

In this section, the different perspectives towards pro-

cess quality are introduced formally. In order to do this,

some preliminaries are needed.

4.1 Preliminaries

4.1.1 Activity sequences.

Let A be the activity alphabet. T = A∗ is the set of

all finite sequences over A, representing the universe

of activity sequences. An activity sequence, or trace,

σ ∈ T is a finite sequence of activities < a1, ..., an >.

|σ| = n refers to the number of activities in a trace.

h(σ, k) refers to the activity sequence prefix of the first

k activities in trace σ. h(σ, 0) refers to the empty trace

∅.

4.1.2 Event log.

An event log L is a multiset of activity sequences, and

can be defined as L ∈ B(T ), where B(T ) is the set of all

multisets of T . The support of L, denoted as supp(L),

is the set of unique activity sequences in L. Note that

supp(L) ⊆ T . For an activity sequence σ, the frequency

of this trace in event log L is defined as L(σ). The

number of distinct activity sequences in an event log is

defined as |L|. L = B(T ) represents the domain of all

possible logs.

4.1.3 Model.

A model M is a subset of the universe of activity se-

quences, and can be defined as M ⊆ T . |M | indicates

the number of activity sequences part of the model.

M = P(T ) represents the domain of all possible mod-

els, where P(T ) is the powerset of T .

4.1.4 System.

A system is defined as a subset of the universe of ac-

tivity sequences, and can be defined as S ⊆ T . |S| in-

dicates the number of activity sequences part of the

system. S = P(T ) represents the domain of all possible

systems.

Using the concepts of log, model and system, we

can now formalize different conceptual quality metrics,

both for exploratory process discovery and confirma-

tory process discovery.

4.2 Model-log similarity

In the case of exploratory analysis, it is important that

there is a tight correspondence between the event log

and the model. The fit between an event log and a pro-

cess model is monitored by two ratios [4], log-fitness and

log-precision. Given event log L, the log-fitness and log-

precision of a model M can be defined as follows. In

these definitions, we assume that the amount of behav-

ior in S, M and supp(L) is countable, which is reflected

by a count function #(. . . ).

Definition 1 (Log-fitness) Log-fitness is a function

FL : M×L→ [0, 1], which quantifies how much of the

behavior in the event log is captured by the model. This

can be defined conceptually as [4]:

FL = FL(M,L) =
#(supp(L) ∩M)

#(supp(L))
(1)

Definition 2 (Log-precision) Log-precision is a

function PL : M × L → [0, 1], which quantifies how

much of the behavior in the model was recorded in the

event log. This can be defined conceptually as [4]:

PL = PL(M,L) =
#(supp(L) ∩M)

#(M)
(2)

Only when both log-fitness and log-precision are

equal to 1, then supp(L) = M , i.e. the event log and the

model represent exactly the same behavior. These met-

rics are orthogonal to each other, which makes it possi-

ble to construct models which score poorly on one crite-

rion and excellent on the other. Acting as complemen-

tary forces, maximizing log-fitness and log-precision si-

multaneously maximizes the fit between the model and

the event log.
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4.3 Model-system similarity

For confirmatory analysis, one would like to reject or

accept hypotheses such as Model M1 is more likely than

Model M2 to be the real underlying system. In order to

do this, it is necessary to estimate how well a model M

represents the system S.

By drawing the analogy, it is evident that two sim-

ilar dimensions are needed to quantify the match be-

tween the model and the system. Firstly, there is a need

for a metric that ensures the selection of models that

contain all possible real behavior. Secondly, a metric

that favors the selection of models that only contain

real behavior is needed. Therefore, given the system S,

the system-fitness and system-precision of a model M

can be defined as:

Definition 3 (System-fitness) System-fitness is a

function FS : M × S → [0, 1], which quantifies how

much of the behavior in the system is captured by the

model. This can be defined conceptually as [4]:

FS = FS(M,S) =
#(S ∩M)

#(S)
(3)

Definition 4 (System-precision) System-precision

is a function PS : M × S → [0, 1], which quantifies

how much of the behavior in the model is part of the

system. This can be defined conceptually as [4]:

PS = PS(M,S) =
#(S ∩M)

#(M)
(4)

4.4 Problem statement

In a real-life process mining project, there is an inherent

difference between log-measures and system-measures

because of sampling error and observational errors.

Given the complexity of business processes, it is un-

likely that all the possible behavior and dependencies

in a process can be recorded in a reasonable time span.

As a result, log-precision might be lower than system-

precision because the model allows for unrecorded but

correct behavior. On the other hand, there can be mea-

surement errors in the data. These can lead to a log-

fitness which is lower than system-fitness, because the

model is penalized for not being able to replay behavior

which turns out to be incorrect. Furthermore, measure-

ment errors can have an opposite impact on precision,

and sampling error can have an opposite impact on fit-

ness. However, system-based metrics cannot be com-

puted since the system is generally unknown in reality.

As a result, the question is whether the existing log-

based metrics are good estimators of their system-based

counterparts. To this end we define

∆F (L,M,S) = FL(M,L)− FS(M,S) (5)

∆F can be computed for each of the existing fit-

ness metrics. For example, to investigate the quality of

Token-based fitness as an estimator of system-fitness,

we inspect ∆Ftb(L,M,S) = Ftb(M,L)−Ftb(M,S). By

using the Token-based metric itself in the calculation

of the system-fitness, any metric-dependent effects are

ruled out.

The same analysis is conducted for precision, where

we define ∆P as

∆P (L,M,S) = PL(M,L)− PS(M,S) (6)

Using an empirical analysis, we will examine

whether the existing quality log-based metrics are in-

deed unbiased estimators of system-quality. Formally,

the next two hypotheses are tested for each existing

metric:

H0 : ∆F = 0 H1 : ∆F 6= 0 (7)

H0 : ∆P = 0 H1 : ∆P 6= 0 (8)

In the next section, we further introduce the exist-

ing metrics which are considered in the analysis. The

methodology of the empirical examination is detailed

in Section 6.

5 Existing quality metrics

Based on the list of existing metrics in Table 1, nine

metrics are considered, as indicated in the last column

of Table 1. The selection of this set of metrics is based

on the following criteria:

1. They accept a Petri Net as input

2. They return a single value on a [0, 1] scale

3. They can cope with imperfect inputs (unsound dis-

covered models, unfitting logs, etc.)

These criteria should not be interpreted as strict

desirable properties of metrics, but rather as practical

restrictions needed for a large-scale empirical analysis.

5.1 Fitness

Token-based fitness [23] (from here on referred to as

Ftb) is one of the first fitness metrics that was defined.

As the name suggests, it is highly dependent on the
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Petri Net representation of the model under considera-

tion. The metric penalizes both when tokens are miss-

ing, i.e. an recorded activity cannot be replayed, and

when tokens are remaining in the model after replay.

While the first penalty takes into account whether an

activity sequence from the log is part of the model,

the latter penalty makes sure that the requirement

of proper completion is taken into account. Formally,

Token-based fitness is computed as follows:

Ftb =
1

2

(
1−

∑
σ∈supp(L) L(σ) ·mM (σ)∑
σ∈supp(L) L(σ) · cM (σ)

)
+

1

2

(
1−

∑
σ∈supp(L) L(σ) · rM (σ)∑
σ∈supp(L) L(σ) · pM (σ)

) (9)

where mM (σ) refers to the number of missing tokens

when replaying trace σ on model M . c, r, and p refer

to consumed, remaining and produced tokens, respec-

tively.

Alignment-based fitness [26] (from here on referred to

as Fab) is a fitness metric which differs from Token-

based fitness in that it does not rely on the notion of

tokens flowing through a Petri Net. Instead, it aligns

log and model in terms of activities. This means that

for non-fitting traces, i.e. {σ|σ ∈ supp(L) ∧ σ /∈ M},
the algorithm looks for the execution path in the model

which is most alike, as measured by a cost function. The

result is an alignment λ between the log trace and the

model trace, which by default has a cost of 1 for each

insertion and 1 for each deletion.1 Formally, the total

cost of aligning a log and a model is defined as

fcost =
∑

σ∈supp(L)

δ(σ,M) · L(σ) (10)

where δ(σ,M) is the minimal alignment cost of activity

sequence σ with model M . Given this cost function, the

Alignment-based fitness is defined as follows:

Fab = 1− fcost∑
σ∈supp(L)

(
L(σ) · |σ|+ (L(σ) ·minτ∈M |τ |

)
(11)

Note that the denominator of Fab is equal to the max-

imum possible cost: the number of events in the event

log and the number of activities in the shortest path of

the model times the number of cases in the event log.

Note that the Alignment-based fitness is very sim-

ilar to Token-based fitness, except for the fact that it

counts inserted and deleted activity instances, instead

of missing and remaining tokens.

1 In practice, these costs can be configured for each activity
type individually, to reflect that certain deviations should be
penalized more than others.

Negative event recall [14] (from here on referred to as

Fne), also known as Behavioral recall, is different from

Token-based and Alignment-based fitness, in that it

uses the notions of precision and recall, known from

the field of information retrieval and binary classifica-

tion. If we define True Positives (TP) as the number

of events in the log that can be correctly replayed, and

False Negatives (FN) as the number of events in the log

for which a transition was forced to fire, Negative event

recall can be defined as follows:

Fne =
TP

TP + FN
(12)

Note that this formula is the same as the well-known

formula for recall in binary classification. In this case,

the log is regarded as the true condition while the model

is regarded as the predicted condition. The negative

event conformance metrics are based on the induction of

artificial negative events. However, the negative events

only impact the negative event precision and general-

ization metrics, which will be addressed further on.

Just as Alignment-based and Token-based Fitness,

the Negative event recall relies only on the log as the

single version of the truth. It differs from the other fit-

ness metrics, as it does not penalize improper comple-

tion.

5.2 Precision

Alignment-based precision [26] (from here on referred

to as Pab) computes the precision of a model based

on the same concept of alignments such as Alignment-

based fitness. It starts from an aligned log, in which

all the non-fitting traces are replaced with (one of)

their optimal alignment(s).2 Based on this event log,

it considers the activity prefix h(σ, k) of each event,

and counts which activities are enabled in the model

after this activity prefix (enM (h(σ, k))), and which did

occur in the log after this activity prefix (enL(h(σ, k))).

It follows that precision is defined as:

Pab =

∑
σ∈supp(L) L(σ)

∑|σ|−1
j=0

enL(h(σ,j))
enM (h(σ,j))∑

σ∈supp(L) |σ| · L(σ)
(13)

The precision measures by this formula will decrease

when for one or more activity prefixes, more activities

are enabled in the model than did occur in the log.

2 Optimal alignments are the alignments for which the cost
is minimized.
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Towards confirmatory process discovery: making assertions about the underlying system 7

Negative event precision [30] (from here on referred to

as Pne) is a precision metric which is related to Negative

event recall, and is also called Behavioral precision. Just

like recall, its formula equals the well known precision

formula from the field of binary classification.

Pne =
TP

TP + FP
(14)

In this case, False Positives (FP) are events which are

allowed by the model but should not be, as their real

condition is negative. However, since negative events

are not available in process discovery, they have to be

induced artificially. The creation of artificial negative

events is discussed in [14]. During the induction of neg-

ative events, a confidence for each negative event is

also calculated, which makes it possible to compute a

weighted negative event precision.

One-align precision [2] (from here on referred to as

Poa) is a combination of ETC-precision [20] and align-

ments [26]. ETC-precision, or precision based on es-

caping edges, is a precision metric which constructs an

automaton of the behavior in the log. Subsequently, it

looks for escaping edges, which essentially are events

that are allowed by the model in a certain state, but

which were never recorded. The precision is then de-

fined as follows,

Petc = 1−
∑
σ∈supp(L)

∑|σ|−1
j=0 |E(h(σ, j))|∑

σ∈supp(L)

∑|σ|−1
j=0 |A(h(σ, j))|

(15)

where E(h(σi, j)) refers to the number of escaping edges

after activity j of trace σi, and A(h(σi, j)) refers to the

number of allowed tasks (both recorded activities and

escaping edges).

Since the ETC-precision itself requires that the

event log has a perfect fitness, it will not be consid-

ered further in this paper. However,One-align precision

or Best-align precision are used instead, which use an

aligned log to compute ETC-precision [2].

One-align precision refers to the application of

Petc(La,M) where La is an aligned log using one op-

timal alignment for each non-fitting trace. Note that

more than one optimal alignment can be available for

a certain trace.

Best-Align precision [2] (from here on referred to as

Pba)is similar to One-align precision, with the only dif-

ference that it does not use one alignment but all the

optimal alignments for each trace.

5.3 Generalization

Alignment-based generalization [26] (from here on re-

ferred to as Gab) was the first generalization metric to

be implemented, and uses trace alignments just like the

related fitness and precision metrics. It starts from an

aligned log, and for each event calculates the probabil-

ity that the next time this state is visited, a new path

will be recorded. Given n the number of unique activ-

ities enabled in this state, and f the number of times

the state was visited, the probability is defined as

pnew(n, f) =

{
n(n+1)
f(f−1) , if f − n ≥ 2

1, otherwise
(16)

For example, in a state with 2 unique activities and

2 visits, pnew = 1, as is also the case with 3 visits. If f =

4, pnew = 2·3
4·3 = 0.5. If f = 5, 2·3

5·4 = 0.3. The larger the

difference between the number of visits and the number

of unique activities, the lower the probability. If the av-

erage probability over the log is low, then generalization

is assumed to be high. As such,

Gab = 1

−
∑
σ∈supp(L)

∑|σ|−1
j=0 pnew(enL(h(σ, j)), f(h(σ, j))∑
σ∈supp(L) |σ| · L(σ)

(17)

where enL(h(σ, j)) is the number of activities are

enabled in the model after this activity prefix and

f(h(σ, j)) is the frequency with which this state is vis-

ited in the log.

Relating this definition to one of the concepts in-
troduced in Section 4 is not a trivial task. It tends to

favor models in which more activities are possible in

a specific state than those which did occur in the log.

However there is no indication that this additional be-

havior is real (i.e. belongs to the system, thereby in-

creasing system-fitness). Nor is there any upper-limit,

which means that the flower model will have a perfect

generalization according to this metric.

Negative event generalization [30] (from here on re-

ferred to as Gne), also called Behavioral Generalization,

is related to Behavioral recall and precision and relies

on the induction of artificial negative events. Negative

event generalization is defined as

Gne =
AG

AG+DG
(18)

where AG refers to the number of allowed generaliza-

tions and DG refers to the number of disallowed gen-

eralizations. Generalized events are events which were
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not recorded but at the same time not considered as

negative. In other words, they are supposed to reflect

real behavior and thus belong to the system S. Consider

system S∗ as defined by the induced negative events as

an approximation of the real system S. The complete

number of generalized events, AG + DG is thus equal

to |S∗ \ L|. Generalized events which can be replayed

by the model, are called allowed generalizations, i.e.

AG = |M ∩ S∗ \ L|. Disallowed generalized events are

generalized events which are not allowed by the model,

i.e. DG = |S∗ \ (L ∪M)|. This means that Gne can be

rewritten as

Gne =
|M ∩ S∗ \ L|
|S∗ \ L|

(19)

which resembles the formula for system-fitness, with the

only difference that S is replaced by S∗ \ L.

6 Methodology

In order to analyze the quality of the introduced met-

rics as unbiased estimators of the fit between a discov-

ered model and the underlying system, an experiment

is conducted consisting of the following steps:

1. Generate systems

2. Calculate number of paths

3. Simulate logs

4. Discover models

5. Measure log-quality

6. Measure system-quality

7. Statistical analysis

A schematic overview of the methodology is shown

in Figure 2. The different steps are discussed in more

detail in the following paragraphs.

6.1 Generate systems

Firstly, 10 different systems were created. These can

be regarded as the real process underlying 10 different

business processes. The systems were generated using

the methodology in [6]. Process trees were chosen as no-

tation because they can represent all block-structured

models. Furthermore, the methodology in [6] allows to

generate process trees with long-term dependencies us-

ing unfolded choice trees. Moreover, process trees lend

themselves well for this large-scale experiment, as they

are guaranteed to be deadlock-free.

Ten process trees were generated, each from a differ-

ent population with another probability distribution for

the type of operators (choice, and, loop, etc.), as well as

different probabilities for the number of duplicate tasks,

Fig. 2: Schematic overview of methodology

silent tasks, long-term dependencies, etc. An overview

of the population parameters is shown in Table 2.

The first three parameters define a triangular dis-

tribution from which the number of visible activi-

ties is randomly drawn. The next five parameters -

Π→, Π∧, Π×, Π	 and Π∨ - define a probability dis-

tribution over the different types of process tree opera-

tors: sequence, parallel, exclusive choice, loops, and or

choice, respectively. The probability that a silent (in-

visible) activity is included in an exclusive choice, loop,

or choice construct is given by Πτ , the probability that

an activity is duplicated is defined by ΠRe, and ΠLt

gives the probability that a long-term dependency is

included between two decision points.

The probabilities for sequence, parallel and choice

constructs are based on the work in [16]. In this work,

the occurrence of sequence, exclusive choice and paral-

lelism in a large set of models is analyzed, which (when

normalized to 100%), are on average 46%, 35% and

19%. Population 1 to 6 can be seen as slight variations

of the above mentioned probabilities, while populations

7 to 10 can be seen as more special cases, including

duplicate and silent tasks, long-term dependencies and

atypical probability distributions for constructs. The

implications of these settings, and their limitations are

discussed in Section 8.

6.2 Calculate number of paths

After the generation of the systems, the maximum num-

ber of execution paths in each tree is calculated using

the algorithm in [7]. In order to cope with loop oper-
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Table 2: Parameters for 10 Model Populations (MP ) to generate systems.

Parameters
Population

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9 MP10

Minimum of visible act. 10 10 10 10 10 10 10 10 10 10

Mode of visible act. 15 15 15 15 15 15 15 15 15 15

Maximum of visible act. 20 20 20 20 20 20 20 20 20 20

Sequence (Π→) 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.45

Parallel (Π∧) 0.30 0.00 0.15 0.15 0.00 0.10 0.10 0.10 0.10 0.00

Choice (Π×) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.40

Loops (Π	) 0.00 0.30 0.15 0.00 0.15 0.10 0.10 0.10 0.10 0.00

Or (Π∨) 0.00 0.00 0.00 0.15 0.15 0.10 0.10 0.10 0.10 0.15

Silent act. (Πτ ) 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00

Reoccuring act. (ΠRe) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00

Lt. dependencies (ΠLt) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00

ators, the algorithm assumes that a loop could not be

iterated over more than three times, thereby effectively

limiting the number of paths which can be generated

by a loop in a realistic manner. This limit ensure that

each model has a finite number of possible execution

paths, and is inspired by a fairness assumption, mean-

ing that a certain task should not be delayed indefi-

nitely. The number of paths in a model is needed to

control the completeness of event logs in the next step,

i.e. the simulation of event logs.

6.3 Simulate logs

For each system, different event logs were simulated

using the methodology in [6]. Firstly, a ground-truth

event log was created for each system. This is an event

log with zero noise and 100% completeness (indicated

by the number of distinct paths calculated in the pre-

vious step). This ground-truth event log will be used

later to calculate the system-quality of models.

Secondly, event logs with varying levels of com-

pleteness and noise are generated. The completeness,

in terms of number of distinct traces, is varied between

25%, 50%, 75% to 100%. The amount of noise ranges

from 0% to 5%, 10% and 15%. Noise is defined as low-

frequent incorrect behavior [19], and the types of noise

which are induced are adapted from [18].

To assure that the introduction of noise does not

decreases the completeness, noise is not directly added

to the event log. Instead, a sample of the event log is

taken, to which noise is added, which is then combined

with the original event log. The size of the sample is

derived from the target noise threshold: to obtain an

event log with 15% of noise, a sample of size x% is

needed such that x/(100+x) = 15%). Since the original

part of the event log still belongs to the modified event

log, completeness does not go down.

However, it is important to observe that this noise

threshold should be regarded as an upper bound. A

modified trace,i.e. after introducing noise, can still be

correct behavior. Currently, the algorithm used for in-

troducing noise does not explicitly test this. Conse-

quently, while introducing noise will not decrease com-

pleteness, as a result of the mechanism described above,

it can increase the completeness. This happens when

the noisy traces are still system behavior and were not

already seen in the log. As a result, the completeness

threshold should be regarded as a lower bound. This

means that both the completeness and the noise thresh-

old are defined in a conservative way, i.e. the actual level

might be less worse.

Definition 5 (Noise) Given a trace σ = <

a1, a2, ..., an−1, an >, then the following types of noise

are defined:3

1. Missing head: remove all activities ai with i ∈ [1, n3 ]

2. Missing body: remove all activities ai with i ∈ [n3 +

1, 2n
3 ]

3. Missing tail: remove all activities ai with i ∈ [ 2n
3 +

1, n]

4. Swap tasks: interchange two random activities ai
and aj with i 6= j

5. Remove task: remove random activity ai

These types of noise have been defined based on

the fact that they mimic realistic measurement errors

3 The types of noise used have been defined based on exist-
ing literature [18]. However, for future experiments, a more
elaborate reasoning of what qualifies as realistic noise is war-
ranted. For example, the swapping of random activities is
not really a realistic event. An elaborated discussion on what
serves as noise is out of the scope of this paper.
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or data inconsistency, due to system failures [1-3, 5] or

unsynchronized time registrations [4].

For each combination of noise level (4) and com-

pleteness level (4), 5 different logs are generated, re-

sulting in a total of 4 · 4 · 5 = 80 for each system, or 800

logs in total.

6.4 Discover models

For each of the 800 event logs, three different models

are discovered by way of the Heuristics miner [32], the

Inductive miner [17] and the ILP miner [28]. The to-

tal number of discovered models is thus equal to 2400.

ProM 6.5 was used for the discovery of the process mod-

els, and each of the miners was used with the default

settings.

6.5 Measure log-quality

After the event logs are generated and the models are

discovered, the quality metrics discussed in Section 5

are applied to each discovered process model and the

event log it was learned from. Since there are 2400 pro-

cess models and 9 quality metrics, this results in a total

of 21600 measurements.

6.6 Measure system-quality

Next to the log-quality, also the system-quality of pro-

cess models is measured. This is done by applying each

of the fitness and precision metrics with respect to the

ground-truth event log for each of the systems, as to

compute system-fitness and system-precision of these

models. This means that for each model there are actu-

ally 3 system-fitness measures and 4 system-precision

measures.

Note that the ground truth event log of the systems

is used for several reasons. Firstly, there are no met-

rics for quantifying a notion of fitness and precision be-

tween two process models, which is solved by represent-

ing one of them as an equivalent event log. Secondly,

the systems are better candidates to be represented by

a ground truth event log than the models, as the latter

may not be sound. Deadlocks or livelocks might cause

problems when simulating the models. Also, the calcu-

lated number of paths (see Section 6.2) is essential to

assure the ground truth event logs are complete. Cal-

culating the number of paths in the models might not

be feasible for all discovered models, as the technique

in [7] requires block-structuredness, which is not guar-

anteed by ILP-miner and Heuristic miner. Finally, from

the viewpoint of comparing log-measures with system-

measures, it appears more logical to use the discovered

model in the same appearance (i.e. as a process model)

in both measurements.

6.7 Statistical analysis

The analysis of the results consists of two parts. The

first part analyzes the difference between log-fitness and

log-precision on the one hand, and system-fitness and

system-precision on the other hand. The second part

analyzes the relationship between generalization met-

rics and system-fitness.

6.7.1 Log versus system-perspective

In order to analyze the difference between log-fitness

and system-fitness, and log-precision and system-

precision, we investigate whether the existing fitness

and precision measures can be used as an unbiased esti-

mator for system-fitness and system-precision, respec-

tively. This means that

E[∆F ] = 0 (20)

and

E[∆P ] = 0 (21)

regardless of the amount of noise of level of complete-

ness of the log. Recall that ∆F and ∆P are defined as

follows:

∆F (L,M,S) = FL(M,L)− FS(M,S) (22)

∆P (L,M,S) = PL(M,L)− PS(M,S) (23)

The distribution and expected values of ∆F and

∆P under different circumstances in terms of noise and

completeness are analyzed both visually and using t-

tests.

6.7.2 Generalization

Although the concept of generalization, as discussed

in Section 2, does not directly fit in the perspectives

proposed in Section 4, it is to some extent related to

system-fitness. As a result, next to log-fitness metrics,

generalization metrics might be a viable candidate as

estimators for system-fitness. In order to analyze the

quality of generalization metrics as unbiased estima-

tors, we compare their value with system-fitness. In this

analysis, Alignment-based fitness is chosen as the refer-

ence system-fitness, as it is considered as the state-of-

the-art fitness-metric. Formally, we define

∆G(L,M,S) = GL(L,M)− FSab(M,S) (24)
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(a) Distribution of ∆F for different levels of completeness,
while noise is constant at 0%.

(b) Distribution of ∆F for different levels of noise, while com-
pleteness is constant at 100%.

Fig. 3: Impact of completeness and noise on ∆F .

The distribution of ∆G is analyzed in the same way

as those related to fitness and precision, i.e. both graph-

ically and using t-tests.

7 Results

7.1 Log versus system-perspective

7.1.1 Fitness.

Figure 3 shows that the influence of completeness and

noise on the distribution of ∆F is quite different. Note

that in this and subsequent figures, there is a data point

for each combination of simulated event log, discovered

model, and quality metric used. In Figure 3a it can be

seen that, if the completeness of the log decreases, log-

fitness measures remain unbiased estimators of system-

fitness, but their precision as estimator decreases.

On the other hand, when the amount of noise in

the event log increases - keeping completeness constant

- both the variance of ∆F increases and its expected

value decreases. In the presence of noise, log-fitness

metrics are thus biased estimators of system-fitness;

they underestimate real system-fitness.

Table 3 shows the extent of the biases in more de-

tail for each of the metrics. T-tests were conducted to

see whether the mean ∆F was equal to zero or not,

under the various circumstances. The annotated ∗’s in-

dicate whether ∆F is significantly different from zero

in a certain situation. In order to correct for multi-

ple testing, the Bonferroni correction was applied. It

can be recorded that the impact of incompleteness (in

the absence of noise) is limited, with only a few statis-

tically significant differences. However, when the logs

contain noise, there are statistically significant under-

estimations of system-fitness.

7.1.2 Precision

Figure 4a shows that when event logs are incomplete,

precision measures are increasingly underestimating

system-precision, while Figure 4b shows that they over-

estimate system-precision in case of noisy logs.

The mean ∆P for different levels of noise and com-

pleteness is shown in Table 4. In this case, both noise

and completeness have a statistically significant impact

on ∆P .

In general, it can be stated that incompleteness

of the event log always leads to an underestimation

of system-precision, while noise results in an overesti-

mation. However, making assumptions about the com-

pleteness and the amount of noise of a given event log

is a non-trivial task. As a result, quantifying the bias

in a particular case would not be straightforward.
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Table 3: Mean ∆F for fitness metrics under differing noise and completeness levels.

Noise
Metric Completeness 0% 5% 10% 15%

Alignment-based fitness 100% -0.0002 -0.0071∗∗∗ -0.0144∗∗∗ -0.0212∗∗∗

75% -0.0013 -0.0081∗∗∗ -0.0158∗∗∗ -0.0217∗∗∗

50% 0.0002 -0.0066∗∗∗ -0.013∗∗∗ -0.0209∗∗∗

25% 0.0011 -0.0051∗ -0.0115∗∗∗ -0.0181∗∗∗

Negative event recall 100% 0.0011∗∗ -0.0017∗∗∗ -0.0047∗∗∗ -0.0069∗∗∗

75% 0.0003 -0.0017∗∗∗ -0.0049∗∗∗ -0.0076∗∗∗

50% 0.0024∗∗∗ -0.002∗∗∗ -0.0043∗∗∗ -0.008∗∗∗

25% 0.0033∗∗ 0.0011 -0.0034∗∗∗ -0.0057∗∗∗

Token-based fitness 100% 0.0007 -0.0069∗∗∗ -0.0155∗∗∗ -0.023∗∗∗

75% 0.0011 -0.0049∗∗∗ -0.0106∗∗∗ -0.0195∗∗∗

50% 0.0016 -0.0037∗∗∗ -0.011∗∗∗ -0.017∗∗∗

25% 0.0024 -0.0014∗∗ -0.006∗∗∗ -0.0082∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Based on Wilcoxon signed rank test with Bonferroni correction

(a) Distribution of ∆P for different levels of completeness,
while noise is constant at 0%.

(b) Distribution of ∆P for different levels of noise, while com-
pleteness is constant at 100%.

Fig. 4: Impact of completeness and noise on ∆P
.

7.2 Generalization

Figure 5 shows the impact of both incompleteness

(Fig. 5a) and noise (Fig. 5b) on ∆G. It can be seen that

there is a clear distinction between the Alignment-based

generalization and Negative Event Generalization. Al-

though ∆G is more or less stable for both metrics when

the completeness of event logs decreases, this is not the

case when the amount of noise increases.

Moreover, the impact of noise does not seem to be

linear. For Alignment-based generalization there is a

sudden increase in ∆G when the amount of noise is

increased from 0% to 5%. As a result, this general-

ization metric overestimates system-fitness. However,

when noise increases further than 5%, there is no in-

crease in the overestimation. On the other hand, the

pattern for Negative event generalization is more er-

ratic, with a strange underestimation for logs with 10%

noise, while the bias remains limited at other levels of

noise.

The mean values of ∆G in Table 5 show that for

both metrics, ∆G is statistically different from zero in

nearly all situations where noise or incompleteness is

the case. This indicates that Negative event general-

ization is consistently underestimating system-fitness,
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Table 4: Mean ∆P for precision metrics under differing noise and completeness levels.

Noise
Metric Completeness 0% 5% 10% 15%

Alignment-based precision 100% -0.0002 0.0415∗∗∗ 0.0453∗∗∗ 0.0597∗∗∗

75% -0.0032∗∗∗ 0.0339∗∗∗ 0.043∗∗∗ 0.049∗∗∗

50% -0.0101∗∗∗ 0.0268 0.0379∗∗∗ 0.0384∗∗∗

25% -0.0225∗∗∗ 0.0018∗ 0.0093 0.0122
Best-align precision 100% 0.0013 0.0412∗∗∗ 0.0538∗∗∗ 0.0636∗∗∗

75% -0.0066∗∗∗ 0.0201∗∗∗ 0.0161∗∗∗ 0.0308∗∗∗

50% -0.015∗∗∗ 0.0085 0.0118 0.0104
25% -0.0394∗∗∗ -0.015 -0.0063 -0.0111

Negative event precision 100% -0.0012∗∗∗ 0.0595∗∗∗ 0.0728∗∗∗ 0.0837∗∗∗

75% -0.0055∗∗∗ 0.0265∗∗ 0.0425∗∗∗ 0.053∗∗∗

50% -0.0101∗∗∗ 0.0157 0.0185 0.0246
25% -0.0254∗∗∗ -0.0073 -0.0088 -0.0047

One-align precision 100% -0.0004 0.0334∗∗∗ 0.042∗∗∗ 0.0467∗∗∗

75% -0.0049∗∗∗ 0.0174∗∗∗ 0.0262∗∗∗ 0.0315∗∗∗

50% -0.0156∗∗∗ 0.0069 0.012∗∗ 0.0152∗∗

25% -0.0381∗∗∗ -0.0124∗∗∗ -0.0064 -0.0013

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Based on Wilcoxon signed rank test with Bonferroni correction

even in the absence of noise and for complete event

logs.

8 Discussion

When assessing the quality of a process model, often

the implicit goal is to find out whether it reflects the

underlying, unknown process, on the basis of the sam-

ple of event data that has been collected. However, the

ability of current metrics to assess the similarity be-

tween a process model and the underlying system has

never been explicitly tested. As a result, one should be

careful when interpreting the obtained measures.

The empirical analysis described in this paper shows

that the fitness and precision measures are indeed bi-

ased estimators of system-fitness and system-precision

in realistic circumstances, i.e. in the presence of noise

and incomplete event data.

Noise leads to overestimation of system-precision

and underestimation of system-fitness, while incom-

pleteness has the opposite effect. While the direction of

the biases are intuitive, the empirical study has shown

how severe they are in terms of the level of noise and

incompleteness used. Nonetheless, estimating what the

amount of noise or the level of log completeness is in a

specific practical context is a difficult task.

It can thus be concluded that, given the metrics

which are available today, we are not able to confidently

quantify which model is the best representation of the

underlying process under consideration, which is defi-

nitely an obstacle to evolve towards confirmatory pro-

cess discovery. It is therefore important not to derive

too many conclusions when using fitness and precision

metrics, as they only assess the log-perspective.

Nonetheless, information on the direction of the bi-

ases, i.e. under- vs overestimation, provides some guid-

ance to practitioners on how to use these obtained qual-

ity measures. In case of underestimation, the obtained

values can be seen as lower bounds, or conservatives

measures, while in case of overestimation they should

be regarded as being optimistic. A key assumption here

is that the practitioner has a good understanding about

the noise and completeness of the data used.

The experiment described in this paper has some

limitations. Firstly, although the empirical analysis was

performed using a set of systems generated with vari-

ous parameter settings, the instances are too limited

to compare the impact of individual parameters on the

measurement biases. Further research would be needed

to see whether the biases can be linked to characteris-

tics in the process, and thus be analyzed in increased

detail. Moreover, while the results can be generalized

to the populations described in Table 2, additional re-

search is needed to determine the whether these param-

eters adequately represent realistic process models.

Secondly, since the algorithm for noise induction

does not strictly ensures that the resulting traces are

incorrect, the noise threshold is an upper bound and

the completeness threshold is a lower bound. While this

creates difficulties in interpreting the results of the ex-

periment, it is less relevant from a practitioners point

of view, in which the amount of noise and completeness

is unknown in any case.
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Table 5: Mean ∆G under differing noise and completeness levels.

Noise
Metric Completeness 0% 5% 10% 15%

Alignment-based generalization 100% -0.0001∗∗ 0.0101∗∗∗ 0.0099∗∗∗ 0.0175∗∗∗

75% -0.0052∗∗∗ 0.0053∗∗∗ 0.0066∗∗∗ 0.0077
50% -0.0141∗∗∗ -0.0048∗∗∗ 0.0046∗∗∗ 0.0038∗∗∗

25% -0.0291∗∗∗ -0.0298∗∗∗ -0.0275∗∗∗ -0.0278∗∗∗

Negative event generalization 100% -0.0054 -0.244∗∗∗ -0.2487∗∗∗ -0.2529∗∗∗

75% -0.0075 -0.2323∗∗∗ -0.2527∗∗∗ -0.2574∗∗∗

50% -0.0073∗∗∗ -0.194∗∗∗ -0.2241∗∗∗ -0.2431∗∗∗

25% -0.0126∗∗ -0.1466∗∗∗ -0.1807∗∗∗ -0.2∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Based on Wilcoxon signed rank test with Bonferroni correction

Thirdly, only three discovery algorithms were used

in the experiment, each with default settings. While the

aim of the experiment was not to compare different al-

gorithms, further researcher is needed to verify whether

the biases can be generalized to other sets of models.

Future research is needed in order to solve these

issues. We believe that additional insights from fields

such as statistics and machine learning can facilitate

the finding of solutions. Traditional statistical inference

could provide answers when event logs are regarded

as sets of traces with individual quality measures over

which a standard deviation can be computed. More-

over, a promising track for further research would be

to compare a set of possible models using Bayesian in-

ference, in order to estimate the likelihood that they

represent the underlying system, given the data.

9 Conclusion

Since the emergence of the process mining field, the

focus has been largely on exploratory and descriptive

data analysis. In other words, the main emphasis was

on the sample of event data under consideration, while

limited to no efforts have been done to statistically con-

firm findings. For process discovery to mature as a re-

search field and in order to increase adoption of process

discovery techniques in industry, the latter step is how-

ever essential.

In this paper, we connect the process discovery con-

text with the traditional concepts and exploratory and

confirmatory analysis in statistics and data science. In

particular, when checking the quality of discovered pro-

cess models, it is important to be aware whether the

conclusions of process discovery techniques only apply

to the sample of the event data, or conversely apply

to the broader context of the process itself. In order to

make these kinds of assertions about the system, it is

shown that new quality dimensions are needed.

An empirical analysis showed that current fitness

and precision metrics, which are targeted towards log

and model, are biased estimators of the resemblance

between model and the underlying system. As a result,

although they are fine for measuring the quality of a

model as a representation of the log, they should not

be used when the goal is to make statements about

the real process. Furthermore, the generalization di-

mension has been identified as a vaguely defined con-

cept which is unable to properly grasp the relation be-

tween model and system. The implemented generaliza-

tion metrics are moreover unfit to estimated system-

fitness or system-precision.
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